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Preface

This volume presents the proceedings of the conference L-Functions and Auto-
morphic Forms that took place from February 22 to 26, 2016 at the University
of Heidelberg, Germany. The theory of automorphic forms and their associated
L-functions is one of the central research areas in modern number theory, linking
number theory, arithmetic algebraic geometry, representation theory, and complex
analysis in many profound ways. It is an area of enduring interest to a wide
class of mathematicians. The present volume contains carefully refereed articles
by leading experts in the field, giving new and original results. The topics include
automorphic L-functions and their special values, p-adic modular forms, Eisenstein
series, Borcherds products, automorphic periods, and many more.

In addition, four preparatory courses took place in the week before the confer-
ence, with the aim to introduce PhD students to basic and advanced concepts of
the theory of automorphic forms. Lecture notes of three of those courses are also
included.

The conference took place in the Internationales Wissenschaftsforum Heidel-
berg, which is a center for scholarly exchange in all areas of science and academic
research located in the old town of Heidelberg. We are grateful for the hospitality
and that we had the opportunity to use this excellent venue.

We thank Claudia Alfes-Neumann and Eric Hofmann for their help in preparing
the conference program, the webpage, and the preparatory courses. Special thanks
are also due to Nicole Umlas and David Obermayr for their support in preparing
and running the conference. We are grateful for the generous financial support
from the DFG-Forschergruppe 1920 Heidelberg/Darmstadt Symmetry, Geometry,
and Arithmetic and the Mathematics Center Heidelberg (MATCH). Finally, we wish
to extend our sincere thanks to all contributors to this volume and all speakers of the
conference.

Darmstadt, Germany Jan Hendrik Bruinier
Heidelberg, Germany Winfried Kohnen
December 2017
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Sturm-Like Bound for Square-Free
Fourier Coefficients

Pramath Anamby and Soumya Das

Abstract In this short article, we show the existence of an analogue of the classical
Sturm’s bound in the context of the square-free Fourier coefficients for cusp forms
of square-free levels. This number is a cut-off to determine a cusp form from its
initial few square-free Fourier coefficients. We also mention some questions in this
regard.

1 Introduction

The theory of modular forms by now occupies a central place in number theory, and
its wide ranging applications in various branches of mathematics is well known.
One pleasant, and computationally important feature of these objects is that if f is
such a form in Mk.�/ (� � SL2.Z/ is a congruence subgroup and k � 0) with a
Fourier expansion, say

f .�/ D
1X

nD0
a. f ; n/e2� in� ; .� 2H D fz 2 C j =.z/ > 0g/

(1.1)

then there exists a number A > 0 depending on the space such that if a. f ; n/ D 0

for all n � A, then f D 0. The smallest such bound in general is known as Sturm’s
bound in the literature. Let us denote it by �.k; �/ and recall that

�.k; �/ WD k ŒSL2.Z/ W ��
12

: (1.2)

In fact Sturm’s bound is known for various kinds of modular forms, e.g., half-integer
weight forms, Siegel modular forms etc. In this paper we will discuss the following
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2 P. Anamby and S. Das

question. Suppose that � D �0.N/ and consider the spaces Sk.N; �/ where � is a
Dirichlet character modulo N with conductor m� and k is an integer.

Question Let f 2 Sk.N; �/ have the Fourier expansion (1.1). Suppose N=m� is
square-free. Does there exist a number B > 0, depending only on k;N such that if
a. f ; n/ D 0 for all n � B and n square-free, then f D 0?

We stress that the question has a trivial solution if f is a newform, in which case
one can take B D �.k; �0.N// with n � B to be prime. The above question was
motivated by recent work of the authors, who proved the following result.

Theorem 1 ([1]) Let � be a Dirichlet character of conductor m� and let N be a
positive integer with m�jN such that N=m� is square-free. Suppose that f 2 Sk.N; �/
and that a. f ; n/ D 0 for all but finitely many square-free integers n. Then we have
f D 0.
The above mentioned Question is now a natural, finite counterpart to the above
theorem. Note that the condition on the ratio of the level and conductor is necessary,
this can be seen by taking the example of a non-zero form g.�/ 2 Sk.SL2.Z// and
considering g.m2�/ for some m > 1.

We would like to mention that before Theorem 1, the possibility of the existence
of such a constant B as above, didn’t cross our minds. In this paper, we show the
existence of B, and prove a crude bound for it in terms of k;N. We believe, with some
efforts these bounds can be improved, and indicate some avenues for improvements.

Let us define�sf.k;N/ to be the smallest integer such that whenever f 2 Sk.N; �/
with N=m� square-free and a. f ; n/ D 0 for all square-free n � �sf.k;N/, then
f D 0.

Theorem 2 Let N be square-free and k � 2. Then �sf.k;N/ exists and satisfies the
bound

�sf.k;N/ � a0 � N � 2r.r�1/=2e4r log2.7k2N/;

where a0 is an absolute constant and r D .k�1/N
2

.
The plan of the paper is as follows. In Sect. 2 we prove the main result of the

paper, and also include some conditional results. The proof follows an argument of
Balog and Ono from [2] and it uses the existence of primes p in suitable intervals

such that a0. f ; p/ ¤ 0, where we put a0. f ; n/ WD a. f ; n/n� k�1
2 . Moreover we

also need such primes which distinguish between two newforms, say f1 ¤ f2; i.e.,
a. f1; p/ ¤ a. f2; p/ with the p’s distinct and as small as possible.

In Sect. 2.1, we mention how to improve upon the various bounds by using the
prime number theorem in short intervals for automorphic representations or by
assuming a form of Maeda’s conjecture in the case of SL2.Z/. In the last section,
several related questions are discussed.
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2 Proof of the Main Result

The following lemma follows immediately from the Prime Number Theorem, but
we need to keep track of the dependence on the analytic conductors.

Lemma 2.1 There exists C D C.N; k/ > N such that for all X � C, there exists a
prime p 2 .X; 2X� for which

(i) given any newform f of any level M j N contained in Sk.N; �/, one has
a. f ; p/ ¤ 0;

(ii) given any two distinct newforms f ; g as in .i/, one has a. f ; p/ ¤ a.g; p/.

Proof For X � 1, define  f �g.X/ DPn�xƒf �g.n/, where we put

�L0. f ˝ g; s/=L. f ˝ g; s/ D
1X

nD1
ƒf �g.n/n

�s:

By the prime number theorem for f ˝ g, one has (see [5, Theorem 5.13]) that

j f �g.X/� rf ;gXj � c2 q1=2f ;g X expf�c1.log.X/1=2/g (2.1)

where c1; c2 > 0 are absolute constants, qf ;g is the analytic conductor of the
automorphic representation attached to f ˝ g (see [5, § 5.1]), and rf ;g is the order of
the possible pole (or zero) at s D 1. For future reference, let us note here that

qf ;g � 34q2f � q2g: (2.2)

and that qh D M. k�1
2
C 3/. kC1

2
C 3/, if h is a newform of level M.

Moreover since N is square-free, the Euler-factors of L. f ˝ g; s/ behave nicely,
and an easy estimate (see [5, (5.49)]) shows that for an absolute constant c3,

j f �g.X/�
X

p�X

a0
f . p/a0

g. p/ log. p/j � c3 X1=2 log2.Xqf ;g/: (2.3)

Let us call the quantities on the right-hand side of (2.1) and (2.3) to be R1.X/ and
R2.X/ respectively and put R.X/ WD jR1.X/jC jR2.X/j and F WD f � �g, with f ; g as
in the theorem and � 2 f0; 1g. Taking into account that rf ;g � 1, and equality holds
if and only if g D f . It is immediate from the above that

X

X<p�2X

ja0

F. p/j2 log. p/ D ja0

f . p/j2 log. p/C �ja0

g. p/j2 log. p/ � 2�<fa0

f . p/a0

g. p/ log. p/g

� X � 4.R.X/C R.2X//: (2.4)
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A simple calculation shows that (2.4) is positive provided X > c4 expf4 log2.k2N/g,
where c4 is an absolute constant. So the lemma follows by taking C D
c5 expf4 log2.7k2N/g with c5 chosen so that C > N. ut
The rest of the section is devoted to a proof of Theorem 2.

If f 2 Sk.N; �/ is a newform then the result follows from the multiplicativity
of the Fourier coefficients and the fact that for every prime p, the Hecke operators
T. p	/ are polynomials in T. p/ and clearly for this f , B D �.k; �0.N// works. The
following is adapted from Balog-Ono [2].

So let f 2 Sk.N; �/ be non-zero. Consider the set f f1; f2; : : : : : : fsg of all
newforms of weight k and level dividing N contained in Sk.N; �/. Let their Fourier
expansions be given by fi.z/ D P1

nD1 bi.n/qn. Then for all primes p, one has
Tpfi D bi. p/fi. By “multiplicity-one”, if i ¤ j, we can find infinitely many primes
p > N such that bi. p/ ¤ bj. p/. Now by the theory of newforms, there exists
˛i;ı 2 C such that f .z/ has can be written uniquely in the form

f .z/ D
sX

iD1

X

ıjN
˛i;ı fi.ız/: (2.5)

Since f ¤ 0, we may, after renumbering the indices, assume ˛1;ı ¤ 0 for some
ıjN. Let C be as in Lemma 2.1. Let p1 be any prime such that p1 2 .2C; 22C�
and b1. p1/ ¤ b2. p1/. Note that . p1;N/ D 1. Then consider the form g1.z/ DP1

nD1 a1.n/qn WD Tp1 f .z/ � b2. p1/f .z/ so that

g1.z/ D
sX

iD1
.bi. p1/� b2. p1//

X

ıjN
˛i;ı fi.ız/:

The cusp forms f2.ız/ for any ı j N, do not appear in the decomposition of g1.z/
but f1.ız/ does for some ıjN. Also it is easy to see that a1.n/ D a. f ; p1n/ C
�. p1/pk�1

1 a. f ; n=p1/ � b2. p1/a. f ; n/. Proceeding inductively in this way, and
choosing the primes pi 2 .2iC; 2iC1C� (2 � i � s � 1), we can remove all the
non-zero newform components fi.ız/ for all i D 2; : : : ; s, to obtain a cusp form F.z/
in Sk.N; �/. After dividing by a suitable non-zero complex number we get

F.z/ D
1X

nD1
A.n/qn WD

X

ıjN
˛1;ı f1.ız/:

Now by repeating the above steps we get finitely many algebraic numbers ˇj and
positive rational numbers 
j such that for every n

A.n/ D
X

ıjN
˛1;ıb1.n=ı/ D

X

j

ˇja. f ; 
jn/: (2.6)
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Let ı1 be the smallest divisor of N such that ˛1;ı1 ¤ 0 in (2.5). Define S D fpW p
prime, pjNg [ fpW p prime, b1. p/ D 0g.

Let us choose p 2 .C; 2C� as in Lemma 2.1 .i/. Then p … S, and A.ı1p/ D
˛1;ı1b1. p/ ¤ 0. Note that ı1 is square-free and .ı1; 
jp/ D 1 when 
jp 2 N.
From (2.6), we get a 
j 2 N such that a. f ; ı1
jp/ ¤ 0. Now combining the estimates

ı1 � N; 
j � 2
s.s�1/
2

�1Cs�1; p � 2C;

we obtain n � B such that a. f ; n/ ¤ 0. Moreover B satisfies

�sf.k;N/ � B � 2
s.s�1/
2 NCs:

Since N is square-free, s � .k�1/N=2 (see [6]). The theorem follows by substituting
the expressions for s and C. This completes the proof of Theorem 2. �

2.1 Remarks

In this section, we discuss the number �sf.N; k/ and remark on a few ways of
improving its bound, mostly based on some conjectures and numerical evidence.

(i) An inequality. When � D SL2.Z/, by employing the so-called Miller’s basis,
we can easily show that �sf.k; 1/ � �.k; 1/.

(ii) A conjecture. Based on standard heuristics about Fourier coefficients of cusp
forms and that the square-free integers have a positive natural density, we are
led to believe that for all N � 1,

�.k;N/ � �sf.k;N/ � a � �.k;N/

for some absolute constant a > 1. Numerical experiments with SAGE supports
this.

(iii) Application of a form of Maeda’s Conjecture. Let us recall a result due to P.
Bengoechea [3] which states that if k � 0 mod 4, and if for some n � 1 the
characteristic polynomial Tn;k.X/ of the n-th Hecke operator Tn on SL2.Z/ is
irreducible over Z and has full Galois group, then so are Tp;k.X/ for all primes
p. So, if we assume the aforementioned condition for some n, an inspection
of the proof of Theorem 2 shows that we can choose p; p1; p2; : : : ; ps�1 to
be consecutive primes in increasing order. We easily get that �sf.k;N/ 	
exp

�
�.k;1/

log�.k;1/

�
, where the implied constant is absolute. In particular, due to

computations by Ghitza and Mc Andrew [4], this holds for all such k � 12;000.
(iv) Primes in short intervals. If instead of the prime number theorem in long

intervals that we used, one uses a short interval version for the PNT for
the Rankin-Selberg convolution � ˝ e� where � is the irreducible unitary
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representation obtained from a newform using [8], there is a possibility of
improving the bound in Theorem 2, but we do not know the dependence of
the implied constants on � in the above mentioned result.

2.2 Further Questions

Throughout this section we assume N=m� is square-free, k � 2.

(i) Eisenstein series. Even though we have stated the result only for cusp forms, it
should be true for the space of Eisenstein series as well.

(ii) Different method of proof. In order to prove something like (ii) in Sect. 2.1, one
should come up with a more natural method of proof, which does not involve
choosing primes distinguishing between modular forms. Let us mention here
that in [1], apart from Theorem 1, a certain asymptotic formula was proved for
the second moment of Fourier co-efficients of any f 2 SK.N; �/ supported over
square-free indices; where the implied constants depend on k;N and f . We do
not see immediately how one can deduce from there an answer to the above
Question uniformly for all f 2 Sk.N; �/.

(iii) Finite version. Let Mk.N;OF/ denote the space of modular forms in Mk.N/
whose Fourier expansion at1 lies in OF , the ring of integers of a number field
F. Fix a prime ideal P 
 OF .

In analogy with Sturm’s bound for finite primes (see e.g., [7]), is it true (with
standard notations) that if f ; g 2 Mk.N;OF/ such that a. f ; n/ � a.g; n/ mod
P for all square-free n � �sf.k;N/, then f � g mod P?

(iv) Half-integral weight forms. Given a result of Saha [9] (which holds e.g., in
Kohnen’s plus space SC

kC1=2.4N/ of level 4N with N odd, square-free) that

f 2 SC
kC1=2.4N/ are determined by Fourier coefficients which are indexed

by fundamental discriminants, one can ask for the existence of a finite
‘fundamental’ version of our result.

Acknowledgements The second named author thanks the organisers of the conference “L-
functions and Automorphic forms” held in Heidelberg in February 2016 for their kind invitation,
for providing the opportunity to write this article and for their warm hospitality. The authors thank
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Images of Maass-Poincaré Series
in the Lower Half-Plane

Nickolas Andersen, Kathrin Bringmann, and Larry Rolen

Abstract In this note we extend integral weight harmonic Maass forms to functions
defined on the upper and lower half-planes using the method of Poincaré series.
This relates to Rademacher’s “expansion of zero” principle, which was recently
employed by Rhoades to link mock theta functions and partial theta functions.

1 Introduction and Statement of Results

In [12], Rhoades found a method to uniformly describe partial theta functions
and mock theta functions as manifestations of a single function. He showed that
Ramanujan’s mock theta function f .q/ (defined below), with q WD e2� i� and � in
the upper half-plane H, in some sense “leaks” through the real line to a partial theta
function .q�1/ (given below) on the lower half-plane�H. His construction follows
the “expansion of zero” principle of Rademacher (see [4], [6], [7, Chapter IX], and
[10]). Rademacher showed, using his exact formula for the partition function, that
the partition generating function can be extended to the lower half-plane, and he
later proved [11] that this extension is identically zero in the lower half plane. We
note that there are other relations of partial theta functions and mock theta functions.
For example one, which is due to Zagier and Zwegers, passes through asymptotic
expansions (see for example [5]).

Let us now say a few more words concerning mock theta functions. Originally
introduced by Ramanujan in his last letter to Hardy, mock theta functions have since
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found applications in many areas of mathematics. We now understand that they fit
into the larger framework of harmonic Maass forms, as shown by Zwegers [14]
(see also [9, 13]). That is, the mock theta functions are examples of mock modular
forms, which are the holomorphic parts of harmonic Maass forms (see Sect. 2 for
definitions). Thus, it is natural to ask whether Rhoades’ construction applies to the
non-holomorphic completion of f .q/ and, if so, what is the image of that function in
the lower half-plane? One hope, which has not yet been realized, is that this might
shed some light on the problem of finding a completion of the partial theta functions
to non-holomorphic modular forms. General partial theta functions have the shape

X

n�0
 .n/n	qn2

with  a primitive Dirichlet character and 	 2 Z such that  .�1/ D .�1/	C1. In
particular these functions are not modular forms.

We begin by more closely recalling Rhoades’ results. The partial theta function
which Rhoades studied is given by

 .q/ WD
X

n�1

��12
n

�
q

n2�1
24 ;

and the associated mock theta function is Ramanujan’s third order function

f .q/ WD
X

n�0

qn2

.1C q/2 � : : : � .1C qn/2
:

Now set

˛c.s/ WD
X

m�0

� �
12c

�2mC 1
2 1

�
�
mC 3

2

� 1

smC1

and (with �b
a WD e

2�ib
a )

ˆc;d.�/ WD 1

2�i

Z

jsjDr

˛c.s/e23s

1 � �d
2c q e24s

ds;

where r is taken sufficiently small such that jLog
�
�d
2cq
� j � r and such that the

integral converges. Moreover let !h;c be the multiplier of the Dedekind �-function
(which can be given explicitly in terms of Dedekind sums, see [11]). Then define
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the function

F.�/ WD 1C �
X

c�1

.�1/b cC1
2 c

c

�
X

d .mod 2c/�

!�d;2c exp

�
2�i

�
�d

8
.1C .�1/c/C d

2c
C �

��
ˆc;d.�/;

where d .mod 2c/� indicates that the sum ranges over those d modulo 2c with
gcd.d; 2c/ D 1. This function converges in both the upper and lower half-planes,
i.e., for � 2 H [ .�H/. Moreover, Rhoades’ main result states that

F.�/ D
(

f .q/ if � 2 H;

2 
�
q�1� if � 2 �H:

As discussed above, we describe a similar phenomenon for both the holomorphic
and non-holomorphic parts of Maass–Poincaré series. To state our results, we first
require some notation. Throughout, let k 2 2Z, and let MŠ

k.�0.N// denote the space
of weakly holomorphic modular forms of weight k on �0.N/. Let SŠk.�0.N// denote
the subspace of MŠ

k.�0.N// consisting of forms whose Fourier expansion at i1 has
constant term equal to zero. For f .�/ DW Pn cf .n/qn 2 SŠk.�0.N//, we define the
(holomorphic) Eichler integral

Ef .�/ WD
X

n2Znf0g

cf .n/

nk�1 qn

and the non-holomorphic Eichler integral (� D uC iv)

f �.�/ WD �.4�/1�k
X

n2Znf0g

cf .n/

nk�1 �.k � 1; 4�nv/q�n:

Here �.s; y/ denotes the incomplete gamma function defined in (2.1). Note that with

Dk�1 WD
�

q
d

dq

�k�1
and k WD 2ivk @

@�
;

we have

Dk�1.Ef / D f and 2�k. f �/ D f :

For even k > 2 and m 2 Z, let Pk;m denote the holomorphic Poincaré series
(defined in Sect. 2 below). If m < 0, these functions are weakly holomorphic forms,
while for m > 0, they are cusp forms. For k 2 �2N and m > 0, let Fk;�m be the
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Maass-Poincaré series of Sect. 2. They are harmonic Maass forms with exponential
growth in their holomorphic part.

Theorem 1.1 Let k 2 �2N and m 2 N. Then the function Hk;m WD HC
k;m C H�

k;m
(defined in (3.3) and (3.6) below) converges for all � 2 H [ .�H/. Furthermore, if
� 2 H we have

Hk;m.�/ D Fk;�m.�/;

and if � 2 �H we have

Hk;m.�/ D m1�k

�
EP2�k;m.��/�

.4�/1�k

.�k/Š
P�
2�k;�m.��/

�
:

To prove Theorem 1.1, we determine the extension of the holomorphic and
non-holomorphic parts of Fk;�m separately, in Sects. 3.1 and 3.2, respectively. The
computation involving the holomorphic part closely follows [12], and the extension
is provided by the simple fact that

1

1 � q
D

8
ˆ̂̂
<

ˆ̂̂
:

X

n�0
qn if jqj < 1;

�
X

n�1
q�n if jqj > 1:

For the non-holomorphic part, the situation is similar, but somewhat more compli-
cated, and the extension is provided by the functional equation of the polylogarithm
Li1�k.q/ (defined in (3.5) below), namely

Lik�1.q/ D Lik�1
�
q�1� for k 2 �2N: (1.1)

Remark If one tries to mimic the computations of Sect. 3.2 in the case of half-
integral weight, the situation is complicated by the analogue of (1.1) for k … Z,
namely

i1�k Lik�1
�
e2� iu

�C ik�1 Lik�1
�
e�2� iu

� D .2�/k�1

�.k � 1/�.2 � k; u/;

where �.2 � k; u/ denotes the Hurwitz zeta function. It is unclear whether the
resulting function in the lower-half plane has any relation to a known modular-type
object.

The paper is organized as follows. In Sect. 2 we recall the definitions and some
basic properties of harmonic Maass forms and Poincaré series. In Sect. 3 we prove
Theorem 1.1.
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2 Preliminaries

2.1 Harmonic Maass Forms

In this section we recall basic facts of harmonic Maass forms, first introduced by
Bruinier and Funke in [2]. We begin with their definition.

Definition For k 2 2N, a weight k harmonic Maass form for �0.N/ is any smooth
function f W H! C satisfying the following conditions:

(1) For all
�

a b
c d

� 2 �0.N/ we have

f

�
a� C b

c� C d

�
D .c� C d/kf .�/:

(2) We have�k. f / D 0 where�k is the weight k hyperbolic Laplacian

�k WD �v2
�
@2

@u2
C @2

@v2

�
C ikv

�
@

@u
C i

@

@v

�
:

(3) There exists a polynomial Pf .�/ 2 CŒq�1� such that

f .�/� Pf .�/ D O.e"v/

as v !1 for some " > 0. Analogous conditions are required at all cusps.

Denote the space of such harmonic Maass forms by Hk .�0.N//. Every f 2
Hk .�0.N// has an expansion of the form

f .�/ D f C.�/C f �.�/

with the holomorphic part having a q-expansion

f C.�/ D
X

n��1
cC

f .n/q
n

and the non-holomorphic part having an expansion of the form

f �.�/ D
X

n>0

c�
f .n/�.1 � k; 4�nv/q�n:

Here �.s; v/ is the incomplete gamma function defined, for v > 0, as the integral

�.s; v/ WD
Z 1

v

ts�1e�t dt: (2.1)
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2.2 Poincaré Series

In this section, we recall the definitions and properties of various Poincaré series.
The general construction is as follows. Let ' be any translation-invariant function,
which we call the seed of the Poincaré series in question. Then, in the case of
absolute convergence, we can define a function satisfying weight k modularity by
forming the sum

Pk.'I �/ WD
X


2�1n�0.N/
'jk
.�/;

where �1 WD f˙
�
1 n
0 1

� W n 2 Zg is the group of translations. Convergence is, in
particular, satisfied by functions ' satisfying '.�/ D O.v2�kC"/ as v! 0.

A natural choice for ' is a typical Fourier coefficient in the space of automorphic
functions one is interested in. For example, in the case of weakly holomorphic
modular forms one may choose, for m 2 Z,

'.�/ D 'm.�/ WD qm:

Define for k 2 2N with k > 2 and m 2 Z the Poincaré series of exponential type by

Pk;m.�/ WD Pk.'mI �/ D
X


2�1n�0.N/
'mjk
.�/:

To give their Fourier expansion, we require the Kloosterman sums

K.m; nI c/ WD
X

d .mod c/�

e

 
mdC nd

c

!
; (2.2)

where e.x/ WD e2� ix. A direct calculation yields the following duality:

K.�m;�nI c/ D K.m; nI c/:

A very useful property of the Poincaré series is that they have explicit Fourier
expansions, as given in the following theorem.

Theorem 2.1 Suppose that k > 2 is even.

i) If m 2 N, the Poincaré series Pk;m are in Sk.�0.N//. We have the Fourier
expansion Pk;m.�/ DP1

nD1 bk;m.n/qn; where

bk;m.n/ D
� n

m

� k�1
2

0

BB@ım;n C 2�.�1/ k
2

X

c>0
Njc

K.m; nI c/
c

Jk�1
�
4�
p

mn

c

�
1

CCA :
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Here ım;n is the Kronecker delta-function and Js denotes the usual J-Bessel
function.

ii) For m 2 �N, the Poincaré series Pk;m are elements of MŠ
k.�0.N//. We have the

Fourier expansion Pk;m.�/ D qm CP1
nD1 bk;m.n/qn; where

bk;m.n/ D 2�.�1/ k
2

ˇ̌
ˇ

n

m

ˇ̌
ˇ

k�1
2
X

c>0
Njc

K.m; nI c/
c

Ik�1

 
4�
pjmnj

c

!
:

Here Is denotes the usual I-Bessel function. Moreover, Pk;m is holomorphic at
the cusps of �0.N/ other than i1.

We next turn to the construction of harmonic Maass forms via Poincaré series. Such
series have appeared in many places in the literature, indeed in the works of Niebur
[8] and Fay [3] in the 1970’s, long before the recent advent of harmonic Maass
forms. Define

Fk;m WD
X


2�1n�0.N/
�k;mjk
;

where the seed �k;m is given by

�k;m.�/ WD
�
1 � ��.1 � k; 4�jmjv/�qm:

Here �� is the normalized incomplete gamma function

��.s; v/ WD �.s; v/

�.s/
:

The analogous exact formula for coefficients of these Poincaré series is then given
in the following theorem (see, e.g., [3] or [1] for a proof).

Theorem 2.2 If k < 0 is even and m 2 �N, then Fk;m 2 Hk.�0.N//. We have

k .Fk;m/ D � .4�m/1�k

.�k/Š
P2�k;�m

and

D1�k .Fk;m/ D m1�kP2�k;m:
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We have the Fourier expansion

Fk;m.�/ D
�
1 � ��.1 � k;�4�mv/

�
qm

C
1X

nD0
aC

k;m.n/q
n C

1X

nD1
a�

k;m.n/�
�.1 � k; 4�nv/q�n

with

aC
k;m.0/ D

.2�/2�k.�1/ k
2C1m1�k

.1 � k/Š

X

c>0
Njc

K.m; 0I c/
c2�k

:

Moreover, for n � 1 and " 2 fC;�g, we have

a"k;m.n/ D 2�.�1/ k
2

ˇ̌
ˇ
m

n

ˇ̌
ˇ
1�k
2
X

c>0
Njc

K.m; "nI c/
c

�

8
ˆ̂<

ˆ̂:

I1�k

�
4�

pjmnj
c

�
if "n > 0;

J1�k

�
4�

pjmnj
c

�
if "n < 0:

3 Proof of Theorem 1.1

To prove Theorem 1.1, we consider the holomorphic and non-holomorphic parts of
Fk;�m separately.

3.1 The Holomorphic Part

We first extend the holomorphic part FC
k;�m of Fk;�m to a function defined for jqj ¤ 1,

closely following [12]. Using Theorem 2.2, we have, for jqj < 1,

FC
k;�m.�/

D q�m C aC
k;�m.0/C 2�.�1/

k
2 m

1�k
2

X

c>0
Njc

1

c

X

d .mod c/�

e

 
�md

c

!
AC

m .c; d/;

where

AC
m .c; d/ D AC

m .c; dI �/ WD
X

n�1
n

k�1
2 I1�k

�
4�
p

mn

c

�
�nd

c qn: (3.1)
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Using the series expansion of the I-Bessel function

I˛.x/ D
X

j�1

1

jŠ�. jC ˛ C 1/
� x

2

�2jC˛
;

we obtain

n
k�1
2 I1�k

�
4�
p

mn

c

�
D
X

j�0
ˇC

m;c. j/
nj

jŠ
;

where

ˇC
m;c. j/ WD

�
2�

p
m

c

�2jC1�k

. jC 1 � k/Š
:

We insert the integral representation (for r > 0)

nj

jŠ
D 1

2�i

Z

jsjDr

ens

sjC1 ds; (3.2)

and we conclude that

n
k�1
2 I1�k

�
4�
p

mn

c

�
D 1

2�i

Z

jsjDr
˛C

m;c.s/e
ns ds;

where ˛C
m;c.s/ is the series

˛C
m;c.s/ WD

X

j�0

ˇC
m;c. j/

sjC1 ;

which is absolutely convergent for all s. Equation (3.1) then becomes

AC
m .c; d/ D

1

2�i

Z

jsjDr
˛C

m;c.s/
X

n�1

�
es�d

c q
�n

ds D 1

2�i
�d

c q
Z

jsjDr

˛C
m;c.s/e

s

1 � es�d
c q

ds:

Here we take r sufficiently small so that jes�d
c qj < 1. Define

�C
k;m.c; dI �/ WD

1

2�i

Z

jsjDr

˛C
m;c.s/e

s

1 � es�d
c q

ds:
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We can now define the function which exists away from the real line. To be more
precise, since �C

k;m is regular for all v ¤ 0, the function

HC
k;m.�/ WD q�m C aC

k;�m.0/

C 2�.�1/ k
2 m

1�k
2

X

c>0
Njc

1

c

X

d .mod c/�

e

 
�mdC d

c
C �

!
�C

k;m.c; dI �/ (3.3)

is defined for � 2 H [ .�H/.
We now consider the Fourier expansion of the function HC

k;m.�/ for � in the lower
half-plane, so suppose for the remainder of the proof that v < 0. In this case, we
have

�d
c q �C

k;m.c; dI �/ D
1

2�i

Z

jsjDr
˛C

m;c.s/
es�d

c q

1 � es�d
c q

ds

D � 1

2�i

Z

jsjDr
˛C

m;c.s/
X

n�0

�
es�d

c q
��n

ds;

where r is chosen so that je�sq�1j < 1. By reversing the calculation which led
to (3.3), making the change of variables s 7! �s, and using that I1�k.�ix/ D
i1�kJ1�k.x/, we find that

�d
c q �C

k;m.c; dI �/ D �ˇC
m;c.0/�

X

n�1

0

@
X

j�0
.�1/ jˇC

m;c. j/
n j

jŠ

1

A e

��nd

c

�
q�n

D �ˇC
m;c.0/�

X

n�1
e

��nd

c

�
n

k�1
2 J1�k

�
4�
p

mn

c

�
q�n:

Thus we have

HC
k;m.�/

D q�m C aC
k;�m.0/� 2�.�1/

k
2 m

1�k
2

X

c>0
c�0 .mod N/

1

c

X

d .mod c/�

e

 
�md

c

!
ˇC

m;c.0/

� 2�.�1/ k
2

X

n�1

0
BB@
� n

m

� k�1
2
X

c>0
Njc

K.�m;�nI c/
c

J1�k

�
4�
p

mn

c

�
1
CCA q�n: (3.4)
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Note that the second and the third terms on the right-hand side of (3.4) cancel, since

�2�.�1/ k
2 m

1�k
2

X

c>0
Njc

1

c

X

d .mod c/�

e

 
�md

c

!
ˇC

m;c.0/

D .2�/2�k.�1/ k
2C1m1�k

.1 � k/Š

X

c>0
Njc

K.�m; 0I c/
c2�k

D �aC
k;�m.0/:

By (2.2), we conclude that

HC
k;m.�/ D q�m �

X

n�1

�m

n

�1�k

�

0

BB@2�.�1/
k
2

� n

m

� 1�k
2
X

c>0
Njc

K.m; nI c/
c

J1�k

�
4�
p

mn

c

�
1

CCA q�n

D m1�k

0

@mk�1q�m C
X

n�1
nk�1b2�k;m.n/q

�n

1

A D m1�kEP2�k;m.��/

if � is in the lower half-plane.

3.2 The Non-holomorphic Part

Next we extend the non-holomorphic part F�
k;�m.�/ to a function H�

k;m.�/, which is
defined for jqj ¤ 1. We have, by Theorem 2.2,

F�
k;�m.�/ D ���.1 � k; 4�mv/q�m

C 2�.�1/ k
2 m

1�k
2

X

c>0
Njc

1

c

X

d .mod c/�

e

 
�md

c

!
A�

m.c; dI �/;

where

A�
m.c; d/ D A�

m.c; dI �/

WD
X

n�1
n

k�1
2 e

��nd

c

�
J1�k

�
4�
p

mn

c

�
��.1 � k; 4�nv/q�n:
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Using the integral representation of the incomplete Gamma function and making a
change of variables, we find that

�.1� k; y/ D y1�k
Z 1

1

t�ke�ytdt;

thus

A�
m.c; d/ D

.4�v/1�k

.�k/Š

Z 1

1

t�k
X

n�1
n
1�k
2 J1�k

�
4�
p

mn

c

�
e�4�nvt

�
�d

c q
��n

dt:

As above, we use the series expansion of the J-Bessel function

J˛.x/ D
X

j�1

.�1/ j

jŠ�. jC ˛ C 1/
� x

2

�2jC˛

to obtain

n
1�k
2 J1�k

�
4�
p

mn

c

�
D n1�k

X

j�0
ˇ�

m;c. j/
n j

jŠ
;

where

ˇ�
m;c. j/ WD .�1/ j

. jC 1 � k/Š

�
2�
p

m

c

�2jC1�k

:

Thus we have, again using (3.2),

n
1�k
2 J1�k

�
4�
p

mn

c

�
D 1

2�i

Z

jsjDr
n1�kens˛�

m;c.s/ds;

where

˛�
m;c.s/ WD

X

j�0

ˇ�
m;c. j/

sjC1 :

Here r is chosen so that r < 2�v. Thus

A�
m.c; d/D

.4�v/1�k

.�k/Š

Z 1

1

t�k

0

@ 1

2�i

Z

jsjDr
˛�

m;c.s/
X

n�1
n1�k

�
es�4�vt��d

c q�1�n
ds

1

A dt

D .4�v/
1�k

.�k/Š

Z 1

1

t�k

�
1

2�i

Z

jsjDr
˛�

m;c.s/Lik�1
�
es�4�vt��d

c q�1� ds

�
dt:
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Here Lis.w/ is the polylogarithm, defined for s 2 C and jwj < 1 by

Lis.w/ WD
1X

nD1

wn

ns
: (3.5)

We now again introduce a function defined away from the real line. Define

��
k;m.c; dI �/ WD

1

2�i

Z 1

1

t�k
Z

jsjDr
˛�

m;c.s/Lik�1
�
es�4�vt��d

c q�1� ds dt

and

H�
k;m.�/ WD ���.1 � k; 4�mv/q�m

C 2�.�1/ k
2 .4�v/1�k

.�k/Š
m

1�k
2

X

c>0
Njc

1

c

X

d .mod c/�

e

 
�md

c

!
��

k;m.c; dI �/: (3.6)

Using the functional equation

Li�n.z/ D .�1/nC1Li�n

�
1

z

�
;

we obtain, for v < 0, and using that k is even,

A�
m.c; d/ D

.4�v/1�k

.�k/Š

Z 1

1

t�k

�
1

2�i

Z

jsjDr
˛�

m;c.s/Lik�1
�
e�sC4�vt�d

c q
�

ds

�
dt:

Since v < 0 we can now use the series representation of Lik�1. This yields

A�
m.c; d/ D

.4�v/1�k

.�k/Š

Z 1

1

t�k

0

@
X

n�1
n1�ke4�nvt

�
�d

c q
�n 1

2�i

Z

jsjDr
˛�

m;c.s/e
�ns ds

1

Adt:

The innermost integral is (inserting the definition of ˛�
m;c.s/, making the change of

variables s 7! �s, and using (3.2))

1

2�i

Z

jsjDr
˛�

m;c.s/e
�nsds D

X

j�0

1

. jC 1 � k/Š

�
2�
p

m

c

�2jC1�k n j

jŠ

D n
k�1
2 I1�k

�
4�
p

mn

c

�
:
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Thus

A�
m.c; d/ D

.4�v/1�k

.�k/Š

X

n�1
n
1�k
2 I1�k

�
4�
p

mn

c

��Z 1

1

t�ke4�nvtdt

� �
�d

c q
�n

D
X

n�1
n

k�1
2 I1�k

�
4�
p

mn

c

�
��.1 � k; 4�njvj/ ��d

c q
�n
:

Therefore, using that K.m; nI c/ is real, we conclude that

H�
k;m.�/ D� ��.1 � k; 4�mv/q�m C 2�.�1/ k

2

X

n�1

� n

m

� k�1
2

�
X

c>0
Njc

K.�m; nI c/
c

I1�k

�
4�
p

mn

c

�
��.1 � k; 4�njvj/qn

D � .4�m/1�k

.�k/Š
P�
2�k;�m.��/:
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On Denominators of Values of Certain
L-Functions When Twisted by Characters

Siegfried Böcherer

Abstract We try to bound the denominators of standard L-functions attached to
Siegel modular forms when we twist them by Dirichlet characters. Main tools
are our modification of the doubling method (Böcherer et al., Ann. Inst. Fourier
50:1375–1443, 2000) together with its application to congruences by the method
of Katsurada (Math. Z. 259:97–111, 2008) and integrality properties of Bernoulli
numbers with characters.

1 Introduction

Katsurada [15] has shown that the primes appearing in the denominators of critical
values for standard L-functions for Siegel modular forms are congruence primes.
We emphasize that this is a notion concerning eigenvalues of Hecke operators.
In the first part of the present paper we show that his method can be combined
with some calculations from Böcherer and Schmidt [8] to get a similar result after
twisting the L-function in question by a primitive Dirichlet character. This may
be of independent interest; a similar statement appears in Katsurada [17]. As a
consequence we get as a main result of this work a finiteness statement concerning
the set of primes appearing in such denominators, when we vary over all Dirichlet
characters. We are not aware of such a result for other L-functions except for the
Riemann zeta function, where it follows from well known integrality properties of
generalized Bernoulli numbers [9, 19]. We emphasize that the main method in our
proof is to give an interpretation of the denominators in terms of congruence primes.
From this, our finiteness statement is (almost) evident. It is not clear to us whether
this is a special property of standard L-functions or whether one should expect such
finiteness properties in general.

Katsurada’s method seems not directly applicable to congruences for powers
of prime ideals. To get also a result concerning the powers of the primes in
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such denominators we switch from congruences for Hecke eigenvalues (this was
Katsurada’s main concern) to congruences for modular forms (i.e. simultaneous
congruences for the Fourier coefficients of modular forms).

In the final section we indicate how our method can also be applied for other
types of L-functions. In our exposition, we do not aim at greatest generality or at the
strongest possible result, e.g. we focus on level one and on scalar-valued modular
forms. Also, we refrain from any consideration concerning p-integrality statements
for primes dividing the conductor of the Dirichlet character in question. This more
delicate question may possibly be handled by within our framework by a careful
bookkeeping concerning primes, which appear in the conductor of the character at
hand.

The origin of this work is a discussion with H. Katsurada and T. Chida during my visit to
Muroran in 2014. I want to thank Katsurada for several exchanges about this subject, starting from
the Hakuba seminar 2012 on congruences; the seminar program organized by him was highly
inspiring. Also discussions with S. Takemori and A. Raghuram were very helpful.

2 Preliminaries

2.1 General Notation

For a rational prime p we denote by 	p the usual additive valuation on Q, normalized
by 	p. p/ D 1. For a number field K let O be its ring of integers. We extend 	p to a
valuation 	p on K, given by a prime ideal p dividing the prime p. Note that such a
valuation also makes sense when applied to a fractional ideal of K. We say that an
element x of K is p-integral, if 	p.x/ � 0 for all prime ideals p dividing p.

2.2 Siegel Modular Forms

We refer to [1] and [10] for basic facts on Siegel modular forms. The proper
symplectic similitude group GCSp.n;R/ acts on Siegel’s upper half space Hn in
the usual way. For an integer l we get an action of GCSp.n;R/ on functions g on
Hn by

.g;M/ 7�! g jl M.Z/ WD det.M/
l
2 det.CZ CD/�lg.M < Z >/

with M D
�

A B
C D

�
.

For a congruence subgroup � of Sp.n;Z/ the space Mn
l .�/ of Siegel modular

forms of weight l for � consists of all holomorphic functions g on Hn which satisfy
f jl 
 D f for all 
 2 � , with the usual additional condition in the cusps if n D 1.
We write Sn

l .�/ for the subspace of cusp forms. The most convenient case for us will
be “modular forms of nebentypus”: Let N be a positive integer and  a Dirichlet



On Denominators of Values of Certain L-Functions When Twisted by Characters 27

character mod N; then we denote by Mn
l .N;  / the space of all modular forms g

satisfying g jl M D  .det.D// � g for all

M 2 �0.N/ WD f
�

A B
C D

�
2 Sp.n;Z j C � 0 mod Ng:

Such modular forms g have a Fourier expansion of type

g.Z/ D
X

T2ƒn
�

ag.T/q
T ;

where ƒn� denotes the set of all symmetric semiintegral positive semidefinite
matrices of size n and qT stands for exp.2�itr.TZ//. Similarly, ƒn

> denotes the
subset of all positive definite elements in ƒn�.

It is well known ([22], see also [11] for a different approach) that such a space has
a basis with Fourier coefficients in the cyclotomic field generated by  and that the
Fourier coefficients have bounded denominators. Furthermore, for any � 2 Aut.C/
and g 2 Mn

l .N;  / we have g� 2 Mn
l .N;  

� / where g� WDP a�g qT .

2.3 Eisenstein Series

We will use Siegel type Eisenstein series of even degree 2n with nebentypus: Let  
be a primitive character mod N, N > 1 and k a positive integer with .�1/ D .�1/k.
We put

E2n
k .Z;  ; s/ WD

X

C;D

 .det.C//det.CZ C D/�k j det.CZ CD/ j�2s det.Y/s;

where .C;D/ runs over second rows of matrices in Sp.2n;Z/ up to the action of
GL.2n;Z/ from the left. This series is known to converge for kC2<.s/ > 2nC1 and
to have meromorphic continuation to C as a function of s. Moreover, for k � nC 2

E2n
k .Z;  / WD E2n

k .Z;  ; s/sD0

defines a holomorphic modular form with Fourier coefficients in a cyclotomic
number field.1

1Under additional conditions on n and  this is also true for k D n C 1.
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2.4 Petersson Product

It is important to note that we always use an unnormalized version of the Petersson
inner product, i.e. for f ; g 2 Sn

l .�/we denote by< f ; g >� the integral of f �g�det.Y/l

over a fundamental domain for �; in the special case � D �0.N/ we just write
< f ; g >N ; we omit the index N D 1.

2.5 Hecke Operators and L-Functions

For f 2 Sn
l .�0.N// and M 2 GSpC.Q/\Z

2n;2n with det.M/ coprime to N we define
the Hecke operator T.M/ by

f j T.M/.Z/ WD det.M/
l
2� nC1

2

X




f jl 
;

where 
 runs over representatives of �0.N/n�0.N/ � M � �0.N/. We may choose 


in upper triangular form, i.e. 
 D
�

A B
0 D

�
and in this normalization, T .M/ defines

an endomorphism of Sn
l .�0.N//.Z/ if l > n, see [20]. In this normalization, Hecke

eigenvalues are algebraic integers [15].
If f 2 Mn

l .�0.N// is an eigenform of all Hecke operators T .M/ with det.M/ a
square and coprime to N, we can associate to it the standard-L-function

D.N/. f ; s/ WD
Y

p−N

 
1

1 � p�s

nY

iD1

1

1 � ˛i;pp�s/.1 � ˛�1
i;p p�s/

!

where the ˛i;p are the Satake parameters attached to f . The analytic and number
theoretic properties of such L-functions can be studied by the Rankin-Selberg-
method [2, 24] or the doubling method [4, 23].

3 The Main Construction

In this section we describe a twisted version of Katsurada’s setting in [15].
We start from the following data

• an integer k � nC 2
• a positive integer 	
• a primitive Dirichlet character � modulo N

We put l D kC 	 and we impose the condition �.�1/ D .�1/k.
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The doubling method in its twisted version as in [8] allows us to construct
explicitly a function gn

k;	.�/ 2 Sn
l ˝ Sn

l with

gn
k;	.�/.z;w/ D

X

i

ƒ. fi; k � n; �/fi.z/ � fi.w/; (1)

where the fi run over an orthogonal basis of Hecke eigenforms in Sn
l and

ƒ. f ; k � n; �/ WD �.k � n/
nY

iD1
�.2l� n � i/

D. f ; �; k � n/

�d < f ; f >
(2)

with

d D 3

2
n.nC 1/� 2nk � n � 	 � k:

This normalization coincides with the one in [15] for trivial character and—up to
the �-factor and Gauss sums—with the one in [8, A11], where it is also shown
that (2) behaves smoothly under the action of Aut(C) provided that we choose
our eigenforms such that all their Fourier coefficients lie in the field generated by
their Hecke eigenvalues. Such a choice is always possible and we will (sometimes
tactitly) assume throughout this paper that all our eigenforms have this property.

For a given weight l, decomposed as l D k�	 with �.�1/ D .�1/k we then cover
all the positive critical weights of D. f ; s; �/ except the smallest one (corresponding
to k D nC 1) and the largest one (corresponding to l D k), see [8].

We always keep n; k; 	 fixed and study the variation of the values of these L-
functions with �.

We will show that gn
k;	.�/ has Fourier coefficients in a cyclotomic field KN and

these Fourier coefficients are p-integral for all primes coprime to N and coprime to
.2k � n � 1/Š.

3.1 The Construction of gn
k;�

.�/

We get gn
k;	.�/ from the Eisenstein series E2n

k .�/ in several step; our main source is
[8].

First Step: Exterior Twist

We consider (following [8])

G2n
k .Z; �/ WD

X

X

�.det.X//E2n
k .Z; �/ j

�
12n S. X

N /

02n 12n

�
;
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where X runs over Z.n;n/ mod N and

S.X/ WD
�
0n X
Xt 0n

�
2 Z

.2n;2n/:

The function G is then a modular form for a congruence subgroup � of level N2

which contains �0.N2/ � �0.N2/ (no nebentypus anymore!).

Second Step: Differential Operators

We decompose Z 2 H2n into block matrices of size n as

Z D
�

z1 z2
z3 z4

�
.z3 D zt

2/

The differential operators
o
D
	

n;k in question are polynomials in the holomorphic
derivatives, evaluated in z2 D 0. They are considered in the work of Ibukiyama
[13] or from a different point of view in [3]. They map C1-functions on H2n to
C1-functions on Hn �Hn and they satisfy

o
D
	

n;k.F jk �.g; h// D
�

o
D
	

n;kF/

�
jzkC	 g jwkC	 h

for g; h 2 Sp.n;R/. Here � is the natural embedding of Sp.n/ � Sp.n/ ,! Sp.2n/,
defined by

�
a b
c d

�
�
�
˛ ˇ


 ı

�
7�!

0
BBBB@

a 0
0 ˛

b 0
0 ˇ

c 0
0 


d 0
0 ı

1
CCCCA
:

The upper indices z and w at the slash-operators indicate which variable is
considered. We also note here, that these differential operators map modular forms
to cusp forms, i.e. for 	 > 0 we get

o
D
	

n;k.F/ 2 Sn
kC	.N/˝ Sn

kC	.N/

for modular forms F 2 M2n
k .N/.

The differential operators are unique up to normalization, we normalize them as
in [8, 15].
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Third Step: Spectral Decomposition

We may compute the pullback of such Siegel Eisenstein series after applying
“superior twists” and differential operators of the type above. For the calculation
we refer to [8, section 3]. For a Dirichlet character � mod N and a positive integer
k > nC 1 with �.�1/ D .�1/k�.�1/ and l D kC 	 with 	 > 0 we have

o
D
	

n;k.G
2n
k .�; �/.z;w// D

�l;	

L.k; N�/Nn.2kC	�n�1/Nn.nC1/�nl

X

g

D.g jl
�
0 �1

N2 0

�
; k � n; �/

g jl
�
0 �1

N2 0

�
.z/ � g.w/

< g; g >N2

where g runs over a basis of Hecke eigenforms in Sl.N2/ and

L.s;  / WD L.s;  /
nY

iD1
L.2s � 2i;  2/:

The number�l;	 is a product of a power of � and certain values of the �-function.

3.2 Forth Step: Level Change

We decompose the space of cusp forms into a direct orthogonal sum:

Sn
l .N

2/ D Sn
l ? Sn

l .N
2/o

and we use that Sn
l .N

2/o can be characterized as the kernel of the trace map

trN2 W
(

Sn
l .N

2/ �! Sn
l

g 7�!P

 g jl 
 ;

where 
 runs over �0.N2/nSp.n;Z/.
Then

trN2
z

o
D
	

n;kG2n.�; �/.z;w/ D

�l;	

L.k; N�/Nn.2kC	�n�1/Nn.nC1/�nl
X

g

D.g; k � n; �/
g.z/g.N2 � w/
< g; g >

:



32 S. Böcherer

The summation goes now over an orthogonal basis of Sn
l consisting of Hecke

eigenforms.
Our candidate for the function gn

k;	.�/ 2 Sn
l ˝ Sn

l is then—up to normalization

trN2
z

o
D
	

n;kG2n.�; �/. 1
N2
� z;w/:

Fifth Step: Normalization

We follow Katsurada [15] in normalization the function gn
k;	 appropriately such

that Eq. (1) holds. In the case of trivial character Katsurada showed that with this
normalization the function gn

k;	.id/ has rational Fourier coefficients and it is p-
integral for all primes p > .2k � n � 1/Š.

An analogous statement for of this is

Proposition The Fourier coefficients of gn
k;	.�/ are in a cyclotomic field KN

generated by the values of � and the Nth roots of unity. The Fourier coefficients
are p-integral for p coprime to N and p > .2k � n � 1/Š.

One can follow the lines of Katsurada’s reasoning; we should use integrality
properties of Bernoulli numbers with character instead of the usual Clausen-von
Staudt property (see [9, 19]). Furthermore one has to observe that in step 4 the
integrality properties outside primes dividing N are preserved when taking the trace.
This follows from the q-expansion principal (see e.g. [14]) or by a careful analysis
of Fourier expansions of Eisenstein series in all cusps, see [18].

4 Congruence Primes and Denominators

Let f 2 Sn
l be a Hecke eigenform and M a subspace of Sn

l stable under the Hecke
algebra. We assume that M is contained in the orthogonal complement .C � f /? of
C � f with respect to the Petersson product. We denote by Q. f / the algebraic number
field generated by the Hecke eigenvalues of f . A prime ideal p in OQ. f / is called a
congruence prime of f with respect to M if there exists a Hecke eigenform g in M
such that

�f .T/ � �g.T/ mod P

for all integral linear combinations of Hecke operators T.M/, where P is some
prime ideal in OQ. f /	Q.g/. If M D .Cf /? we call p a congruence prime for f .

With the function gn
k;	.�/ and their properties at hand, we may now follow

Katsurada’s procedure [15, 16] line by line.

