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Abstract. Natural data offer a hard challenge to data analysis. One set
of tools is being developed by several teams to face this difficult task:
Persistent topology. After a brief introduction to this theory, some appli-
cations to the analysis and classification of cells, liver and skin lesions,
music pieces, gait, oil and gas reservoirs, cyclones, galaxies, bones, brain
connections, languages, handwritten and gestured letters are shown.
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1 Introduction and Motivation

What is the particular challenge offered by natural data, which could suggest
the need of topology, and in particular of persistence? Simply said, it’s quality
instead of quantity. This is especially evident with images.

If one has to analyze, classify, retrieve images of mechanical pieces, vehi-
cles, rigid objects, then geometry fulfills all needs. On the images themselves,
matrix theory provides the transformations for superimposing a picture to a tem-
plate. More often, pictures are represented by feature vectors, whose components
are geometric measures (shape descriptors). Then recognition, defect detection,
retrieval etc. can be performed on the feature vectors.

The scene changes if the depicted objects are of natural origin: the rigidity of
geometry becomes an obstacle. Recognizing the resemblance between a sitting
and a standing man is difficult. The challenge is even harder when it comes to
biomedical data and when the context is essential for the understanding of data
[34,51].

It’s here that topology comes into play: the standing and sitting men are
homeomorphic, i.e. there is a topological transformation which superimposes one
to the other, whereas no matrix will ever be able to do that. It is generally difficult
to discover whether two objects are homeomorphic; then algebraic topology turns
helpful: It associates invariants — e.g. Betti numbers — to topological spaces,
such that objects which are homeomorphic have identical invariants (the converse
does not hold, unfortunately).

(Algebraic) topology seems then to be the right environment for formalizing
qualitative aspects in a computable way, as is nicely expressed in [35, Sect. 5.1].
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There is a problem: if geometry is too rigid, topology is too free. This is the
reason why persistent topology can offer new topological descriptors (e.g. Per-
sistent Betti Numbers, Persistence Diagrams) which preserve some selected geo-
metric features through filtering functions. Classical references on persistence are
[8,12,22,50].

Persistent topology has been experimented in the image context, particularly
in the biomedical domain, but also in fields where data are not pictures, e.g. in
geology, music and linguistics, as will be shown in this survey.

2 Glossary and Basic Notions

It is out of the scope of this survey to give a working introduction to homol-
ogy and persistence; we limit ourselves to an intuitive description of the con-
cepts, and recommend to profit of the technical references, without which a real
understanding of the results is impossible. An essential (and avoidable) technical
description of a particular homology is reported in Sect. 2.1.

Homology. There is a well-structured way (technically a set of functors) to
associate homology vector spaces (more generally modules) Hk(X) to a simpli-
cial complex or to a topological space X, and linear transformations to maps
[33, Chap. 2] and [23, Chap. 4].

Betti numbers. The k-th Betti number βk(X) is the dimension of the k-th
homology vector space Hk(X), i.e. the number of independent generators
(homology classes of k-cycles) of this space. Intuitively, β0(X) counts the number
of path-connected components (i.e. the separate pieces) of which X is composed;
β1(X) counts the holes of the type of a circle (like the one of a doughnut); β2(X)
counts the 2-dimensional voids (like the ones of gruyere or of an air chamber).

Homeomorphism. Given topological spaces X and Y , a homeomorphism from
X to Y is a continuous map with continuous inverse. If one exists, the two spaces
are said to be homeomorphic. This is the typical equivalence relation between
topological spaces. Homology vector spaces and Betti numbers are invariant
under homeomorphisms.

Remark 1. As hinted in the Introduction, geometry is too rigid, but topology
is too free. In particular, homeomorphic spaces can be very different from an
intuitive viewpoint: the joke by which “for a topologist a mug and a doughnut
are the same” is actually true; the two objects are homeomorphic! Persistent
topology then tries to overcome this difficulty by studying not just topological
spaces but pairs, once called size pairs, (X, f) where f is generally a continuous
function, called measuring or filtering function, from X to R (to R

n in multi-
dimensional persistence) which conveys the idea of shape, the viewpoint of the
observer. Shape similarity is actually very much dependent on the context. The
Betti numbers of the sublevel sets then make it possible to distinguish the two
objects although they are homeomorphic: see Fig. 1.
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Fig. 1. Sublevel sets of mug and doughnut.

