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3. Rudiments of Crystallography

Wolf Assmus

Crystallography deals basically with the question
Where are the atoms in solids? The purpose of
this chapter is to briefly introduce the basics of
modern crystallography. The focus is on the de-
scription of periodic solids, which represent the
major proportion of condensed matter. A coher-
ent introduction to the formalism required to do
this is given, and the basic concepts and techni-
cal terms are briefly explained. Paying attention
to recent developments in materials research, we
also discuss aperiodic, disordered, and amorphous
matter. Consequently, besides the conventional
three-dimensional (3-D) descriptions, the higher
dimensional crystallographic approach is outlined,
as well as the atomic pair distribution function
used to describe local phenomena. The chapter
then touches on the basics of diffraction methods,
the most powerful tool kit used by experimental-
ists dealing with structure in solid-state research.
Finally, the reader will be apprised of new de-
velopments in our understanding of order in
condensed matter.
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The structure of solid matter is very important because
physical properties are closely related to structure. In
most cases solids are crystalline: they may consist of
one single crystal, or be polycrystalline, consisting of
many tiny single crystals in different orientations. All
periodic crystals have a perfect translational symmetry.
This leads to selection rules, which are very useful for
the understanding of the physical properties of solids.
Therefore, most textbooks on solid-state physics begin
with a few chapters on symmetry and structure. Today
we know that other solids, that have no translational
symmetry, also exist. These are amorphous materials,
which have little order (in most cases restricted to the
short-range arrangement of the atoms), and aperiodic
crystals, which show perfect long-range order, but no
periodicity – at least in 3-D space. In this chapter, the
basic concepts of crystallography – how the space of
a solid can be filled with atoms – are briefly discussed.

Readers seeking greater detail about crystallography are
referred to the classic textbooks [3.1–5], which, among
others, can be found on the website of the International
Union of Crystallography (IUCr) [3.6].

Many crystalline materials, especially minerals and
gems, were described more than 2000 years ago. The
regular form of crystals and the existence of facets,
which have fixed angles between them, gave rise to
a belief that crystals were formed by a regular repetition
of tiny, identical building blocks. After the discovery
of X-rays by Röntgen, Laue investigated crystals in
1912 using these X-rays and detected interference ef-
fects caused by the periodic array of atoms. One year
later, Bragg determined the crystal structures of alkali
halides by X-ray diffraction.

Today we know that a crystal is a 3-D array of atoms
or molecules, with various types of long-range order.
A more modern definition is that all materials that show
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Table 3.1 Classification of solids

Condensed matter (solids)
Crystalline matter Amorphous matter
Periodic structures Aperiodic structures

Modulated structures Composite structures Quasicrystals

sharp diffraction peaks are crystalline. In this sense, ape-
riodic or quasicrystalline materials, as well as periodic
materials, are crystals. A real crystal is never a perfect
arrangement. Defects in the form of vacancies, disloca-
tions, impurities, and other imperfections are often very
important for the physical properties of a crystal. This
aspect has largely been neglected in classical crystallog-

raphy but is becoming a topic in more and more modern
crystallographic investigations [3.6, 7].

As indicated in Table 3.1, condensed matter can be
classified as either crystalline or amorphous. Both of
these states and their formal subdivisions will be dis-
cussed below. The terms matter, structure, andmaterial
always refer to single-phase solids.

3.1 Crystalline Matter

3.1.1 Periodic Materials

Lattice Concept
A periodic crystal is described by two entities, the lat-
tice and the basis. The (translational) lattice is a perfect
geometrical array of points. All lattice points are equiv-
alent and have identical surroundings. This lattice is
defined by three fundamental translation vectors a; b; c.
Starting from an arbitrarily chosen origin of the lattice,
any other lattice point can be reached by a translation
vector r that satisfies

r D uaC vbCwc ;

where u, v , and w are arbitrary integers. The lattice is
an abstract mathematical construction; the description
of the crystal is completed by attaching a set of atoms –
the basis – to each lattice point. Therefore, the crystal
structure is formed by a lattice and a basis (Fig. 3.1).

The parallelepiped that is defined by the axes a; b; c
is called a primitive cell if this cell has the smallest vol-
ume out of all possible cells. It contains one lattice point
per cell only (Fig. 3.2a). This cell is a type of unit cell
that fills the space of the crystal completely under the
application of the translation operations of the lattice,
i. e., movements along the vectors r.

b

a

×

Fig. 3.1 A periodic crystal can be described as a convo-
lution of a mathematical point lattice with a basis (set of
atoms). Gray: mathematical points; brown: atoms

Conventionally, the smallest cell with the highest
symmetry is chosen. Crystal lattices can be transformed
into themselves by translation along the fundamental
vectors a; b; c, but also by other symmetry operations.
It can be shown that only onefold (rotation angle
' D 2�=1), twofold (2�=2), threefold (2�=3), fourfold
(2�=4), and sixfold (2�=6) rotation axes are permis-
sible. Other rotational axes cannot exist in a lattice,
because they would violate the translational symme-
try. For example, it is not possible to fill the space
completely with a fivefold (2�=5) array of regular
pentagons. Additionally, mirror planes and centers of
inversion may exist. The restriction to high-symmetry
cells may also lead to what is known as centering. Fig-
ure 3.2b illustrates a 2-D case. The centering types in
3-D are listed in Table 3.2.