Theorem (Version 1) Let f 2 Sn
l be among the eigenforms above with Fourier

coefficients in the field Q. f / generated by the Hecke eigenvalues. We define the
fractional ideal If in Q. f / generated by all the Fourier coefficients of f . Let � be
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a character mod N and let P be a prime ideal in the composite field generated by
Q. f / and KN and assume that it does not divide .2k � n � 1/Š and does not divide
N. Assume that

	P.ƒ. f ; k � n; �/I2f / < 0

then P is a congruence prime for f .
This version appears also in [17]. It is not sensitive for multiplicity problems.

Katsurada [16] refined his procedure by starting from a system � of Hecke
eigenvalues and considering an orthogonal basis . f1; : : : ; ft/ of the corresponding
eigenspace Sn

l .�/. We denote the Fourier expansions by

fi.z/ D
X

T2ƒn
>

ai.T/q
T

and we define

IT;S WD
tX

iD1

ai.S/ai.T/ Qƒ. fi; k � n; �/

< fi; fi >
;

where

ƒ. fi; k � n; �/ D
Qƒ. fi; k � n; �

< fi; fi >
:

We consider the fractional ideal J in the composite field Q. f1;N/ of Q. f1/ and KN

generated by all the IS;T . This only depends on the system � and on �.

Theorem (Version 2) For a system � of Hecke eigenvalues and f 2 Sn
l .�/ and a

character � mod N we define the fractional ideal I as above. Let P be a prime ideal
in the field Q. f ;N/ and assume that P is coprime to N and coprime to .2k�n�1/Š.
If

	P.J/ < 0

then P is a congruence prime with respect to Sn
l .�/

?.
Clearly, the number of such congruence primes has to be finite. As the main

result of this paper we get a finiteness statement concerning the primes which may
appear in the denominators of critical values of standard-L-functions, when twisted
by Dirichlet characters:

Finiteness Theorem For an eigenspace Sn
l .�/ and a decomposition l D k C 	 the

set

f p j 9� W p − cond.�/ 9P j p W 	P.J/ < 0g

is a finite set of primes.
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Remark We should mention that for elliptic modular forms Hida [12] gives a
characterization of congruence primes using the numerator of a value of the standard
L-function. We emphasize that the value considered by Hida is not among the values
considered in our work.

5 Congruences for Modular Forms

In sequel, it will be sufficient to use a “naive” notion of congruences: Let K
be a number field and A an integral ideal in K. We call two modular forms
f D P

af .T/qT and g D P
ag.T/qT with Fourier coefficients in K congruent mod

A if af .T/ � ag.T/ 2 A for all T. This is a naive notion, because (unlike the more
sophisticated notion introduced in [21]) it considers modular forms to be congruent
mod A even if all the Fourier coefficients of f and g are in A.

A modular form should not satisfy “too many” nontrivial congruences; a precise
version of this somewhat vague statement, suitable for our situation, is given below:
It will be our main technical tool in proving a stronger finiteness statement.

Proposition Let f ; g1; : : : ; gt be t C 1 fixed, linearly independent Siegel modular
forms with integral Fourier coefficients in an algebraic number field K. There exists
a nonzero integral element a 2 K such that for all finite extensions L=K and all
integral ideals A in L the following property holds:

Any congruence

f �
X

˛igi mod A

with arbitrary coefficients ˛i 2 L implies

a 2 A; i.e. a 2 a WD A \OK

Proof Whenever convenient we use g0 for f ; we also write ai.T/ for agi.T/. For
T 2 ƒn

> we denote by �T the linear form on Sn
l , which maps g 2 Sn

l to its Fourier
coefficient ag.T/. By linear algebra we may choose T0; : : : ;Tt 2 ƒn

> such that the
linear forms �T1 ; : : : ; �Tt provide an isomorphism between ˚t

iD1C � gi and C
t and

�T0 ; : : : ; �Tt provide an isomorphism from ˚t
iD0C � gi and C

tC1. In particular, the
matrices R WD �

ai.Tj/
�
1�i;j�t and QR WD �

ai.Tj/
�
0�i;j�t are then invertible matrices in

GL.t;K/ \Mt.OK/ and in GL.tC 1;K/\MtC1.OK/ respectively.
The simple formula

det.

�
x x

y R

�
/ D det.R/ � �x � x � R�1 � yt

�
;
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valid for R as above and any x 2 K; y; xt 2 Kt implies that

a0 WD det. QR/
det.R/

D af .T0/ � .a1.T0/; : : : at.T0// � R�1 �

0

B@
af .T1/
:::

af .Tt/

1

CA 6D 0 (3)

Starting from a congruence f �Pt
iD1 ˛igi mod A we get t+1 equations

af .T0/ D
tX

iD1
˛iai.T0/C x0 (4)

af .Tj/ D
tX

iD1
˛iai.Tj/C xj .1 � j � t/ (5)

with certain elements x0 : : : ; xt 2 A
We choose a nonzero element c 2 OK such that

c � R�1 2 Mt.OK/:

Then the system (5) implies

c �

0

B@
˛1
:::

˛t

1

CA D c � R�1 �

0

B@
af .T1/
:::

af .Tt/

1

CAC cR�1 � x

with x D .x1; : : : ; xt/
t.

We may then rewrite (4) as

c � af .T0/ D c �
tX

iD1
˛i � ai.T0/C c � x0

D �a.T0/; : : : ; at.T0/
� �

0
B@c � R�1 �

0
B@

af .T1/
:::

af .Tt/

1
CAC c � R�1�x

1
CAC c � x0

This implies

c � a0 2 A \ K

and a WD c � a0 has the requested property.
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Remark It should be clear that in the proposition above, we may weaken the
integrality conditions to “integrality outside a finite set of prime ideals”.

Remark As was pointed out to me by Takemori, the special case L D K and A D pr

with a prime ideal p in K should follow from a p-adic completeness statement for
subspaces in a finite-dimensional p-adic vector space.

6 Denominators Again

How to use the function gn
k;	.�/ as a source of congruences as in the proposition?

We use the same normalization as Katsurada involving I2f . For a fixed S 2 ƒn
> we

get a function gn
k;	.�/S by taking the S-Fourier coefficient of gn

k;	.�/ w.r.t. w; this
gives

gn
k;	.�/.Z/ D

X

i

afi.S/ƒ. fi; k � n; �/ � fi.z/:

We are interested in the values of the L-function attached to f D f1.
We define Q.l/ to be the number filed generated by all the Hecke eigenvalues

appearing in Sn
l and we define Q.N; l/ to be the composite of Q.l/ and KN . We fix a

prime ideal P in Q.N; l/ and we choose S0 2 ƒn
> such that

	P.af .S0// D Min.f	P.af .S// j S 2 ƒn
>g/:

Then

f

af .S0/
C

tX

iD1

afi.S0/ �ƒ. fi; k � n; �/

af .S0/2 �ƒ. f ; k � n; �/
� fi D

gn
k;	.�/S

af .S0/2ƒ. f ; k � n; �/

If 	P.I2f �ƒ. f ; k� n; �// D �r < 0 for some prime ideal P in Q.N; l/, then we get
a congruence for f as in the proposition (in view of the integrality properties of the
numerator gn

k;	.�/ on the right side), at least if the underlying rational prime p does

not divide .2k � n� 1/Š. Even stronger, taking into account that 	P.
f

af .S0/
/ D 0, we

get a congruence mod Pr for f
af .S0/

in the strong sense.
Our proposition tells us that this can happen only for finitely many prime ideals

p in Q.l/ (with nontrivial power r), more precisely, we get

Theorem For l 2 N with l D kC 	, k � nC 2 and a fixed Hecke eigenform f 2 Sn
l

the set

fp j 9� W p − cond.�/ 9P j p W 	P.I2fƒ. f ; k � n; �// < 0g
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is a finite set and there exists r > 0: For all p; �;P from above: we have

	P.I
2
fƒ. f ; k � n; �// � �r:

7 Outlook

Remark One may ask about the primes dividing the conductor of �. The most
delicate point is then the fourth step in our construction of gn

k;	 , in particular the
p-integrality. By a variant of our strategy it is possible to bound the power of p
(or rather of prime ideals dividing p, which can then appear in the denominator of
the twisted L-function; it remains open whether that power of p can be bounded
independently of p.

Remark The method exhibited here works in a similar style for triple product L-
functions following the lines of [6, 7], using the observation that denominators
of (suitably normalized) critical values of triple product L-functions give rise to
congruence primes, see [5]; this will be worked out in detail in future work. More
generally, our approach should work in all situations, where integral representations
of L-functions are obtained by restricting Siegel type Eisenstein series, e.g. Hermi-
tian modular forms or Siegel modular forms of half-integral weight, see e.g. [23].

Remark It is possible to include the smallest positive critical value in our procedure,
if we exclude quadratic characters. The largest critical value is somewhat delicate
because here there is no differential operator to kill the noncuspidal contribution in
this situation (the second step in our construction is trivial. i.e. 	 D 0.)
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First Order p-Adic Deformations
of Weight One Newforms

Henri Darmon, Alan Lauder, and Victor Rotger

Abstract This article studies the first-order p-adic deformations of classical weight
one newforms, relating their fourier coefficients to the p-adic logarithms of algebraic
numbers in the field cut out by the associated projective Galois representation.

Introduction

Let g be a classical cuspidal newform of weight one, level N and nebentypus
character � W .Z=NZ/� ! Q

�
p , with fourier expansion

g.q/ D
1X

nD1
anqn:

The p-stabilisations of g attached to a rational prime p − N are the eigenforms of
level Np defined by

g˛.q/ WD g.q/� ˇ � g.qp/; gˇ.q/ WD g.q/� ˛ � g.qp/; (1)

where ˛ and ˇ are the (not necessarily distinct) roots of the Hecke polynomial

x2 � apxC �. p/ DW .x � ˛/.x � ˇ/:
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The forms g˛ and gˇ are eigenvectors for the Atkin Up operator, with eigenvalues
˛ and ˇ respectively. Since ˛ and ˇ are roots of unity, these eigenforms are both
ordinary at p.

An important feature of classical weight one forms is that they are associated
to odd, irreducible, two-dimensional Artin representations, via a construction of
Deligne-Serre. Let %g W GQ �! GL2.C/ denote this Galois representation, and
write Vg for the underlying representation space.

A fundamental result of Hida asserts the existence of a p-adic family of ordinary
eigenforms specialising to g˛ (or to gˇ) in weight one. Bellaiche and Dimitrov [1]
later established the uniqueness of this Hida family, under the hypothesis that g is
regular at p, i.e., that ˛ ¤ ˇ, or equivalently, that the frobenius element at p acts on
Vg with distinct eigenvalues. In the intriguing special case where g is the theta series
of a character of a real quadratic field F in which the prime p is split, the result of
Bellaiche-Dimitrov further asserts that the unique ordinary first-order infinitesimal
p-adic deformation of g is an overconvergent (but not classical) modular form of
weight one. In [3], the Fourier coefficients of this non-classical form were expressed
as p-adic logarithms of algebraic numbers in a ring class field of F, suggesting that
a closer examination of such deformations could have some relevance to explicit
class field theory for real quadratic fields.

The primary purpose of this note is extend the results of [3] to general weight
one eigenforms.

Part A considers the regular setting where ˛ ¤ ˇ, in which the results exhibit a
close analogy to those of [3].

Part B takes up the case where g is irregular at p. Here the results are
more fragmentary and less definitive. Let S. p/

1 .N; �/ denote the space of p-adic
overconvergent modular forms of weight 1, level N, and character �, and let
S.p/
1 .N; �/ŒŒg�� denote the generalised eigenspace attached to the system of Hecke

eigenvalues of an irregular weight one form g 2 S1.N; �/. The main conjecture
of the second part asserts that S. p/

1 .N; �/ŒŒg�� is always four dimensional, with
a two-dimensional subspace consisting of classical forms. Under this conjecture,
an explicit description of the elements of the generalised eigenspace in terms of
their q-expansions is provided. The resulting concrete description of the generalised
eigenspace that emerges from Part B is an indispensable ingredient in the extension
of the “elliptic Stark conjectures” of [4] to the irregular setting that will be presented
in [5].

Part A: The Regular Setting

Let ƒ D ZpŒŒ1C pZp�� denote the Iwasawa algebra, and let

W WD Homcts.1C pZp;C
�
p / D Homalg.ƒ;Cp/
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denote the associated weight space. For each k 2 Zp, write 	k 2 W for the “weight
k” homomorphism sending the group-like element a 2 1 C pZp to ak�1. The rule
�.k/ WD 	k.�/ realises elements of ƒ as analytic functions on Zp. The spectrum
QW WD Homalg. Qƒ;Cp/ of a finite flat extension Qƒ of ƒ is equipped with a “weight

map”

w W QW �!W

of finite degree. A Qp-valued point x 2 QW is said to be of weight k if w.x/ D 	k,
and is said to be étale over W if the inclusion ƒ 
 Qƒ induces an isomorphism
between ƒ and the completion of Qƒ at the kernel of x, denoted Qƒx. An element of
this completion thus gives rise to an analytic function of k 2 Zp in a natural way.

A Hida family is a formal q-series

g WD
X

anqn 2 QƒŒŒq��

with coefficients in a finite flat extension Qƒ ofƒ, specialising to a classical ordinary
eigenform of weight k at almost all points x of QW of weight k 2 Z

�2. Two Hida
families g1 2 Qƒ1ŒŒq�� and g2 2 Qƒ2ŒŒq�� are regarded as equal if the ƒ-algebras Qƒ1

and Qƒ2 can be embedded in a common extension Qƒ in such a way that g1 and g2
are identified. A well known theorem of Hida and Wiles asserts the existence of a
Hida family specialising to g˛ in weight one. The following uniqueness result for
this Hida family plays an important role in our study.

Theorem (Bellaiche, Dimitrov) Assume that the weight one form g is regular at p,
and let x˛ and xˇ denote the distinct points on QW attached to g˛ and gˇ respectively.
Then

(a) The curve QW is smooth at x˛ and xˇ , and in particular there are unique Hida
families g˛; gˇ 2 QƒŒŒq�� specialising to g˛ and gˇ at x˛ and xˇ respectively.

(b) The weight map w W QW �!W is furthermore étale at x˛ if any only if

.�/ g is not the theta series of a character of a real quadratic K in which p splits.

The setting where g is regular at p but w is not étale at x˛ has been treated in [3], and
the remainder of Part A will therefore focus on the scenarios where .�/ is satisfied.
In that case, after viewing elements of the completion Qƒx˛ of Qƒ at x˛ as analytic
functions of the “weight variable” k, one may consider the canonical q-series

g0̨ WD
�

d

dk
g˛

�

kD1
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representing the first-order infinitesimal ordinary deformation of g at the weight
one point x˛, along this canonical “weight direction”. The q-series g0̨ is analogous
to the overconvergent generalised eigenform considered in [3], with the following
differences:

(a) While the overconvergent generalised eigenform of [3] is a (non-classical, but
overconvergent) modular form of weight one, such an interpretation is not
available for the q-series g0̨ , which should rather be viewed as the first order
term of a “modular form of weight 1C "”.

(b) In the non-étale setting of [3], the absence of a natural local coordinate with
respect to which the derivative would be computed meant that the overconver-
gent generalised eigenform of loc.cit. could only be meaningfully defined up to
scaling by a non-zero multiplicative factor. This ambiguity is not present in the
definition of g0̨ , whose fourier coefficients are therefore entirely well-defined.

The main results of Part A give explicit formulae for these fourier coefficients: they
are stated in Theorems 10, 14, 16, and 19 below.

1 The General Case

The goal of this section is to describe a general formula for the fourier coefficients
of g0̨ .

The Artin representation Vg can be realised as a two-dimensional L-vector
space, where L is a finite extension of Q, contained in a cyclotomic field. Let
Wg D hom.Vg;Vg/ denote the adjoint equipped with its usual conjugation action
of GQ, denoted

� � w WD %g.�/w%g.�/
�1; � 2 GQ; w 2 Wg:

Let H 
 Hg denote the finite Galois extensions of Q cut out by the representations
Wg and Vg respectively, and write G WD Gal .H=Q/.

For notational simplicity, the following assumption is made in the rest of this
paper:

Assumption 1 The prime p splits completely in the field L of coefficients of the
Artin representation Vg.

This assumption amounts to a simple congruence condition on p. The choice of
an embedding of L into Qp, which is fixed henceforth, will allow us, when it is
convenient, to view Vg and Wg as representations of GQ with coefficients in Qp, and
the weight one form g as a modular form with fourier coefficients in Qp rather than
in L. The Qp-vector spaces Vg and Wg are thus equipped with natural GQ-stable
L-rational structures, denoted VL

g and WL
g respectively.
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An embedding of NQ into NQp is fixed once and for all, determining a prime } of
H and of Hg above p, and an associated frobenius element �} in Gal .Hg=Q/ and in
G. Let G} 
 G be the decomposition subgroup generated by �} .

The representations Vg and Wg admit the following decompositions as �}-
modules:

Vg D V˛
g ˚ Vˇ

g ; Wg D W˛˛
g ˚W˛ˇ

g ˚Wˇ˛
g ˚Wˇˇ

g ;

where V˛
g and Vˇg denote the ˛ and ˇ-eigenspaces for the action of �} on Vg, and

W�
g WD hom.V

g ;V
�
g /; for ; � 2 f˛; ˇg

is a G}-stable line, on which �} acts with eigenvalue �=. Let

Word
g WD hom.Vg=V˛

g ;Vg/ D Wˇ˛
g ˚Wˇˇ

g :

Of course, Word
g is stable under the action of G} but not under the action of G.

We propose to give a general formula for the `th fourier coefficient of g0̨ as the
trace of a certain explicit endomorphism of Vg, which is constructed via a series of
lemmas. In the lemma below, we let G act on O�

H ˝Wg diagonally on both factors
in the tensor product.

Lemma 2 The Qp-vector space .O�
H ˝ Wg/

G of G-invariant vectors is one-
dimensional.

Proof Let G1 be the subgroup of G generated by a complex conjugation c, which
has order two, since Vg is odd. By Dirichlet’s unit theorem, the global unit group
O�

H ˝Qp is isomorphic to IndG
G1
.Qp/�Qp as a QpŒG�-module. Let W0

g denote the
three-dimensional representation of G consisting of trace zero endomorphisms of
Vg. As a representation of G, we have Wg D W0

g ˚Qp, and W0
g does not contain the

trivial representation as a constituent. By Frobenius reciprocity,

dimQp..O�
H ˝Wg/

G/ D dimQp..O�
H ˝W0

g /
G/ D dimQp..W

0
g /

cD1/ D 1:

The result follows. ut
Assume that the field L of coefficients is large enough so that the semisimple

ring LŒG� becomes isomorphic to a direct sum of matrix algebras over L. The LŒG�-
module O�

H ˝ L decomposes as a direct sum of V-isotypic components,

O�
H ˝ L D ˚VO�

H ŒV�;

where V runs over the irreducible representations of G, and O�
H ŒV� denotes the

largest subrepresentation of O�
H˝L which is isomorphic to a direct sum of copies of

V as an LŒG�-module. For a general, not necessarily irreducible, representation W,
the module O�

H ŒW� is defined as the direct sum of the O�
H ŒV� as V ranges over the
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irreducible constituents of W. Because Wg (viewed, for now, as a representation with
coefficients in L) is self-dual, Lemma 2 can be recast as the assertion that O�

H ŒWg�

is isomorphic to a single irreducible subrepresentation of Wg. More precisely:

• In the case of “exotic weight one forms” where %g has non-dihedral projective
image (isomorphic to A4, S4 or A5), then

O�
H ŒWg� D O�

H ŒW
0
g � ' W0

g ; (2)

and hence is three-dimensional.
• If %g is induced from a character  g of an imaginary quadratic field K, then

Wg D L˚ L.�K/˚ V ;

where �K is the odd quadratic Dirichlet character associated to K and V is the
two-dimensional representation of G induced from the ring class character  D
 g= 

0
g which cuts out the abelian extension H of K. The representation V is

irreducible if and only if  is non-quadratic, and in that case,

O�
H ŒWg� D O�

H ŒV � ' V : (3)

In the special case where  is quadratic, the representation V further decom-
poses as the direct sum of one-dimensional representations attached to an even
and an odd quadratic Dirichlet character, denoted �1 and �2 respectively. That
special case, in which Vg is also induced from a character of the real quadratic
field cut out by �1, is thus subsumed under (4) below.

• If %g is induced from a character  g of a real quadratic field F, then

Wg D L˚ L.�F/˚ V ; V WD IndQF . /;  WD  g= 
0
g;

and one always has

O�
H ŒWg� D O�

H Œ�F� ' L.�F/; (4)

i.e., O�
H ŒWg� is generated by a fundamental unit of F.

Let U�
g be any generator of the one-dimensional Qp-vector space .O�

H ˝ Wg/
G

and let

Ug WD .log} ˝id/.U�
g / 2 H} ˝Wg (5)

be the image of this vector under the linear map

log} ˝id W O�
H ˝Wg �! H} ˝Wg;

where log} is the p-adic logarithm on the }-adic completion H} of H at }.
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Lemma 3 There exists a non-zero endomorphism A 2 H} ˝ Wg satisfying the
following conditions:

(a) Trace.AUg/ D 0.
(b) A belongs to H} ˝Word

g , i.e., A.V˛
g / D 0.

This endomorphism is unique up to scaling.

Proof The space H} ˝ Wg is four-dimensional over H} and the conditions in
Lemma 3 amount to three linear conditions on A. More precisely, choose a �}-
eigenbasis .v˛; vˇ/ for Vg for which

�}v˛ D ˛v˛; �}vˇ D ˇvˇ:

Relative to this basis, the endomorphism Ug is represented by a matrix of the form

Ug W
 

log}.u1/ log}.uˇ=˛/

log}.u˛=ˇ/ � log}.u1/

!
;

where u1; u˛=ˇ, and uˇ=˛ are generators of O�
H ŒWg� which (when non-zero) are

eigenvectors for �} , satisfying

�}.u1/ D u1; �}.uˇ=˛/ D .ˇ=˛/uˇ=˛; �}.u˛=ˇ/ D .˛=ˇ/u˛=ˇ:

The endomorphism A satisfies condition (b) above if and only if the matrix
representing it in the basis .v˛; vˇ/ is of the form

A W
�
0 x
0 y

�
; x; y 2 H};

and condition (a) implies the further linear relation

log}.u˛=ˇ/ � x � log}.u1/ � y D 0: (6)

The injectivity of log} W O�
H ˝ L �! H} , which follows from the linear inde-

pendence over NQ of logarithms of algebraic numbers, implies that the coefficients
log}.u˛=ˇ/ and log}.u1/ in (6) vanish simultaneously if and only if

u˛=ˇ D u1 D 0

in O�
H ˝ L, i.e., if and only if O�

H ŒWg� is one-dimensional over L and generated by
uˇ=˛. This immediately rules out (2) and (3) as scenarios for the structure of O�

HŒWg�,
leaving only (4). Hence, Vg is induced from a character of a real quadratic field F.
In that case, the lines spanned by u˛=ˇ and uˇ=˛ are interchanged under the action
of any reflection in G, and hence the condition u˛=ˇ D 0 implies that uˇ=˛ D 0 as
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well, thus forcing the vanishing of the full O�
HŒWg�. This contradiction to Lemma 2

shows that (6) imposes a non-trivial linear condition on x and y, and therefore that
A is unique up to scaling. ut
Lemma 4 Let A be any element of H} ˝Wg satisfying the conditions in Lemma 3.
Then the following are equivalent:

(a) Trace.A/ ¤ 0;
(b) The representation %g is not induced from a character of a real quadratic field

in which the prime p splits.

Proof The vanishing of Trace.A/ is equivalent to the vanishing of the entry y in (6),
and hence to the vanishing of log}.u˛=ˇ/, and therefore of u˛=ˇ and uˇ=˛ as well.
This implies that O�

H ŒWg� is one-dimensional and generated by u1. As in the proof
of Lemma 3, this rules out (2) and (3), leaving only (4) as a possibility, i.e., Vg

is necessarily induced from a character of a real quadratic field F. Furthermore,
�} fixes the group O�

H ŒWg� generated by the fundamental unit of F, which occurs
precisely when p splits in F. The lemma follows. ut

Assume from now on that the equivalent conditions of Lemma 4 hold. One can
then define Ag 2 H} ˝Wg to be the unique H�

} -multiple of A satisfying

Trace.Ag/ D 1:

As in Lemma 2, H} ˝Wg is endowed with the diagonal action of G} which acts
on both H} and on Wg in a natural way. Given A 2 H} ˝ Wg and � 2 G} , let us
write �A for the image of A by the action of � on the first factor H} , and � � Ag for
the image of A by the action of � by conjugation on the second factor Wg.

Lemma 5 The endomorphism Ag belongs to the space .H} ˝ Wg/
G} of G}-

invariants for the diagonal action of G} on H} ˝Wg, i.e.,

�}Ag D ��1
} � Ag:

Proof Relative to the Qp-basis for Vg used in the proof of Lemma 3, the endomor-
phism Ag is represented by a matrix of the form

 
0

log}.u1/
log}.u˛=ˇ/

0 1

!
:

The lemma follows immediately from this in light of the fact that conjugation
by %g.�}/ preserves the diagonal entries in such a matrix representation while
multiplying its upper right hand entry by ˛=ˇ, whereas �} acts on the upper right-
hand entry of the above matrix as multiplication by ˇ=˛. ut
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The matrix Ag gives rise to a G-equivariant homomorphismˆg W H� �! H} ˝
Wg by setting

ˆg.x/ D
X

�2G

log}.
�x/ � .��1 � Ag/; (7)

where, just as above, the group G acts on H} ˝Wg trivially on the first factor and
through the usual conjugation action induced by �g on the second factor.

Lemma 6 The homomorphismˆg takes values in Wg.

Proof For any x 2 .H ˝Qp/
� we have

�}ˆg.x/ D
X

�2G

log}.
�}�x/ � .��1 ��}Ag/

D
X

�2G

log}.
�}�x/ � .��1 � �}�1 � Ag/

D
X

�2G

log}.
�}�x/ � ..�}�/�1 � Ag/

D ˆg.x/;

where Lemma 5 has been used to derive the second equation.
By a slight abuse of notation, we shall continue to denote with the same symbol

the homomorphism

ˆg W .H ˝Qp/
� �! H} ˝Wg

obtained from (7) by extending scalars. Note that H�
} embeds naturally in .H˝Qp/

�.

Lemma 7 The homomorphismˆg vanishes on O�
H˝Qp andˆg.H�

} / � H}˝Word
g .

Proof Picking u 2 O�
H and an arbitrary B 2 Wg, set

U�
g WD

X

�2G

�u˝ .� � B/ 2 .O�
H ˝Wg/

G; Ug WD .log} ˝id/.Ug/

as in the statement of Lemma 3. Note that U�
g is either trivial or a generator of the

one-dimensional space .O�
H ˝Wg/

G. We have

Trace.ˆg.u/ � B/ D Trace

  
X

�2G

log}.
�u/ � .��1 � Ag/

!
� B
!

D Trace

 
Ag �

 
X

�2G

log}.
�u/ � .� � B/

!!

D Trace
�
Ag � .log} ˝Id/.U�

g /
� D Trace

�
Ag � Ug

�
:
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It follows from Property (a) satisfied by A (and hence Ag in particular) in Lemma 3
that

Trace
�
ˆg.u/ � B

� D 0; for all B 2 H} ˝Wg:

The first assertion in the lemma follows from the non-degeneracy of the H}-valued
trace pairing on H} ˝Wg. The second assertion follows from Property (b) satisfied
by A and by Ag in Lemma 3. ut

Let now ` − Np be a rational prime, and let � be a prime of H above `. Let
u.�/ 2 OHŒ1=��

� ˝Q be a �-unit of H satisfying

NormH
Q
.u.�// D `: (8)

This condition makes u.�/ well-defined up to the addition of elements in O�
H ˝ Q,

and hence the element

Ag.�/ WD ˆg.u.�// D
X

�2G

log}.
�u.�// � .��1 � Ag/

is well-defined, by Lemma 7. Although Ag.�/ only belongs to H}˝Wg a priori, we
have:

Lemma 8 The trace of the endomorphism Ag.�/ is equal to logp.`/.

Proof Since the trace of Ag and its conjugates are all equal to 1, we have

Trace.Ag.�// D
X

�2G

log}.
�u.�// � Trace.��1 � Ag/

D
X

�2G

log}.
�u.�//

D log}
�
NormH

Q
.u.�//

�
:

The latter expression is equal to logp.`/, by (8). ut
Remark 9 Although Ag.�/ belongs to Wg by Lemma 6, the entries of the matrix
representing Ag.�/ relative to an L-basis for VL

g are L-linear combinations of
products of }-adic logarithms of units and `-units in H, and in particular Ag.�/

need not lie in WL
g . (In fact, it never does, since its trace is not algebraic.)

In addition to the invariant Ag.�/, the choice of the prime � of H above ` also
determines a well-defined Frobenius element �� in G D Gal .H=Q/, and even in
Gal .Hg=Q/, since Gal .Hg=H/ lies in the center of this group.

We are now ready to state the main theorem of this section:

Theorem 10 For all rational primes ` − Np,

a`.g
0̨ / D Trace.%g.��/Ag.�//:
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Remark 11 This invariant does not depend on the choice of a prime � of H
above `, since replacing � by another such prime has the effect of conjugating the
endomorphisms %g.��/ and Ag.�/ by the same element of Aut.Vg/.

Proof of Theorem 10 Let QŒ"� denote the ring of dual numbers over Qp, with "2 D
0, and let

Q%g W GQ �! GL2.QpŒ"�/

be the unique first order ˛-ordinary deformation of %g satisfying

det Q%g D �g.1C logp �cyc � "/:

This representation may be written as

Q%g D .1C " � �g/ � %g for some �g W GQ �! Wg: (9)

The multiplicativity of Q%g implies that the function �g is a 1-cocycle on GQ with
values in Wg, whose class in H1.Q;Wg/ (which shall be denoted with the same
symbol, by a slight abuse of notation) depends only on the isomorphism class of Q%g.
Furthermore,

a`.g˛/C " � a`.g0̨ / D Trace. Q%g.��// D a`.g/C " � Trace.�g.��/%g.��//;

and hence

a`.g
0̨ / D Trace.%g.��/�g.��//: (10)

To make �g.��/ explicit, observe that the inflation-restriction sequence combined
with global class field theory for H gives rise to a series of identifications

H1.Q;Wg/
resH�! hom.GH ;Wg/

G

D homG

�
.OH ˝Qp/

�

O�
H ˝Qp

;Wg

�
:

Under this identification, the class �g can be viewed as an element of the space

H1
ord.Q;Wg/ D

�
ˆ 2 homG

�
.OH ˝Qp/

�

O�
H ˝Qp

;Wg

�
such that ˆ.H�

} / 
 Word
g

	
:

But the homomorphism ˆg of (7) belongs to the same one-dimensional space, by
Lemmas 6 and 7. By global class field theory, the endomorphism �g.��/ is therefore
a Q

�
p -multiple of ˆg.ug.�// D Ag.�/. The fact that these endomorphisms are
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actually equal now follows by comparing their traces and noting that

Trace.�g.��// D logp �cyc.`/ D logp.`/;

while

Trace.Ag.�// D logp.`/;

by Lemma 8. Theorem 10 follows. ut
Corollary 12 If the rational prime ` − Np splits completely in H=Q, then

a`.g
0̨ / D .1=2/ � a`.g/ � logp.`/:

Proof The hypothesis implies that %g.��/ is a scalar, and hence that %g.��/ D
1
2
a`.g/. It follows that

Trace.%g.��/Ag.�// D .1=2/ � a`.g/ � Trace.Ag.�// D .1=2/ � a`.g/ � logp.`/:

The corollary now follows from Theorem 10. ut
Example 13 Let � be a Dirichlet character of conductor 171 with order 3 at 9 and
2 at 19. Then S1.171; �/ is a Q.�/-vector space of dimension 2. It is spanned by an
eigenform

g D qC �q2 C �3q3 � �2q5 C .�2 � 1/q6 C � � �

defined over L WD Q.�/, with � a primitive 12th root of unity, and its Galois
conjugate. (See [2] for all weight one eigenforms of level at most 1500.) The
associated projective representation %g has A4-image and factors through the field

H D Q.a/; a4 C 10a3 C 45a2 C 81aC 81 D 0:

Let p D 13, which splits completely in L. The representation %g is regular at 13, with
eigenvalues ˛ D � and ˇ D ��3. We computed the first order deformations through
each of g˛ and gˇ to precision 1310, and q-adic precision q37;000, using methods
based upon the algorithms in [7].

The predictions made from Theorem 10 for a`.g0̨ / depend upon the conjugacy
class of the Frobenius at ` in Gal .H=Q/. For all primes ` < 37;000 which split
completely in H, such as ` D 109; 179; 449; 467; 521; : : :, we verified that

a`.g
0̨ / D .1=2/ � a`.g/ � log13.`/ .mod 1310/;

as asserted by Corollary 12.
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2 CM Forms

This section focuses on the case where g D � g is the CM theta series attached to a
character

 g W GK �! L�

of a quadratic imaginary field K. The main theorems are Theorems 14 and 16 below,
which will be derived in two independent ways, both “from first principles” and by
specialising Theorem 10.

As in the previous section, the choice of an embedding of L into Qp allows us
to view  g as a Q

�
p -valued character, and the weight one form g as a modular form

with coefficients in Qp.
For a character  W GK �! L�, the notation  0 will be used to designate the

composition of  with conjugation by the non-trivial element in Gal .K=Q/:

 0.�/ D  .����1/;

where � is any element of GQ which acts non-trivially on K.
The Artin representation %g is induced from  g and its restriction to GK is the

direct sum  g ˚  0
g of two characters of K, which are distinct by the irreducibility

of %g resulting from the fact that g is a cusp form. In this case, the field H is the ring
class field of K which is cut out by the non-trivial ring class character WD  g= g

0.
The Galois group G WD Gal .H=Q/ is a generalised dihedral group containing Z WD
Gal .H=K/ as its abelian normal subgroup of index two.

The case of CM forms can be further subdivided into two sub-cases, depending
on whether p is split or inert in K.

2.1 The Case Where p Splits in K

Write pOK D p p0, and fix a prime } of NQ above p. The roots of the pth Hecke
polynomial of g are

˛ D  g.p/; ˇ D  g.p
0/:

This case is notable in that the Hida family g passing through g˛ can be written down
explicitly as a family of theta series. Its weight k specialisation gk is the theta-series
attached to the character g‰

k�1, where‰ is a CM Hecke character of weight .1; 0/
which is unramified at p. For all rational primes ` − Np, the `th fourier coefficient
of gk is given by

a`.gk/ D
�
 g.�/‰

k�1.�0/C  g.�
0/‰k�1.�/ if ` D ��0 splits in KI

0 if ` is inert in K:
(11)
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Letting h be the class number of K and t the cardinality of the unit group O�
K , the

character ‰ satisfies

‰.�/ht D ut
�; where .u�/ WD �h;

for any prime ideal � of OK whose norm is the rational prime ` D ��0. Let u0
�

denote the conjugate of u� in K=Q. It follows that

d

dk
‰k�1.�/kD1 D logp.u.�//; where u.�/ WD u� ˝ 1

h
2 OHŒ1=`�

� ˝Q;

and likewise that

d

dk
‰k�1.�0/kD1 D logp.u.�/

0/; where u.�/0 WD u0
� ˝

1

h
2 OHŒ1=`�

� ˝Q:

In light of (11), we have obtained:

Theorem 14 For all rational primes ` that do not divide Np,

a`.g
0̨ / D

( �
 g.�/ logp.u.�

0//C  g.�
0/ logp.u.�//

�
if ` D ��0 splits in KI

0 if ` is inert in K:
(12)

Thus, the prime fourier coefficients of g0̨ are supported at the primes ` which are
split in K, where they are (algebraic multiples of) the p-adic logarithms of `-units
in this quadratic field. This general pattern will persist in the other settings to be
described below, with the notable feature that the fourier coefficients of g0̨ will be
more complicated expressions involving, in general, the p-adic logarithms of units
and `-units in the full ring class field H.

The reader will note Theorem 14 is consistent with Theorem 10, and could also
have been deduced from it. More precisely, choose a basis of Vg consisting of
eigenvectors for the action of GK (and hence also, of �}) which are interchanged
by some element � 2 GQ�GK . Relative to such a basis, the endomorphisms Ug and
Ag are represented by the following matrices, in which u and �u are generators
of the spaces of  and �1-isotypic vectors in the group of elliptic units in O�

H˝L:

Ug W
 

0 log}.u /
log}.u

0
 / 0

!
; Ag W

�
0 0

0 1

�
:

It follows that, if ` D ��0 is split in K, then Ag.�/ is represented by the matrix

Ag.�/ W
 

log}.u.�
0// 0

0 log}.u.�//

!
;

while Ag.�/ D 1
2

logp.`/ is the scalar matrix with trace equal to logp.`/ if ` is inert
in K.



First Order p-Adic Deformations of Weight One Newforms 53

2.2 The Case Where p Is Inert in K

We now turn to the more interesting case where p is inert in K. Let �} WD �2} denote
the frobenius element in GK attached to the prime } of H (which is well-defined
modulo the inertia subgroup at }). Note that the prime p splits completely in H=K,
since the image of �} in G is a reflection in this generalised dihedral group. The
image of �} in Gal .Hg=K/ therefore belongs to the subgroup Gal .Hg=H/ whose
image under %g consists of scalar matrices. Similar notations and remarks apply to
any rational prime ` which is inert in K=Q.

Relative to an eigenbasis .e1; e2/ for the action of GK on Vg, the Galois
representation %g takes the form

%g.�/ D
 
 g.�/ 0

0  0
g.�/

!
for � 2 GK : (13)

The homomorphisms g;  
0
g W GK �! Q

�
p factor through Gal .Hg=K/ and satisfy

 g.���
�1/ D  0

g.�/; for all � 2 GQ � GK ; � 2 GK :

It follows that %g.�/ interchanges the lines spanned by e1 and e2, for any element
� 2 GQ�GK . The restriction of %g to GQ�GK can therefore be described in matrix
form by

%g.�/ D
 

0 �g.�/

�0
g.�/ 0

!
for � 2 GQ �GK ; (14)

where �g and �0
g are L-valued functions on GQ �GK that satisfy

�g.�1/�
0
g.�2/ D  g.�1�2/ D  0

g.�2�1/; for all �1; �2 2 GQ � GK ; (15)

as well as the relations

�g.��/ D  g.�/�g.�/; �g.��/ D  0
g.�/�g.�/;

�0
g.��/ D  0

g.�/�
0
g.�/; �0

g.��/ D  g.�/�
0
g.�/;

for all � 2 GK ; � 2 GQ�GK :

(16)

After re-scaling e1 and e2 if necessary, we may assume that �} 2 GQ � GK is sent
to the matrix

%g.�}/ D
 
0 �

� 0

!
; with �2 D ��g. p/: (17)

The eigenvalues of %g.�}/ are equal to ˛ WD � and ˇ WD ��, and hence g is always
regular in this setting.
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Let

Q%g W GQ �! GL. QVg/

denote the first-order infinitesimal deformation of %g attached to the Hida family g
passing through a choice of p-stabilization g˛ of g, where ˛ 2 f�;��g. The module
QVg is free of rank two over the ring QpŒ"�=."

2/ D QpŒŒT��=.T2/ arising from the mod
T2 reduction of the representation %g attached to g. Choose any QpŒ"�-basis .Qe1; Qe2/
of QVg lifting .e1; e2/, and note that the restriction of Q%g to GK is given by:

Q%g.�/ D
0

@
 g.�/ � .1C �.�/ � "/  0

g.�/ � � .�/ � "
 g.�/ � �0

 .�/ � "  0
g.�/ � .1C �0.�/ � "/

1

A ; for all � 2 GK :

(18)
In this expression,

(a) The functions � and �0 are continuous homomorphisms from GK to Qp, i.e.,
elements of H1.K;Qp/, which are interchanged by conjugation by the involution
in Gal .K=Q/:

�.����1/ D �0.�/; � 2 GQ � GK ; � 2 GK :

(b) The functions � ; �0
 W GK �! Qp are one-cocycles with values in Qp. /, and

give rise to well defined classes

� 2 H1.K;Qp. //; �0
 2 H1.K;Qp. 

�1//;

which also satisfy

� .���
�1/ D �0

 .�/; � 2 GQ � GK ; � 2 GK :

For each rational prime ` − Np, the `th fourier coefficient a`.g0̨ / is given by

a`.g
0̨ / D d

dk
Trace.%g.��//kD1 (19)

Observe that the spaces H1.K;Qp/ and H1.K;Qp. // are of dimensions two
and one respectively over Qp, since  ¤ 1. More precisely, restriction to the inertia
group at p combined with local class field theory induces an isomorphism

H1.K;Qp/ D hom.O�
Kp
;Qp/ D Qp logp.z/˚Qp logp.z

0/: (20)

Let O�; 
H denote the (one-dimensional)  -isotypic component of O�

H ˝ Qp on
which Gal .H=K/ acts through the character  , and denote by } the prime of H
above p arising from our chosen embedding of NQ into NQp. Restriction to the inertia
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group at } in GH likewise gives rise to an identification

H1.K;Qp. // D hom.O�

H} =O
�; 
H ;Qp/ D Qp � .log}.u

0

 / log}.z/� log}.u / log}.z
0//:

(21)

In the above equation, u is to be understood as the natural image in O�
H}
D O�

Kp
of

an element of the form

X

�2Z

 �1.�/u� 2 .O�
H ˝ L/ ;

where u is an LŒG�-module generator of O�
H˝L, and u0

 is the image of u under the
conjugation action Kp �! Kp. Note that replacing u by �u for some � 2 LŒG� has
the effect of multiplying both u and u0

 by  .�/ 2 Qp, so that the Qp-line spanned
by the right-hand side of (21) is independent of the choice of u 2 O�

H .
It follows from (20) and (21) that the total deformation space of %g (before

imposing any ordinarity hypotheses, or restrictions on the determinant) is three
dimensional.

Let vC
g WD e1 C e2 and v�

g WD e1 � e2 be the eigenvectors for �} acting on Vg,
with eigenvalues � and�� respectively. Let �p and � ;} denote the restrictions � and
� to the inertia groups at p and } in GH and GK respectively. Both can be viewed
as characters of K�

p D H�
} after identifying the abelianisations of GKp and GH} with

a quotient of K�
p via local class field theory.

Lemma 15 The following are equivalent:

(a) The inertia group at } acts as the identity on some lift QvC
g of vC

g to QVg;

(b) The inertia group at } acts as the identity on all lifts QvC
g of vC

g to QVg;
(c) The restrictions �p and � ;} satisfy

�p.x/ D �� ;}.x/; for all x 2 O�
Kp
:

Similar statements hold when vC
g is replaced by v�

g , where the conclusion is that
�p D � ;} .

Proof The equivalence of the first two conditions follows from the fact that " QVg '
Vg is unramified at p and hence that inertia acts as the identity on the kernel of the
natural map QVg �! Vg. To check the third, note that the inertia group Ip at p is
contained in GK , since K is unramified at p, and observe that any � 2 Ip sends
Qe1 C Qe2 to

Q%g.�/.Qe1 C Qe2/ D Qe1 C Qe2 C " � .�.�/Qe1 C �0
 .�/Qe2 C � .�/Qe1 C �0.�/Qe2/

D Qe1 C Qe2 C " � ..�.�/C � .�//Qe1 C .�0.�/C �0
 .�//Qe2/:

The lemma follows. ut
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A lift Q%g of %g is ordinary relative to the space spanned by vC
g if and only if it satisfies

the equivalent conditions of Lemma 15. This lemma merely spells out the proof of
the Bellaiche-Dimitrov theorem on the one-dimensionality of the tangent space of
the eigencurve at the point associated to g˛. More precisely, the general ordinary
first-order deformation of %g is completely determined by the pair .�p; � ;}/, which
depends on a single linear parameter � 2 NQp and is given by the rule

�p.z/ D �.log}.u
0
 / � log}.z/ � log} u � log}.z

0//; (22)

� ;p.z/ D ˙�.log}.u
0
 / � log}.z/ � log} u � log}.z

0//; (23)

where the sign in the second formula depends on whether one is working with the
ordinary deformation of g˛ or gˇ.

Let us now make use of the fact that

det. Q%g/ D 1C " logp �cyc D 1C " logp.zz0/:

Since det. Q%g/ D 1C ".� C �0/, this condition implies that

� D 1

log}.u
0
 /� log}.u /

;

and hence that �p and � ;} are given by

�p.z/ D
log}.u

0
 / � log}.z/ � log}.u / � log}.z

0/
log}.u

0
 / � log}.u /

; (24)

� ;}.z/ D ˙
log}.u

0
 / � log}.z/� log}.u / � log}.z

0/
log}.u

0
 /� log}.u /

: (25)

Equations (24) and (25) give a completely explicit description of the first order
deformation Q%g˛ and Q%gˇ , from which the fourier coefficients of g0̨ and g0̌ shall be
readily calculated.

The formula for the `th fourier coefficient of g0̨ involves the unit u above as
well as certain `-units in OHŒ1=`�

�˝L whose definition depends on whether or not
the prime ` is split or inert in K=Q.

If ` D ��0 splits in K=Q, let u.�/ and u.�0/ denote, as before, the `-units in
OK Œ1=`�

� ˝Q of norm ` with prime factorisation � and �0 respectively. Set

ug.�/ WD u.�/˝ g.�/Cu.�0/˝ g.�
0/; ug.�

0/ WD u.�0/˝ g.�/Cu.�/˝ g.�
0/:

In other words, ug.�/ is the unique element of OK Œ1=`�
� ˝ L whose prime

factorisation is equal to  g.�/ � � C  g.�
0/ � �0. Note that, if ` splits completely

in H=Q, i.e., if %g.��/ is equal to a scalar �, then ug.�/ D ug.�
0/ D `˝ �, but that
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otherwise ug.�/ and ` generate the L-vector space OK Œ1=`�
� ˝ L of `-units of K

(tensored with L).
If ` is inert in K=Q, choose a prime � of H lying above `, and let u.�/ 2

OHŒ1=��
�˝Q be any �-unit of H satisfying ord�.u.�// D 1, which is well defined

up to units in O�
H . Define the elements

u .�/ D
X

�2Z

 �1.�/˝ �u.�/ 2 L˝OHŒ1=`�
�;

u0
 .�/ D �}u .�/ 2 L˝OHŒ1=`�

�:

Thus u .�/ lies in the  -component OHŒ1=`�
�Œ � and is well-defined up to the

addition of multiples of u , where

u WD
X

�2Z

 �1.�/˝ �u 2 L˝OHŒ1=`�
�;

for any unit u 2 O�
H , while u0

 .�/ lies in the  �1 component and is well-defined up
to the addition of multiples of u0

 , where

u0
 D �}u :

Recall the function �0
g W GQ nGK introduced in (14), with values in the roots of unity

of L�. The main result of this section is:

Theorem 16 Let ` − Np be a rational prime.

(a) If ` D ��0 splits in K=Q, then

a`.g
0̨ / D a`.g

0̌ / D log}.u
0
 / � log}.ug.�// � log}.u / � log}.ug.�

0//
log}.u

0
 /� log}.u /

:

(26)
(b) If ` remains inert in K=Q, then

a`.g
0̨ / D �0

g.��/
log}.u

0
 / log}.u .�// � log}.u / log}.u

0
 .�//

log}.u
0
 /� log}.u //

:

Proof Let us first compute first the fourier coefficients at primes ` − Np that split
as ` D ��0 in K. Let �� and ��0 be the frobenius elements associated to � and
�0 respectively. They are well-defined elements in the Galois group of any abelian
extension of K in which ` is unramified.

It follows from (19) and the matrix expression for Q%gjGK given in (18) that

a`.g
0̨ / D  g.�/�.�/C  g.�

0/�.�0/

D  g.�/�p.u.�//C  g.�
0/�p.u

0.�//:
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Equation (26) then follows from the formula for �p.z/ given in (24).
We now turn now to the computation of the fourier coefficients of g0̨ at primes

` − Np that remain inert in K. Let �� denote the Frobenius element in Gal .M=Q/
associated to the choice of a prime ideal � above ` in NQ, and let �� WD �2� denote the
associated frobenius element in Gal .M=K/.

Since �� belongs to GQ�GK , it follows from (14) that the matrix Q%g.��/ is of the
form

Q%g.��/ D
 

r` � " �g.��/.1C s` � "/
�0

g.��/.1C t` � "/ u` � "

!
;

for suitable scalars r`; s`; t`, and u` 2 NQp. Since

a`.g˛/C a`.g
0̨ /" D Trace. Q%g.��// D .r` C u`/ � ";

it follows that

a`.g
0̨ / D r` C u`: (27)

In order to compute this trace, we observe that it arises in the upper right-hand and
lower left-hand entries of the matrix

Q%g.��/ D Q%g.��/
2 D

 
 g.��/.1C .s` C t`/ � "/ �g.��/.r` C u`/ � "
�0

g.��/.r` C u`/ � "  g.��/.1C .s` C t`/ � "/

!
:

(28)

On the other hand, since �� belongs to GK it follows from (18) that

Q%g.��/ D
 
 g.��/ � .1C �.��/ � "/  0

g.��/ � � .��/ � "
 g.��/ � �0

 .��/ � "  0
g.��/ � .1C �0.��/ � "/

!
: (29)

By comparing upper-right entries in the matrices in (28) and (29) and invoking (27)
together with the relation  0

g.��/�g.��/
�1 D �0

g.��/ arising from (15), we deduce
that

a`.g
0̨ / D �0

g.��/� .��/:

It is worth noting that each of the expressions �0
g.��/ and � .��/ depend on the

choice of a prime � of H above ` that was made to define �� and ��, since changing
this prime replaces �� and �� by their conjugates �����1 and �����1 by some
� 2 GK . More precisely, by (16) and the cocycle property of � ,

�0
g.����

�1/ D  �1.�/�0
g.��/; � .����

�1/ D  .�/� .��/:
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In particular, the product �0
g.��/� .��/ is independent of the choice of a prime above

`, as it should be. Note that �0
g.��/ is a simple root of unity belonging to the image

of  g, while � .��/ represents the interesting “transcendental” contribution to the
fourier coefficient a`.g0̨ /.

By the description of � .��/ arising from local and global class field theory, we
conclude from (25) that

a`.g
0̨ / D �0

g.��/
log}.u

0
 / log}.u .�// � log}.u / log}.u

0
 .�//

log}.u
0
 /� log}.u /

; (30)

as was to be shown. ut
A more efficient (but somewhat less transparent) route to the proof of Theorem 16

is to specialise Theorem 10 to this setting. Relative to a basis of the form .v; �}v/

for Vg, where v spans a GK-stable subspace of Vg on which GK acts via  g, the
matrix for Ug is proportional to one of the form

Ug W
 

0 log}.u /

log}.�}u / 0

!
;

and the ordinarity condition implies that the matrix representing Ag is proportional
to a matrix of the form

A W
�

x �x
y �y

�
:

The relations Trace.AgUg/ D 0 and Trace.Ag/ D 1 show that Ag is represented by
the matrix

Ag W 1

log}.u /� log}.�}u /
�
 

log}.u / � log}.u /

log}.�}u / � log}.�}u /

!
;

and Theorem 16 is readily deduced from the general formula for the fourier
coefficients of g0̨ given in Theorem 10. The details are left to the reader.

