
7© Springer International Publishing AG 2018
D. Serpanos, M. Wolf, Internet-of-Things (IoT) Systems,
https://doi.org/10.1007/978-3-319-69715-4_2

Chapter 2
IoT System Architectures

2.1 Introduction

In this chapter, we study architectures for IoT systems. We will study typical com-
ponents used for networks, databases, etc.

Figure 2.1 shows the organization of an IoT system:

• The plant or environment is the physical system with which the IoT system inter-
acts. We will use these two terms interchangeably.

• A set of devices form the leaves of the network. A node may include sensors and/
or actuators, processors, and memory. Each node has a network interface. A node
may or may not run the Internet Protocol.

• Hubs provide first-level connectivity between the nodes and the rest of the net-
work. Hubs are typically run IP.

• Fog processors perform operations on local sets of nodes and hubs. Keeping
some servers nearer the nodes reduces latency. However, fog devices may not
have as much compute power as cloud servers. Fog devices also introduce sys-
tem management issues.

• Cloud servers provide computational services for the IoT system. Databases
store data and computational results. The cloud may provide a variety of services
that mediate between nodes and users.

2.2 Protocols Concepts

Several protocols are used for data services in IoT systems.
Communication protocols may not provide sufficient abstraction for many appli-

cations. IoT systems need multi-hop, end-to-end communication. They also may
exhibit complex relationships between data sources and sinks. Higher-level proto-
cols can provide services that model more closely the needs of IoT systems. Given

https://doi.org/10.1007/978-3-319-69715-4_2

8

the heterogeneous and long-lived nature of most IoT systems, standards are often
used rather than custom protocols. Several different protocols have been proposed
and, to varying degrees, used for IoT systems [Duf13]. The user space has not yet
converged on a single standard for IoT communication services.

Given the prevalence of event-oriented models in IoT systems, a protocol should
support event-style communication.

The HTTP protocol uses a request/response design pattern. A client issues a
request for a hypertext object; the server then replies with the object in response.

A publish/subscribe protocol [Twi11] requires less coupling between the client
and server as illustrated in Fig. 2.2. The server, known as a publisher, classifies mes-
sages into categories. Clients subscribe to the categories of interest to them. Publish/
subscribe systems are typically mediated by brokers which receive published

Fig. 2.1 Organization of an IoT system

Fig. 2.2 The publish/subscribe model

2 IoT System Architectures

9

 messages from publishers and send them to subscribers. Messages may be orga-
nized by topic; all message of a given topic are distributed by the brokers to the
subscribers for that topic. The broker knows the identities of subscribers but the
publisher does not. Brokers may interact with each other using a bridge protocol. A
bridge allows indirect publication of messages, with a message going from the pub-
lisher to a first broker, then to a second broker, and finally to subscribers who are not
connected to the first broker.

Data Distribution Service (DDS) (http://portals.omg.org/dds/) [Obj16] is a pub-
lish/subscribe software architecture; several implementations of DDS are in use. A
DDS domain maintains a logical global data space; the data is managed over a set
of local stores. Publishers and subscribers are dynamically discovered across the
network. Publishers can specify a number of quality of service parameters that are
enforced by the brokers.

Real-Time Publish/Subscribe Protocol (RTPS) [Obj14] is a so-called wire proto-
col that defines a protocol for communication with DDS and other publish/sub-
scribe systems. RTPS provides QoS properties, fault tolerance, and type safety.

Esposito et al. [Esp09] developed an architecture for time-sensitive publish/sub-
scribe systems that would be scalable to Internet-sized systems. They identified
three major design goals: predictable latency, guaranteed delivery in the presence of
multiple faults, and continued performance under scaling. They identified several
types of fault models for publish/subscribe systems: network anomalies (loss, order-
ing, corruption, delay, congestion, partitioning), link crash, node crash, and churn of
nodes unexpectedly joining and leaving the system. Their architecture has three
abstraction layers: the network layer consists of domains composed of nodes; the
nodes layer consists of clusters, with each cluster’s members belonging to the same
stub domain; and a coordinators layer. The coordination layer routes messages
using a tree-based topology built on top of a distributed hash table. The coordinator
is p-redundant to provide fault-tolerant coordination. To provide fault-tolerant over-
lays, they formulate a model for path diversity that can be computed with limited
knowledge of the network connections.