Fig. 2. From left to right: 1-PBN functions of mug and of doughnut, 1-PDs of mug
and of doughnut.

Sublevel Sets. Given a pair (X, f), with f : X → R continuous, given u ∈ R,
the sublevel set under u is the set Xu = {x ∈ X | f(x) ≤ u}.

Persistent Betti Numbers. For all u, v ∈ R, u < v, the inclusion map ιu,v :
Xu → Xv is continuous and induces, at each degree k, a linear transformation
ιu,v∗ : Hk(Xu) → Hk(Xv). The k-Persistent Betti Number (k-PBN) function
assigns to the pair (u, v) the number dim Im ιu,v∗ , i.e. the number of classes of
k-cycles of Hk(Xu) which “survive” in Hk(Xv). See Fig. 2 (left) for the 1-PBN
functions of mug and doughnut. Note that a pitcher, and more generally any
open container with a handle, will have very similar PBNs to the ones of the
mug; this is precisely what we want for a functional search and not for a strictly
geometrical one.

Persistence Diagrams. The k-PBN functions are wholly determined by the
position of some discontinuity points and lines, called cornerpoints and corner-
lines (or cornerpoints at infinity) The coordinates (u, v) of a cornerpoint repre-
sent the levels of “birth” and “death” respectively of a generator; the abscissa
of a cornerline is the level of birth of a generator which never dies. The persis-
tence of a cornerpoint is the difference v−u of its coordinates. Cornerpoints and
cornerlines form the k-Persistence Diagram (k-PD). Figure 2 (right) depicts the
1-PDs of mug and of doughnut. For the sake of simplicity, we are here neglecting
the fact that cornerpoints and cornerlines may have multiplicities.

Remark 2. Sometimes it is important to distinguish even objects for which there
exists a rigid movement superimposing one to the other — so also geometrically
equivalent — as in the case of some letters: context may be essential! See Fig. 3,
where ordinate plays the role of filtering function.
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Fig. 3. Above: the objects “M” and “W”. Below, from left to right: 0-PBN functions
of M and of W, 0-PDs of M and of W.

Matching distance. Given the k-PDs DX,f ,DY,g of two pairs (X, f), (Y, g),
match the cornerpoints of DX,f either with cornerpoints of DY,g or with their
own projections on the diagonal u = v; the weight of this matching is the sup
of the L∞-distances of matching points. The matching distance (or bottleneck
distance) of DX,f and DY,g is the inf of such weights among all possible such
matchings.

Natural pseudodistance. Given two pairs (X, f), (Y, g), with X,Y homeomor-
phic, the weight of a given homeomorphism ϕ : X → Y is supx∈X |g(ϕ(x))−f(x)|.
The natural pseudodistance of (X, f) and (Y, g) is the inf of these weights among
all possible homeomorphisms. If we are given the k-PDs of the two pairs, their
matching distance is a lower bound for the natural pseudodistance of the two
pairs, and it is the best possible obtainable from the two k-PDs. Much is known
on this dissimilarity measure [19–21].

2.1 A Brief Technical Description of Homology

There are several homologies. The classical and most descriptive one, at least
for compact spaces, is singular homology with coefficients in Z; we refer to [33,
Chap. 2] for a thorough exposition of it. Anyway, the homology used in most
applications is the simplicial one, of which (with coefficients in Z2) we now give
a very short introduction following [23, Chap. 4].

Simplices. A p-simplex σ is the convex hull, in a Euclidean space, of a set of
p+1 points, called vertices of the simplex, not contained in a Euclidean (p− 1)-
dimensional subspace; the simplex is said to be generated by its vertices. A face
of a simplex σ is the simplex generated by a nonempty set of vertices of σ.

Simplicial complexes. A finite collection K of simplices of a given Euclidean
space is a simplicial complex if (1) for any σ ∈ K, all faces of σ belong to K,
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Fig. 4. Cycles.

(2) the intersection of two simplices of K is either empty or a common face.
The space of the complex K is the topological subspace of Euclidean space |K|
formed by the union of all simplices of K.