2.3 Numerical Examples

We begin with an illustration of Theorem 16 in which the image of %g is isomorphic
to the symmetric group S3.

Example 17 Let � be the quadratic character of conductor 23 and

g D q � q2 � q3 C q6 C q8 C � � � 2 S1.23; �/
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be the theta series attached to the imaginary quadratic field K D Q.
p�23/. The

Hilbert class field H of K is

H D Q.˛/ where ˛6 � 6˛4 C 9˛2 C 23 D 0:
Write Gal .H=K/ D h�i. The smallest prime which is inert in K is p D 5. The
deformations g0

1 and g0�1 were computed to a 5-adic precision of 540 (and q-adic
precision q600).

Consider the inert prime ` D 7 in K. Let u.7/ D .2˛4 � 7˛2 C 5/=9, a root of
x3 � x2 C 2x � 7 D 0. Taking ! a primitive cube root of unity we have

log5.u .7// D log5.u.7//C ! log5.u.7/
�/C !2 log5.u.7/

�2/

log5.u
0
 .7// D log5.u.7//C !2 log5.u.7/

�/C ! log5.u.7/
�2/:

Let u D .˛2�1/=3 be the elliptic unit in H, a root of x3�x2C1 D 0. Then likewise
we have

log5.u / D log5.u/C ! log5.u
� /C !2 log5.u

�2/

log5.u
0
 / D log5.u/C !2 log5.u

�/C ! log5.u
�2/:

Now

a7.g
0
1/ D �a7.g

0�1/ D 4083079847610157092272537548 � 5 mod 540

and one checks to 40 digits of 5-adic precision that

a7.g
0
1/ D

log5.u .7// log5.u
0
 /� log5.u

0
 .7// log5.u /

log5.u /� log5.u
0
 /

as predicted by part (b) of Theorem 16.
Consider next the prime ` D 13, which splits in K and factors as .l/ D ��0,

where �3 D .u�/ is a principal ideal generated by u� D �6˛3C 18˛� 37, a root of
x2 C 74xC 2197. After setting u.�/ D u� ˝ 1

3
, we let

log5.ug.�// D
�
! log5.u.�//C !2 log5.u

0.�//
�

log5.u
0
g.�// D 1

3

�
!2 log5.u.�//C ! log5.u

0.�//
�
:

We have

a13.g
0
1/ D a13.g

0�1/ D �638894131680830198852008592 � 5 mod 540

and one sees that

a13.g
0̇
1/ D

log5.u
0. // log5.ug.�// � log5.u. // log5.u

0
g.�//

log5.u
0
 /� log5.u /

to 40 digits of 5-adic precision, confirming Part (a) of Theorem 16.
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The experiment below focuses on the case where  g is a quartic ring class
character, so that %g has image isomorphic to the dihedral group of order 8. The
associated ring class character  D  g= 

0
g D  g

2 of K is quadratic, i.e., a genus
character which cuts out a biquadratic extension H of Q containing K. Let F denote
the unique real quadratic subfield of H, and let K0 the unique imaginary quadratic
subfield of H which is distinct from K. The unit u is a power of the fundamental
unit of F. Observe that the prime p is necessarily inert in K0=Q, since otherwise %g

would be induced from a character of the real quadratic field F in which p splits. It
follows that u0

 D u�1
 , so that by Theorem 16,

a`.g
0̨ / D � logp u � .logp.ug.`//C logp.u

0
g.`///

�2 logp.u /
D 1

2
�.logp.ug.`//Clogp.u

0
g.`///:

It follows from the definition of ug.`/ that

a`.g
0̨ / D trace.%g.�// � logp.`/:

In particular, we obtain

a`.g
0̨ / D

8
ˆ̂<

ˆ̂:

logp.`/ if  g.�/ D 1;
0 if  g.�/ D ˙i;

� logp.`/ if  g.�/ D �1;
(31)

in perfect agreement with the experiments below.

Example 18 Let � D �3�13 where �3 and �13 are the quadratic characters of
conductors 3 and 13, respectively. The space S1.39; �/ is one dimensional and
spanned by the form g D q�q3�q4Cq9C� � � . The representation �g has projective
image D4 and is induced from characters of two imaginary quadratic fields and one
real quadratic field. In particular, it is induced from the quadratic character g of the
Hilbert class field

H D Q.
p�39; a/; a4 C 4a2 � 48 D 0

of Q.
p�39/ (and also ramified characters of ray class fields of Q.

p�3/ and
Q.
p
13/). Let p D 7, which is inert in Q.

p�39/. We computed g0̇
1 to 20-digits of

7-adic precision (and to q-adic precision q900).
First consider the case of ` D ��0 split in Q.

p�39/. Then one observes
to 20-digits of 7-adic precision and all such ` < 900 that both a`.g0

1/ and
a`.g0�1/ satisfy (31). Next we consider the case that ` is inert in Q.

p�39/.
Here one observes numerically that the Fourier coefficients are zero when ` is
inert in Q.

p�3/. When ` is split in Q.
p�3/ the Fourier coefficients of the two

stabilisations are opposite in sign and both equal to the p-adic logarithm of a
fundamental ` unit of norm 1 in Q.

p�3/. (Observe that p is split in Q.
p�3/ and
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our numerical observations are consistent in this example with both our theorems
for p split and p inert in the CM case.)

3 RM Forms

Consider now the case where g is the theta series attached to a character

 g W GK �! L�

of mixed signature of a real quadratic field K. As before, assume for simplicity that
the field L may be embedded into Qp and fix one such embedding. We also continue
to denote Hg the abelian extensions of K which is cut out by %g, and let H be the
ring class field of K cut out by the non-trivial ring class character  WD  g= g

0.
Since  g has mixed signature, it follows that  is totally odd and thus H is totally
imaginary. As before, write G WD Gal .H=Q/ and Z WD Gal .H=K/.

As explained in the introduction, the case where p splits in K was already dealt
with in [3], so in this section we only consider the case where p is inert in K=Q.
The prime p then splits completely in H=K and we fix a prime } of H above p.
This choice determines an embedding H �! H} D Kp and we write z 7! z0 for
the conjugation action of Gal .Kp=Qp/. Let uK 2 O�

K denote the fundamental unit
of OK of norm 1, which we regard as an element of K�

p D H�
} through the above

embedding, and let u0
K D u�1

K denote its algebraic conjugate.
Let .v1; v2/ be a basis for Vg consisting of eigenvectors for the action of GK , and

which are interchanged by the frobenius element �} . Just as in the previous section,
relative to this basis the Galois representation %g takes the form

%g.�/ D
 
 g.�/ 0

0  0
g.�/

!
for � 2 GK; %g.�/ D

 
0 �g.�/

�0
g.�/ 0

!
for � 2 GQ�GK ;

(32)

where �g and �0
g are functions taking values in the group of roots of unity in L�. The

element Ug 2 .H} ˝Wg/ of (5) is thus represented the matrix

Ug W
 

log}.uK/ 0

0 log}.u
0
K/

!
;

and hence the endomorphism Ag of Lemma 5 is represented by the particularly
simple matrix

Ag W 1
2

 
1 �1
�1 1

!
:
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It follows that, if ` D ��0 is split in K=Q, we have

Ag.�/ W 1
2

 
logp.`/ 0

0 logp.`/

!
; (33)

while if ` is inert in K=Q and � is a prime of H lying above `,

Ag.�/ W 1
2

 
logp.`/ � log}.u .�//

� log}.u
0
 .�// logp.`/

!
: (34)

Theorem 19 For all rational primes ` − Np,

(a) If ` is split in K=Q, then

a`.g
0̨ / D 1

2
a`.g/ � logp.`/:

(b) If ` is inert in K=Q, then

a`.g
0̨ / D �

�
�g.�/ log}.u

0
 .�//C �g.�

0/ log}.u .�//
�
:

Proof This follows directly from Theorem 10 in light of (33) and (34). ut
Remark 20 As already remarked in [3], Theorem 19 above (and also Theorem 29
of Part B) display a striking analogy with Theorem 1.1. of [6] concerning the fourier
expansions of mock modular forms whose shadows are weight one theta series
attached to characters of imaginary quadratic fields. The underlying philosophy is
that the p-adic deformations considered in this paper behave somewhat like mock
modular forms of weight one, “with 1 replaced by p”. This explains why the
analogy remains compelling when the quadratic imaginary fields of [6] are replaced
by real quadratic fields in which p is inert (these fields being “imaginary” from a
p-adic perspective).

We illustrate Theorem 19 on the form of smallest level whose associated Artin
representation is induced from a character of a real quadratic field, but of no
imaginary quadratic field. The projective image in this example is the dihedral group
D8 of order 8:

Example 21 Let � D �5�29 where �5 and �29 are quadratic and quartic characters
of conductor 5 and 29, respectively. Then S1.145; �/ is one dimensional and spanned
by the eigenform

g D qC iq4 � iq5 C iq9 C .�i � 1/q11 � q16 C .�i� 1/q19 C � � � :

The form g is induced from a quartic character of a ray class group of K D Q.
p
5/

(see [4, Example 4.1] for a further discussion on this form). The relevant ring class
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field H is

H D Q.˛/ where ˛8�2˛7C4˛6�26˛5C94˛4�212˛3C761˛2�700˛C980 D 0:

Write Gal .H=K/ D h i. Take p D 13, and note that �. p/ D 1 and so ˛ D i and
ˇ D �i. We compute g0̇

i to 10 digits of 13-adic precision (and q-adic precision
q28;000).

Consider first the prime ` D 7 which is inert in K. We take the 7-unit u.7/ 2 H
to satisfy x4 C 13x3 C 38x2 C 5xC 343 D 0 and define

log13.u.7;˙i// WD log13.u.7// i log13.u.7/
 / log13.u.7/

 2/˙ i log13.u.7/
 3/

and so log13.u.7; i// C log13.u.7;�i// D log13.v/ where v D u.7/=u.7/ 
2 2 H.

Then one checks that to 10 digits of 13-adic precision

a7.g
0
i/ D �

1

6
� log13.v/

which is in line with Theorem 19. Next we take the prime ` D 11 which is split in
K. Then to 10-digits of 13-adic precision

a11.g
0
i/ D �

iC 1
2
� log13.11/

exactly as predicted by Theorem 19.

Part B: The Irregular Setting

Denote by Sk.Np; �/ (resp. by S. p/
k .N; �/) the space of classical (resp. p-adic

overconvergent) modular forms of weight k, level Np (resp. tame level N) and
character �, with coefficients in Qp. The Hecke algebra T of level Np generated
over Q by the operators T` with ` − Np and U` with ` j Np acts naturally on the
spaces Sk.Np; �/ and S. p/

k .N; �/.
As in the introduction, let g 2 S1.N; �/ be a newform and let g˛ 2 S1.Np; �/ be

a p-stabilisation of g. The eigenform g˛ gives rise to a ring homomorphism 'g˛ W
T �! L to the field L generated by the fourier coefficients of g˛, satisfying

'g˛ .T`/ D a`.g˛/ if ` − Np; 'g˛ .U`/ D
�

a`.g˛/ if ` j NI
˛ if ` D p:

(35)

For any ideal I of a ring R and any R-module M, denote by MŒI� the I-torsion in M.
Let Ig˛G T be the kernel of 'g˛ , and set

S1.Np; �/Œg˛� WD S1.Np; �/ŒIg˛ �; S1.Np; �/ŒŒg˛�� WD S1.Np; �/ŒI2g˛ �:
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Our main object of study is the subspace

S.p/
1 .N; �/ŒŒg˛�� WD S. p/

1 .N; �/ŒI2g˛ �:

of the space of overconvergent p-adic modular forms of weight one, which is con-
tained in the generalised eigenspace attached to Ig˛ . An element of S. p/

1 .N; �/ŒŒg˛��
is called an overconvergent generalised eigenform attached to g˛, and it is said to
be classical if it belongs to S1.Np; �/ŒŒg˛��. The theorem of Bellaiche and Dimitrov
stated in the opening paragraphs of Part A implies that the natural inclusion

S1.Np; �/ŒŒg˛�� ,! S.p/
1 .N; �/ŒŒg˛��

is an isomorphism, i.e., every overconvergent generalised eigenform is classical,
except possibly in the following cases:

(a) g is the theta series attached to a finite order character of a real quadratic field
in which the prime p splits, or

(b) g is irregular at p, i.e., ˛ D ˇ.

The study of S. p/
1 .N; �/ŒŒg˛�� in scenario (a) was carried out in [3] when ˛ ¤ ˇ.

The main result of loc.cit. is the description of a basis .g˛; g[˛/ for S. p/
1 .N; �/ŒŒg˛��

which is canonical up to scaling, and an expression for the fourier coefficients of the
non-classical g[˛ (or rather, of their ratios) in terms of p-adic logarithms of certain
algebraic numbers.

Assume henceforth that g is not regular at p, i.e., that ˛ D ˇ. In that case, the
form g admits a unique p-stabilisation g˛ D gˇ . The Hecke operators T` for ` − Np
and U` for ` j N act semisimply (i.e., as scalars) on the two-dimensional vector
space

S1.Np; �/ŒŒg˛�� D Qpg˛ ˚Qpg0; g0.q/ WD g.qp/;

but the Hecke operator Up acts non-semisimply via the formulae

Upg˛ D ˛g˛; Upg0 D g˛ C ˛g0:

Because

.a1.g˛/; ap.g˛// D .1; ˛/; .a1.g
0/; ap.g

0// D .0; 1/;

the classical subspace S1.Np; �/ŒŒg˛�� has a natural linear complement in
S.p/
1 .N; �/ŒŒg˛��, consisting of the generalised eigenforms Qg whose q-expansions

satisfy

a1.Qg/ D ap.Qg/ D 0: (36)
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A modular form satisfying (36) is said to be normalised, and the space of
normalised generalised eigenforms is denoted S.p/

1 .N; �/ŒŒg˛��0. The main goal of
Part B is to study this space and give an explicit description of its elements in terms
of their fourier expansions. The idoneous fourier coefficients will be expressed as
determinants of 2 � 2 matrices whose entries are p-adic logarithms of algebraic
numbers the number field H cut out by the projective Galois representation attached
to g (cf. Theorems 26, 27 and 29).

4 Generalised Eigenspaces

We begin by recalling some of the notations that were already introduced in Part A.
Let

%g W GQ �! AutQp.Vg/ ' GL2.Qp/

be the odd, two-dimensional Artin representation associated to g by Deligne and
Serre (but viewed as having p-adic rather than complex coefficients; as in Part A,
we assume for simplicity that the image of %g can be embedded in GL2.Qp/ and not
just in GL2. NQp/).

The four-dimensional Qp-vector space Wg WD Ad.Vg/ WD End.Vg/ of endomor-
phisms of Vg is endowed with the conjugation action of GQ,

� �M WD %g.�/ ıM ı %g.�/
�1; for any � 2 GQ; M 2 Wg:

Let H be the field cut out by this Artin representation. The action of GQ on Wg

factors through a faithful action of the finite quotient G WD Gal .H=Q/. Let Wı
g WD

Ad0.Vg/ denote the three-dimensional GQ-submodule of Wg consisting of trace zero
endomorphisms. The exact sequence

0 �! Wı
g �! Wg �! Qp �! 0

of G-modules admits a canonical G-equivariant splitting

p W Wg �! Wı
g ; p.A/ WD A � 1=2 � Tr.A/:

Because the action of GQ on Vg also factors through a finite quotient, the field
L 
 Qp generated by the traces of %g is a finite extension of Q, and %g maps the
semisimple algebra LŒGQ� to a central simple algebra of rank 4 over L. By eventually
enlarging L, it can be assumed that %g.LŒGQ�/ ' M2.L/, and therefore that %g is
realised on a two-dimensional L-vector space VL

g equipped with an identification
� W VL

g ˝L Qp �! Vg. The spaces

WL
g WD Ad.VL

g /; WıL
g WD Ad0.VL

g /
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likewise correspond to G-stable L-rational structures on Wg and Wı
g respectively,

equipped with identifications

� W WL
g ˝L Qp �! Wg; � W WıL

g ˝L Qp �! Wı
g :

The spaces Wg and Wı
g (as well as WL

g and WıL
g ) are equipped with the Lie bracket

Œ ; � and with a symmetric non-degenerate pairing h ; i defined by the usual rules

ŒA;B� WD AB � BA; hA;Bi WD Tr.AB/;

which are compatible with the G-action in the sense that

Œ� � A; � � B� D � � ŒA;B�; h� � A; � � Bi D hA;Bi; for all � 2 G:

These operations can be combined to define a G-invariant determinant function—
i.e., a non-zero, alternating trilinear form—on Wı

g and on WıL
g by setting

det.A;B;C/ WD hŒA;B�;Ci:

The rule described in (35) gives rise to natural identifications

S1.Np; �/Œg˛� ' Hom.T=Ig˛ ;Qp/; S. p/
1 .N; �/ŒŒg˛�� ' Hom.T=I2g˛ ;Qp/;

and hence the dual of the short exact sequence

0! Ig˛=I2g˛ ! T=I2g˛ ! T=Ig˛ ! 0

can be identified with

0 �! S1.Np; �/Œg˛� �! S. p/
1 .N; �/ŒŒg˛�� �! S. p/

1 .N; �/ŒŒg˛��0 �! 0:

In particular, one has the isomorphism

S. p/
1 .N; �/ŒŒg˛��0 ' Hom.Ig˛=I2g˛ ;Qp/: (37)

Let QpŒ"� D QpŒx�=.x2/ denote the ring of dual numbers. Given g[ 2
S.p/
1 .N; �/ŒŒg˛��0, the modular form Qg WD g˛ C " � g[ is an eigenform for T with

coefficients in QpŒ"�. Its associated Galois representation

%Qg W GQ �! GL2.QpŒ"�/
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satisfies

(i) %Qg D %g .mod "/ and det.%Qg/ D �,
(ii) for every prime number ` − Np, the trace of an arithmetic Frobenius �` at ` is

Tr.%Qg.�`// D a`.g˛/C " � a`.g[/: (38)

Conjecture 22 Assume that g is irregular at p. Then the assignment g[ 7! %Qg gives

rise to a canonical isomorphism between S.p/
1 .N; �/ŒŒg˛��0 and the space Def0.%g/

of isomorphism classes of deformations of %g to the ring of dual numbers, with
constant determinant.
We now derive some consequences of this conjecture.

Proposition 23 Assume Conjecture 22. If g is irregular at p, then the space
S.p/
1 .N; �/ŒŒg˛��0 is two-dimensional over Qp.

Proof Since any Q% 2 Def0.%g/ has constant determinant, it may be written as

Q% D .1C " � c/ � %g for some c D c. Q%/ W GQ �! Wı
g : (39)

The multiplicativity of Q% implies that the function c is a 1-cocycle of GQ with values
in Wı

g , whose class in H1.Q;Wı
g / (which shall be denoted with the same symbol,

by a slight abuse of notation) depends only on the isomorphism class of Q%. The
assignment Q% 7! c. Q%/ realises an isomorphism (cf. for instance [8, §1.2])

Def 0.%g/ �! H1.Q;Wı
g /:

Under Conjecture 22, this yields an isomorphism

S.p/
1 .N; �/ŒŒg˛��0


�! H1.Q;Wı
g /; g[ 7! cg[ : (40)

The inflation-restriction sequence combined with global class field theory for H
now gives rise to a series of identifications

H1.Q;Wı
g /

resH�! hom.GH ;W
ı
g /

G

D homG

�
.OH ˝ Zp/

�

O�
H ˝ Zp

;Wı
g

�

D homG

�
Hp

U
;Wı

g

�

D ker
�

homG.Hp;W
ı
g /

resU�! homG.U;W
ı
g /
�
; (41)

where U denotes the natural image of O�
H ˝ Zp in Hp WD H ˝ Qp under the p-adic

logarithm map

logp W H�
p �! Hp:



First Order p-Adic Deformations of Weight One Newforms 69

As representations for G, the space Hp is isomorphic to the regular representation

Hp ' IndG
1 Qp;

while U, by the Dirichlet unit theorem, is induced from the trivial representation of
the subgroup G1 
 G generated by a complex conjugation:

U ' IndG
G1

Qp:

Complex conjugation acts on Wı
g with eigenvalues 1, �1 and�1, and hence by

Frobenius reciprocity,

dimQp homG.Hp;W
ı
g / D 3; dimQp homG.U;W

ı
g / D 1: (42)

It follows from (41) that H1.Q;Wı
g / is two-dimensional over Qp. Proposition 23

follows. ut
For any ` − Np, the `th fourier coefficient of g[ is given in terms of the associated

cocycle cg[ by the rule

a`.g
[/ D Tr.cg[ .��/%g.��// (43)

where �j` is any prime above ` and �� denotes the arithmetic Frobenius associated
to it. Note that the right-hand side of (43) does not depend on the choice of �.

Our next goal is to parametrise the elements of (41) explicitly, and then to derive
concrete formulae for the fourier expansions of the associated modular forms in
S.p/
1 .N; �/ŒŒg˛��0 via (40) and (43). After treating the general case in Sect. 5, Sects. 6

and 7 focus on the special features of the scenarios where Wı
g is reducible, i.e.,

(i) the CM case where Vg is induced from a character of an imaginary quadratic
field;

(ii) the RM case where Vg is induced from a character of a real quadratic field.

5 The General Case

The Galois representation Wı
g is irreducible if and only if G WD Gal .H=Q/ is

isomorphic to A4, S4, or A5. Otherwise, the representation %g has dihedral projective
image and G is isomorphic to a dihedral group.

The irregularity assumption implies that the prime p splits completely in H,
and H can therefore be viewed as a subfield of Qp after fixing an embedding
H ,! Qp once and for all. This amounts to choosing a prime } of H above p. Let
log} W H�

p �! Qp denote the associated }-adic logarithm map, which factors
through logp.
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The Dirichlet unit theorem implies (via the second Eq. in (42)) that

dimL.O�
H ˝WıL

g /
G D 1:

In particular, for all u 2 O�
H and all w 2 WıL

g , the element

.u;w/ WD 1

#G
�
X

�2G

.�u/˝ .� � w/ 2 .O�
H ˝WıL

g /
G (44)

only depends on the choices of u and w up to scaling by a ( possibly zero) factor in
L. As u varies over O�

H and w over WıL
g , the elements

}.u;w/ WD .log} ˝id/.u;w/ D 1

#G
�
X

�2G

log}.�u/ � .� � w/ 2 Wı
g (45)

therefore lie in a one-dimensional L-vector subspace of Wı
g . Choose a generator

w.1/ for this space. The coordinates of w.1/ relative to a basis .e1; e2; e3/ for WıL
g

are }-adic logarithms of units in OH , namely, we can write

w.1/ D log}.u1/e1 C log}.u2/e2 C log}.u3/e3; (46)

for appropriate ui 2 .O�
H/˝Z L.

Let ` − Np be a rational prime. For any prime� of H above `, let Qu� be a generator
of the principal ideal �h, where h is the class number of H, and set

u� WD Qu� ˝ h�1 2 .OHŒ1=`�
�/˝Z L:

Let

Qw� WD %g.��/ 2 WL
g ; w� WD p. Qw�/ 2 WıL

g (47)

be the endomorphisms of Vg arising from the image of �� under %g. The element u�
is well-defined up to multiplication by elements of O�

H , and hence the elements

.u�;w�/ WD 1

#G
�
X

�2G

.�u�/˝ .� � w�/ 2 .OHŒ1=`�
� ˝WıL

g /
G;

w.`/ D }.u�;w�/ WD 1

#G
�
X

�2G

log}.�u�/ � .� � w�/ 2 Wı
g (48)

are defined up to translation by elements of the one-dimensional L-vector spaces
.O�

H ˝ WıL
g /

G and L � w.1/ respectively. Furthermore, the image of w.`/ in the
quotient Wı

g =.L � w.1// does not depend on the choice of the prime � of H above `
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that was made to define it. The Lie bracket

W.`/ WD Œw.1/;w.`/� 2 Wı
g

is thus independent of the choices that were made in defining w.`/.

Remark 24 The coordinates of w.`/ relative to a basis .e1; e2; e3/ for WıL
g are }-

adic logarithms of `-units in H, i.e., one can write

w.`/ D log}.v1/e1 C log}.v2/e2 C log}.v3/e3; (49)

with vi 2 .OHŒ1=`�
�/L for i D 1; 2; 3. A direct computation shows that

dimQp.W
ı
g /
��D1 D

�
1 if g is regular at `I
3 if g is irregular at `:

It follows that for all regular primes `,

dimL.OHŒ1=`�
� ˝WıL

g /
G D 2;

and therefore that the element .v;w/ attached to any pair .v;w/ 2 OŒ1=`�� �WıL
g

as in (48) is well-defined up to scaling by L and up to translation by elements of the
one-dimensional space .O�

H ˝WıL
g /

G. In particular, the associated vector W.`/ lies
in a canonical one-dimensional subspace of Wı

g , namely, the orthogonal complement
in Wı

g of

.log} ˝Id/.OHŒ1=`�
� ˝Wı

g /
G 
 Wı

g :

If the basis .e1e2; e3/ for WıL
g in (46) and (49) is taken to be the standard basis

e1 D
�
1 0

0 �1
�
; e2 D

�
0 1

0 0

�
; e3 D

�
0 0

1 0

�
;

then

W.`/ D det

�
u2 u3
v2 v3

�
� e1 C 2 det

�
u1 u2
v1 v2

�
� e2 � 2 det

�
u1 u3
v1 v3

�
� e3:

Remark 25 Observe that if the prime ` is irregular for g, the vector Qw� is a scalar
endomorphism in Wg and hence w� D w.`/ DW.`/ D 0.

Our main result is

Theorem 26 Assume Conjecture 22. For all w 2 Wı
g , there exists an overconver-

gent generalised eigenform g[w 2 S. p/
1 .N; �/ŒŒg˛��0 satisfying

a`.g
[
w/ D hw;W.`/i D det.w;w.1/;w.`//;



72 H. Darmon et al.

for all primes ` − Np. The assignment w 7! g[w induces an isomorphism between

Wı
g =U and S. p/

1 .N; �/ŒŒg˛��0.

Proof The semi-local field Hp D H ˝Q Qp D ˚}jpQp is naturally identified with
the set of vectors h D .h}/}jp with entries h} 2 Qp, indexed by the primes of H
above p. The function which to w 2 Wı

g associates the linear transformation

Q'w W Hp �! Wı
g ; Q'w.h/ D 1

#G
�
X

�2G

.��1h/} � .� � w/

identifies Wı
g with homG.Hp;Wı

g /. The linear function Q'w is trivial on U WD
logp.O�

H/ 
 Hp if and only if, for all u 2 O�
H and all w0 2 Wı

g ,

h Q'w.logp.u//;w
0i D 0:

But

h Q'w.logp.u//;w
0i D 1

#G
�
*
X

�2G

log}.�
�1.u// � .� � w/; w0

+

D 1

#G
�
X

�2G

log}.�
�1.u// � h� � w;w0i

D 1

#G
�
X

�2G

log}.�
�1.u// � hw; ��1 � w0i

D hw; }.u;w0/i;
and hence Q'w is trivial on U D logp.O�

H/ if and only if w is orthogonal in Wı
g to the

line spanned by w.1/. It follows that the G-equivariant linear function

'w WD Q'Œw;w.1/� W Hp �! Wı
g

factors through Hp=U. The assignment w 7! 'w identifies Wı
g =.L � w.1// with

homG.Hp=U;Wı
g /, and gives an explicit description of the latter space.

Let Qgw D gC "g[w be the eigenform with coefficients in QpŒ"� which is attached
to the cocycle 'w 2 homG.Hp=U;Wı

g / D H1.Q;Wı
g /. Equation (43) with g[ D g[w

(and hence cg[ D 'w) combined with (47) shows that the `th the fourier coefficient
of g[w at a prime ` − Np is equal to

a`.g
[
w/ D Tr.'w.��/ � %g.��// D h'w.��/; Qw�i D h'w.��/;w�i: (50)

Class field theory for H implies that

'w.��/ D 1

#G
�
X

�2G

log}.�
�1u�/ � � � Œw;w.1/�:
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Hence

a`.g
[
w/ D

1

#G
�
*
X

�2G

log}.�
�1u�/ � � � Œw;w.1/�; w�

+

D 1

#G
�
X

�2G

log}.�
�1u�/ � h� � Œw;w.1/�; w�i

D 1

#G
�
X

�2G

log}.�
�1u�/ � hŒw;w.1/�; ��1 � w�i

D hŒw;w.1/�;w.`/i D det.w;w.1/;w.`// D hw;W.`/i:

The theorem follows. ut
If w in a vector in WıL

g , Theorem 26 shows that the associated overconvergent
generalised eigenform g[w has fourier coefficients which are L-rational linear
combinations of determinants of 2 � 2 matrices whose entries are the }-adic
logarithms of algebraic numbers in H. In the CM and RM cases to be discussed
below, the representation Wı

g is reducible and decomposes further into non-trivial
irreducible representations. In that case the choice of an L-basis for WıL

g which is

compatible with this decomposition leads to canonical elements of S. p/
1 .N; �/ŒŒg˛��0

which can sometimes be re-scaled so that their fourier expansions admit even
simpler expressions, as will be described in the next two sections.

6 CM Forms

Assume that g is the theta series attached to a character of a quadratic imaginary
field K, i.e., that

VL
g D IndQK  g;

where  g W Gal . NK=K/ �! L� is a finite order character. Let  0
g denote the

character deduced from  g by composing it with the involution in Gal .K=Q/. The
irreducibility assumption on VL

g implies that the characters  g and  0
g are distinct,

and therefore the representations VL
g and Vg decompose canonically as a direct sum

of two GK-stable one-dimensional subspaces

VL
g D LL

 g
˚ LL

 0
g
; Vg D L g ˚ L 0

g
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on which GK acts via the characters g and 0
g respectively. The representations WL

g
and Wg also decompose as direct sums of four GK-stable lines

WL
g D

�
hom.LL

 g
;LL

 g
/˚ hom.LL

 0
g
;LL

 0
g
/
�
˚
�

hom.LL
 0

g
;LL

 g
/˚ hom.LL

 g
;LL

 0
g
/
�
;

Wg D
�

hom.L g ;L g/˚ hom.L 0
g
;L 0

g
/
�
˚
�

hom.L 0
g
;L g/˚ hom.L g ;L 0

g
/
�
:

The direct summands in parentheses are also stable under GQ and are isomorphic to
the induced representations IndQK 1 and IndQK  respectively, where  WD  g= 

0
g, is

the ring class character of K associated to  g. It follows that

WıL
g D L.�K/˚YL

g ; Wı
g D Qp.�K/˚Yg; YL

g WD IndQK  ; Yg WD YL
g˝LQp:

It will be convenient to choose a basis .e1; e2/ 2 LL
 g
� LL

 0
g

for VL
g , and to denote

by e11; e12; e21; e22 the resulting basis of WL
g , where eij is the elementary matrix

whose .i0; j0/-entry is ıi D i0ıjDj0 . Relative to the identification of WıL
g with the space

of 2 � 2 matrices of trace zero with entries in L via this basis, the representation
L.�K/ D L � .e11 � e22/ is identified with the space of diagonal matrices of trace
0, while YL

g D L � e12 ˚ L � e21 is identified with the space of off-diagonal matrices
in M2.L/. Fix an element � 2 GQ D GK once and for all. By eventually re-scaling
e1 and e2, it can (and shall, henceforth) be assumed that %g.�/ is represented by the

matrix

�
0 t
t 0

�
in this basis, where �t2 WD �.�/.

Let Z WD Gal .H=K/ be the maximal abelian normal subgroup of the dihedral
group G D Gal .H=Q/. Note that every element in G� Z (such as the image of � in
G) is an involution, and that Z operates transitively on G � Z by either left or right
multiplication.

The field H through which Wı
g factors is the ring class field of K attached to

the character  . The group O�
H ˝ Q of units of H is isomorphic to the regular

representation of Z minus the trivial representation, and a finite index subgroup
of O�

H can be constructed explicitly from the elliptic units arising in the theory of
complex multiplication. Let

e WD 1

#Z

X

�2Z

 �1.�/�

be the idempotent in the group ring of Z giving rise to the projection onto the  -
isotypic component for the action of Z. Choose a unit u 2 O�

H and let

u WD e u; �u D e 0.�u/
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be elements of O�
H ˝ L on which Z acts via the characters  and  0 D  �1

respectively. With these choices, we can let

w.1/ D
 

0 log}.u /

log}.�u / 0

!
: (51)

The description of the canonical vectors w.`/;W.`/ 2 Wı
g attached to a rational

prime ` − Np depends in an essential way on whether ` is split or inert in K=Q.
If ` D ��0 is split in K and ` is regular for g, i.e.,  g.��/ ¤  g.�

0/, then the
natural map

.OK Œ1=`�
� ˝WıL

g /
G 


�OHŒ1=`�
�

O�
H

˝WıL
g

�G

is an isomorphism of L-vector spaces.
Let Qu� be a generator of �h where h is the class number of K, and set

u� WD Qu� ˝ h�1:

Since

Qw� D
 
 g.�/ 0

0  g.�
0/

!
; w� D  g.�/ �  g.�

0/
2

�
 
1 0

0 �1

!
;

a direct calculation shows that

w.`/ D log}.u�=u
0
�/ �

. g.�/�  g.�
0//

2
�
 
1 0

0 �1

!
:

It follows that

W.`/ D log}.u�=u
0
�/ � . g.�/�  g.�

0// �
 

0 � log}.u /

log}.u
0
 / 0

!
: (52)

If ` is inert in K then ` is always regular for g since %g.�`/ has trace 0 and hence
has distinct eigenvalues. The prime ` splits completely in H=K, and hence the group
.OHŒ1=`�

�/˝L is isomorphic to two copies of the regular representation of Z minus
a trivial representation. The choice of a prime � of Hg above ` determines a matrix
(and not just a conjugacy class)

Qw� D w� D %.��/ D
�
0 b�
c� 0

�
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with entries in L. Let u� be an element of .OHŒ1=`�
�=O�

H/ ˝ L whose prime
factorisation is given by

.u�/ D b��C c�.��/: (53)

This `-unit is only well defined by (53) up to translation by O�
H˝L, and the defining

Eq. (53) of course depends crucially on the choice of the prime � above `. However,
the  -isotypic projection

u .`/ WD e u� (54)

is independent of this choice. A direct calculation shows that

w.`/ D 1

2
�
 

0 log}.u .`//

log}.�u .`// 0

!
:

It follows that

W.`/ D
 

R .`/ 0

0 �R .`/

!
; (55)

where

R .`/ D det

 
log}.u / log}.�u /

log}.u .`// log}.�u .`//

!

is an `-unit regulator attached to  , which is independent of the choice of prime �
of H above `. The function ` 7! R .`/ does depend on the choice of the unit u, but
only up to scaling by L�.

Theorem 27 Assume Conjecture 22. The space S.p/
1 .N; �/ŒŒg˛��0 has a canonical

basis .g[1; g
[
2/ which is characterised by the properties:

(i) The fourier coefficients a`.g[1/ are 0 for all primes ` − Np that are inert in K. If
` D ��0 is split in K, then

a`.g
[
1/ D . g.�/�  g.�

0// � log}.u�=u
0
�/

is a simple algebraic multiple of the p-adic logarithm of the fundamental `-unit
of norm 1 in K.

(ii) The fourier coefficients of g[2 are 0 at all the primes ` − Np that are split in K.
If ` is inert in K, then

a`.g
[
s/ D R .`/:
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Proof This follows directly from the calculation of the matrices W.`/ in (52)
and (55) in light of Theorem 26. ut
Example 28 Let � be the quadratic character of conductor 59. The space S.59; �/
is one dimensional and spanned by the theta series

g D q � q3 C q4 � q5 � q7 � q12 C q15 C q16 C 2q17 � � � � :

Here K D Q.
p�59/ and the ring class field attached to  is

H D K.˛/ where ˛3 � 3˛ C 46p�59 D 0:

The inert primes ` in K are 2; 3; 13; 23; � � � and the unit and first few `-units are

u D 1
612

�
13˛2 � 7p�59˛ � 26

�
; u2 D 1

612

�
�5˛2 � 13p�59˛ � 194

�

u11 D 1
306

�
5˛2 C 13p�59˛ � 112

�
; u13 D 1

612

�
13˛2 � 7p�59˛ � 1250

�

u23 D 1
204

�
�˛2 C 11p�59˛ C 138

�
:

Let p D 17, an irregular prime for g. We computed a basis of q-expansions for
the generalised eigenspace modulo p20 and q30;000. One observes that it contains
the classical space spanned by the forms g˛.q/ and g.qp/ and in addition a
complementary space of dimension two. This space is canonically spanned by two
normalised generalised eigenforms

Qg[1 D q3 C � � � C 0 � qp C � � � and Qg[2 D q2 C 0 � q3 C � � � C � � � C 0 � qp C � � � :

Note that the natural scaling of the forms output by our algorithm is with leading
Fourier coefficients equal to 1. By Theorem 27 one expects that for ` inert in K, or
` split in K but irregular, we have a`.Qg[1/ D 0; and for ` split in K we have that

a`.Qg[1/ D
logp.u`/

logp.u3/

where u` is a fundamental `-unit in K (the logarithm of this is well-defined up
to sign). We checked this to 20-digits of 17-adic precision for primes ` < 1000.
Further, one expects that

a`.Qg[2/ D
R .`/

R .2/
for ` inert in K, and a`.Qg[2/ D 0 for ` split in K:
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We checked this for all split primes ` < 30;000 and for the inert primes ` D 2; 3; 11
and 23, constructing R .`/ using the unit u and `-unit u` above.

7 RM Forms

We now turn to the RM setting where F is a real quadratic field and

Vg D IndQF  g;

where  g W Gal . NF=F/ �! L� is a finite order character of mixed signature. Letting
 0

g denote the character deduced from  g by composing it with the involution in
Gal .F=Q/, the ratio  WD  g= 

0
g is a totally odd L-valued ring class character of

F.
As before, let H denote the ring class field of F which is fixed by the kernel of

 , and set Z WD Gal .H=F/ and G WD Gal .H=Q/. Just as in the previous section,

Wı
g D �K ˚ Yg; Yg WD IndQK  ;

and we can set

w.1/ D
 

log}.uF/ 0

0 � log}.uF/

!
;

where uF is a fundamental unit of F.
If ` is split in K=Q, it is easy to see that the vector w.`/ is proportional to w.1/,

and hence that

W.`/ D 0: (56)

If ` is inert in K, let Ug and Ug.`/ denote the subspaces .O�
H ˝ Yg/

GQ and
.OHŒ1=`�

� ˝ Yg/
GQ . The the dimensions of these spaces are 0 and 1 respectively.

Choose a prime � of H above `, and let u� and u .`/ be the elements of OHŒ1=`�
�

determined by the relations

.u�/ D b��C c���; u .`/ D e .u�/; u0
 .`/ D �u .`/;

where

%g.��/ D
�
0 b�
c� 0

�
:
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The }-adic logarithms

log}.u .`//; log}.u
0
 .`//

are well-defined invariants of ` and % which do not depend on the choice of a prime
� lying above `, and

w.`/ D 1

2
�
 

0 log}.u .`//

log}.u
0
 .`// 0

!
:

It follows that

W.`/ D log}.uF/ �
 

0 log}.u .`//

� log}.u
0
 .`// 0

!
: (57)

Theorem 29 Assume Conjecture 22. The space S.p/
1 .N; �/ŒŒg˛��0 has a canonical

basis .g[1; g
[
2/ which is characterised by the properties:

(i) The fourier coefficients of g[1 and g[2 are 0 at all primes ` − Np that are split in
F.

(ii) If ` is inert in F, then

a`.g
[
1/ D log}.u .`//; a`.g

[
2/ D log}.u

0
 .`//:

Proof This follows directly from Theorem 26 in light of Eqs. (56) and (57). ut
Example 30 Let �8 and �7 denote the quadratic characters of conductors 8 and 7,
respectively, and define � WD �8�7. Then S1.56; �/ is one-dimensional and spanned
by the form

g D q � q2 C q4 � q7 � q8 � q9 C q14 C q16 C q18 C 2q23 � � � � :

We take p D 23, an irregular prime for g, and compute a basis for the generalised
eigenspace modulo . p15; q3000/. The two dimensional space complementary to the
classical space has a natural basis

Qg[1 D q3 C � � � C 0 � qp C � � � and Qg[2 D q2 C 0 � q3 C � � � C � � � C 0 � qp C � � � :

Take

g[1 WD
1

2
� logp.u2/ � Qg[1 and g[2 WD logp.u3/ � Qg[2:

Here u`, ` D 2 and 3, denotes a fundamental `-unit of norm 1 in Q.
p�7/ and

Q.
p�56/, respectively. One finds that the coefficients at primes ` which are split
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in Q.
p
8/ of both forms g[1 and g[2 are zero. At inert primes the coefficients of g[1

are the logarithms of fundamental `-units of norm 1 in Q.
p�7/, and those of g[2 are

the logarithms of fundamental `-units of norm 1 in Q.
p�56/ (such logarithms are

well-defined up to sign; interestingly, the forms g[j single out a consistent choice of
signs).
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Computing Invariants of the Weil
Representation

Stephan Ehlen and Nils-Peter Skoruppa

Abstract We propose an algorithm for computing bases and dimensions of spaces
of invariants of Weil representations of SL2.Z/ associated to finite quadratic
modules. We prove that these spaces are defined over Z, and that their dimension
remains stable if we replace the base field by suitable finite prime fields.

1 Introduction

The Weil representations associated to a finite abelian groups A equipped with
a non-degenerate quadratic form Q provides a fundamental tool in the theory of
automorphic forms. They are at the basis of the theory of automorphic products,
the theory of Jacobi forms or Siegel modular forms of singular and critical weight,
and they also find applications in other disciplines like coding theory or quantum
field theory. Of particular interest for the mentioned applications is the space CŒA�G

of invariants of the Weil representations of G D SL2.Z/ associated to a given
finite quadratic module .A;Q/. Despite the importance of CŒA�G for the indicated
applications neither any explicit closed formula is known for the dimension of CŒA�G

nor any useful description1 of its elements.

1However, if .A;Q/ possesses a self-dual isotropic subgroup U (i.e. a subgroup which equals its
dual with respect to the bilinear form associated to Q and such that Q.x/ D 0 for all x in U) then
the characteristic function of U is quickly checked to be an invariant. Moreover, one can show
that in this case the characteristic functions of the self-dual isotropic subgroups span in fact the
space CŒA�G (A proof of this will be given in [10]). An arbitrary finite quadratic module does not
necessarily possess self-dual isotropic subgroups and still admits nonzero invariants if its order is
big enough.
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The purpose of the present note is to discuss questions related to the computation
of the dimension and a basis of CŒA�G for a given finite quadratic module .A;Q/. In
particular, we develop an algorithm (Algorithm 4.2) for computing a basis of CŒA�G

which we also implemented and ran successfully in various examples.2 We mention
two results of this article which might be of independent interest. First, we prove
that CŒA�G always possesses a basis whose elements are in ZŒA� (Theorem 3.3).
Second, if a finite prime field F` contains the Nth roots of unity, where N is the level
of .A;Q/, then the Weil representation can also be defined on F`ŒA�. We prove that
then dimCŒA�G D dimF`ŒA�G (except for possibly .N; `/ D .2; 3/). Our algorithm
has already been used successfully to compute the dimension of spaces of vector
valued cusp forms of weight 2 and 3=2 in [3], where a classification of all lattices
of signature .2; n/ without obstructions to the existence of weakly holomorphic
modular forms of weight 1 � n

2
for the associated Weil representation was given.

The plan of this note is as follows. In Sect. 2 we recall the basic definitions
and facts from the theory of finite quadratic modules and its associated Weil
representations. In Sect. 3 we prove some basic facts about the space of invariants
CŒA�G. Most of the material of this section is probably known to specialists.
However, since it is often difficult to find suitable references we decided to include
this section. To our knowledge Theorem 3.3 is new, which shows that the space of
invariants CŒA�G is in fact defined over Z. In Sect. 4 we explain our algorithm for
computing a basis for CŒA�G, and we discuss some improvements. In Sect. 5 we
consider the reduction of Weil representations modulo suitable primes ` and prove
that the dimension of the space of invariants remains stable under reduction. This
interesting fact can be used to improve the run-time of our algorithm. Finally, in
Sect. 6 we provide tables of dimensions for quadratic modules of small order.

2 Finite Quadratic Modules and Weil Representations

A finite quadratic module (also called a finite quadratic form or discriminant form
in the literature) is a pair A D .A;Q/ consisting of a finite abelian group A
together with a Q=Z-valued non-degenerate quadratic form Q on A. The bilinear
form corresponding to Q is defined as

Q.x; y/ WD Q.xC y/ �Q.x/ �Q.y/:

The quadratic form Q is called non-degenerate if Q.�; �/ is non-degenerate, i.e. if
there exists no x 2 A n f0g, such that Q.x; y/ D 0 for all y 2 A. Two finite quadratic
modules A D .A;Q/ and B D .B;R/ are called isomorphic if there exists an
isomorphism of groups f W A ! B such that Q D R ı f . The theory of finite
quadratic modules has a long history; see e.g. [14], [15], [6] and the upcoming [10].

2An implementation is available at [4].
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If L D .L; ˇ/ is an even lattice, the quadratic form ˇ on L induces a Q=Z-
valued quadratic form Q on the discriminant group L0=L of L. The pair DL WD
.L0=L;Q/ defines a finite quadratic module, which we call the discriminant module
of L. According to [14, Thm. (6)], any finite quadratic module can be obtained as the
discriminant module of an even lattice L. If A D .A;Q/ is a finite quadratic module
and L a lattice whose discriminant module is isomorphic to A, then the difference
bC � b� of the real signature .bC; b�/ of L is already determined modulo 8 by A.
Namely, by Milgram’s formula [5, p. 127] one has

1
p

card .A/

X

x2A

e .Q.x// D e..bC � b�/=8/;

where we use e.z/ D e2� iz for z 2 C. We call

sig.A/ WD bC � b� mod 8 2 Z=8Z

the signature of A. The number

N D minfn 2 Z>0 j nQ.x/ 2 Z for all x 2 Ag

is called the level of A.
The metaplectic extension Mp2.Z/ of SL2.Z/ (i.e. the nontrivial twofold central

extension of SL2.Z/) can be realized as the group of pairs .M; �.�//, where M D

a b
c d

� 2 SL2.Z/ and � is a holomorphic function on the complex upper half plane
H with �.�/2 D c� C d (see e.g. [9]). The group SL2.Z/ is generated by

T D 
 1 10 1
�

and S D 
 0 �1
1 0

�
;

and the group Mp2.Z/ is generated by T� WD .T; 1/ and S� D .S;p�/with relations
S�2 D .S�T�/3 D �, where � D ���1 0

0 �1
�
; i
�

is the standard generator of the center
of Mp2.Z/.

The Weil representation �A associated to A is a representation of Mp2.Z/ on the
group algebra CŒA�. Here, and throughout, we denote the standard basis of CŒA� by
.ex/x2A. (Recall that CŒA� is the complex vector space of maps from A into C and ex

the function which maps x to 1 and any y 6D x to 0.) The action of �A can then be
given in terms of the generators S�;T� 2 Mp2.Z/ as follows:

�A.T
�/ex D e.Q.x//ex;

�A.S
�/ex D e.� sig.A/=8/p

card .A/

X

y2A

e .�Q.x; y// ey:

We shall sometimes simply write ˛:v for �A.˛/v, i.e. we consider CŒA� as Mp2.Z/-
module via the action .˛; v/ 7! �A.˛/v. For details of the theory of Weil
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representations attached to finite quadratic modules we refer the reader to [1], [7],
[8], [10], [13].

The kernel of the projection of Mp2.Z/ onto its first coordinate is the subgroup
generated by .1;�1/. It is easily checked that �A..1;�1// D �A.S�/4 acts
as multiplication by e.sig.A/=2/. This simple observation has two immediate
consequences. First of all, the space of invariants CŒA�Mp2.Z/, i.e. the subspace
of elements v in CŒA� fixed by Mp2.Z/, reduces to f0g unless sig.A/ is even.
Secondly, �A descends to a representation of SL2.Z/ if and only sig.A/ is even.
Note, that sig.A/ is always even if the level of A is odd as follows from Milgram’s
formula. (Namely, since e .Q.x//, for x in A, is an Nth root of unity, we conclude
that the square of the left hand side of Milgram’s formula is contained in the Nth
cyclotomic field KN and hence e .sig.A/=4/ is a root of unity in KN . If N is odd, this
implies that e .sig.A/=4/ is a 2Nth root of unity and thus sig.A/ is even in this case.)

3 Invariants

Let A D .A;Q/ be a finite quadratic module of level N. We shall assume in this
section that sig.A/ is even. As we saw at the end of the last section the space of
invariants is otherwise zero. The representation �A then descends to a representation
of SL2.Z/ and, even more, factors through a representation of the finite group
�.N/nSL2.Z/, i.e. of the group

GN WD SL2.Z=NZ/:

We will denote this representation also by �A.
An easy closed and explicit formula for the dimension of CŒA�GN is not known

for general A. Of course, orthogonality of group characters yields

dimCŒA�GN D 1

card .GN/

X

g2GN

tr.�A.g//:

While it is therefore in principle possible to compute the dimension of CŒA�GN ,
there are two obstructions in practice . First of all, the size of the sum on the right
can become very large. More precisely, the number of conjugacy classes of GN

is asymptotically equal to N for increasing N (see [7, Tabelle 2]). Secondly, the
straight-forward formulas for tr.�A.g//which follow directly from the explicit well-
known formulas for the matrix coefficients of �A.g/ (see e.g. [13, Theorem 6.4])
involve trigonometric sums with about card .A/2 many terms.3

3However, in [1] a different and simpler formula is given, which expresses the traces of the Weil
representations in terms of the natural invariants for the conjugacy classes of SL2.Z/.
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The following proposition implies that we can compute the invariants or the
dimension of the space of invariants “locally”, i.e. for every p-component of A
separately. For a given prime p, denote the p-subgroup of A by Ap. It is quickly
verified that Ap WD .Ap;QjAp/ is again a finite quadratic module. Moreover, the
decomposition A D L

pjcard.A/ Ap of A as sum over its p-subgroups Ap induces an
orthogonal direct sum decomposition of A. We also decompose GN as a product

GN Š
Y

p	kN

Gp	

with Gp	 WD SL2.Z=p	Z/ via the Chinese remainder theorem. In this way
N

p CŒAp�

becomes a GN-module in the obvious way. For this, we note that the set of primes
dividing N is equal to the set of primes dividing card .A/.

Proposition 3.1 Let A D L
pjN Ap be the decomposition of A as sum over its p-

subgroups Ap. Then e˚pap 7! ˝peap defines via linear extension an isomorphism of
G-modules

CŒA�
Š�!
O

pjN
CŒAp�:

Under this isomorphism we have

CŒA�GN Š
O

p	kN

CŒAp�
Gp	 :

Remark 3.2 The proposition implies in particular

dimC CŒA�GN D
Y

p	kN

dimC CŒAp�
Gp	 :

Proof of Proposition 3.1 The given map clearly defines an isomorphism of complex
vector spaces. That this map commutes with the action of GN , where GN acts
component-wise on the right-hand side, as described above, is easily checked using
the formulas for the S and T-action. It follows that

tr.g;CŒA�/ D
Y

p

tr.gp;CŒAp�/

for all g D ˝pgp in GN , which implies, in particular, the second statement of the
theorem via orthogonality of group characters. ut
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A natural problem is to determine the field or ring of definition4 of the space
CŒA�GN . From the formulas defining �A, it is clear that CŒA�GN is defined over the
cyclotomic field KN .5 However, it turns out that the invariants are in fact defined
over the field of rational numbers, as we shall see in a moment. This will allow us
in Sect. 5 to compute a basis for CŒA�GN by doing the computations in F`ŒA� for
suitable sufficiently large primes `.

