
Images of Maass-Poincaré Series
in the Lower Half-Plane

Nickolas Andersen, Kathrin Bringmann, and Larry Rolen

Abstract In this note we extend integral weight harmonic Maass forms to functions
defined on the upper and lower half-planes using the method of Poincaré series.
This relates to Rademacher’s “expansion of zero” principle, which was recently
employed by Rhoades to link mock theta functions and partial theta functions.

1 Introduction and Statement of Results

In [12], Rhoades found a method to uniformly describe partial theta functions
and mock theta functions as manifestations of a single function. He showed that
Ramanujan’s mock theta function f .q/ (defined below), with q WD e2� i� and � in
the upper half-plane H, in some sense “leaks” through the real line to a partial theta
function .q�1/ (given below) on the lower half-plane �H. His construction follows
the “expansion of zero” principle of Rademacher (see [4], [6], [7, Chapter IX], and
[10]). Rademacher showed, using his exact formula for the partition function, that
the partition generating function can be extended to the lower half-plane, and he
later proved [11] that this extension is identically zero in the lower half plane. We
note that there are other relations of partial theta functions and mock theta functions.
For example one, which is due to Zagier and Zwegers, passes through asymptotic
expansions (see for example [5]).

Let us now say a few more words concerning mock theta functions. Originally
introduced by Ramanujan in his last letter to Hardy, mock theta functions have since
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found applications in many areas of mathematics. We now understand that they fit
into the larger framework of harmonic Maass forms, as shown by Zwegers [14]
(see also [9, 13]). That is, the mock theta functions are examples of mock modular
forms, which are the holomorphic parts of harmonic Maass forms (see Sect. 2 for
definitions). Thus, it is natural to ask whether Rhoades’ construction applies to the
non-holomorphic completion of f .q/ and, if so, what is the image of that function in
the lower half-plane? One hope, which has not yet been realized, is that this might
shed some light on the problem of finding a completion of the partial theta functions
to non-holomorphic modular forms. General partial theta functions have the shape

X

n�0
 .n/n�qn2

with  a primitive Dirichlet character and � 2 Z such that  .�1/ D .�1/�C1. In
particular these functions are not modular forms.

We begin by more closely recalling Rhoades’ results. The partial theta function
which Rhoades studied is given by

 .q/ WD
X

n�1

��12
n

�
q

n2�1
24 ;

and the associated mock theta function is Ramanujan’s third order function

f .q/ WD
X

n�0

qn2

.1C q/2 � : : : � .1C qn/2
:

Now set

˛c.s/ WD
X

m�0

� �
12c

�2mC 1
2 1

�
�
m C 3

2

� 1

smC1

and (with �b
a WD e

2�ib
a )

ˆc;d.�/ WD 1

2�i

Z

jsjDr

˛c.s/e23s

1 � �d
2c q e24s

ds;

where r is taken sufficiently small such that j Log
�
�d
2cq
� j � r and such that the

integral converges. Moreover let !h;c be the multiplier of the Dedekind �-function
(which can be given explicitly in terms of Dedekind sums, see [11]). Then define
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the function

F.�/ WD 1C �
X

c�1

.�1/b cC1
2 c

c

�
X

d .mod 2c/�

!�d;2c exp

�
2�i

�
�d

8
.1C .�1/c/C d

2c
C �

��
ˆc;d.�/;

where d .mod 2c/� indicates that the sum ranges over those d modulo 2c with
gcd.d; 2c/ D 1. This function converges in both the upper and lower half-planes,
i.e., for � 2 H [ .�H/. Moreover, Rhoades’ main result states that

F.�/ D
(

f .q/ if � 2 H;

2 
�
q�1� if � 2 �H:

As discussed above, we describe a similar phenomenon for both the holomorphic
and non-holomorphic parts of Maass–Poincaré series. To state our results, we first
require some notation. Throughout, let k 2 2Z, and let MŠ

k.�0.N// denote the space
of weakly holomorphic modular forms of weight k on �0.N/. Let SŠk.�0.N// denote
the subspace of MŠ

k.�0.N// consisting of forms whose Fourier expansion at i1 has
constant term equal to zero. For f .�/ DW Pn cf .n/qn 2 SŠk.�0.N//, we define the
(holomorphic) Eichler integral