Planes and Directions in Lattices
If one peers through a 3-D lattice from various an-
gles, an infinity of equidistant planes can be seen. The

Table 3.2 Centering types for 3-D crystallographic unit
cells

Symbol Description Points
per unit cell

P No centering
(primitive)

1

I Body-centered
(innenzentriert)

2

F All-face-centered 4
S; A, B, C
in specific
cases

One-face-centered
(seitenzentriert); .b; c/; .a; c/,
and .a; b/, respectively, in
specific cases

2

R Hexagonal cell,
rhombohedrally centered

3
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a) b)

Fig. 3.2a,b Possible primitive and centered cells in 2-D lattices. Open circles denote mathematical points. (a) In this
lattice, the conventional cell is the bold square cell because of its highest symmetry, 4mm. (b) Here, convention prefers
90ı angles: a centered cell of symmetry 2mm is chosen. It contains two lattice points and is twice the area of the primitive
cell

position and orientation of such a crystal plane are de-
termined by three points. It is easy to describe a plane if
all three points lie on crystal axes (i. e., the directions of
unit cell vectors); in this case only the intercepts need
to be used. It is common to use Miller indices to de-
scribe lattice planes. These indices are determined as
follows:

1. For the plane of interest, determine the intercepts
x; y; z of the crystal axes a; b; c.

2. Express the intercepts in terms of the basic vectors
a; b; c of the unit cell, i. e., as x=a, y=b, z=c (where
a D jaj; : : :).

3. Form the reciprocals a=x; b=y; c=z.
4. Reduce this set to the smallest integers h; k, l. The

result is written (hkl).

The distance from the origin to the plane (hkl)
inside the unit cell is the interplanar spacing dhkl. Nega-
tive intercepts, leading to negative Miller indices, are
written as Nh. Figure 3.3 shows a (623) plane and its
construction.

A direction in a crystal is given as a set of three inte-
gers in square brackets Œuvw �; u, v , andw correspond to
the above definition of the translation vector r. A direc-
tion in a cubic crystal can be described also by Miller
indices, as a plane can be defined by its normal. The
indices of a direction are expressed as the smallest in-
tegers which have the same ratio as the components of
a vector (expressed in terms of the axis vectors a; b; c)
in that direction. Thus, the sets of integers 1; 1; 1 and
3; 3;3 represent the same direction in a crystal, but

z

2

x

y

(623)

1

3
a

c
b

Fig. 3.3 Miller indices: the intercepts of the (623) plane
with the coordinate axes

the indices of the direction are Œ111� and not Œ333�.
To give another example, the x axis of an orthogonal
x, y, z coordinate system has Miller indices Œ100�; the
plane perpendicular to this direction has indices .100/.

For all crystals, except for the hexagonal system,
the Miller indices are given in a three-digit system in
the form (hkl). However, for the hexagonal system, it is
common to use four digits (hkil). The four-digit hexago-
nal indices are based on a coordinate system containing
four axes. Three axes lie in the basal plane of the
hexagon, crossing at angles of 120ı: a; b, and �.aCb/.
As the third vector in the basal plane can be expressed
in terms of a and b, the index can be expressed in terms
of h and k: i D �.hC k/. The fourth axis is the c axis
normal to the basal plane.
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Crystal Morphology
The regular facets of a crystal are planes of the
type described above. Here, the lattice architecture
of the crystal is visible macroscopically at the sur-
face. Figure 3.4 shows some surfaces of a cubic crys-
tal. If the crystal had the shape or morphology of
a cube, this would be described by the set of facets
f.100/; .010/; .001/; .N100/; .0N10/; .00N1/g. An octahe-
dron would be described by f.111/; .N111/; .1N11/; .11N1/;
.N1N1N1/; .1N1N1/; .N11N1/; .N1N11/g. The morphology of a crys-
talline material may be of technological interest (in
relation to the bulk density, flow properties, etc.) and
can be influenced in various ways, for example by ad-
ditives during the crystallization process.

The 32 Crystallographic Point Groups
The symmetry of the space surrounding a lattice point
can be described by the point group, which is a set of
symmetry elements acting on the lattice. The crystal-
lographic symbols for the symmetry elements of point
groups compatible with a translational lattice are the ro-
tation axes 1; 2; 3; 4, and 6, mirror planes m, and the

(100)

(001)

(010)

[111]

[001]

(111)

–

Fig. 3.4 Some crystal planes and directions in a cubic
crystal, and their Miller indices

2

m–1

Fig. 3.5 The point group
2=m (C2h). Any object
in space can be rotated
by ' D 2�=2 around
the twofold rotational
axis 2 and reflected by
the perpendicular mirror
plane m, generating
identical copies. The
inversion center N1 is
implied by the coupling
of 2 and m

center of inversion N1. Figure 3.5 illustrates, as an ex-
ample, the point group 2=m. The 2 denotes a twofold
axis perpendicular (/) to a mirror plane m. Note that
this combination of 2 and m implies, or generates
automatically, an inversion center N1. We have used
the Hermann–Mauguin notation here. However, point
groups of isolated molecules are more often denoted by
the Schoenflies symbols. For a translation list, see Ta-
ble 3.3.

