
Elementary Introduction to p-Adic Siegel
Modular Forms

Siegfried Böcherer

Abstract We give an introduction to the theory of Siegel modular forms mod p
and their p-adic refinement from an elementary point of view, following the lines
of Serre’s presentation (J.-P. Serre, Formes modulaires et fonctions zeta p-adiques.
In: Modular Functions of One Variable III. Lecture Notes in Mathematics, vol. 350.
Springer, New York, 1973) of the case SL(2).

1 Introduction

In the late sixties of the last century Serre [18] and Swinnerton-Dyer [22] created
a theory of p-adic modular forms, which was soon reformulated and refined by
Katz [12] in a geometric language. Later on S. Nagaoka and others started to
generalize that theory (in the classical language) to Siegel modular forms. In these
notes we give a naive introduction, emphasizing level changes and generalizations of
Ramanujan’s theta operator (i.e. derivatives). Compared with the theory for elliptic
modular forms at some points new techniques are necessary. Also some aspects do
not appear at all in the degree one case, in particular mod p singular modular forms
and also vector-valued modular forms. We will focus on the scalar-valued modular
forms, but the vector-valued case will arise naturally in the context of derivatives.
We will not enter into the intrinsic theory for the vector-valued case (see e.g. [11]
and other papers by the same author); all vector-valued modular forms which appear
in our notes arise from scalar-valued ones.

Our naive point of view is that p-adic modular forms encode number theoretic
properties (congruences) of Fourier coefficents of Siegel modular forms. We
understand that there is a much more sophisticated geometric point of view; in these
notes we completely ignore the geometric theory (see e.g. [11, 24, 25]).
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2 Basics on Siegel Modular Forms

Mainly to fix notation, we summarize basic facts on Siegel modular forms here. The
reader should consult [1, 9, 14] for details.

The symplectic group

Sp.n;R/ WD fM 2 GL.2n;R/ j JnŒM� D Jng

acts on the Siegel upper half space

Hn WD fZ D Zt D X C iY 2 C
.n;n/ j Y > 0g

by

.M; Z/ 7�! M < Z >WD .AZ C B/.CZ C D/�1:

Here Jn denotes the alternating form given by the 2n � 2n matrix Jn WD
�

0n �1n

1n 0n

�

and for matrices U; V we put UŒV� WD VtUV whenever it makes sense; we

decompose the matrix M into block matrices of size n by M D
�

A B
C D

�
.

There are good reasons to look at vector-valued automorphy factors:
For a finite-dimensional polynomial representation � W GL.n;C/ �! GL.V�/ we

consider V D V�-valued functions F W Hn �! V; the group Sp.n;R/ acts on such
functions from the right via

�
F j� M

�
.Z/ WD �.CZ C D/�1F.M < Z >/:

As usual, we write jk M instead of F j� M if � D detk.
We write �n D Sp.n;Z/ for the full modular group and for N � 1 we define the

principle congruence subgroup of level N by

�.N/ WD fM 2 �n j M � 12n mod Ng:

We will denote by � any group which contains some �.N/ as a subgroup of finite
index; typically we will consider the groups

�0.N/ WD f
�

A B
C D

�
2 �n j C � 0 mod Ng
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and

�1.N/ WD f
�

A B
C D

�
2 �n j C � 0 mod N; det.A/ � det.D/ � 1 mod Ng:

The space Mn
�.�/ of Siegel modular forms of degree n for � consists of all

holomorphic functions F W Hn �! V , which satisfy the transformation properties
F j� � D F for all � 2 �; only for n D 1 we need additional conditions in the
cusps, for n > 1 such conditions are automatically satisfied (“Koecher principle”).

The functions F 2 Mn
�.�/ are periodic, i.e. F.Z CS/ D F.Z/ for all S 2 N �Z.n;n/

sym ,
their Fourier expansion is then conveniently written in the form

F.Z/ D
X

T

aF.T/e2� i 1
N trace.TZ/: (1)

Here T runs over the set ƒn� of all symmetric half-integral matrices of size n, which
are positive semidefinite.

