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Abstract. During the last decade pathology has benefited from the
rapid progress of image digitizing technologies, which led to the develop-
ment of scanners, capable to produce so-called Whole Slide images (WSI)
which can be explored by a pathologist on a computer screen comparable
to the conventional microscope and can be used for diagnostics, research,
archiving and also education and training. Digital pathology is not just
the transformation of the classical microscopic analysis of histological
slides by pathologists to just a digital visualization. It is a disruptive
innovation that will dramatically change medical work-flows in the com-
ing years and help to foster personalized medicine. Really powerful gets a
pathologist if she/he is augmented by machine learning, e.g. by support
vector machines, random forests and deep learning. The ultimate benefit
of digital pathology is to enable to learn, to extract knowledge and to
make predictions from a combination of heterogenous data, i.e. the histo-
logical image, the patient history and the *omics data. These challenges
call for integrated/integrative machine learning approach fostering trans-
parency, trust, acceptance and the ability to explain step-by-step why a
decision has been made.

Keywords: Digital pathology · Data integration · Integrative machine
learning · Deep learning · Transfer learning

1 Introduction and Motivation

The ability to mine “sub-visual” image features from digital pathology slide
images, features that may not be visually discernible by a pathologist, offers
the opportunity for better quantitative modeling of disease appearance and
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hence possibly improved prediction of disease aggressiveness and patient out-
come. However, the compelling opportunities in precision medicine offered by
big digital pathology data come with their own set of computational challenges.
Image analysis and computer assisted detection and diagnosis tools previously
developed in the context of radiographic images are woefully inadequate to deal
with the data density in high resolution digitized whole slide images. Addition-
ally, there has been recent substantial interest in combining and fusing radiologic
imaging, along with proteomics and genomics based measurements with features
extracted from digital pathology images for better prognostic prediction of dis-
ease aggressiveness and patient outcome. Again there is a paucity of powerful
tools for combining disease specific features that manifest across multiple differ-
ent length scales. The purpose of this paper is to discuss developments in compu-
tational image analysis tools for predictive modeling of digital pathology images
from a detection, segmentation, feature extraction, and tissue classification per-
spective. We discuss the emergence of new handcrafted feature approaches for
improved predictive modeling of tissue appearance and also review the emergence
of deep learning schemes for both object detection and tissue classification. We
also briefly review some of the state of the art in fusion of radiology and pathol-
ogy images and also combining digital pathology derived image measurements
with molecular “omics” features for better predictive modeling [1].

The adoption of data-intensive methods can be found throughout various
branches of health, leading e.g. to more evidence-based decision-making and to
help to go towards personalized medicine [2]: A grand goal of future biomedicine
is to tailor decisions, practices and therapies to the individual patient. Whilst
personalized medicine is the ultimate goal, stratified medicine has been the cur-
rent approach, which aims to select the best therapy for groups of patients who
share common biological characteristics. Here, ML approaches are indispens-
able, for example causal inference trees (CIT) and aggregated grouping, seeking
strategies for deploying such stratified approaches. Deeper insight of personalized
treatment can be gained by studying the personal treatment effects with ensem-
ble CITs [3]. Here the increasing amount of heterogenous data sets, in particular
“-omics” data, for example from genomics, proteomics, metabolomics, etc. [4]
make traditional data analysis problematic and optimization of knowledge dis-
covery tools imperative [5,6]. On the other hand, many large data sets are indeed
large collections of small data sets. This is particularly the case in personalized
medicine where there might be a large amount of data, but there is still a rela-
tively small amount of data for each patient available [7]. Consequently, in order
to customize predictions for each individual it is necessary to build a model for
each patient along with the inherent uncertainties, and to couple these models
together in a hierarchy so that information can be “borrowed” from other simi-
lar patients. This is called model personalization, and is naturally implemented
by using hierarchical Bayesian approaches including e.g. hierarchical Dirichlet
processes [8] or Bayesian multi-task learning [9].
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This variety of problems in Digital Pathology requires a synergistic combi-
nation of various methodological approaches which calls for a combination of
various approaches, e.g. geometrical approaches with deep learning models [10].

After a short motivation and explanation of why machine aided pathology
is interesting, relevant and important for the future of diagnostic medicine, this
article is organized as follows:

In Sect. 2 we provide a glossary of the most important terms.
In Sect. 3 we give an overview of where digital pathology is already in use

today, which technologies of slide scanning are currently state-of-the-art, and
describe the next steps towards a machine aided pathology. A sample use-case
shall demonstrate the typical work-flow. Because data-integration, data fusion
and data-preprocessing is an important aspect, we briefly describe these issues
here.

In Sect. 4 we describe the most promising state-of-the-art machine learning
technologies which can be of use for digital pathology.

In Sect. 5, finally, we discuss some important future challenges in machine
learning, which includes multi-task learning, transfer learning and the use of
multi-agent-hybrid systems.

2 Glossary and Key Terms

Automatic Machine Learning (aML) in bringing the human-out-of-the-loop is
the grand goal of ML and works well in many cases having “big data” [11].

Big Data is indicating the flood of data today; however, large data sets are
necessary for aML approaches to learn effectively; the problem is in “dirty data”
[12], and sometimes we have large collections of little, but complex data.

Data Fusion is the process of integration multiple data representing the same
real-world object into one consistent, accurate, and useful representation.

Data Integration is combining data from different sources and providing a
unified view.

Deep Learning allows models consisting of multiple layers to learn represen-
tations of data with multiple levels of abstraction [13].

Digital Pathology is not only the conversion of histopathological slides into a
digital image (WSI) that can be uploaded to a computer for storage and viewing,
but a complete new medical work procedure.

Dimensionality of data is high, when the number of features p is larger than
the number of observations n by magnitudes. A good example for high dimen-
sional data is gene expression study data [14].

Explainability is motivated due to lacking transparency of black-box
approaches, which do not foster trust and acceptance of ML among end-users.
Rising legal and privacy aspects, e.g. with the new European General Data Pro-
tection Regulations, make black-box approaches difficult to use, because they
often are not able to explain why a decision has been made [15].

interactive Machine Learning (iML) in bringing the human-in-the-loop is
beneficial when having small amounts of data (“little data”), rare events or
dealing with complex problems [16,17], or need reenactment (see explainability).
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Knowledge Discovery (KDD) includes exploratory analysis and modeling of
data and the organized process to identify valid, novel, useful and understandable
patterns from these data sets [18].

Machine Aided Pathology is the management, discovery and extraction of
knowledge from a virtual case, driven by advances of digital pathology supported
by feature detection and classification algorithms.

Multi-Task Learning (MTL) aims to learn a problem together with multiple,
different but related other problems through shared parameters or a shared rep-
resentation. The underlying principle is bias learning based on probable approx-
imately correct learning (PAC learning) [19].

Topological Data Mining uses algebraic geometry to recover parameters of
mixtures of high-dimensional Gaussian distributions [20].

Transfer Learning How can machine learning algorithms perform a task by
exploiting knowledge, extracted during solving previous tasks? Contributions to
solve this problem would have major impact to Artificial Intelligence generally,
and Machine Learning specifically [21].

Virtual Case is the set of all histopathological slides of a case together with
meta data from the macro pathological diagnosis [22].

Virtual Patient has very different definitions (see [23], we define it as a model
of electronic records (images, reports, *omics) for studying e.g. diseases.

Visualization can be defined as transforming the symbolic into the geometric
and the graphical presentation of information, with the goal of providing the
viewer with a qualitative understanding of the information contents [6,24].

Whole Slide Imaging (WSI) includes scanning of all tissue covered areas of
a histopathological slide in a series of magnification levels and optional as a set
of focus layers.

3 From Digital Pathology to Machine Aided Pathology

3.1 Digital Pathology

Modern pathology was founded by Rudolf Virchow (1821-1902) in the mid
of the 19th century. In his collection of lectures on Cellular Pathology (1858)
he set the basis of modern medical science and established the “microscopi-
cally thinking” still applied today by every pathologist. In histopathology a
biopsy or surgical specimen is examined by a pathologist, after the specimen has
been processed and histological sections have been placed onto glass slides. In
cytopathology either free cells (fluids) or tissue micro-fragments are “smeared”
on a slide without cutting a tissue.