No crystal can have a higher point group sym-
metry than the point group of its lattice, called the
holohedry. In accordance with the various rotational
symmetries, there are seven crystal systems (Table 3.3),
and the seven holohedries are N1, 2=m, mmm, 4=mmm,
N3m, 6=mmm, and mN3m. Other, less symmetric, point
groups are also compatible with these lattices, leading
to a total number of 32 crystallographic point groups
(Table 3.4). A lower symmetry than the holohedry can

Table 3.3 The 32 crystallographic point groups: transla-
tion list from the Hermann–Mauguin to the Schoenflies
notation

Crystal system Hermann–Mauguin
symbol

Schoenflies
symbol

Triclinic 1
N1

C1

Ci

Monoclinic 2
m
2=m

C2

Cs

C2h

Orthorhombic 222
mm2
mmm

D2

C2v

D2h

Tetragonal 4
N4
4=m
422
4mm
N42m
4=mmm

C4

S4
C4h

D4

C4v

D2d

D4h

Trigonal 3
N3
32
3m
N3m

C3

C3i

D3

C3v

D3d

Hexagonal 6
N6
6=m
622
6mm
N62m
6=mmm

C6

C3h

C6h

D6

C6v

D3h

D6h

Cubic 23
mN3
432
N43m
mN3m

T
Th
O
Td
Oh
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Table 3.4 Crystal families, crystal systems, crystallographic point groups, conventional coordinate systems, and Bravais lattices
in three dimensions. Lattice point symmetries (holohedries) are given in bold

Crystal Symbol Crystal system Crystallographic No. of Conventional coordinate system Bravais lattice
family point groups space

groups
Restrictions on
cell parameters

Parameters
to be determined

(Pearson symbol)

Triclinic
(Anorthic)

a Triclinic 1,N1 2 None a; b; c;
˛; ˇ; �

aP

Monoclinic m Monoclinic 2, m; 2=m 13 Setting with b
unique:
˛ D � D 90ı

Setting with c
unique:
˛ D ˇ D 90ı

a; b; c,
ˇ

a; b; c
�

mP, mS
(mC, mA, mI)
mP, mS
(mA, mB, mI)

Orthorhombic o Orthorhombic 222, mm2,
mmm

59 ˛ D ˇ D � D 90ı a; b; c oP, oS,
(oC, oA, oB)
oI, oF

Tetragonal t Tetragonal 4; N4; 4=m,
422, 4mm,
N42m; 4=mmm

68 a D b
˛ D ˇ D � D 90ı

a; c tP, tI

Hexagonal h Trigonal 3; N3
32; 3m; N3m

18 a D b
˛ D ˇ D 90ı

� D 120ı

(hexagonal axes)

a; c hP

7 a D b D c
˛ D ˇ D � ¤ 90ı

(rhombohedral
axes)

a; ˛ hR

Hexagonal 6; N6; 6=m,
622, 6mm,
N62m; 6=mmm

27 a D b,
˛ D ˇ D 90ı

� D 120ı

a; c hP

Cubic c Cubic 23;mN3,
432; N43m,
mN3

36 a D b D c
˛ D ˇ D � D 90ı

a cP, cI, cF

be introduced by a less symmetric basis in the unit
cell.

Since N3m and 6=mmm are included in the same point
lattice, they are sometimes subsumed into the hexago-
nal crystal family. So there are seven crystal systems
but six crystal families. Note further that rhombohedral
symmetry is a special case of centering (R-centering)
of the trigonal crystal system and offers two equivalent
possibilities for selecting the cell parameters: hexago-
nal or rhombohedral axes (Table 3.4).

It can be shown that in 3-D there are 14 different
periodic ways of arranging identical points. These 14
3-D periodic point lattices are called the (translational)
Bravais lattices and are shown in Fig. 3.6. Table 3.4
presents data related to some of the crystallographic
terms used here. The 1-D and 2-D space groups can be
classified analogously but are omitted here.

The 230 Crystallographic Space Groups
Owing to the 3-D translational periodicity, additional
symmetry operations other than point group opera-
tions are possible: these are glide planes and screw
axes. A glide plane couples a mirror operation and
a translational shift. The symbols for glide planes
are a, b, and c for translations along the lattice vec-
tors a; b, and c, respectively, and n and d for some
special lattice vector combinations. A screw axis is
always parallel to a rotational axis. The symbols are
21; 31; 32; 41; 42; 43; 61; 62; 63; 64, and 65, where, for ex-
ample, 63 means a rotation through an angle ' D 2�=6
followed by a translation of 3=6 (D 1=2) of a full trans-
lational period along the sixfold axis.

Thus, the combination of 3-D translational and
point symmetry operations leads to an infinite number
of sets of symmetry operations. Mathematically, each
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aP mP mC

oP oI oC oF

tP tI hP hR

cP cI cF

Fig. 3.6 The 14 Bravais lattices

of these sets forms a group, and they are called space
groups. It can be shown that all possible periodic crys-
tals can be described by only 230 space groups. These
230 space groups are described in tables, for example
the International Tables for Crystallography [3.8].

In this formalism, a conventional space group sym-
bol reflects the symmetry elements, arranged in the
order of standardized blickrichtungen (symmetry di-
rections). We shall confine ourselves here to explain-
ing one instructive example: P42=mcm, space group
number 132 [3.8]. The full space group symbol is
P 42=m 2=c 2=m. The meaning of the symbols is the fol-
lowing: P denotes a primitive Bravais lattice. It belongs
to the tetragonal crystal system indicated by 4. Along
the first standard blickrichtung Œ001� there is a 42 screw
axis with a perpendicular mirror plane m. Along Œ100�
there is a twofold rotation axis, named 2, with a per-
pendicular glide plane c parallel to c. Third, along Œ110�
there is a twofold rotation axis 2, with a perpendicular
mirror plane m.