Ef .�/ WD
X

n2Znf0g

cf .n/

nk�1 qn

and the non-holomorphic Eichler integral (� D u C iv)

f �.�/ WD �.4�/1�k
X

n2Znf0g

cf .n/

nk�1 �.k � 1; 4�nv/q�n:

Here �.s; y/ denotes the incomplete gamma function defined in (2.1). Note that with

Dk�1 WD
�

q
d

dq

�k�1
and �k WD 2ivk @

@�
;

we have

Dk�1.Ef / D f and �2�k. f �/ D f :

For even k > 2 and m 2 Z, let Pk;m denote the holomorphic Poincaré series
(defined in Sect. 2 below). If m < 0, these functions are weakly holomorphic forms,
while for m > 0, they are cusp forms. For k 2 �2N and m > 0, let Fk;�m be the
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Maass-Poincaré series of Sect. 2. They are harmonic Maass forms with exponential
growth in their holomorphic part.

Theorem 1.1 Let k 2 �2N and m 2 N. Then the function Hk;m WD HC
k;m C H�

k;m
(defined in (3.3) and (3.6) below) converges for all � 2 H [ .�H/. Furthermore, if
� 2 H we have

Hk;m.�/ D Fk;�m.�/;

and if � 2 �H we have

Hk;m.�/ D m1�k

�
EP2�k;m.��/� .4�/1�k

.�k/Š
P�
2�k;�m.��/

�
:

To prove Theorem 1.1, we determine the extension of the holomorphic and
non-holomorphic parts of Fk;�m separately, in Sects. 3.1 and 3.2, respectively. The
computation involving the holomorphic part closely follows [12], and the extension
is provided by the simple fact that

1

1 � q
D

8
ˆ̂̂
<

ˆ̂̂
:

X

n�0
qn if jqj < 1;

�
X

n�1
q�n if jqj > 1:

For the non-holomorphic part, the situation is similar, but somewhat more compli-
cated, and the extension is provided by the functional equation of the polylogarithm
Li1�k.q/ (defined in (3.5) below), namely

Lik�1.q/ D Lik�1
�
q�1� for k 2 �2N: (1.1)

Remark If one tries to mimic the computations of Sect. 3.2 in the case of half-
integral weight, the situation is complicated by the analogue of (1.1) for k … Z,
namely

i1�k Lik�1
�
e2� iu

�C ik�1 Lik�1
�
e�2� iu

� D .2�/k�1

�.k � 1/
�.2 � k; u/;

where �.2 � k; u/ denotes the Hurwitz zeta function. It is unclear whether the
resulting function in the lower-half plane has any relation to a known modular-type
object.

The paper is organized as follows. In Sect. 2 we recall the definitions and some
basic properties of harmonic Maass forms and Poincaré series. In Sect. 3 we prove
Theorem 1.1.
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2 Preliminaries

2.1 Harmonic Maass Forms

In this section we recall basic facts of harmonic Maass forms, first introduced by
Bruinier and Funke in [2]. We begin with their definition.

Definition For k 2 2N, a weight k harmonic Maass form for �0.N/ is any smooth
function f W H ! C satisfying the following conditions:

(1) For all
�

a b
c d

� 2 �0.N/ we have

f

�
a� C b

c� C d

�
D .c� C d/kf .�/:

(2) We have	k. f / D 0 where	k is the weight k hyperbolic Laplacian

	k WD �v2
�
@2

@u2
C @2

@v2

�
C ikv

�
@

@u
C i

@

@v

�
:

(3) There exists a polynomial Pf .�/ 2 CŒq�1
 such that

f .�/� Pf .�/ D O.e"v/

as v ! 1 for some " > 0. Analogous conditions are required at all cusps.

Denote the space of such harmonic Maass forms by Hk .�0.N//. Every f 2
Hk .�0.N// has an expansion of the form

f .�/ D f C.�/C f �.�/

with the holomorphic part having a q-expansion

f C.�/ D
X

n��1
cC

f .n/q
n

and the non-holomorphic part having an expansion of the form

f �.�/ D
X

n>0

c�
f .n/�.1 � k; 4�nv/q�n:

Here �.s; v/ is the incomplete gamma function defined, for v > 0, as the integral

�.s; v/ WD
Z 1

v

ts�1e�t dt: (2.1)
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2.2 Poincaré Series

In this section, we recall the definitions and properties of various Poincaré series.
The general construction is as follows. Let ' be any translation-invariant function,
which we call the seed of the Poincaré series in question. Then, in the case of
absolute convergence, we can define a function satisfying weight k modularity by
forming the sum

Pk.'I �/ WD
X

�2�
1

n�0.N/
'jk�.�/;

where �1 WD f˙ �
1 n
0 1

� W n 2 Zg is the group of translations. Convergence is, in
particular, satisfied by functions ' satisfying '.�/ D O.v2�kC"/ as v ! 0.