Theorem 3.3 The space CŒA�GN is defined over Z.
For the proof we need some preparations. For any d in .Z=NZ/�, let �d denote

the automorphism of KN which sends each Nth root of unity z to zd.

Lemma 3.4 For any g D 
 a b
0 d

�
in SL2.Z=NZ/ and x in A, one has

�A.g/ex D �A.d/ e .bdQ.x// edx;

where �A.d/ D �d.w/=w with w DPx2A e .Q.x//.
A careful analysis of �A yields

�A.d/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

 
d

card .A/

!
if card .A/ is odd,

 
d

card .A/

! 
�4
d

!s

if card .A/ is even,

where s D sig.A2/=2 (see e.g. [13, Lemma 3.9]). However, we shall not need this
formula.

Proof of Lemma 3.4 Since



a b
0 d

� D 

a 0
0 d

� 

1 bd
0 1

�
and



1 bd
0 1

�
ex D e.bdQ.x//ex it

suffices to consider the action of



a 0
0 d

�
. For this we write



a 0
0 d

� D S�1 
 1 d
0 1

�
S


1 a
0 1

�
S


1 d
0 1

�

and apply the formulas for the action of S and T to obtain after a standard
computation



a 0
0 d

�
ex D 
 edx;

4We say that a subspace V of CŒA� is defined over the ring R if it possesses a basis whose elements
are in RŒA�.
5For this one needs that e.� sig.A/=8/=

p
card .A/ is in KN , which can be read off from Milgram’s

formula.
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where


 D e .� sig.A/=8/
p

card .A/
X

x2A

e .dQ.x// :

The product of the first two factors equals 1=w by Milgram’s formula. The lemma
is now obvious. ut

For any endomorphism f of CŒA�, which leaves KN ŒA� invariant, say f ex DP
y2A f .x; y/ey with f .x; y/ in KN , we use �s. f / for the endomorphism of CŒA� such

that

�s. f /ex D
X

y2A

�s . f .x; y// ey:

Note that f 7! �s. f / defines an automorphism of the ring of endomorphisms of
CŒA� which leave KN ŒA� invariant.

Lemma 3.5 For any



a b
c d

�
in GN, one has

�s.�A
�


a b
c d

��
/ D �A

��
a sb

s�1c d

��
:

Proof Both sides of the claimed identity are multiplicative in



a b
c d

�
(for this note

that the map



a b
c d

� 7! 

a sb

s�1c d

�
defines a automorphism of GN). It suffices therefore

to prove the claimed formula for the generators T and S of GN . For T the formula
can be read off immediately from the formula for the action of T. For S one has on
the one hand for any x in A

�s.�A.S//ex D �s.w/
X

y2A

e .�sQ.x; y// ey;

where w D e.� sig.A/=8/=
p

card .A/ D P
x2A e.�Q.x//= card .A/. On the other

hand,


0 �s

s�1 0

� D S



s�1 0
0 s

�
, and hence, using Lemma 3.4,

�A
�


0 s
�s�1 0

��
ex D �A.s/w

X

y2A

e .�Q.sx; y// ey:

But �s.w/=w D �A.s/, which implies the claimed formula. ut
Proof of Theorem 3.3 The GN-invariant projection P W CŒA�! CŒA�GN is given by
the formula, in other words, that we have �s.P/ D P for any s in .Z=NZ/�.

P D 1

card .GN/

X

g2GN

�A.g/:
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It suffices to show that, for any x in A, we have Pex D P
y P.x; y/ey with rational

numbers P.x; y/, in other words, that we have, for any s in .Z=NZ/� the identity
�s.P/ D P . But this follows from Lemma 3.5 and the fact that



a b
c d

� 7! 

a sb

s�1c d

�

permutes the elements of GN . This proves the theorem. ut

4 The Algorithm

In this section we explain our algorithm for computing a basis for the space of
invariants. We then discuss various easy and natural improvements. We fix a finite
quadratic module A D .A;Q/ of level N, and assume that sig.A/ is even (since
otherwise the space of invariants of the associated Weil representation is trivial).
The Weil representation �A is then a representation of G D SL2.Z/, which factors
even through a representation of GN D SL2.Z=NZ/. Define

Iso.A/ WD fx 2 A W Q.x/ D 0g ;

and, for v 2 CŒA�,

supp.v/ WD fx 2 A W v.x/ ¤ 0g:

Note that, for any G-submodule M of CŒA�, we have

MT WD fv 2 M W �A.T/v D vg D fv 2 M W supp.v/ � Iso.A/g

as follows immediately from the formula for the action of T in Sect. 2. Our algorithm
is based on the following observation.

Proposition 4.1 Let M be a G-submodule of CŒA�. Then

MG D �1C �A.S/C �A.S/2 C �A.S/3
�
.MT /\MT :

Proof An element v of M is invariant under all of G if it is invariant under the
generators T and S of G, i.e. if it is contained in MT and the set MS of vectors
invariant under �A.S/. Since S4 D 1 we have MS D TrS.M/, where

TrS D 1C �A.S/C �A.S/2 C �A.S/3:

But MG � MT , hence MG D TrS.MG/ � TrS.MT/, and therefore

MG D MG \MT � TrS.M
T /\MT :

The proposition is now obvious. ut
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The proposition is quickly converted into a first version of our algorithm:

Algorithm 4.1 (Computing a Basis for the Space CŒA�G of Invariants)

1. Find the isotropic elements a1; : : : ; am and the non-isotropic elements b1; : : : ; bn

in A.
2. Compute the .mC n/ � m matrix H such that

.Lea1 ; : : : ;Leam/ D .ea1 ; : : : ; eam ; eb1 ; : : : ; ebn/H;

where L D 1C �A.S/C �A.S/2 C �A.S/3.
3. Let U and V be the matrices obtained by extraction the first m and the last n rows

of H, respectively.
4. Compute a basis V for the space of vectors x such that Vx D 0.
5. Return a basis for the space of all Ux, where x runs through the basis V .

For implementing this algorithm we need, first of all, to decide over which
field K we would like to do the computations. One possibility is to use floating
point numbers to do a literal implementation using the field of complex numbers.
However, the matrix coefficients of �A.S/ with respect to the natural basis of CŒA�
are elements of the Nth cyclotomic field KN . Hence it is reasonable to perform the
calculations over KN D QŒx�=.�N/, where �N is the Nth cyclotomic polynomial.
Another choice for K will be discussed in Sect. 5.

There are two easy improvements which can help to reduce the computing time.
The first one is due to the following observation.

Proposition 4.2 The subspaces CŒA�C and CŒA�� of even and odd functions are
G-submodules of CŒA�. Let � D .�1/sig.A/=2. Then CŒA�G D .CŒA��/G and
.CŒA���/G D f0g.
Proof The first statement follows immediately from the observation that the map
ea 7! e�a intertwines with the action of S and T, and hence with the action of G, as
is obvious from the formulas for the action of S and T.

For the proof of the second statement we note that S2ea D �e�a which is again
an immediate consequence of the formula for the action of S. In other words, any
invariant v satisfies v.a/ D .S2v/.a/ D �v.�a/ for all a in A. ut

Let �Ȧ W G! GL
�
CŒA�˙

�
afforded by the G-modules CŒA�˙. As we saw in the

proof of the preceding proposition S2 acts on CŒA�� (� D .�1/sig.A/=2) as identity,
i.e. ��A.S

2/ D 1. Using this Propositions 4.1, 4.2 imply

CŒA�G D .CŒA��/G D ˚v 2 �1C ��A.S/
�
.CŒA��/ W supp.v/ � Iso.A/

�
:

A basis for CŒA�� is obtained by replacing in the standard basis ea by e�a D
1
2
.ea C �e�a/ and omitting all zeroes and all duplicated vectors. This leads to the

following modified algorithm.
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Algorithm 4.2 (Modified Algorithm for Computing a Basis for the Space of
Invariants)

1. As in Algorithm 4.1.
2.a Construct the basis e�ai

, e�bj
(1 � i � m0, 1 � j � n0) of CŒA�� obtained

from the standard basis eai , ebj by (anti-)symmetrizing, suppressing zeroes
and duplicates, and possibly renumbering the ai and bj.

2.b Compute the .m0 C n0/ � n0 matrix H0 such that

.Le�a1 ; : : : ;Le
�
am0
/ D .e�a1 ; : : : ; e�am0

; e�b1 ; : : : ; e
�
bn0
/H0;

where L D 1C ��A.S/.
3.–5. As in Algorithm 4.1 with H, m, n replaced by H0, m0, n0.

The dimension of CŒA�˙ equals 1
2
.card .A/C card .AŒ2�//, where AŒ2� denotes

the subgroup of elements annihilated by “multiplication by 2”. Note that AŒ2� D
f0g if card .A/ is odd. Therefore the size of H0 is about half of the size of H in
Algorithm 4.1. Also note that H0 has entries in the totally real subfield KC

N of KN

(see the subsequent formula for the entries hij of H0). This implies that CŒA�G is in
fact defined over KC

N and we can perform our computations over KC
N instead of KN .

To implement the algorithm, we still need an explicit formula for the entries of
the matrix H0 D .hij/, where 1 � i; j � m0Cn0. We just write xi D ai for 1 � i � m0
and xi D bi�m0 for m0 < i � m0 C n0 for the elements of A. By a straightforward
calculation, we obtain

hij D f �1
i

D
�A.S/e

�
xj
C e�xj

; e�xi

E

D e.� sig.A/=8/

2fi
p

card .A/
.e.�Q.xj; xi//C �e.Q.xj; xi///C ıi;j;

where fi D he�xi
; e�xi
i and h�; �i denotes the standard Hermitian inner product on CŒA�

(conjugate-linear in the second component), such that hex; eyi D ıx;y. Note that fi D
1
2

if xi ¤ �xi and fi D 1, otherwise.
Given a finite quadratic module the exact value of quantity sig.A/ is not

immediately clear. For finding the � of the preceding proposition the following is
helpful.

Proposition 4.3 For odd card .A/ one has

.�1/sig.A/=2 D
� �1

card .A/

�
:

Proof Indeed, directly from the formula for the S-action we obtain S2ex D
.�1/sig.A/=2e�x. On the other hand S2 D 
�1 0

0 �1
�
, and therefore we obtain by

Lemma 3.4 that S2ex D �A.�1/e�x. For odd card .A/ it is then easy to deduce
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from the formula of the lemma for �A that �A.�1/ D
�

�1
card.A/

�
(see also the remark

after Lemma 3.4). ut
The second possible improvement is the factorization into local components

as explained in Proposition 3.1. We first compute the local components Ap WD
.Ap;QjAp/, and then apply Algorithm 4.2 to the finite quadratic modules Ap. If
the number of different primes in card .A/ is large this reduces the run-time of our
algorithm enormously. Indeed, the two bottle necks of our algorithm are the search
for the isotropic elements in A and the computation of the kernel of a matrix of size
n�m, where m is the number of isotropic and anisotropic elements of A, respectively.
If card .A/ contains more than two different primes, say card .A/ D pk1

1 � � � pkr
r with

r � 2, then it takes pk1
1 � � � pkr

r many search steps to find all isotropic elements in A,
whereas an application of Proposition 3.1 allows us to dispense with pk1

1 C � � � C pkr
r

many search steps to eventually find all invariants of A. A similar comparison applies
to the size of the matrices in our algorithm when run either directly on A or else
separately on the p-parts Apj .

5 Reduction Mod `

In this section we fix again a finite quadratic module A D .A;Q/ of level N. Let `
denote a prime such that ` � 1 mod N. Then Q` contains the Nth roots of unity,
hence the Nth cyclotomic field. Accordingly, we can consider �A as a representation
of GN D SL2.Z=NZ/ taking values in GL.Q`ŒA�/, and Q`ŒA� as GN-module. From
the formulas for the action of S and T on Q`ŒA� it is clear that Z`ŒA� is invariant
under GN , and that the Z`-rank of Z`ŒA�GN equals the dimension of CŒA�GN .

For computing the rank of Z`ŒA�GN it is natural to consider the reduction modulo `
of Z`ŒA�. More precisely, note that `Z`ŒA� is a GN-submodule of Z`ŒA�, so that we
have the exact sequence of GN-modules

0 �! `Z`ŒA� �! Z`ŒA�
r�! F`ŒA� �! 0;

where r denotes the reduction map r. f / W a 7! f .a/C `Z` and the second arrow the
inclusion map. Here the action of GN on F`ŒA� Š Z`ŒA�=`Z`ŒA� is the one induced
by the action on Z`ŒA�.

Theorem 5.1 Suppose that .N; `/ ¤ .2; 3/. Then

dimQ`
Q`ŒA�

GN D dimF`
F`ŒA�

GN :

Remark 5.2 Numerical computed examples suggest that the theorem is also true for
N D 2 and ` D 3. However, we did not try to pursue this further.
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Proof of Theorem 5.1 From the short exact sequence preceding the theorem we
obtain the long exact sequence in cohomology

0 �! `Z`ŒA�
GN �! Z`ŒA�

GN
r�! F`ŒA�

GN �! H1.GN ; `Z`ŒA�/ �! : : : :

We shall show in a moment that the order of GN is a unit of Z`. Hence, the
cohomology group H1.GN ; `Z`ŒA�/ is trivial [2, Corollary 10.2]. It follows then
that F`ŒA�GN Š Z`ŒA�GN=`Z`ŒA�GN . Since Z`ŒA�GN is free we conclude that
dimF`

F`ŒA�GN equals the Z`-rank of Z`ŒA�GN . It is quickly checked that every Z`-
basis of Z`ŒA�GN yields a basis of the Ql-vector space QlŒA�GN , which implies then
the theorem.

For proving that card .GN/ is not divisible by `, first note that ` � 1 mod N
implies that ` > N. Then, recall that the order of GN D SL2.Z=NZ/ is given by

card .G/ D N3
Y

pjN

p2 � 1
p2

:

Hence, if ` j card .G/, we conclude that there is a prime p j N, such that ` j pC 1
or ` j p� 1. However, p� 1 < N < ` and thus the only possibility is ` D pC 1 and
N D p. Since ` and p are primes we conclude N D 2 and ` D 3, which we excluded
in the statement of the theorem. ut

The results on reduction modulo ` are not only interesting from a theoretical
point of view. Our implementation profits tremendously from reduction modulo
a suitable prime ` as it speeds up the calculation in practice. The reason is that
there are highly optimized libraries for computation with matrices over finite fields
(and/or over the integers) available. For instance, in sage (which uses the linbox
library default), computing the nullity of a random 200� 200 matrix with entries in
a cyclotomic field Q.�11/ takes about 4 s on our test machine, whereas computing
the nullity of a 2000 � 2000 matrix over F23 takes about 600ms. This immediately
speeds up the computation of the dimension of CŒA�G although it does not give a
basis for CŒA�G.

6 Tables

Tables 1, 2, 3, 4, 5, and 6 list the values s D sig.A/ and dimension d D
dimCŒA�SL2.Z/ for various p-modules A D .A;Q/, where p D 2; 3; 5. We use genus
symbols for denoting isomorphism classes of finite quadratic modules (see [3, 10]).
In short, for a power q of an odd prime p and a nonzero integer d the symbol qd

stands for the quadratic module

�
.Z=qZ/k ;

x21 C � � � C x2k�1 C ax2k
q

�
;
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where k D jdj and a is an integer such that

 
2a

p

!
D sign.d/. For a 2-power q D 2e,

we have the following symbols: We write qd
a for the module

�
.Z=qZ/k ;

x21 C � � � C x2k�1 C ax2k
2q

�
;

with k D jdj and
�

a
2

� D sign.d/. We normalize a to be contained in the set
f1; 3; 5; 7g and if q D 2, we take a 2 f1; 7g. Finally, we write qC2k for

�
.Z=qZ/2k ;

x1x2 C � � � C xk�1xk

q

�
;

and q�2k for

�
.Z=qZ/2k ;

x1x2 C � � � C xk�3xk�2 C x2k�1 C 2xk�1xk C x2k
q

�
:

The concatenation of such symbols stands for the direct sum of the corresponding
modules. For instance, 3�19C127�2 denotes the finite quadratic module

�
Z=3Z � Z=9Z � .Z=27Z/2; x2

3
� y2

9
C z2 � w2

27

�
:

It can be shown that every finite quadratic p-module is isomorphic to a module
which can be described by such symbols, and that this description is essentially
unique (up to some ambiguities for p D 2). For details of this we refer to [10].

For the computations we used [12], the additional package [11] and our
implementation of Algorithm 4.2 (available at [4]).
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Table 1 Dimension d D dimC CŒA�G for some 2-modules of even signature s

A A A

s D 0 d s D 4 d s D 0 d A d s

2C2 2 2�2 0 4C2 3 4�8 1191 0

2C4 5 2�4 1 4C4 16 2
C2
0 1 0

2C6 15 2�6 7 4C6 141 2
C2
2 0 2

2C8 51 2�8 35 4C8 1711 2
C4
0 2 0

2C10 187 2�10 155 4�2 1 2
C4
4 0 4

2C12 715 2�12 651 4�4 6 2
C6
6 0 6

2C14 2795 2�14 2667 4�6 73 2
C6
0 5 0

Table 2 Dimension d D dimC CŒA�G for some 2-modules of even signature s

A A A

s D 0 d s D 4 d s D 2 d

2C24C2 8 2C28�2 1 2C44
C2
2 0

2
C2
0 4C2 4 2

C2
0 8�2 0 2

C4
0 4

C2
2 0

2C44C2 25 2C48�2 7 4
C4
2 1

2C28C2 11 2
C4
0 8�2 1 2C24

C4
2 4

2
C4
0 4C2 11 4C28�2 2 2

C2
0 4

C4
2 4

2
C1
7 4C28

C1
1 4 4

C2
0 8�2 4 4

C2
2 8C2 3

2�1
5 4C28�1

3 4 2C24�28�2 1 4
C3
1 16

C1
1 1

2
C2
0 8C2 6 2

C2
0 4�28�2 3 4�3

7 16�1
3 1

Table 3 Dimension d D dimC CŒA�G for some 3-modules of signature s

A A A

s D 6 d s D 2 d s D 0 d A d s

3C1 0 3�1 0 9C1 1 27C1 0 6

3�2 2 3C2 0 9C2 1 27C2 0 4

3C3 1 3�3 1 9C3 5 27C3 5 2

3�4 1 3C4 7 9C4 33 27�1 0 2

3C5 10 3�5 10 9C5 121 27�2 4 0

3�6 40 3C6 22 9�1 1 27�3 5 6

3C7 91 3�7 91 9�2 3 81C1 1 0

3�8 247 3C8 301 9�3 5 81C2 1 0

3C9 820 3�9 820 9�4 11 81�1 1 0

3�10 2542 3C10 2380 9�5 121 81�2 5 0
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Table 4 Dimension d D dimC CŒA�G for some 3-modules of signature s

A A A A

s D 6 d s D 2 d s D 6 d s D 2 d

3C127�1 2 3C127C1 0 3C1243�1 2 3C1243C1 0

3�227�1 1 3�227C1 1 3�2243�1 1 3�2243C1 1

3C327�1 1 3C327C1 7 3C3243�1 1 3C3243C1 7

3�427�1 10 3�427C1 10 3�4243�1 10 3�4243C1 10

3C527�1 40 3C527C1 22 3C5243�1 40 3C5243C1 22

3�127C1 2 3�127�1 0 3�1243C1 2 3�1243�1 0

3C227C1 1 3C227�1 1 3C2243C1 1 3C2243�1 1

3�327C1 1 3�327�1 7 3�3243C1 1 3�3243�1 7

3C427C1 10 3C427�1 10 3C4243C1 10 3C4243�1 10

3�527C1 40 3�527�1 22 3�5243C1 40 3�5243�1 22

Table 5 Dimension d D dimC CŒA�G for some 5-modules of signature s

A A A A

s D 4 d s D 0 d s D 4 d s D 0 d

5C1 0 5�1 0 25C1 1 125C1 0

5�2 0 5C2 2 25C2 3 125C2 4

5C3 1 5�3 1 25C3 7 125�1 0

5�4 1 5C4 11 25�1 1 125�2 0

5C5 26 5�5 26 25�2 1

5�6 106 5C6 156 25�3 7

5C7 651 5�7 651

Table 6 Dimension d D dimC CŒA�G for some 5-modules of signature s

A A A A

s D 4 d s D 0 d s D 4 d s D 0 d

5C1125�1 0 5�1125C1 0 5C1125C1 2 5�1125�1 2

5�2125�1 1 5C2125C1 1 5�2125C1 1 5C2125�1 1

5C3125�1 1 5�3125C1 1 5C3125C1 11 5�3125�1 11

5�4125�1 26 5C4125C1 26 5�4125C1 26 5C4125�1 26
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The Metaplectic Tensor Product
as an Instance of Langlands Functoriality

Wee Teck Gan

Abstract We interpret the metaplectic tensor product construction of Mezo for the
genuine representations of the Kazhdan-Patterson covering groups in terms of the
L-group formalism of Weissman.

1 Kazhdan-Patterson Coverings and Metaplectic Tensor
Product

Let F be a characteristic 0 local field which contains all n-th roots of unity (for a
fixed n 2 N). The goal of this note is to interpret the metaplectic tensor product
construction of Mezo [5] for the Kazhdan-Patterson covering groups of GLr.F/ in
the framework of Langlands functoriality for Brylinski-Deligne extensions.

1.1 Kazhdan-Patterson Covering

We shall be working with Brylinski-Deligne covers of the group Gr D GLr over F.
Let Tr 
 Br be the diagonal torus of GLr contained in the upper triangular Borel
subgroup; this defines a based root datum .X.Tr/;�r;Y.Tr/;�

_
r / for GLr, and we

may consider the standard pinning. Let us write

Y D Y.Tr/ D ˚r
iD1Z � ei

and let Ysc be the sublattice spanned by the simple coroots �_
r D fei � eiC1 W i D

1; : : : r � 1g.
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For c 2 Z, let Qc be the Weyl-invariant quadratic form, whose associated
symmetric bilinear form Bc is given by

Bc.ei; ej/ D
(
2c if i D jI
2cC 1 if i ¤ j:

Note that for each ˛_ 2 �_
r ,

Qc.˛
_/ D �1:

One has the (non symmetric) bilinear form Dc given by

Dc.ei; ej/ D

8
ˆ̂<

ˆ̂:

c if i D jI
2cC 1; if i < jI
0; if i > j:

Hence we have Bc.x; y/ D Dc.x; y/ C Dc.y; x/, so that Dc is a bisector of Bc in the
sense of [2, §2.6]. If �0 W Ysc �! F� is the trivial map (sending every element to 1),
then the pair .Dc; �0/ is an object in the category BisGLr in [2, §2.6] and gives rise
to a Brylinski-Deligne extension Gr;c of GLr:

−−−−→ −−−−→ −−−−→ −−−−→

Taking F-points and pushing out by the n-th Hilbert symbol .�;�/n, we obtain
a topological central extension

−−−−→ −−−−→ −−−−→ −−−−→

The covering group Gr;c is none other than the degree n Kazhdan-Patterson cover of
GLr.F/ associated to the twisting parameter c studied in [3].

The bisector Dc is basically providing a cocycle for the maximal torus Tr . More
precisely, one may realise

Tr;c WD p�1.Tr/ D Tr.F/ � �n.F/ as a set

with group law given by

.ei.ai/; �i/ � .ej.aj/; �j/ D
�

ei.ai/ej.aj/; �i�j � .ai; aj/
Dc.ei;ej/
n

�
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for ai; aj 2 F�. An important observation to make here is that, with

Tn
r D ftn W t 2 Tr.F/g;

the subset

Tn
r � �n.F/ 
 Tr.F/ � �n.F/

is a subgroup. In particular, one has a natural splitting of the subgroup Tn
r into Tr;c,

given by embedding into the first coordinate in the above presentation. Henceforth,
we shall regard Tn

r as a subgroup of Tr;c in this way.
We shall be considering irreducible genuine representations of Gr;c. More

precisely, let us fix an embedding

� W �n.F/ ,! C
�;

and let Irr�.Gr;c/ denote the set of isomorphism classes of �-genuine irreducible
representations of Gr;c.

1.2 Covers of Levi Subgroups

Now suppose that Mr 
 GLr is a Levi subgroup, with

Mr D GLr1 � : : : : � GLrk :

Note that one such Mr is the split torus Tr. Restricting the cover Gr;c to Mr gives
a cover Mr;c. On the other hand, for each Gri D GLri in Mr, the restriction of the
cover to Gri is none other than the (degree n) Kazhdan-Patterson cover Gri;c, i.e.

p�1.Gri/ Š Gri;c:

While Gri and Grj commute with each other, it is no longer true in general that
p�1.Gri/ and p�1.Grj/ commute. Hence , in general, there is no direct way of relating
the covering groups Mr;c and the almost direct product

Gr1;c ��n : : : :: ��n Grk;c:

In particular, an irreducible genuine representation of Mr;c is not obtained as a tensor
product of irreducible genuine representations of the Gri;c.
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1.3 Metaplectic Tensor Product

However, in [5], Mezo described a construction which constructs an irreducible
genuine representation of Mr;c out of irreducible genuine representations of Gri;c,
for 1 � i � k, and one extra piece of data. Let us recall his construction of this
“metaplectic tensor product” briefly.

Let �i be irreducible genuine representations of Gri;c. Let

G.n/
ri;c D fg 2 Gri;c W det.g/ 2 F�ng

and set

G
.n/
ri;c
D p�1.G.n/

ri;c
/:

For i ¤ j, p�1.G.n/
ri;c/ and p�1.G.n/

rj;c/ commute with each other. Hence,

M
.n/
r;c WD p�1

 
kY

iD1
G.n/

ri;c

!
D G

.n/
r1;c
��n � : : : : : : : ��n G

.n/
ri;c
:

Now consider the restriction of �i to G
.n/
ri;c

(this restriction is semisimple of finite

length since Z.Gri;c/ � G.n/
ri;c is a finite index subgroup of Gri;c) and let �i 
 �i be an

irreducible summand in this restriction. One then has an irreducible representation

�1 � : : : :� �k of M
.n/
r;c D p�1

 
kY

iD1
G.n/

ri;c

!
:

Next, one picks an irreducible genuine character � of Z.Gr;c/ such that

� D ˝k
iD1!�i on Z.Gr;c/ \ p�1

 
kY

iD1
G.n/

ri;c

!
: (1.1)

One then obtains an irreducible representation

�� �i � : : : :� �k of Z.Gr;c/ � p�1
 

kY

iD1
G.n/

ri;c

!

 Mr;c:

One extends this irreducible representation as much as possible to a subgroup M
0
r;c

of Mr;c and sets

… D indMr;c

M
0

r;c
�� .�k

iD1�i/:
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It was shown in [5] that the above construction gives a well-defined surjective map

Q̋ W �Irr�.Gr1;c/ � : : : : � Irr�.Grk;c/ � Irr�.Z.Gr;c//
�~ �! Irr�.Mr;c/: (1.2)

Here the superscript in .: : : :/~ indicates that one is considering tuples
.�1; : : : ; �k; �/ satisfying (1.1). This map is the so-called metaplectic tensor
product. It is not injective: replacing each �i by �i ˝ .�i ı det/ where �i is a
character of F� such that �n

i D 1 would give the same output, but this is the only
reason for the non-injectivity.

There is a global analog of the metaplectic tensor product for automorphic
representations which has been developed by Takeda; see [6, 7].

2 L-Group Formalism

The goal of this note is to give an interpretation of this construction of Mezo in the
framework of Langlands functoriality, as developed in [8] and [2]. To do this, we
shall need to recall briefly the theory of dual groups and L-groups for Brylinski-
Deligne extensions.

2.1 Dual Group

We first describe the dual group of a Brylinski-Deligne extension following
McNamara [4, §11]. Set

Y# D fy 2 Y W Bc.y; z/ 2 nZ for all z 2 Yg 
 Y ˝Z Q;

and let X# be its dual lattice in X.Tr/˝Z Q. For ˛ 2 �r, put

n˛ D n=.n;Qc.˛
_// D n .since Qc.˛

_/ D �1/;

and set

˛_
# D n � ˛_; and ˛# D n�1 � ˛:

Denote by �_
# and �# the sets of these modified coroots and roots. Then

.Y#; �_
# ;X

#; �#/ is a based root datum and the associated connected reductive

group G
_
r;c over C is the Langlands dual group of Gr;c. It is explicitly given by [2,

§16.2]

G
_
r;c Š f.g; �/ 2 GLr.C/ � GL1.C/ W det.g/ D �dg 
 GLr.C/ � GL1.C/
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with

d D GCD.n; .2cC 1/r � 1/:

2.2 Structural Facts

Let Hr;c be the split linear algebraic group (pinned) whose dual group is G
_
r;c. Then

Hr;c D .GLr � GL1/=f.�; ��d/ W � 2 GL1g

contains the (diagonal) maximal split torus

Ar;c D Y# ˝Gm Š .Tr � GL1/=f.�; ��d/ W � 2 GL1g:

Since Y# 
 Y and Y#
sc D Z ��_

# 
 Ysc, one may restrict the bisector Dc to Y# and �0
to Y#

sc. The data .DcjY# ; �0/ then gives rise to a Brylinski-Deligne cover Hr;c of Hr;c

whose dual group is H
_
r;c D G

_
r;c.

The inclusion Y# ,! Y induces an isogeny

i W Ar;c �! Tr

which is explicitly given by

i.t; �/ D �n=d � tn:

This isogeny plays a crucial role in the structure theory and representation theory of
Gr;c.

For example, one has

i.Ar;c.F// D p.Z.Tr;c//;

where Z.Tr;c/ denotes the center of Tr;c. Alternatively, one may pullback the cover
Tr;c to Ar;c via i, yielding a cover Ar;c 
 Hr;c. Then one has

i.Ar;c/ D Z.Tr;c/:

Observe that

Z.Tr;c/ � Tn
r :

On the other hand, let Z.Gr;c/ be the center of Gr;c. Then one has

i.Z.Hr;c// D p.Z.Gr;c// D Z.Gr/\ p.Z.Tr;c//:
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While the second equality is true in general, the first is a special feature of Kazhdan-
Patterson covers. In any case, we have

Z.Tr;c/ D Z.Gr;c/ � Tn
r :

Because of the above, the central character of an irreducible genuine representa-
tion of Gr;c is a genuine character of Z.Hr;c/ which is trivial on Ker.i/. Note that

p.Z.Hr;c// D f1g � GL1.F/ 
 Ar;c.F/:

and

Z.Hr;c/ D Z.Hr;c/:

In particular, Z.Hr;c/ is an example of a Brylinski-Deligne cover of GL1, and its
associated dual group is

Z.Hr;c/
_ D H

_
r;c=ŒH

_
r;c;H

_
r;c� D G

_
r;c=ŒG

_
r;c;G

_
r;c�:

Thus, its L-group is the pushout of LGr;c (introduced below) by the natural map
G

_
r;c �! G

_
r;c=ŒG

_
r;c;G

_
r;c�.

2.3 L-Group and LLC

In a foundational paper [8] of Weissman, the dual group G
_
r;c is enhanced to give an

L-group extension LGr;c:

−−−−→ −−−−→ −−−−→ −−−−→

where WF is the Weil group of F. A more down-to-earth construction of LGr;c,
also due to Weissman, is described in [2, §5], where it is shown that this L-group
extension is split. The set Spl(LGr;c) of splittings over the Weil-Deligne group
WDF D WF � SL2.C/, modulo the conjugation action of G

_
r;c, is the set of L-

parameters for Gr;c. These L-parameters are expected to classify the irreducible
genuine representations of Gr;c.

More precisely, the local Langlands correspondence (LLC) predicts that there is
a natural map

L W Irr�.Gr;c/ �! Spl.LGr;c/:
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Unlike the case of linear reductive groups, this map is not expected to be surjective,
as a consequence of the fact that the isogeny i W Ar;c �! Tr is not an isomorphism.
It is however expected to be injective for the groups Gr;c.

Likewise, if we consider the cover Mr;c of the Levi subgroup Mr , then

M
_
r;c ,! G

_
r;c

is the Levi subgroup of type .r1; : : : ; rk/ and one has a commutative diagram of short
exact sequences [2, Lemma 5.3]

−−−−→ −−−−→ −−−−→ −−−−→⏐⏐�
⏐⏐�

∥∥∥
−−−−→ −−−−→ −−−−→ −−−−→

(2.1)

The LLC predicts a natural map

LM W Irr�.Mr;c/ �! Spl.LMr;c/:

2.4 Desiderata

We highlight some expected properties of the LLC which will be used later on.

• (Central characters) If � 2 Irr�.Gr;c/ has central character !� , regarded as a
genuine character of Z.Hr;c/ D Z.Hr;c/, then the L-parameter of !� is deduced
from that of � by the pushout via G

_
r;c �! G

_
r;c=ŒG

_
r;c;G

_
r;c�. One way of

expressing this is that one has commutative diagram

−−−−→⏐⏐�
⏐⏐�

−−−−→

where the first vertical arrow is the central character map and the second vertical
arrow is induced by the natural map from G

_
r;c to its cocenter G

_
r;c=ŒG

_
r;c;G

_
r;c�.

• (Twisting) If � 2 Irr�.Gr;c/ and � W F� �! C
� is a 1-dimensional character, then

� ˝ .� ı det/ 2 Irr�.Gr;c/ also. If the L-parameter of � is � W WDF �! LGr;c

and that of � is

�� W WF �! Z.G_
r / Š C

� 
 G_
r Š GLr.C/;
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then the L-parameter of �˝ .�ı det/ should be given by [2, §12.2]. Specializing
to the case of interest here, we have a natural map

ı W Z.G_
r / D C

� �! Z.G
_
r;c/ D f.a � Ir; b/ 2 C

� � C
� W ar D bdg

given by

ı.z/ D .zn; zr	 n
d /:

Then the L-parameter of � ˝ .� ı det/ is given by �˝ .ı ı ��/, and for w 2 WF ,
one has

ı ı ��.w/ D .�.w/nIr; �.w/
rn=d/ 2 G

_
r;c:

2.5 LLC for Covering Tori

We now specialize to the case when Mr D Tr. In this case, the LLC has been shown,
i.e. the map LT has been constructed. More precisely, since Tr;c is a Heisenberg
group, an irreducible genuine representation is determined by its central character.
Hence we have natural maps:

Irr�.Tr;c/ ! Irr�.Z.Tr;c// ,! Irr�.Ar;c/

where the inclusion is induced by i W Ar;c �! Tr;c. It was shown in [2, §8] that one
has a map

Irr�.Ar;c/ ! Spl.LAr;c/ D Spl.LTr;c/:

The composite of these maps gives the desired

LT W Irr�.Tr;c/ �! Spl.LTr;c/:

The above construction of the LLC for Tr;c does not care that Tr is a maximal
split torus of Gr. Let us take that into account now. In this case, the Weyl group
W D NGr.Tr/=Tr acts naturally on Irr�.Tr;c/ and Spl.LTr;c/. It was shown in [2, §9.3
and Prop. 9.5] that the LLC map LT is W-equivariant.

2.6 LLC for Principal Series

The above properties of the LLC for Tr;c allows us to define the LLC map L for
principal series representations of Gr;c. Namely, one expects a commutative diagram
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−−−−→⏐⏐�
⏐⏐�

−−−−→
(2.2)

Here the first vertical arrow is via parabolic induction and taking Langlands quotient
whereas the second is by the natural inclusion of L-groups. Because the LLC map
LT is W-equivariant and the two vertical arrows are W-invariant, this commutative
diagram serves to define the map L on the set Irr�;ps.Gr;c/ of those genuine
representations of Gr;c which are Langlands quotient of standard modules induced
from the Borel subgroup Br.

Explicitly, a principal series representation of Gr;c is of the form

I.�/ D IndGr;c

Br
�.�/

where �.�/ is the irreducible representation of Tr;c with central character � on
Z.Tr;c/, or equivalently � is a character of Ar;c which is trivial on Ker.i/. By
replacing � by a W-translate, we may assume I.�/ is a standard module and denote
its unique irreducible quotient by J.�/. If the L-parameter of � is

−→ =

then the L-parameter of J.�/ is

−−−−→ −−−−→

Likewise, one has a classification of the set Irr�;ps.Mr;c/ of (Langlands quotients
of) principal series representations of Mr;c, since Tr is a maximal split torus of Mr.
In other words, one has a commutative diagram

−−−−→

−−−−→

⏐⏐�
⏐⏐� (2.3)

where the first vertical arrow is parabolic induction (and taking Langlands quotient)
and is WM-invariant.
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2.7 Distinguished Splittings

In [2, §6 and §7], we have defined, constructed and classified a set of so-
called distinguished splittings of the L-group extension LGr;c. It was shown that a
distinguished splitting of LGr;c takes value in LTr;c and gives rise to the following:

• it gives an isomorphism

LGr;c Š G
_
r;c �WF D LHr;c;

and hence a bijective map (depending on the distinguished splitting).

fL-parameters of Gr;cg  ! fL-parameters of Hr;cg:

• it gives a distinguished W-invariant genuine character � of Z.Tr;c/, or equiv-
alently a genuine character of Ar;c, which is trivial on the kernel of i. One
can restrict such a distinguished W-invariant character of Z.Tr;c/ to the center
Z.Gr;c/.

We highlight a key property of these distinguished characters in the context of
the Kazhdan-Patterson covers, which follows from their definition and construction;
see [2, §7 and §16.2]:

Lemma 2.1 The distinguished characters of Z.Tr;c/ are trivial on the subgroup
Tn

r 
 Z.Tr;c/. Any two distinguished characters differ from each other by twisting by
a character of p.Z.Tr;c//=Tn

r Š .F�/n=d=F�n. Pulled back to Ar;c via i, this gives a
character of Z.Hr;c/=Z.Hr;c/

d (which is a quotient of Ar;c by the second projection).
Moreover, it was shown in [2, §7 and §16.2] that given an additive character

 of F, one can construct an associated distinguished splitting and hence a
W-invariant genuine character � of Z.Tr;c/. Using this, one has an associated
bijection (depending on  )

Spl.LGr;c/ ! Hom.WF;G
_
r;c/=G

_
r;c � conjugacy:

The analogous statement holds for any of the Levi covers Mr;c. Thus, the use
of a distinguished splitting (or equivalently a distinguished W-invariant genuine
character of Tr;c) is to serve as a base-point and thus allow one to work with the
dual group instead of the L-group extensions.

3 L-Group Interpretation of Metaplectic Tensor Product

With the above preparation, we are now ready to formulate an interpretation of the
metaplectic tensor product using the L-group.
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3.1 Setup

Recall that M 
 GLr is a Levi subgroup, with

M D GLr1 � : : : : �GLrk :

Restricting the cover Gr;c to M gives a cover Mr;c, whose dual group is

M
_
r;c D f.g1; : : : ; gk; �/ 2

kY

iD1
GLri.C/ � GL1.C/ W

kY

iD1
det.gi/ D �dg:

On the other hand, for each Gri D GLri in M, we have the (degree n) Kazhdan-
Patterson cover p�1.Gri;c/ Š Gri;c, with its own dual group G

_
ri;c. Setting

di D GCD.n; .2cC 1/ri � 1/;

one has

G
_
ri;c D f.g; �/ W GLri.C/ �GL1.C/ W det.g/ D �dig:

We shall write det for the character of Gri;c given by the composite of the first
projection to GLri.C/ and the determinant map of GLri.C/.

In the metaplectic tensor product, one starts with a tuple .�1; : : : ; �k; �/ sat-
isfying the compatibility condition (1.1). Let us imagine for a moment that LLC
holds and we have fixed a nontrivial additive character  of F, which determines
distinguished splittings of each LGri;c, LZ.Hr;c/ and LMr;c. Let

�i W WDF �! G
_
ri;c and �� W WF �! C

�

be the associated L-parameters of �i and �. Hence, we have

�1 � : : : � �k � �� W WDF �!
 

kY

iD1
G

_
ri;c

!
�C

�:

How is the compatibility condition (1.1) expressed in terms of L-parameters?

Lemma 3.2 The compatibility condition (1.1) is equivalent to

kY

iD1
det�i D �d

�:
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Proof We need to work out

Z.Gr;c/\ p�1
 

kY

iD1
G.n/

ri;c

!
:

The projection of this to GLr.F/ consists of scalar matrices an=d � Ir satisfying

anri=d 2 F�n for each i D 1; : : : ; k:

This is equivalent to

a 2 .F�/d=.d;ri/ for each i: (3.1)

Now observe that

.d; r1; r2; : : : ; rk/ D .n; .2cC 1/ � .
kX

iD1
ri/ � 1; r1; : : : ; rk/ D 1:

Hence

LCM.d=.d; r1/; : : : ::; d=.d; rk// D d:

Hence the condition in (3.1) is equivalent to a 2 F�d. In particular,

p

 
Z.Gr;c/\ p�1

 
kY

iD1
G.n/

ri;c

!!
D fanIr W a 2 F�g D Z.Gr/

n:

Since

i.Adi
ri;c
/ D Tn

ri
and i.Ad

r;c/ D Tn
r ;

it follows that (1.1) is equivalent to the identity of L-parameters in the lemma. ut
The above lemma implies that the parameter �1 � : : : � �k � �� factors through

the subgroup

M~ 

 

kY

iD1
G

_
ri;c

!
�GL1.C/

consisting of those elements

 
kY

iD1
.gi; �i/; �

!
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satisfying

�d D
kY

iD1
det.gi/ D

kY

iD1
�

di
i :

3.2 The Conjecture

Observe that one may define a map

f WM~ �! M
_
r;c

by

 
kY

iD1
.gi; �i/; �

!
7! .g1; : : : :; gk; �/:

Note that the kernel of f is

�di � : : : : : : � �dk ;

consisting of elements
�Qk

iD1.gi; �i/; �
�

with gi D 1, � D 1 and �i 2 �di . The

above discussion motivates the following conjecture:

Conjecture The metaplectic tensor product Q̋ defined in (1.2) is the Langlands
functorial lift associated to the map f WM~ �! M

_
r;c defined above.

The above conjecture is not a statement which can be proved at this moment,
since it is conditional upon the LLC for covering groups. We make a couple of
remarks as a sort of consistency check:

• the metaplectic tensor product construction does not depend on the choice of
distinguished characters of Z.Tr;c/, Z.Gr;c/ or Z.Tri;c/, but the map f only induces
a lifting of L-parameters if one fixes distinguished characters on these groups. So
it will be pertinent to check that in fact, the induced lifting of L-parameters is
independent of the choice of such distinguished characters.

To see this, note that for each i, it follows by Lemma 2.1 that two distinguished
characters of Z.Tri;c/, regarded as characters of Ari;c, differ by twisting by
a character � of Z.Hri;c/ with �di D 1. Their L-parameters differ by a
homomorphism�� W WF ,! Z.Hri;c/

_ D C
� with �di

� D 1. Hence fı�� is trivial,

so that the choice of the distinguished character of Z.Tri;c/ is not important.
On the other hand, having chosen and fixed a distinguished character � on

Z.Tr;c/, we inherit one on Z.Gr;c/ by restriction and hence one on Z.Hr;c/ by
pullback. One checks that as long as one uses distinguished splittings of LGr;c
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and LZ.Hr;c/ related in this way, the lifting of L-parameters induced by f is
independent of the choice of distinguished splittings.

• the lifting of L-parameters induced by f is not injective: .�i; : : : ; �k; �/ and
.�0
1; : : : ; �

0
k; �

0/ have same image if and only if � D �0 and for each i, �i and
�0

i differs by a homomorphism

�i W WF �! f1g � �di 
 f1g �GL1.C/:

This agrees exactly with the non-injectivity of the metaplectic tensor product
construction, as we now explain. By the discussion at the end of Sect. 1.3,
the metaplectic tensor product does not change if and only if we replace the
representation �i by �i ˝ .�i ı det/ with �n

i D 1. By the desiderata (Twisting)
in Sect. 2.4, this replaces the L-parameter �i by �i ˝ .ı ı ��i/, where ��i is the
L-parameter of �i and ı is defined in Sect. 2.4. But for w 2 WF ,

ı ı ��i .w/ D .�i.w/
n; �i.w/

ri	 n
di / D .1; �rin=di

i .w//:

The character �i WD �rin=di
i satisfies �di

i D 1; its order is the same as that of �n=di
i

since .ri; di/ D 1.

3.3 Case of Principal Series

As we have explained in the previous section, the LLC is known for principal series
representations induced from a Borel subgroup. The main result of this note is the
demonstration of the above conjecture for such principal series representations.

Proposition 3.2 The above conjecture holds when each �i belongs to Irr�;ps.Gri;c/.

Proof The metaplectic tensor product of principal series representations was deter-
mined by Cai [1, Theorem 3.26] and the point is to interpret the result on the dual
side. We give an independent treatment here.

We first consider the case when Mr D Tr is the maximal split torus; this is the
key case to understand. Thus, we are assuming that ri D 1 for all i and k D r, so
that

d0 WD di D GCD.n; 2c/:

Then

H1;c D A1;c D .GL1.F/ � GL1.F//=f.t; t�d0 / W t 2 F�g Š GL1.F/

by the second projection, so that

H_
1;c D A_

1;c Š f.g; �/ 2 GL1.C/ � GL1.C/ W g D �d0g Š C
�

via the second projection. The isogeny i W A1;c �! T1 is the map � 7! �n=d0 .
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The input into the metaplectic tensor product is then a tuple .�1; : : : :; �r; �/

where each �i is a genuine representation �.� �i/ of T1;c, where � is a distin-

guished character of Z.T1;c/ D p�1.Tn=d0
1 / and �i is a character of A1;c Š F� which

is trivial on �n=d0 .F/. The compatibility condition (1.1) is given by

.

kY

iD1
�i/

d0 D �d:

Moreover, one has

��1 � : : : � ��r � �� W WF �!M~ 
 GL1.C/
r � GL1.C/;

so that

f ı.��1�: : :���r���/ D .�d0
�1
�: : :��d0

�r
/��� W WF �! T

_
r;c 
 GL1.C/r�GL1.C/:

Consider now the construction of the metaplectic tensor product. We first restrict
each �i to

Tn
1 � �n.F/ D T

.n/
1;c D i

�
A

d0
1;c

�
:

Since Tn
1 is contained in the center of T1;c (this center is T

.n=d0/
1;v ), the restriction of

�i to Tn
1 is simply the isotypic sum of its central character �i restricted to Tn

1 (here
we have used Lemma 2.1 which says that the distinguished character � is trivial
on Tn

1 ). We then consider the character

� �
�
�� .�r

iD1�i/
�

on the subgroup Z.Gr;c//.T
n
1 � : : : : � Tn

1 /;

where now � denotes a distinguished character of Z.Tr;c/ restricted to Z.Gr;c/. But
this subgroup is precisely the center Z.Tr;c/ of Tr;c, and so this character determines
an irreducible genuine representation of Tr;c. Explicitly, the character

�� .�r
iD1�i/ of p.Z.Gr;c//.T

n
1 � : : : : � Tn

1 / D p.Z.Tr;c//

is given by:

0

BB@

an
1�

n=d

an
2�

n=d

� � �
an

r�
n=d

1

CCA 7! �1.a1/
d0 � : : : � �r.ar/

d0 � �.�/:
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By our construction of the LLC for Tr;c, we see that the L-parameter of the genuine
representation of Tr;c with this central character is precisely

.�d0
�1
� : : : � �d0

�r
/ � �� W WF �! T_

r � GL1.C/ �! GLr.C/ � GL1.C/

which is equal to f ı .��1 � : : : : � ��r � ��/, as desired.
Now we consider the case of general Mr D GLr1 � : : :�GLrk . Given irreducible

genuine principal series representations �i of Gri;c associated to genuine characters

�i of p.Z.Tri;c//, we are to restrict them to G
.n/
ri;c

, take an irreducible summand �i and
then consider the representation

�k
iD1�i � � on Z.Gr;c/ �

�
G
.n/
r1;c ��n � : : : :: ��n G

.n/
rk;c

�
:

The resulting metaplectic tensor product representation is undoubtedly a principal
series representation of Mr;c (as shown in [1, Theorem 3.26]), and hence is
determined by a character of p.Z.Tr;c//. Now the main point is that

Z.Tr;c/ D Z.Gr;c/�Tn
r D Z.Gr;c/�.Tn

r1�: : : :�Tn
rk
/ 
 Z.Gr;c/�

�
G
.n/
r1;c ��n � : : : :: ��n G

.n/
rk;c

�
:

Hence, the resulting metaplectic tensor product representation is determined by
the behaviour of .�k

iD1�i/ � � on Z.Tr;c/. Because of the commutativity in (2.2)
and (2.3), we are basically reduced to a question on covering tori, which is a slight
generalization of the case when Mr D Tr treated above. Arguing as in that special
case, one sees that the metaplectic tensor product on Gr;c is constructed from the
character

�� .�k
iD1�i/ of p.Z.Gr;c// � Tn

r ;

and this gives the parameter

�d1
�1
� : : : � �dk

�k
� �� D f ı ���1 � : : : � ��k � ��

�

as desired. ut
As we mentioned earlier, Takeda [6, 7] has developed the notion of metaplectic

tensor product in the global setting of automorphic representations. The proposition
thus allows one to interpret his construction as an instance of weak Langlands
functorial lifting relative to the homomorphism f WM~ �! M

_
r;c of dual groups.
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On Scattering Constants of Congruence
Subgroups

Miguel Grados and Anna-Maria von Pippich

Abstract Let � be a congruence subgroup of level N. The scattering constant of
� at two cusps is given by the constant term at s D 1 in the Laurent expansion of
the scattering function of � at these cusps. Scattering constants arise in Arakelov
theory when establishing asymptotics for Arakelov invariants of the modular curve
associated to � , as the level N tends to infinity. More precisely, in the known cases,
scattering constants essentially contribute to the leading term of the asymptotics
for the self-intersection of the relative dualizing sheaf. In this article, we prove an
identity relating the scattering constants of � to certain scattering constants of the
principal congruence subgroup �.N/. Providing an explicit formula for the latter, in
case that N D 2 or N � 3 is odd and square-free, we thereby present a systematic
way of computing the scattering constants of � in these cases.