In the end of the 20th century an individual clinical pathologist was no longer
able to cover the knowledge of the whole scientific field. This led to today’s spe-
cialization of clinical pathology either by organ systems or methodologies. Mole-
cular biology and *omics technologies set the foundation for the emerging field
of molecular pathology, which today alongside WSI provides the most impor-
tant source of information, especially in the diagnosis of cancer and infectious
diseases.
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The roots of digital pathology go back to the 1960s, when first telepathology
experiments took place. Later in the 1990 s the principle of virtual microscopy
[25] appeared in several life science research areas. At the turn of the century
the scientific community more and more agreed on the term “digital pathology”
[26] to denote digitization efforts in pathology.

However in 2000 the technical requirements (scanner, storage, network) were
still a limiting factor for a broad dissemination of digital pathology concepts.
Over the last 5 years this changed as new powerful and affordable scanner tech-
nology as well as mass/cloud storage technologies appeared on the market. This
is also clearly reflected in the growing number of publications mentioning the
term “digital pathology” in PMC, see Fig. 1.

Fig. 1. Number of publication in PMC containing the term “digital pathology”.

The field of Radiology has undergone the digital transformation almost 15
years ago, not because radiology is more advanced, but there are fundamental
differences between digital images in radiology and digital pathology: The image
source in radiology is the (alive) patient, and today in most cases the image
is even primarily captured in digital format. In pathology the scanning is done
from preserved and processed specimens, for retrospective studies even from
slides stored in a biobank. Besides this difference in pre-analytics and metadata
content, the required storage in digital pathology is two to three orders of mag-
nitude higher than in radiology. However, the advantages anticipated through
digital pathology are similar to those in radiology:

Capability to transmit digital slides over distances quickly, which enables
telepathology scenarios.
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Capability to access past specimen from the same patients and/or similar
cases for comparison and review, with much less effort then retrieving slides
from the archive shelves.

Capability to compare different areas of multiple slides simultaneously (slide
by slide mode) with the help of a virtual microscope.

Capability to annotate areas directly in the slide and share this for teaching
and research.

Digital pathology is today widely used for educational purposes [27] in
telepathology and teleconsultation as well as in research projects. Digital pathol-
ogy in diagnostics is an emerging and upcoming field. With the validation of the
first WSI systems for primary diagnosis by the FDA the first steps for the digi-
tal transition in pathology are done, and we anticipate a major paradigm shift
within the next 10 years.

Sharing the perception of the instructor when looking through a microscope
is a technical challenge. Digital pathology allows to share and annotate slides
in a much easier way. Also the possibility to download annotated lecture sets
generates new opportunities for e-learning and knowledge sharing in pathology.

The level of specialization in pathology is ever increasing, and it is no more
possible to cover at small and medium size pathology institutes all fields, so
expert knowledge is often missing to generate the best possible diagnosis for the
patient. This is a main driving force for telepathology, when a local team can
easily involve specialists that don’t need to be in the same location, and/or get
a specialized second opinion. For overnight diagnosis workflows even the time
difference between different countries can be utilized, e.g. the diagnosis for a
virtual case scanned in France in the evening can be ready next morning, done
by a pathologist in Canada.

It is important that in all use cases the digital slides are archived in addition
to the analogue tissue blocks and slides. This will (a) ensure documentation and
reproducibility of the diagnosis (an additional scan will never produce the same
WSI) and (b) generate a common and shared pool of virtual cases for training
and evaluation of machine learning algorithms. Archiving WSI is even a prereq-
uisite for the validation and documentation of diagnostic workflows, especially
when algorithmic quantification and classification algorithms are applied. In the
next sections we describe requirements for data management and digital slide
archiving as a starting point for machine aided pathology scenarios.

3.2 Virtual Case

A pathological workflow always starts with the gross evaluation of the primary
sample. Depending on the medical question and the material type small tissue
parts are extracted from the primary sample and are either embedded in a paraf-
fin block or cryo-frozen. From the tissue blocks the pathology labs cuts several
slides, applies different staining methods and conducts additional histological
and molecular tests. Finally, the pathologists evaluate all the slides together
with the supporting gross-and molecular findings and makes the diagnosis. If in
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DOMASFsedilSsisongaiD01-DCI

H60.4 Cholesteatoma of external ear 1 no no
K37 Unspecified appendicitis 2 no no
K21 Gastro-esophageal reflux disease w. esophagitis 4 no no
K52.9 Noninfective gastroenteritis and colitis 6 no no
C67.9 Malignant neoplasm of bladder 8 yes no
C34 Neoplasm of bronchus or lung 10 yes yes

onon21ylagemoidraC7.15I
C56 Malignant neoplasm of ovary 14 yes no

onsey61tsaerbfosisorelcsorbiF3.06N
C85.9 Malignant lymphoma, non-Hodgkin, NOS 18 yes yes
C18 Malignant neoplasm of colon 20 yes yes

onon22aimekueldioleymcinorhC1.29C
N40 Benign prostatic hyperplasia 25 no no
C61 Malignant neoplasm of prostate 36 yes no
D07.5 Carcinoma in situ of prostate 43 no no
C83.5 Lymphoblastic (diffuse) lymphoma 50 yes no

Fig. 2. Average number of slides for different pathological diagnosis. FSA: frozen
section analysis; MOD: molecular diagnosis. Source: Analysis of all findings in the
year 2016 at the Institute of Pathology, Graz Medical University.

addition to the set of WSI all information is present in a structured digital for-
mat, we call this a virtual case. In a virtual case, the average number of slides and
additional findings varies very much for different medical questions and material
types. Figure 2 shows the average number of slides for different diagnosis done
in the year 2016 at the Institute of Pathology at Graz Medical University.

15 × 15mm@0.12µm/pixel = 125000 × 125000 = 15.6Gigapixel (1)
15.6Gigapixel@3 × 8bit/pixel = 46.9GB(uncompressed) (2)

46.9GB ÷ 3(jpeg2000) = 15.6GB(lossless) (3)
46.9GB ÷ 20(jpeg2000, highQ) = 2.3GB(lossy) (4)

46.9GB ÷ 64(jpeg2000,mediumQ) = 0, 7GB(lossy) (5)

The most demanding data elements in a virtual case are the whole slide
images (WSI). Compared to radiology, where the typical file size are between
131 KB for MRI images, 524 KB for CT-Scans, 18 MB for digital radiology, 27 MB
for digital mammography and 30 MB for computed radiography [28], a single
WSI scan with 80x magnification consists of 15.6 Gigapixels. For the calculation
of the WSI file size and comparison of different scanner manufacturers, we use the
de-facto standard area of 15 mm x 15 mm, with an optical resolution of 0.12µm,
which corresponds to an 80x magnification (see Fig. 3).

With 8 bit information for each color channel a WSI results in 46.9 GB stored
in an uncompressed image format. Looking at the number of slides of a typical
case, it is clear, that some compression techniques must be applied to the image
data, and luckily several studies reported that lossy compression with a high
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Fig. 3. Schematic view of a histopathological slide. An area of 15mm x 15mm is the
de-facto standard for quoting scan speed and size.

quality level does not influence the diagnostic results. Still there are unresolved
questions:

High compression levels. Can the compression level be increased up to 200
without significant influence in human decision making, e.g. with optimized
jpeg2000 algorithms and intra-frame compression techniques for z-layers.

Tissue/Staining dependencies. Does the maximum compression level depend
on tissue type and staining?

Compression in ML scenarios. What compression level can be applied when
WSI images are part of machine learning training sets and/or classified by
algorithms?

The newest generation of scanners (as of 2017 !) is able to digitize a slide at
various vertical focal planes, called z-layers, each the size of a singe layer. The
multi-layer image can be either combined by algorithms to a single composite
multi-focus image (Z-stacking) or used to simulate the fine focus control of a
conventional microscope. Z-stacking is a desirable feature especially when view-
ing cytology slides, however, the pathologist should be aware that such an image
can never be seen through the microscope (see Fig. 4).