Decoration of the Lattice with the Basis
At this point we should recall that in a real crystal
structure we have not only the lattice, but also the
basis. In [3.8], there are standardized sets of general
and special positions (i. e., coordinates x; y; z) within
the unit cell (Wyckoff positions). An atom placed in
a general position is transformed into more than one
atom by the action of all symmetry operators of the
respective space group. Special positions are located
on special points that are mapped onto themselves

by one or more symmetry operations – for example
a position in a mirror plane or exactly on a rotational
axis. Reference [3.8] also provides information about
symmetry relations between individual space groups
(group–subgroup relations). These are often useful for
describing relationships between crystal structures and
for describing phase transitions of materials.

The use of the space group allows us to further
reduce the basis to the asymmetric unit: this is the min-
imal set of atoms that needs to be given so that the
whole crystal structure can be generated via the symme-
try of the space group. This represents the main power
of a crystallographically correct description of a mate-
rial: just some ten parameters are sufficient to describe
an ensemble of some 1023 atoms.

Thus, a crystallographic periodic structure of a ma-
terial is unambiguously characterized by:

� The cell parameters� The space group� The coordinates of the atoms (and their chemical
type) in the asymmetric unit� The occupation and thermal displacement factors of
the atoms in the asymmetric unit.

For an example, the reader is referred to the
crystallographic description of the spinel structure of
MgAl2O4 given below under the heading Structure
Types.

To complete the information on space group sym-
metries given here, periodic magnetic materials should
also be mentioned. Magnetic materials contain mag-
netic moments carried by atoms in certain positions
in the unit cell. If we take into account the magnetic
moments in the description of the structure, the classifi-
cation by space groups (the 230 gray groups, described
above) has to be extended to 1651 black and white, or
Shubnikov, groups [3.9]. A magnetic periodic structure
is then characterized by:

� The crystallographic structure� The Shubnikov group� The cell parameters of the magnetic unit cell� The coordinates of the atoms carrying magnetic mo-
ments (the asymmetric unit in the magnetic unit
cell)� The magnitude and direction of the magnetic mo-
ments on these atoms.

Structure Types
It is useful to classify the crystal structures of materials
by the assignment of structure types. The structure type
is based on a representative crystal structure, the param-
eters of which describe the essential crystallographic
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Table 3.5 Complete crystallographic parameter set for
MgAl2O4, spinel structure type

Material MgAl2O4

Structure type MgAl2O4, spinel
Pearson symbol cF56
Space group FdN3m (No. 227)
a (Å) 8:174.1/

Atom Wyckoff
position

x y z Occupancy

Mg 8a 0 0 0 1:0
Al 16d 5=8 5=8 5=8 1:0
O 32e 0.3863(2) x x 1:0

features of other materials of the same type. As an ex-
ample, we consider the structure of the spinel oxides
AB2O4. The generic structure type is MgAl2O4, cF56.
The Pearson symbol, here cF56, denotes the cubic crys-
tal family and a face-centered Bravais lattice with 56
atoms per unit cell (Table 3.5 and also the last column
in Table 3.4).

Regarding the free parameters, for example a, the
notation 8:174.1/ in Table 3.5 means 8:174˙ 0:001.
The chemical formula and the unit cell contents can eas-
ily be calculated from the site multiplicities (given by
the Wyckoff positions) and the occupancies; so can the
(crystallographic) density, using the appropriate atomic
masses.

A huge variety of other materials belong to the same
structure type as in this example. The only parameters
that differ (slightly) are the numerical value of a, the
types of atoms in the positions, the numerical value of
the parameter x for Wyckoff position 32e, and the occu-
pancies. Thus, for example, the crystal structure of the
iron sulfide Fe3S4 can be characterized in its essential
features via the information that it belongs to the same
structure type.

3.1.2 Aperiodic Materials

In addition to the crystalline periodic state of matter,
a class of materials exists that lacks 3-D translational
symmetry and is called aperiodic [3.10]. Aperiodic ma-

Basic structure s(r)

 f(r) = sin(q r)

Modulated structure sm(r)

  a

μ =1/q +

=

Fig. 3.7 A 1-D modulated structure
sm.r/ can be described as a sum of
a basic structure s.r/ and a modulation
function f .r/ of its atomic coordinates.
If a=� is irrational, the structure is
incommensurately modulated. Circles
denote atoms

terials cannot be described by any of the 230 space
groups mentioned above. Nevertheless, they show an-
other type of long-range order and are therefore in-
cluded in the term crystal. This notion of long-range
order is the major feature that distinguishes crystals
from amorphous materials. Three types of aperiodic or-
der may be distinguished, namely modulated structures,
composite structures, and quasicrystals. All aperiodic
solids exhibit an essentially discrete diffraction pattern
and can be described as atomic structures obtained from
a 3-D section of an n-dimensional (n-D) (n > 3) peri-
odic structure.

