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Chapter 7
Security Testing IoT Systems

7.1  �Introduction

Systems need to be evaluated for conformance to specifications and requirements, 
including security, and IoT systems are no exception. Verification and validation 
techniques are one option to ensure that systems are built according to specifications 
and requirements, but their use is limited for two main reasons: (i) the complexity 
of these processes is growing exponentially with the size of the checked system, and 
(ii) the current business models that include long supply chains with different pro-
viders and developers of system components do not enable a unified description of 
designs and implementations that can be checked as a whole. In the case of IoT 
systems specifically, the size of most systems is not prohibitive for formal verifica-
tion and validation methods; however, the lack of a complete implementation with 
the same tools and models leads to fragmented application of verification techniques 
to components. Testing constitutes an important and necessary phase in system 
development, which complements all other approaches and enables the evaluation 
of integrated systems. Thus, testing is an integral part of the systems development 
cycle with the purpose to evaluate system correctness, performance, and security at 
least. Importantly, testing is a method used by customers and certification authori-
ties to evaluate conformance of systems to standards and to provide certifications at 
the device, system, and product level.

The wide deployment of consumer electronics devices has brought significant 
attention to testing and its methodologies not only for accepting devices by consum-
ers but also for security, since attackers exploit testing methodologies to identify 
vulnerabilities and exploit them for their purposes. This is especially important to 
IoT systems which typically have a cyberphysical component. Identification of vul-
nerabilities in IoT systems and their exploitation may compromise their safety prop-
erties and lead to significant operational problems that result to monetary losses, 
operation disruption, and even loss of life.
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Successful testing of IoT systems is critical considering that many of them have 
strong requirements that are crucial to their operation, such as meeting real-time 
constraints, satisfying specific safety properties, and continuing operation even 
under strained conditions. Furthermore, IoT systems include a communication 
component, which constitutes a testing challenge because the specifications of com-
munication protocols often have undefined parameters that lead to differing imple-
mentations by different vendors; this is the reason why interoperability in 
communication systems is an important challenge. The criticality of IoT testing, 
especially for security, becomes more apparent when considering industrial IoT 
systems, which are extensively used in critical infrastructures nowadays, such as 
energy networks, water management systems, etc. Successful testing not only con-
firms the expected operations but takes away from attackers the tools to cause mal-
functions and disruptions; in the emerging environment, even crashing an application 
or an operation may be more catastrophic than hijacking them.

Hardware and software testing are technological areas with significant effort in 
the market and in academia for decades. A large number of methodologies and tools 
have been developed, but software testing has been a significantly harder problem 
than hardware testing because of several differentiating characteristics software has, 
such as evolution through added features and functionality, fault models and lack of 
re-use. Considering that most IoT systems are built using off-the-shelf hardware 
components and computing subsystems, we address software testing for security in 
this chapter, and, more specifically, we focus on the testing of their communication 
protocol implementations, since it is the point of entry to systems and a common 
target of attackers. We present fuzz testing, the most common testing approach for 
security, which requires no information about the internal structure of the system 
that is tested. As industrial IoT systems constitute an attractive target for attackers 
that exploit testing techniques, we use as an example the Modbus protocol and 
describe fuzz testing techniques for its implementations, which give successful 
results for existing protocol implementations in the field.

7.2  �Fuzz Testing for Security

Vulnerabilities in network systems and applications are identified and disseminated 
publicly [Nis, Sfo, Str]. The cost of fixing these vulnerabilities can be high, while 
their exploitation may have quite costly consequences. As a result, there is strong 
research and development effort to reduce such vulnerabilities.

Static analysis of source code is one approach that does not require program 
execution but is limited because it does not detect vulnerabilities that are activated 
by dynamic instruction sequences, during program execution, e.g., dependent on 
subroutine calls [Che07, Vie00]. Also, these methods present a high false-positive 
rate leading to significant overhead for the evaluation of the results. Alternatively, 
dynamic analysis methods intervene in program execution. StackGuard, for exam-
ple, expands a C compiler and produces executable code that identifies potential 
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execution faults – examining addresses, for example – without changing the func-
tionality of the original programs [Cow98]. TaintCheck applies taint analysis for 
automatic vulnerability analysis without need for the source code [Cla07, New04]. 
Dynamic analysis methods enable powerful mechanisms for vulnerability detection 
at the cost of execution time overhead, because of the additional code that is inserted 
in the application program. Simulation has also been proposed for vulnerability 
testing, where a simulation environment is used to inject faults to a program and 
check its behavior [Du02]. This is a systematic method, but it is limited to input 
patterns that may cause errors.

