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Chapter 2
IoT System Architectures

2.1  Introduction

In this chapter, we study architectures for IoT systems. We will study typical com-
ponents used for networks, databases, etc.

Figure 2.1 shows the organization of an IoT system:

• The plant or environment is the physical system with which the IoT system inter-
acts. We will use these two terms interchangeably.

• A set of devices form the leaves of the network. A node may include sensors and/
or actuators, processors, and memory. Each node has a network interface. A node 
may or may not run the Internet Protocol.

• Hubs provide first-level connectivity between the nodes and the rest of the net-
work. Hubs are typically run IP.

• Fog processors perform operations on local sets of nodes and hubs. Keeping 
some servers nearer the nodes reduces latency. However, fog devices may not 
have as much compute power as cloud servers. Fog devices also introduce sys-
tem management issues.

• Cloud servers provide computational services for the IoT system. Databases 
store data and computational results. The cloud may provide a variety of services 
that mediate between nodes and users.

2.2  Protocols Concepts

Several protocols are used for data services in IoT systems.
Communication protocols may not provide sufficient abstraction for many appli-

cations. IoT systems need multi-hop, end-to-end communication. They also may 
exhibit complex relationships between data sources and sinks. Higher-level proto-
cols can provide services that model more closely the needs of IoT systems. Given 
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the heterogeneous and long-lived nature of most IoT systems, standards are often 
used rather than custom protocols. Several different protocols have been proposed 
and, to varying degrees, used for IoT systems [Duf13]. The user space has not yet 
converged on a single standard for IoT communication services.

Given the prevalence of event-oriented models in IoT systems, a protocol should 
support event-style communication.

The HTTP protocol uses a request/response design pattern. A client issues a 
request for a hypertext object; the server then replies with the object in response.

A publish/subscribe protocol [Twi11] requires less coupling between the client 
and server as illustrated in Fig. 2.2. The server, known as a publisher, classifies mes-
sages into categories. Clients subscribe to the categories of interest to them. Publish/
subscribe systems are typically mediated by brokers which receive published 

Fig. 2.1 Organization of an IoT system

Fig. 2.2 The publish/subscribe model
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 messages from publishers and send them to subscribers. Messages may be orga-
nized by topic; all message of a given topic are distributed by the brokers to the 
subscribers for that topic. The broker knows the identities of subscribers but the 
publisher does not. Brokers may interact with each other using a bridge protocol. A 
bridge allows indirect publication of messages, with a message going from the pub-
lisher to a first broker, then to a second broker, and finally to subscribers who are not 
connected to the first broker.

Data Distribution Service (DDS) (http://portals.omg.org/dds/) [Obj16] is a pub-
lish/subscribe software architecture; several implementations of DDS are in use. A 
DDS domain maintains a logical global data space; the data is managed over a set 
of local stores. Publishers and subscribers are dynamically discovered across the 
network. Publishers can specify a number of quality of service parameters that are 
enforced by the brokers.

Real-Time Publish/Subscribe Protocol (RTPS) [Obj14] is a so-called wire proto-
col that defines a protocol for communication with DDS and other publish/sub-
scribe systems. RTPS provides QoS properties, fault tolerance, and type safety.

Esposito et al. [Esp09] developed an architecture for time-sensitive publish/sub-
scribe systems that would be scalable to Internet-sized systems. They identified 
three major design goals: predictable latency, guaranteed delivery in the presence of 
multiple faults, and continued performance under scaling. They identified several 
types of fault models for publish/subscribe systems: network anomalies (loss, order-
ing, corruption, delay, congestion, partitioning), link crash, node crash, and churn of 
nodes unexpectedly joining and leaving the system. Their architecture has three 
abstraction layers: the network layer consists of domains composed of nodes; the 
nodes layer consists of clusters, with each cluster’s members belonging to the same 
stub domain; and a coordinators layer. The coordination layer routes messages 
using a tree-based topology built on top of a distributed hash table. The coordinator 
is p-redundant to provide fault-tolerant coordination. To provide fault-tolerant over-
lays, they formulate a model for path diversity that can be computed with limited 
knowledge of the network connections.

Kang et  al. [Kan12] used a semantics-aware communication mechanism to 
reduce overhead and improve reliability. They use state-space estimators at both the 
publisher and subscriber to maintain continuity of sensor values in the presence of 
network variations. Their state estimator is of the form xk + 1 = Fk + 1xk. The designer 
sets a model precision bound δ for each sensor. The bound is used to manage band-
width requirements. Their system also dynamically adjusts the model precision 
bound.

