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Abstract. Telecom localization that had aroused widespread atten-
tions of major telecommunication operators has become vital in recent
years. However, current available technologies suffer from high localiza-
tion errors, typically with mean errors more than 100 m. In order to tackle
this problem, in this paper we leverage context knowledge to reduce the
localization error. To this end, we propose a framework adopting sev-
eral modified filter methods in terms of context to eliminate localization
errors that cannot be easily detected by the existing localization algo-
rithms. We apply the optimized filter methods combining with the con-
text knowledge to verify the effectiveness of our methodologies according
to the experiments based on the telecom localization utilizing the GPS-
associated MR data in the downtown area of Shanghai, China.

1 Introduction

LBS requires relatively accurate locations of mobile phone users. Nevertheless,
the traditional telecom positioning approaches suffer from either low precision
(e.g., the range-based methods have the typical mean errors by hundreds of
meters) or high costs (the fingerprinting methods have to maintain a fingerprint
database). The recent mea- surement report (MR)-based positioning systems
instead have many advantages includ- ing availability in most mobile phones
and being active whenever users make phone calls and use mobile broadband
services. It has been considered as a very useful com- plement to GPS. However,
MR positioning systems still cannot achieve high precision.

In the view of the current domestic and international research status, localiza-
tion schemes on Wireless Sensor Network (WSN) data can be classified as three
categories, (1) range-based methods, (2) fingerprinting methods, and (3) model-
based methods. The range-based methods use range measurements as physical
models [6], which record the TOA (Time of Arrival) and AOA (Angle of Arrival),
TDOA (Time Difference of Arrival) and RSSI (Radio Signal Strength Indicator)
of transmitting wireless signal by the unknown node hardware receiving from
external symbol node, then transform these distance metric values to the dis-
tance upon which the related algorithms such as trilateration and triangulation
method, maximum likelihood estimation method can be employed.
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Fingerprint positioning algorithm is a feature matching algorithm, which uses
a plurality of signal strength values of wireless routers in positioning environment,
and establish the off-line fingerprint database [9] by collecting and training, then
to match the real-time collected fingerprints in the positioning process and finger-
print database in order to estimate the best matching positions. The last method
is a model-based localization, which uses related machining learning algorithms
to learn our excited position estimation, such as Random Forest (RF) algorithm
and Artificial Neural Network (ANN) algorithm. This method serves the real GPS
position as our training label to build our localization model by training the Mea-
surement Report(MR) provided by mobile phone service providers.

Despite the localization methods we studied had achieved good position esti-
mation results, we had found that lots of localization errors having large devia-
tions from the real values, which could mainly reflect in either the oscillations of
position in the same road section or deviating far away from the original real road
segments. The direct use of the localization algorithm to calculate the location
of a user may produce big error due to the change in user position. Furthermore,
the user movement is not very smooth and it might be affecting the real-time
positioning system performance and stability seriously. Inevitably, there will be
a lot of noise during the process of the signal transmission in addition to the
noise produced by the localization algorithm itself, which is a vital reason causes
the error of localization.

Furthermore, we found that in addition to the estimated positions deviating
seriously from the true positions, there are serious velocity variations in the
predicted locations. We believe the speeds between two adjacent positions of
a user trajectory do not appear reasonable according our daily life experience.
Therefore, solving these localization error problems become very important to
improve localization accuracy as the basis for LBS.

In this paper, we introduce several filtering algorithms to remove the abnor-
mal location coordinates created by the positioning algorithm and to further
improve the positioning accuracy of the positioning system built on model-based
localization.

Our study indicates that it is necessary to propose a practical and effective
data postprocessing method to resolve a variety of positioning errors. In our view,
every GPS point is not isolated position but contextual related because these
GPS points represent real physical locations of user trajectory and normally it
could predict the next position according the current or last position, and/or
infer the last position according the current position. As we discussed above, the
work we attempt to accomplish in this paper is to design a sliding window filter
based on map-matching algorithm, which mainly combines with two items of
the big rich context knowledge from the entire user trajectory and road network
data, in order to eliminate the influence of errors in our localization models.

To summarize, we make the following contributions in this paper:

– Novel application of several filters in trajectory data processing and separated
from data preprocessing work
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– The first to introduce the algorithm of using context knowledge based on
map-matching

– The combination of mathematical filter algorithm model and spatial-temporal
data.

The rest of this paper is organized as follows, Sect. 2 describes the problem
of localization error to be solved. Section 3 introduces the theory for proposed
model and error correction algorithm. Section 4 presents the related experiment
results. Finally, Sect. 5 concludes with the efficiency of the proposed method and
the possible future work.