Fig. 4. Focus layers in a typical histopathological slide, thickness 4µm.

At the Institute of Pathology at Graz Medical University, which is a medium
to large organization, about 73,000 diagnosis are made within a year and approx
335,000 glass slides are produced in the pathology lab, approx 25,000 glass slides
in the cytology lab. This results in a yearly storage capacity of almost 1 PetaByte



Machine Learning Digital Pathology 21

and the appropriate computing power to process approx. 1000 slides per day
plus the necessary capacity to train and improve ML algorithms. This numbers
illustrate that the digital transformation of diagnostic workflows in pathology
will demand for very high storage, even when stored in a compressed format, as
well as computing capacity.

Several data formats are used today, either vendor independent (DICOM,
TIFF/BigTIFF, Deep Zoom images) and vendor specific formats from Aperio,
Hamamatsu, Leica, 3DHistech, Philips, Sakura and Trestle. In the setup of a
virtual slide archive for medical research and machine learning it is essential
to (a) agree on a common exchange format, and (b) to separate patient related
and image related metadata. Patient related metadata comprise direct identifiers
(name, birthday, zip code, ...) but also diagnosis results and others results from
the patient medical history. When no such data is stored within or attached
to the image format, the WSI is purely anonymous, as no re-identification of
the patient is possible. To link between the same WSI used in different studies,
either a global unique identifier (GUID) or a image generated hash can be used.

3.3 Towards Machine Aided Pathology

Digitizing workflows is one important enabling step to a groundbreaking change
in clinical pathology, where AI methods and ML paradigms are introduced
to pathological diagnosing. This assistance starts with simple classification
and quantification algorithms as already available today, and ends in a full
autonomous pathologist, where human expertise is replaced by machine intelli-
gence. To distinguish such scenarios from simple digital workflows we propose the
term machine aided pathology, when a significant contribution of the decision
making process is supported by machine intelligence. Machine aided pathology
solutions can be applied at several steps of the diagnosis making process:

Formulation of a hypothesis. Each diagnosis starts with a medical question
and a corresponding underlying initial hypothesis. The pathologist refines this
hypothesis in an iterative process, consequently looking for known patterns in
a systematic way in order to confirm, extend or reject his/her initial hypothe-
sis. Unconsciously, the pathologist asks the question “What is relevant?” and
zooms purposefully into the -according to his/her opinion - essential areas of
the cuts. The duration and the error rate in this step vary greatly between
inexperienced and experienced pathologists. An algorithmic support in this
first step would contribute in particular to the quality and interoperability
of pathological diagnoses and reduce errors at this stage, and would be par-
ticularly helpful for educational purposes. A useful approach is known from
Reeder and Felson (1975) [29] to recognize so called gamuts in images and to
interpret these according to the most likely and most unlikely, an approach
having its origin in differential diagnosis.

– Very large amounts of data can only be managed with a “multi resolution”
image processing approach using image pyramids. For example, a Colon
cancer case consists of approximately 20 Tera (!) pixel of data - a size
which no human is capable of processing.
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– The result of this complex process is a central hypothesis, which has to
be tested on a selection of relevant areas in the WSI, which is determined
by quantifiable values (receptor status, growth rate, etc.).

– Training data sets for ML can now contain human learning strategies
(transfer learning) as well as quantitative results (hypotheses, areas, ques-
tions, etc.).

Detection and classification of known features. Through a precise classifi-
cation and quantification of selected areas in the sections, the central hypoth-
esis is either clearly confirmed or rejected. In this case, the pathologist has
to consider that the entire information of the sections is no longer taken into
account, but only areas relevant to the decision are involved. It is also quite
possible that one goes back to the initial hypothesis step by step and changes
their strategy or consults another expert, if no statement can be made on the
basis of the classifications.

– In this step ML algorithms consist of well known standard classification
and quantification approaches.

– An open question is how to automatically or at least semi-automatically
produce training sets, because here specific annotations are needed (which
could come from a stochastic ontology, e.g.).

– Another very interesting and important research question is, whether and
to what extent solutions learned from one tissue type (organ 1) can be
transferred to another tissue type (organ 2) – transfer learning – and how
robust the algorithms are with respect to various pre-analytic methods,
e.g. stainings, etc.

Risk prediction and identification of unknown features. Within the third
step, recognized features (learned parameters) are combined to a diagnosis
and an overall prediction of survival risk. The main challenge in this step lies
in training/validation and in the identification of novel, previously unknown
features from step two. We hypothesize that the pathologist supported by
machine learning approaches is able to discover patterns – which previously
were not accessible! This would lead to new insights into previously unseen
or unrecognized relationships.

Besides challenges in ML, also the following general topics and prerequisites
have to be solved for a successful introduction of machine aided pathology:

Standardization of WSI image formats and harmonization of annota-
tion/metadata formats. This is essential for telepathology applications and
even more important for the generation of training sets, as for a specific organ
and disease stages, even at a large institute of pathology the required amount
of cases may not be available.

Common digital cockpit and visualization techniques should be used in edu-
cation, training and across different institutes. Changing the workplace should
be as easy as switching the microscope model or manufacturer. However,
commonly agreed-upon visualization and interaction paradigms can only be
achieved in a cross vendor approach and with the involvement of the major
professional associations.
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3.4 Data Integration

The image data (see Fig. 5) can be fused with two other sources of data: (1) Clin-
ical data from electronic patient records [30], which contain documentations,
reports, but also laboratory tests, physiological parameters, recorded signals,
ECG, EEG, etc.); this also enables linking to other image data (standard X-
ray, MR, CT, PET, SPECT, microscopy, confocal laser scans, ultrasound imag-
ing, molecular imaging, etc.) (2) *omics data [4], e.g. from genomic sequencing
technologies (Next Generation Sequencing, NGS, etc.), microarrays, transcrip-
tomic technologies, proteomic and metabolomic technologies, etc., which all plays
important roles for biomarker discovery and drug design [31,32].

Data integration is a hot topic in health informatics generally and solutions
can bridge the gap between clinical routine and biomedical research [33]. This
is becoming even more important due to the heterogeneous and different data
sources, including picture archiving and communication systems (PACS) and
radiological information systems (RIS), hospital information systems (HIS), lab-
oratory information systems (LIS), physiological and clinical data repositories,
and all sorts of -omics data from laboratories, using samples from biobanks.
Technically, data integration is the combination of data from different sources

Fig. 5. Detail of a typical WSI: Hematoxylin and eosinstained histological section of
a formalin-fixed and paraffin-embedded normal human liver tissue. Manual annota-
tion: PV, portal vein; BD, bilde duct; HA, hepatic artery, HC (arrow), example of
hepatocyte. Bar = 30 µm (Image Source: Pathology Graz)
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and providing users with a unified view on these data, whereas data fusion is
matching various data sets representing one and the same object into a single,
consistent and clean representation [34]; in health informatics these unified views
are particularly important in high-dimensions, e.g. for integrating heterogeneous
descriptions of the same set of genes [35]. The general rule is that fused data is
more informative than the original separate inputs. Inclusion of these different
data sources and a fresh look on the combined views would open future research
avenues [36].

4 Machine Learning in Medical Image Analysis

Computer-added diagnosis has become an important tool in medicine to sup-
port medical doctors in their daily life. The general goals are to classify images
to automatically detect diseases or to predict the healing process. Thus, med-
ical imaging builds on several low level tasks such as segmentation, registration,
tracking and detection. Many of these tasks can be efficiently solved via machine
learning approaches, where, in contrast to typical computer vision problem, we
are facing several problems: (1) medical image data such as obtained from CT,
MR, or X-ray show specific characteristics (e.g., blur and noise) that cannot eas-
ily be handled; (2) machine learning approaches typically require large number
of training samples, which is often not available; (3) there are no clear labels as
the ground truth is often just based on visual inspection by humans. Thus, there
has been a considerable interest in medical image analysis and many approaches
have been proposed. As a more comprehensive discussion would be out-of-scope,
in the following, we briefly review the most versatile and tools that have been
successfully applied in medical image analysis, namely, Support Vector Machines,
Random Forests, and Deep Learning.