Modulated Structures
In a modulated structure, periodic deviations of the
atomic parameters from a reference or basic struc-
ture are present. The basic structure can be understood
as a periodic structure as described above. Periodic
deviations of one or several of the following atomic pa-
rameters are superimposed on this basic structure:

� Atomic coordinates� Occupancy factors� Thermal displacement factors� Orientations of magnetic moments.

Let the period of the basic structure be a and the
modulation wavelength be �; the ratio a=� may be
(1) a rational or (2) an irrational number (Fig. 3.7).
In case (1), the structure is commensurately modu-
lated; we observe a qa superstructure, where q D 1=�.
This superstructure is periodic. In case (2), the struc-
ture is incommensurately modulated. Of course, the
experimental distinction between the two cases is lim-
ited by the finite experimental resolution. q may be
a function of external variables such as temperature,
pressure, or chemical composition, i. e., q D f .T; p;X/,
and may adopt a rational value to result in a commensu-
rate lock-in structure. Conversely, an incommensurate
charge-density wave may exist; this can be moved
through a basic crystal without changing the internal
energy U of the crystal.
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Rperpendicular

Rparallel,
sm(r)

a2

a

a1

Fig. 3.8 2-D hyperspace description of the example
shown in Fig. 3.7. The basis of the hyperspace R D
Rparallel ˚Rperpendicular is (a1; a2); the slope of a1 with re-
spect to Rparallel is proportional to �. Atoms of the mod-
ulated structure sm.r/ occur in the physical space Rparallel

and are represented by circles

When a 1-D basic structure and its modulation func-
tion are combined in a 2-D hyperspace R D Rparallel ˚
Rperpendicular, periodicity on a 2-D lattice results. The
real atoms are generated by the intersection of the
1-D physical (external, parallel) space Rparallel with the
hyperatoms in the complementary 1-D internal space
Rperpendicular. In the case of a modulated structure, the
hyperatoms have the shape of the sinusoidal modula-
tion function in Rperpendicular.

Figure 3.8 illustrates this construction. We have to
choose a basis (a1; a2/ in R where the slope of a1 with
respect to Rparallel corresponds to the length of the mod-
ulation �.

It is clear that real atomic structures are always man-
ifestations of matter in 3-D real, physical space. The
cutting of the 2-D hyperspace to obtain real 1-D atoms
illustrated in Fig. 3.8 may serve as an instructive basic
example of the concept of higher dimensional (n-D, n >
3) crystallography. The concept is also called a super-
space description; it applies to all aperiodic structures
and provides a convenient finite set of variables that can
be used to compute the positions of all atoms in the real
3-D structure.

a

b

λa

c

Fig. 3.9 Host–guest channel structure. The guest atoms re-
side in channels parallel to a, with a periodicity �a

The modulation may occur in one, two, or three di-
rections of the basic structure, yielding 1-D, 2-D, or 3-D
modulated structures. If we introduce one additional di-
mension per modulation vector (the direction r that the
modulation corresponding to � runs along), these struc-
tures can be described as periodic in 4-D, 5-D, or 6-D
superspace, respectively.

Composite Structures
Composite crystals are crystalline structures that consist
of two or more periodic substructures, each one hav-
ing its own 3-D periodicity to a first approximation. The
symmetry of each of these subsystems is characterized
by one of the 230 space groups. However, owing to their
mutual interaction, the true structure consists of a col-
lection of incommensuratelymodulated subsystems. All
known composite structures to date have at least one lat-
tice direction in common and consist of a maximum of
three substructures. There are three main classes:

� Channel structures� Columnar packings� Layer packings.

These composite structures are also known as inter-
growth or host–guest structures. Figure 3.9 illustrates
an example of a host with channels along a, in which
atoms of the substructure with a periodicity �a reside
as a guest.

The higher dimensional n-D formalism (n > 3) used
to describe composite structures is essentially the same
as that which applies to modulated structures.
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Quasicrystals
Quasicrystals represent the third type of aperiodic ma-
terials. Quasiperiodicity may occur in one, two, or
three dimensions of physical space and is associated
with special irrational numbers such as the golden
mean

� D 1C p
5

2
;

and

� D 2C p
3 :

The most remarkable feature of quasicrystals is the
appearance of noncrystallographic point group sym-
metries in their diffraction patterns, such as 8=mmm,
10=mmm, 12=mmm, and 2=mN3N5. The golden mean
is related to fivefold symmetry via the relation � D
2 cos.�=5/; � can be considered as the most irrational
number, since it is the irrational number that has the
worst approximation by a truncated continued frac-
tion,

� D 1C 1

1C 1

1C 1

1C 1

1C 1

1C : : :

:

This might be a reason for the stability of quasiperiodic
systemswhere � plays a role. A prominent 1-D example
is the Fibonacci sequence, an aperiodic chain of short
and long segments S and L with lengths S and L, where
the relations L=S D � and LCS D �L hold. A Fibonacci
chain can be constructed by the simple substitution or
inflation rule L ! LS and S ! L (Table 3.6, Fig. 3.10).
Materials quasiperiodically modulated in 1-D along
one direction may occur. Again, their structures are

Table 3.6 Generation of the Fibonacci sequence using the
inflation rule L ! LS and S ! L. The ratio FnC1=Fn tends
towards � for n ! 1. Fn is a Fibonacci number; FnC1 D
Fn CFn�1. The sequence starts with F0 D 0, F1 D 1

Sequence n FnC1=Fn

L 1 1=1 D 1
LS 2 2=1 D 2
LSL 3 3=2 D 1:5
LSLLS 4 5=3 D 1:66666: : :

LSLLSLSL 5 8=5 D 1:6
. . .
. . . LSLLSLSLS. . . 1 � D 1:61803: : :

L LL

L

L

L

L

L

L

L

S

L

L

S

SSS

S

S

Fig. 3.10 1-D Fibonacci sequence. Moving downwards
corresponds to an inflation of the self-similar chains, and
moving upwards corresponds to a deflation

readily described using the superspace formalism as
above.