Fuzz testing (fuzzing) provides an alternative, reliable approach with successful 
results and advantages over the previous methods. Fuzzing is a testing method that 
applies test inputs (vectors) to a system under test (SUT) and observes its outputs, 
as shown in Fig. 7.1. The goal of the fuzzer is to identify faults in the SUT, e.g., to 
detect inputs that lead to a system crash. The effectiveness of the fuzzer is based on 
its ability to identify as many vulnerabilities as possible covering effectively the 
input value space. If there is inability to identify whether a system or a program has 
crashed during a test, the effectiveness of the fuzzer cannot be evaluated.

Fuzzing provides several advantages over static and dynamic analysis. First, it 
can be applied to programs whose source code is not available. Second, it is inde-
pendent of the internal complexity of the tested software which limits in practice 
other methods, such as static analysis. Because of this independence, the same fuzz-
ing tool can be used to test similar programs independently of the programming 
language used for their coding. Finally, the identified faults and errors can be 
directly associated to the user input and can be evaluated easier.

Fuzz testing has its limitations. The space of input values is vast, and thus, it is 
impossible to test large systems for all their potential input values within reasonable 
time frames. A fuzzer that produces random input values can discover faults and 
vulnerabilities, but, in general, it will not detect easily many important vulnerabili-
ties unless it follows some specific strategic approach. Its effectiveness depends on 
its ability to identify representative input values, which may originate from attacks 
or common errors with invalid inputs, and detect vulnerabilities that are useful to 
attackers.

Fuzz testing can be classified in three (3) categories, depending on the informa-
tion that is available for the system under test (SUT) [Tak08] [Sut07], as shown in 
Fig. 7.1:

System-Under-Test
(SUT)

-Tester/
Fuzzer

Fuzzed inputs

Outputs

Fig. 7.1  Fuzz testing 
configuration
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•	 White-box testing: the source code or the specification of the SUT is known.
•	 Black-box testing: the internal structure of the SUT is unknown –testing is lim-

ited to observations of SUT inputs and outputs.
•	 Grey-box testing: partial information for the SUT internal structure is available, 

e.g., through reverse engineering or static analysis results.

7.2.1  �White-Box Fuzzing

Modern white-box fuzz testing tools exploit the information about the system’s 
internal structure using symbolic execution techniques or taint analysis to identify 
vulnerabilities. Symbolic execution replaces symbolic values in the source code or 
the program flow, in order to evaluate code execution paths [Cad13]. These tech-
niques have been explored widely in efforts such as DART [God05], SAGE [God12], 
EXE [Cad06], and KLEE [Cad08]. Tools like AEG [Avg11] and CRAX [Hua12] 
combine symbolic execution with concrete execution, employing concolic testing 
[Sen05] to identify vulnerabilities that lead to control flow hijacking. Such tools 
have been very successful in fuzz testing of Windows and Linux applications 
[God12, Cad06]. The techniques have the advantage that they can explore all pos-
sible modes of applications, since they use the source code, and identify dead code. 
However, they cannot identify logic errors in programs and are unable to explore all 
execution paths in large programs with complex structures. Tools that use taint anal-
ysis identify potential attack points in programs by tracing tainted values and then 
fuzz the input values to these attack points [Sch10]. BuzzFuzz [Gan09] and 
TaintScope [Wan10] are two representative tools that exploit taint analysis 
techniques.

7.2.2  �Black-Box Fuzzing

Black-box fuzzing techniques do not have any structural information about the sys-
tem under test. Since testing requires application of inputs to the system and obser-
vation of its outputs, one of the most popular targets of black-box fuzzing is the 
implementation of communication protocols because they provide the first point of 
entry to systems and they typically implement some standard; so, our description is 
focused on protocols, although the techniques can be applied to application and 
system software in general.

There are two main approaches to generate fuzz testing inputs to protocols: (i) 
data generation and (ii) data mutation [Nal12, Tak08, Sut07]. Data generation tech-
niques create input packets to a protocol implementation either randomly or with a 
systematic method that takes into account the specifications of the specific protocol. 
The contents of these packets may be completely random, or they may take into 
account the structure of the packets, i.e., their fields, and insert either random or 
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special values in the fields, depending on various parameters, such as the system 
interface or a specific targeted operation. In this case, the specification of the proto-
col needs to be integrated in the fuzzer. Clearly, the effectiveness of the fuzzing 
process depends on the successful integration of the protocol specification in the 
fuzzer, since any problem in that integration may lead to limited or no coverage of 
a wide range of tests.