Support Vector Machines
Support Vector Machines are very versatile tools in machine learning and have
thus also be used in medical image analysis for different tasks and applications.
In the following, we sketch the main ideas, where we will focus on the two-
class classification problem, and give a brief summary of related applications.
Let L = {(xi, yi)}L

i=1 be a set of pairs, where xi ∈ R
N are input vectors and

yi ∈ {+1,−1} their corresponding labels. Then the objective is to determine a
linear classification function (i.e., a hyperplane)

f(x) = w�xi + b, (6)

where w ∈ R
N , and b is a bias term, such that

w�
i x + b

{
> 0 if yi = 1
< 0 if yi = −1,

(7)

which is equivalent to

yi(w�xi + b) > 0, i = 1, . . . , L. (8)
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If the training data is linear separable, then there will exist an infinite number
of hyperplanes satisfying Eq. (8). To ensure a unique solution and to increase
the linear separability for unseen data (i.e., reduce the generalization error),
support vector machines build on the concept of the margin (which is illustrated
in Fig. 6), which is defined as the minimal perpendicular distance between a
hyperplane and the closest data points. In particular, the decision boundary is
chosen such that the margin M is maximized. By taking into account the relation
‖w‖ = 1

M , the maximum margin can be obtained my minimizing ||w||2:

min
w,b

1
2
||w||2

s.t. yi(w�xi + b) ≥ 1, i = 1, . . . , L.

(9)

In order to solve the constrained problem Eq. (9) for w and b, we introduce
the Lagrange multipliers βi, i = 1, . . . , L, and use the Kuhn-Tucker theorem to
convert the problem to the unconstrained dual problem (Wolfe dual):

max
L∑

i=1

βi − 1
2

L∑
i

L∑
j

βiβjyiyjx�
i xj

s.t.
L∑

i=1

βiyi = 0, βi ≥ 0 i = 1, . . . , L.

(10)

In this way, we get the decision function f̂ for classifying unseen observa-
tions x as

f̂(x) = sign
(
w�x + b

)
, (11)

which is equivalent to

f̂(x) = sign

(
L∑
i

βiyix�xi + b

)
, (12)

where βi > 0 if xi is on the boundary of the margin, and βi = 0 otherwise. Thus,
it can be seen that w can be estimated only via a linear combination of samples
on the boundary, which are referred to as support vectors (see also Fig. 6).

If the data is not linearly separable, we can apply the kernel trick. As can
be seen, Eqs. (10) and (12), the data does only appear in form of dot products
〈xi,xi〉 = x�

i xj . When introducing a transformation

Φ(·): RN → R
P , (13)

we need only to estimate the dot product 〈Φ(xi), Φ(xj)〉 = Φ(xi)�Φ(xj). Thus,
if there is a kernel function

K(xi,xj) = 〈Φ(xi), Φ(xj)〉 (14)
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w · x + b ≥ 1
w · x + b = 0

w · x + b ≤ −1

M

Fig. 6. Maximal margin for an SVM: The decision boundary for the two classes (red
and blue balls) is estimated such that the margin M is maximized. The samples on
the margin-boundary (indicated by the black ring) are referred to as support vectors.
(Color figure online)

the dot product can be estimated without explicitly knowing Φ. Moreover, any
other valid kernel can be used, for example:

– Linear kernel: K (xi,xj) = x�
i xj ,

– Polynomial kernel: K (xi,xj) =
(
x�

i xj + 1
)d

,

– Radial Basis Function (RBF) Kernel: K (xi,xj) = e−γ‖xi−xj‖2
,

– Mahalanobis kernel: K (xi,xj) = e−(xi−xj)
�A(xi−xj).

In this way Eqs. (10) and (12) can be generalized to

LD(β) =
m∑

i=1

βi − 1
2

m∑
i

m∑
j

βiβjyiyjK(xi,xj) (15)

and

f̂(x) = sign

(
m∑
i

βiyiK(xi,xj) + b

)
. (16)

Besides the flexibility to chose an appropriate kernel for a specific application,
it is straightforward to extend the standard formulation for overlapping class
distribution by introducing the concept of soft margins. In addition, there exist
several ways to extend the standard formulation to multiple classes (e.g., one-vs.-
all SVM, pairwise SVM, and error-correcting-output code SVM), to apply SVMs
for regression tasks, or to use it in the context of online/incremental and semi-
supervised learning. In this way, SVMs are very flexible and widely applicable
for the highly diverse task to be solved in medical imaging. For a more detailed
review, we like to refer to [37–39]).

One of the most important application in medical imaging is to segment and
classify image regions. For example, in [40] SVMs are used to segment lesions in
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ultrasound images. In particular, a kernel SVM using an RBF-kernel is used to
segment both ultrasound B-mode and clinical ultrasonic images. Similarly, in [41]
an effective retinal vessel segmentation technique is presented, allowing to drasti-
cally reduce the manual effort of ophthalmologists. To this end, first features are
extracted which are then classified using a linear SVM. This makes not only the
evaluation very fast, but also allows to learn a model form a smaller training set.

A different approach is followed in [42] to segment blood vessels based on fully
connected conditional random fields. However, an efficient inference approach is
applied, which is learned via a Structured Output SVM. In this way, a fully
automated system is obtained that achieves human-like results. Similarly, [43]
presents a fully automatic method for brain tissue segmentation, where the goal is
to segment 3D MRI images of brain tumor patients into healthy and tumor areas,
including their individual sub-regions. To this end, an SVM classification using
multi-spectral intensities and textures is combined with a CRF regularization.

A slightly different application in medical imaging is to localize image regions.
For example, [44] presents an approach to detect microcalcification (MC) clusters
in digital mammograms via an SVM-based approach. This is in particular of
interest, as MC clusters can be an early indicator for female breast cancer. A
different application, but a similar approach was discussed in [45]. The goal is to
localize the precise location of cell nuclei, helping in an automated microscopy
applications such as such as cell counting and tissue architecture analysis. For
this purpose three different inputs are used (i.e., raw pixel values, edge values,
and the combination of both), which are used to train an SVM classifier based
on an RBF-kernel.

Random Forests
Random Forests (RFs) [46], in general, are ensembles of decision trees, which
are independently trained using randomly drawing samples from the original
training data. In this way, they are fast, easy to parallelize, and robust to noisy
training data. In addition, they are very flexible, paving the way for classification,
regression, and clustering tasks, thus making them a valid choice for a wide range
of medical image applications [47].

More formally, Random Forests are ensembles of T decision trees Tt(x) :
X → Y, where where X = R

N is the N -dimensional feature space and Y is the
label space Y = {1, . . . , C}. A decision tree can be considered a directed acyclic
graph with two different kinds of nodes: internal (split) nodes and terminal (leaf)
nodes. Provided a sample x ∈ X , starting from the root node at each split node
a decision is made to which child node the sample should be send, until it reaches
a leave node. Each leaf note is associated with a model that assigns an input x
an output y ∈ Y. Each decision tree thus returns a class probability pt(y|x) for
a given test sample x ∈ R

N , which is illustrated in Fig. 7(b). These probabilities
are then averaged to form the final class probabilities of the RF. A class decision
for a sample x is finally estimated by

y∗ = arg max
y

1
T

T∑
t=1

pt(y|x). (17)
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During training of a RF, each decision tree is provided with a random subset
of the training data D =

{
(x1, y1), . . . (x|D|, y|D|)

}
⊆ X × Y (i.e., bagging) and

is trained independently from each other. The data set D is then recursively
split in each node, such that the training data in the newly created child nodes
is pure according to the class labels. Each tree is grown until some stopping
criterion (e.g., a maximum tree depth) is met and class probability distributions
are estimated in the leaf nodes. This is illustrated in Fig. 7(a).