The Fibonacci sequence can be used to explain
the idea of a periodic rational approximant. If the se-
quence : : :LSLLSLSLS: : : represents a quasicrystal,
then the periodic sequence : : :LSLSLSLSLS: : :, con-
sisting only of the word LS, is its 2=1 approximant
(Table 3.6). In real systems, such approximants of-
ten exist as large-unit-cell (periodic!) structures with
atomic arrangements locally very similar to those in the
corresponding quasicrystal. When described in terms
of superspace, they would result via cutting with a ra-
tional slope, in the above example 2=1 D 2, instead of
� D 1:6180: : : .

To date, all known 2-D quasiperiodic materials
exhibit noncrystallographic diffraction symmetries of
8=mmm; 10=mmm, or 12=mmm. The structures of these
materials are called octagonal, decagonal, and do-
decagonal structures, respectively. Quasiperiodicity is
present only in planes stacked along a perpendicular pe-
riodic direction. To index the lattice points in a plane,
four basis vectors a1; a2; a3; a4 are needed; a fifth one,
a5, describes the periodic direction. Thus, a 5-D hy-
percrystal is appropriate for describing the solid peri-
odically. In an analogous way to the 230 3-D space
groups, the 5-D superspace groups (e.g., P105=mmc)
provide:

� The multiplicity and Wyckoff positions� The site symmetry� The coordinates of the hyperatoms.

Again, the quasiperiodic structure in 3-D can
be obtained from an intersection with the external
space [3.10].

On the atomic scale, these intermetallic (hard)
quasicrystals consist of units of some 100 atoms,
are called clusters. These clusters, of point symmetry
8=mmm; 10=mmm, or 12=mmm (or less), are fused, may
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a2
a1

a3

a4

a) b)

d)

a2 a1

a3

a4

–(a1 + a2 + a3 + a4)

a2

a1

a3
a4

c)

Fig. 3.11a–d Some 2-D quasiperiodic tilings; the corresponding four basis vectors a1; : : : ; a4 are shown. Linear com-
binations of r D P

i uiai reach all lattice points. (a) Penrose tiling with local symmetry 5mm and diffraction symmetry
10mm, (b) octagonal tiling with diffraction symmetry 8mm, (c) Gummelt tiling with diffraction symmetry 10mm, and
(d) dodecagonal Stampfli-type tiling with diffraction symmetry 12mm

interpenetrate partially, and can be considered to deco-
rate quasiperiodic tilings. In a diffraction experiment,
their superposition leads to an overall noncrystallo-
graphic symmetry. More recently, mesoscopic organic
structures exhibiting 12-fold diffraction symmetry (soft
quasicrystals) have been found. There are a number

of different tilings that show such noncrystallographic
symmetries. Figure 3.11 depicts four of them, as ex-
amples of the octagonal, decagonal, and dodecagonal
cases.

Icosahedral quasicrystals are also known. In 3-D,
the icosahedral diffraction symmetry 2=mN3N5 can be ob-
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a5

a4

a1

a3

a2

a6

Fig. 3.12 Unit vectors a1; : : : ; a6 of an icosahedral lattice

served for these quasicrystals. Their diffraction patterns
can be indexed using six integers, leading to a 6-D su-
perspace description (Fig. 3.12). On the atomic scale
in 3-D, in physical space, clusters of some 100 atoms
are arranged on the nodes of 3-D icosahedral tilings;
the clusters have an icosahedral point group symme-
try or less, partially interpenetrate, and generate an
overall symmetry 2=mN3N5. Many of their structures are
still waiting to be determined completely. Figure 3.13
shows the two golden rhombohedra and the four Danzer
tetrahedra that can be used to tile 3-D space icosahe-
drally.

a)

b)

Fig. 3.13a,b Icosahedral tilings. (a) The two white rhom-
bohedra (bottom) can be used to form icosahedral objects
(the rhombic triacontahedron with point symmetry mN3N5
shown in brown). (b) Danzer’s fABCKg tiling: three in-
flation steps for prototile A

3.2 Disorder

In between the ideal crystalline and the purely amor-
phous states, most real crystals contain degrees of
disorder. Since too many types of possible disorder ex-
ist, they cannot be discussed in this short overview. Two
types of statistical disorder have to be distinguished:
chemical disorder and displacive disorder (Fig. 3.14).
Statistical disorder contributes to the entropy S of the
solid and is manifested by diffuse scattering in diffrac-
tion experiments. It may occur in both periodic and
aperiodic materials.

3.2.1 Chemical Disorder

Chemical disorder is observed, for example, in the case
of solid solutions, say of B in A, or A1�xBx for short.