1 Introduction

1.1 Scattering Constants

Let � 
 PSL2.Z/ be a congruence subgroup which acts on the hyperbolic upper
half-plane H by fractional linear transformations. The quotient space �nH admits
the structure of a hyperbolic Riemann surface of finite hyperbolic volume v� , having
p� > 0 cusps and possibly finitely many elliptic fixed points. Associated to any
cusp q, there is a non-holomorphic Eisenstein series E�q .z; s/, defined, for z 2 H
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and s 2 C with Re.s/ > 1, by

E�q .z; s/ :D
X


2�qn�
Im.��1

q 
z/s;

where �q WD Stab�.q/ is the stabilizer subgroup of q in � and �q 2 PSL2.R/ is
a scaling matrix of q. The Eisenstein series E�q .z; s/ is an automorphic form with
respect to � , which is holomorphic for s 2 C with Re.s/ > 1, and admits a
meromorphic continuation to the whole s-plane. Furthermore, one has the functional
equation

E�.z; s/ D ˆ�.s/E�.z; 1 � s/;

where E�.z; s/ D .E�q1 .z; s/ : : : E�qp�
.z; s//t denotes the vector of all Eisenstein

series and

ˆ�.s/ WD
�
'�qjqk

.s/
�

j;kD1;:::;p�

is the so-called scattering matrix. The scattering matrix plays an important role in
the spectral theory of the hyperbolic Laplacian. The entries '�qjqk

.s/ of the scattering
matrix are called scattering functions. For s 2 C with Re.s/ > 1, they are given by
a Dirichlet series and arise in the constant term of the Fourier expansion of E�qj

.z; s/
with respect to the cusp qk (see, e.g., [8, 10], or [15]). For the precise definition, we
refer the reader to Sect. 2.3. The scattering function '�qjqk

.s/ admits a meromorphic
continuation to the whole s-plane with a simple pole at s D 1 of residue equal to
v�1
� . The scattering constant

C �
qjqk

:D lim
s!1

�
'�qjqk

.s/� v�1
�

s � 1
�

at the cusps qj and qk is then defined to be the constant term in the Laurent expansion
of the scattering function '�qjqk

.s/ at s D 1.

For the congruence subgroups �.N/, �0.N/, and �1.N/, the determinant of
the scattering matrix can be expressed in terms of known functions from analytic
number theory (see [7]) and Hejhal [6] provides explicit formulas for the scattering
functions, under certain restrictions on the level N. Further formulas are available
in the literature, for example, in the thesis [9], identities for the determinant
of the scattering matrix for subgroups of finite index of the modular group are
studied. Moreover, in the thesis [14], formulas for the scattering functions of the
subgroup �0.N/ are stated in the framework of Kronecker limit formulas, whereas
in the thesis [13], which establishes relations between dessins d’enfants and non-
holomorphic Eisenstein series, the case �.2/ as well as its subgroups of finite index
are considered.
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Our main motivation to study scattering constants of congruence subgroups
arises from questions in Arakelov theory, when considering bounds for Arakelov
invariants, such as the Faltings’s delta function and, more importantly for us, the
self-intersection of the relative dualizing sheaf. Let us give a few more details. By
its very definition, the self-intersection of the relative dualizing sheaf on a modular
curve is the sum of a geometric contribution, that encodes the finite intersection
of divisors coming from the cusps, and an analytic contribution, which is given in
terms of the Arakelov Green’s function evaluated at these cusps. In their influential
work [1], A. Abbes and E. Ullmo in particular developed a method to explicitly
compute this analytic contribution. Their method relies on a crucial identity relating
the Arakelov Green’s function gAr.q1; q2/ at two cusps q1, q2 of a modular curve X
to certain fundamental constants, among them the scattering constantC �

q1q2 . Namely,
one has (see [1, Proposition E])

� 1

2�
gAr.q1; q2/ D C �

q1q2 C v�1
� � G� �R�

q1 �R�
q2 ;

where G� is a constant involving the automorphic Green’s function on X and R�
qj

( j D 1; 2) is the constant term in the Laurent expansion at s D 1 of the Rankin–
Selberg transform associated to qj of the Arakelov metric. For a precise definition
of these constants, we refer the reader to [1].

In [1] and [12] A. Abbes–E. Ullmo and P. Michel–E. Ullmo considered the
compactification X0.N/ of the Riemann surface �0.N/nH for the congruence
subgroup �0.N/ recalled in Sect. 2.1. To state their result, let X0.N/=Z denote the
minimal regular model of X0.N/=Q and let !2X0.N/=Z

denote the self-intersection of
the relative dualizing sheaf. Then, the following asymptotics holds (see [1] and [12,
Théorème 1.1])

!2X0.N/=Z � 3g�0.N/ log.N/; (1)

as N !1, where N is assumed to be square-free and such that 2; 3 − N, and g�0.N/
denotes the genus of X0.N/. Here, the geometric contribution to the leading term
of the asymptotics (1) is given by g�0.N/ log.N/, whereas the analytic contribution
equals 2g�0.N/ log.N/. A remarkable fact is that the leading term 2g�0.N/ log.N/
from the analytic contribution essentially comes from the scattering constants at the
corresponding cusps. The same phenomenon also occurs in the article [11], where an
analogous asymptotics for the modular curves X1.N/ associated to the congruence
subgroup �1.N/ is established, as well as in the upcoming article [5], see also
the dissertation [4], where an asymptotics in the case of the modular curves X.N/
associated to the principal congruence subgroup �.N/ is proved. Summing up, in all
three known cases, the leading term of the analytic contribution essentially comes
from the involved scattering constants, and one might expect this to be true for other
congruence subgroups. Therefore, explicit formulas for the scattering constants of
arbitrary congruence subgroups play a crucial role for the purpose of proving similar
asymptotics in Arakelov theory.
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1.2 Purpose of this Article

In this article, we provide a formula for the scattering constants of an arbitrary
congruence subgroup � of level N, where N D 2 or N � 3 is odd and square-free.
This formula expresses the scattering constants of � in terms of scattering constants
of the principal congruence subgroup �.N/, which in turn can be explicitly derived
from the work of Hejhal [6]. For instance, this formula can be used to obtain
expressions for scattering constants arising in Arakelov geometry when establishing
bounds for the self-intersection of the relative dualizing sheaf on modular curves.
In this article, we compute the relevant scattering constants of the groups �0.N/,
�1.N/, and �.N/. We thus give another proof for the scattering constants obtained
in [1] and [11], in a uniform way. Moreover, we provide the scattering constants
that will be needed in the upcoming article [5]. We also indicate that there is a
missing term in [11, Lemma 3.6]. We discuss this in Remark 9 of Sect. 6 below. We
emphasize that this does not affect the asymptotics proven in [11].

The authors would like to point out, that the results and methods of proofs
presented here are likely known to the experts. However, to the best knowledge of
the authors, the explicit formulas for the scattering constants �.N/ and the uniform
formula given in Theorem 8 have not been stated elsewhere.

1.3 Outline of the Article

The paper is organized as follows. In Sect. 2, we recall basic notations and
review facts on cusps, non-holomorphic Eisenstein series, scattering functions, and
scattering constants for congruence subgroups. In Sect. 3, we turn our attention to
the principal congruence subgroup�.N/. In particular, we recall the parametrization
of the cusps given by Hejhal and in Theorem 1 we state Hejhal’s explicit formula
for the scattering functions of �.N/. In Sect. 4, Proposition 5, we provide a relation
expressing the non-holomorphic Eisenstein series of a congruence subgroup � as
a sum of certain non-holomorphic Eisenstein series of the principal congruence
subgroup �.N/. In Sect. 5, we establish the main results of this article. In
Proposition 6, we first prove an explicit formula for the scattering constants of �.N/,
for N D 2 or N � 3 odd and square-free. In Theorem 8, using the relation between
Eisenstein series, we express the scattering constants of an arbitrary congruence
subgroup � of level N in terms of certain scattering constants of the principal
congruence subgroup. Finally, in Sect. 6, we combine Theorem 8 with Proposition 6
to obtain closed formulas for several scattering constants of the subgroups �.N/,
�0.N/, and �1.N/.
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2 Background Material

2.1 Congruence Subgroups

Let H :D fz D x C iy 2 C j x; y 2 RI y > 0g denote the hyperbolic upper
half-plane and H� :D H t P1.R/ the union of H with its topological boundary.
The hyperbolic volume form is given by �hyp.z/ D dx dy=y2. The group PSL2.R/
acts on H� by fractional linear transformations. This action is transitive on H, since
z D xC iy D n.x/a.y/i with

n.x/ :D
�
1 x
0 1

�
; a.y/ :D

�
y1=2 0

0 y�1=2
�
:

By abuse of notation, we represent an element of PSL2.R/ by a matrix. We set
I :D � 1 00 1

� 2 PSL2.R/.
As mentioned in the introduction, we let � denote a congruence subgroup, that

is a subgroup of the modular group PSL2.Z/ containing the principal congruence
subgroup

�.N/ :D
� �

a b
c d

�
2 PSL2.Z/

ˇ̌
ˇ̌ a � d � ˙1mod N; b � c � 0mod N

	

for some N. Observe that �.1/ D PSL2.Z/. The level of a congruence subgroup
� is the lowest positive integer N such that �.N/ � � . The subgroups �0.N/ and
�1.N/ given by

�0.N/ :D
� �

a b
c d

�
2 PSL2.Z/

ˇ̌
ˇ̌ c � 0mod N

	
;

�1.N/ :D
� �

a b
c d

�
2 PSL2.Z/

ˇ̌
ˇ̌ a � d � ˙1mod N; c � 0mod N

	
;

respectively, are instances of congruence subgroups of level N.
The quotient space X :D �nH� admits the structure of a compact Riemann

surface of genus g� . The hyperbolic volume of X is given by v� :D R
X �hyp.z/ and

it is finite. By abuse of notation, we will at times identify points of X with their
preimages in H�. By �z D f
 2 � j 
z D zg we denote the stabilizer subgroup of a
point z 2 H� with respect to � .



120 M. Grados and A.-M. von Pippich

2.2 Cusps

A cusp of X is the �-orbit of a parabolic fixed point of� in H�. The number of cusps
of X is finite and will be denoted by p� . By P� � P1.Q/ we denote a complete set
of representatives for the cusps of X. We will always identify a cusp of X with its
representative in P� . Hereby, identifying P1.Q/ with Q [ f1g, we write elements
of P1.Q/ as ˛=ˇ for ˛; ˇ 2 Z, not both equal to 0, and we always assume that
gcd.˛; ˇ/ D 1; we set 1=0 WD 1.

The width of a cusp q 2 P� is given by wq :D ŒPSL2.Z/q W �q�. We define the
subgroup

B.wq/ :D ˚n.bwq/
ˇ̌

b 2 Z
� 
 PSL2.Z/ (2)

and we set B :D B.1/. For each cusp q 2 P� , we choose an element gq 2 PSL2.Z/
such that gq1 D q, namely, if q D ˛=ˇ 2 P� , we choose

gq D
�
˛ �
ˇ �

�
2 PSL2.Z/: (3)

Then, we have

g�1
q �qgq D B.wq/: (4)

Furthermore, the element �q :D gq a.wq/ 2 PSL2.R/ is a scaling matrix for the
cusp q, since it satisfies �q1 D q and ��1

q �q�q D B. Unless otherwise stated, we
choose all scaling matrices to be of this form.

2.3 Non-holomorphic Eisenstein Series

Let q 2 P� be a cusp with scaling matrix �q 2 PSL2.R/. For z 2 H and s 2 C with
Re.s/ > 1, the non-holomorphic Eisenstein series associated to the cusp q is given
by

E�q .z; s/ :D
X


2�qn�
Im.��1

q 
z/s: (5)

Note that this definition does not depend on the choice of the representative for the
cusp q. The series in (5) converges absolutely and locally uniformly for any z 2 H

and s 2 C with Re.s/ > 1. Thus, E�q .z; s/ defines a holomorphic function for s 2 C
with Re.s/ > 1, which is �-invariant in z. Furthermore, the Eisenstein series admits
a meromorphic continuation to the complex s-plane. At s D 1 there is always a
simple pole of E�q .z; s/ with residue equal to v�1

� .
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Let q1; q2 2 P� be two cusps, not necessarily distinct, with scaling matrices
�q1 ; �q2 2 PSL2.R/, respectively. Then, the Fourier expansion of E�q1 .z; s/ with
respect to the cusp q2 is given by (see, e.g., [8, Theorem 3.4])

E�q1 .�q2z; s/ D ıq1q2y
s C '�q1q2 .s/y1�s C

X

n¤0
'�q1q2

.nI s/y1=2Ks�1=2.2�jnjy/e2� inx;

where ıq1q2 is the Dirac delta function, K�.Z/ denotes the modified Bessel function
of the second kind (see, e.g., [2, pp. 374–377]), and we have set

'�q1q2 .s/ :D p� �
�
s� 1

2

�

�.s/

X

c>0

c�2s

� X

d mod c
.� �

c d /2��1
q1
��q2

1

�
; (6)

'�q1q2
.nI s/ :D 2�s

�.s/
jnjs�1=2

X

c>0

c�2s

� X

d mod c
. a �

c d /2��1
q1
��q2

e2� i.dmCan/=c

�
:

For further details on non-holomorphic Eisenstein series, we refer the reader to the
vast literature, e.g., [6, 8], or [10].

2.4 Scattering Functions and Scattering Constants

Let q1; q2 2 P� be two cusps, not necessarily distinct, with scaling matrices
�q1 ; �q2 2 PSL2.R/, respectively. As mentioned in the introduction, the function
'�q1q2 .s/, defined in (6), is called scattering function of � at the cusps q1 and q2. Note
that the definition of '�q1q2 .s/ does not depend on the choice of the representatives for
the cusps q1 and q2 nor on the choice of the scaling matrices. The scattering function
'�q1q2 .s/ is holomorphic for s 2 C with Re.s/ > 1 and admits a meromorphic
continuation to the complex s-plane. At s D 1 there is always a simple pole of
'�q1q2 .s/ with residue equal to v�1

� . Furthermore, we have

'�q1q2 .s/ D '�q2q1
.s/:

For further properties of the scattering functions, we refer the reader to the literature,
e.g., [8]. For the modular group � D �.1/, we have p�.1/ D 1 and we choose
P�.1/ D f1g. Then, the scattering function is explicitly given by

'�.1/11.s/ D
p
�
�
�
s� 1

2

�

�.s/

�.2s� 1/
�.2s/

; (7)
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where �.s/ denotes the Riemann zeta function. We will also make use of formulas
for the scattering functions of the principal congruence subgroup, which have been
established by Hejhal in [6]. These will be recalled in Sect. 3.2.

The scattering constant C �
q1q2

of � at the cusps q1 and q2 is defined by

C �
q1q2

:D lim
s!1

�
'�q1q2 .s/ �

v�1
�

s � 1
�
:

Again, the definition of C �
q1q2 does not depend on the choice of the representatives

for the cusps q1 and q2. We note the identity

C �
q1q2 D C �

q2q1 :

For � D �.1/, we have v�.1/ D �=3 and we derive from (7) the Laurent expansion

'�.1/11.s/ D
3=�

s� 1 C
6

�
C C O.s� 1/; (8)

at s D 1, where the constant C is given by

C :D 1 � log.4�/C � 0.�1/
�.�1/ : (9)

Therefore, we have C �.1/11 D .6=�/C .

3 The Principal Congruence Subgroup

In this section, we review facts concerning the cusps of X.N/ :D �.N/nH� and we
state Hejhal’s formula for the scattering functions of �.N/.

3.1 Cusps

Choosing for each .u; v/ 2 .Z=NZ/2 with gcd.u; v;N/ D 1 a lift .˛; ˇ/ 2 Z2 with
gcd.˛; ˇ/ D 1, then the set of all of these ˛=ˇ 2 P1.Q/ constitutes a possible
choice for P�.N/ (see, e.g., [3, pp. 99–101]). From this, the number of cusps of X.N/
can be easily computed. In particular, we have p�.2/ D 3 and, for N � 3 square-free,
we have the formula

p�.N/ D
1

2

Y

pjN
. p2 � 1/ D 1

2
�.N/'.N/;
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where �.N/ is the sum of all positive divisors of N and '.N/ denotes the Euler’s
totient function. Since �.N/ is a normal subgroup of PSL2.Z/, all the cusps q 2
P�.N/ have the same width wq D N. The hyperbolic volume of X.N/ is therefore
given by v�.N/ D v�.1/Np�.N/ D �Np�.N/=3. In particular, we have v�.2/ D 2� and,
for N � 3 square-free, we obtain

v�.N/ D
�

6
N
Y

pjN
. p2 � 1/: (10)

Let now N � 3 be an integer that is odd and square-free. We state another
possible choice for P�.N/, which was employed by Hejhal in [6] when establishing
explicit formulas for the scattering functions. For an integer d satisfying djN and
1 < d < N, let 
d 2 PSL2.Z/ be such that


d �
�
0 �1
1 0

�
mod d and 
d �

�
1 0

0 1

�
mod N=dI

we refer to [6, Lemma 4.1] for the existence of such 
d. We further set 
1 :D I
and 
N :D �

0 �1
1 0

�
. Next, let U 
 Z be a set of representatives for .Z=NZ/�=f˙1g,

which contains 1. For  2 U, we define the matrix

h./ :D
�
 1

kN Q
�
2 �0.N/

with Q; k 2 Z chosen such that  Q � kN D 1. With these data one can choose (see
[6, Lemma 5.1])

P�.N/ D
˚
n.t/h./
d1

ˇ̌
.d; ; t/ 2 Q�.N/

�

with parameter set given by

Q�.N/ :D ˚.d; ; t/ 2 Z3
ˇ̌

djN with 1 � d � N;  2 U; 0 � t < d
�
:

We say that a cusp qj 2 P�.N/ is parametrized by .dj; j; tj/ 2 Q�.N/, if �.N/qj D
�.N/n.tj/h.j/
dj1.

3.2 Scattering Functions

Let N � 3 be an integer that is odd and square-free. Consider q1; q2 2 P�.N/ two
cusps, not necessarily distinct, parametrized by .dj; j; tj/ 2 Q�.N/ with j D 1; 2, and

let Qj be an inverse of j modulo N. With these data, set ej :D N=dj and d :D gcd.1C
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t1 � 2 � t2; gcd.d1; d2//. Then, the level N can be decomposed as N D Kq1q2Mq1q2
with

Kq1q2 :D gcd.e1; e2/d; Mq1q2 :D gcd.d1; d2/

d
gcd.d1; e2/gcd.d2; e1/:

Note that gcd.Kq1q2 ;Mq1q2 / D 1, since N is square-free. In case that d1 D d2 D 1,
one has Kq1q2 D N, hence Mq1q2 D 1. Finally, let 	 D 	.Kq1q2 ;Mq1q2 / be an integer
such that 	 mod Mq1q2 belongs to .Z=Mq1q2Z/

� and 	 satisfies the congruences

Kq1q2	 � �Q12 mod gcd.d1; e2/;

Kq1q2	 � 1 Q2 mod gcd.d2; e1/;

gcd.e1; e2/	 � Q1 Q2
�
1 C t1 � 2 � t2

d

�
mod

gcd.d1; d2/

d
:

We now state Hejhal’s formula for the scattering functions '�.N/q1q2 .s/. To do this, for
s 2 C with Re.s/ > 1, we define the function

��.N/q1q2 .s/ :D K1�2s
q1q2

'.Mq1q2 /

X

�mod Mq1q2
even

�.	/ `q1q2 .s; �/; (11)

where the sum runs over all Dirichlet characters modulo Mq1q2 with �.�1/ D 1, if
Mq1q2 6D 1, and, if Mq1q2 D 1, then �mod 1 denotes the function �triv W Z �! C�,
which is identically 1 on Z. Furthermore, we have set

`q1q2 .s; �/ :D L.2s � 1; �/
L.2s; �/

Y

pjKq1q2

�
1 � �. p/

p2s

��1
(12)

with L.s; �/ denoting the Dirichlet L-function associated to the character � and the
product runs over all p prime numbers dividing Kq1q2 .

Theorem 1 (Hejhal) Let N � 3 be an integer that is odd and square-free. Suppose
that q1; q2 2 P�.N/ are two cusps, not necessarily distinct. Then, for s 2 C with
Re.s/ > 1, the following identity holds

'�.N/q1q2
.s/ D 2p� �

�
s � 1

2

�

�.s/
N�2s��.N/q1q2

.s/;

where ��.N/q1q2 .s/ is the function given by (11). Furthermore, this identity is valid for
all s 2 C by meromorphic continuation.

Proof See [6, pp. 540–549]. ut



On Scattering Constants of Congruence Subgroups 125

We note that there is also a formula for the scattering function '�.2/q1q2 .s/ (see, e.g.,
[13]). Namely, we have

'�.2/q1q2 .s/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

p
�
�
�
s � 1

2

�

�.s/

�.2s� 1/
�.2s/

2�2s

22s � 1 ; if q1 D q2I

p
�
�
�
s � 1

2

�

�.s/

�.2s� 1/
�.2s/

1 � 21�2s

22s � 1 ; if q1 ¤ q2:

This formula is obtained by substituting [13, (C.0.4.1)] into [13, Proposi-

tion C.0.5] and multiplying the resulting expression by 2�2s'
�.1/11.s/.

4 Relation for Non-holomorphic Eisenstein Series

In this section, we prove a relation between the non-holomorphic Eisenstein series
of an arbitrary congruence subgroup � of level N and the sum of certain non-
holomorphic Eisenstein series of the principal subgroup �.N/. We first prove the
following useful lemma.

Lemma 2 Let � be a congruence subgroup of level N and let q D ˛=ˇ 2 P� be a
cusp with gq 2 PSL2.Z/ chosen as in (3). Then, we have the following bijection

g�1
q

�
�qn�

� '�!
�
.m; n/ 2 Z2

ˇ̌
ˇ̌ gcd.m; n/ D 1; � n

�m
D � ˛

ˇ

	
: (13)

Proof We start by noting that an element g�1
q �q
 2 g�1

q

�
�qn�

�
with 
 D � a b

c d

� 2 �
can be written as

g�1
q �q
 D B.wq/g

�1
q 
 D B.wq/

� � �
˛c � ˇa ˛d � ˇb

�

with B.wq/ given by (2), where for the first equality we used the identity (4). Thus,
the assignment

B.wq/

�� �
m n

�
7�! .m; n/

induces a map g�1
q

�
�qn�

� �! ˚
.m; n/ 2 Z2

ˇ̌
gcd.m; n/ D 1; � .�n=m/ D

� ˛=ˇ
�
. It is straightforward to show that this map is well-defined. In particular, the

element g�1
q �q

�
a b
c d

� 2 g�1
q

�
�qn�

�
maps to .˛c � ˇa; ˛d � ˇb/ 2 Z2 and we have

˛d � ˇb

�˛cC ˇa
D
�

d �b
�c a

�
˛

ˇ
2 � ˛

ˇ
:
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To prove the injectivity of this map, let g�1
q �q
1; g�1

q �q
2 2 g�1
q

�
�qn�

�
with


1; 
2 2 � be such that g�1
q 
1 D . r1 s1

m n / 2 PSL2.Z/ and g�1
q 
2 D . r2 s2

m n / 2
PSL2.Z/. Then, we have


1

�1
2 D gq

�
r1 s1
m n

��
r2 s2
m n

��1
g�1

q D gq

�
1 �
0 1

�
g�1

q :

This implies that 
1
�1
2 2 �q, hence �q
1 D �q
2, as desired. Finally, to prove the

surjectivity, let .m; n/ 2 Z2 with gcd.m; n/ D 1 and � .�n=m/ D � ˛=ˇ. Then,
there exists an element 
 2 � such that 
 .�n=m/ D ˛=ˇ. Hence, g�1

q 
 2 PSL2.Z/
with g�1

q 
 .�n=m/ D 1. Therefore, g�1
q 
 . n ��m � / 2 PSL2.Z/1 D B, which yields

g�1
q 
 D . � �

m n /, as desired. This completes the proof of the lemma.

Lemma 3 Let � be a congruence subgroup of level N and let q D ˛=ˇ 2 P� be a
cusp. Then, for z 2 H and s 2 C with Re.s/ > 1, the following identity holds

E�q .z; s/ D w�s
q

X

.m;n/2Z2
gcd.m;n/D1
� n

�m D� ˛
ˇ

ys

jmzC nj2s
:

Proof Indeed, from the definition (5) of the Eisenstein series E�q .z;w/, we obtain

E�q .z; s/ D
X


2�qn�
Im.��1

q 
z/s D w�s
q

X


2�qn�
Im.g�1

q 
z/s;

where for the second equality we used the identity �q D gq a.wq/. Now, by means
of the bijection (13), we deduce

E�q .z; s/ D w�s
q

X

.m;n/2Z2
gcd.m;n/D1
� n

�m D� ˛
ˇ

ys

jmzC nj2s
;

as asserted. ut
In the remaining part of this article, we will often consider the following setting.

Setting (*) Let q1; q2 2 P� be two cusps, not necessarily distinct, and write
q.1/1 resp. q.1/2 for q1 and q2 regarded as elements of P�.N/, respectively. Let

q.1/1 ; : : : ; q
.r1/
1 2 P�.N/ be a complete list of all the cusps that are �-equivalent to

q1. Here, r1 D wq1 Œ� W �.N/�=N. The next picture illustrates this setting.
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• • • •

•

• • •

•

Remark 4 In setting (�), the width wq1 of the cusp q1 2 P� can be interpreted as
the ramification index of q1 with respect to the map X �! X.1/. Similarly, the
width N of the cusp q. j/

1 2 P�.N/ ( j D 1; : : : ; r1) equals the ramification index

of q. j/
1 with respect to the map X.N/ �! X.1/. Thus, q. j/

1 has ramification index
N=wq1 with respect to the map X.N/ �! X. Therefore, we can deduce the equality
r1 D Œ� W �.N/�=.N=wq1 /, as asserted.

Proposition 5 Let � be a congruence subgroup of level N and let q1 2 P� be a
cusp. In the notation of setting (�), the following relation holds

E�q1 .z; s/ D
�

N

wq1

�s r1X

jD1
E�.N/

q
. j/
1

.z; s/; (14)

where z 2 H and s 2 C with Re.s/ > 1.

Proof Let q1 D ˛1=ˇ1 2 P� . By Lemma 3, we have the representation

E�q1 .z; s/ D w�s
q1

X

.m;n/2Z2
gcd.m;n/D1
� n

�m D� ˛1
ˇ1

ys

jmzC nj2s
:

Using the decomposition � ˛1=ˇ1 D Fr1
jD1 �.N/ q. j/

1 and writing q. j/
1 D ˛j=ˇj, we

deduce

E�q1 .z; s/ D w�s
q1

r1X

jD1

X

.m;n/2Z2
gcd.m;n/D1

�.N/ n
�m D�.N/ ˛j

ˇj

ys

jmzC nj2s
:

Again, by Lemma 3, the innermost sum on the right hand side of this identity is

equal to NsE�.N/
q
. j/
1

.z; s/, since w
q
. j/
1
D N, for all j D 1; : : : ; r1. This proves the asserted

relation. ut
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5 Formulas for Scattering Constants

In this section, we first employ Theorem 1 to prove a formula for the scattering
constants of �.N/, where N has the same restrictions as in Sect. 3.2. Then, we relate
the scattering constants of a given congruence subgroup � of arbitrary level N to
scattering constants of the principal congruence subgroup �.N/.

Let q1; q2 2 P�.N/. For Mq1q2 ¤ 1, we define the constant

�.	IKq1q2 ;Mq1q2 / :D 2�

N2Kq1q2'.Mq1q2 /

X

�mod Mq1q2
even
�¤�0

�.	/ `q1q2 .1; �/; (15)

where �0 denotes the principal Dirichlet character modulo Mq1q2 . Note that in this
case, the function `q1q2 .s; �/, defined in (12), is well-defined at s D 1, since L.s; �/
is holomorphic at s D 1, provided that � ¤ �0, and L.2; �/ ¤ 0.

Proposition 6 Let N � 3 be an integer that is odd and square-free. Suppose that
q1; q2 2 P�.N/ are two cusps, not necessarily distinct. Then the following identity
holds

C �.N/
q1q2 D 2v�1

�.N/

�
C � log.N/�

X

pjN

p2

p2 � 1 log. p/

�
C C�.N/

q1q2 ;

where C�.N/
q1q2 WD 0, if Mq1q2 D 1, and

C�.N/
q1q2

:D 2v�1
�.N/

X

pjMq1q2

p

p � 1 log. p/C �.	IKq1q2 ;Mq1q2 /;

if Mq1q2 ¤ 1. Here, C is the constant given by (9) and �.	IKq1q2 ;Mq1q2 / is given
by (15).

Proof To simplify the notation, we write M D Mq1q2 and K D Kq1q2 throughout the
proof.

We first deduce from Theorem 1, for M D 1 and hence K D N, the equality

'�.N/q1q2 .s/ D 2
p
�
�
�
s � 1

2

�

�.s/
N�2s��.N/q1q2 .s/

with

��.N/q1q2
.s/ D N1�2s`q1q2 .s; �triv/ D N1�2s �.2s� 1/

�.2s/

Y

pjN

�
1 � 1

p2s

��1
:
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Therefore, by (7) and using that N is square-free, we get

'�.N/q1q2 .s/ D 2N1�2s f .s/ '�.1/11.s/;

where we have set

f .s/ :D
Y

pjN

1

p2s � 1:

To obtain the Laurent expansion at s D 1 of the function f .s/, we compute its
logarithmic derivative

f 0.s/
f .s/
D �

X

pjN

2p2s

p2s � 1 log. p/:

Thus, at s D 1, we obtain

f .s/ D f .1/

�
1 � 2

�X

pjN

p2

p2 � 1 log. p/
�
.s � 1/CO

�
.s � 1/2�

�
:

Multiplying this expansion with

2N1�2s D 2

N

�
1 � 2 log.N/.s � 1/C O

�
.s � 1/2�

�
;

we obtain

2N1�2sf .s/D 2

N
f .1/

�
1 � 2

�
log.N/C

X

pjN

p2

p2 � 1 log. p/
�
.s � 1/CO

�
.s � 1/2�

�
:

Consequently, employing the expansion (8) and observing that (10) gives

3

�

2

N
f .1/ D 6

�

1

N

Y

pjN

1

p2 � 1 D v
�1
�.N/

;

we finally get

lim
s!1

�
'�.N/q1q2 .s/ �

v�1
�.N/

s � 1
�
D 2v�1

�.N/

�
C � log.N/�

X

pjN

p2

p2 � 1 log. p/

�
:
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Next, we deduce from Theorem 1, for M ¤ 1, the equality

'�.N/q1q2
.s/ D 2p� �

�
s � 1

2

�

�.s/
N�2s��.N/q1q2

.s/ (16)

with

��.N/q1q2
.s/ D K1�2s

'.M/
`q1q2 .s; �0/C

K1�2s

'.M/

X

�mod M
even
�¤�0

�.	/ `q1q2 .s; �/;

where �0 denotes the principal character modulo M. Using that N D KM is square-
free and employing the well-known identity

L.s; �0/ D �.s/
Y

pjM

�
1 � 1

ps

�
;

we deduce from the definition (12) of `q1q2 .s; �0/ the identity

`q1q2 .s; �0/ D N2sf .s/
�.2s� 1/
�.2s/

Y

pjM

�
1 � 1

p2s�1

�

D N2sf .s/
�.2s� 1/
�.2s/

M1�2s
Y

pjM
. p2s�1 � 1/:

Substituting this identity into (16) and using (7), we obtain

'�.N/q1q2
.s/ D 2N1�2sf .s/ '�.1/11.s/'.M/�1

Y

pjM
. p2s�1 � 1/

C 2p� �
�
s � 1

2

�

�.s/
N�2s K1�2s

'.M/

X

�mod M
even
�¤�0

�.	/`q1q2 .s; �/:

To obtain the Laurent expansion at s D 1 of the function

g.s/ WD '.M/�1
Y

pjM
. p2s�1 � 1/;

we compute its logarithmic derivative

g0.s/
g.s/

D
X

pjM

2p2s�1

p2s�1 � 1 log. p/:
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Observing that g.1/ D 1, since M is square-free, we get

g.s/ D 1C 2
�X

pjM

p

p � 1 log. p/

�
.s� 1/C O

�
.s � 1/2�;

at s D 1. Employing, at s D 1, the Laurent expansion

2N1�2sf .s/ '�.1/11.s/ D
v�1

�.N/

s � 1 C 2v
�1

�.N/

�
C � log.N/ �

X

pjN

p2

p2 � 1 log. p/

�
C O.s � 1/;

we thus obtain

lim
s!1

�
'�.N/q1q2 .s/ �

v�1

�.N/

s � 1
�
D 2v�1

�.N/

�
C � log.N/ �

X

pjN

p2

p2 � 1 log. p/C
X

pjM

p

p � 1 log. p/

�

C 2�N�2 K�1

'.M/

X

�mod M
even
�¤�0

�.	/`q1q2 .1; �/:

This completes the proof. ut
Remark 7 There is also a formula for the scattering constant C �.2/

q1q2 (see, e.g., [13,
Remark 4.4.3, p. 86]). Namely, we have

C �.2/
q1q2
D

8
ˆ̂̂
<

ˆ̂̂
:

2v�1
�.2/

�
C � 7

3
log.2/

�
; if q1 D q2I

2v�1
�.2/

�
C � 1

3
log.2/

�
; if q1 ¤ q2:

We now consider setting (�) given in Sect. 4.

Theorem 8 Let � be a congruence subgroup of level N and let q1; q2 2 P� be two
cusps, not necessarily distinct. In the notation of setting (�), the following identity
holds

C �
q1q2
D v�1

� log

�
N2

wq1wq2

�
C N

wq1

r1X

jD1
C
�.N/

q
. j/
1 q

.1/
2

:

Proof We start by proving the following relation for scattering functions

'�q1q2 .s/ D
N2s�1

ws
q1w

s�1
q2

r1X

jD1
'
�.N/

q
. j/
1 q

.1/
2

.s/; (17)
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where s 2 C with Re.s/ > 1. To simplify the notation, we writeb�2 Dbg2 a.N/ for
the scaling matrix of q.1/2 in �.N/. Furthermore, recall that we write q.1/2 for the cusp
q2 2 P� regarded as an element of P�.N/. The relation (14) states the identity

E�q1 .b�2z; s/ D
�

N

wq1

�s r1X

jD1
E�.N/

q
. j/
1

.b�2z; s/: (18)

Substituting the Fourier expansion of E�.N/
q
. j/
1

.z; s/ with respect to the cusp q.1/2 2
P�.N/ into (18) yields

E�q1 .b�2z; s/ D
�

N

wq1

�s

ıq1q2y
s C

�
N

wq1

�s

y1�s
r1X

jD1
'
�.N/

q
. j/
1 q

.1/
2

.s/ (19)

C
�

N

wq1

�sX

n¤0
y1=2Ks�1=2.2�jnjy/e2� inx

r1X

jD1
'
�.N/

q
. j/
1 q

.1/
2

.nI s/:

We next consider the matrix

�2 :D b�2 a
�
wq2=N

� 2 PSL2.R/: (20)

Note that �2 is a scaling matrix of q2 in � . Indeed, we have �21 D b�21 D q.1/2 D
q2 and

��1
2 �q2�2 D a.N=wq2 /b��1

2 �q2b�2 a.wq2=N/ D a.w�1
q2
/B.wq2 /a.wq2 / D B;

where we used (4) for the second equality. Now, by (20), we have

E�q1 .b�2z; s/ D E�q1

�
�2

�
N

wq2

z

�
; s

�
;

and employing the Fourier expansion of E�q1 .w; s/ with respect to the cusp q2, letting
w WD Nz=wq2 , we obtain

E�q1 .b�2z; s/ D ıq1q2

�
Ny

wq2

�s

C '�q1q2 .s/
�

Ny

wq2

�1�s

(21)

C
X

m¤0
'�q1q2 .mI s/

�
Ny

wq2

�1=2
Ks�1=2.2�jmjNy=wq2 /e

2� imNx=wq2 :
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Comparing the coefficients in the asymptotics of the two expansions (19) and (21) of
E�q1 .b�2z; s/ for large y and taken into account the exponential decay of the modified
Bessel function of the second kind, we particularly derive the identity

�
N

wq1

�s r1X

jD1
'
�.N/

q
. j/
1 q

.1/
2

.s/ D '�q1q2 .s/

�
N

wq2

�1�s

:

This proves relation (17).
Now, using r1 D Œ� W �.N/�wq1 =N, we first observe that

v�1
� D

N

wq1
r1v

�1
�.N/

:

Furthermore, at s D 1, we have the Laurent expansion

N2s�1

ws
q1

ws�1
q2

D N

wq1

C N

wq1

log

�
N2

wq1wq2

�
.s � 1/C O

�
.s � 1/2�:

Therefore, employing relation (17) and recalling the definition of the scattering
constants in question, we get

lim
s!1

�
'�q1q2 .s/�

v�1
�

s � 1
�
D lim

s!1

�
N2s�1

ws
q1w

s�1
q2

r1X

jD1
'
�.N/

q
. j/
1 q

.1/
2

.s/ � N

wq1

r1v�1
�.N/

s� 1
�

D N

wq1

r1X

jD1
C
�.N/

q
. j/
1 q

.1/
2

C N

wq1

log

�
N2

wq1wq2

�
r1v

�1
�.N/

:

This completes the proof of the theorem. ut

6 Examples

In this section, we first compute several scattering constants of �.N/ for particular
cusps using Proposition 6 and Remark 7. For this, we assume that N D 2 or
N � 3 is odd and square-free. In particular, we compute the scattering constants,
that are needed for the asymptotics in the upcoming article [5]. We then illustrate
how to combine Theorem 8 with Proposition 6 in order to obtain closed formulas
for scattering constants of other congruence subgroups, by considering examples
for �0.N/ and �1.N/. In particular, we compute in a uniform way the scattering
constants that arise in [1] and [11].

Example 1 In the notation of Sect. 3, recall that U denotes a set of integers
containing 1 representing .Z=NZ/�=f˙1g. For  2 U, we denote by1 the cusp
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parametrized by the triple .1; ; 0/ 2 Q�.N/ and by 0 the cusp parametrized by
the triple .N; ;N � 1/ 2 Q�.N/. In particular, if  D 1, then 11 D 1, since
n.0/h.1/
11 D1, and 01 D 0, since n.N � 1/h.1/
N1 D

�
N �1
1 0

�1 D N=1 and
�.N/N=1 D �.N/ 0=1. In the notation of Sect. 3.2, we now compute the following
scattering constants of �.N/.

(i) Let us consider the cusps q1 WD 1 and q2 WD 1. Then, we have that d1 D
d2 D 1, 1 D , 2 D 1, and t1 D t2 D 0. These values give e1 D e2 D N,
d D 1, Kq1q2 D N, and Mq1q2 D 1. From Proposition 6, we obtain

C �.N/11 D 2v�1
�.N/

�
C � log.N/�

X

pjN

p2

p2 � 1 log. p/

�
:

In particular, letting  D 1, this yields one of the scattering constants used in
[5].

(ii) Let us consider the cusps q1 WD 1 and q2 WD 0. Then, we have that d1 D 1,
d2 D N, 1 D , 2 D 1, t1 D 0, and t2 D N � 1. These values give e1 D N,
e2 D 1, d D 1, Kq1q2 D 1, and Mq1q2 D N. Take 	 D . From Proposition 6,
we obtain

C
�.N/
1 0
D 2v�1

�.N/

�
C � log.N/ �

X

pjN

p2

p2 � 1 log. p/

�

C 2v�1
�.N/

X

pjN

p

p � 1 log. p/C �.I 1;N/

D 2v�1
�.N/

�
C �

X

pjN

p2 � p � 1
p2 � 1 log. p/

�
C �.I 1;N/:

(iii) Let us consider the cusps q1 WD 1 and q2 WD 0 . Then, we have that d1 D 1,
d2 D N, 1 D 1, 2 D , t1 D 0, and t2 D N � 1. These values give e1 D N,
e2 D 1, d D 1, Kq1q2 D 1, and Mq1q2 D N. Take 	 D Q . From Proposition 6,
we obtain

C
�.N/
10
D 2v�1

�.N/

�
C � log.N/ �

X

pjN

p2

p2 � 1 log. p/

�

C 2v�1
�.N/

X

pjN

p

p � 1 log. p/C �. QI 1;N/

D 2v�1
�.N/

�
C �

X

pjN

p2 � p � 1
p2 � 1 log. p/

�
C �. QI 1;N/:

This gives the other scattering constants used in [5].
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Example 2 In this example, the following coset decomposition will be useful

�0.N/ D
G

2U

NG

tD1
�.N/n.t/h./: (22)

In particular, this shows that Œ�0.N/ W �.N/� D N'.N/=2. In the notation of
setting (�), we now compute several scattering constants of � D �0.N/.
(i) Let us consider the cusps q1 :D 1; q2 :D 1 2 P�0.N/. Then, we have

wq1 D wq2 D 1 and r1 D Œ�0.N/ W �.N/�wq1=N D '.N/=2. From the

coset decomposition (22), we can deduce that each cusp q. j/
1 2 P�.N/ ( j D

1; : : : ; '.N/=2) corresponds to exactly one of the cusps1 given in Example 1
(i). Therefore, by Theorem 8, we have the identity

C �0.N/11 D v�1
�0.N/

log.N2/C N
X

2U

C �.N/11:

Using the formula given in Example 1 (i), we obtain

C �0.N/11 D 2v�1
�0.N/

log.N/C N
X

2U

2v�1
�.N/

�
C � log.N/ �

X

pjN

p2

p2 � 1 log. p/

�

D 2v�1
�0.N/

�
C �

X

pjN

p2

p2 � 1 log. p/

�
:

This recovers the scattering constant given in [1, p. 59].
(ii) Let us consider the cusps q1 :D 1; q2 :D 0 2 P�0.N/. Then, we have wq1 D

1, wq2 D N, and r1 D Œ�0.N/ W �.N/�wq1=N D '.N/=2. Therefore, from
Theorem 8, we have the identity

C �0.N/
10 D v�1

�0.N/
log.N/C N

X

2U

C �.N/
1 0

:

Using the formula given in Example 1 (ii), we obtain

C
�0.N/
10 D v�1

�0.N/
log.N/C 2v�1

�0.N/

�
C �

X

pjN

p2 � p � 1
p2 � 1 log. p/

�
C N

X

2U

�.I 1;N/

D 2v�1

�0.N/

�
C � 1

2

X

pjN

p2 � 2p � 1
p2 � 1 log. p/

�
:
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Note that the sum of �.I 1;N/ over  2 U vanishes by virtue of the
orthogonality relations for Dirichlet characters. This recovers the scattering
constant given in [1, p. 67].

Example 3 Note that the coset decomposition

�1.N/ D
NG

tD1
�.N/n.t/

in particular shows that Œ�1.N/ W �.N/� D N. In the notation of setting (�), we now
compute several scattering constants of � D �1.N/.
(i) Let us consider the cusps q1 :D 1; q2 :D 1 2 P�1.N/. Then, we have wq1 D

wq2 D 1 and r1 D Œ�1.N/ W �.N/�wq1 =N D 1. Therefore, from Theorem 8, we
have the identity

C �1.N/11 D 2v�1
�1.N/

log.N/C NC �.N/11 :

Using the formula given in Example 1 (i), we obtain

C �1.N/11 D 2v�1
�1.N/

log.N/C 2Nv�1
�.N/

�
C � log.N/ �

X

pjN

p2

p2 � 1 log. p/

�

D 2v�1
�1.N/

�
C �

X

pjN

p2

p2 � 1 log. p/

�
:

This recovers the scattering constant given in [11, (5.9), p. 140].
(ii) Let us consider the cusps q1 :D 1; q2 WD 0 2 P�1.N/ with  2 U. Then, we

have wq1 D 1, wq2 D N, and r1 D Œ�1.N/ W �.N/�wq1=N D 1. Therefore, from
Theorem 8, we have the identity

C
�1.N/
10

D v�1
�1.N/

log.N/C NC
�.N/
10

:

Using the formula given in Example 1 (iii), we obtain

C
�1.N/
10

D v�1
�1.N/

log.N/C 2v�1
�1.N/

�
C �

X

pjN

p2 � p � 1
p2 � 1 log. p/

�
C N�. QI 1;N/

D 2v�1
�1.N/

�
C � 1

2

X

pjN

p2 � 2p� 1
p2 � 1 log. p/

�
C N�. QI 1;N/:
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Remark 9 Letting  D 1 in Example 3 (ii), we obtain a formula for C �1.N/
10 . It turns

out that this expression differs from [11, Lemma 6.1, p. 143] in the additive term

N�.1I 1;N/. To be more precise, the scattering function '�1.N/01 .s/ D '
�1.N/
10 .s/ can

be explicitly computed using relation (17), which yields '�1.N/10 .s/ D Ns'
�.N/
10 .s/,

and then applying Hejhal’s formula stated in Theorem 1. In this special case, a
straightforward computation then yields the identity

'
�1.N/
01 .s/ D p� �

�
s � 1

2

�

�.s/

1

Ns

X

c2Z
c¤0

c��1mod N

'.c/

c2s
:

The congruence condition in the above series is missing in [11].
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The Bruinier–Funke Pairing
and the Orthogonal Complement
of Unary Theta Functions

Ben Kane and Siu Hang Man

Abstract We describe an algorithm for computing the inner product between a
holomorphic modular form and a unary theta function, in order to determine whether
the form is orthogonal to unary theta functions without needing a basis of the entire
space of modular forms and without needing to use linear algebra to decompose this
space completely.

1 Introduction

In this paper, we are interested in the decomposition of holomorphic modular forms.
Suppose that f is a weight 3=2 holomorphic modular form on some congruence
subgroup � . One can decompose f into an Eisenstein series component E, a sum
‰ of (cuspidal) unary theta functions (see (2.6) for the definition), and a cusp form
g in the orthogonal complement of unary theta functions. This is an orthogonal
splitting with respect to the usual Petersson inner product, since the Eisenstein series
is orthogonal to cusp forms. It is thus natural to try to compute the individual pieces.
The Eisenstein series component may be computed by determining the growth of f
towards the cusps. Furthermore, its Fourier coefficients may be explicitly computed,
and these generally constitute the main asymptotic term of the Fourier coefficients of
f . In a number of combinatorial applications, this is quite useful in determining the
overall growth of the coefficients of f . For example, if f is the generating function for
the number of representations by a ternary quadratic form Q, then the coefficients of
the Eisenstein series count the number of local representations, and the fact that this
is (usually) the main asymptotic term implies an equidistribution result about the
representations of integers in the genus of Q (i.e., those quadratic forms which are
locally equivalent to Q). This equidistribution result does not always hold, however;
the coefficients of ‰ grow as fast as the coefficients of E within their support,
although they are only supported in finitely many square classes (known on the
algebraic side of the theory of quadratic forms as spinor exceptional square classes).
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Using an upper bound of Duke [6] for the coefficients of g, Duke and Schulze-Pillot
[7] combined these ideas to conclude an equidistribution result for the primitive
representations by every element of the genus away from these spinor exceptional
square classes.

It is natural to ask whether similar results hold true when the quadratic form is
replaced with a totally positive quadratic polynomial (i.e., a form constructed as a
linear combination of a positive-definite integral quadratic form, linear terms, and
the unique constant such that the quadratic polynomial only represents non-negative
integers and represents zero). One such example is sums of polygonal numbers. For
n 2 Z, the nth generalized m-gonal number is

pm.n/ WD .m � 2/n2 � .m � 4/n
2

;

and for a; b; c 2 N we investigate sums of the type

P.x; y; z/ D Pa;b;c.x; y; z/ WD apm.x/C bpm.y/C cpm.z/;

where x; y; z 2 Z. We consider a, b, and c to be fixed and vary x, y, and z. We
package P into a generating function

X

x;y;z2Z
e2� iP.x;y;z/�

with � 2 H WD f˛ 2 C W Im.˛/ > 0g; this is known as the theta function for
P. We may then investigate the Fourier coefficients of this theta function in order
to attempt to understand which integers are represented by P. It is actually more
natural to complete the square to rewrite

pm.x/ D .2.m� 2/x � .m � 4//2
8.m � 2/ � .m � 4/

2

8.m � 2/
Adding an appropriate constant, we obtain a theta function for a shifted lattice LC	,
where 	 2 QL inside a quadratic space with associated quadratic norm Q; quadratic
forms are simply the case when 	 D 0 (or equivalently, 	 2 L). These theta functions
are again modular forms and the unary theta functions govern whether the local-to-
global principle fails finitely or infinitely often.

Theorem 1.1 Suppose that L is a ternary positive-definite lattice and 	 is a vector
in the associated quadratic space over Q. Suppose further that the congruence class
.MZC r/ \ N0 is primitively represented locally by the associated quadratic form
Q on LC 	 and denote by aLC	.MnC r/ the number of vectors of length MnC r in
LC 	 (i.e., the number of � 2 LC 	 for which Q.�/ D MnC r). If

‚LC	.�/ WD
X

�2LC	
e2� iQ.�/�
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is orthogonal to unary theta functions, then

fn 2 Z W6 9� 2 LC 	; Q.�/ D MnC rg

is finite.

Remark If ‚LC	 is orthogonal to unary theta functions for every L C 	 in a given
genus, then one obtains an equidistribution result for representations of MnC r (for
n sufficiently large, but with an ineffective bound) across the entire genus in the
same manner as for the case of quadratic forms.
There are a number of cases where Theorem 1.1 has been employed to show that
certain quadratic polynomials P are almost universal (i.e., they represent all but
finitely many integers). In the case of triangular numbers (that is to say, m D 3), the
first author and Sun [10] obtained a near-classification which was later fully resolved
by Chan–Oh [5]; further classification results about sums of triangular numbers and
squares were completed by Chan–Haensch [4]. More recently, the case a D b D
c D 1 with arbitrary m was considered by Haensch and the first author [8]. In
[8], a number of almost universality results are obtained by taking advantage of
the fact that the structure of modular forms may be used to determine that certain
congruence classes are not in the support of the coefficients of all of the unary
theta functions in the same space, and hence directly obtaining the orthogonality
needed for Theorem 1.1. This was generalized by the second author and Mehta
[11] to include many more cases of a; b; c where the same phenomenon implies
orthogonality. We next consider a case which does not immediately follow from
this approach.

Proposition 1.2 Every sufficiently large positive integer may be written in the form
p8.x/C 3p8.y/C 3p8.z/ with x; y; z 2 Z. In other words, p8.x/C 3p8.y/C 3p8.z/ is
almost universal.
In order to show Proposition 1.2, we use Theorem 1.1 and show that the theta
function ‚LC	 associated to p8.x/ C 3p8.y/ C 3p8.z/ is orthogonal to all unary
theta functions. One can numerically compute the inner product with unary theta
functions directly from the definition as an integral over a fundamental domain of
SL2.Z/nH or use a method called unfolding to write it as infinite sums involving
products of the Fourier coefficients of ‚LC	 and those of the unary theta functions.
However, this is not sufficient for our purposes, since we need to algebraically
verify that the inner product is indeed zero and the first method is only a numerical
approximation while the second method yields an infinite sum. Since the associated
space of modular forms is finite-dimensional and there is a natural orthogonal basis
of Hecke eigenforms, one can decompose the space explicitly to determine whether
this orthogonality holds, but the linear algebra involved is usually computationally
expensive and is not feasible in many cases. We hence use a pairing of Bruinier and
Funke [3] to rewrite the inner product as a finite sum. The basic idea is to use Stokes’
Theorem to rewrite the inner product as a (finite) linear combination of products
of the Fourier coefficients of ‚LC	 and coefficients of certain “pre-images” of the
unary theta functions under a natural differential operator. In order to find these
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pre-images, we employ work of Zwegers [17], who showed that these pre-images
are related to the mock theta functions of Ramanujan.

The paper is organized as follows. In Sect. 2, we give some preliminary informa-
tion about modular forms and harmonic Maass forms. In Sect. 3, we describe how to
compute the inner product using the Bruinier–Funke pairing and construct explicit
pre-images of unary theta functions using [17] (see Theorem 3.4). Finally, in Sect. 4,
we prove Theorem 1.1 and Proposition 1.2.

2 Preliminaries

We recall some results about modular forms and harmonic Maass forms.