Mutation fuzzing creates the test inputs based on legal protocol packets. It takes 
as input the legal packets and changes (mutates) some of their data, e.g., specific 
fields, in order to create the test packets that are input to the system. This approach 
is especially useful in cases where the protocol is complex, because the fuzzer does 
not construct packets from scratch but uses known legal packets and mutates them. 
Thus, the fuzzer does not need to include the protocol specification, and the author 
of the fuzzer does not need to delve into the details of the protocol, thus avoiding the 
risk of misinterpretations and creation of inappropriate packets.

These two main approaches are coupled with techniques that choose the values 
that are used in the generated or mutated packets. The most common techniques are:

	1.	 Random: generates of random values without any consideration of packet struc-
ture, legal values, etc. The technique is fast, low cost, and quite successful 
[Mil90, Mil95, Mil06] but limited because it is characterized by low test 
coverage.

	2.	 Block-based: manages data values in blocks, taking into account the specifica-
tions of protocols and creating meaningful blocks of values, in contrast to ran-
dom values. The technique has been used widely in frameworks and tools, such 
as Spike [Ait02], SNOOZE [Ban06], Sulley [Ami14], Peach [Pea14], Autodafè 
[Vua06], and AspFuzz [Kit10], and is especially useful in mutation fuzzing. The 
success of the technique depends on the successful integration of protocol specs 
in the fuzzers.

	3.	 Grammar-based: embeds a grammar in the fuzzer, in order to cover part of the 
specification of legal inputs to the system under test. Fuzzing inputs are created 
with the consideration of the grammar. PROTOS [PRO] is a representative tool 
using this technique.

	4.	 Heuristic-based: generates new fuzzing inputs taking into account the effective-
ness of the inputs applied in the past. Processing of the outputs obtained from the 
prior tests can be done with various methods such as with appropriate genetic 
algorithms [Spa07] or statistical analysis [Zha11].

There exist also approaches that construct protocol descriptions or specifications by 
observing real protocol traffic. With this information, related tools can make more 
effective decisions about how to mutate observed packets, in order to increase the 
effectiveness of mutation fuzzers. General Purpose Fuzzer (GPF) [Vda14] and 
AutoFuzz [Gor10] are representative tools that employ this approach. Interestingly, 
in mutation fuzzing there is also the approach of creating test cases based on exist-
ing attack traffic [Ant12, Tsa12].

7.2 � Fuzz Testing for Security
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7.3  �Fuzzing Industrial Control Network Systems

Fuzz testing for industrial networks has attracted significant interest in the market 
and in academia, considering the increasing adoption of industrial control systems 
in critical infrastructures. Many commercial and open source fuzzing tools support 
industrial protocols. Sulley [Dev07] provides fuzzing modules for ICCP, Modbus, 
and DNP3 since 2007. ProFuzz [Koc], a fuzzing tool based on Scapy [Bio], sup-
ports fuzzing in PROFINET. Achilles test platform [Ach17] supports fuzzing for 
SCADA protocols, like Modbus/TCP and DNP3.

There is also research work in fuzzing industrial protocols using various tech-
niques. Black-box mutation fuzzing, for example, has been explored for SCADA 
networks without any knowledge about the networking protocol [Sha11] and using 
the LZ-Fuzz tool [Bra08] to evaluate its effectiveness. OPC-MFuzzer [Wan13, 
Qi14] is a mutation fuzzer (based on Peach [Pea14]) for OPC SCADA fuzzing. 
Based on three different mechanisms to produce fuzzing inputs, the tool identified 
and confirmed known vulnerabilities that had been included previously in the 
National Vulnerability Database (NVD) [Nis].

Modbus fuzzing has attracted significant attention as well. BlackPeer [Byr06] 
produces inputs and checks outputs using a grammar that is included in the tool; 
although successful, it has limited flexibility as it cannot adjust easily to new tests. 
Sulley [Dev07], a block-based framework, enables methodical and easy mutation 
fuzzing through its Modbus module; however, its block-based approach is limited 
for testing devices that deviate from the standard implementation and are custom-
ized by the users. A framework for fuzz testing Modbus for security has also been 
proposed based on Scapy [Kob07].