Here, an average crystal structure exists. On the crys-
tallographic atomic positions, different atomic species

a) b)

A

B

Fig. 3.14a,b Schematic sketch of (a) chemical and (b) dis-
placive disorder
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(the chemical elements A and B) are distributed ran-
domly. Generally, the cell parameter a varies with x. For
x D 0 or 1, the pure end member is present. A linear
variation of a.x/ is predicted by Vegard’s law. On the
atomic scale, however, differences in the local structure
are present owing to the different contacts A–A, B–
B, and A–B. These differences are usually represented
by enlarged displacement factors, but can be investi-
gated by analyzing the pair distribution function G.r/.
G.r/ represents the probability of finding any atom at
a distance r from any other atom relative to an aver-
age density. Chemical disorder can also occur on only

one or a few of the crystallographically different atomic
positions (e.g., A.X1�xYx/2). This type of disorder is
often intrinsic to a material and may be temperature-
dependent.

3.2.2 Displacive Disorder

The displacive type of disorder can be introduced by the
presence of voids or vacancies in the structure or may
exist for other reasons. Vacancies can be an important
feature of amaterial: for example, theymay lead to ionic
conductivity or influence the mechanical properties.

3.3 Amorphous Matter

r

G(r)

0

Fig. 3.15 Radial
atomic pair
distribution
function G.r/ of
an amorphous
material. Its
shape can be
deduced from
diffuse scattering

The second large group of condensed matter is classi-
fied as the amorphous or glassy state. No long-range
order is observed. The atoms are more or less statisti-
cally distributed in space, but a certain short-range order
is present.

This short-range order is reflected in certain av-
erage coordination numbers or average coordination
geometries. If there are strong (covalent) interactions
between neighboring atoms, similar basic units may oc-
cur, which are in turn oriented randomly with respect
to each other. The SiO4 tetrahedron in silicate glasses
is a well-known example. In an X-ray diffraction ex-
periment on an amorphous solid, only isotropic diffuse
scattering is observed. From this information, the ra-
dial atomic pair distribution function (Fig. 3.15) can be
obtained. This function G.r/ can be interpreted as the
probability of finding any atom at a distance r from any
other atom relative to an average density.

3.4 Methods for Investigating Crystallographic Structure

So far, we have been dealing with the formal descrip-
tion of solids. To conclude this chapter, the tool kit that
an experimentalist needs to obtain structural informa-
tion about a material in front of him/her will be briefly
described.

The major technique used to derive the atomic
structure of solids is the diffraction method. To
obtain the most comprehensive information about
a solid, other techniques may be used in addi-
tion to complement a model based on diffraction
data. These techniques include scanning electron mi-
croscopy (SEM), atomic force microscopy (AFM),
wavelength-dispersive analysis of X-rays (WDX),

energy-dispersive analysis of X-rays (EDX), extended
X-ray atomic fine-structure analysis (EXAFS), trans-
mission electron microscopy (TEM), high-resolution
transmission electron microscopy (HRTEM), differen-
tial thermal analysis (DTA), and a number of other
methods.

For diffraction experiments, three types of radia-
tion with a wavelength � of the order of magnitude of
interatomic distances are used: X-rays, electrons, and
neutrons. The shortest interatomic distances in solids
are a few times 10�10 m. Therefore, a non-SI unit, the
angstrom (1Å D 10�10 m) is often used in crystallogra-
phy. In the case of electrons and neutrons, their energies
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Fig. 3.16 Wavelengths � in Å and particle energies E for
X-ray photons (energies in keV), neutrons (energies in
0:01 eV), and electrons (energies in 100 eV)

have to be converted to de Broglie wavelengths

� D h

mv
;

�.Å/ D 0:28
p
E.eV/

:

Figure 3.16 compares the energies and wavelengths of
the three types of radiation.

From wave optics, it is known that radiation of
wavelength � is diffracted by a grid of spacing d. If
we take a 3-D crystal lattice as such a grid, we expect
diffraction maxima to occur at angles 2� , given by the
Bragg equation (Fig. 3.17)

� D 2dhkl sin �hkl :

For the aperiodic (n-D periodic crystal) case, dhkl has to
be replaced by dh1h2:::hi:::hn . To give a simple 3-D exam-
ple, for the determination of the cell parameter a in the
cubic case, the Bragg equation can be rewritten in the
form

�
Q

2�

�2

D 4 sin2 �hkl

�2
D .h2 C k2 C l2/

a2
:

Thus, the crystal lattice is determined by a set of �hkl. In
the case of X-rays and neutrons, information about the
atomic structure is contained in the set of diffraction
intensities Ihkl. Here we have Ihkl D F2

hkl where Fhkl are
the structure factors.

θ d

d sin θ

θ θ

Fig. 3.17 Geometrical derivation of the Bragg equation
n� D 2d sin � . n can be set to 1 when it is included in
a higher order hkl

To reconstruct the matter distribution �.xyz/ inside
a unit cell of volume V, the crystallographic phase prob-
lem has to be solved. Once the phase factor � for each
hkl is known, the crystal structure is solved.