If we want to emphasize the formal aspects of such a Fourier expansion, then we
can view (1) as a formal series as follows:

With Z D .zij/ 2 Hn we put qi;j D e2�
p�1zij and we write for T 2 ƒn�

qT WD
Y
i<j

q
2tij
ij

Y
j

q
tjj
jj :

We consider the qij as formal variables and we may then view

X
T

aF.T/qT

as an element of

CŒqij; q�1
ij ŒŒq1; : : : ; qn�� with qj WD qjj:

We mention two typical examples of number-theoretic interest:

Example 1 (Siegel Eisenstein Series) We consider � D detk with an even integer
k > n C 1 and

En
k.Z/ WD

X
M

1 jk M D
X

M

det.CZ C D/�kI

here M runs over Sp.n;Z/1nSp.n;Z/, where Sp.n;Z/1 is defined by the condition
C D 0.

This defines an element of Mn
k .�n/ with rational Fourier coefficients with

bounded denominators (this is not obvious!).
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Example 2 (Theta Series) Let S 2 2 � ƒm
> be a positive definite even integral matrix

of size m D 2k and of level N (i.e. N is the smallest positive integer such that
N � S�1 2 ƒm

>). Then

#n
S .Z/ WD

X
R2Z.m;n/

e� itrace.XtSXZ/

defines an element of

Mn
k .�0.N/; �S/ WD fF 2 Mn

k .�1.N// j F jk � D �S.det.D// � F 8� 2 �0.N/g

with the quadratic character

�S.:/ D
�

.�1/k det.S/

:

�
:

It is obvious that such theta series have integral Fourier coefficients.
For a subring R of C we denote by Mn

k .�/.R/ the R submodule of all modular
forms with all their Fourier coefficients in R. This notion can be extended in an
obvious way to the vector-valued case after fixing a basis of the representation space
of �.

Let �N denote a primitive root of unity and denote by O�N the ring of integral
elements in the N-th cyclotomic field. Then we have the following

Fundamental Property

Mk.�.N// D Mn
k .�.N//.O�N / ˝ C;

in particular, the field of Fourier coefficients of a modular form is finitely gen-
erated and all modular forms and the Fourier coefficients of a modular form in
Mn

k .�.N//.Q/ have bounded denominators.
The property above will be crucial at several points below (sometimes implicitly).

We take this for granted and refer to the literature [20]. In some cases (squarefree
levels and large weights) elementary proofs are available, using the solution of
the basis problem (“all modular forms are linear combinations of the theta series
introduced above”, see [3]).

Remark We note here two important differences between elliptic modular forms
and Siegel modular forms of higher degree:

No Obvious Normalization For n > 1 there is no good notion of “first Fourier
coefficient” and (even for Hecke eigenforms) we cannot normalize modular forms
in a reasonable arithmetic way (note that a normalization by requesting the Petersson
product to be one is not an arithmetic normalization!).

Hecke Eigenvalues and Fourier Coefficients Fourier coefficients and Hecke
eigenvalues are different worlds for n > 1. We briefly explain the reason in the
simplest case (scalar-valued modular forms of level one): For g 2 GSpC.n;Q/ with
gtJng D 	 �Jn we consider for �n D Sp.n;Z/ the double coset �n �g ��n D S

�n �gi
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with representatives gi D
�

Ai Bi

0 Di

�
with At

i � Di D 	. Then we define a Hecke

operator acting on F 2 Mn
k .�n/ by

F 7�! G WD F j �n � g � �n WD
X

i

det.Di/
�kF..Ai � Z C Bi/ � D�1

i :/

We may plug in the Fourier expansion F D P
aF.T/qT and we get for the Fourier

coefficients of aG.S/ a formula of type

aG.S/ D a linear combination of aF.T/ with D�1
i TAi D S;

in particular, S and T are rationally equivalent up to a similitude factor.
The conclusion is that Hecke operators give relations between Fourier coeffi-

cients only within a rational similitude class of positive definite matrices T 2 ƒn
>.