A natural choice for ' is a typical Fourier coefficient in the space of automorphic
functions one is interested in. For example, in the case of weakly holomorphic
modular forms one may choose, for m 2 Z,

'.�/ D 'm.�/ WD qm:

Define for k 2 2N with k > 2 and m 2 Z the Poincaré series of exponential type by

Pk;m.�/ WD Pk.'mI �/ D
X

�2�
1

n�0.N/
'mjk�.�/:

To give their Fourier expansion, we require the Kloosterman sums

K.m; nI c/ WD
X

d .mod c/�

e

 
md C nd

c

!
; (2.2)

where e.x/ WD e2� ix. A direct calculation yields the following duality:

K.�m;�nI c/ D K.m; nI c/:

A very useful property of the Poincaré series is that they have explicit Fourier
expansions, as given in the following theorem.

Theorem 2.1 Suppose that k > 2 is even.

i) If m 2 N, the Poincaré series Pk;m are in Sk.�0.N//. We have the Fourier
expansion Pk;m.�/ D P1

nD1 bk;m.n/qn; where

bk;m.n/ D
� n

m

� k�1
2

0

BB@ım;n C 2�.�1/ k
2

X

c>0
Njc

K.m; nI c/

c
Jk�1

�
4�

p
mn

c

�
1

CCA :
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Here ım;n is the Kronecker delta-function and Js denotes the usual J-Bessel
function.

ii) For m 2 �N, the Poincaré series Pk;m are elements of MŠ
k.�0.N//. We have the

Fourier expansion Pk;m.�/ D qm CP1
nD1 bk;m.n/qn; where

bk;m.n/ D 2�.�1/ k
2

ˇ̌
ˇ

n

m

ˇ̌
ˇ

k�1
2
X

c>0
Njc

K.m; nI c/

c
Ik�1

 
4�
pjmnj

c

!
:

Here Is denotes the usual I-Bessel function. Moreover, Pk;m is holomorphic at
the cusps of �0.N/ other than i1.

We next turn to the construction of harmonic Maass forms via Poincaré series. Such
series have appeared in many places in the literature, indeed in the works of Niebur
[8] and Fay [3] in the 1970’s, long before the recent advent of harmonic Maass
forms. Define

Fk;m WD
X

�2�
1

n�0.N/
�k;mjk�;

where the seed �k;m is given by

�k;m.�/ WD �
1 � ��.1 � k; 4�jmjv/�qm:

Here �� is the normalized incomplete gamma function

��.s; v/ WD �.s; v/

�.s/
:

The analogous exact formula for coefficients of these Poincaré series is then given
in the following theorem (see, e.g., [3] or [1] for a proof).

Theorem 2.2 If k < 0 is even and m 2 �N, then Fk;m 2 Hk.�0.N//. We have

�k .Fk;m/ D � .4�m/1�k

.�k/Š
P2�k;�m

and

D1�k .Fk;m/ D m1�kP2�k;m:
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We have the Fourier expansion

Fk;m.�/ D �
1 � ��.1 � k;�4�mv/

�
qm

C
1X

nD0
aC

k;m.n/q
n C

1X

nD1
a�

k;m.n/�
�.1 � k; 4�nv/q�n

with

aC
k;m.0/ D .2�/2�k.�1/ k

2C1m1�k

.1 � k/Š

X

c>0
Njc

K.m; 0I c/

c2�k
:

Moreover, for n � 1 and " 2 fC;�g, we have

a"k;m.n/ D 2�.�1/ k
2

ˇ̌
ˇ
m

n

ˇ̌
ˇ
1�k
2
X

c>0
Njc

K.m; "nI c/

c
�

8
ˆ̂<

ˆ̂:

I1�k

�
4�

pjmnj
c

�
if "n > 0;

J1�k

�
4�

pjmnj
c

�
if "n < 0:

3 Proof of Theorem 1.1

To prove Theorem 1.1, we consider the holomorphic and non-holomorphic parts of
Fk;�m separately.