2 Background

When mobile users make phone calls using mobile phones or use mobile broad-
band services, their phones connect to telecom networks, e.g., GSM. The net-
work next generates measurement report (MR) data. The MR data records the
received signal strength indicator (RSSI) of nearby base stations to support
communication services, etc. On the other hand, the widely-used location based
services (LBSs) have accumulated lots of over-the-top (OTT) global position-
ing system (GPS) data in telco networks. We then use the GPS data as the
training labels to learn accurate MR-based positioning systems. Figure 1 shows
the data flow of an MR-based positioning system. LBSs generate low sampling
OTT GPS locations (green dots). With the OTT GPS locations as label data,
the MR-based positioning system can train the high sampling MRs by using
machine learning models. Since the GPS locations are numeric data, we can
adopt the classic machine learning algorithm named Random Forests to solve
a regression problem. When the training model is ready, given the MR records
without labels, we predict the GPS locations (yellow dots) with respect to such
MR records. In this way, with the predicted GPS points, we can fully recover
the entire trajectory.

Fig. 1. Model-based MR positioning systems (Color figure online)
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Suppose that the above MR records have ground truth (i.e., the GPS loca-
tions), we can measure the positioning precision by comparing the predicted
location to the ground truth GPS location. The previous work [10] can achieve a
mean error of around 80 m. Though the positioning precision obtained by apply-
ing the RF algorithm is much better than the traditional telecom positioning
approaches, it cannot compete with GPS. The main purpose of this paper is to
present the methodology that can be applied to the estimated GPS locations by
applying RF to achieve more accurate estimated locations.

2.1 Positioning Errors

With help of road network maps, we are able to observe the predicted points on
the maps and two types of positioning errors as follows:

Fig. 2. Noise error points in a trajectory

As the Fig. 2 shows a trajectory consists of eleven points with noise.

– Horizontal error
Horizontal error is not a simple error in latitude direction, and it mainly
represents the predicted locations originally close to the road but now are far
away from the true locations. In Fig. 2, there are three such examples: p3, p5,
p7. What we need to do is pull these errant points back to the road network.

– Vertical error
Vertical error mainly represents the predicted location points in wrong
sequences, although they are distributed on the correct road network. From
the common sense, a human walking/driving trajectory will usually not
appear in repeated crossing. The Fig. 2 depicts there are eleven points in
the whole walking trajectory, and it should be expressed in the sequential
order: p1 → p11 according to the experience knowledge, but point p8 appears
between p5 and p7, and so point p11 does the same. We define this errant
sequence as the vertical error.

To solve the above vertical and horizontal errors, we are going to leverage
the road network maps and multiple consecutive GPS points as the context
information to improve the positioning precision.
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3 Telco Localization Solution Introduce

In this section, we first give an overview of several solutions that can correct
errors in predicted locations [3].

3.1 Kalman Filter

Review of Kalman Filter. Before using Kalman Filter (KF) [1] as a tool to
improve the positioning accuracy in our problem, we would like to first give a
quick review of KF. More specifically, KF [7] mainly consists of two main parts:
one is the state Eq. 1 and the other is the observation Eq. 2. The KF model
assumes the true state at time k is evolved from the state at (k − 1) as Eq. (1)
states.

x̂k = Axk−1 + Buk + w (1)

where

– A is the system state parameter, which is the transition model applied to the
previous state xk−1;

– B is the control-input model that is applied to the control vector uk and can
be ignored in this paper;

– w is the processing noise that is assumed to be zero mean Gaussian white
noise, with covariance Q;

– At time k an observation (or measurement) zk of the true state xk is obtained
according to the following observation equation.

zk = Hxk + v (2)

where

– zk is the observation result;
– H is the observation matrix;
– xk is the true state value in its system;
– v is the observation noise that is assumed to be zero mean Gaussian white

noise with covariance R (In this paper, we assumed that this covariance as
well as Q won’t be altered with the system state dynamically).

The updating equations from time k − 1 to k are as follow.

̂Xk = AXk−1 + BUk (3)
̂Pk = APk−1A

T + Q (4)

Kk = ̂PkH
T (H ̂PkH

T + R)
−1

(5)
̂Xk = ̂Xk + Kk(Zk − H ̂Xk) (6)
Pk = (1 − KkH)Pk (7)

where
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– Kk is the Kalman gain at time k;
– Pk is the error covariance at time k.