For n � 2, the set ƒn
> however decomposes into infinitely many such rational

similitude classes. In some sense this is a situation similar to the perhaps more
familiar case of degree one modular forms of half-integral weight.

Our aim here will be to study congruences among Fourier coefficients of Siegel
modular forms (not congruences among eigenvalues!).

The reader interested in congruences for eigenvalues should consult the work of
Katsurada [13], who studies congruences between eigenvalues of different types of
automorphic forms (lifts and non-lifts); in a different direction (connection to Galois
representations) one may look at the work of Weissauer [23].

3 Congruences

3.1 The Notion of Congruences of Modular Forms

For a prime p we denote by 
p the (additive) p-adic evaluation 
p W Q �! Z[ f1g,
normalized by 
p. pt/ D t. For a modular form F D P

T aF.T/qT 2 Mn
k .�1.N//.Q/

we put


p.F/ WD inff
p.aF.T// j T 2 ƒng:

By the boundedness of denominators, this number is > �1.
We defined this notion only for scalar-valued modular forms with Fourier

coefficients in Q, but we can easily generalize it to modular forms with Fourier
coefficients in C by extending 
p to the field generated by the Fourier coefficients.
Furthermore, we can define it also for vector-valued modular forms after fixing
coordinates and taking the minimum of 
p on the coordinates (this depends on the
choice of coordinates!).
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Definition For F; G 2 Mn
k .�1.N//.Q/ we define

F � G mod pm ” 
p.F � G/ > 
.F/ C m:

Note that this definition avoids trivial congruences.

Remark In case of Hecke eigenforms, such congruences for modular forms imply
congruences for eigenvalues (but not the other way around!).

3.2 Congruences and Weights

A first observation is that such congruences cannot occur among modular forms of
arbitrary weights:

Theorem I For a prime p and a positive integer N coprime to p we consider � D
�1.N/\�0. pl/. Then for Fi 2 Mn

ki
.�/. with i D 1; 2 a congruence F1 � F2 mod pm

implies a congruence among the weights:

k1 � k2 mod

�
. p � 1/pm�1 if p 6D 2

2m�2 if p D 2; m � 2:

For n D 1 this is a result of Katz [12, Corollary 4.4.2]. The case of general degree
can be deduced from that by associating to F and G suitable elliptic modular forms
f and g with the same weights (possibly with larger level) and satisfying the same
congruence (see [6] for details).

As a special case, we mention

Corollary For an odd prime p a modular form F 2 Mn
k .�/.Q/ with � as above, can

be congruent mod pm to a constant only if . p � 1/ � pm�1 j k holds.

3.3 Mod p Singular Modular Forms

Singular modular forms are a topic which is specific for higher degree, see [9]; there
is an analogue mod p:

Definition We call a modular form F D P
aF.T/qT 2 Mn

k .�/.Q/ with 
p.F/ D 0

a mod p-singular modular form of rank r, 0 � r � n � 1 iff aF.T/ � 0 mod p for
all T 2 ƒn with rank.T/ > r and if there exists T0 2 ƒn with rank.T0/ D r such
that aF.T0/ ¤ 0 mod p.

Theorem II If F 2 Mn
k .�0.N// is mod p singular of rank r, then

2k � r � 0 mod . p � 1/pm�1

if p is odd.
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The proof is inspired by the method used to prove a similar statement for true
singular modular forms [9]: One considers a Fourier-Jacobi-expansion F.Z/ DP

S2ƒr
�

�S.z1; z2/e2� itrace.Sz4/ with

Z D
�

z1 z2

zt
2 z4

�
; z1 2 Hn�r; z4 2 Hr:

We choose T0 2 ƒn with rank r such that aF.T0/ ¤ 0 mod p; without loss of

generality we may assume that T0 equals

�
0 0

0 So

�
with So 2 ƒr

>. The “theta

expansion” of the special Fourier-Jacobi coefficient �S0 allows us to arrive at a
modular form h of degree r and weight k � r

2
which is constant mod p. We may

then apply the corollary to h2.