7.4  �Fuzzing Modbus

7.4.1  �The Modbus Protocol

Modbus is an application protocol for industrial control system communication, 
which has become a standard published by Modbus IDA [Mod, ModS]. Its specifi-
cation defines the protocol for direct communication over serial links as well as 
communication over TCP connections. The popular Modbus protocol stacks are 
shown in Fig. 7.2; it should be noted that, in correspondence with the ISO protocol 
reference model, Modbus is an application layer protocol defined to interface 
directly to layer 1 (serial) and layer 2 (HDLC) protocols –stacks (a) and (b) in the 
figure – or to TCP through an adjusting sublayer that is denoted as Modbus messag-
ing (mapping) on TCP, as shown in stack (c).

The protocol implements client/server (alternatively, master/slave) communica-
tion through a request-response model between a control center and field devices, 
such as a SCADA and PLCs. For example, a SCADA master unit (client) may 
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request the reading of a sensor attached to a slave PLC (server), or it may request 
the writing of a command to an actuator to turn a switch.

Modbus application packets are simple, composed of two fields, a function code 
(FC) and data, as shown in Fig. 7.3. Requests from servers send the function code 
that defines the operation to be performed and the related data, e.g., an address or 
command. A response from a client includes the function code that was executed at 
the client and the resulting related data. Since an operation may not be successfully 
executed at the client, the protocol defines that the client will respond with the origi-
nal function code if the related operation is executed correctly, or it will send an 
exception code indicating that the operation was not executed.

Modbus has three different classes of function codes: public codes, user-defined 
codes and reserved ones. Public codes are defined by the standard and include num-
bering and operation definition. Reserved codes are also public, but they cannot be 
used freely, since they have been defined and reserved for interoperability purposes 
with legacy industrial control systems. User-defined codes are available to develop-
ers and users to implement specialized function codes at will. Since the function 
code field is 8 bits, function codes can have 256 values, in the range 0–255. Public 
codes are in the ranges 1–64, 73–99, and 111–127; these ranges include the reserved 
codes. User-defined codes may have values in the ranges 65–72 and 100–110. The 
codes 128–255 are used to indicate errors; each function code has its unique related 
exception code, which differs from the function code at the most significant bit; 
with the 8-bit format, all function codes have “0” as their most significant bit and all 
exception codes have it as “1.”

Modbus Application
Protocol

Serial Master/Slave

Physical Protocol
(RS-232/RS-485)

Modbus Application
Protocol

HDLC

Physical Protocol
(RS-485)

TCP

IP

Ethernet Data Link and
Physical Protocols

Modbus Messaging
(Mapping) on TCP

Modbus Application
Protocol

(a) (b) (c)

Fig. 7.2  Modbus protocol stacks

Function code
(FC) Data

Fig. 7.3  Modbus 
application packet
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Most Modbus function codes perform read and write operations to device data. 
For this purpose, Modbus considers that devices store data in tables. There are four 
different table types, based on the data entry size (1 bit or 16 bits) and the access 
operation allowed (read or read/write). The tables are denoted as (i) discrete input, 
with 1-bit entries and only read operations allowed; (ii) coils, with 1-bit entries and 
read/write operations allowed; (iii) input registers, with 16-bit entries and only read 
operations allowed; and (iv) holding registers, with 16-bit entries and read/write 
operations allowed. All four types of tables can have up to 64 K entries. Importantly, 
these tables are actually virtual, meaning that they can be physically separate in the 
device’s memory or they can overlay over the same physical memory cells. Modbus 
can also access files, which are sequences of records (up to 10,000), and each record 
has a length measured with 16-bit units.

Modbus application packets (protocol data units, or PDUs) are encapsulated in 
lower layer protocol packets to be transmitted. When serial connections are used, 
the application packets are encapsulated by the data link control (DLC) protocol and 
produce DLC PDUs that are then transmitted by the serial protocol. DLC packets 
add an address field for the slave next to the function code field and a checksum next 
to the data field of the application protocol, as Fig. 7.4a shows. In the case of the 
serial physical layer, there are two formats for the DLC packets, denoted as RDU 
and ASCII. The main difference between the two is the size of the slave address and 
the size of the function code field: in RTU format, they are both one byte, while in 
the ASCII format, each one is 2 bytes long.

Modbus over TCP is performed by extending the Modbus application packet first 
with an additional header, named MBAP (Modbus Application Protocol) header as 
shown in Fig. 7.4b, and then encapsulating this extended packet by the TCP/IP pro-
tocol stack, which employs Ethernet at the data link control and physical protocol 
layers, as shown in Fig. 7.2c.