Kang et al. [Kan12] used a semantics-aware communication mechanism to
reduce overhead and improve reliability. They use state-space estimators at both the
publisher and subscriber to maintain continuity of sensor values in the presence of
network variations. Their state estimator is of the form xk + 1 = Fk + 1xk. The designer
sets a model precision bound δ for each sensor. The bound is used to manage band-
width requirements. Their system also dynamically adjusts the model precision
bound.

Choi et al. [Choi16] combined DDS with the OpenFlow software-defined net-
working protocol to ensure that DDS can implement the QoS parameters. They
added two QoS parameters that could not be easily deduced from the standard DDS
parameters: MINIMUM_SEPARATION and an E2E_LATENCY specified by
subscribers.

2.2 Protocols Concepts

http://portals.omg.org/dds/

10

2.3 IoT-Oriented Protocols

We can divide protocols into two major categories: those that are tied to a specific
physical layer and those that are not. Generally speaking, protocols that rely on a
specific physical layer do not use the Internet Protocol, while protocols that are
physical layer agnostic do use IP.

Zigbee [Zig14, Far08] is a mesh network designed for low-power operation. A
variety of derivative application standards specialize the protocol for applications
such as smart homes and utilities. Zigbee is based on the IEEE 802.15.4 PHY and
MAC standards. 802.15.4 operates in three bands: 868 MHz, 915 MHz, and
2.4 GHz. It delivers bit rates from 20 to 250 kbps, depending on the frequency band.
The Zigbee NWK layer sits on top of the 802.15.4 MAC layer and provides data and
management services. The APL layer includes three sections: the application sup-
port sublayer, the Zigbee Device Objects layer, and the application framework.

Zigbee provides two types of network security models: a centralized security
network can be started only by a Zigbee coordinator/trust center; distributed secu-
rity networks do not have a central trust center. Nodes can join either type of net-
work and adapt to the type of network they have joined. Networks are formed by
either coordinators or routers after scanning to select an available channel.
Coordinators form centralized security networks, while routers form distributed
security networks. Network steering is the name for the process by which a node
joins a network. After identifying an open network, the node associates with that
network and receives a network key. Clusters define interfaces for features and
domains.

Bluetooth Low Energy (BLE) (https://www.bluetooth.com/what-is-bluetooth-
technology/how-it-works/low-energy) [Hay13] is a part of the Bluetooth standard
designed for low-power operation such as devices powered from coin cell batteries.
A BLE device can work as a transmitter, receiver, or both. Figure 2.3 illustrates the
Bluetooth Classic protocol stack.

The link layer provides an advertising service; devices can scan to identify nodes
and networks. Devices can act as gateways to the Internet based on network address
translation. The BLE protocol is stateful. BLE includes a number of optimizations
to reduce power consumption.

LoRa (http://lora-alliance.org) [LoR15] is designed for wide-area IoT applica-
tions with a base station covering hundreds of square kilometers. It is designed to
support a network topology with gateways for end devices, with gateways organized
into their own star network. Data rates range from 0.3 to 50 kbps.

MQTT (http://www.mqtt.org) [IBM12, Oas14] is an IoT-oriented protocol with
publish/subscribe semantics. The protocol is designed for low overhead and is
agnostic to the data payload. MQTT provides three levels of quality of service: at
most once provides best-effort service, at least once assures delivery but may incur
duplicates, and exactly once ensures the message is delivered without duplication.

2 IoT System Architectures

https://www.bluetooth.com/what-is-bluetooth-technology/how-it-works/low-energy
https://www.bluetooth.com/what-is-bluetooth-technology/how-it-works/low-energy
http://lora-alliance.org
http://www.mqtt.org

11

MQTT is based on a publish/subscribe model. A message is given a retention
attribute when it is published; messages with QoS designations of at least once or
exactly once should set the retention flag. A new subscriber to the topic will receive
the last publication on that topic.