Algorithm 1. Kalman Filter Algorithm
Input: Input GPS points 〈 longitude, latitude, timestamp 〉
Output: Corrected GPS points 〈 longitude, lattitude, timestamp 〉
1: set initial point and speed;
2: set noise Q and observation noise R;
3: for each input GPS point do
4: compute the predicted position by Eq. 1;
5: update the current position by Eq. 2;
6: end for
7: return points = sum(pointk) k = 1,2,3.....;

Kalman Filter-Based Correction Algorithm. Algorithm 1 shows the over-
all Kalman filter procedure referred to two core equations as introduced before (1
and 2) to process the obtained training data from telco big data platform. First,
we need to set a necessary initial data point and its speed according Kalman
equations (line 1) as well as two noise sets Q and R noise (line 2). Second, for
each sequential point (line 3) of the whole trajectory we should apply Kalman
Filter to evaluate their true GPS values (lines 4 and 5, where we apply the series
of equations (3 to 7) to compute the real time estimated values and update two
kinds of noise mentioned above). Finally, the algorithm aggregates all evaluated
points to form the original sequence (line 6). Equations 3 and 4 are to project
the state and error covariance ahead, then compute kalman gain in Eqs. 5 and 6
and 7 update the estimation with measurements and error covariance.

3.2 Mean Filter-Based Correction

Recall that the KF-based correction algorithm does not fully leverage context
information. In order to resolve the issue where the existing model-based algo-
rithms are unable effectively to deal with the abnormal of predicted positions
and increase the positioning accuracy, we borrow the idea of the mean filter [5]
that has been applied in the imagery data processing and design a context-
aware correction algorithm based on the GPS points inside a sliding window.
The methodology will be applied to the post-processing of the predicted trajec-
tory. Specifically, for a measured point position xi, the estimate value of this
point is the mean of its n/2 successive GPS points and n/2 proceeding GPS
points, where n is the size of a given sliding window.

x̂i =
1
n

⎛

⎝

i+n/2
∑

k=i−n/2

xk

⎞

⎠ (8)

In the above equation, x̂i is the estimate of xi. To ensure that the mean
filter-based correction algorithm work, we first need to preprocess the input GPS
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points with the equal interval interpolation. For the given input GPS points, we
first find the minimum time interval between any two continuous points. Next,
based on the minimal time interval, we will obtain these consecutive points with
the time interval greater the minimal one, and fill the missed GPS points by the
median interpolation.

In addition, we note that the mean filter is sensitive to the outliers contained
in the input GPS points. To resolve this issue, we would like to find those outliers
and remove them from the input GPS points. To find such outliers, we use a
classical median filter.

Algorithm 2. Mean Filter-based Correction
Input: Input GPS points 〈 longitude, latitude, timestamp 〉, and window size n
Output: Corrected GPS points 〈 longitude, lattitude, timestamp 〉
1: load the S input GPS points;
2: preprocess the GPS points by equal interval interpolation with help of a minimum time interval.

eliminate outliers by using median filter;
3: for each i in size of window do
4: for each of the n input GPS point do
5: moving equalize point with the Eq. 3;
6: end for
7: end for
8: points = sum(pointk) k = 1,2,3.....;

The body of this Algorithm 2 mainly depends on the Eq. 8 we introduced at
the beginning of this section.

3.3 Map Matching-Based Correction

Map-matching [2,8] is to match the recorded geographic coordinates (such as
collected GPS points) to a logical model of the real world. It has been developed
as a very mature technique combining digital map with locating information, for
example, to obtain the real position of vehicles in a road network.

We plug the map-matching technology to Algorithm2 to filter out those
GPS outliers during the preprocessing and postprocessing phases. First, in the
preprocessing step in line 2 of Algorithm 2 it can plug in the map matching tech-
nique to make sure every input GPS point is on the correct road. In this way,
we can remove the outliers in the input points. Second, even after Algorithm2
is performed, it is still possible that some corrected GPS points (i.e., the out-
put of Algorithm2) might not be on the roads. Thus, we can again apply the
map-matching technique to these corresponding GPS points to acquire the final
corrected points or locations. In this case, Algorithm 2 can work together with
the map-matching technique to improve the positioning accuracy significantly.

4 Evaluation

In this section, we compare the performances of three models: KF, mean-filter
(MF) and map-matching (MF+MM) via the computational experiments. In
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order to measure the positioning precision, we first apply the model-based (ran-
dom tree) positioning approach to derive the recovered or estimated GPS points
from MR data. After that, we employ these models to correct the recovered GPS
points. Based on the corrected GPS points by these three approaches, we then
measure the positioning precision of each model. To perform the computational
experiments, we use a real dataset of user mobility trajectories in one day (con-
taining around 600,000 MR records) collected from a telecom service provider
in the city of Shanghai, China.

4.1 Performance Comparison

In addition to the measurements of the positioning precisions of individual mod-
els mentioned above, we also include the positioning precision for the recovered
GPS points as the baseline. We use two metrics, namely, the mean error and
median error as shown in Table 1 to present the positioning precision.