Fig. 7. Random Forests: (a) The tree is build recursively splitting the training data
D and finally estimating a model p(y|D∗) for each leaf node. (b) During inference a
sample x is traversed down according to the learned splitting functions s (i.e., the
parameters Θ∗) the tree and finally classified based on the model of the leaf node.

A splitting function s(x, Θ) is typically parameterized by two values: (i) a
feature dimension Θ1 ∈ {1, . . . , N} and (ii) a threshold Θ2 ∈ R. The splitting
function is then defined as

s(x, Θ) =
{

0 if x(Θ1) < Θ2

1 otherwise , (18)

where the outcome defines to which child node the sample x is routed.
Each node i chooses the best splitting function Θi out of a randomly sampled

set by optimizing the information gain

Δ(Θi) =
|DL|

|DL| + |DR|H(DL) +
|DR|

|DL| + |DR|H(DR), (19)

where DL and DR are the sets of data samples that are routed to the left and
right child nodes, according to s(x, Θi); H(D) is the local score of a set D of
data samples, which can either be the negative entropy

H(D) = −
C∑

c=1

[p(c|D) · log(p(c|D))], (20)
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where C is the number of classes, and p(c|S) is the probability for class c, esti-
mated from the set S, or the Gini Index [46].

The most important application of RFs in medical image analysis is the auto-
matic segmentation of cells, organs or tumors, typically building on a multi-class
classification forests. For example, in [48] an approach for segmenting high-grade
gliomas and their sub-regions from multi-channel MR images is presented. By
using context-aware features and the integration of a generative model of tissue
appearance only little pre-processing and no explicit regularization is required,
making the approach computationally very efficient. A different approach was
presented in [49], where a joint classification-regression forest was trained, that
captures both structural and class information. In this way, not only a class
label is predicted but also the distance to the object boundary. Applied on
3-dimensional CT scans the final task of multi-organ segmentation can be solved
very efficiently.

Related to the previous task is the application of detecting and localizing
anatomy. For example, [50] introduces an approach for localizing vertebras using
a combined segmentation and localization approach. For this purpose a RF is
trained using features images obtained form a standard filter bank, where the
output is then used – together with the original image – to generate candi-
date segmentations for each class, which are finally weighted. In contrast, [51]
addresses the problem of localizing organs such as spleen, liver or heart. To this
end, visual features are extracted from the imaging data and a regression for-
est is trained, allowing for a direct mapping form voxels to organ locations and
size. In particular, the approach deals with both magnetic resonance (MR) and
computer tomography (CT) images, also showing the generality and flexibility
of RFs. A similar approach is addressed in [52], also estimating local landmark
points finally paving the way for automatic age estimation [53].

For a detailed overview on Random Forests we would like to refer to [47],
where a deep theoretical discussion as well as an overview of different applications
in the field of medical image analysis are given.

Deep Learning
Event though the main ideas of neural networks are dating back to the 1940’s
(i.e., [54,55]), they just become recently very popular due the success of con-
volutional neural networks [56,57]. In general, neural networks, are biologically
inspired and can be described as a directed graph, where the nodes are related
to neurons/units and the edges describe the links between them.

As illustrated in Fig. 8, each unit j receives a weighted sum of inputs ai

of connected units i, where the weights wi,j determine the importance of the
connection. To estimate the output aj this linear combination is then fed into
a so called activation function. More formally, the output aj is estimated as
follows:

aj = g

(
n∑

i=0

wi,jai

)
. (21)
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Fig. 8. The general model of a single neuron: the weighted inputs ai are summed up
and fed into an activation function g(·) yielding the output aj .

Popular choices for the activation function which are widely used are

– Linear function: g(x) = x,

– Hard threshold function: g(x) =
{

1 if x > 1
2

0 otherwise,
– Sigmoid function: g(x) = 1

1+e−x ,
– Hyperbolic tangent function: g(x) = tanh(x),
– Rectified Linear Units (ReLU): g(x) = max(0, x).

In general, we can distinct two different kinds of networks. First, feed-forward
networks can be described as acyclic graphs, having connections only in one
direction. In this way, the network describes a function of the input. In contrast,
recurrent networks (RNNs) can be considered graphs with loops, as receiving
their outputs again as input (thus being non-linear systems). In this way, an
internal state (short term memory) can be described. Thus, RNNs are widely
used in applications such as speech recognition or in activity recognition [58],
whereas in image processing mainly feed-forward networks are of relevance [59].

Neural networks are typically arranged in layers Vi consisting of single units
as described above, such that each unit receives input only from units from
the previous layer, where |V | = T the depth of the network. V0 is referred
to as the input layer, VT as the output layer, and V1, . . . , VT−1 are called the
hidden layers. A simple example of such a network with two hidden layers is
illustrated in Fig. 9. When dealing with multiple hidden layers, we talk about
deep learning. In general, this allows to learn complex functions, where different
layers cover different kind of information. For example, in object detection a first
layer may describe oriented gradients, a second layer some kind of edges, a third
layer would assemble those edges to object descriptions, where a subsequent
layer would describe the actual detection task. This example also illustrates an
important property of deep learning: we can learn feature representations and
do not need to design features by hand!

In general, the goal of supervised learning is to modify the model parameters
such that subsequently the error of an objective function is reduced. For neural
networks, this is typically solved via the stochastic gradient descend (SGD) app-
roach. The main idea is to repeatedly compute the errors for many small sets and
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Fig. 9. Deep feed-forward neural network with two hidden layers (blue balls). In addi-
tion, the input layer (green balls) and the output layer (red points) are illustrated.
(Color figure online)

to adjust the model according to a averaged response. Thus, the name can be
explained as a gradient method – typically using the back-propagation approach
– is used and the computation based on small sets of samples is naturally noisy.

The most prominent and most successful deep learning architecture are Con-
volutional Neural Networks (CNN), why these terms are often used interchange-
able. Even though naturally inspired by image processing problems the same
ideas can also be beneficial for other tasks. One key aspect of CNNs is that the
are structured in a series of different layers: convolutional layers, pooling layers,
and fully connected layers. Convolutional layers can be considered feature maps,
where each feature map is connected to local patches in the feature map in the
previous layer. In contrast, pooling layers merge similar features into one (i.e.,
relative positions of features might vary in the local range). Typical, several
stages of convolutional and pooling layers are stacked together. Finally, there
are fully connected layers generating the output of the actual task. A typical
architecture for such a CNN is illustrated in Fig. 10.

Fig. 10. Typical convolutional neural network: LeNet-5 [56].
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As in this way the effort for handcrafting features can be reduced and
CNNs have proven to improve the results for many applications, they are now
also widely applied in medical imaging. In particular, for cancer detection very
recently even human-like performance was demonstrated.

For example, [60] adopts a CNN framework for breast cancer metastasis
detection in lymph nodes. By additionally, exploiting the information of a pre-
trained model, sophisticated image normalization, and building on a multi-stage
approach (mimicking the human perception), state-of-the-art methods and even
human pathologists have been outperformed for a standard benchmark dataset.
Similarly, [61] addresses the problem of skin cancer detection using deep neural
networks. Also here a transfer learning setup is proposes, where after pre-training
a CNN architecture using ImageNet the final classification layer is discarded and
re-trained for the given task (in addition the parameters are fine-tuned across
all layers). The thus obtained automatic methods finally performs on par with
human pathologist on different task.

Even though this demonstrates, that Deep Learning could be very beneficial
in the medical domain, the main challenge is to cope with the problem that
often the rather large amount of required training data is not available. Thus,
there has been a considerable interest in approaches that can learn from a small
number of training samples. The most common and straight forward way is
to use data augmentation, where additional training samples are generated via
variation of the given data: rotation, elastic deformation, adding noise, etc. One
prominent example for such approaches is U-Net [62], which demonstrated that
for biomedical image segmentation state-of-the-art results can be obtained, even
when the model was trained just from a few samples.