Example Let S be a positive definite even integral quadratic form in m variables.
We assume that S has an integral automorphism � of order p (the existence of such
quadratic forms will be considered below). Let l be the maximal number of linearly
independent fixed points of � . Then #n

S is mod p singular of rank l.
Other types of examples can be constructed using Siegel Eisenstein series; here

divisibility properties of certain Bernoulli numbers play an important role, see [4].

3.4 Existence Theorem

In degree 1 the Clausen-von Staudt property of Bernoulli numbers Bp�1 implies that
the Eisenstein series of weight p � 1

Ep�1.z/ D 1 � 2p � 2

Bp�1

X
nD1

0
@X

djn
dp�2

1
A e2� inz

is congruent 1 mod p for p � 5. In higher degree the situation is more complicated,
the Siegel Eisenstein series of weight p � 1 is not necessarily congruent 1 modulo p
for irregular primes, see [16].

Before stating a general existence theorem we introduce the “zero dimensional
cusps” for a group �0. p/. It is a consequence of the Bruhat decomposition for the
symplectic group over a finite field that a complete set of representatives for the
double cosets

�0. p/nSp.n;Z/=Sp.n;Z/1
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is given by the n C 1 elements

!i WD

0
BBB@

0i 0

0 1n�i

�1i 0

0 0n�i

1i 0

0 0n�i

0i 0

0 1n�i

1
CCCA .0 � i � n/: (2)

The theorem below assures the existence of level p modular forms congruent to
1 mod p and with nice behaviour mod p in the other cusps. This is a very usefull
technical tool. The proof will be based on the existence of certain quadratic forms
with automorphisms of order p. The advantage of theta series (when compared with
Eisenstein series) is that the Fourier expansions in all cusps are accessible. This
point of view is new even for degree one.

We briefly recall the theta transformation formula relevant for us: Let S be an
even integral symmetric matrix, positive definite, det.S/ D p2r of size m D 2k and
0 � j � n. Then

#n
S jk !j D w.S/j � p�jr

X
X

e� iSŒX�Z :

Here w.S/ D ˙1 is the Hasse-Witt invariant of S and X runs over

S�1 � Zm � � � � � S�1 � Zm„ ƒ‚ …
j

�Z
m : : :Zm„ ƒ‚ …

n�j

:

Theorem III

a) p odd: 9F 2 Mn
p�1.�0. p// W F � 1 mod p

b) p � n C 3 W 9Fp�1 2 Mn
p�1.Sp.n;Z// W Fp�1 � 1 mod p

c) p � n C 3 W 9kp W 9F 2 Mn
kp

.�0. p// W

F � 1 mod p and F jkp !i � 0 mod p .1 � i � n/:

Proof (sketch)

a) We consider the root lattice

Ap�1 WD f.x1; : : : ; xp/ 2 Z
p j

X
i

xi D 0g

inside the standard euclidean space R
p. We can act on this lattice by the

symmetric group Sp; the only lattice point fixed by a � 2 Sp of order p is 0.
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In particular, the orthogonal sum Ap�1 ? Ap�1 corresponds to an even integral
positive definite symmetric matrix S of determinant p2 with an (integral)
automorphism of order p without nontrivial fixed point. The theta series #n

S has
the requested properties [5].

b) We put T WD p � S�1 with S from above, then

Fp�1 WD ˙p. p�2/n� n.nC1/
2

X
�2�0. p/2nSp.n;Z/

#n
T jp�1 �:

The sign depends on the Hasse invariant of the underlying quadratic space.
c) This is more complicated: One has to use not only the lattice Ap�1 ? A�1 but

several lattices L1 : : :LnC1 with determinants p2; : : : ; p2nC2 (all with automor-
phisms of order p without nonzero fixed points). One can construct such lattices
from certain ideals in the cyclotomic field generated by p-th roots of unity. In a
first step one may then use linear combinations of theta series for such lattices to
construct modular forms Gi 2 Mn

p�1.�0. p// such that

Gi jp�1 !j � 1 mod p .0 � j � i/

Gi jp�1 !iC1 � 0 mod p:

Typically, the Gi have high powers of p in the denominators of their Fourier
coefficients in the cusps !j with j > i C 1. We may then construct Fkp by taking
suitable products of powers of the Gi.