When setting up a connection, a client can provide a will to the server to specify
a message to be published if the client is unexpectedly disconnected.

Messages are classified using topic strings similar to hierarchical file names. The
set of topics is organized into a topic tree. Topic names follow the names of the
nodes in the topic tree path, with node names separated by “/”. Subscribers can use
wildcards in the topic string: ‘+’ denotes a wildcard match at one level of the topic
tree; “#” denotes a match at any number of levels of the topic tree.

XMPP (http://xmpp.org) is a protocol for streaming XML. It provides security,
authentication, and information about network availability, and rosters of clients.
XMPP-IoT (http://xmpp-iot.org) is a dialect of XMPP designed for IoT
applications.

REST [Vaq14, Rod15] is widely used for Web services and has received some
use as an IoT service model. REST is a design pattern for stateless HTTP transfers.
It exposes directory-structured form resource indicators. REST can be used to trans-
fer XML or JSON data. Clients access resources using GET, PUT, POST, and
DELETE methods.

CoAP (http://coap.technology) [IET14] is a REST-based Web transfer protocol
designed for IoT devices. It can be used with several types of data payloads, includ-
ing XML and JSON.

Google Cloud Pub/Sub [Goo17A, Goo17B] can be used to provide publish/sub-
scribe service to IoT and other systems. Topics and subscriptions are exposed as

Fig. 2.3 The Bluetooth
stack

2.3 IoT-Oriented Protocols

http://xmpp.org
http://xmpp-iot.org
http://coap.technology

12

REST collections. The system is divided into a data plane for messages and a con-
trol plane for allocation to servers known as routers; data plane servers are known
as forwarders. The routers balance consistency and uniformity of data using a con-
sistent hashing algorithm. A message life cycle includes several steps. When a pub-
lisher sends a message, it is written to storage. The subscribers receive the message,
and the publisher receives an acknowledgment. Subscribers acknowledge the mes-
sage to Google Cloud Pub/Sub. The message is deleted from storage once at least
one subscriber for each subscription has acknowledged the message. The system
monitors itself to detect and mitigate service problems.

Amazon Web Services (AWS) IoT [Bar15] is a managed cloud service for IoT
devices, which are termed things. A thing shadow is a cloud model of a thing. A rule
engine transforms messages based on rules and routes the results to AWS services.
The message broker is based on MQTT. A Thing Registry assigns unique identity to
things.

Microsoft Azure (https://azure.microsoft.com/en-us/services/iot-hub/) provides
IoT-oriented services. Its Service Fabric is a middleware communication system
that supports microservices running on a cluster. A microservice may be either
stateless or stateful. It also provides a container model for applications; a container
provides an isolated environment but relies on the operating system, in contrast to a
virtual machine which runs underneath the operating system. It provides databases
using both structured and unstructured approaches. It also provides APIs for artifi-
cial intelligence services.

2.4 Databases

Databases are used for both short-term and long-term storage. Applications may
rely on databases to retrieve data over a time window for analysis. Some use cases
may require archival storage of values.

Unstructured databases, known as noSQL, are used in many IoT systems. A
noSQL database does not have a schema. Simple noSQL databases represent data
as key-value pairs, but other representations are possible. The lack of a schema
allows quick deployment but may cause maintenance problems.

The Amazon Simple Storage Service (Amazon S3) (https://aws.amazon.com/
s3/) is an object store with a Web service interface. Data can be pushed to other,
lower-cost storage services for long-term, infrequent use. Notifications can be
issued when objects operated upon.

Google Cloud Storage (https://cloud.google.com/storage) is an object store for
unstructured data. It provides three different service models at different latency/
latency/price points. Cloud SQL can be used to perform database operations.
Streaming transfers are supported using HTTP chunked transfer encoding.