Choi et al. [Choi16] combined DDS with the OpenFlow software-defined net-
working protocol to ensure that DDS can implement the QoS parameters. They 
added two QoS parameters that could not be easily deduced from the standard DDS 
parameters: MINIMUM_SEPARATION and an E2E_LATENCY specified by 
subscribers.

2.2 Protocols Concepts
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2.3  IoT-Oriented Protocols

We can divide protocols into two major categories: those that are tied to a specific 
physical layer and those that are not. Generally speaking, protocols that rely on a 
specific physical layer do not use the Internet Protocol, while protocols that are 
physical layer agnostic do use IP.

Zigbee [Zig14, Far08] is a mesh network designed for low-power operation. A 
variety of derivative application standards specialize the protocol for applications 
such as smart homes and utilities. Zigbee is based on the IEEE 802.15.4 PHY and 
MAC standards. 802.15.4 operates in three bands: 868 MHz, 915 MHz, and 
2.4 GHz. It delivers bit rates from 20 to 250 kbps, depending on the frequency band. 
The Zigbee NWK layer sits on top of the 802.15.4 MAC layer and provides data and 
management services. The APL layer includes three sections: the application sup-
port sublayer, the Zigbee Device Objects layer, and the application framework.

Zigbee provides two types of network security models: a centralized security 
network can be started only by a Zigbee coordinator/trust center; distributed secu-
rity networks do not have a central trust center. Nodes can join either type of net-
work and adapt to the type of network they have joined. Networks are formed by 
either coordinators or routers after scanning to select an available channel. 
Coordinators form centralized security networks, while routers form distributed 
security networks. Network steering is the name for the process by which a node 
joins a network. After identifying an open network, the node associates with that 
network and receives a network key. Clusters define interfaces for features and 
domains.

Bluetooth Low Energy (BLE) (https://www.bluetooth.com/what-is-bluetooth-
technology/how-it-works/low-energy) [Hay13] is a part of the Bluetooth standard 
designed for low-power operation such as devices powered from coin cell batteries. 
A BLE device can work as a transmitter, receiver, or both. Figure 2.3 illustrates the 
Bluetooth Classic protocol stack.

The link layer provides an advertising service; devices can scan to identify nodes 
and networks. Devices can act as gateways to the Internet based on network address 
translation. The BLE protocol is stateful. BLE includes a number of optimizations 
to reduce power consumption.

LoRa (http://lora-alliance.org) [LoR15] is designed for wide-area IoT applica-
tions with a base station covering hundreds of square kilometers. It is designed to 
support a network topology with gateways for end devices, with gateways organized 
into their own star network. Data rates range from 0.3 to 50 kbps.

MQTT (http://www.mqtt.org) [IBM12, Oas14] is an IoT-oriented protocol with 
publish/subscribe semantics. The protocol is designed for low overhead and is 
agnostic to the data payload. MQTT provides three levels of quality of service: at 
most once provides best-effort service, at least once assures delivery but may incur 
duplicates, and exactly once ensures the message is delivered without duplication.
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MQTT is based on a publish/subscribe model. A message is given a retention 
attribute when it is published; messages with QoS designations of at least once or 
exactly once should set the retention flag. A new subscriber to the topic will receive 
the last publication on that topic.

When setting up a connection, a client can provide a will to the server to specify 
a message to be published if the client is unexpectedly disconnected.

Messages are classified using topic strings similar to hierarchical file names. The 
set of topics is organized into a topic tree. Topic names follow the names of the 
nodes in the topic tree path, with node names separated by “/”. Subscribers can use 
wildcards in the topic string: ‘+’ denotes a wildcard match at one level of the topic 
tree; “#” denotes a match at any number of levels of the topic tree.

XMPP (http://xmpp.org) is a protocol for streaming XML. It provides security, 
authentication, and information about network availability, and rosters of clients. 
XMPP-IoT (http://xmpp-iot.org) is a dialect of XMPP designed for IoT 
applications.

REST [Vaq14, Rod15] is widely used for Web services and has received some 
use as an IoT service model. REST is a design pattern for stateless HTTP transfers. 
It exposes directory-structured form resource indicators. REST can be used to trans-
fer XML or JSON data. Clients access resources using GET, PUT, POST, and 
DELETE methods.

CoAP (http://coap.technology) [IET14] is a REST-based Web transfer protocol 
designed for IoT devices. It can be used with several types of data payloads, includ-
ing XML and JSON.