2.1 Basic Definitions

Let H denote the upper half-plane, i.e., those � D u C iv 2 C with u 2 R and
v > 0. The matrices 
 D �

a b
c d

� 2 SL2.Z/ (the space of two-by-two integral
matrices with integer coefficients and determinant 1) act on H via fractional linear
transformations 
� WD a�Cb

c�Cd . For

j.
; �/ WD c� C d;

a multiplier system for a subgroup � � SL2.Z/ and weight r 2 R is a function
	 W � 7! C such that for all 
;M 2 � (cf. [12, (2a.4)])

	.M
/j.M
; �/r D 	.M/j.M; 
�/r	.
/j.
; �/r:

The slash operator jr;	 of weight r and multiplier system 	 is then

f jr;	
.�/ WD 	.
/�1j.
; �/�rf .
�/:

A harmonic Maass form of weight r 2 R and multiplier system 	 for � is a function
f W H! C satisfying the following criteria:

1. The function f is annihilated by the weight r hyperbolic Laplacian

�r WD �2�r ı r;

where

r WD 2ivr @

@�
: (2.1)
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2. For every 
 2 � , we have

f jr;	
 D f : (2.2)

3. The function f exhibits at most linear exponential growth towards every cusp
(i.e., those elements of �n.Q [ fi1g/). This means that at each cusp % of �nH,
the Fourier expansion of the function f%.�/ WD f jr;	
%.�/ has at most finitely
many terms which grow, where 
% 2 SL2.Z/ sends i1 to %.

If f is holomorphic and the Fourier expansion at each cusp is bounded, then we call
f a holomorphic modular form. Furthermore, if f is a holomorphic modular form
and vanishes at every cusp (i.e., the limit lim�!i1 f%.�/ D 0), then we call f a cusp
form.

2.2 Half-Integral Weight Forms

We are particularly interested in the case where r D k C 1=2 with k 2 N0 and, in
the example given in Theorem 1.1 that motivates this study we may choose � to be
an intersection between the groups

�0.M/ WD
��

a b
c d

�
2 SL2.Z/ W M j c

	
;

�1.M/ WD
��

a b
c d

�
2 SL2.Z/ W M j c; a � d � 1 .mod M/

	

for some M 2 N divisible by 4. The multiplier system we are particularly interested
in is given in [13, Proposition 2.1], although we do not need the explicit form of the
multiplier for this paper.

If TN 2 � with T WD � 1 10 1
�
, then by (2.2) we have f .� C N/ D f .�/, and hence f

has a Fourier expansion (cf .vI n/ 2 C)

f .�/ D
X

n��1
cf .vI n/e 2�in�

N : (2.3)

Moreover, f is meromorphic if and only if cf .vI n/ D cf .n/ is independent of
v. For holomorphic modular forms, an additional restriction n � 0 follows from
the fact that f is bounded as � ! i1. There are similar expansions at the other
cusps. One commonly sets q WD e2� i� and associates the above expansion with
the corresponding formal power series, using them interchangeably unless explicit
analytic properties of the function f are required.
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2.3 Theta Functions for Quadratic Polynomials

In [13, (2.0)], Shimura defined theta functions associated to lattice cosets LC 	 (for
a lattice L of rank n) and polynomials P on lattice points. Namely, he defined

‚LC	;P.�/ WD
X

x2LC	
P.x/qQ.x/;

where Q is the quadratic map in the associated quadratic space. We omit P when it
is trivial. In this case, we may write rLC	.`/ for the number of elements in LC 	 of
norm ` and we get

‚LC	.�/ D
X

`�0
rLC	.`/q`: (2.4)

Shimura then showed (see [13, Proposition 2.1]) that ‚LC	 is a modular form of
weight n=2 for � D �0.4N2/\�1.2N/ (for some N which depends on L and 	) and
a particular multiplier. Note that we have taken � 7! 2N� in Shimura’s definition.
To show the modularity properties, for 
 D � a b

c d

� 2 � , we compute

2N
.�/ D 2N
a� C b

c� C d
D a.2N�/C 2Nb

c
2N .2N�/C d

D
�

a 2Nb
c
2N d

�
.2N�/: (2.5)

Since 
 2 � , we have

�
a 2Nb
c
2N d

�
2 �.2N/ WD

�

 D

�
a b
c d

�
2 SL2.Z/ W 
 � I2 .mod N/

	

 �1.2N/;

so we may then use [13, Proposition 2.1]. Specifically, the multiplier is the same
multiplier as ‚3, where ‚.�/ WDPn2Z qn2 is the classical Jacobi theta function.

We only require the associated polynomial in one case. Namely, for n D 1 and
P.x/ D x, we require the unary theta functions (see [13, (2.0)] with N 7! N=t,
P.m/ D m, A D .N=t/, and � 7! 2N�)

#h;t.�/ D #h;t;N.�/ WD
X

r2Z
r�h .mod 2N

t /

rqtr2 ; (2.6)

where h may be chosen modulo 2N=t and t is a squarefree divisor of 2N. These are
weight 3=2 modular forms on �0.4N2/ \ �1.2N/ with the same multiplier system
as ‚LC	 .
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3 The Bruinier–Funke Pairing

In this section, we describe how to compute the inner product with unary theta
functions. We again begin by noting the decomposition of a weight 3=2 modular
form f as

f D EC‰ C g;

where E is an Eisenstein series, ‰ is a linear combination of unary theta functions,
and g is a cusp form in the orthogonal complement of unary theta functions. Since
the decomposition above is an orthogonal splitting with respect to the Petersson
inner product, one may instead compute the inner product

˝
f ; ‚j

˛

for each unary theta function ‚j. Recall that Petersson’s classical definition of the
inner product between two holomorphic modular forms f and h (for which fh is
cuspidal) is (here and throughout � D uC iv)

h f ; hi WD 1

ŒSL2.Z/ W ��
Z

�nH
f .�/h.�/v

3
2

dudv

v2
;

where ŒSL2.Z/ W �� denotes the index of � in SL2.Z/. While one may be able to
approximate the integral well numerically, we are interested in obtaining a precise
(algebraic) formula for the inner product (and hence an explicit formula for ‰). In
order to do so, we rely on a formula of Bruinier and Funke (see [3, Theorem 1.1 and
Proposition 3.5]) known as the Bruinier–Funke pairing. The basic premise is to use
Stokes’ Theorem in order to compute the inner product in a different way. Suppose
that we have a preimage H under the operator 1=2, where

� WD 2iv�
@

@�

is a differential operator which sends functions satisfying weight � modularity to
functions satisfying weight 2 � � modularity. Note that since h is holomorphic and
1=2.H/ D h, the fact that the kernel of 2�� is holomorphic functions implies that
the function H is necessarily annihilated by the weight � hyperbolic Laplacian (for
� D 1=2)

�� D �2�� ı �:

If we further impose that H is modular of weight � on � and has certain restrictions
on its singularities in �n.H [ Q [ fi1g/ (see Sect. 2 for further details), then we
obtain a harmonic Maass form. Due to the fact that � is a congruence subgroup, it
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contains TN for some N, where T WD �
1 1
0 1

�
. Similarly, if 
% 2 SL2.Z/ sends i1 to

a cusp %, then TN% is contained in 
�1
% �
% for some N% 2 N; here N% is known as

the cusp width at %. Using this, one can show that it has a Fourier expansion around
each cusp % of � of the shape

H%.�/ D
X

n2Z
cH;%.vI n/e

2�in�
N% ;

for some cH;%.yI n/ 2 C, and where H% WD Hj�
% is the expansion around %. Note
however, that since H is not holomorphic, the Fourier coefficients may depend on
v. Solving the differential equation ��.H/ D 0 termwise yields a natural splitting
of the Fourier expansion into holomorphic and non-holomorphic parts, namely

H%.�/ D HC
% .�/CH�

% .�/

with

HC
% .�/ D

X

n��1
cC
H;%.n/e

2�in�
N%

H�
% .�/ D c�

H;%.0/v
2�� C

X

n�1
n¤0

c�
H;%.n/�

�
2 � �;�4�nv

N%

�
e
2�in�

N% ;

where now the coefficients are independent of v. It is these Fourier coefficients
which are used by Bruinier and Funke to compute the inner product explicitly in [3,
Proposition 3.5]. To state their formula, let S� denote the set of cusps and write

f%.�/ D
X

n�0
cf ;%.n/e

2�in�
N% :

Theorem 3.1 (Bruinier–Funke) We have

h f ; hi D 1

ŒSL2.Z/ W ��
X

%2S�

X

n�0
cf ;%.n/c

C
H;%.�n/:

Theorem 3.1 is algebraic, precise, and is actually a finite sum since there are only
finitely many n for which cC

H;%.�n/ ¤ 0, allowing one to explicitly compute the
inner product. We will assume that sufficiently many Fourier coefficients of f are
known, or in other words the input to our algorithm will be the Fourier coefficients
cf ;%.n/ and the function h, which in our case will be a unary theta function. The
assumption that the expansions are known at every cusp may at first seem to be
a somewhat strong assumption, since in combinatorial applications we often only
know the expansion at one cusp. However, when f D ‚LC	 is the theta function
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for a shifted lattice, Shimura [13] has computed the modularity properties for all of
SL2.Z/ and one obtains modularity for SL2.Z/ in a vector-valued sense, where the
components of the vector are the functions f%. In other words, given just the theta
function f , one can determine the functions f% as long as one can write 
% explicitly
in terms of the generators S WD �

0 �1
1 0

�
and T of SL2.Z/. Although this rewriting is

well-known, we provide the details for the convenience of the reader.

Lemma 3.2 Given % D a=c, there is an algorithm to determine 
% 2 SL2.Z/
explicitly in terms of S and T.

Proof First, we need to construct 
% for which 
%.i1/ D a=c. In other words, we
want a matrix

�
a b
c d

� 2 SL2.Z/. Since ad�bc D 1 and a and c are necessarily prime,
we see that b and �c are precisely the coefficients from Bezout’s theorem. We next
construct the sequence of S and T recursively as follows.

Let 
0 WD 
%. At step j C 1 (with j 2 N0) we will construct 
jC1 induc-
tively/recursively from 
j by multiplying either by S or by STm for some m 2 Z,
and eventually obtain 
` D ˙Tm for some step ` and m 2 Z. Suppose that


j D
�

aj bj

cj dj

�
:

If cj D 0, then aj D dj D ˙1 and ` D j with 
j D ˙T˙bj , and reversing back
through the recursion gives the expansion of 
0 in terms of S and T, so we are done.

If cj ¤ 0, then we choose r 2 Z such that jaj C rcjj is minimal (if there are two
choices, i.e, if ajC rcj D cj=2 for some r, then we take this choice of r). We then set


jC1 WD STr
j�1 D S

�
aj C rcj bj C rdj

cj dj

�
D
� �cj �dj

aj C rcj bj C rdj

�
:

Note that jaj C rcjj � jcjj=2 by construction, so the entry in the lower-left corner is
necessarily smaller at step j C 1 than it was at step j. Therefore the algorithm will
halt after a finite number of steps. ut

In order to determine the inner product h f ; hi, it remains to compute the preimage
H and compute its Fourier expansion. Luckily, motivated by Ramanujan’s mock
theta functions, Zwegers [17] constructed pre-images of the unary theta functions
using a holomorphic function � which he “completed” to obtain a harmonic Maass
form (actually, he is even able to view his completed object as a non-holomorphic
Jacobi form, and one obtains the pre-images of unary theta functions by plugging in
elements of Q C Q� for the elliptic variable z). Choosing z to be an appropriate
element of Q C Q� , one may compute the expansions at all cusps by viewing
Zwegers’s function as a component of a vector-valued modular form. As a first
example, Zwegers himself computed the corresponding vector when the unary theta
function is given by

‚0.�/ WD
X

n2Z

�
nC 1

6

�
e3� i.nC 1

6 /
2
� :
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This is related to the third order mock theta function f .q/, and played an important
role in Bringmann and Ono’s [1] proof of the Andrews–Dragonette conjecture. One
may find the full transformation properties listed in [1, Theorem 2.1]. Specifically,
let

f .q/ WD 1C
1X

nD1

qn2

.1C q/2.1C q2/2 � � �.1C qn/2

and

!.q/ WD
1X

nD0

qn2C2n

.1 � q/2.1 � q3/2 � � �.1 � q2nC1/2
:

Setting (q WD e2� i� )

F.�/ D .F0.�/;F1.�/;F2.�//T WD
�

q� 1
24 f .q/; 2q

1
3 !
�

q
1
2

�
; 2q

1
3 !
�
�q

1
2

��T
;

we have the following.

Theorem 3.3 (Zwegers [17]) There is a vector-valued harmonic Maass form H D
.H0;H1;H2/

T whose meromorphic part is F (component-wise). The harmonic
Maass form satisfies

 1
2
.H0/ D ‚0

and the modularity properties for SL2.Z/ given by

H.� C 1/ D
0

@
��1
24 0 0

0 0 �3
0 �3 0

1

AH.�/;

H
�
�1
�

�
D p�i�

0

@
0 1 0

1 0 0

0 0 �1

1

AH.�/;

where �n WD e2� i=n.
Pre-images of a more general family of unary theta functions were investigated

by Bringmann and Ono in [2]; these are connected to Dyson’s rank for the partition
function, and the modularity of the relevant functions is given in [2, Theorem 1.2],
with the full vector-valued transformation properties given in [2, Theorem 2.3].
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Theorem 3.3 is the first case of a much more general theorem which follows by
combining the results in Zwegers’s thesis [17]. To describe this result, for a; b 2 C

and � 2 H, define the holomorphic function

�.a; bI �/ WD e� ia

�.bI �/
X

n2Z

.�1/ne� i.n2Cn/�C2� inb

1 � e2� in�C2� ia
;

and also define the real-analytic function

R.aI �/ WD
X

	2 1
2CZ

�
sgn.	/ � E

��
	 C Im.a/

v

�p
2v

��
.�1/	� 1

2 e�� i	2��2� ia	;

where sgn.x/ is the usual sign function,

�.zI �/ WD
X

	2 1
2CZ

e� i	2�C2� i	.zC 1
2 /;

and

E.z/ WD sgn.z/
�
1 � ˇ �z2��

with (for x 2 R�0)

ˇ.x/ WD
Z 1

x
t� 1

2 e�� tdt:

One then defines

e�.a; bI �/ WD �.a; bI �/C i

2
R.a � bI �/: (3.1)

The functione� is essentially a weight 1=2 harmonic Maass form.

Theorem 3.4 For h; t;N 2 N with t j 2N, the function

Fh;t;N.�/ WD �e�2� i.h� N
t /

2
�e�
�

ht � N

2N

8N2�

t2
;�1
2
I 8N2�

t2

�

is a weight 1=2 harmonic Maass form on � WD �1.4N=t/\ �0.16N2=t2/ with some
multiplier system. Furthermore, it satisfies

 1
2
.Fh;t;N/ D #h;t;N.�/:
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Proof The modularity properties of Fh;t;N follow by Zwegers [17, Theorem 1.11].

In particular, for 
 D �
a b
c d

� 2 � and 
 0 D
�

a 8N2b=t2

ct2=.8N2/ d

�
, a change of

variables in [17, Theorem 1.11 (2)] together with (2.5) implies that (with v.
 0/ WD
�.
 0�/=. j.
 0; �/�.�// denoting the multiplier system of the Dedekind �-function
�.�/ WD q1=24

Q
n�1.1 � qn/)

Fh;t;N

�
a� C b

c� C d

�

D �e�2� i.h� N
t /
2 a�Cb

c�Cde�

0

@ht � N

2N

a
�
8N2

t2
�
�
C 8N2b

t2

ct2

8N2

�
8N2

t2
�
�
C d

;�1
2
I

a
�
8N2

t2
�
�
C 8N2b

t2

ct2

8N2

�
8N2

t2
�
�
C d

1

A

D �e�2� i.h� N
t /
2
�

a�Cb
c�Cd

�

v.
 0/�3.c� C d/
1
2 e�� i

ct2

8N2

�
ht�N
2N

�
a

�
8N2

t2
�

�
C
8N2b

t2

�
C

c�Cd
2

�2

c�Cd

�e�
��

ht

2N
� 1
2

��
a

�
8N2

t2
�

�
C 8N2b

t2

�
;�c� C d

2
I 8N2�

t2

�
: (3.2)

We next use the fact that a � 1 .mod 4N=t/ to obtain

ht � N

2N

�
a

�
8N2

t2
�

�
C 8N2b

t2

�
� ht � N

2N

8N2�

t2
.mod Z

8N2�

t2
C Z/;

while 16N2=t2 j c and d � 1 .mod 4N=t/ imply that

c� C d

2
� 1

2
.mod Z

8N2�

t2
C Z/;

Hence by Zwegers [17, Theorem 1.11 (1)], we have

e�
�

ht � N

2N

�
a

�
8N2

t2
�

�
C 8N2b

t2

�
;�c� C d

2
I 8N2�

t2

�

D .�1/.a�1/ ht�N
2N C.h� N

t /
4Nb

t � ct2

16N2
� d�1

2

e� i
�
.a�1/ ht�N

2N C ct2

16N2

�2
8N2�

t2
C2� i

�
.a�1/ ht�N

2N C ct2

16N2

��
ht�N
2N

8N2�
t2

C 1
2

�

�e�
�

ht � N

2N

8N2�

t2
;�1
2
I 8N2�

t2

�
: (3.3)

The power of �1 modifies the multiplier system accordingly. Plugging back
into (3.2), we see that it remains to simplify the exponentials to match the power
of � .
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The parameter of the exponential (or rather, the part which involves �) is 2� i
c�Cd

times

�
�

h � N

t

�2
.a� C b/� ct2

16N2

�
ht � N

2N

�
a

�
8N2

t2
�

�
C 8N2b

t2

�
C c� C d

2

�2

C1
2

�
.a � 1/ht � N

2N
C ct2

16N2

�2
8N2�

t2
.c� C d/

C
�
.a � 1/ht � N

2N
C ct2

16N2

�
ht � N

2N

8N2�

t2
.c� C d/

D �
�

h � N

t

�2
.a� C b/� c.a� C b/2

�
h � N

t

�2

� ct

4N

�
h � N

t

�
.a� C b/.c� C d/� ct2

64N2
.c� C d/2

C.a � 1/2
�

h � N

t

�2
�.c� C d/C t

4N
.a � 1/

�
h � N

t

�
c�.c� C d/

C t2

64N2
c2�.c� C d/C 2.a� 1/

�
h � N

t

�2
�.c� C d/

C t

4N

�
h � N

t

�
c�.c� C d/: (3.4)

We consider (3.4) as a polynomial in h � N=t and simplify the coefficients of each
power of h�N=t. We first combine and simplify the terms in (3.4) with .h�N=t/2.
Using ad � bc D 1, these are .h � N=t/2 times

�.a� C b/ � c.a� C b/2 C .a � 1/2�.c� C d/C 2.a � 1/�.c� C d/

D �a� � b � 2abc� � b2cC a2d� C d� � c�2 � 2d�

D �a� � b � 2abc� � b.ad � 1/C a.1C bc/� C d� � c�2 � 2d�

D �abc� � abdC d� � c�2 � 2d� D �.c� C d/.� C ab/:

Thus the exponential corresponding to the terms with .h � N=t/2 is

e
2�i

c�Cd .h� N
t /
2
.c�Cd/.���ab/ D e�2� i.h� N

t /
2
�e�2� i.h� N

t /
2
ab:

The first factor is precisely the factor in front of Fh;t;N and the second contributes to
the multiplier system.
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We next simplify the terms in (3.4) with h � N=t. These give

�
h � N

t

�
.c� C d/

ct

4N
.�.a� C b/C .a � 1/� C �/ D �b

�
h � N

t

�
.c� C d/

ct

4N
:

The resulting exponential contributes to the multiplier system since the factor c�Cd
cancels.

Finally, we see directly that the terms in (3.4) which are constant when
considered as a polynomial in h� N=t cancel. Therefore, the simplification of (3.4)
yields that the exponential is

e�2� i.h� N
t /
2
�e�2� i.h� N

t /
2
abe�2� ib.h� N

t /
ct
4N : (3.5)

Altogether, plugging (3.3) and (3.5) into (3.2) (note that in the simplification we left
out one exponential term in (3.3) because it was independent of �) yields

Fh;t;N

�
a� C b

c� C d

�
D v.
 0/�3.c� C d/

1
2 .�1/.a�1/ ht�N

2N C.h� N
t /

4Nb
t � ct2

16N2
� d�1

2

� e�2� i.h� N
t /
2
abe�2� ib.h� N

t /
ct
4N e� i

�
.a�1/ ht�N

2N C ct2

16N2

�

Fh;t;N.�/: (3.6)

We see from (3.6) that Fh;t;N has the desired modularity properties.
We next compute the image under 1=2. Since the �-function is holomorphic

on the upper half-plane, it is annihilated by 1=2. Therefore, plugging in the
definition (3.1) ofe�, we have

 1
2
.Fh;t;N.�// D � 1

2i
 1
2

�
e�2� i.h� N

t /
2
�R

�
8N2

t2

�
ht

2N
� 1
2

�
� C 1

2
I 8N2�

t2

��
:

Noting that we have

Im
�
8N2

t2

�
ht
2N � 1

2

�
� C 1

2

�

Im
�
8N2�

t2

� D ht

2N
� 1
2
;

we then employ [17, Theorem 1.16] to rewrite this as

 1
2
.Fh;t;N.�// D � 1

2i
 1
2

0

BB@
Z i1

� 8N2�
t2

g ht
2N ;0
.z/

r
�i
�

zC 8N2�
t2

�dz

1

CCA ; (3.7)
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where

ga;b.�/ WD
X

	2aCZ

	e� i	2�C2� ib	:

The remaining integral is what is known as a non-holomorphic Eichler integral, and
is easily evaluated by the Fundamental Theorem of Calculus as

 1
2

0

BB@

Z i1

� 8N2�
t2

g ht
2N ;0
.z/

r
�i
�

zC 8N2�
t2

�dz

1

CCA D �2iv
1
2
8N2

t2

g ht
2N ;0

�
8N2�

t2

�

2N
t

p�2i.� � �/

D �2i
2N

t
g ht
2N ;0

�
2N

t
�

�
:

Therefore (3.7) becomes

 1
2
.Fh;t;N.�// D 2N

t
g ht
2N ;0

�
8N2

t2
�

�
:

We finally rewrite

2N

t
g ht
2N ;0

�
8N2

t2
�

�
D 2N

t

X

	2 ht
2N CZ

	e
8�iN2	2�

t2 D
X

	2hC 2N
t Z

	e2� i	2� D #h;t;N.�/:

ut
In order to prove Proposition 1.2, we are particularly interested in the case of

N D 3 and h D 2. It turns out that congruence conditions immediately rule out all
of the possible unary theta functions except for the form

#��3 .�/ WD
X

n2Z
��3.n/ne2� in2� ; (3.8)

where �d.n/ WD
�

d
n

�
is the usual Kronecker–Jacobi character (also known as the

extended Legendre symbol). We rewrite this form in the notation from this paper as
follows.

Lemma 3.5 We have

#��3 .�/ D #2;1;3
��
4

�
:

Remark By Theorem 3.4, Lemma 3.5 together with the chain rule implies that

 1
2

�
F2;1;3

��
4

��
D 1

4
#��3 .�/:
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Proof We compute

#��3 .�/ D
X

n2Z
.3nC 1/e2� i.3nC1/2� �

X

n2Z
.3n � 1/e2� i.3n�1/2�

D
X

n2Z
.3nC 1/e2� i.3nC1/2� �

X

n2Z
.�3n � 1/e2� i.�3n�1/2�

D 2
X

n�1 .mod 3/

ne2� in2� D
X

n�2 .mod 6/

ne2� in2 �4 D #2;1;3
��
4

�
:

ut

4 An Application to Lattice Theory

4.1 An Application

To motivate this study, we first prove Theorem 1.1.

Proof of Theorem 1.1 We decompose‚LC	 as an Eisenstein series E, a unary theta
function, and a cusp form g which is orthogonal to unary theta functions. Since the
unary theta function is trivial by assumption, we have

‚LC	 D EC g:

We then compare the coefficients of E C g. Since every element of MZ C r is
primitively represented locally, the local densities increase as a function of n. The
product of the local densities were shown in [16] (and independently in [14]) to
be the Fourier coefficients of E, paralleling the famous Siegel–Weil formula. Since
	 2 QL, there exists R 2 N for which R	 2 L. Note further that (denoting the
localization at the prime p by Lp WD L˝Qp) for each prime p − R, we have 	 2 Lp

(because R is invertible in Qp) Therefore

Lp C 	 D Lp:

In other words, the local density at p for LC 	 and for L agree. Denoting the local
densities for LC 	 by ˇp and the local densities of L by ˛p, we have

Y

p

ˇp D
Q

pjR ˇpQ
pjR ˛p

Y

p

˛p:

The product
Q

p ˛p is known to be a (Hurwitz) class number for an imaginary

quadratic field (see [9, Theorem 86]) and these are known to grow faster than n
1
2�"
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by Siegel’s [15] famous (ineffective) lower bound for the class numbers. On the
other hand, Duke [6] has shown that the coefficients of g grow slower than n3=7C".
Therefore, the coefficients of E are the main asymptotic term and they are positive.
For n sufficiently large the coefficient must be positive, yielding the claim. ut

It is worth noting that the Fourier coefficients of the unary theta function grow
at the same rate as the coefficients of the Eisenstein series. In other words, when
the unary theta function is not trivial, it is often the case that the set investigated in
Theorem 1.1 is actually infinite. One such example is worked out in [8, Theorem 1.5]
with an applications to sums of polygonal numbers, and a proposed algebraic
explanation for this behavior involving the spinor genus of L C 	 is given in [8,
Conjecture 1.3].

4.2 An Individual Case

In individual cases, one may combine Theorem 1.1 with Theorem 3.4 to show
that certain quadratic polynomials are almost universal. We demonstrate one such
example in Proposition 1.2.

Proof of Proposition 1.2 Let L C 	 be the corresponding shifted lattice. By Theo-
rem 1.1, it suffices to show that the inner product of‚LC	 against all theta functions
in the same space is trivial. For the diagonal lattice corresponding to the quadratic
form Q.x; y; z/ D x2 C 3y2 C 3z2, an inclusion-exclusion argument implies that
(recalling that ‚.�/ DPn2Z qn2)

‚LC	.�/ D .‚.�/ �‚.9�// .‚.3�/ �‚.27�// .‚.3�/�‚.27�// ;

from which one sees that ‚LC	 is actually a weight 3=2 modular form on �0.108/.
Specifically, in Shimura’s notation, we have

‚LC	.�/ D �
0

@6� I
0

@
3

9

9

1

A ;

0

@
3 0 0

0 9 0

0 0 9

1

A ; 9; 1

1

A ;

where (for A a symmetric n � n matrix, h 2 Z
n satisfying Ah 2 NZ

n, and P a
spherical function)

�.� I h;A;N;P/ WD
X

x2Zn

x�h .mod N/

P.x/e
2�i�
2N2

txAx
: (4.1)

Here tx denotes the transpose of x. We write hL and AL for the corresponding vector
and lattice in our case and omit P D 1 in the notation in the following.
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A straightforward check of congruence conditions implies that the only relevant
theta function is #��3 defined in (3.8). By Lemma 3.5, Theorems 3.4, and 3.1, it
suffices to show that, for � D �0.108/,

X

%2S�

X

n�0
c‚LC	 ;%.n/cF2;1;3.�=4/;%.�n/ D 0; (4.2)

where we abuse notation to write cF2;1;3.�=4/;%.�n/ as the .�n/th coefficient of
F2;1;3.�=4/. In order to compute the expansions at other cusps, we apply S and T
repeatedly (using Lemma 3.2) and note that [17, Theorem 1.11 (2)] yields the fully
modularity properties of F2;1;3.�=4/ as a vector-valued modular form, while ‚LC	
behaves as a vector-valued modular form on the full modular group by [13, (2.4)
and (2.5)]. Specifically, we have (for arbitrary h satisfying ALh 2 9Z3)

�

�
�1

z
I h;AL; 9

�
D

X

k .mod 9/
ALk�0 .mod 9/

e
2�i
27
.k1h1C3k2h2C3k3h3/�.zI k;AL; 9/ ;

�.zC 2I I h;AL; 9/ D e
2�i
27 .h

2
1C3h22C3h23/�.zI h;AL; 9/ :

Note that the restriction ALh � 0 .mod 9/ is equivalent to 3 j h1, so the exponential
in the first identity may be simplified as

e
2�i
9

�
k1h1
3 Ck2h2Ck3h3

�

and the exponential in the second identity may be simplified as

e
2�i
9

�
h21
3 Ch22Ch23

�

:

Since the only terms contributing to the sum in (4.2) are the principal parts (the terms
where the power of q is negative) of the expansions around each cusp of F2;1;3, we
only need to compute a few Fourier coefficients for each of the components of the
vector-valued modular forms corresponding to ‚LC	 and F2;1;3. A computer check
then verifies (4.2), yielding the claim in the proposition. ut
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Bounds for Fourier-Jacobi Coefficients
of Siegel Cusp Forms of Degree Two

Winfried Kohnen and Jyoti Sengupta

Abstract We discuss and prove several estimates involving Peterrson norms of
Fourier-Jacobi coefficients of Siegel cusp forms of degree two.

1 Introduction

Let f be an elliptic cusp form of integral weight k for the Hecke congruence sub-
group�0.M/ 
 SL2.Z/ of level M and write a.n/ .n � 1/ for its Fourier coefficients.
Then Deligne’s bound (previously the Ramanujan-Petersson conjecture) says that

a.n/	f ;� n
k�1
2 C� .� > 0/: (1)

While (1) is deep, various bounds for sums related to the a.n/ can be derived in a
rather elementary way. For example, using Parseval’s formula one can easily show
that

X

n�N

ja.n/j2 	f Nk (2)

and from this—using the Cauchy-Schwarz inequality—that

X

n�N

ja.n/j 	f N
kC1
2 (3)
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(cf. e.g. [6, Thm. 5.1, Cor. 5.2]). We note that vice versa (up to the occurrence of the
�), the bound (1) directly implies (2) and (3) and so (2) and (3), respectively can be
viewed as the Deligne bound on average.

On the other hand, it was proved in [6, Thm. 5.3] that for any real ˛ one has

X

n�N

a.n/e2� i˛n 	f N
k
2 log.2N/ (4)

where the implied constant depends only on f and not on ˛. Note that (4) saves
1
2
� � .� > 0/ in the power of N in comparison to using the triangle inequality

and (3) and so there must be many cancellations in (4).
In this paper we would like to discuss and prove similar estimates as above in the

case of a Siegel cusp form F of degree two, where the Fourier coefficients of f in the
classical setting are replaced by the Fourier-Jacobi coefficients of F and we work
with the Petersson norm. When using Fourier-Jacobi coefficients rather than usual
Fourier coefficients, the situation seems to become a bit more uniform, as will be
demonstrated. For example, while a generalized Ramanujan-Petersson conjecture
is known to fail for the Fourier coefficients of a form F in the Maass subspace
[2, sect. 2], an analogous conjecture can be proved in the setting of Fourier-Jacobi
coefficients, cf. Sect. 3.

2 Jacobi Forms and Norms

We denote by H2 the Siegel upper half-space of degree two consisting of symmetric
complex .2; 2/-matrices with positive definite imaginary part. For M 2 N we let

�
.2/
0 .M/ D f

�
A B
C D

�
2 Sp2.Z/ jC � 0 .mod M/g

the Hecke congruence subgroup of level M and degree two.
If F W H2 ! C is a Siegel cusp form of weight k for �.2/0 .M/, we write its

Fourier-Jacobi expansion as

F.Z/ D
X

m�1
�m.�; z/e

2� im� 0

.Z D
�
� z
z � 0

�
2 H2/:

Then �m 2 Jcusp
k;m .�0.M/J/, the space of Jacobi cusp forms of weight k and index m

for �0.M/J WD �0.M/ F Z2 [4, 5].
For � 2 Jcusp

k;m .�0.M/J/ put

ˆ.�; z/ WD �.�; z/e�2�my2=vv
k
2 .� D uC iv; z D xC iy/: (5)
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Then jˆ.�; z/j is invariant under �0.M/J and ˆ.�; z/ is bounded on H � C.
For �; 2 Jcusp

k;m .�0.M/J/ we denote their Petersson scalar product by

h�; i D
Z

F
ˆ.�; z/‰.�; z/d�;

where‰ is defined in an analogous way asˆ, and F is any fundamental domain for
the action of �0.M/J on H � C. Also

d� D dxdydudv

v3

is the invariant measure.
Note that by definition the Petersson norm jj�jj of � is equal to the L2-norm jjˆjj

of the corresponding functionˆ restricted to F .
We want to extend the L2-norm on the space of functions as above to the space

B.H�C/ of continuous and bounded functions on H�C (not necessarily satisfying
any invariance properties under �0.M/J/. For any choice of fundamental domain F
for �0.M/J , and any ˆ 2 B.H � C/ we have the L2-norm

jjˆjjF WD
�Z

F
jˆ.�; z/j2d�

�1=2
:

We put

jjˆjj WD sup
F
jjˆjjF : (6)

Then jj : jj is a norm on B.H � C/ and if ˆ is obtained from a Jacobi form � as
in (5), then (6) coincides with the L2-norm jjˆjj as above, i.e. with the Petersson
norm jj�jj.

The norm (6) will come into play later in Sect. 5.

3 A Generalized Ramanujan-Petersson Conjecture

We will first show

Theorem 1 Let F be a cusp form of weight k for �.2/0 .M/ and let �m.m � 1/ be its
Fourier-Jacobi coefficients. Then

X

m�N

jj�mjj2 	F Nk: (7)
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Proof The proof works in a similar way as in the case of an elliptic modular form,
mutatis mutandis, cf. [6, Thm. 5.1]. By Parseval’s formula

X

m�1
j�m.�; z/j2e�4�mv0 D

Z 1

0

jF.Z/j2du0 .Z D
�
� z
z � 0

�
; � 0 D u0 C iv0/:

Since

.det Y/k=2jF.Z/j .Y D =.Z//

is bounded on H2, F being a cusp form, we find that

X

m�N

j�m.�; z/j2e�4�mv0 �
X

m�1
j�m.�; z/j2e�4�mv0

	F .det Y/�k:

We choose

v0 D y2

v
C 1

N

and note that with this choice

det Y D vv0 � y2

D v

N
:

We then infer that

X

m�N

j�m.�; z/j2e�4�my2=v � e�4�m=N 	F Nkv�k:

Since

e�4� � e�4�m=N

for m � N we obtain that

X

m�N

j�m.�; z/j2e�4�my2=v � vk 	F Nk: (8)
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Integrating (8) over a fundamental domain F with respect to the measure d� we
finally conclude that

X

m�N

jj�mjj2 	F Nk

as claimed.
Writing

jj�mjj D 1 � jj�mjj

and using the Cauchy-Schwarz inequality we obtain from Theorem 1

Corollary One has

X

m�N

jj�mjj 	F N
kC1
2 : (9)

Remark We believe that the bound of Theorem 1 is best possible so that we have
a similar situation as in the case of elliptic modular forms. Indeed, at least if M D
1, i.e. we work with the full Siegel modular group, one can prove an asymptotic
formula

X

m�N

jj�mjj2 � cFNk .N !1/

where cF > 0 is a constant depending only on F. This follows from the analytic
properties of the Dirichlet series

DF;F.s/ D �.2s� 2kC 4/
X

m�1
jj�mjj2m�s .� WD <.s/� 1/

proved in [10] in conjunction with a usual Tauberian theorem. Note that these prop-
erties are more difficult to prove, while the proof of (7) was quite straightforward.

In an analogous way as in the case of elliptic modular forms, based on (7) and (9)
one is tempted to make the following

Conjecture (Ramanujan-Petersson) One has

jj�mjj 	F;� m
k�1
2 C� .� > 0/: (10)

Remarks

i) Note that the potential bound (10) was also addressed in [9, p. 718].
ii) The best general bound in the direction of (10) known so far seems to be

jj�mjj 	F;� mk=2�2=9C� .� > 0/
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(cf. [7]). One also knows that there are infinitely many m such that jj�mjj 	F

m.k�1/=2 and infinitely many m such that jj�mjj �F m.k�1/=2 (if F ¤ 0/, cf. [9].
iii) Note that in the literature there is also a conjectured bound for the usual

Fourier coefficients of a Siegel cusp form which is due to Resnikoff and
Saldaña and which also could be viewed as a generalization of the Ramanujan-
Petersson conjecture for classical cusp forms [11]. In the case of degree two this
conjecture says that

a.T/	F;� .det T/k=2�3=4C� .� > 0/; (11)

for any positive definite symmetric half-integral matrix T of size 2, where
a.T/ denote the Fourier coefficients of F. The estimate (11) can be motivated
“on average” using the analytic properties of the Rankin-Selberg zeta function
attached to F, cf. [8]. While one believes that (11) should be true “generically”,
there are well-known “exceptional” cases where it fails to hold, e.g. when F
is a Hecke eigenform in the Maass space [2, loc. cit.]. Contrary to the above
situation, we will prove estimate (10) for F in the Maass space in the next
section.

4 Hecke Eigenforms in the Maass Space

Recall that the space of Siegel cusp forms of even weight k for Sp2.Z/ has a special
subspace, the so-called Maass space. It has a basis of Hecke eigenforms F whose
spinor zeta function ZF.s/ factors as

ZF.s/ D �.s� kC 1/�.s� kC 2/L. f ; s/ .� � 1/ (12)

where f is a normalized cuspidal Hecke eigenform of weight 2k � 2 for SL2.Z/ and
L. f ; s/ .� � 1/ is its Hecke L-series [4].

Theorem 2 Suppose that F is a cuspidal Hecke eigenform of even weight k for
Sp2.Z/ in the Maass subspace. Then conjecture (10) is true.

Proof Under the given hypothesis one has

jj�mjj2 D �mjj�1jj2 .m � 1/

where �m is the m-th eigenvalue of F under the usual Hecke operator T.m/, cf. [3,
Remark on p. 530] and [10]. Hence one only has to show that

�m 	� mk�1C� .� > 0/:
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Recall that the eigenvalues �m and the spinor zeta function of F are related by the
identity

X

m�1
�mm�s D ZF.s/

�.2s� 2kC 4/ .� � 1/

as is well-known [1]. In particular, for F in the Maass subspace, using (12) we get

X

m�1
�mm�s D �.s� kC 1/�.s� kC 2/

�.2s� 2kC 4/ � L. f ; s/ .� � 1/: (13)

We note that the quotient of Riemann zeta functions on the right-hand side of (13)
equals

�.w� 1/�.w/
�.2w/

;

where w D s � kC 2. Since

�.w/

�.2w/
D
Y

p

Œ1C p�w/

D
X

m�1
j�.m/jm�w .<.w/� 1/

where � is the Möbius function, the general coefficient of the above quotient is
equal to

˛.m/ D mk�2X

djm
j�.m

d
/jd:

Clearly we have

˛.m/ � mk�1�0.m/

	� mk�1C� .� > 0/:

Here �0.m/ denotes the number of positive divisors of m.
Hence denoting by ˇ.m/ the Hecke eigenvalues of f and observing that

ˇ.m/	� mk�3=2C� .� > 0/



166 W. Kohnen and J. Sengupta

by Deligne’s bound we find that

�.m/ D
X

djm
˛.d/ˇ.

m

d
/

	�

X

djm
dk�1C� � .m

d
/k�3=2C�

D mk�3=2C�X

djm
d1=2

� mk�3=2C� � m1=2�0.m/

	� mk�1C2�:

This proves our assertion.

5 Bounds for Twisted Sums

In this section we will prove an estimate analogous to the bound (4) in the classical
case. Let again F be a Siegel cusp form of weight k for �0.M/J and let �m be its
m-th Fourier-Jacobi coefficient.

Following Sect. 2 we put

ˆm.�; z/ WD �m.�; z/e
�2�my2=vvk=2 .� D uC iv; z D xC iy/:

Let ˛ 2 R. Using Cauchy-Schwarz we see that

j
X

m�N

ˆm.�; z/e
2� im˛j

� N1=2 �
sX

m�N

jˆm.�; z/j2

	F N
kC1
2

where in the last line we have used (8). Thus the function

X

m�N

ˆme2� im˛

is bounded on H � C and we can talk about its norm as defined in Sect. 2.
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Theorem 3 With the above notations we have

jj
X

m�N

ˆme2� im˛jj 	F Nk=2 log.2N/: (14)

Remark Note that if we estimate the left-hand side of (14) by brute force, using the

triangle inequality and the Corollary to Theorem 1 we only get the bound N
kC1
2 .

Proof The proof follows a similar pattern as that of inequality (4) for elliptic
modular forms, again mutatis mutandis.

We will use the notation

e.z/ WD e2� iz .z 2 C/:

Since �m is the m-th Fourier-Jacobi coefficient of F, we have

SN;˛.�; z/ WD
X

m�N

ˆm.�; z/e
2� im˛

D vk=2
X

m�N

e�2�my2=v
Z 1

0

F.

�
� z
z � 0 C ˛

�
/e.�m� 0/du0 .� 0 D u0 C iv0/:

We put

v0 D y2

v
C 1

N
(15)

and obtain

SN;˛.�; z/ D vk=2
Z 1

0

�X

m�N

e.�m.u0 C i

N
//
�

F.

 
� z

z u0 C ˛ C i. y2

v
C 1

N /

!
/du0:

(16)
Summing the geometric series now gives

X

1�m�N

e.�m.u0 C i

N
// D e.�N.u0 C i

N //� 1
1 � e.u0 C i

N /

	 1

j1 � e.u0 C i
N /j

:

According to [6, p. 71] one has

Z 1

0

du0

j1 � e.� 0/j 	 log.2C 1

v0 /: (17)
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Applying (17) with v0 D 1
N we see that

Z 1

0

�X

m�N

e.�m.u0 C i

N
//
�

du0 	 log.2C N/

	 log.2N/:

Finally, since

F.Z/	F .det Y/�k=2

and by (15) we have

det Y D v

N
;

we obtain altogether from (16) that

SN;˛.�; z/	F Nk=2 log.2N/: (18)

Now (18) implies that

jjSN;˛jjF 	F Nk=2 log.2N/

for any fundamental domain F (where the implied constant depends only on F and
not on F ) and hence that

jjSN;˛jj 	F Nk=2 log.2N/:

This proves Theorem 3.
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Harmonic Eisenstein Series
of Weight One

Yingkun Li

Abstract In this short note, we will construct a harmonic Eisenstein series of
weight one, whose image under the -operator is a weight one Eisenstein series
studied by Hecke (Math Ann 97(1):210–242, 1927).

1 Introduction

In the theory of automorphic forms, Eisenstein series occupy an important place.
Holomorphic Eisenstein series can be explicitly constructed and are usually the
first examples of modular forms people encounter. Furthermore, their constant
Fourier coefficients are special values of the Riemann zeta function, whereas the
non-constant coefficients are the sums of the powers of divisors. Modularity then
connects these two types of interesting quantities together.

Holomorphic theta series constructed from positive definite lattices provide
another source of modular forms besides Eisenstein series. In [13], Siegel intro-
duced non-holomorphic theta series associated to indefinite lattices, and showed
that they can be integrated to produce Eisenstein series. Later in his seminal work
[14], Weil studied this phenomenon for algebraic groups, and deduced the famous
Siegel-Weil formula.

In the setting of theta correspondence between the orthogonal and sympletic
groups, the Siegel-Weil formula is an equality between the integral of a theta
function on the orthogonal side and an Eisenstein series on the symplectic side.
With the knowledge of the theta kernel, one can then construct various symplectic
Eisenstein series. A prototypical example of such a construction was already carried
out by Hecke around 1926 [7], where he constructed a theta kernel ‚.�; t/ from
an indefinite lattice of signature .1; 1/ and integrated it to produce a holomorphic
modular form #.�/ of weight one. This is an Eisenstein series if the lattice is
isotropic and a cusp form otherwise. In [8], Kudla extended this construction to

Y. Li (�)
Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstrasse 7, 64289
Darmstadt, Germany
e-mail: li@mathematik.tu-darmstadt.de

© Springer International Publishing AG 2017
J.H. Bruinier, W. Kohnen (eds.), L-Functions and Automorphic Forms,
Contributions in Mathematical and Computational Sciences 10,
https://doi.org/10.1007/978-3-319-69712-3_10

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69712-3_10&domain=pdf
mailto:li@mathematik.tu-darmstadt.de
https://doi.org/10.1007/978-3-319-69712-3_10


172 Y. Li

produce holomorphic Siegel modular forms of genus g and weight gC1
2

, as a prelude
to the important works by Kudla and Millson later [10, 11].

In this note, we will consider a different theta kernel Q‚.�; t/ for an isotropic,
indefinite lattice of signature .1; 1/. Rather than holomorphic, its integral in t is
a harmonic function Q#.�/ and related to the holomorphic Eisenstein series #.�/
constructed by Hecke via

 Q#.�/ D #.�/;
where  D 1 is the differential operator introduced by Bruinier and Funke [2]. In
the notion loc. cit., Q#.�/ is a harmonic Maass form of weight one. For any k 2 1

2
Z, a

harmonic Maass form of weight k is a real analytic functions on the upper half-plane
H WD f� D uC iv W v > 0g that transforms with weight k with respect to a discrete
subgroup of SL2.R/, and is annihilated by the weight k hyperbolic Laplacian

�k WD �2�k ı k; k. f / WD 2ivk @f

@�
:

Harmonic Maass forms can be written as the sum of a holomorphic part and a non-
holomorphic part. The Fourier coefficients of their holomorphic parts are expected
to contain interesting arithmetic information concerning the k-images of the non-
holomorphic parts (see e.g. [3, 5]).

In [12], Kudla, Rapoport and Yang considered an Eisenstein series, which is
harmonic. The Fourier coefficients of its holomorphic part are logarithms of rational
numbers, and can be interpreted as the arithmetic degree of special divisors on an
arithmetic curve. In view of their work and the appearance of other weight one
harmonic Maass forms in connection with the Kudla program [6, 9], we expect the
Fourier coefficients of the harmonic Eisenstein series we construct to have a similar
arithmetic interpretation as well.

The idea to construct Q#.�/ is rather straightforward. If we can construct a
function Q‚.�; t/ such that it is modular in � and satisfies  Q‚.�; t/ D ‚.�; t/ for
each t, then simply integrating it in t will produce the desirable Q#.�/. This idea
has already been used in [4], where 1=2 connected the theta kernels constructed
from the Gaussian and the Kudla-Millson Schwartz form. In our setting, we will
introduce an L1 function Q'� , which is a -preimage of the Schwartz function used
in constructing‚.�; t/ under  (see Proposition 3.4). We will then use this function
to form a theta kernel Q‚.�; t/ and integrate it to obtain the harmonic Eisenstein series
Q#.�/ in Theorem 4.3 in the last section.

2 Theta Lift from O.1; 1/ to SL2

In this section, we will recall the construction of the Eisenstein series in [7] and
[8]. For N 2 N, let L D NZ

2 be a lattice with quadratic form Q.
�a

b

�
/ WD ab

N and
B.�; �/ W L�L! Z the associated bilinear form. The dual lattice L� 
 VQ WD L˝Q

is then Z
2 and the discriminant group is L�=L D .Z=NZ/2.
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Let �L be the Weil representation of SL2.Z/ on CŒL�=L�. As usual, let feh W h 2
L�=Lg denote the canonical basis of CŒL�=L� and e.a/ WD e2� ia for any a 2 C. Then
the action of �L on the generators T; S 2 SL2.Z/ is given by (see e.g. [1, §4])

�L.T/.eh/ D e.Q.h//eh; �L.S/.eh/ D 1

N

X

ı2L�=L

e.�.ı; h//eı:

The symmetric domain attached to VR WD L˝ R is given by the hyperbola

D WD fZ 2 VRjB.Z;Z/ D �1g :

We denote one of its two connected components by DC and parametrize it by

ˆ W R�C ! DC

t 7! Zt WD
r

N

2

 
t

�1=t

!
:

Let Wt WD
p

N=2
� t
1=t

� 2 Z?
t . Then dˆ

�
t d

dt

� D Wt 2 VR and fWt;Ztg is an

orthogonal basis of VR. For any X D �x1
x2

� 2 VR, one can write X D XWt C XZt ,
where

XWt WD B.X;Wt/Wt D t�1x1 C tx2p
2N

Wt; XZt WD �B.X;Zt/Zt D t�1x1 � tx2p
2N

Zt:

Then the majorant of B.�; �/ associated to Zt, denoted by B.�; �/t, is given by the
positive definite quadratic form

Q.X/t WD Q.XWt /�Q.XZt / D
B.X;Wt/

2 C B.X;Zt/
2

2
D t�2x21 C t2x22

2N
:

Let R1;1 D f.x; y/ W x; y 2 Rg be a quadratic space of signature .1; 1/ with

the quadratic form Q0..x; y// D x2�y2

2
with associated bilinear form B0.�; �/. Given

� D uC iv 2 H in the upper half plane, we define the Schwartz function '� on R
1;1

by

'� W R1;1 ! C

.x; y/ 7! p2v � x � e
�

x2

2
� � y2

2
�

�
:

(2.1)

Now summing '� over any even, integral lattice M 
 R
1;1 of rank 2 would produce

a real-analytic theta series of weight 1 that transforms with respect to �M . In our
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setting, we let M be the image of L under the following isometry

�t W VR ! R
1;1

X 7! .B.X;Wt/;B.X;Zt//
(2.2)

for each t 2 R
�C. Now the vector-valued theta function

‚.�; t/ WD
X

h2L�=L

‚h.�; t/eh; ‚h.�; t/ WD
X

X2LCh

'�.�t.X// (2.3)

transforms with weight 1 and representation �L in the variable � by Theorem 4.1 in
[1]. For h D �h1

h2

� 2 Z
2, we have explicitly

‚h.�; t/ D
r
v

N

X

x1�h1.N/
x2�h2.N/

.t�1x1 C tx2/e
�

x1x2
N

uC t�2x21 C t2x22
2N

iv

�

Integrating over t 2 R
�C with respect to the invariant differential dt

t defines

#h.�; s/ WD
Z 1

0

‚h.�; t/t
s dt

t
C
Z 1

1

‚h.�; t/t
�s dt

t
: (2.4)

Here, the integral converges for <s � 0. As a function of s, it has analytic
continuation to s 2 C. Let #h.�/ be the constant term in the Laurent expansion
of #h.�; s/ around s D 0. Then #h.�/ is holomorphic and #.�/ WDPh2L�=L #h.�/eh

is an Eisenstein series of weight 1 on SL2.Z/ and transforms with respect to �L. It
has the following Fourier expansion (see [8, Theorem 3.2]).

Proposition 2.1 Write h D �h1
h2

� 2 Z
2. Then #h.�/ has the Fourier expansion

#h.�/ DPn2Q�0
ch.n/qn with

ch.0/ WD

8
ˆ̂<

ˆ̂:

1
2
� h h1

N i N − h1;N j h2;
1
2
� h h2

N i N j h1;N − h2;

0 otherwise;

ch.n/ WD
X

XD.x1
x2
/2LCh; Q.X/Dn

sgn.x1/; n > 0:

(2.5)

Here hxi 2 .0; 1� is defined by the property x � hxi 2 Z.