Time-series data possesses structure that may require special handling to provide
proper database performance. Time series are sometimes stored as blobs in rela-
tional databases to allow specialized algorithms.

2 IoT System Architectures

https://azure.microsoft.com/en-us/services/iot-hub/
https://aws.amazon.com/s3
https://aws.amazon.com/s3
https://cloud.google.com/storage

13

Dynamic time warping (DTW) [Rat04, Rak12] is widely used to search over
time-series data. DTW was originally used to compare waveforms for speech pro-
cessing. Correlation provides a direct comparison of two waveforms. By warping
one waveform, non-exact matches can be found. Dynamic programming can be
used to find the minimum warp match between two-time series; a limit on maxi-
mum warping is typically applied to avoid obviously bad matches. Very efficient
algorithms have been developed to provide high-speed search. Among other tech-
niques, these algorithms abandon a warp computation early when partial results
exceed a given bound. Fast DTW algorithms have been used to search very large
databases.

2.5 Time Bases

Many IoT systems require a notion of global time. Several algorithms, starting with
Lamport’s algorithm [Lam78], have been developed for the synchronization of
clocks in a distributed system.

The Network Time Protocol (RFC1305) is used on the Internet for distributed
time synchronization.

2.6 Security

Security is a system property; the system can be only as secure as its weakest com-
ponent. Security features are provided by components at several layers in the IoT
stack: devices, physical networks, and middleware. A unified view of IoT system
security architectures has not yet emerged.

Some, but not all processors for low-power operation, provide security features
such as encryption accelerators and root of trust. The National Security Agency has
developed families of lightweight block ciphers [Sch13]: SIMON targets hardware
implementations, and SPECK is intended for software implementations. Gulcan
et al. [Gul14] developed a low-power implementation of SIMON.

Several networks provide security features. Bluetooth Low Energy provides a
Simple Secure Pairing protocol to protect against passive eavesdropping. It also
provides address randomization. As discussed above, Zigbee provides two network
security models: centralized and distributed. LoRa provides unique network keys,
unique application keys, and device-specific keys.

MQTT does not specifically require encryption, but it can be used with several
different security standards. MQTT and the NIST Framework for Improving Critical
Infrastructure Cybersecurity [Oas14B] describe the relationship between MQTT
and the NIST Cybersecurity Framework.

We will study IoT system security in more detail in Chap. 6.

2.6 Security

https://doi.org/10.1007/978-3-319-69715-4_6

14

References

 [Bar15] Barr, J. (2015, October 8). AWS IoT: Cloud services for connected devices. AWS Blog.
https://aws.amazon.com/blogs/aws/aws-iot-cloud-services-for-connected-devices/

 [Choi16] Choi, H.-Y., King, A. L., & Lee, I. (2016). Making DDS really real-time with OpenFlow.
2016 international conference on embedded software (EMSOFT) (pp. 1–10). Pittsburgh, PA.

 [Duf13] Duffy, P. (2013, April 30) Beyond MQTT: A Cisco view on IoT protocols. Cisco Blogs.
https://blogs.cisco.com/digital/beyond-mqtt-a-cisco-view-on-iot-protocols

 [Esp09] Esposito, C., Cotroneo, D., & Gokhale, A.. 2009. Reliable publish/subscribe middle-
ware for time-sensitive internet-scale applications. Proceedings of the third ACM international
conference on distributed event-based systems (DEBS’09). ACM, New York, Article 16, 12
pages.

 [Far08] Farahani, S. (2008). Zigbee wireless networks and transceivers. Amsterdam: Newnes.
 [Goo17A] Google. (2017, April 19). What is Google Cloud Pub/Sub? https://cloud.google.com/

pubsub/docs/overview
 [Goo17B] Google. (2017, April 3). Google Cloud Pub/Sub: A Google-scale messaging service.

https://cloud.google.com/pubsub/architecture
 [Gul14] Gulcan, E., Aysu, A., & Schaumont, P. (2015). A flexible and compact hardware archi-

tecture for the SIMON block cipher. In T. Eisenbarth & E. Öztürk (Eds.), Lightweight cryptog-
raphy for security and privacy. LightSec 2014, Lecture Notes in Computer Science (Vol. 8898,
pp. 34–50). Cham: Springer.