Modbus does not include security mechanisms such as authentication, confiden-
tiality, or integrity. The lack of security renders its implementations vulnerable to a 
wide range of attacks. The lack of confidentiality enables attackers to extract infor-
mation from captured packets, while the lack of integrity checks does not allow a 
receiver of a packet to identify whether the packet has been altered. Replay attacks 
are possible as well and the lack of non-repudiation mechanisms can lead to inabil-
ity to analyze and audit systems credibly.

Fig. 7.4  Encapsulated Modbus application packets
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7.4.2  �Modbus/TCP Fuzzer

There exist several Modbus fuzzers, as described in Sect. 7.2. In this subsection, we 
present the approach and results of MTF (Modbus/TCP fuzzer) [Voy15] as a repre-
sentative example. The choice of MTF is based on its characteristics that show the 
trends in fuzzing technology today: it is an automated tool, it provides good cover-
age of input tests, and it does not require physical access to the system under test, 
operating remotely over the network. These characteristics make MTF an attractive 
tool for testing security and compliance of Modbus connected devices.

MTF incorporates the specification of Modbus/TCP and supports fuzzing both 
master and slave devices on the network. As an automated tool for fuzzing, MTF 
operates in three main phases: (i) reconnaissance, (ii) attack, and (iii) failure detec-
tion. In the first phase, MTF identifies the operational characteristics and parameters 
of the tested system. In the second phase, it applies tests to the system and collects 
its responses, while in the third phase it evaluates the collected (observed) responses 
to identify security problems and system failures.

Reconnaissance is an important operation in automated black-box or gray-box 
fuzzers, because it identifies the operations performed by the system under test and 
its important parameters. In the case of Modbus, in order to generate meaningful 
tests, one needs to know the function codes used by the system as well as its mem-
ory model, i.e., the four memory types – discrete inputs, coils, input registers, and 
holding registers – that are specified by the standard. MTF explores the function 
codes through different methods, in order to accommodate different types of devices 
that may be fully or partially conformant with the standard. A straightforward 
method is to ask the device for identification information – the standard specifies 
function code 43 for this operation – and then, based on this, to find information 
off-line about the supported function codes, e.g., from a manual. Alternatively, it 
sends legitimate requests and examines the responses, which indicate whether the 
requests have been executed or not (as described in the standard specification), or it 
monitors traffic from the device and extracts functional information from that.

In regard to the memory model of the tested system, MTF effectively identifies 
the boundary memory addresses for each type of memory. This is done either 
actively, sending packets with the appropriate function codes probing specific 
address values, or passively, observing traffic which eventually indicates memory 
bounds, although these bounds may be approximate.

Taking into account the list of function codes and the memory mapping for the 
four memory types, the fuzzer can construct legitimate packets and fuzz them in 
order to test the system. Since the supported function codes are known, MTF con-
structs a set of packet sequences for each supported function code, where each 
sequence implements a potential attack to the system; such attacks include packet 
removal, packet injection, and packet field manipulation.

Packet field manipulation is performed with field values that are boundary, ran-
dom, or illegal.

7.4 � Fuzzing Modbus
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When tests are applied, the response, or its absence, is recorded. The tool records 
the sequence of all tests and related responses and produces a list of errors which are 
invalid responses (out of specification), valid but with incorrect parameters (values, 
size, etc.), and delayed or incomplete (no response). Further processing of the 
records, including both the valid request/response pairs and the errors, leads to 
detection of security and dependability problems, i.e., malicious or accidental 
failures.

The MTF approach is representative of the trends in fuzzing industrial protocols. 
It provides a complete approach to fuzzing, starting with reconnaissance, continu-
ing with meaningful tests and, finally, analyzing the results for security and reliabil-
ity failures. Its practicality has been demonstrated through the prototype 
implementation described in the original work [Voy15], which has been used to 
evaluate several commercial and open source Modbus subsystems and for several 
attacks. The attacks include packet dropping, packet injection, illegal field values, 
altered function codes, and even flooding, leading to denial of service attacks. 
Importantly, many of these attacks have been successful against commercial 
Modbus implementations, as the reported original results demonstrate. Interestingly, 
MTF succeeds in attacking these implementations much more efficiently than alter-
native tools, i.e., with a significantly smaller number of packets. Overall, the results 
demonstrate that the approach of generation fuzzing is an effective and efficient 
fuzzing method.
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