Google Cloud Pub/Sub [Goo17A, Goo17B] can be used to provide publish/sub-
scribe service to IoT and other systems. Topics and subscriptions are exposed as 

Fig. 2.3 The Bluetooth 
stack
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REST collections. The system is divided into a data plane for messages and a con-
trol plane for allocation to servers known as routers; data plane servers are known 
as forwarders. The routers balance consistency and uniformity of data using a con-
sistent hashing algorithm. A message life cycle includes several steps. When a pub-
lisher sends a message, it is written to storage. The subscribers receive the message, 
and the publisher receives an acknowledgment. Subscribers acknowledge the mes-
sage to Google Cloud Pub/Sub. The message is deleted from storage once at least 
one subscriber for each subscription has acknowledged the message. The system 
monitors itself to detect and mitigate service problems.

Amazon Web Services (AWS) IoT [Bar15] is a managed cloud service for IoT 
devices, which are termed things. A thing shadow is a cloud model of a thing. A rule 
engine transforms messages based on rules and routes the results to AWS services. 
The message broker is based on MQTT. A Thing Registry assigns unique identity to 
things.

Microsoft Azure (https://azure.microsoft.com/en-us/services/iot-hub/) provides 
IoT-oriented services. Its Service Fabric is a middleware communication system 
that supports microservices running on a cluster. A microservice may be either 
stateless or stateful. It also provides a container model for applications; a container 
provides an isolated environment but relies on the operating system, in contrast to a 
virtual machine which runs underneath the operating system. It provides databases 
using both structured and unstructured approaches. It also provides APIs for artifi-
cial intelligence services.

2.4  Databases

Databases are used for both short-term and long-term storage. Applications may 
rely on databases to retrieve data over a time window for analysis. Some use cases 
may require archival storage of values.

Unstructured databases, known as noSQL, are used in many IoT systems. A 
noSQL database does not have a schema. Simple noSQL databases represent data 
as key-value pairs, but other representations are possible. The lack of a schema 
allows quick deployment but may cause maintenance problems.

The Amazon Simple Storage Service (Amazon S3) (https://aws.amazon.com/
s3/) is an object store with a Web service interface. Data can be pushed to other, 
lower-cost storage services for long-term, infrequent use. Notifications can be 
issued when objects operated upon.

Google Cloud Storage (https://cloud.google.com/storage) is an object store for 
unstructured data. It provides three different service models at different latency/
latency/price points. Cloud SQL can be used to perform database operations. 
Streaming transfers are supported using HTTP chunked transfer encoding.

Time-series data possesses structure that may require special handling to provide 
proper database performance. Time series are sometimes stored as blobs in rela-
tional databases to allow specialized algorithms.
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Dynamic time warping (DTW) [Rat04, Rak12] is widely used to search over 
time-series data. DTW was originally used to compare waveforms for speech pro-
cessing. Correlation provides a direct comparison of two waveforms. By warping 
one waveform, non-exact matches can be found. Dynamic programming can be 
used to find the minimum warp match between two-time series; a limit on maxi-
mum warping is typically applied to avoid obviously bad matches. Very efficient 
algorithms have been developed to provide high-speed search. Among other tech-
niques, these algorithms abandon a warp computation early when partial results 
exceed a given bound. Fast DTW algorithms have been used to search very large 
databases.

2.5  Time Bases

Many IoT systems require a notion of global time. Several algorithms, starting with 
Lamport’s algorithm [Lam78], have been developed for the synchronization of 
clocks in a distributed system.

The Network Time Protocol (RFC1305) is used on the Internet for distributed 
time synchronization.

2.6  Security

Security is a system property; the system can be only as secure as its weakest com-
ponent. Security features are provided by components at several layers in the IoT 
stack: devices, physical networks, and middleware. A unified view of IoT system 
security architectures has not yet emerged.

Some, but not all processors for low-power operation, provide security features 
such as encryption accelerators and root of trust. The National Security Agency has 
developed families of lightweight block ciphers [Sch13]: SIMON targets hardware 
implementations, and SPECK is intended for software implementations. Gulcan 
et al. [Gul14] developed a low-power implementation of SIMON.

Several networks provide security features. Bluetooth Low Energy provides a 
Simple Secure Pairing protocol to protect against passive eavesdropping. It also 
provides address randomization. As discussed above, Zigbee provides two network 
security models: centralized and distributed. LoRa provides unique network keys, 
unique application keys, and device-specific keys.

MQTT does not specifically require encryption, but it can be used with several 
different security standards. MQTT and the NIST Framework for Improving Critical 
Infrastructure Cybersecurity [Oas14B] describe the relationship between MQTT 
and the NIST Cybersecurity Framework.

We will study IoT system security in more detail in Chap. 6.

2.6 Security
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