3.5 The Ring of Modular Forms Mod p d’après Raum-Richter

The existence theorem above is an ingredient in the following beautifull recent result
(the proof goes beyond our elementary approach).

We define the ring QMn;p of modular forms mod p as the image of the ring
˚kMn

k .�n/.Z. p// under the reduction mapQmod p

F D
X

aF.T/qT 7�!
X

T

AaF.T/qT :

After Faltings/Chai the ring ˚kMn
k .�n/.Z. p// of modular forms with coefficients in

Z. p/ is finitely generated:

˚kMn
k .�n/.Z. p// ' Z. p/ŒX1; : : : ; Xr�=C

with some ideal C describing the relations. One may in particular write the modular
form Fp�1 as a polynomial B in the generators X1; : : : Xr (or rather their images
mod C).
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Theorem of Raum-Richter [17]
For p � n C 3 we have

QMn;p ' FpŒX1; : : : ; Xr�= QCC < QB � 1 > :

We can rephrase this by saying that by reduction mod p, the only new relation
among the generators is the one coming from Fp�1 � 1 mod p.

4 p-Adic Modular Forms and Level Changes

Definition A formal series

F D
X

T2ƒn
�

a.T/qT .a.T/ 2 Zp/

is called p-adic modular form if there is a sequence Fj of level one modular forms
Fj 2 Mn

kj
.Sp.�n//.Z. p// such that the sequence .Fj/ converges p-adically to F, i.e.


p.F � Fj/ �! 1, which means that all the sequences aFj.T/ converge p-adically
to a.T/ uniformly in T.

Some Comments

• It follows from our Theorem I that such a p-adic modular form has a weight in
Z=. p � 1/ � Z � Zp.

• One can generalize the notion of p-adic modular form to the vector-valued case
in an obvious way.

• Clearly, all level one Siegel modular forms with Fourier coefficients in Zp are
p-adic modular forms.

• It can happen, that such a p-adic limit is itself a modular form, possibly with
nontrivial level: A nice example is exhibited by Nagaoka [15] following an
observation by Serre in the degree one case [18]: the sequence of Eisenstein
series

�
En

km

�
m2N with km D 1 C p�1

2
pm�1 converges p-adically to a weight one

modular form for �0. p/, if p � 3 mod 4, more precisely, it is proportional to
the genus Eisenstein series for the genus of positive binary quadratic forms of
discriminant �p.

Proposition All modular forms F 2 Mn
k .�0. p//.Z. p// are p-adic (p any odd prime).

We give here a proof for p � n C 3 and refer to [7] for a different proof covering
the general case.

We use the existence of a modular form Fkp as in Theorem IIIc)
and we consider for N 2 N a “trace function”

GN WD
X

�2�0. p/nSp.n;Z/

�
F � FN

kp

�
jkCNkp �:



Elementary Introduction to p-Adic Siegel Modular Forms 327

According to (2), GN decomposes naturally into n C 1 summands

GN D
X

i

GN;i with GN;i WD
X

�i

�
F � FN

kp

�
jkCNkp .!i � �i/;

where the �i run over certain elements of Sp.n;Z/1.
For i � 1 we have 
p.FN

kp
jNkp/ � N and therefore GN;i will be divisible by a

high power of p if N is large (the denominators which possibly appear in the Fourier
expansion of F jk !i will be compensated. As for GN;0 D F � FN

kp
we observe that

FN
kp

is congruent one modulo pm provided that N is chosen as N D pm�1.
We therefore get that GN is a level one form congruent to F modulo a high power

of p provided that N D pm with m sufficiently large.
The proposition can be generalized to prime power levels:

Proposition A modular form F 2 Mn
k .�0. pm// is p-adic ( p odd, m arbitrary).

We can use the U. p/-operator, defined on Fourier series by

X
a.T/q 7�!