 [Hay13] Heydon, R. (2013). Bluetooth low energy: The developer’s handbook. Prentice Hall:
Upper Saddle River, NJ.

 [IBM12] IBM International Technical Support Organization (2012, September). Building smarter
planet solutions with MQTT and IBM WebSphere MQ telemetry, Redbooks.

 [IET14] Internet Engineering Task Force (2014, June). The constrained application protocol
(CoAP), RFC 7252, Shelby, Z., Hartke, K., & Bormann, C.

 [Kan12] Kang, W., Kapitanova, K., & Son, S. H. (2012). RDDS: A real-time data distribu-
tion service for cyber-physical systems. IEEE Transactions on Industrial Informatics, 8(2),
393–405.

 [Lam78] Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7), 558–565.

 [LoR15] LoRa Alliance (2015, November). LoRaWAN: What is it? A technical overview of LoRa
and LoRaWAN.

 [Oas14] Oasis. (2014, 29). MQTT version 3.1.1. Oasis standard.
 [Oas14B] Oasis (2014, May 28). MQTT and the NISTG cybersecurity framework version 1.0.

Committee note 01.
 [Obj14] Object Management Group. (2014). The real-time publish-subscribe protocol (RTPS)

DDS interoperability wire protocol specification, Version 2.2.
 [Obj16] Object Management Group. (2016). What is DDS? http://portals.omg.org/dds/what-is-

dds-3/, accessed May 4, 2017.
 [Sch13] Schneier, B. SIMON and SPECK: New NSA encryption algorithms. Schneier on

Security. https://www.schneier.com/blog/archives/2013/07/simon_and_speck.html, retrieved
May 8, 2017.

 [Vaq14] Vaqqas, M. (2014, September 23) RESTful web services: A tutorial. Dr. Dobb’s. http://
www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069

 [Rak12] Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q.,
Zakaria, J., & Keogh, E.. 2012. Searching and mining trillions of time series subsequences
under dynamic time warping. Proceedings of the 18th ACM SIGKDD international conference
on knowledge discovery and data mining (KDD’12) (pp. 262–270). ACM, New York.

 [Rat04] Ratanamahatana, C. A., & Keogh, E. (2004, August 22–25). Everything you know about
dynamic time warping is wrong. Third workshop on mining temporal and sequential data, in

2 IoT System Architectures

https://aws.amazon.com/blogs/aws/aws-iot-cloud-services-for-connected-devices/
https://blogs.cisco.com/digital/beyond-mqtt-a-cisco-view-on-iot-protocols
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/pubsub/architecture
http://portals.omg.org/dds/what-is-dds-3/
http://portals.omg.org/dds/what-is-dds-3/
https://www.schneier.com/blog/archives/2013/07/simon_and_speck.html
http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069
http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069

15

conjunction with the tenth ACM SIGKDD international conference on knowledge discovery
and data mining (KDD-2004). Seattle, WA.

 [Rod15] Rodriguez, Alex. (2008, November 6). RESTful web services: The basics. IBM devel-
operWorks, updated February 9, 2015. https://www.ibm.com/developerworks/library/ws-rest-
ful/index.html

 [Twi11] Twin Oaks Computing, Inc. (2011). What can DDS do for you?
 [Zig14] Zigbee Alliance (2014, December 2). ZigBee 3.0: The open, global standard for the

Internet of Things. http://www.zigbee.org/zigbee-for-developers/zigbee/

References

https://www.ibm.com/developerworks/library/ws-restful/index.html
https://www.ibm.com/developerworks/library/ws-restful/index.html
http://www.zigbee.org/zigbee-for-developers/zigbee

	Chapter 2: IoT System Architectures
	2.1 Introduction
	2.2 Protocols Concepts
	2.3 IoT-Oriented Protocols
	2.4 Databases
	2.5 Time Bases
	2.6 Security
	References