Even though this simple approach often yields good results, it is limited
as only limited variations can be generated from the given data. A different
direction is thus to build on ideas from transfer learning [63]. The key idea is
to pre-train a network on large publicly available datasets and then to fine-
tune it for the given task. For example, [64] fine-tunes the VGG-16 network,
which is already pre-trained using a huge amount of natural images, to finally
segment pancreas from MR images. In addition, a CRF step is added for the
final segmentation. Another way would be to use specific prior knowledge about
the actual task [65]. However, this information is often not available and, as
mentioned above, medical image data and natural images are often not sharing
the same characteristics, why such approaches often to fail in practice.

A totally different way to deal with small amounts of training data is to use
synthetically generated samples for training (e.g., [66]), which are easy to obtain.
However, again in this way the specific characteristic of the given image data
might not be reflected. To overcome this problem, Generative Adversarial Nets
[67] train a generator and a discriminator framework in a competitive Random
Forests fashion. The key idea is that the generator synthesizes images and the
discriminator decides if an image is real or fake (i.e., generated by the generator).
In this way, increasingly better training data can be generated. This idea is for
example exploited by [68] to better model the nonlinear relationship between
CR and MR images.
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Further Reading: For a short review on Deep Learning we would like to refer
to [13], a detailed review of related work can be found in [69], and a very detailed
technical overview ins given in [70].

Summary

As demonstrated in this section there are several ways to address the wide range
of applications in medical imaging. Even though there exist special approaches
for specific application, we focused on three versatile and thus widely used
approaches, namely, Support Vector Machines (SVMs), Random Forests (RFs),
and Deep Learning (DL). Where SVMs are general working horses for different
applications, RFs have demonstrated to cope with the particular characteristics
of medical imaging data very well. However, for both approaches well-engineered
handcrafted features are necessary, which are often hard to define and compute.
This problem can be overcome by using DL approaches, as the required features
can be learned implicitly in an end-to-end manner. However, the main drawback
of such approaches is that they require a huge amount of training data to yield
competitive results, which is often not available in practice. There are several
approaches which help to moderate this problem, but in general dealing with a
small data is still a big problem. Thus, still other methods such as SVM and RF
are valid choices for medical imaging problems. In addition, a key aspect that
is often neglected is that there are often good biases available, either defined
by the specific task or by available human experts, which are not considered
(sufficiently) up to now!

5 Secure Cooperation with Experts

Securing the data life cycle is a problem that just recently gained a lot of
additional attention, mainly due to the General Data Protection Regulation
(GDPR)1 that not only established baselines for securing sensitive information
throughout the European Union, but also increases the penalties to be applied in
case of violation. This regulation will come into effect in May 2018 either directly
or by adoption into national law. It is concerned with all major issues regard-
ing the processing of personal sensitive information, most notably it deals with
the legal requirements regarding data collection, consent regarding processing,
anonymization/pseudonymization, data storage, transparency and deletion [71].
Still, the major issue here is that many details are currently not defined, e.g.
whether deletion needs to be done on a physical or simply logical level, or how
strong the anonymization-factors need to be [72]. Furthermore, some parts are
formulated in a way that cannot be achieved with current technological means,
e.g. de-anonymization being impossible in any case, as well as the antagonism

1 Regulation (EU) 2016/679 of the European Parliament and of the council of 27 April
2016 on the protection of natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing directive 95/46/EC
(General Data Protection Regulation).
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between deletion and transparency. Thus, the issue of securing sensitive infor-
mation is one of the really big challenges in machine learning in health related
environments [73].

5.1 Data Leak Detection

While many of the issues outlined above seem not that relevant for pathological
data at first glance, other questions regarding data security still prevail: Data is
considered to be the new oil, meaning that data itself constitutes a significant
value. One of the major issues in machine learning based research lies in the issue
of cooperation between data owners and other entities. With ever new techniques
arriving on the scene requiring the cooperation of various experts in the areas
of modeling, machine learning and medicine, data needs to be shared between
different entities, often working at different institutions. This opens up the issue
of detecting data misuse, especially the unsolicited dissemination of data sets.

Measures against data leakage can be divided into two major categories, those
protecting the data from being leaked (proactive measures) and those enabling
the detection and attribution of data leaks (reactive measures). Proactive mea-
sures typically include limitations on the data exchange:

– Sealed research environments like dedicated servers that run all the analysis
software and contain all the data, without export possibilities, as well as sport-
ing mechanisms for controlling, which researcher utilized which information
set. While this does not constitute a 100 percent protection against malicious
experts trying to extract information, in does help against accidental data
loss.

– Aggregating the data as much as possible can be a solution too for reduc-
ing the amount of sensitive information that an expert is given access to.
Still, aggregation often introduces a significant error and can render the data
practically worthless for the analysis.

– Oracle-style measures like differential privacy [74] do not deliver the whole
data set to the experts but rather require the expert to choose the type
of analysis he/she wants to run on the data without seeing the data sets.
Typically, this is done via issuing “Select”-statements that are run against
the database. Measures like differential privacy introduce distortion for data
protection purposes, as well as limit the amount of information the expert
can retrieve from the data.

While these proactive measures certainly do have their merits, they often pose
a serious obstacle to cooperation with the world-best experts in a field, either
due to geographical issues, or simply because the data is not fine-grained enough
to utilize the whole potential of the information inside the data sets. Reactive
approaches aim at identifying data leaks instead of preventing exchange, i.e.
the data is distributed to the partners in a form suitable for analysis (while, of
course, still considering issues of data protection like required anonymization),
but it is marked in order to make each data set unique for each partner it is
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distributed to. These marks are typically called fingerprints and are required to
possess the following features [75]:

– The fingerprinting mechanism must be capable to uniquely identify a user.
– It must not be possible for a user to identify the mark and subsequently

remove it (without drastically reducing the utility of the data).
– Even for a combination of attackers, the fingerprint must be resilient against

inference attacks, i.e. it must not be possible to calculate the fingerprinting
marks, even when given several differently marked versions of the same data
set.

– No wrongful accusations must be possible, even in case several attacks work
together in order to change the fingerprint to put blame on an uninvolved
partner.

– The fingerprint must be tolerant against a certain amount of errors introduced
by the users, i.e. it must not get useless in case the attackers change some
portion of the marked data.

Furthermore, depending on the actual form of the data, there are typically
some additional issues that require consideration, e.g., how stable the finger-
print needs to be in case only part of the data is leaked (e.g. half a picture,
some records from a sample). Since the GDPR often requires the anonymiza-
tion of sensitive information, one interesting approach lies in the development
of combined methods that use intrinsic features of the anonymization technique
in order to generate a selection of different data sets that can be uniquely iden-
tified. In the past, such a fingerprinting approach was proposed for structured
data in tables [76], still, the number of different fingerprints that can be assigned
to the same data set while providing resilience against collaborating attackers is
rather low and mainly depends on the actual data, especially when obeying the
requirement for resilience against colluding attackers as outlined above [77].

5.2 Deletion of Data

Typically, the deletion of data is not considered to be a major problem in most
applications, as it is mostly a matter of freeing resources. Still, against the back-
ground of the GDPR, this topic becomes increasingly important to consider,
especially, since it is extremely complicated to delete information in modern,
complex environments [72]. Databases are a major example, why deletion of
information can be a major problem: ACID-compliance [78] is a major require-
ment of modern database management systems and requires the database prod-
uct to ensure the atomicity of certain operations, i.e. operations are either carried
out as a whole, or not at all, always leaving the database to be in a consis-
tent state, even in case of a server crash. Furthermore, mechanisms for undoing
operations, most notable rollback mechanisms, are currently state-of-the-art and
expected by database users. Thus, a lot of additional information is required to
be stored in various internal mechanisms of the database, e.g. the transaction
mechanism, which is responsible for collecting all operations changing the data-
base and enables rollbacks and crash-recovery.
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Still, in typical database environments, even simple removal of data from the
database itself is non-trivial, considering the way data is stored: The records
inside a table are stored inside a tree-structure, more notably a B+-tree [79]:

– For the number mi of elements of node i holds d
2 ≤ i ≤ d, given a pre-defined

d for the whole tree, the order of the tree. The ony example of this rule is
the root r with 0 ≤ r ≤ d.