Proof Use the identity e�2�y D py
R1
0

e��y.t2Ct�2/.tC t�1/ dt
t and H.0; x/ D 1

2
�x,

where H.s; x/ WDP1
nD0.xC n/�s is the Hurwitz zeta function. ut
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3 Some Special Functions

In this section, we will introduce a special function Q'� on R
1;1 such that  Q'� D '� .

3.1 Non-holomorphic Part

Define the functions f �
� W R! R and '�

� W R1;1 ! C by

f �
� .x/ WD sgn.x/ � erf

�p
2�vx

�
D sgn.x/erfc.

p
2�vjxj/;

'�
� .x; y/ WD e

�
y2 � x2

2
�

�
f �
� .x/: (3.1)

where erf.x/ WD 2p
�

R x
0 e�r2dr and erfc.x/ are the error and complementary error

functions. Straightforward calculations show that

.'�
� .x; y// D �'�.x; y/ (3.2)

for all .x; y/ 2 R
1;1.

For each y 2 R, the function '�
� .x; y/ decays like a Schwartz function in x. Also,

'�
� .x; y/ satisfies

lim
x!0C

'�
� .x; y/� lim

x!0�
'�
� .x; y/ D 2e

�
y2

2
�

�
;

hence has a jump discontinuity at x D 0. Away from 0, it is smooth. Thus, we can
view it as a tempered distribution on R

1;1 and calculate its Fourier transform with
respect to �Q0 as follows.

First, notice that as a distribution, f �
� satisfies the differential equation

d

dx

�
f �
� .x/

� D 2 � ı.x/� 2p2ve�2�vx2 ;

where ı.x/ is the Dirac delta function. This follows from d
dx jxj D sgn.x/; d

dx sgn.x/ D
2ı.x/ as tempered distributions. Substituting in the definition of '�

� .x; y/, we see that
it satisfies

@

@x

�
'�
� .x; y/

�C 2�i�x'�
� .x; y/ D

�
2ı.x/� 2p2ve

�
�x2

2
�

��
e
�

y2

2
�

�
: (3.3)

Notice that e
�
� x2

2
�
�
2ı.x/ D 2ı.x/ as a distribution.
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For a Schwartz function � on R
1;1, we define its Fourier transform F.�/ with

respect to the quadratic form �Q0 by

F.�/.x; y/ WD
Z

R1;1

�.w; z/e.�wxC yz/dwdz: (3.4)

If � is not a Schwartz function and the integral above converges, we also use it to
denote its Fourier transform. Using the standard facts of Fourier transform (see e.g.
[1, Lemma 3.1]), we have

�� @
@x

F.'�
� /.x; y/C 2�ixF.'�

� /.x; y/

D
�
2 � 2p2v .i�/�1=2 e

�
�x2

2
.�1=�/

�� e
�

y2

2
.�1=�/

�

p�i�
:

After dividing by �� on both sides and making the change of variable � 7! �1=� ,
the equation becomes

@

@x
F.'��1=� /.x; y/C 2�ix�F.'��1=� / .x; y/

D �2�
�p

2ve
�
�x2

2
�

�
�p�i�

�
e
�

y2

2
�

�
;

Now define

D�
� .x; y/ WD '�

� .x; y/�
F.'��1=� /.x; y/

�
: (3.5)

Then it satisfies the differential equation

e
�
�x2

2
�

�
d

dx

�
e
�

x2

2
�

�
D�
� .x; y/

�
D 2

�
ı.x/�p�i�

�
e
�

y2

2
�

�
: (3.6)

We have the following result concerning the solutions to this differential equation.

Proposition 3.1 For fixed �0 2 H; y0 2 R, the only jump discontinuity of any
piecewise continuous solution to the differential equation (3.6) is at x D 0. Suppose
further that it is bounded in x. Then the solution agrees with the function D�0.x; y0/
defined by

D�0 .x; y0/ WD e
�

y20 � x2

2
�0

�
sgn.x/erfc.

p
�i�0jxj/ (3.7)

whenever the solution is continuous. In particular, D�
� .x; y/ D D� .x; y/ for all

.x; y/ 2 R
1;1 and � 2 H.
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Remark 3.2 Here in �0 D u0 C iv0, the function erfc.
p�i�0jxj/ is the unique

holomorphic extension of erfc.
p
v0jxj/.

Proof The first claim is clear as a jump discontinuity at x D x0 of a piecewise
solution would produce a constant times ı.x � x0/. By the fundamental theorem
of calculus, the solution, whenever continuous, would agree with D�0.x; y0/ up to

a constant multiple of e
�
� x2

2
�
�

, which is unbounded as x ! 1. Since D�0.x; y0/

is assumed to be bounded, the second claim follows. Finally, for any fixed �0 2
H; y0 2 R, we have '�

�0
.x; y0/ 2 L1.R/. Thus its Fourier transform is continuous

and bounded. That implies D�
� .x; y/ is bounded and has no removable discontinuity

on R, hence the third claim. ut

3.2 Holomorphic Part

Now, we will define the holomorphic counterpart to '�
� as

'C
� .x; y/ WD e

�
y2 � x2

2
�

�
sgn.x/1y2>x2 ; (3.8)

where 1y2>x2 is the characteristic function of the set f.x; y/ 2 R
1;1 W y2 > x2g. Even

though 'C
� .x; y/ is not a Schwartz function, it decays nicely enough such that we

have the following result.

Proposition 3.3 The following integral

F.'C
� /.x; y/ WD

Z

R1;1

'C
� .w; z/e.�wxC zy/dwdz

converges uniformly on compact subsets of f.x; y/ 2 R
1;1 W x2 ¤ y2g. Furthermore,

the function F.'C
� / is bounded and continuously differentiable on f.x; y/ 2 R

1;1 W
x2 ¤ y2g.
Proof Let A D 1p

2

�
1 1�1 1

�
and make the rotational change of variables

 
a

b

!
WD A �

 
w

z

!
;

 
x0

y0

!
WD A �

 
x

y

!
;

we can rewrite the integral above as

F.'C
� /.x

0; y0/ D lim
T;T0!1

Z T0

�T0

Z T

�T
1ab>0e.ab�/sgn.a � b/e.ay0C bx0/dbda:
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The integral over 0 < a < T 0; 0 < b < T can be evaluated explicitly as

Z T0

0

e.a2� C a.x0 C y0//
�i.a� C x0/

� e..a� C x0/T C ay0/
2�i.a� C x0/

� e.ay0/
2�i.a� C x0/

da:

The same can be done for the region �T 0 < a < 0;�T < b < 0. As T ! 1, the
middle term vanishes, and we are left with

F.'C
� /.x

0; y0/ D lim
T0!1

Z T0

�T0

e.a2� C a.x0 C y0//
�i.a� C x0/

� e.ay0/
2�i.a� C x0/

da: (3.9)

The integral of the first term can be bounded with
R1

�1
e�r2p
r2C.x0/2

dr 	 jx0j�1,
which implies that the integral converges uniformly and defines a continuously
differentiable function away from x0y0 D 0. Furthermore, it is bounded when jx0j
is large. On the other hand when jx0j is close to zero, we can fix an absolute constant
� > 0 such that the integral over jaj 2 .�;1/ converges absolutely independent of
x0; y0. The rest of the integrand can be written as

e.a2� C a.x0 C y0//
a� C x0 C e.a2� � a.x0 C y0//

�a� C x0

D C1.a; x
0; �/

x0

.a�/2 � .x0/2
C C2.a; x

0; �/
sin.ay0/

a

with jCj.a; x0; �/j bounded above independently of a and x0. Since j R �
0

x0

.a�/2�.x0/2
daj

and j R �
0

sin.ay0/

a daj are bounded independent of x0 and y0, the integral of the first term
in Eq. (3.9) defines a bounded and continuously differentiable function on f.x; y/ 2
R
1;1 W x2 ¤ y2g.
Away from x0y0 D 0, the integral of the last term converges uniformly using

integration by parts and defines a continuous function. Using standard formula in
one dimensional Fourier transform, we can in fact evaluate it explicitly as

Z 1

�1
e.ay0/

2�i.a� C x0/
da D ��1e.x0y0.�1=�//1x0y0>0:

From this, it is clear that it is bounded. ut
Since 'C

� is bounded, integrating against it defines a tempered distribution on
R
1;1. Thus, we can then study its Fourier transform F.'C

� / as we have done for '�
� .

The analogue to Eq. (3.3) is as follows

@'C
�

@x
C 2�i�x'C

� D .2ı.x/� ı.x � y/ � ı.xC y// e
�

y2 � x2

2
�

�
: (3.10)
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Applying Fourier transform to both sides and making the change � 7! �1=� yields

.�1=�/@F.'
C
�1=� /.x; y/
@x

� 2�ixF.'C
�1=� /.x; y/

D �
�
2
p�i�e

�
y2

2
�

�
� ı.y � x/� ı.xC y/

�

Subtracting the previous two equations shows that the function defined by

DC
� .x; y/ WD 'C

� .x; y/�
F.'C

�1=� /.x; y/
�

(3.11)

also satisfies the differential equation (3.6). Note that ı.y˙ x/ D ı.y˙ x/e. y2�x2

2
/

and ı.x/e. x2

2
�/ D ı.x/. For each fixed �0 2 H, the function 'C

�0
is bounded with

only jump singularities when either x2 D y2 or x D 0. Proposition 3.3 implies that
F.'C

� / has the same property as well. So we can define F.'C
� /.x; y/ on x2 D y2

such that DC
� .x; y/ is continuous when y2 D x2 > 0. By Proposition 3.1, we know

that DC
� D D� and have proved the following result.

Proposition 3.4 For all .x; y/ 2 R
1;1, the L1.R1;1/ function

Q'�.x; y/ WD 'C
� .x; y/� '�

� .x; y/ D sgn.x/e
�

y2 � x2

2

��
1y2>x2 � erfc.

p
2�vjxj/

�

(3.12)

satisfies

(1) Q'�C1.x; y/ D e. y2�x2

2
/ Q'�.x; y/,

(2) F. Q'�1=� /.x; y/ D � Q'�.x; y/,
(3) . Q'�.x; y// D '�.x; y/.

4 Real-Analytic Theta Series

In this section, we will construct weight 1 real-analytic theta series Q#.�/ that
transforms with respect to ��L and maps to #.�/ under . Proposition 3.4 and
the construction of #h.�/ imply that we need to consider summing Q'�.�t.X// over
X 2 LCh and integrating over R�C with respect to dt

t . However, the sum and integral
are both divergent. The problem with the sum is caused by isotropic elements in
L. We will regularize the sum by considering a slight shift of the lattice L, and
regularize the integral by adding the converging factor ts as usual. The ideas are
simple, but the procedure to carry it out is a bit complicated.
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In the notations of Sects. 2 and 3, define the following series

Q‚h.�; tI "; "0/ WD
X

X2LChC".11/
Q'� .�t.X// e

 
B

 
X; "0

 
1

1

!!!

(4.1)

for "; "0 2 .� 1
2
; 1
2
/. This series converges for "; "0 2 .� 1

2
; 1
2
/. It is modular for

"; "0 2 .� 1
2
; 1
2
/nf0g, but not continuous at " D 0. Define ‚�

h and ‚C
h as Q‚h in (4.1)

with Q'� replaced by '�
� and 'C

� respectively. To preserve the modularity, we define
the theta series Q‚.�; t/ DPh2L�=L

Q‚h.�; t/eh by

Q‚h.�; t/ WD ch.0/C Q‚h.�; tI 0; 0/ D ch.0/C‚C
h .�; tI 0; 0/C‚�

h .�; tI 0; 0/; (4.2)

where ch.0/ is defined in Proposition 2.1. They have the following relationship.

Proposition 4.1 For fixed � 2 H, t 2 R
�C and h D �h1

h2

� 2 Z
2, the series

Q‚h.�; tI "; "0/ converges uniformly for ."; "0/ in compact subsets of .� 1
2
; 1
2
/nf0g �

.� 1
2
; 1
2
/. It is continuous for ."; "0/ 2 .0;minf 1

1Ct2
; t2

1Ct2
g/ � .� 1

2
; 1
2
/ and satisfies

lim
"!0C

Q‚h.�; tI ";˙"/ � c�1.h/
2�i.�  1/" D

Q‚h.�; t/; (4.3)

where c�1.h/ 2 f0; 1; 2g is the number of h1; h2 that are divisible by N.

Proof Since '�
� decays like a Schwartz function, the series‚�

h converges absolutely
and uniformly for "; "0 2 R, except for h D �

0
0

�
, in which case, we have

lim"!0C ‚�
h .�; tI ";˙"/ D ‚�

h .�; tI 0; 0/ C 1. For ‚C
h , notice that B.X;Zt/

2 �
B.X;Wt/

2 D � 2x1x2
N if X D �x1

x2

� 2 VR. So we can write

‚C
h .�; tI "; "0/ D

X

n12NZCh1
n22NZCh2
n1n2��1

C
X

n12NZCh1
n22NZCh2

.n1C"/.n2C"/<0
n1n2D0

sgn.t�1.n1 C "/C t.n2 C "//e
�
� .n1 C "/.n2 C "/

N
�

�
e
�
.n1 C n2 C 2"/

N
"0
�
:

(4.4)

Using the inequality�.n1C"/.n2C"/ > � n1n2
2

for " 2 .� 1
2
; 1
2
/, we see that the first

sum in Eq. (4.4) converges absolutely and uniformly for ."; "0/ in compact subset of
.� 1

2
; 1
2
/2. Note that the second sum is empty if and only if N − hj for j D 1; 2.
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Suppose N j h1 and " > 0. Then n2 � �1 and the summand becomes

sgn.t�1"C t.n2 C "//e
�
"� � "0

N
.�n2/

�
e
�
2""0 � "2�

N

�

Since t > 0, " < minf 1
1Ct2

; t2

1Ct2
g and n2 � �1 , we have t�1" C t.n2 C "/ <

t�1"C t.�1C "/ < 0. Then the second sum is just a geometric series and equals to

�e
�
2""0 � "2�

N

�
e
�
."� � "0/h� h2

N i
�

1 � e ."� � "0/
:

Using the power series expansion � eax

1�ex D x�1 � . 1
2
� a/C O.x/, we see that we

get a constant term � 1
2
C h� h2

N i when "0 D ˙". When h ¤ �
0
0

�
, this is just ch.0/.

When h D �
0
0

�
, there are twice this contribution, which sums to ch.0/C 1. Now we

are done since Q‚h.�; tI "; "0/ D ‚C
h .�; tI "; "0/ �‚�

h .�; tI "; "0/. ut
Proposition 4.2 The theta function Q‚.�; t/ is a real-analytic modular form in � of
weight 1 with respect to ��L and satisfies . Q‚.�; t// D ‚.�; t/ and Q‚h.�; t/ D O� .1/

for all t 2 R
�C.

Proof The property . Q‚h.�; t// D ‚h.�; t/ and the modularity in T are clear from
the definition. For the modularity in S, we can apply Poisson summation to obtain

Q‚h.�1=�; tI "; "0/
�

D e.2""0/
N

X

ı2L�=L

e..ı; h// Q‚ı.�; tI �"0; "/ (4.5)

with "; "0 2 .� 1
2
; 1
2
/nf0g. Using the identity c�1.h/ D

P
ı2L�=L e..ı;h//c�1.ı/

N , we obtain

the desired modularity with respect to S after setting "0 D �", subtracting c�1.h/
2� i.��1/"

from both sides and taking the limit "! 0C. The asymptotic of Q‚.�; t/ in t can be
seen from its definition, the decay of '�

� , and the expression (4.4). ut
Now to construct the preimage of #h.�/ under , we consider the integral

Q#h.� I s/ WD
Z 1

1

Q‚h.�; t/t
�s dt

t
C
Z 1

0

Q‚h.�; t/t
s dt

t
; (4.6)

which converges for <.s/ > 0 and can be analytically continued to s 2 C via its
Fourier expansion in � . We are interested in the function

Q#h.�/ WD ConstsD0 Q#h.� I s/: (4.7)

It has the following desirable properties.

Theorem 4.3 The function Q#.�/ WD P
h2L�=L

Q#h.�/eh is a harmonic Maass
form of weight 1 with respect to ��L, and maps to the Eisenstein series
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#.�/. It has the Fourier expansion Q#h.�/ D P
n2Q�0

Qch.n/qn C ch.0/ log v �P
n2Q>0 ch.n/�.0; 4�vn/q�n, where ch.n/ 2 Q are defined in Eq. (2.5) and Qch.n/

are defined by

Qch.0/ WD

8
<̂

:̂
ch.0/

�
log.�N/ � �0.1=2/

�.1=2/

�
� log

�
�
h h1

N i
�
�
�
h h2

N i
�

�
�
h� h1

N i
�
�
�
h� h2

N i
� ; N j h1 or N j h2;

0; otherwise,

Qch.n/ WD
X

XD.x1
x2
/2LCh; �Q.X/Dn

sgn.x1/ log

ˇ̌
ˇ̌x1
x2

ˇ̌
ˇ̌ ; n > 0:

(4.8)

Proof The modularity statement follows from Proposition 4.2. For the Fourier
expansion, we will first calculate the contribution of ‚�

h in the integral defining
Q#h.�; s/, i.e.

#�
h .�; s/ WD

Z 1

1

‚�
h .�; tI 0; 0/t�s dt

t
C
Z 1

0

‚�
h .�; tI 0; 0/ts dt

t
:

Since the sum defining ‚�
h .�; tI 0; 0/ converges absolutely and uniformly in t, we

can switch the sum and integral. It is then suffices to consider the integral

I�
h .X; �; s/ WD

Z 1

1

'�
� .�t.X//t

�s dt

t
C
Z 1

0

'�
� .�t.X//t

s dt

t
(4.9)

for each X D �x1
x2

� 2 L C h. If n WD Q.X/ D x1x2
N ¤ 0, then ConstsD0I�

h .X; �; s/ D
I�
h .X; �; 0/ and

I�
h .X; �; 0/ D

Z 1

0

'�
� .�t.X//

dt

t

D e .�n�/
Z 1

0

sgn.x1t�1 C x2t/erfc

�r
�v

N
jx1t�1 C x2tj

�
dt

t

D sgn.x1/e .�n�/
Z 1

0

sgn.w�1 C sgn.n/w/erfc
�p

n�vjw�1 C sgn.n/wj� dw

w
;

where w D
ˇ̌
ˇ x2

x1

ˇ̌
ˇ
1=2

t. For any ˛ > 0, we have
R1
0

sgn.w�1�w/erfc.˛jw�1�wj/ dw
w D

0 and
Z 1

0

erfc.˛.w�1 C w//
dw

w
D �.0; 4˛2/;
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with �.s; x/ WD R1
x ts�1e�tdt the incomplete gamma function. Therefore, we have

ConstsD0I�
h .X; �; s/ D sgn.x1/e.�Q.X/�/�.0; 4�Q.X/v/

when X is not isotropic.
When Q.X/ D 0, we know that I�

h .X; �; s/ D 0 if x1 D x2 D 0. So suppose
x1 ¤ 0 and x2 D 0. Simple estimate shows that

ˇ̌
ˇ̌
ˇI

�
h

  
x1
0

!
; �; s

!
� sgn.x1/

Z 1

0

erfc

�r
�v

N
jx1t�1j

�
t�s dt

t

ˇ̌
ˇ̌
ˇ

	 e�cx21 �
Z 1

1

e�c.t2�1/jts � t�sjdt

t
;

where c D �v
N . Using the formula

R1
0

erfc.˛t/ts dt
t D ˛�sp

�s
�
�

sC1
2

�
, we have

X

x1�h1.N/
x1¤0

I�

h

  
x1
0

!
; �; s

!
D .N�v/�s=2

p
�s

�

�
sC 1
2

��
H

�
s; hh1

N
i
�
�H

�
s; h�h1

N
i
��

:

The constant term at s D 0 of the right hand side is then given by �ch.0/ logv �
Qch.0/.

Now, we will consider the following integral

#C
h .�; s/ WD

Z 1

1

‚C
h .�; tI 0; 0/t�s dt

t
C
Z 1

0

‚C
h .�; tI 0; 0/ts dt

t
:

By the definition of 'C
� , it suffices to calculate as before

IC
h .X; �; s/ WD

Z 1

1

'C
� .�t.X//t

�s dt

t
C
Z 1

0

'C
� .�t.X//t

s dt

t
(4.10)

for X 2 LC h with �Q.X/ > 0. For X D �x1
x2

�
, this simplifies to

IC

h .X; �; s/ D e.�Q.X/�/

�Z
1

1

sgn.t�1x1 C tx2/t
�s dt

t
C
Z 1

0

sgn.t�1x1 C tx2/t
s dt

t

�

D sgn.x1/e.�Q.X/�/

�
rs
Z

1

r
sgn.w�1 � w/w�s dw

w

Cr�s
Z r

0

sgn.w�1 � w/ws dw

w

�
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after a change of variable w D r � t; r D jx2=x1j1=2. For <.s/ > 0, we then
have IC

h .X; �; s/ D sgn.x1/e.�Q.X/�/ 2.r
�s�1/

s . Taking the limit as s goes to 0 then
finishes the calculation. ut
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5. Duke, W., Imamoḡlu, Ö., Tóth, Á.: Cycle integrals of the j -function and mock modular forms.

Ann. Math. (2) 173(2), 947–981 (2011)
6. Ehlen, S.: CM values of regularized theta lifts and harmonic weak Maass forms of weight one.

Duke Math. J. 166(13), 2447–2519 (2017)
7. Hecke, E.: Zur Theorie der elliptischen Modulfunktionen. Math. Ann. 97(1), 210–242 (1927)
8. Kudla, S.S.: Holomorphic Siegel modular forms associated to SO.n; 1/. Math. Ann. 256(4),

517–534 (1981)
9. Kudla, S.S.: Central derivatives of Eisenstein series and height pairings. Ann. Math. (2) 146(3),

545–646 (1997)
10. Kudla, S.S., Millson, J.J.: The theta correspondence and harmonic forms. I. Math. Ann. 274(3),

353–378 (1986)
11. Kudla, S.S., Millson, J.J.: The theta correspondence and harmonic forms. II. Math. Ann.

277(2), 267–314 (1987)
12. Kudla, S.S., Rapoport, M., Yang, T.: On the derivative of an Eisenstein series of weight one.

Int. Math. Res. Not. 7, 347–385 (1999)
13. Siegel, C.L.: Indefinite quadratische Formen und Funktionentheorie. I. Math. Ann. 124, 17–54

(1951)
14. Weil, A.: Sur la formule de Siegel dans la théorie des groupes classiques. Acta Math. 113, 1–87

(1965)



A Note on the Growth of Nearly
Holomorphic Vector-Valued Siegel
Modular Forms

Ameya Pitale, Abhishek Saha, and Ralf Schmidt

Abstract Let F be a nearly holomorphic vector-valued Siegel modular form of
weight � with respect to some congruence subgroup of Sp2n.Q/. In this note, we
prove that the function on Sp2n.R/ obtained by lifting F has the moderate growth
(or “slowly increasing”) property. This is a consequence of the following bound that
we prove: k�.Y1=2/F.Z/k 	 Qn

iD1.�i.Y/�1=2 C �i.Y/��1=2/ where �1 � : : : � �n

is the highest weight of � and �i.Y/ are the eigenvalues of the matrix Y.

1 Introduction and Statement of Result

Let G be a connected reductive group overQ and K a maximal compact subgroup of
G.R/. One of the properties that an automorphic form on G.R/ is required to satisfy
is that it should be a slowly increasing function (also referred to as the moderate
growth property). We now recall the definition of this property following [4].

A norm k k on G.R/ is a function of the form kgk D .Tr.�.g/��.g///1=2 where
� W G.R/ ! GLr.C/ is a finite-dimensional representation with finite kernel and
image closed in Mr.C/ and such that �.K/ � SOr. For example, if G D Sp2n,
we may take � to be the usual embedding into GL2n.R/ while for G D GLn we
may take �.g/ D .g; det.g/�1/ into GLnC1.R/. A complex-valued function � on
G.R/ is said to have the moderate growth property if there is a norm k k on G.R/,
a constant C, and a positive integer � such that j�.g/j � Ckgk� for all g 2 G.R/.
This definition does not depend on the choice of norm.

In practice, automorphic forms on G.R/ are often constructed from classical
objects (such as various kinds of “modular forms”) and it is not always immediately
clear that the resulting constructions satisfy the moderate growth property. For a

A. Pitale • R. Schmidt
Department of Mathematics, University of Oklahoma, Norman, OK 73019, USA
e-mail: apitale@math.ou.edu; rschmidt@math.ou.edu

A. Saha (�)
School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK
e-mail: abhishek.saha@qmul.ac.uk

© Springer International Publishing AG 2017
J.H. Bruinier, W. Kohnen (eds.), L-Functions and Automorphic Forms,
Contributions in Mathematical and Computational Sciences 10,
https://doi.org/10.1007/978-3-319-69712-3_11

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69712-3_11&domain=pdf
mailto:apitale@math.ou.edu
mailto:rschmidt@math.ou.edu
mailto:abhishek.saha@qmul.ac.uk
https://doi.org/10.1007/978-3-319-69712-3_11


186 A. Pitale et al.

classical modular form f of weight k on the upper half plane, one can prove the
bound j f .x C iy/j � C.1 C y�k/ for some constant C depending on f . Using
this bound it is easy to show that the function �f on SL2.R/ attached to f has the
moderate growth property. More generally, if F is a holomorphic Siegel modular
form of weight k on the Siegel upper half space Hn, Sturm proved the bound
jF.X C iY/j � C

Qn
iD1.1C �i.Y/�k/ where �i.Y/ are the eigenvalues of Y, which

can be shown to imply the moderate growth property for the corresponding function
ˆF on Sp2n.R/.

Bounds of the above sort are harder to find in the literature for more general
modular forms. In particular, when considering Siegel modular forms on Hn, it
is more natural to consider vector-valued modular forms. Such a vector-valued
form comes with a representation � of GLn.C/ corresponding to a highest weight
�1 � : : : � �n � 0 of integers. Furthermore, for arithmetic purposes, it is sometimes
important to consider more general modular forms where the holomorphy condition
is relaxed to near-holomorphy. Recall that a nearly holomorphic modular form
on Hn is a function that transforms like a modular form, but instead of being
holomorphic, it is a polynomial in the entries of Y�1 with holomorphic functions
as coefficients. The theory of nearly holomorphic modular forms was developed by
Shimura in substantial detail and was exploited by him and other authors to prove
algebraicity and Galois-equivariance of critical values of various L-functions. We
refer the reader to the papers [1–3, 7–9] for some examples.

We remark that the moderate growth property for a certain type of modular
form is absolutely crucial if one wants to use general results from the theory of
automorphic forms to study these objects (as we did in our recent paper [6] in
a certain case). It appears that a proof of the moderate growth property, while
probably known to experts, has not been formally written down in the setting of
nearly holomorphic vector-valued forms. In this short note, we fill this gap in the
literature.

Consider a nearly holomorphic vector-valued modular form F of highest weight
�1 � : : : � �n � 0 with respect to a congruence subgroup. The function F takes
values in a finite dimensional vector space V . For v 2 V , denote kvk D hv; vi1=2
where we fix a U.n/-invariant inner product on V . We can lift F to a V-valued
function Ê F on Sp2n.R/. For any linear functional L on V consider the complex
valued functionˆF D L ı Ê F on Sp2n.R/. We prove the following result.

Theorem 1.1 The function ˆF defined above has the moderate growth property.
The above theorem is a direct consequence of the following bound.

Theorem 1.2 For any nearly holomorphic vector-valued modular form F as above,
there is a constant C (depending only on F) such that for all Z D X C iY 2 Hn we
have

k�.Y1=2/F.Z/k � C
nY

iD1
.�i.Y/

�1=2 C �i.Y/
��1=2/:
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The proof of Theorem 1.2, as we will see, is elementary. It uses nothing other than
the existence of a Fourier expansion, and is essentially a straightforward extension of
arguments that have appeared in the classical case, e.g., in [5] or [10]. This argument
is very flexible and can be modified to provide a bound for Siegel-Maass forms.
With some additional work (which we do not do here), Theorem 1.2 can be used to
derive a bound on the Fourier coefficients of F. We also remark that the bound in
Theorem 1.2 can be substantially improved if F is a cusp form.

Notations

For a positive integer n and a commutative ring R, let Msym
n .R/ be the set of

symmetric n � n matrices with entries in R. For X;Y 2 Msym
n .R/, we write X > Y if

X� Y is positive definite. Let Hn be the Siegel upper half space of degree n, i.e., the
set of Z D X C iY 2 Msym

n .C/ whose imaginary part Y is positive definite. For such

Z and g D


A B
C D

�
2 Sp2n.R/, let J.g;Z/ D CZ C D.

For any complex matrix X we denote by X� its transpose conjugate. For positive
definite Y D .yij/ 2 Msym

n .R/, let kYk D maxi;j jyijj. We denote by �i.Y/ the i-th
eigenvalue of Y, in decreasing order.

2 Nearly Holomorphic Functions and Fourier Expansions

For a non-negative integer p, we let Np.Hn/ denote the space of all polynomials in
the entries of Y�1 with total degree � p and with holomorphic functions on Hn as
coefficients. The space

N.Hn/ D
[

p�0
Np.Hn/

is the space of nearly holomorphic functions on Hn.
It will be useful to have some notation for polynomials in matrix entries. Let

Rn D f.i; j/ W 1 � i � j � ng:

Let

Tp
n D fb D .bi;j/ 2 Z

Rn W bi;j � 0;
X

.i;j/2Rn

bi;j � pg:
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For any V D .vi;j/ 2 Msym
n .R/, and any b 2 Tp

n , we define ŒV�b D Q
.i;j/2Rn

v
bi;j

i;j . In
particular, a function F on Hn lies in Np.Hn/ if and only if there are holomorphic
functions Gb on Hn such that

F.Z/ D
X

b2T
p
n

Gb.Z/ŒY
�1�b:

Definition 2.1 For any ı > 0, we define

Vı D fY 2 Msym
n .R/ W Y � ıIng:

Lemma 2.2 Given any Y 2 Vı, we have kY�1k � ı�1.

Proof Note that for any positive definite matrix Y 0 D .y0
ij/ we have kY 0k D

maxi;j jy0
ijj D maxi y0

ii. This is an immediate consequence of the fact that each 2 � 2
principal minor has positive determinant and each diagonal entry is positive.

So it suffices to show that each diagonal entry of Y�1 is less than or equal to ı�1.
But the assumption Y � ıIn implies that Y�1 � ı�1In, which implies the desired
fact above. ut

An immediate consequence of this lemma is that for any ı � 1, Y 2 Vı and
b 2 Tp

n , we have jŒY�1�bj � ı�p.

Definition 2.3 We say that F 2 Np.Hn/ has a nice Fourier expansion if there exists
an integer N and complex numbers ab.F; S/ for all 0 � S 2 1

N Msym
n .Z/, such that

we have an expression

F.Z/ D
X

b2T
p
n

X

S2 1
N M

sym
n .Z/

S�0

ab.F; S/e
2� iTr.SZ/ŒY�1�b

that converges absolutely and uniformly on compact subsets of Hn.
Note that a key point in the above definition is that the sum is taken only over

positive semidefinite matrices. The next proposition, which is well-known in the
holomorphic case, shows that this implies a certain boundedness property for the
function F.

Proposition 2.4 Let F 2 Np.Hn/ have a nice Fourier expansion. Then for any
ı > 0, the function F.Z/ is bounded in the region fZ D X C iY W Y 2 Vıg.
Proof We may assume that ı � 1. By the notion of a nice Fourier expansion, for
each b 2 Tp

n , the series

Rb.Y/ WD
X

S2 1
N M

sym
n .Z/

S�0

jab.F; S/je�2�Tr.SY/



On the Growth of Nearly Holomorphic Forms 189

converges for any 0 < Y 2 Msym
n .R/. For any Z in the given region, using

Lemma 2.2, we get

jF.Z/j �
X

b2T
p
n

Rb.Y/ı
�p; (1)

and so to prove the proposition it suffices to show that each Rb.Y/ is bounded in the
region Y � ı. By positivity, we have

jab.F; S/ e�2� Tr.SY/j � Rb.Y/

for each Y > 0 and each S 2 1
N Msym

n .Z/. Therefore

jab.F; S/j � Rb.ıIn=2/e
ı� Tr.S/: (2)

Next, note that if Y � ıIn, then Tr.SY/ � ıTr.S/ for all S � 0. To see this, we
write Y D ıIn C Y21 where Y1 � 0 is the square-root of Y � ıIn. As S � 0 we have
Tr.Y1SY1/ � 0 and consequently Tr.SY/ D Tr.SıIn/C Tr.Y1SY1/ � Tr.SıIn/.

Using the above and (2), we have for all Y � ıIn

Rb.Y/ � Rb.ıIn=2/
X

0�S2 1
N M

sym
n .Z/

e�ı� Tr.S/:

As the sum
P

0�S2 1
N M

sym
n .Z/ e�ı� Tr.S/ converges to a finite value (for a proof of this

fact, see [5, p. 185]) this completes the proof that Rb.Y/ is bounded in the region
Y � ıIn. ut

3 Bounding Nearly Holomorphic Vector-Valued Modular
Forms

Let .�;V/ be an irreducible, finite-dimensional, rational representation of GLn.C/

and h; i be a (unique up to multiples) U.n/-invariant inner product on V . In fact, the
inner product h; i has the property that

h�.M/v1; v2i D hv1; �.M�/v2i

for all M 2 GLn.C/. (To see this, note that it’s enough to check it on the Lie algebra
level. It’s true for the real subalgebra u.n/ and so by linearity it follows for all of
gl.n;C/.) For any v 2 V , we define

kvk D hv; vi1=2:
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As is well known, the representation � has associated to it an n-tuple �1 � �2 �
: : : � �n � 0 of integers known as the highest weight of �. We let d� denote the
dimension of �.

We define a right action of Sp2n.R/ on the space of smooth V-valued functions
on Hn by

.F
ˇ̌
�
g/.Z/ D �.J.g;Z//�1F.gZ/ for g 2 Sp2n.R/; Z 2 Hn: (3)

A congruence subgroup of Sp2n.Q/ is a subgroup that is commensurable with
Sp2n.Z/ and contains a principal congruence subgroup of Sp2n.Z/. For a congruence
subgroup � and a non-negative integer p, let Np

�.�/ be the space of all functions
F W Hn ! V with the following properties.

1. For any g 2 Sp2n.Q/ and any linear map L W V ! C, the function L ı .Fˇ̌
�
g/ lies

in Np.Hn/ and has a nice Fourier expansion.
2. F satisfies the transformation property

F
ˇ̌
�

 D F for all 
 2 �: (4)

Let N�.�/ D S
p�0 Np

�.�/. We refer to N�.�/ as the space of nearly holomorphic

Siegel modular forms of weight � with respect to � . We put N.n/
� D S

� N�.�/; the
space of all nearly holomorphic Siegel modular forms of weight �.

Recall that for any Y > 0 in Msym
n .R/, we let �1.Y/ � �2.Y/ � : : : � �n.Y/ > 0

denote the eigenvalues of Y. We can now state our main result.

Theorem 3.1 For any F 2 N.n/
� , there is a constant CF (depending only on F) such

that for all Z D X C iY 2 Hn we have

k�.Y1=2/F.Z/k � CF

nY

iD1
.�i.Y/

�1=2 C �i.Y/
��1=2/:

In order to prove this theorem, we will need a couple of lemmas.

Lemma 3.2 For any v 2 V, and any Y > 0 in Msym
n .R/, we have

 
nY

iD1
�i.Y/

�nC1�i

!
kvk � k�.Y/vk �

 
nY

iD1
�i.Y/

�i

!
kvk:

Proof This follows from considering a basis of weight vectors. Note that it is
sufficient to prove the inequalities for Y diagonal as any Y can be diagonalized by a
matrix in U.n/ and our norm is invariant by the action of U.n/. ut

Next, we record a result due to Sturm.
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Lemma 3.3 (Proposition 2 of [10]) Suppose that F is a fundamental domain for
Sp2n.Z/ such that there is some ı > 0 such that Z D X C iY 2 F implies that
Y 2 Vı. Let � W Hn ! C be any function such that there exist constants c1 > 0,
� � 0 with the property that j�.
Z/j � c1 det.Y/� for all Z 2 F and 
 2 Sp2n.Z/.
Then for all Z 2 Hn we have the inequality

j�.Z/j � c�

nY

iD1
.�i.Y/

� C �i.Y/
��/:

Proof of Theorem 3.1 Let F be as in the statement of the theorem, so that F 2 N�.�/
for some � 
 Sp2n.Z/. We let 
1; 
2; : : : ; 
t be a set of representatives for
�nSp2n.Z/. Fix an orthonormal basis v1; v2; : : : ; vd of V and for any G 2 N.n/

�

define Gi.Z/ WD hG.Z/; vii. Note that kG.Z/k D
�Pd

iD1 jGi.Z/j2
�1=2

.

Let F be as in Lemma 3.3. By Proposition 2.4, it follows that there is a constant
C depending on F such that j.Fj�
r/i.Z/j � C for all 1 � r � t, 1 � i � n, and
Z 2 F. Moreover, for any Z D X C iY 2 F we have each �j.Y1=2/ � ı1=2 and

therefore
�Qn

jD1 �j.Y1=2/�j

�
� det.Y/�1=2ı

1
2

Pn
jD2.�j��1/: Now consider the function

�.Z/ D k�.Y1=2/F.Z/k. For any 
 2 Sp2n.Z/, there exists 
0 2 � and some 1 �
r � t such that 
 D 
0
r. An easy calculation shows that

k�.
Z/k D k�.Y1=2/.Fj�
r/.Z/k:

So for all Z 2 F, 
 2 Sp2n.Z/ we have, using Lemma 3.2 and the above arguments,

k�.
Z/k � det.Y/�1=2ı
1
2

Pn
iD2.�i��1/d1=2C:

So the conditions of Lemma 3.3 hold with � D �1=2. This concludes the proof of
Theorem 3.1. ut
Corollary 3.4 For any F 2 N.n/

� , there is a constant CF (depending only on F) such
that for all Z D X C iY 2 Hn we have

k�.Y1=2/F.Z/k � CF .1C Tr.Y//n�1 .det Y/��1=2:

Proof This follows immediately from Theorem 3.1 and the following elementary
inequality, which holds for all positive integers �; n and all positive reals y1; : : : ; yn:

nY

iD1
.1C y�i / � .1C y1 C : : :C yn/

n�:

To prove the above inequality, note that 1C y�i � .1C y1 C : : : C yn/
� for each i.

Now take the product over 1 � i � n. ut
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4 The Moderate Growth Property

Given any F 2 N.n/
� , we define a smooth function Ê F on Sp2n.R/ by the formula

Ê F.g/ D �.J.g; I//�1F.gI/;

where I WD iI2n:

Proposition 4.1 Let F 2 N.n/
� and Ê F be defined as above. Then there is a constant

C such that for all Z D X C iY 2 Hn we have

���� Ê F

�
Y1=2 XY1=2

Y�1=2
������ � C

nY

iD1
.�i.Y/

�1=2 C �i.Y/
��1=2/:

Proof This follows immediately from Theorem 3.1. ut
A complex-valued functionˆ on Sp2n.R/ is said to be slowly increasing if there

is a constant C and a positive integer r such that

jˆ.g/j � C.Tr.g�g//r

for all g 2 Sp2n.R/.

Theorem 4.1 Let F 2 N.n/
� and Ê F be as defined above. For some linear functional

L on V, let ˆF D L ı Ê F. Then the functionˆF has the moderate growth property.

Proof Note that jˆF.g/j � kLk k Ê F.g/k. So it suffices to show that there is a
constant C and a positive integer r such that

k Ê F.g/k � C.Tr.g�g//r (5)

for all g 2 Sp2n.R/. Since both sides of this inequality do not change when
g is replaced by gk, where k is in the standard maximal compact subgroup of

Sp2n.R/, we may assume that g is of the form


Y1=2 XY1=2

Y�1=2
�

. Then the existence

of appropriate C and r follows easily from Proposition 4.1. Indeed, we can take any
r � n�1=2 and C the same constant as in Proposition 4.1. ut
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Critical Values of L-Functions
for GL3 � GL1 over a Totally Real Field

A. Raghuram and Gunja Sachdeva

Abstract We prove an algebraicity result for all the critical values of L-functions
for GL3�GL1 over a totally real field F, which we derive from the theory of Rankin–
Selberg L-functions attached to pairs of automorphic representations on GL3�GL2.
This is a generalization and refinement of the results of Mahnkopf (J. Reine Angew.
Math. 497:91–112, 1998) and Geroldinger (Ramanujan J. 38(3):641–682, 2015).

1 Introduction and Statement of the Main Theorem

To describe the main theorem proved in this paper in greater detail, we need some
notations. Suppose AF is the ring of adèles of F. Given a regular algebraic cuspidal
automorphic representation … of GL3.AF/, one knows (from Clozel [8]) that there
is a pure dominant integral weight � such that… has a nontrivial contribution to the
cohomology of some locally symmetric space of GL3 with coefficients coming from
the finite-dimensional representation M� with highest weight �. We denote this as
… 2 Coh.G3; �/, for � 2 XC

0 .T3/, where T3 is the diagonal torus of G3 D GL3=F.
Let … D …1 ˝…f be the decomposition of … into its archimedean part …1 and
its finite part …f . The representation M� is defined over a number field Q.�/, and
by Clozel [8], it is known that cuspidal cohomology has a Q.�/-structure; hence the
realization of …f as a Hecke-summand in cuspidal cohomology (in lowest possible
degree) has a Q.…/-structure, for a number field Q.…/ known as the rationality
field of …: On the other hand, the Whittaker model W.…f / of the finite part of the
representation admits a Q.…/-structure. By comparing these two Q.…/-structures,
we get certain periods p�….…/ 2 C

�; see, for example, [23]. Here �… D .�v/v2S1

is a collection of signs indexed by the set S1 of real places of F, and for GL3=F, we
know that …1 uniquely determines �…. For any � 2 Aut.C/, one knows that �… 2
Coh.G3;

��/ and one can define periods simultaneously for all �…. The reader is
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referred to [10, Sect. 3] for a review of such results. Henceforth, let � 2 XC
0 .T3/

stand for a dominant integral pure weight and consider… 2 Coh.G3; �/. The main
theorem of this article is the following:

Theorem 1.1 Let … 2 Coh.G3; �/ with "…v D 11 for all v 2 S1 (see Propo-
sition 2.1 for "…v ), and let � 2 XC

0 .T3/ such that for each � D .�v/v2S1
; �v D

.nv; 0;�nv/ with nv a non-negative integer. Put n D minfnvg. Let � W F�nA�
F ! C

�
be a character of finite order, and define Q.�/ WD Q .fvalues of �g/: Suppose that
m 2 Z is critical for Lf .s;…˝�/; the finite part of the standard degree-3 L-function
attached to … and �. Then

m 2
(
f1 � nev; : : : ;�3;�1I 2; 4; : : : ; nevg; if � is totally even;

f1 � nod; : : : ;�4;�2; 0I 1; 3; : : : ; nodg; if � is totally odd;

where nev D 2



nC1
2

� D the largest even positive integer less than or equal to nC 1,
and nod D 2



n
2

�C 1 D the largest odd positive integer less than or equal to nC 1.
(If � is even at one place and odd at another place then there are no critical points.)
Fix a quadratic totally odd character  once and for all (which will be relevant only
when � is totally odd). Consider the four cases:

Case 1a. � is totally even and m 2 f2; 4; � � � ; nevg: Define �C
r .…/ WD

p�….…/Lf .�1;…/�1: There exists a nonzero complex number P11.�;m/
depending only the weight � and the critical point m such that

Lf .m;…˝ �/ �Q.…;�/ P11.�;m/�C
r .…/G.�/2;

where, by�Q.…;�/; we mean up to an element of the number field which is
the compositum of the rationality fields Q.…/ and Q.�/; and G.�/ is the
Gauß sum of �.

Case 1b. � is totally even and m 2 f1 � nev; � � � ;�3;�1g: Define �C
l .…/ WD

p�….…/Lf .2;…/
�1: There exists a nonzero complex number P21.�;m/

such that

Lf .m;…˝ �/ �Q.…;�/ P21.�;m/�C
l .…/G.�/:

Case 2a. � is totally odd and m 2 f1; 3; � � � ; nodg: Define ��
r .…/ WD

p�….…/Lf .0;…˝/�1: There exists a nonzero complex number P31.�;m/
such that

Lf .m;…˝ �/ �Q.…;�/ P31.�;m/��
r .…/G.�/2G./:
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Case 2b. � is totally odd and m 2 f1 � nod; � � � ;�4;�2; 0g: Define ��
l .…/ WD

p�….…/Lf .1;…˝/�1: There exists a nonzero complex number P41.�;m/
such that

Lf .m;…˝ �/ �Q.…;�/ P41.�;m/��
l .…/G.�/:

Moreover, in each of the cases, the ratio of the L-value on the left hand side divided
by all the quantities in the right hand side is equivariant for the action of Aut.C/.

For F D Q, � D 0 and m D 1, the case 2a above is the main rationality
result in Mahnkopf [18]; and for F D Q and general �, a weak form of the above
theorem is implicit in the construction of the p-adic L-functions in Geroldinger [12].
Let’s mention en passant that if n D 0 and � is totally even, then there are no
critical points. The proof of this theorem, following [18], is based on an integral
representation for the value Lf .m;… � �/ which we derive from the Rankin–
Selberg theory of L-functions for GL3 � GL2, by taking … on GL3 and an
induced representation on GL2: To this end, let �1; �2 be two distinct idèle class
characters defined as �i D j jdi�ı

i , where �ı
i is any finite order character and define

†.�1; �2/ WD IndGL2.AF/

B2.AF/
.�1j j1=2; �2j j�1=2/. Also assume that the representations

are such that s D 1=2 is critical for the Rankin-Selberg L-function attached to
… �†.�1; �2/. We note that

L.s;… �†.�1; �2// D L.sC 1=2;…˝ �1/L.s � 1=2;…˝ �2/:

Using results from [18] and [20], we can arrange for the data d1; d2; �ı
1 and �ı

2

(Proposition 3.6) so as to afford an interpretation of the critical L-value L. 1
2
;… �

†.�1; �2// as a Poincaré pairing between (the pull-back to GL2) of a cuspidal
cohomology class #ı

…;�…
for … and an Eisenstein cohomology class #ı

† for
†.�1; �2/: See Theorem 3.29. Now we freeze one of the characters �1; �2, and let
the other vary, to capture all the critical values L.m;…˝ �/: In section “The Main
Identity for the Critical Values Lf .m;…˝ �/”, for the each of the four cases above,
we express L.m;… ˝ �/ in terms of certain periods and the Poincaré pairing of
#ı
…;�…

and #ı
†, from which we deduce the required algebraicity result in Sect. 3.4.

Let’s now briefly address the compatibility with motivic periods and motivic
L-functions. Let M be a pure motive over Q with coefficients in a number field
Q.M/: Suppose M is critical, then a celebrated conjecture of Deligne [9, Conj. 2.8]
relates the critical values of its L-function L.s;M/ to certain periods that arise
out of a comparison of the Betti and de Rham realizations of the motive. One
expects a cohomological cuspidal automorphic representation … to correspond to
a motive M.…/; one of the properties of this correspondence is that the standard L-
function L.s;…/ is the motivic L-function L.s;M.…// up to a shift in the s-variable;
see Clozel [8, Sect. 4]. With the current state of technology, it seems impossible
to compare our periods p�.…/ with Deligne’s periods c˙.M.…//. Be that as it
may, one can still claim that Theorem 1.1 is compatible with Deligne’s conjecture
by considering the behavior of L-values under twisting by characters. Blasius
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[2] and Panchishkin [19] have independently studied the behavior of c˙.M.…//
upon twisting the motive M.…/ by a Dirichlet character (more generally by Artin
motives). Using Deligne’s conjecture, they predict the behavior of critical values of
motivic L-functions upon twisting by Dirichlet characters. This takes the following
form in our situation which we state only when the twisting character is totally even:

Corollary 1.2 Let … 2 Coh.G3; �/ and � W F�nA�
F ! C

� be of finite order and
which is totally even. If the critical point m is to the right of the center of symmetry
then

Lf .m;…˝ �/ � Lf .m;…/G.�/2;

but if the critical point m is to the left of the center of symmetry then we have

Lf .m;…˝ �/ � Lf .m;…/G.�/:

In both the cases the ratio is Aut.C/-equivariant.
From the above relation between critical values for twisted L-functions with the

corresponding values of the untwisted L-functions we may claim that our result is
compatible with Deligne’s conjecture. See also [22, Sect. 7] where such relations
for twisted critical values are conjectured for symmetric power L-functions of a
modular form.

Finally, we briefly discuss the case of symmetric square L-function for a Hilbert
modular form. Let ' be a holomorphic cuspidal Hilbert modular form over F of
weight .k1; : : : ; kd/. Suppose that all the kj have the same parity, and that ' is
not of CM-type. Then Theorem 1.1 applies to the symmetric square L-function
L.s;Sym2'; �/ attached to ', twisted by a finite order Dirichilet character �, by
thinking of this L-function as the standard L-function of the symmetric-square
transfer of '—which is a cohomological cuspidal representation of G3—twisted
by �: See Sect. 3.5.

2 Some Preliminaries

2.1 Notations

The Base Field

Let F denote a totally real number field of degree dF, i.e., ŒF W Q� D dF; with ring
of integers O. For any place v we write Fv for the topological completion of F at
v. Let S1 denote the set of all real places; hence dF D jS1j. Also the set of all
real embeddings of F as a field into C is denoted by Hom.F;C/ D Hom.F;R/.
There is a canonical bijective map Hom.F;R/ ! S1, and for each v 2 S1, we
fix an isomorphism Fv Š R. Further, if v … S1, and p denotes the prime ideal of
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O corresponding to v, then we let Fp the completion of F at p, and Op the ring of
integers of Fp. Sometimes, Fv is used for Fp and similarly Ov for Op: The unique
maximal ideal of Op is pOp and is generated by a uniformizer $p. Let DF denote
the absolute different of F, i.e., D�1

F D fx 2 F W TF=Q.xO/ 
 Zg. For any prime
ideal p of F define rp � 0 by: DF D Q

p p
rp : Let AF stand for its adèle ring, with

AF;f and A
�
F the ring of finite adèles and group of idèles, respectively. For brevity,

let A WD AQ and A
� WD A

�
Q
:

The Groups and Their Lie Algebras

The algebraic group GLn=F will be denoted as Gn, and we put Gn D RF=Q.Gn/. An
F-group will be denoted by an underline and the corresponding Q-group via Weil
restriction of scalars will be denoted without the underline; hence for any Q-algebra
A the group of A-points of Gn is Gn.A/ D Gn.A ˝Q F/. Let Bn D TnUn stand for
the standard Borel subgroup of Gn of all upper triangular matrices, where Un is the
unipotent radical of Bn, and Tn the diagonal torus. The center of Gn will be denoted
by Zn. These groups define the corresponding Q-groups Gn � Bn D TnUn � Zn.
Observe that Zn is not Q-split (if dF > 1), and we let Sn be the maximal Q-split
torus in Zn; we have Sn Š Gm over Q:

Note that the group at infinity is

Gn;1 WD Gn.R/ D
Y

v2S1

GLn.Fv/ Š
Y

v2S1

GLn.R/:

Suppose Cn;1 WD Q
v2S1

O.n/ is the maximal compact subgroup of Gn.R/. Let
Kn;1 D Cn;1Zn.R/: Let K0

n;1 be the topological connected component of Kn;1.
For any topological group G, we will let �0.G/ WD G=G0 stand for the group of
connected components. We will identify �0.Gn;1/ D �0.Kn;1/ Š Q

v2S1
f˙1g DQ

v2S1
f˙g. Furthermore, we identify �0.Gn.R// inside Gn.R/ via the ı0

ns where
the matrix ın D diag.�1; 1; : : : ; 1/ represents the nontrivial element in O.n/=SO.n/.
The character group of �0.Kn;1/ is denoted by 3�0.Kn;1/. For a real Lie group G, we
denote its Lie algebra by g0 and the complexified Lie algebra by g, i.e., g D g0˝RC.
Thus, for example if G is the Lie group GLn.R/ then g0 D gln.R/ and g D gln.C/.
We have gn;1 and kn;1 denote the complexified Lie algebras of Gn;1 and Kn;1,
respectively.