Table 1. Comparison of recovered and corrected GPS points

Metric Median (meters) Mean (meters)

Recovered points 31.8075 56.6148

Corrected points by KF 31.2072 48.7996

Corrected points by MF 25.4192 39.3617

Corrected points by MF+MM 23.1236 31.2681

In Table 1, KF model slightly improves the recovered points’ positioning pre-
cision. For example, the mean error is reduced from 56.6148 m to 48.7996 m
and yet the median stays almost the same. From the table it can be seen that
the median has a very little reduction from 31.8075 m to 31.2072 m. Albeit
MF improves the positioning precision, MF+MM greatly increases the posi-
tioning precision with around 20.08% and 30.47% reductions in the mean and
median errors respectively. The numbers in Table 1 clearly verify the superiority
of MF+MM in terms of providing the positioning precision.

Next, we plot the error distribution of the recovered and corrected GPS points
in Fig. 3. The x-axis represents the error range and the y-axis represents the error
distributions in the different error ranges. Figure 3(a) shows the original error
distribution without any error correction process. Figure 3(b) depicts the error
distribution of each recorded point that is simply corrected by the KF model.
Nevertheless, the resultant error distribution is very similar to the original one.
The prerequisite of classic Kalman filtering is to establish an accurate dynamic
model and observation model, and it needs more clearly understanding of the
moving object [4]. But in this paper, we assume that the observation equation
is linear and with the stable noise.

Figure 3(c) represents the error distribution for the results obtained by MF
mode. This algorithm has a relatively good effect for the wide range of error
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a) initial recovered points (b) KF model (c) MF model (d)MF+MM model

Fig. 3. Whole error distribution

correction because it is more inclined to smoothing trajectory based on the
empirical knowledge of human motion behavior and maintains a sustained and
stable state for a short time of period. It can be seen from Fig. 3(c) the number of
points with the biggest errors has reduced dramatically compared to the original
one. Similarly, this approach also helps correcting the errors for these locations
around the point that has relatively big error, and these locations usually can be
easily affected by this outlier. Figure 3(d) reflects the combined effect about MF
and Map matching. From the picture we are able to recognize that this approach
is more effective in reducing errors after introducing map-matching method.

4.2 Sensitive study of KF+MM model

We can use the map-matching in both pre-processing and post-processing phases.
To study the sensitivity of the KF+MM model, we vary the window size and
measure the median error of the KF+MM model. In addition, we are interested

retlfinaidemhtiw)b(retlfinaidemtuohtiw)a(

Fig. 4. Error curve changing window size
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in the effect of the median filter to filter out outliers in the preprocessing phase
(i.e., line 2 of Algorithm 2). For the comparison purpose, we also evaluate the
median errors of (1) MF model alone, (2) MF model enhanced by the MM-based
preprocessing, and (3) MF model enhanced by the MM-based postprocessing.

In Fig. 4, three different lines represent three algorithms according whether
adopt map-mating and the order adopted map-matching. Figure 4(a) and (b)
provide the median errors of above three models without and with applying the
median filter respectively. As it is shown in the figure, the models adopting the
median filter can usually achieve much lower median errors than the one without
the median filter.

When comparing these three models no matter in the preprocessing phase
or the postprocessing one, two MF models enhanced by MM have much lower
median errors than the MF model alone. Moreover, we find that the MF model
with the MM-based preprocessing out performs the one with the MM-based
postprocessing. It is because the MM-based preprocessing can clean the outliers
without affecting the MF model. In MF model with MM-based postprocessing,
the outliers still appear in the input of the MF model and could impact the
overall precision of the KM model negatively.

4.3 Visualization of Positioning Models

Figure 5 illustrates the recovered GPS points and corrected points or locations
on a real road network. First in Fig. 5(a), there exist many points that are not
on roads. It is mainly because the two-layer random forests (RFs) use the center
points of those leaf nodes in the RFs as the predicted GPS points, no matter the
center points are on the roads or not. Second, Fig. 5(b) demonstrates that MF
model obviously is able to smooth the trajectory. Nevertheless, in our dataset,
many GPS points appear on the overpass and underpass that occur on the same
street segments. It is hard for the MF model to put them onto the correct roads
(because the roads on the overpass and underpass share the same longitude and
latitude coordinates). However, Fig. 5(c) demonstrate that this problem can be

(a) original trajectory (b) corrected trajectory by MF (c) corrected trajectory by MF+MM

Fig. 5. Trajectory error comparison
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overcome by applying the MM technique and as the result it produces the best
positioning precision.

5 Conclusion

In this paper, we propose the methodology to leverage context information in
order to correct the estimated or recovered city-scale localization errors by
applying model-based localization methods. By adopting the powerful tech-
niques including Kalman Filter, Mean filter, and Map-matching, the proposed
approaches can greatly improve the positioning precision.

As the future work, we will continue work on improving the positioning pre-
cision. For example, we are planning to explore the regularity patterns from
the recovered trajectories for further postprocessing. In addition, beyond the
regression model-based prediction algorithm, we are interested in other advanced
machine learning techniques to replace the currently used random forest models.
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