X
a. p � T/qT :

Such an operator maps modular forms for �0. pm/ to modular forms for �0. pm�1/,
provided that m � 2. It is sufficient to show that F is congruent to a modular form
for �0. pm�1/ modulo high powers of p, m � 2. One can start from the elementary
observation

Fp j U. p/ � F mod p

and then apply the same procedure (with F as in Theorem IIIa)) to

1

p
.F � F � Fp j U. p//

to get a congruence mod p2; iteration gives the desired result; this proof is a
straightforward generalization of the one by Serre [19] for degree one.

Remark There is a delicate difference between the two propositions: the first one
generalizes in an obvious way to vector-valued situations, whereas for the second
proposition a substitute for taking a p-th power is necessary. A natural choice is
taking the p-th symmetric tensor; one can get results along this line, but the notion
of p-adic modular form has to be generalized, because one varies the representation
space V�.
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5 Derivatives

In general, derivatives of modular forms are not modular (by derivatives we mean
here holomorphic derivatives!)

But there are bilinear holomorphic differential operators, usually called “Rankin-
Cohen” operators, e.g. for n D 1 and integral weights k; l with l 6D 0

Œ ; �k;l W
(

M1
k .�/ � M1

l .�/ �! M1
kClC2.�/

. f ; g/ 7�! 1
2� i

�
f 0 � g � k

l f � g0�

We explain how one can use such Rankin-Cohen-operators to prove that derivatives
of modular forms are p-adic modular forms; our proof is different from the usual one
which uses the Eisenstein series of weight 2, see [18]; note that we cannot expect
in higher degree to find a function analogous to the weight 2 Eisenstein series.
We advertise here that the Rankin-Cohen operators, together with modular forms
congruent one mod p are an appropriate substitute, which also works in higher
degree.

To get a congruence mod p in degree one, we may use

Œ f ;F �k;p�1 � 1

2�i
f 0 mod p

with F as in Theorem IIIa). For congruences mod pm, this does not work with
Fpm�1

, because of l D . p � 1/pm�1 in the denominator of the Rankin-Cohen-
operator. We can avoid this problem, if we use the operator V , defined by g j
V.t/.z/ WD g.t � z/ and consider

Œ f ;Fpm�1 j V. pm/�k;. p�1/pm�1 � 1

2�i
f 0 mod pm:

Here we increase the level by the operator V. pm/; this can be avoided by using a
modular form H of level one and some weight h satisfying

H � Fpm�1 j V. pm/ mod pm:

Then Œ f ;H�k;h � 1
2� i f

0 mod pm holds. Note that the existence of H is assured by our
proposition and by Theorem I, the weight of H is under control. Clearly this line of
reasoning also works for higher derivatives. Furthermore, this proof contains all the
ingredients for generalization to higher degree:

First we introduce a symmetric n � n matrix @ of partial derivatives on Hn:

.@/i;j WD
8<
:

@
@zii

if i D j

1
2

@
@zij

if i ¤ j
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We fix a weight k and a (possibly vector-valued) automorphy factor � and l D
. p � 1/pm�1 with suitable m. Let Hol.Hn; V�I j�/ denote the vector space of all
holomorphic V�-valued functions on Hn, equipped with the action of Sp.n;R/

defined by the automorphy factor �; if � D detk, we just write Hol.HnI jk/ We
consider a bilinear holomorphic differential operator

Œ ; �k;l W Hol.HnI jk/ � Hol.HnI jl/ �! Hol.Hn; V�; j�˝detkCl /;

which is equivariant for the action of Sp.n;R/, i.e.

ŒF jk g; G jl g�k;l D ŒF; G�k;l j�˝detkCl g

for all holomorphic functions F; G and all g 2 Sp.n;R/, in particular, it maps
.F; G/ 2 Mn

k .�/ � Mn
l .�/ to an element of Mn

�˝detkCl.�/.