Simplicial homology with Z2 coefficients. Given a (finite) simplicial complex
K, call p-chain any formal linear combination of p-simplices with coefficients in
Z2 (i.e. either 1 or 0, with 1 + 1 = 0). p-chains form a Z2-vector space Cp. Note
that each p-chain actually identifies a set of p-simplices of K and that the sum of
two p-chains is just the symmetric difference (Xor) of the corresponding sets. We
now introduce a linear transformation ∂p : Cp → Cp−1 (called boundary operator)
for any p ∈ Z. We just need to define it on generators, i.e. on p-simplices, and then
extend by linearity. Writing σ = [u0, u1, . . . , up], we denote by [u0, . . . , ûj , . . . , up]
its face generated by all of its vertices except uj (j = 0, . . . , p). Then we define

∂p(σ) =
n∑

j=0

[u0, . . . , ûj , . . . , up]

It is possible to prove that ∂p∂p+1 = 0, so that Bp = Im∂p+1 is contained in
Zp = Ker∂p. Elements of Bp are called p-boundaries; elements of Zp are called p-
cycles. The p-homology vector space is defined as the quotient Hp(K) = Zp/Bp.
Homology classes are represented by cycles which are not boundaries. Two cycles
are homologous is their difference is a boundary. In Fig. 4, representing the sim-
plicial complex K formed by the shaded triangles and their faces, the blue chain
b is a 1-cycle which is also a boundary; the red chain c and the green one c′ are
1-cycles which are not boundaries; c and c′ are homologous.

3 State-of-the-Art

The application of persistence to shape analysis and classification has a long
story, since it started in the 90’s when it still had the name of Size Theory [50].
In the last few years it has taken various, very interesting forms. The constant
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Fig. 5. A radius
along which the
three filtering
functions are
computed.

Fig. 6. Persistent Betti Number functions relative to the sum
of grey tones (different colors represent different values).

aspect is always the presence of qualitative features which are difficult to capture
and formalize within other frames of mind.

3.1 Leukocytes

Leukocytes, or white blood cells, belong to five different classes: lymphocyte;
monocyte; neutrophile, eosinophile, basophile granulocytes. Eosinophile and neu-
trophile granulocytes are generally difficult to be distinguished, so they were
considered in a single classification class in an early research by the Bologna
team [26].

As a space, the boundary of the starlike hull of the cell is assumed. The
images are converted to grey tones.

Three filtering functions are put to work, all computed along radii from the
center of mass of the cell (Fig. 5):

– Sum of grey tones
– Maximum variation
– Sum of variations pixel to pixel.

Classification (with very good hit ratios for that time) is performed by mea-
suring distance from the average PBN function of each class.

3.2 Handwritten Letters and Monograms

Again in Bologna we faced recognition of handwritten letters with time infor-
mation; our goal was to recognize both the alphabet letter and the writer [25].



Persistent Topology for Natural Data Analysis — A Survey 123

Fig. 7. A monogram with its outline (above) and the directions along which the filtering
functions are computed (below).

The space on which the filtering functions are defined is the time interval of
the writing. The filtering functions are computed in the 3D “plane-time”:

– Distance of points from the letter axis
– Speed
– Curvature
– Torsion
– Distance from center of mass (in plane projection).

Classification comes from fuzzy characteristic functions, obtained from nor-
malized inverse of distance. Cooperation of the characteristic functions coming
from the single filtering functions is given by their rough arithmetic average.

A later experiment, which was even repeated live at a conference, concerned
the recognition of monograms for personal identification, without time informa-
tion [24].

Two topological spaces are used. The first is the outline of the monogram and
the filtering function is the distance from the center of mass (see upper Fig. 7).

The second space is a horizontal segment placed at the base of the monogram
image. Filtering functions:

– Number of black pixels along segments (3 directions) (see lower Fig. 7)
– Number of pixel-pixel black-white jumps (3 directions).

Classification is performed by a weighted average of fuzzy characteristic func-
tions.

3.3 Sign Alphabet

Automatic recognition of the symbols expressed by the hands in the sign lan-
guage is a task which was of interest for different teams. The first one was the
group led by Alessandro Verri in Genova [49]. The signs were performed with a
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Fig. 8. Four filtering functions and the corresponding 0-Persistent Betti Number func-
tions.