3.1 The Holomorphic Part

We first extend the holomorphic part FC
k;�m of Fk;�m to a function defined for jqj ¤ 1,

closely following [12]. Using Theorem 2.2, we have, for jqj < 1,

FC
k;�m.�/

D q�m C aC
k;�m.0/C 2�.�1/ k

2 m
1�k
2

X

c>0
Njc

1

c

X

d .mod c/�

e

 
�md

c

!
AC

m .c; d/;

where

AC
m .c; d/ D AC

m .c; dI �/ WD
X

n�1
n

k�1
2 I1�k

�
4�

p
mn

c

�
�nd

c qn: (3.1)
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Using the series expansion of the I-Bessel function

I˛.x/ D
X

j�1

1

jŠ�. j C ˛ C 1/

� x

2

�2jC˛
;

we obtain

n
k�1
2 I1�k

�
4�

p
mn

c

�
D
X

j�0
ˇC

m;c. j/
nj

jŠ
;

where

ˇC
m;c. j/ WD

�
2�

p
m

c

�2jC1�k

. j C 1 � k/Š
:

We insert the integral representation (for r > 0)

nj

jŠ
D 1

2�i

Z

jsjDr

ens

sjC1 ds; (3.2)

and we conclude that

n
k�1
2 I1�k

�
4�

p
mn

c

�
D 1

2�i

Z

jsjDr
˛C

m;c.s/e
ns ds;

where ˛C
m;c.s/ is the series

˛C
m;c.s/ WD

X

j�0

ˇC
m;c. j/

sjC1 ;

which is absolutely convergent for all s. Equation (3.1) then becomes

AC
m .c; d/ D 1

2�i

Z

jsjDr
˛C

m;c.s/
X

n�1

�
es�d

c q
�n

ds D 1

2�i
�d

c q
Z

jsjDr

˛C
m;c.s/e

s

1 � es�d
c q

ds:

Here we take r sufficiently small so that jes�d
c qj < 1. Define

�C
k;m.c; dI �/ WD 1

2�i

Z

jsjDr

˛C
m;c.s/e

s

1 � es�d
c q

ds:
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We can now define the function which exists away from the real line. To be more
precise, since �C

k;m is regular for all v ¤ 0, the function

HC
k;m.�/ WD q�m C aC

k;�m.0/

C 2�.�1/ k
2 m

1�k
2

X

c>0
Njc

1

c

X

d .mod c/�

e

 
�md C d

c
C �

!
�C

k;m.c; dI �/ (3.3)

is defined for � 2 H [ .�H/.
We now consider the Fourier expansion of the function HC

k;m.�/ for � in the lower
half-plane, so suppose for the remainder of the proof that v < 0. In this case, we
have

�d
c q �C

k;m.c; dI �/ D 1

2�i

Z

jsjDr
˛C

m;c.s/
es�d

c q

1 � es�d
c q

ds

D � 1

2�i

Z

jsjDr
˛C

m;c.s/
X

n�0

�
es�d

c q
��n

ds;

where r is chosen so that je�sq�1j < 1. By reversing the calculation which led
to (3.3), making the change of variables s 7! �s, and using that I1�k.�ix/ D
i1�kJ1�k.x/, we find that

�d
c q �C

k;m.c; dI �/ D �ˇC
m;c.0/�

X

n�1

0

@
X

j�0
.�1/ jˇC

m;c. j/
n j

jŠ

1

A e

��nd

c

�
q�n

D �ˇC
m;c.0/�

X

n�1
e

��nd

c

�
n

k�1
2 J1�k

�
4�

p
mn

c

�
q�n:

Thus we have

HC
k;m.�/

D q�m C aC
k;�m.0/� 2�.�1/ k

2 m
1�k
2

X

c>0
c�0 .mod N/

1

c

X

d .mod c/�

e

 
�md

c

!
ˇC

m;c.0/

� 2�.�1/ k
2

X

n�1

0
BB@
� n

m

� k�1
2
X

c>0
Njc

K.�m;�nI c/

c
J1�k

�
4�

p
mn

c

�
1
CCA q�n: (3.4)
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Note that the second and the third terms on the right-hand side of (3.4) cancel, since