�.xyz/ D 1

V

�
X X X

all h;k;l

jFj cosŒ2�.hxC kyC lz/ � �� :

Non-Bragg diffraction intensities I.Q/ and therefore
a normalized structure function S.Q/ can be obtained,
for example, from an X-ray or neutron powder diffrac-
togram. The sine Fourier transform of S.Q/ yields a nor-
malized radial atomic pair distribution function G.r/

G.r/ D
�
2

�

� 1Z

0

QŒS.Q/ � 1� sin.Qr/dQ :

For measurements at highQ, the 1-D functionG.r/ con-
tains detailed information about the local structure. This
function therefore resolves, for example, disorder or va-
cancy distributions in a material. The method can be ap-
plied to 3-D diffuse scattering distributions as well and
thus can include angular information with respect to r.

3.4.1 X-rays

X-rays can be produced in the laboratory using a con-
ventional X-ray tube. Depending on the anode material,
wavelengths � from 0:56Å (Ag K˛) to 2:29Å (Cr K˛)
can be generated. Filtered or monochromatized radi-
ation is usually used to collect diffraction data, from
either single crystals or polycrystalline fine powders.
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A continuous X-ray spectrum, obtained from a tung-
sten anode, for example, is used to obtain Laue images
to check the quality, orientation, and symmetry of sin-
gle crystals.

X-rays with a higher intensity, a tunable energy,
more narrow intensity distribution, and higher brilliance
are provided by synchrotron radiation facilities.

X-rays interact with the electrons in a structure and
therefore provide information about the electron den-
sity distribution – mainly about the electrons near the
atomic cores.

3.4.2 Neutron Diffraction

Neutrons, generated in a nuclear reactor, are useful for
complementing X-ray diffraction information. They in-
teract with the atomic nuclei, and with the magnetic
moments of unpaired electrons if they are present in
a structure. Hydrogen atoms, which are difficult to lo-
cate using X-rays (they contain one electron, if at all,
near the proton), give a far better contrast in neu-
tron diffraction experiments. The exact positions of
atomic nuclei permit X minus N structure determina-
tions, so that the location of valence electrons can be
made observable. Furthermore, the magnetic structure
of a material can be determined.

3.4.3 Electron Diffraction

The third type of radiation that can be used for diffrac-
tion purposes is an electron beam; this is usually done

in combination with TEM or HRTEM. Because elec-
trons have only a short penetration distance – elec-
trons, being charged particles, interact strongly with
the material – electron diffraction is mainly used for
thin crystallites, surfaces, and thin films. In the TEM
mode, domains and other features on the nanometer
scale are visible. Nevertheless, crystallographic param-
eters such as unit cell dimensions, and symmetry and
space group information can be obtained from selected
areas.

In some cases, information about, for example,
stacking faults or superstructures obtained from an
electron diffraction experiment may lead to a re-
vised, detailed crystal structure model that is truer
than the model which was originally deduced from
X-ray diffraction data. If only small crystals of
a material are available, crystallographic models ob-
tained from unit cell and symmetry information
can be simulated and then adapted to fit HRTEM
results.

The descriptions above provide the equipment
needed to understand the structure of solid matter on
the atomic scale. The concepts of crystallography, the
technical terms, and the language used in this frame-
work have been presented. The complementarities of
the various experimental methods used to extract co-
herent, comprehensive information from a sample of
material have been outlined. The rudiments presented
here, however, should be understood only as a first step
into the fascinating field of the atomic structure of con-
densed matter.

3.5 Recent Novel Topics in Crystallography

Currently, we are witnessing a major change in crystal-
lographic science. Normal crystallographic science, in
the sense of the philosopher Thomas S. Kuhn [3.10],
is an extremely powerful technique for 3-D atomic-
structure determination in almost any (crystalline!) ma-
terial. The basics for this technique were discovered by
Max von Laue, who won the Nobel Prize in Physics as
early as 1914 for his contribution. The current paradigm
shift, however sluggish, may be attributed to a sci-
entific revolution [3.11] in crystallography which is
twofold.

3.5.1 Quasicrystals

The existence of quasicrystals was not accepted for
a long time. The reason for, e.g., 5-fold symmetry
was controversially discussed. With the Nobel-Prize
the existence was accepted. The discovery of inter-

metallic (hard) quasicrystals was followed by both
that of photonic metacrystals – which are macroscopic
man-made arrays – and the discovery of organic soft
aperiodic supramolecular phases in colloidal systems.
The latter, often exhibiting 12-fold symmetry, have
been much more likely to be discovered since materi-
als researchers have become aware that they may look
beyond the old paradigm of only seven crystal systems,
14 Bravais lattices, and 230 space groups to describe
order.

3.5.2 Diffraction Analysis Based
on Total Scattering

Secondly, this similarly holds for the recent idea of
using total scattering [3.7] to analyze Bragg and dif-
fuse scattering in order to derive information about
local atomic structure. Often, local structure influences
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the properties of a material in a decisive way, partic-
ularly when dealing with nanostructures. Interestingly,
in William Henry Bragg’s lab journal [3.12, 13], he
notes down – but does not discover, however – diffuse
scattering on page 5, and it takes 6 more pages be-
fore he notes, and this time discovers Bragg peaks on
page 11 in 1913 (Nobel Prize in Physics 1915). Here,
more than 90 years later, T.S. Kuhn’s statement is very
apt [3.10]:

[. . . ] during [scientific] revolutions scientists see
new and different things when looking with famil-
iar instruments in places they have looked before. It
is rather as if the professional community had been
suddenly transported to another planet [. . . ]

In this very sense, a paradigm shift can be declared to-
day in our investigation and understanding of order in
condensed matter by diffraction methods.
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