Fig. 9. Four filtering functions on silhouette stacks for gait identification.

white glove on a black background; translation into common letters was done in
real time in a live demo at a conference.

The domain space is a horizontal segment; the filtering functions assign to
each point of the segment the maximum distance of a contour point within a
strip of fixed width, with 24 different strip orientations.

The choice of S. Wang in Sherbrooke, instead, is to use a part of the contour,
determined by principal component analysis, as a domain and distance from
center of mass as filtering function [32].

The team of D.Kelly in Maynooth uses the whole contour as domain, and
distances from four lines as filtering functions [36] (see Fig. 8).

3.4 Human Gait

Personal identification and surveillance are the aim of a research by the Cuban
team of L. Lamar-León, together with the Sevilla group of computational topol-
ogy [37].

Considering a stack of silhouettes as a 3D object, and using four different fil-
tering functions, makes 0- and 1-degree persistent homology a tool for identifying
people through their gait (Fig. 9).



Persistent Topology for Natural Data Analysis — A Survey 125

Fig. 10. Time evolution of cyclones.

3.5 Tropical Cyclones

S. Banerjee in Kolkata makes use of persistence on sequences of satellite images
of cloud systems (Fig. 10), in order to evaluate risk and intensity of forming
hurricanes [2].

Time interval is the domain of two filtering functions which are common
characteristic measures of cyclones:

– Central Feature portion
– Outer Banding Feature

3.6 Galaxies

Again S. Banerjee [3] applies similar methods to another type of spirals: galaxies.
Various filtering functions are used. One is defined as a function of distance

from galaxy center, and is the ratio between major and minor axis of the corre-
sponding isophote. Another one is a “pitch” parameter defined by Ringermacher
and Mead [45]. A third filtering function is a compound based on color.

The classification results agree with the literature.

3.7 Bones

In [48] a powerful construction (the Persistent Homology Transform) is intro-
duced. It consists in gathering the “height” filtering functions according to all
possible directions. The paper shows that the transform is injective for objects
homeomorphic to spheres. By using the transform it is possible to define an
effective distance between surfaces. An application is shown by classifying heel
bones of different species; the comparison with the ground truth produced by
using placement of landmarks on the surfaces is very good.

3.8 Melanocytic Lesions

A very important part of natural shape analysis is the detection of malignant
cells and lesions, since there generally are no templates for them. As far as we
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Fig. 11. One of the 45 splittings of a melanocytic lesion, and the whole A-curve cor-
responding to the filtering function luminance.

know, the first attempt through persistence (called size theory at that time) is
the ADAM EU Project, by the Bologna team together with CINECA and with I.
Stanganelli, a dermatologist of the Romagna Oncology Institute [17,27,47].
The analysis is mainly based on asymmetry of boundary, masses and color dis-
tribution: the lesion is split into two halves by 45 equally spaced lines, and the
difference between the two halves is measured by the matching distance of the
corresponding Persistence Diagrams.

The three functions (A-curves) relating these distances to the splitting line
angles give parameters which are then fed into a Support Vector Machine clas-
sifier.

The same team is presently involved with a biomedical firm in the realization
of a machine for smart retrieval of dermatological images [28].

3.9 Tumor Mouth Cells

A morphological classification of normal and tumor cells of the epithelial tissue
of the mouth is proposed in [40,41]: the filtering function is distance from the
center of mass; the discrimination is statistically based on the distribution of
cornerpoints (see Fig. 12).

3.10 Hepatic Lesions

The advantages of a multidimensional range for the filtering functions are shown
in [1], where several classification experiments are performed on the images of
hepatic cells (see Fig. 13). The domain space is the part of image occupied by
the lesion; the two components of the filtering function are the greyscale of each
pixel and the distance from the lesion boundary.

3.11 Genetic Pathways

So far we have seen applications of persistence to images of natural origin. But
the modularity of the method opens the possibility to deal with data of very dif-
ferent nature. A first example is given by [43], where persistence is used on the
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Fig. 12. Distribution of cornerpoints in the diagrams of normal and tumor mouth cells.

Fig. 13. Various types of hepatic lesions.
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Vietoris-Rips complex in a space where points are complex phenotypes related
together by the Jaccard distance. This made it possible to find systematic asso-
ciations among metabolic syndrome variates that show distinctive genetic asso-
ciation profiles.