�2�.�1/ k
2 m

1�k
2

X

c>0
Njc

1

c

X

d .mod c/�

e

 
�md

c

!
ˇC

m;c.0/

D .2�/2�k.�1/ k
2C1m1�k

.1 � k/Š

X

c>0
Njc

K.�m; 0I c/

c2�k
D �aC

k;�m.0/:

By (2.2), we conclude that

HC
k;m.�/ D q�m �

X

n�1

�m

n

�1�k

�

0

BB@2�.�1/
k
2

� n

m

� 1�k
2
X

c>0
Njc

K.m; nI c/

c
J1�k

�
4�

p
mn

c

�
1

CCA q�n

D m1�k

0

@mk�1q�m C
X

n�1
nk�1b2�k;m.n/q

�n

1

A D m1�kEP2�k;m.��/

if � is in the lower half-plane.

3.2 The Non-holomorphic Part

Next we extend the non-holomorphic part F�
k;�m.�/ to a function H�

k;m.�/, which is
defined for jqj ¤ 1. We have, by Theorem 2.2,

F�
k;�m.�/ D ���.1 � k; 4�mv/q�m

C 2�.�1/ k
2 m

1�k
2

X

c>0
Njc

1

c

X

d .mod c/�

e

 
�md

c

!
A�

m.c; dI �/;

where

A�
m.c; d/ D A�

m.c; dI �/

WD
X

n�1
n

k�1
2 e

��nd

c

�
J1�k

�
4�

p
mn

c

�
��.1 � k; 4�nv/q�n:
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Using the integral representation of the incomplete Gamma function and making a
change of variables, we find that

�.1� k; y/ D y1�k
Z 1

1

t�ke�ytdt;

thus

A�
m.c; d/ D .4�v/1�k

.�k/Š

Z 1

1

t�k
X

n�1
n
1�k
2 J1�k

�
4�

p
mn

c

�
e�4�nvt

�
�d

c q
��n

dt:

As above, we use the series expansion of the J-Bessel function

J˛.x/ D
X

j�1

.�1/ j

jŠ�. j C ˛ C 1/

� x

2

�2jC˛

to obtain

n
1�k
2 J1�k

�
4�

p
mn

c

�
D n1�k

X

j�0
ˇ�

m;c. j/
n j

jŠ
;

where

ˇ�
m;c. j/ WD .�1/ j

. j C 1 � k/Š

�
2�

p
m

c

�2jC1�k

:

Thus we have, again using (3.2),

n
1�k
2 J1�k

�
4�

p
mn

c

�
D 1

2�i

Z

jsjDr
n1�kens˛�

m;c.s/ds;

where

˛�
m;c.s/ WD

X

j�0

ˇ�
m;c. j/

sjC1 :

Here r is chosen so that r < 2�v. Thus

A�
m.c; d/D .4�v/1�k

.�k/Š

Z 1

1

t�k

0

@ 1

2�i

Z

jsjDr
˛�

m;c.s/
X

n�1
n1�k

�
es�4�vt��d

c q�1�n
ds

1

A dt

D .4�v/1�k

.�k/Š

Z 1

1

t�k

�
1

2�i

Z

jsjDr
˛�

m;c.s/Lik�1
�
es�4�vt��d

c q�1� ds

�
dt:



Images of Maass-Poincaré Series in the Lower Half-Plane 21

Here Lis.w/ is the polylogarithm, defined for s 2 C and jwj < 1 by

Lis.w/ WD
1X

nD1

wn

ns
: (3.5)

We now again introduce a function defined away from the real line. Define

��
k;m.c; dI �/ WD 1

2�i

Z 1

1

t�k
Z

jsjDr
˛�

m;c.s/Lik�1
�
es�4�vt��d

c q�1� ds dt

and

H�
k;m.�/ WD ���.1 � k; 4�mv/q�m

C 2�.�1/ k
2 .4�v/1�k

.�k/Š
m

1�k
2

X

c>0
Njc

1

c

X

d .mod c/�

e

 
�md

c

!
��

k;m.c; dI �/: (3.6)

Using the functional equation

Li�n.z/ D .�1/nC1Li�n

�
1

z

�
;

we obtain, for v < 0, and using that k is even,
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Since v < 0 we can now use the series representation of Lik�1. This yields
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Adt:

The innermost integral is (inserting the definition of ˛�
m;c.s/, making the change of

variables s 7! �s, and using (3.2))
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Thus

A�
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Therefore, using that K.m; nI c/ is real, we conclude that
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