We impose the following three conditions

(RC1) ŒF; G�k;l is a polynomial in the derivatives of F and G, more precisely,
there exists a V�-valued polynomial with rational coefficients in two matrix
variables R1; R2 2 C

n;n
sym, homogeneous of degree 	, such that

ŒF; G�k;l D .2�i/�	P.@Z1 ; @z2 /.F.Z1/ � G.Z2//jZDZ1DZ2

(RC2) We write P D P
j Pj where the Pj are homogenous of degree j when

viewed as polynomials in the second variable R2 alone. Then P0 should be
independent of l.

(RC3) The coefficients of P depend continuously on l (p-adically)

Comment The existence of such bilinear differential operators is not a problem
if we stay away from finitely many values of k and l; this is a matter of invariant
theory, see [8, 10]. The condition (RC2) however is delicate and has to be checked
case by case as far as I can see.

Using such a Rankin-Cohen operator, we can now define analogues of Ramanu-
jan’s theta-operator

f D
X

atq
t 7�! . f / D 1

2�i
f 0 D

X
t

t � a.t/qt:

For a Rankin-Cohen operator Œ ; �k;l and F 2 Mn
k .�/ we define a V�-valued

operator by

‚k;�.F/ WD .2�i/�	P0.F/:

Exactly by the same reasoning as for degree one we may show now
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Theorem IV For a modular form F 2 Mn
k .Sp.n;Z//.Z. p// and a Rankin-Cohen

operator Œ ; �k;l with properties (RC1). (RC2), (RC3) the theta operator defines a
V�-valued p-adic modular form ‚k;�.F/:

To explain our principle examples, we introduce some convenient notation
following [9, III.§6]: For 0 � i � n and a n � n matrix A let AŒi� be the matrix
of size

�n
i

� � �n
i

�
consisting of the determinants of all submatrices of size i.

Examples For 0 � i � n and F D P
aF.T/qT 2 Mn

k .�/ we put

‚Œi�F WD
X

T

aF.T/ � T Œi�qT

For F 2 Mn
k .�0. pr//.Z. p// this expression ‚Œi�.F/ is congruent mod pm to a level

one modular form with automorphy factor

kC. p�1/pm0

det ˝.

r‚ …„ ƒ
2; : : : ; 2; 0; : : : ; 0/„ ƒ‚ …highest weight of �

for a sufficiently large m0, in particular, ‚Œi�F is a p-adic (vector-valued) modular
form. This is in particular true for

‚Œn�.F/ D
X

T

aF.T/ det.T/qT

and

‚Œ1�.F/ D
X

T

aF.T/ � TqT :

In fact, the corresponding Rankin-Cohen bracket for ‚Œi�.F/ can be constructed
completely explicitly: We define polynomials Qi;j.R; S/ in variables R; S 2 C

.n;n/
sym by

.R C xS/Œi� D
iX

jD0

Qi;j.R; S/xj:

Then there is an explicit linear combination of the

Qi;j.@Z1 ; @z2 /.F.Z1// � G.Z2/Z1DZ2

with leading term .‚Œi�F/ � G.

Remark If F 2 Mn
k .�/.Z. p// is mod p singular of rank r, then ‚ŒrC1�.F/ � 0 mod p

holds, but not only mod p singular modular forms have this property: let S be a
positive definite quadratic forms in m D 2k variables with rankFp.S/ D n � j < n;
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we assume that S has no nontrivial integral automorphism. The theta series #n
S DP

T a.T/qT is not mod p singular, because a.S/ D 2. On the other hand, one has

‚Œn�jC1�#n
S � � � � � ‚Œn�#n

S � 0 mod p:

6 Outlook: Quasimodular Forms

There is a sophisticated theory of nearly holomorphic modular forms due to Shimura
[21]; they behave like modular forms, but they are no longer holomorphic: they are
polynomials in the entries of Y�1 with holomorphic coefficients. A very famous
example is the nonholomorphic Eisenstein series of weight 2:

1 � 3

�iy
� 24

X
�1.n/qn:

A quasimodular form is then defined as the constant term of such a nearly
holomorphic function. Using the calculus of Rankin-Cohen operators and the
full theory of nearly holomorphic modular forms, one can then show that such
quasimodular forms are also p-adic modular forms [2].
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