– Each non-leaf-node with m elements possesses m+1 child nodes, d
2 ≤ m ≤ d.

– The tree is balanced, i.e. all leaf nodes are on the same level.
– In contrast to the normal B-tree, the inner nodes of the B+-tree solely store

information required for navigating through the tree, the actual data is stored
in the leaf nodes, making the set of leafs forming a partition of the whole data
set.

– The elements inside the nodes are stored as sorted lists.

In databases like MySQL, the (mandatory) primary key of each table is used
to physically organize the data inside the table in the form of a B+-Tree, the
secondary indices are merely search-trees of their own, solely containing links to
the tree built by the primary key.

When data is deleted from the indexing tree built by the primary key, the
database searches for the leaf node containing the required element. Since data-
bases are built in order to facilitate fast operations, the data inside the leaf node
is not overwritten, but simple unlinked from the sorted list inside said node.

Fig. 11. Deletion in MySQL [80].

Figure 11 gives a short overview on the deletion process: The record in ques-
tion is unlinked from the linked list and added to the so-called garbage collection,
which marks the space of the record as free for storing new data. Still, the data
is not technically overwritten at the point of deletion and can be reconstructed
quite simple, as long as the space has not been used again, which depending on
the usage patterns of the database, is unpredictable and might take a long time.

Still, even the actual form of the search tree itself might yield information on
data already deleted from the table [81]: Let B be a B+-tree with n > b elements
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which are added in ascending order. Then it holds true that the partition of the
leafs of B has the following structure:

n =
k∑

i=1

ai, with ai =
b

2
+ 1,∀i �= k and ak ≥ b

2
.

While this theorem allows only very limited detection for practical purposes
under certain circumstances, especially due to database internal reorganization
mechanisms destroying the structure, there are instances where information can
be retrieved from the structure of the B+-tree.

As [72] outlined, there is currently no definition in the GDPR, how data must
be deleted, i.e. whether this needs to be done physically, or only logically. Still,
when looking at earlier national legal counterparts concerning data protection,
several legislations (e.g. in Austria) used a very strict interpretation of the term
“deletion”, i.e. physical deletion. In addition, the GDPR deals a lot in absolutes,
either jurisdiction is required to relax these absolutes, or new technical means
for removing evidence deeply embedded in complex systems are required.

5.3 Information Extraction

We have already seen how databases can be secured via differential privacy and
other query mechanisms, however most data in a clinical environment exist in
the form of Electronic Health records whose entries are mostly unstructured
free-text documents. As there is no guaranteed way to anonymize unstructured
data, we first need to extract identified bits of information and convey them to
a more organized data structure.

Information Extraction (IE) is the art of finding relevant bits of specific
meaning within unstructured data - this can be done either via (1) low-level IE -
usually by means of dictionary or RegExp based approaches [82,83] which utilize
extensive corpora of biomedical vocabulary and are readily available in libraries
such as Apache cTakes; the disadvantage of most standard solutions is the lack of
their ability to correctly identify context, ambiguous, synonymous, polysemous
or even just compound words; or (2) higher level IE, usually in the form of a
custom-built natural language processing (NLP) pipelines. Often, the purpose of
such pipelines is Named Entity Recognition (NER), which is the task of labeling
terms of specific classes of interest, like People, Locations, or Organizations.

It was noted [84] that NER is more difficult in specialized fields, as terms
have more narrow meanings (abbreviations can mean different things, e.g.). The
authors of [85] describe NER as a sequence segmentation problem to which
they apply Conditional Random Fields (CRF), a form of undirected statisti-
cal graphical models with Markov independence assumption, allowing them to
extract orthographic as well as semantic features. More recently, even Neural
Networks have been utilized for NER [86] with performance at state-of-the-
art levels, partly incorporating a new form of concept space representations for
terms called embeddings, which use a form of dimensionality reduction to com-
press vocabulary-sized feature vectors into (mostly 50-300 dimensional) concept
vectors [87].
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5.4 Anonymization

After having condensed all available material into labeled information, we can
filter them through formal anonymization approaches, of which k-anonymity [88]
stands as the most prominent. K-anonymity requires that a release of data shall
be clustered into equivalence groups of size >= k in which all quasi identifiers
(non-directly identifying attributes such as age, race or ZIP code) have been
generalized into duplicates; generalization itself can be pictured as an abstraction
of some information to a more inclusive form, e.g. abstracting a ZIP code of
81447 to textit81***, thereby being able to potentially cluster it with all other
ZIP codes starting with 81***.

Beyond k-anonymity exist refinements such as l-diversity [89], t-closeness [90]
and δ-presence [91] for purely tabular data, as well as a number of individual
methods for social network anonymization [92,93]. They all operate on the con-
cept of structured, textual quasi identifiers and imply a trade-off between data
utility and privacy of a data release - a higher degree of anonymization provides
more security against identifying a person contained in the dataset, but reduces
the amount of usable information for further studies or public statistics.

This leads us to the field of Privacy aware Machine Learning (PaML) which
is the application of ML techniques to anonymized (or in any way perturbed)
datasets. Obviously one cannot expect the performance of such algorithms to
equal their counterparts executed on the original data [94], instead the challenge
is to produce anonymized datasets which yield results of similar quality than
the original. This can be achieved by cleverly exploiting statistical properties
of such data, e.g. outliers in the original might affect ML performance as well
as induce higher levels of generalization necessary to achieve a certain factor of
k; by first removing those outliers an anonymized version can actually retain
enough information to rival its unperturbed predecessor [95].

5.5 Image Data Integration

For medical purposes, images have long been considered quasi-identifiers [96,97],
as one can easily picture faces allowing a relatively exact reconstruction of a
persons identity (depending on the quality of algorithms used). In the case of
pathological images containing multiple features and feature groups in relation
to one another, any subset of such information could conceivably be combined
with a patient’s EHR, thus enabling re-identification. On the other hand, selected
features also complement a patients EHR and therefore provide a more complete
overview of the patient’s condition facilitating higher precision in diagnosis, espe-
cially in cases when doctors overlook or forget to record symptoms. In approx-
imating an answer to the question’how can one anonymize images’, we would
like to provide a simple (therefore unrealistic) illustration (Fig. 12), in which
the bottom row depicts 8 original face images, whereas the subsequent vertical
rows represent progressive morphings of pairs of samples below, arriving at a
most general male/female hybrid at the top. In a realistic clinical setting, a use-
ful effect could be achieved by learning features from individual samples (faces,
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Fig. 12. Depiction of a possible (naive) face generalization hierarchy by simple mor-
phing of aligned images. Realistically, one would first scan images for salient features,
then cluster faces via feature similarity, subsequently morphing the generalized features
back into a pictograph or artificially generated face.

pathologic slides etc.), clustering those traits by similarity and then merging
them together into collective representations of groups.

5.6 *Omics Data Integration

In contrast to images it seems very doubtful if *omics-data can be perturbed
in a meaningful way to protect a person’s identity. After all, genes, proteins
etc. are building blocks of larger structures, and changing even one gene to a
variant form (called an allele) can have significant repercussions on an organism’s
phenotype. So in the field of *omics research, the issue of privacy is treated a
little differently: Given e.g. a GWAS (genome-wide association study) and the
genetic profile of an individual person, the question arises with what certainty a
classifier could determine if that person participated in said study. This entails
the need to perturb the results of a study - a distribution of measurements, like
allele frequencies [98] - rather than a database of personal information, which
lends itself ideally to the already described mechanism of ε-differential privacy.
The authors of [99] even tailored the method to GWAS study data in case of
the presence of population stratification and studied its effect on the output of
the EIGENSTRAT and LMM (Linear Mixed Model) algorithms typically used
on a rheumatoid arthritis GWAS dataset. To what extent those methods can
actually protect people from identification is a point of open discussion: while
some researchers [100] claim that even with standard statistical methods a binary
classification result (AUC) of reasonably close to 1 can be achieved, others [101]
point out that DNA matching in itself is not equivalent to de-identification and
even if possible, would take tremendous time and computational power. It might
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therefore be the case that a false notion of a choice of privacy OR data utility
might lead to a gross over-expansion of the privacy legal framework.