3.12 Oil and Gas Reservoirs

Researchers in Ufa and Novosibirsk need to get a reliable geological and hydro-
dynamical model of gas and oil reservoirs out of noisy data; the model has to
be robust under small perturbations. The authors have found an answer in per-
sistent 0-, 1- and 2-cycles. The domain space is the 3D reservoir bed, and the
filtering function is permeability, obtained as a decreasing function of radioac-
tivity [4] (Russian; translated and completed in this same volume).

3.13 Brain Connections

A complex research on brain connections and their modification under the
assumption of a psychoactive substance (psilocybine) is performed in [42] and
extended in [39]. The construction starts with a complete graph whose ver-
tices are cortical or subcortical regions; these, and their functional connectivity
(expressed as weights on the edges) come from an elaborate processing of func-
tional MRI data. Then the simplicial complex is built, whose simplices are the
cliques (complete subgraphs) of the graph.

The filtering function on each simplex is minus the highest weight of its build-
ing edges. A difference between treated and control subjects already appears in
the comparison of the 1-Persistence Diagrams (see Fig. 14). Then more infor-
mation is obtained from secondary graphs (called homological scaffolds), whose
vertices are the homology generators weighted by their persistence.

There are other applications of persistence to brain research: evaluation of
cortical thickness in autism [16]; study of unexpected connections between sub-
cortex, frontal cortex and parietal cortex in the form of 1- and 2-dimensional
persistent cycles [31,46].

3.14 Music

Among other mathematical applications to music, M.G. Bergomi in Lisbon col-
laborates with various researchers in exploring musical genres by persistence [6].
As a space they adopt a modified version of Euler’s Tonnetz [9]. The filtering
function is the total duration of each note in a given track. Classification can
be performed at different detail levels: experimentation is reported on tonal and
atonal classical music of several authors (an example is in Fig. 15), on pop music
and on different interpretation of the same jazz piece.

A blend of persistence and deep learning is the central idea of a research by
the team of I.-H. Yang in Taiwan [38]. They input audio signals to a Convo-
lutional Neural Network (CNN); after a first convolution layer, a middle layer
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Fig. 14. Probability densities for H1 generators: placebo (left) and psilocybin (right)
treated.

Fig. 15. 0- and 1-persistence diagrams for three classical pieces.

processes the output of the first in two different complementary ways: one is
a classical CNN; the other computes the persistence landscape (an information
piece derivable from the persistence diagram [10]) of the same output. Whereas
the persistence layer by itself does not perform any better than the normal CNN,
their combination gives very good results in terms of music tagging.
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3.15 Languages

An interdisciplinary team at Caltech investigates the metric spaces built by 79
Indo-European and 49 Niger-Congo languages [44]. These appear as points in a
Euclidean space of syntactic parameters; on them a Vietoris-Rips complex [23,
Sect. III.2] is built and Euclidean distance is assumed as filtering function. The
Indo-European family reveals one 1-dimensional and two 0-dimensonal persistent
cycles, the Niger-Congo respectively none and one. The interpretation of these
differences and of the link with phylogenetic and historical facts is still under
way.

4 Open Problems

There is a number of open problems in persistence, whose solution will affect
applications to natural data analysis, and to which only partial answers have
been given so far:

– Optimal choice of the foliations along which to perform the 1D reduction of
multidimensional persistence [13]

– Study of the discontinuities in multidimensional persistence [11,15]
– Understanding the monodromy around multiple cornerpoints [14]
– Restricting the group of homeomorphisms of interest by considering the

invariance required by the observer [29]
– Modulation of the impact of different filtering functions for search engines

with relevance feedback [30]
– Use of advanced tools of algebraic topology [5]
– Use of persistence in the wider context of concrete categories, not necessarily

passing through homology of complexes or of topological spaces [7].

5 Future Outlook

There are at least two ways in which persistence will interact with machine
learning, and this is likely to enormously boost the qualitative processing of
natural data [18]:

– Feeding a neural network with Persistence Diagrams instead of raw data will
convey the needs and viewpoints of the user

– Deep learning might yield a quantum leap in persistence, by automatically
finding the best filtering functions for a given problem.

Acknowledgments. Article written within the activity of INdAM-GNSAGA.
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