5.7 Heterogeneous Data Linkage

As became obvious from the previous sections, information about the same per-
son are often available from several different sources (physician letters, hospital
databases, lab reports, scans, *omics data etc.). These data are not easily merged
into one big dataset because coverage might only be slightly overlapping (e.g. not
all patients were subjected to the same lab tests). Simple concatenation of such
information would result in a high-dimensional dataset with most of its entries
missing, introducing the curse-of-dimensionality when conducting ML experi-
ments. With increasing dimensionality, the volume of the space increases so fast
that the available data becomes sparse, hence it becomes impossible to find
reliable clusters; also the concept of distance becomes less precise as the num-
ber of dimensions grows, since the distance between any two points in a given
data set converges; moreover, different clusters might be found in different sub
spaces, so a global filtering of attributes is also not sufficient. A solution might
be found in graph-based representations of such data, where node types can rep-
resent patients or different forms of examinations, resources, etc.; in the case of
anonymizing, we not only have to generalize node information but also consider
neighborhood structure which could provide an adversary with additional hints
for attack vectors. Apart from dealing with graph anonymization, which is also a
hard problem [102], an interesting challenge lies in describing parameters of the
underlying stochastic process precisely enough so one can re-populate a graph
from its anonymized form; this generatively perturbed graph should on the one
hand meet privacy requirements, yet allow scientists to conduct ML experiments
yielding satisfactory performance.

6 Future Challenges

Much future research has to be done, particularly in the fields of Multi-Task
Learning and Transfer Learning to go towards Multi-Agent-Hybrid Systems as
applications of the iML-approach.

6.1 Future Challenge 1: Multi-task Learning

Multi-task learning (MTL) aims to improve the prediction performance by
learning a problem together with multiple, different but related other problems
through shared parameters or a shared representation. The underlying principle
is bias learning based on Probably Approximately Correct learning (PAC learn-
ing) [19]. To find such a bias is still the hardest problem in any ML task and
essential for the initial choice of an appropriate hypothesis space, which must
be large enough to contain a solution, and small enough to ensure a good gen-
eralization from a small number of data sets. Existing methods of bias generally
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require the input of a human-expert-in-the-loop in the form of heuristics and
domain knowledge to ensure the selection of an appropriate set of features, as
such features are key to learning and understanding. However, such methods are
limited by the accuracy and reliability of the expert’s knowledge (robustness of
the human) and also by the extent to which that knowledge can be transferred to
new tasks (see next subsection). Baxter (2000) [103] introduced a model of bias
learning which builds on the PAC learning model which concludes that learning
multiple related tasks reduces the sampling burden required for good general-
ization. A bias which is learnt on sufficiently many training tasks is likely to be
good for learning novel tasks drawn from the same environment (the problem
of transfer learning to new environments is discussed in the next subsection). A
practical example is regularized MTL [104], which is based on the minimization of
regularization functionals similar to Support Vector Machines (SVMs), that have
been successfully used in the past for singletask learning. The regularized MTL
approach allows to model the relation between tasks in terms of a novel kernel
function that uses a taskcoupling parameter and largely outperforms singletask
learning using SVMs. However, multi-task SVMs are inherently restricted by the
fact that SVMs require each class to be addressed explicitly with its own weight
vector. In a multi-task setting this requires the different learning tasks to share
the same set of classes. An alternative formulation for MTL is an extension of
the large margin nearest neighbor algorithm (LMNN) [105]. Instead of relying
on separating hyper-planes, its decision function is based on the nearest neigh-
bor rule which inherently extends to many classes and becomes a natural fit
for MTL. This approach outperforms state-of-the-art MTL classifiers, however,
much open research challenges remain open in this area [106].

6.2 Future Challenge 2: Transfer Learning

A huge problem in ML is the phenomenon of catastrophic forgetting, i.e. when
a ML algorithm completely and abruptly “forgets” how to perform a learned
task once transferred to a different task. This is a well-known problem which
affects ML-systems and was first described in the context of connectionist net-
works [107]; whereas natural cognitive systems rarely completely disrupt or
erase previously learned information, i.e. natural cognitive systems do not forget
“catastrophically” [108]. Consequently the challenge is to discover how to avoid
the problem of catastrophic forgetting, which is a current hot topic [109].

According to Pan and Yang (2010) [21] a major requirement for many ML
algorithms is that both the training data and future (unknown) data must be
in the same feature space and show similar distribution. In many real-world
applications, particularly in the health domain, this is not the case: Sometimes
we have a classification task in one domain of interest, but we only have sufficient
training data in another domain of interest, where the latter data may be in a
completely different feature space or follows a different data distribution. In
such cases transfer learning would greatly improve the performance of learning
by avoiding much expensive data-labeling efforts, however, much open questions
remain for future research [110].
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6.3 Future Challenge 3: Multi-Agent-Hybrid Systems

Multi-Agent-Systems (MAS) are collections of many agents interacting with each
other. They can either share a common goal (for example an ant colony, bird
flock, or fish swarm etc.), or they can pursue their own interests (for exam-
ple as in an open-market economy). MAS can be traditionally characterized by
the facts that (a) each agent has incomplete information and/or capabilities for
solving a problem, (b) agents are autonomous, so there is no global system con-
trol; (c) data is decentralized; and (d) computation is asynchronous [111]. For
the health domain of particular interest is the consensus problem, which formed
the foundation for distributed computing [112]. The roots are in the study of
(human) experts in group consensus problems: Consider a group of humans who
must act together as a team and each individual has a subjective probability dis-
tribution for the unknown value of some parameter; a model which describes how
the group reaches agreement by pooling their individual opinions was described
by DeGroot [113] and was used decades later for the aggregation of informa-
tion with uncertainty obtained from multiple sensors [114] and medical experts
[115]. On this basis Olfati-Saber et al. [116] presented a theoretical framework for
analysis of consensus algorithms for networked multi-agent systems with fixed
or dynamic topology and directed information flow. In complex real-world prob-
lems, e.g. for the epidemiological and ecological analysis of infectious diseases,
standard models based on differential equations very rapidly become unmanage-
able due to too many parameters, and here MAS can also be very helpful [117].
Moreover, collaborative multi-agent reinforcement learning has a lot of research
potential for machine learning [118].

7 Conclusion

Machine learning for digital pathology poses a lot of challenges, but the premises
are great. An autonomous pathologist, acting as digital companion to augment
real pathologists can enable disruptive changes in future pathology and in whole
medicine. To reach such a goal much further research is necessary in collecting,
transforming and curating explicit knowledge, e.g. clinical data, molecular data
and e.g. lifestyle information used in medical decision-making.

Digital Pathology will highly benefit from interactive Machine Learning
(iML) with a pathologist in the loop. Currently, modern deep learning models
are often considered to be “black-boxes” lacking explicit declarative knowledge
representation. Even if we understand the mathematical theories behind the
machine model it is still complicated to get insight into the internal working of
that model, hence black box models are lacking transparency and the immediate
question arises: “Can we trust our results?” In fact: “Can we explain how and
why a result was achieved?” A classic example is the question “Which objects
are similar?”, but an even more interesting question is “Why are those objects
similar?”. Consequently, in the future there will be urgent demand in machine
learning approaches, which are not only well performing, but transparent, inter-
pretable and trustworthy. If human intelligence is complemented by machine
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learning and at least in some cases even overruled, humans must be able to
understand, and most of all to be able to interactively influence the machine
decision process. A huge motivation for this approach are rising legal and pri-
vacy aspects, e.g. with the new European General Data Protection Regulation
(GDPR and ISO/IEC 27001) entering into force on May, 25, 2018, will make
black-box approaches difficult to use in business, because they are not able to
explain why a decision has been made.

This will stimulate research in this area with the goal of making deci-
sions interpretable, comprehensible and reproducible. On the example of digital
pathology this is not only useful for machine learning research, and for clinical
decision making, but at the same time a big asset for the training of medical
students. Explainability will become immensely important in the future.
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