Finite-Dimensional Representations

Consider Tn;1 D Q
v2S1

Tn.Fv/ Š Q
v2S1

Tn.R/. Let X�.Tn/ D X�.Tn;1/ be
the group of all algebraic characters of Tn;1, and let XC.Tn/ D XC.Tn;1/ be
the subset of X�.Tn/ which are dominant with respect to Borel subgroup Bn. A
weight � 2 XC.Tn;1/ is of the form: � D .�v/v2S1

such that for v 2 S1 we
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have �v D .�v1; : : : ; �
v
n/; �

v
i 2 Z; �v1 � : : : � �vn ; the character �v sends

t D diag.t1; : : : ; tn/ 2 Tn.Fv/ to
Q

i t
�vi
i . Further, if there is an integer w.�/ such

that for all v 2 S1 and any 1 � i � n we have �vi C �vn�iC1 D w.�/, then we say
� is a pure weight and call w.�/ the purity weight of �; denote the set of dominant
integral pure weights as XC

0 .Tn;1/. For � 2 XC.Tn;1/, we let M� stand for the
irreducible finite-dimensional complex representation of Gn;1 for highest weight
�. Since Gn;1 D Q

v2S1
GLn.R/, it is clear that M� D ˝vM�v with M�v being

the irreducible finite-dimensional representation of GLn.R/ of highest weight �v .

Automorphic Representations

An irreducible representation of Gn.A/ D GLn.AF/ is said to be automorphic,
following Borel–Jacquet [4], if it is isomorphic to an irreducible subquotient of the
representation of Gn.A/ on its space of automorphic forms. We say an automorphic
representation is cuspidal if it is a subrepresentation of the representation of Gn.A/

on the space of cusp forms Acusp.Gn.Q/nGn.A// D Acusp.GLn.F/nGLn.AF//. Let
V� be the subspace of cusp forms realizing a cuspidal automorphic representation
� . For an automorphic representation � of Gn.A/, we have � D �1 ˝ �f , where
�1 is a representation of Gn;1 and �f D ˝v…S1

�v is a representation of Gn.Af /:

The central character of � will be denoted !� .

The Choice of Measures

Fix a global measure dg on Gn.A/; which is a product of local measures dgv such
that for a finite place v, we normalize dgv by asking vol.GLn.Ov// D 1; and at
every infinite place we ask vol.C0

n;v/ D vol.SO.n// D 1.

Adèlic Characters and Gauss Sums

Fix an additive character  Q of QnA, as in Tate’s thesis, we define a character  
of FnAF as:  D  Q ı TrF=Q. For a Hecke character � of F, by which we mean a
continuous homomorphism � W F�nA�

F ! C
�, it’s Gauß sum is denoted G.�f / or

even G.�/ and is defined as in [21, Sect. 2.1].

2.2 Cuspidal Cohomology

For any open compact subgroup Kf 
 Gn.Af / define a locally symmetric space

Sn.Kf / WD Gn.Q/nGn.A/=K0
n;1Kf D GLn.F/nGLn.AF/=K0

n;1Kf :
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Let � 2 XC.Tn;1/. The representation M� defines a sheaf fM� on Sn.Kf /. We
are interested in the sheaf cohomology groups H�.Sn.Kf /;fM�/. It is convenient to
pass to the limit over all open compact subgroups Kf and define H�.Sn;fM�/ WD
lim�!Kf

H�.Sn.Kf /;fM�/: There is an action of �0.Gn;1/ � Gn.Af / on H�.Sn;M�/,

called a Hecke action, and we can recover the cohomology of Sn.Kf / by taking
invariants: H�.Sn.Kf /;fM�/ D H�.Sn;fM�/

Kf :We can compute the sheaf cohomol-
ogy groups via the de Rham complex, which upon reinterpreting in terms of the
complex computing relative Lie algebra cohomology, we get the isomorphism:

H�.Sn;fM�/ ' H�.gn;K
0
n;1IC1.Gn.Q/nGn.A//˝M�/:

With level structure Kf it takes the form:

H�.Sn.Kf /;fM�/ ' H�.gn;K
0
n;1IC1.Gn.Q/nGn.A//

Kf ˝M�/:

The inclusion C1
cusp.Gn.Q/nGn.A// ,! C1.Gn.Q/nGn.A// of the space of smooth

cusp forms in the space of all smooth functions induces, via results of Borel [3], an
injection in cohomology; this defines cuspidal cohomology:

H�
cusp.Sn.Kf /;fM�/ ' H�.gn;K

0
n;1IC1

cusp.Gn.Q/nGn.A//
Kf ˝M�/:

Using the usual decomposition of the space of cusp forms into a direct sum of cusp-
idal automorphic representations, we get the following fundamental decomposition
of �0.Gn;1/ � Gn.AF;f /-modules:

H�
cusp.Sn;fM�/ D

M

…

H�.gn;K
0
n;1I…1 ˝M�/˝…f :

We say that … contributes to the cuspidal cohomology of Gn with coefficients in
M� if… has a nonzero contribution to the above decomposition. Equivalently, if…
is a cuspidal automorphic representation whose representation at infinity …1 after
twisting by M� has nontrivial relative Lie algebra cohomology. In this situation, we
write… 2 Coh.Gn; �/. It is well-known [8] that only pure weights support cuspidal
cohomology.

Similarly, define

QSn.Kf / WD Gn.Q/nGn.A/=C0
n;1Kf D GLn.F/nGLn.A/=C0

n;1Kf ;
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where, C0
n;1 is the connected component of the identity of the maximal compact

subgroup Cn;1 of Gn.R/: We get a canonical fibration � given by:

We will also consider the cohomology groups H�.QSn.Kf /;M�/:

Let � W GLn�1 ! GLn be the map g 7! � g
1

�
. Then � induces a map at the level

of local and global groups and appropriate locally symmetric spaces of Gn�1 and
Gn, all of which will also be denoted by � again. The pullback (of a function or a
cohomology class) via � will be denoted by ��.

Cuspidal Cohomology GL3

Now we specialize to n D 3 and briefly review some well-known details that will be
relevant later on. (See [21] for more details and further references.) For any integer
` � 1, let D` stand for the discrete series representation of GL2.R/ with lowest non-
negative SO.2/-type given by the character

�
cos� �sin�
sin� cos�

� 7! exp�i.`C1/� , and central
character a 7! sgn.a/`C1.

Suppose � 2 XC
0 .T3/ is a pure dominant integral weight written as � D

.�v/v2S1
with �v D .�v1; �

v
2; �

v
3/ and let w D �v1 C �v3 D 2�v2 be the purity

weight of �: Note that w is an even integer. Let’s write it as w D 2wı: Suppose
… 2 Coh.G3; �/, then it is clear that …˝ j jwı 2 Coh.G3; � �wı/ because

H�.g3;1;K0
3;1I…1 ˝ j jwı ˝M� ˝ .det/�wı

/ D H�.g3;1;K0
3;1I…1 ˝M�/:

The purity weight of � � wı is 0, and furthermore …˝ j jwı

is a unitary cuspidal
representation. As far as L-functions (and their special values) are concerned, we
have not lost any information since L.s;… ˝ j jwı

/ D L.s C wı;…/: We will
henceforth assume:

1. � is a pure dominant integral weight with purity weight 0; so � D .�v/v2S1

with �v D .nv; 0;�nv/ for a non-negative integer nv:
2. … 2 Coh.G3; �/; i.e., … is a unitary cuspidal automorphic representation of

GL3=F that has nontrivial cohomology with respect to M�:

The following well-known proposition records some basic information about the
relative Lie algebra cohomology groups in this context.

Proposition 2.1 Let � 2 XC
0 .T3/ be a pure dominant integral weight with purity

weight 0; we write � D .�v/v2S1
with �v D .nv; 0;�nv/ for an integer nv � 0:
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Put `v D 2nv C 2: Suppose… 2 Coh.G3; �/. Then for every v 2 S1 we have

…v D IndGL3.R/
P.2;1/.R/

.D`v ˝ "…v/ ;

where, P.2;1/ is the standard parabolic subgroup of GL3.R/ with Levi quotient
GL2.R/ � GL1.R/; and "…v is a quadratic character of R�: In terms of the central
character, we have "…v.�1/ D �!…v .�1/: (We also write "…v D sgne…v with
e…v 2 f0; 1g:)

Define bF
3 D 2dF D 2ŒF W Q�: The smallest degree � for which

H�.g3;1;K0
3;1I…1 ˝M�/ ¤ 0 is � D bF

3 , and in this degree, the cohomology
group is one-dimensional, and as a K3;1=K0

3;1-module we denote it by �…; which
is a d-tuple of signs: .sgn1Ce…v /v2S1

:

2.3 Eisenstein Cohomology of GL2

This is well-known by Harder [14], however, we need some of the details to be cast
in a form that is useful for us and so we briefly present the details.

For i D 1; 2; let �i W F�nA�
F ! C

� be algebraic Hecke characters; then
�i D j jdi�ı

i , where �ı
1 and �ı

2 are of finite order and d1; d2 2 Z: Clearly, for
every archimedean v, we have �ı

iv D �iv D .sgn/eiv for some eiv 2 f0; 1g: Define
the globally induced representation

†.�1; �2/ WD IndG2.A/
B2.A/

.�1j j1=2; �2j j�1=2/;

which decomposes into a restricted tensor product †.�1; �2/ D ˝0
v†.�1;v; �2;v/;

where †.�1;v; �2;v/ denotes the normalized parabolically induced representation
IndGL2.Fv/

B2.Fv/
.�1;v j j1=2v ; �2;v j j�1=2v / of GL2.Fv/. Let†f .�1; �2/ WD ˝v−1†.�1;v; �2;v/

and †1.�1; �2/ WD ˝vj1†.�1;v; �2;v/ denote the finite and infinite part of
†.�1; �2/, respectively. For simplicity, let V�v WD †.�1;v; �2;v/.

Let M� be a finite dimensional representation of G2;1, with highest weight � D
.�v/v2S1

2 XC.T2/; then M� decomposes as M� D ˝vj1M�v ; where M�v is
the finite-dimensional irreducible representation of GL2.R/ with highest weight �v:
If we write �v D .�v;1; �v;2/; with integers �v;j; and �v;1 � �v;2; then M�v D
Sym�v;1��v;2 .C2/˝ det�v;2 : Hence, the dimension of M�v is �v;1 ��v;2C 1, and it’s
central character is t 7! t�v;1C�v;2 : For each v 2 S1, we want to find .�v;1; �v;2/ in
terms of d1; d2; �1v; �2v such that

H�.g2;v;Kı
2;v IV�v ˝M�v / ¤ 0;

and, furthermore, we need to determine the action of�0.K2;1/ on these cohomology
groups.



204 A. Raghuram and G. Sachdeva

Cohomology of Some Representations of GL2.R/

Let’s fix some notational convention: for a representation � of GLn (in any suitable
local or global context), and for a real number t, by �.t/ we mean �˝j jt, where j j is
the normalized local (resp., global) absolute value (resp., adèlic norm). Also, we will
abbreviate the normalized parabolically induced representation IndGL2.R/

B2.R/
.�1 ˝ �2/

simply as �1 � �2: For a 2 Z, let a W R� ! R
� 
 C

� be the character defined as
a.t/ D ta:

Take two integers a � b. We start with the following exact sequence of
.gl2;O.2/R

�C/-modules:

0 �! Da�bC1. aCb
2
/ �! a.1=2/� b.�1=2/ �! M.a;b/ �! 0:

Twisting by the sign character, while noting that twisting commutes with induction,
we get

0 �! Da�bC1. aCb
2
/ �! a.sgn/.1=2/�b.sgn/.�1=2/ �! M.a;b/˝sgn �! 0:

Note that the discrete series representation D` is invariant under twisting by sgn-
character. For brevity, let 	 WD .a; b/; 	v D .�b;�a/; V	 WD a.sgn/.1=2/ �
b.sgn/.�1=2/; D	v D Da�bC1. aCb

2
/; and M�

	 WD M	 ˝ sgn : The above exact
sequence may then be written as

0 �! D	v
i�! V	 �! M�

	 �! 0: (2.1)

Tensor this sequence by M	v D Mv
	; and apply H�.�/ WD H�.gl2;SO.2/R�CI �/

to get the following long exact sequence:

0! H0.D	v ˝M	v/! H0.V	 ˝M	v/! H0.M�
	 ˝M	v/!

! H1.D	v ˝M	v/! H1.V	 ˝M	v/! H1.M�
	 ˝M	v/!

! H2.D	v ˝M	v/! H2.V	 ˝M	v/! H2.M�
	 ˝M	v/!

! H3.D	v ˝M	v/! � � �

Now, we make precise all the above cohomology groups as O.2/=SO.2/-modules.
Let 11 stand for the trivial character, and sgn the sign-character of O.2/=SO.2/. For
the finite-dimensional modules M�

	 ˝M	v , first of all, since H0 D Hom; we easily
see that

H0.M�
	 ˝M	v/ D sgn :

Next, it follows from [29, Prop. I.4], that

H2.M�
	 ˝M	v/ D 11;
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and furthermore, one may see that Hq.M�
	 ˝M	v/ D 0 for q … f0; 2g: For the

discrete series representation, it is well-known that

H1.D	v ˝M	v/ D 11˚ sgn; and Hq.D	v ˝M	v/ D 0; if q ¤ 1:

Also, since V	 doesn’t contain a finite-dimensional sub-representation we deduce
H0.V	 ˝M	v/ D 0; whence, H1.V	 ˝M	v/ sits in the short exact sequence:

0! H0.M�
	 ˝Mv

	/! H1.D	v ˝M	v/! H1.V	 ˝M	v/! 0:

Hence, as an O.2/=SO.2/-module we get

H1.V	 ˝M	v/ D 11: (2.2)

Furthermore, if ŒD	v �C denotes an eigenvector in H1.D	v ˝M	v/ for the trivial
action of O.2/, then we may take its image under i� (the map induced by the
inclusion i in cohomology) as a generator ŒV	 � for H1.V	 ˝M	v/; i.e.,

i�ŒD	v �C D ŒV	�: (2.3)

To complete the picture, since the dimension of the symmetric space is 2, we have
Hq D 0 for all q � 3, and that

H2.V	 ˝M	v/ Š H2.M�
	 ˝M	v/ D 11:

What we especially will want later is summarized in the following

Proposition 2.5 For integers a � b, we have as an O.2/=SO.2/-module:

H1.gl2;SO.2/R�CI .�b.sgn/.1=2/� �a.sgn/.�1=2//˝M.a;b// D C11:

Cohomology of †.�1; �2/

Now we return to the global situation and use the above local details to get the
following

Proposition 2.6 Let �i D j jdi�ı
i be algebraic Hecke characters of F with di 2 Z

and �ı
i finite-order character. Suppose that d1 � d2; and for v 2 S1 suppose also

that �ı
iv D .sgn/eiv for eiv 2 f0; 1g such that eiv 6� di .mod 2/: Let � 2 XC

0 .T2/
be the dominant integral ‘parallel’ weight determined by d1; d2 as: � D .�v/v2S1

,
where each �v D .�d2;�d1/: Then:

(1) H�.g2;1;K0
2;1I†1.�1; �2/˝M�/ ¤ 0 ” dF � � � 2dF:

Furthermore, in the extremal degrees of dF and 2dF, the cohomology group is
one-dimensional.
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(2) The group �0.K2;1/ acts trivially on HdF.g2;1;K0
2;1I†1.�1; �2/˝M�/:

Proof For v 2 S1 we have

†.�1; �2/v D �1v.1=2/� �2v.�1=2/
D j jd1 sgne1v .1=2/� j jd2 sgne2v .�1=2/
D d1 .sgn/.1=2/� d2 .sgn/.�1=2/ D V.d1;d2/:

Now, (1) follows from Künneth formula [5] for relative Lie algebra cohomology and
the fact that Hq.V	˝M	v/ D C for q D 1; 2; and is 0 if q … f1; 2g; and (2) follows
from Proposition 2.5. ut

Eisenstein Cohomology Classes Corresponding to †.�1; �2/

This works exactly as in Mahnkopf [18, Sect. 1.1] with the additional book-keeping
of having to work over a totally real field and a general coefficient system offering
no additional complications; so, we merely record the details for later use. To begin,
fix a generator Œ†.�1; �2/1� D Œ†1� of the one-dimensional

HdF.g2;1;K0
2;1I†1.�1; �2/˝M�/ D CŒ†1�:

Tensoring by Œ†1� and following it up by Eisenstein summation gives us a map:

F† W †.�1; �2/Rf

f �! HdF .S2.Rf /;M�/: (2.4)

where Rf is any open-compact subgroup for which the Rf -invariants in †.�1; �2/f ,

denoted as †.�1; �2/
Rf

f ; is nonzero. (This is the map denote ‘Eis’ on [18, p. 96].)
Furthermore, the map F† is Aut.C/-equivariant.

3 Critical Values of L-Functions for GL3 � GL1

3.1 The Critical Set for L-Functions for GL3 � GL1

Consider L.s;… � �/ the standard degree-3 L-function attached to a cuspidal
automorphic representation… of GL3.AF/ and a finite order character � of A�

F=F�.
The critical set of L.s;…��/ is the set of all integers m such that both L1.s;…1�
�1/ and L1.1 � s;…v1 � �v1/ are regular at s D m; i.e., have no poles at s D m,
where

L1.s;…1 � �1/ D
Y

v2S1

Lv.s;…v � �v/:
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As in Proposition 2.1, let � 2 XC
0 .T3/ be a weight written as � D .�v/v2S1

with
�v D .nv; 0;�nv/ for an integer nv � 0; and suppose … 2 Coh.G3; �/. For each
v 2 S1, we have

…v D IndGL3.R/
P.2;1/.R/

.D`v ˝ "…v / ; recall that `v D 2nv C 2;

and since � has finite order, we have �v is a quadratic character of F�
v D R

� which
we also denote as a signature "�v , and we write

�v D "�v D sgne�v ; e�v 2 f0; 1g:

Thus,

…v ˝ �v D IndGL3.R/
P.2;1/.R/

.D`v ˝ "…v/˝ "�v D IndGL3.R/
P.2;1/.R/

�
D`v ˝ "…v"�v

�
:

Using a well-known recipe to attach local factors (see, for example, Knapp [17]),
we can explicitly write down L1.s;…1��1/ and L1.1�s;…v1��v1/ D L1.1�
s;…1 � �1/I this latter equality being due to the fact that …1 ˝ �1 is self-dual.
We will separate this into cases depending on whether "…v"�v is trivial or not.

Case 1. "…v D "�v ;8v 2 S1:
This case may also be described as e…v D e�v for all v 2 S1: We have

…v ˝ �v D IndGL3.R/
P.2;1/.R/

.D`v ˝ 11/ and the associated L-factors are:

L1.s;…1 � �1/ � �.sC nv C 1/�
� s

2

�
;

L1.1 � s;…v1 � �v1/ � �.1 � sC nv C 1/�
�
1 � s

2

�
;

where, by �, we mean up to nonzero constants and exponential functions
which are holomorphic and nonvanishing everywhere and hence irrelevant
for computing the critical points. It is an easy exercise now to see that:

Critical set for L.s;… � �/ D f1 � nev; : : : ;�3;�1; 2; 4; : : : ; nevg;
(3.1)

where,

nev D 2


n C 1

2

�
D the largest even positive integer less than or equal to nC1:

(3.2)

Note that if n D 0 (this is the case, for example if � D 0, i.e., the case
of constant coefficients for the cohomology of GL3) then the critical set is
empty.
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Case 2. "…v ¤ "�v ;8v 2 S1:
This case may also be described as e…v � e�v C 1 .mod 2/ for all

v 2 S1: We have …v ˝ �v D IndGL3.R/
P.2;1/.R/

.D`v ˝ sgn/ and the associated
L-factors are:

L1.s;…1 � �1/ � �.sC nv C 1/�
�

sC 1
2

�
;

L1.1 � s;…v1 � �v1/ � �.1� sC nv C 1/�
�
2 � s

2

�
:

It is an easy exercise now to see that

Critical set for L.s;…��/ D f1�nod; : : : ;�2; 0; 1; 3; : : : ; nodg (3.3)

where,

nod D 2
hn

2

i
C 1 D the largest odd integer less than or equal to nC 1:

(3.4)

Note that in this case, the critical set is always nonempty.

Case 3. There exist two places v1; v2 2 S1 such that "…v1
D "�v1 and "…v2

¤ "�v2 :
Then in the expression for L1.s;…1 � �1/ we would have as a factor:

�
�

s
2

�
�
�

sC1
2

�
and it is easy to see that in this situation there are no critical points;

whence, we will not consider this case.

Remark 3.5 (Reduction to the Case of "…v D 11) Take … 2 Coh.G3; �/ as before,
and fix a nontrivial quadratic character � of F such that �v D "…v for all v 2 S1:
(Such an � exists; consider the character attached to a quadratic extension obtained
by adjoining the square root of an element that is negative for a prescribed set of
embeddings—this element may be produced using weak-approximation in F:) Then
…˝ � also has cohomology with respect to �, and it is easy to see that "…v˝�v D
11: Furthermore, to study the critical values of L.s;… ˝ �/, it suffices to consider
L.s; .… ˝ �/ ˝ .� ˝ �//: We are in Case 1 or Case 2 for the pair .…; �/ exactly
when we are in Case 1 or Case 2 for the pair .…˝ �; �˝ �/: Henceforth, we will
assume:

(1) � D .�v/v2S1
, �v D .nv; 0;�nv/ with nv � 0; and

(2) … 2 Coh.G3; �/, and "…v D 11 for all v 2 S1:

In this situation, Case 1 is defined by "�v D 11, and Case 2 by "�v D sgn for all
v 2 S1:

Before stating our next proposition, let’s recall the following well-known
branching-rule for finite-dimensional representations (see [13]):

HomGL2.C/.M�˝M�;C/ ¤ 0 ” � � �_; i:e:; �1 � ��2 � �2 � ��1 � �3:
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Proposition 3.6 Let � and … be as in Remark 3.5, and let � be a finite order
character of A

�
F =F�: We fix once and for all, a totally odd quadratic Hecke

character  of F, and make the following choices for Hecke characters �i D j jdi�ı
i ,

with integers di and finite order characters �ı
i :

Case 1. "�v D 11 for all v 2 S1:

Case 1a. m 2 f2; 4; : : : ; nevg, d1 D m � 1, d2 D �1, �ı
1 D �, and �ı

2 D 11; put
�v D .1; 1� m/:

Case 1b. m 2 f1 � nev; : : : ;�3;�1g, d1 D 1, d2 D m, �ı
1 D 11, and �ı

2 D �; put
�v D .�m;�1/:

Case 2. "�v D sgn for all v 2 S1:

Case 2a. m 2 f1; 3; : : : ; nodg; d1 D m � 1, d2 D 0, �ı
1 D �, and �ı

2 D ; put
�v D .0; 1� m/:

Case 2b. m 2 f1 � nod; : : : ;�2; 0g; d1 D 0, d2 D m, �ı
1 D , and �ı

2 D �; put
�v D .�m; 0/:

Then, in all the above four cases, we have

(1) L. 1
2
;…˝†.�1; �2// is critical;

(2) H1
�
gl2;SO.2/R�CI †.�1v; �2v/˝M�v

� D C11 as an O.2/=SO.2/-module;
(3) � � �v.

Proof The proof is a routine check in each case, and we will only briefly present the
key details:

Case 1a. For the L-value we see that

L. 1
2
;…˝†.�1; �2//DL.1;…˝�1/L.0;…˝�2/DL.m;…˝�/L.�1;…/;

and both the L-values on the right hand side are critical by (3.1). The
induced representation may be written as

†.�1; �2/v D m�1.sgn/.1=2/� �1.sgn/.�1=2/;

which has nontrivial cohomology with respect to �v D .1; 1 � m/; see
Proposition 2.5.

Case 1b. For the L-value we have

L. 1
2
;…˝†.�1; �2// D L.m;…˝ �/L.2;…/;

and for the induced representation we have

†.�1; �2/v D 1.sgn/.1=2/� m.sgn/.�1=2/:
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Case 2a. For the L-value we have

L. 1
2
;…˝†.�1; �2// D L.m;…˝ �/L.0;…˝ /;

and for the induced representation we have

†.�1; �2/v D m�1.sgn/.1=2/� .sgn/.�1=2/:

Case 2b. For the L-value we have

L. 1
2
;…˝†.�1; �2// D L.m;…˝ �/L.1;…˝ /;

and for the induced representation we have

†.�1; �2/v D .sgn/.1=2/� m.sgn/.�1=2/:

3.2 The Analytic Theory of L-Functions for GL3 � GL2

The Global Integral

We will apply the Rankin–Selberg theory of L-functions for GL3 � GL2 to the pair
.…;†/, where … is a cuspidal automorphic representation of GL3.AF/ and † D
†.�1; �2/ the induced representation defined above. Take a cusp form �… 2 V…,
and recall that a cusp form is a rapidly decreasing function. Let '�1;�2 2 †.�1; �2/,
and note that '�1;�2 is a function on B2.Q/nG2.A/. To ensure G2.Q/-invariance we
do an Eisenstein summation:

E.'�1;�2 ; g; s/ WD
X


2B2.F/nGL2.F/

j˛js'�1;�2.
g/:

It’s well-known [14, p. 80] that E.'�1;�2 ; g; s/ converges for <.s/ � 0; and has an
analytic continuation to an entire function of s if �1 ¤ �2. (In all the cases that will
be relevant to us later on, based on the choices in Proposition 3.6, we will indeed
have �1 ¤ �2:) Put

E.'�1;�2/.g/ WD E.'�1;�2 ; g; 0/:

Consider the global period integral:

I.s; �…;E.'�1;�2// WD
Z

G2.Q/nG2.A/
�….�.g//E.'�1;�2/.g/jdetgjs�1=2dg: (3.5)
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This integral converges for all s 2 C since a cusp form has rapid decay whereas an
Eisenstein series slowly increases.

To see the Eulerian nature of the above period integral, we pass to the Whitakker
models of the representations. Fix a nontrivial additive character  W AF=F ! C

�,
and suppose that w… 2W.…; /, and wE 2W.†.�1; �2/; N / are global Whittaker
vectors corresponding to �… and E.'�1;�2/; respectively. Then

I.s; �…;E.'�1;�2 //
.8s2C/D

Z

G2.Q/nG2.A/
�….�.g//E.'�1;�2/.g/jdetgjs� 12 dg;

.<.s/�0/D
Z

N2.A/nG2.A/
w….�.g//

�
�Z

N2.F/nN2.A/
E.'�1;�2 /.ng/ .n/dn

�
jdetgjs� 12 dg;

.<.s/�0/D
Z

N2.A/nG2.A/
w….�.g//wE.g/jdetgjs� 12 dg:

Now suppose �… and '�1;�2 are chosen so that w… and wE are pure tensors, written
as restricted tensors w… D ˝0w…v and wE D ˝0wEv ; then we have

Z

N2.A/nG2.A/
w….�.g//wE.g/jdetgjs� 12 dg

D
Y

v

Z

N2.Fv/nGL2.Fv/
w…v.�.gv//wEv .gv/jdetgvjs�

1
2

v dgv

DW
Y

v

‰.s;w…v ;wEv /:

We need to compute the local integrals‰.s;w…v ;wEv /; especially at ramified places.

Choice of Local Whittaker Vectors for Induced Representations of GL2

For i D 1; 2, let �i be algebraic Hecke characters of F� n A�
F . Fix a place v of F.

Let Fv be the completion of F at v, with ring of integers Ov and maximal ideal
pv. Let qv D #Ov=pv be the cardinality of the residue field, and $v denote a
fixed generator of pv . The normalized valuation val on Fv has the property that
val.$v/ D 1. For the normalized absolute value we have j$vj D q�1

v . Recall
†v WD †.�1v; �2v/ WD IndGL2.Fv/

B.Fv/
.�1v j j1=2v ; �2vj j�1=2v / is the induced representation

of GL2.Fv/ on the space

V.�1v; �2v/ WD ff W GL2.Fv/! C j f
��

a x
0 b

�
g
� D jab�1jv�1v.a/�2v.b/f .g/g:
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The action of GL2.Fv/ on V.�1v; �2v/ is by right translations. Since B.Fv/N�
2 .Fv/

is dense in GL2.Fv/, any f 2 V.�1v; �2v/ is completely determined by its values
on elements of the form

�
1 0� 1

�
. So we get a model for †.�1v; �2v/ obtained by

restricting functions in V.�1v; �2v/ to N�
2 .Fv/: We denote the space of functions

on N�
2 .Fv/ ' Fv by V.�1v; �2v/�. We recall some well-known facts about ‘new

vectors’ in induced representations (see [6] and [25, Prop. 2.1.2]):

Proposition 3.8 Suppose the conductor of �iv is Cond.�iv/ D f�iv D pni
v , say. Then

the conductor of †.�1v; �2v/ D f†v D f�1f�2 D pn
v; with n D n1 C n2. For m � 0

we define

K01.p
m/ WD f� a b

c d

� 2 GL2.Ov/ W c � 0; d � 1 .mod pm/g;

with the understanding that K01.p0/ D GL2.Ov/: Then, the space of K01.pn/-
invariant vectors in †.�1v; �2v/ is one-dimensional, say Cf new

v : Moreover, this
‘new-vector’ as a function on N�.Fv/ may be taken to be of the following shape:

• If �1v and �2v are ramified, then

f new
v

�
1 0
x 1

� D
(
�1v.x/�1jxj�1=2; if val.x/ D n2;

0; if val.x/ ¤ n2:
• If �1v is unramified and �2v is ramified, then

f new
v

�
1 0
x 1

� D
(
�1v.$v/

�n2 j$vj�n2=2; if val.x/ � n2;

0; if val.x/ < n2:
• If �1v is ramified and �2v is unramified, then

f new
v

�
1 0
x 1

� D
(
�1v.x/�1�2v.x/jxj�2; if val.x/ � 0;
0; if val.x/ > 0:

• If �1v and �2v are unramified, then we take f new
v D f sp

v ; the spherical vector, i.e.,
the vector fixed by GL2.Ov/, normalized such that f sp

v .kv/ D 1 for kv 2 GL2.Ov/:

Now we consider the new-vector f new
v in the local Whittaker model. For the global

additive character  , we will furthermore assume that the local  v is unramified,
i.e., the largest fractional ideal on which  v is trivial is Ov . For fv 2 V.�1v; �2v/,
the corresponding �1

v -Whittaker function is given by the integral:

wfv .g/ � wfv; �1
v
.g/ D

Z

N.Fv/
 v.n/fv.w

�1ı ng/dn;

where wı D
�
0 1�1 0

�
. The map fv 7! wfv identifies the local induced representation

†.�1v; �2v/ with its Whittaker model W.†.�1v; �2v/;  
�1
v /. We have the following

lemma for new vectors stated in terms of the Whittaker models:

Lemma 3.9 The space of K01.pn/�invariant vectors in W.†.�1v; �2v/;  
�1
v / is

one-dimensional, and we may take as generator wnew
†v
WD wf new

v
: Furthermore, there

exists t� D diag.t; 1/ such that wnew
†v
.t�/ ¤ 0; for some t 2 F�

v .
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Proof First part of the lemma follows from [25] and second part follows from
Kirillov theory. ut

We would like to take a convenient t� and compute the value wnew
†v
.t�/: Towards

this, to begin, suppose v is a finite unramified place, i.e., †v admits a Kv-fixed
vector which is unique up to scalars; take wı

†v
as the unique Kv-fixed vector such

that wı
†v
.1/ D 1:On the other hand, wf

sp
v

is also a Kv-fixed vector, and so there exists
a Cv 2 C

� such that wf
sp
v
D Cvwı

†v
I then Cv D wf

sp
v
.1/: We have the well-known

proposition [7, Thm. 5.4], [26, Chap. 5, p. 352]:

Proposition 3.10 Suppose �1v and �2v are unramified characters, and f sp
v is

the spherical vector in the induced representation †v, then Cv D wf ı
v
.1/ D

L.2; �1v��1
2v /

�1:
Let’s note that in the usual Casselman-Shalika formula, one sees the value at

s D 1 of a local L-function, but recall in our case that for †.�1; �2/ the inducing
representation is �1.1=2/��2.�1=2/which accounts for the L-value at s D 2, since
L.1; �1v.1=2/.�2v.�1=2//�1/ D L.2; �1v��1

2v /:

Let S�i be the set of finite places where �i is ramified; then put S† D S�1 [
S�2 . Let v 2 S†. Applying Lemma 3.9, we take for wnew

†v
the unique K01.pn/-fixed

vector normalized such that wnew
†v
.t�/ D 1: Since the space of new-vectors is one-

dimensional, there exists Av 2 C
� such that wf new

v
D Avwnew

†v
. Hence, Av D wfv

�
t 0
0 1

�
:

The precise value of Av is given by the following

Proposition 3.11 Let f new
v be the new vector in the induced representation†v as in

Proposition 3.8. Then

Av D wf new
v

�
t 0
0 1

� D
(

q�n2=2
v �2v.$

�n2 /G.�2v/; if �2v is ramified,

Vol.Ov/; if �2vis unramified:

Proof Before we begin, let’s recall the following well-known fact about local
Gauß sums: if the conductor of  v if Ov , then

Z

O�
v

 v.a"/�v."/d
�" D

(
��1
v .a$

e/G.�v/; if valv.a/ D �e;

0; otherwise,

where e D cond.�v/. Thus, by the definition of the Whittaker function we have

wf ess
v

�
t 0
0 1

� D
Z

N.Fv/
f
�
w�1ı u

�
t
1

��
 v.u/du

D
Z

F�
v

f
�
w�1ı

�
1 x
0 1

��
t 0
0 1

��
 v.x/dx D

Z

F�
v

f
��
0 �1
t x

��
 v.x/dx:



214 A. Raghuram and G. Sachdeva

Make the substitution x 7�! tx, and use
�
0 �1
t tx

� D �
x�1 �1
0 tx

��
1 0

x�1 1

�
to rewrite the

last integral as

jtjv
Z

F�
v

f
��

x�1 �1
0 tx

��
1 0

x�1 1

��
 v.tx/dx

D jtjv
Z

F�
v

�1v.x/
�1�2v.tx/jx�2t�1jvf

�
1 0

x�1 1

�
 v.tx/dx

D
X

n2Z

Z

$n
vO�

v

�1v.x/
�1�2v.tx/jx�2jvf

�
1 0

x�1 1

�
 v.tx/dx:

Now to compute wf ess
v

�
t 0
0 1

�
using the very last expression, we consider three cases:

(1) �1v and �2v are both ramified. In this case, by Proposition 3.8, we have
f
�
1 0

x�1 1

� D 0 for all x such that val.x�1/ ¤ n2. Hence only the summand
for n D �n2 survives to get:

wf ess
v

�
t 0
0 1

� D
Z

$
�n2
v O�

v

jxj�2v �1v.x/�1�2v.tx/�1v.x/jxj
1
2
v  v.tx/dx

D
Z

$
�n2
v O�

v

jxj
�3
2
v �2v.tx/ v.tx/dx .put x D $�n2

v y/

D j$�n2
v j

�3
2
v

Z

O�
v

�2v.t$
�n2
v y/ v.t$

�n2
v y/j$�n2

v jvdy

D j$vj
n2
2
v �2v.$

�n2
v /

Z

O�
v

�2v.ty/ v.$
�n2
v ty/d�y:

Recall that on O�
v ; dy D d�y: Note that

R
O�
v
�2v.y/ v.$�n2

v ty/d�y ¤ 0 ,
val.$�n2

v t/ D �n2, t 2 O�
v : Put ty D z to get

wf ess
v

�
t 0
0 1

� D j$vj
n2
2
v �2v.$

�n2
v /

Z

O�
v

�2v.z/ v.$
�n2
v z/d�z

D q�n2=2
v �2v.$

�n2 /G.�2v/:

(2) �1v is unramified and �2v is ramified. In this case, by Proposition 3.8, we have
f
�
1 0

x�1 1

� D 0, for n > �n2. Hence we get

wf ess
v

�
t 0
0 1

� D
X

n��n2

Z

$n
vO�

v

jxj�2v �1v.x/�1�2v.tx/�1v.$�n2
v /j$vj�n2=2

v  v.tx/dx

put x D $n
v yI

D
X

n��n2

j$vj�n�n2=2
v �1v.$

�n�n2
v /�2v.$

n
v /

Z

O�
v

�2v.ty/ v.t$
n
v y/d�y:
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For the inner integral we have:
R
O�
v
�2v.y/ v.$n

v ty/d�y ¤ 0 , val.$n
v t/ D

�n2: Let’s take t 2 O�
v , then only the summand for n D �n2 will be non-zero,

and we get:

wf ess
v

�
t 0
0 1

� D q�n2=2
v �2v.$

�n2
v /

Z

O�
v

�2v.ty/ v.t$
�n2
v y/d�y

D q�n2=2
v �2v.$

�n2
v /G.�2v/:

(3) �1v is ramified and �2v is unramified. In this case, by Proposition 3.8, we have
nonzero summands corresponding to n � 0:

wf ess
v

�
t 0
0 1

� D
X

n�0

Z

$n
vO�

v

jxj�2v �1v.x/�1�2v.tx/�1v.x/�2v.x/�1jxj2v v.tx/dx

D
X

n�0

Z

$n
vO�

v

�2v.t/ v.tx/dx:

Now we take t 2 O�
v so that �2v.t/ D 1 and  v.tx/ D 1 for x 2 $n

vO�
v and

n � 0I this gives:

X

n�0

Z

$n
vO�

v

dx D Vol.Ov/:

ut
For future reference let’s define

A† WD
Y

v2S†

Av: (3.6)

Integral Representation of Lf .
1
2
; … � †.�1; �2//

Let’s go back to the period integral in (3.5) and it’s expression as a product of the
local zeta integrals involving Whittaker vectors:

I.s; �…;E.'�1;�2 // D
Y

v

‰.s;w…v ;wEv /: (3.7)
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We now make a judicious choice of Whittaker vectors and compute the zeta integrals
as follows:

1. If v … S† [ S1, take w…v D wess
…v

which is the essential vector as in [15], and
wEv D wf

sp
v

, then we have:

‰.s;wess
…v
;wf

sp
v
/ D

Z

N2.Fv/nGL2.Fv/
wess
…v
.�.gv//wf

sp
v
.gv/jdet.gv/js�

1
2

v dgv

D L.2; �1v�
�1
2v /

�1

Z

N2.Fv/nGL2.Fv/
wess
…v
.�.gv//w

ı

v .gv/jdet.gv/js�
1
2

v dgv

D L.2; �1v�
�1
2v /

�1L.s;…v �†.�1v; �2v//:

Let’s define

L† WD LS†.2; �1�
�1
2 /

�1 D
Y

v2S†

Lv.2; �1v�
�1
2v /

�1: (3.8)

2. If v 2 S†, take wEv D wf new
v

, and let w…v be the unique Whittaker function
whose restriction to �.GL2.Fv// is supported on N2.Fv/t�K01.cond.†v//; and on
this double coset it’s given by w…v.�.nt�k// D  .n/, for all n 2 N2.Fv/ and all
k 2 K01.cond.†v//:The existence and uniqueness of w…v follows from Kirillov
theory [1, Section 5]. So,

‰.s;w…v ;wf ess
v
/ D

Z

N2.Fv/nGL2.Fv/
w…v.�.gv//wf new

v
.gv/jdet.gv/js�

1
2

v dgv

D Av

Z

N2.Fv/nGL2.Fv/
w…v.�.gv//w

new
†v
.gv/jdet.gv/js�

1
2

v dgv

D AvVol.K01.cond.†v///:

Let’s define

V† WD
Y

v2S†

Vol.K01.cond.†v///: (3.9)

3. If v 2 S1, let w…v and wEv be arbitrary nonzero vectors. (Later these will be
certain ‘cohomological vectors’.)

Let’s note that the function '�1;�2 in the induced space †.�1; �2/ is taken
accordingly:

'�1;�2 D '1 ˝ 'f ; 'f D ˝v…S† f sp
v ˝v2S† f new

v ; (3.10)
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with '1 some cohomogical vector. Similarly, the cusp form �… is chosen as:

�… D �1 ˝ �f ; �f D ˝v…S1
�v; �v corresponds to w…v ; (3.11)

with �1 some cohomogical vector.
With the above choice of Whittaker vectors (3.7) becomes (after multiplying

and dividing by suitable local factors and after using the definitions in (3.6), (3.8)
and (3.9)):

I.s; �…;E.'�1;�2 // D
Y

v2S1

‰v.s;w…v ;wEv / �
A† � V† � L†Q

v2S†
L.s;…v �†.�1v; �2v//

�Lf .s;… �†.�1; �2//
Lf .2; �1�

�1
2 /

:

For the factors for v 2 S1, suppose s D 1=2 is critical (as we will take a little
later on), then by definition of criticality, L. 1

2
;…v � †v/ is finite. Also ‰.s;w…v ;wfv /

Lv .s;…v�†v/
is holomorphic for all s 2 C, hence

‰.1
2
;w…v ;wfv / WD

�
‰.s;w…v ;wfv /

Lv .s;…v�†v/
�
jsD1=2 � L. 12 ;…v �†v/

is finite. Furthermore, the local L-factors are nonzero and the finite part of a global
L-function Lf .s;…�†.�1; �2// has an analytic continuation for all s. Hence we get,
at s D 1

2
:

I. 1
2
; �…;E.'�1;�2 // D

Y

v2S1

‰v.
1
2
;w…v ;wEv / �

A† � V† � L†
LS†.

1
2
;… �†/ �

Lf .
1
2
;… �†.�1; �2//
Lf .2; �1�

�1
2 /

;

(3.12)

where, LS†.
1
2
;… �†/ D Qv2S†

Lv.
1
2
;…v �†.�1v; �2v//:

3.3 Cohomological Interpretation: L-Value as a Poincaré
Pairing

In this section, we interpret the period integral I.s; �…;E.'�1;�2 // in terms of
Poincaré duality. More precisely, the vector w…f will correspond to a cohomology
class #…;�… in degree bF

3 D 2dF (the bottom degree of the cuspidal range for G3) on
a locally symmetric space denoted by S3.Kf / for GL3, and similarly 'f 2 †.�1; �2/f
will correspond to a class #† in degree bF

2 D dF. The class #…;�… , after dividing by
a certain period, has good rationality properties. Pull back #… along the proper map
� W QS2 �! S3; and wedge (or cup) with #†, to give a top degree class on QS2 with
coefficients in a tensor product sheaf. Now if s D 1=2 is critical which is the same as
saying the constituent sheaves are compatible (which is the case when the weights
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interlace: � � �_), then we get a top-degree class on QS2 with constant coefficients.
Apply Poincaré duality, i.e., fix an orientation on QS2 and integrate. One realizes then
that this is essentially the above period integral. Interpreting the integral, and hence
the L-value it represents, as a cohomological pairing permits us to study arithmetic
properties of such special values, since this pairing is Galois equivariant. We now
make all this precise.

The Cohomology Classes

Recall from Proposition 2.1, given any … 2 Coh.G3; �/ and for the signature �…
for…, the cohomology group

HbF
3 .g3;1;K0

3;1I…1 ˝M�/.�…/ ¤ 0;

and is one-dimensional. Fix a basis Œ…1� of this one-dimensional space, and this
gives us the following comparison isomorphism (see [23]):

F…f � F…f ;�…;Œ…1� WW.…f / �! HbF
3 .g3;1;K0

3;1IV… ˝M�/.�…/: (3.13)

The isomorphism F…f is a G3.Af /-equivariant map between irreducible modules,
both of which have Q.…/ structures that are unique up to homotheties; we can adjust
the map by a scalar—which is the period—so as to preserve rational structures; for
more details see [23]. There is a nonzero complex number p�….…/ attached to the
datum .…f ; �…; Œ…1�/ such that the normalized map,

Fı
…f
WD p�….…/�1F…f

is Aut.C/-equivariant, i.e., the following diagram commutes

The complex number p�….…/ is well-defined up to multiplication by elements
of Q.…/�. The collection fp�….�…/ W � 2 Aut.C/g is well-defined in
.Q.…/˝C/�=Q.…/�. In terms of the un-normalized maps, we can write the above
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commutative diagram as

� ı F…f D
�
�.p�….…//

p�….�…/

�
F�…f ı �:

Now define the cohomology class attached to the global Whittaker vector w…f as,

#…;�… WD F…f .w…f /; and #ı
…;�…
D p�….…/�1#…;�…: (3.14)

Let Kf be an open compact subgroup of G3.Af / which fixes w…f and
such that, †.�1; �2/f has vectors fixed under Rf WD ��Kf : Then #…;�… is in

HbF
3 .g3;1;Kı

3;1IVKf

… ˝ M�/.�…/ and via certain standard isomorphisms [23,

Section 3.3], we may identify it as a class in H
bF
3

cusp.S3.Kf /;fM�/.e…f /, where
e…f WD …f ˝ �… is a representation of G3.Af / ˝ �0.K3;1/. Furthermore, since
cuspidal cohomology injects into cohomology with compact support, we get

#…;�… 2 H
bF
3

c .S3.Kf /;fM�/. Let’s also recall from Proposition 2.1 that bF
3 D 2dF:

On the other hand, recall the map in (2.4):

F†f W †.�1; �2/Rf

f �! HdF.S2.Rf /;fM�/;

which is Aut.C/-equivariant, that is, � ı F† D F�† ı � for all � 2 Aut.C/: Define
the class

#ı
† WD F†.'f /; (3.15)

where 'f is defined in (3.10). Using the canonical map �� (the map induced by � in
cohomology)

we get ��#† in HdF .QS2.Rf /;fM�/.
For the open compact subgroups Kf of GL3.Af / and Rf D ��.Kf / of GL2.Af /, the

map �, being a proper map, induces a map between the cohomology with compact
supports:

�� W H�
c .S3.Kf /;fM�/ �! H�

c .
QS2.Rf /; �

�fM�/:
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Now consider the following diagram:

Observe that dim.QS2.Rf // D dF � dim.GL2.R/0=SO.2// D 3dF: Hence

#…;�… ^ #† 2 H
dim.QS2.Rf //
c .QS2.Rf /; �

�fM� � ��fM�/:

Compatibility of Sheaves

We now assume the hypotheses of Proposition 3.6. The interlacing condition of
weights � � �_, gives the branching rule for finite-dimensional representations
as

HomGL2.C/.�
�M�;M�_/ ¤ 0

which gives a non-trivial pairing, h�; �i W ��M� �M� �! C which in turn induces
a pairing at the level of sheaves:

h�; �i W ��fM� � ��fM� �! C:

Now by composing this map with the ^-map gives

h�; �i ı ^ W Hdim.QS2.Rf //
c .QS2.Rf /; �

�fM� � ��fM�/ �! H
dim.QS2.Rf //
c .QS2.Rf /;C/:

The Global Pairing

We now have a top-degree class on an orientable manifold. We fix an orientation,
compatibly on all the connected components; this was called the Harder-Mahnkopf
cycle in [20, Sect. 3.2.3] (see also [21, Sect. 2.5.3.3]), and defined therein as

C.Rf / D 1

Vol.Rf /

X

x2Q�nA�=R>0det.Rf /

Œ#x;Rf �:
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The action of ı2 D .�1; 1/ on this cycle C.Rf / is given by r�
ı2

C.Rf / D .�1/C.Rf /:

We can define the global pairing as:

h#…;�…; #†iC.Rf /
D
Z

C.Rf /

��#…;�… ^ ��#†: (3.16)

To evaluate this global pairing, we will write the cohomology classes as
differential forms, and as in [20, Sect. 3.2.5], before we evaluate the global pairing
we will need to discuss an analogous pairing involving the .g1;K01/-classes at
infinity.

The Pairing at Infinity

(See [21, Sect. 2.5.3.6].) Recall, that we have fixed Œ…1� a basis of the one-
dimensional space HbF

3 .g3;1; K0
3;1I…1 ˝M�;C/.�…/, and similarly, we have

Œ†1� generating the one-dimensional space HdF.g2;1; K0
2;1I†1.�1; �2/˝M�;C/.

Define dF
n D dim.gn;1=kn;1/: To compute the pairing at infinity, we choose a basis

fyj W 1 � j � dF
2 g of .g2;1=k2;1/� such that fyj W 1 � j � dF

2 � 1g is a basis
of .g2;1=c2;1/�. Next, fix a basis fxi W 1 � i � dF

3 g of .g3;1=k3;1/�, such that
��xj D yj for all 1 � j � dF

2 � 1, and ��xj D 0 if j � dF
2 . We further note that

y1 ^ y2 ^ � � � ^ ydF
2

corresponds to a G2.R/
0-invariant measure on QS2.Rf /. Let fm˛g

(resp., fmˇg) be a Q-basis for M� (resp., M�/:

The class Œ…1� is represented by a K0
3;1-invariant element in^bF

3 .g3;1=k3;1/�˝
W.…1/˝M�;C which can be written as

Œ…1� D
X

iDi1<			<i
bF
3

X

˛

xi ˝ w1;i;˛ ˝ m˛; (3.17)

where w1;i;˛ 2 W.…1;  1/: Similarly, Œ†1� is represented by a K0
2;1-invariant

element in

^dF .g2;1=k2;1/� ˝†1.�1; �2/˝M�

which we write as

Œ†1� D
X

jDj1<			<jdF

X

ˇ

yj ˝ '1;j;ˇ ˝ mˇ: (3.18)

Let w1;j;ˇ 2W.†1.�1; �2/;  �11 / be the Whittaker vector corresponding to '1;j;ˇ:

We now define a pairing at infinity by

hŒ…1�; Œ†1�i D
X

i;j

s.i; j/
X

˛;ˇ

hm˛;mˇi‰1.1=2;w1;i;˛;w1;j;ˇ/; (3.19)
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where s.i; j/ 2 f0;�1; 1g is defined by ��xi ^ yj D s.i; j/y1 ^ y2 ^ � � � ^ ydF
2
.

Recall that the zeta integral at infinity ‰1.1=2;w1;i;˛;w1;j;ˇ/ is defined only after
meromorphic continuation. However, the assumption that s D 1=2 is critical ensures
that they are all finite, hence hŒ…1�; Œ†1�i is finite.

Lemma 3.26 hŒ…1�; Œ†1�i ¤ 0:
Proof It’s easy to see that hŒ…1�; Œ†1�i D Qv2S1

hŒ…v�; Œ†v�i; hence it is enough
to prove nonvanishing locally for every v 2 S1: As in section “Cohomology of
Some Representations of GL2.R/”, for the discrete series representation, it is well
known that

H1.gl2;SO.2/R�CID�_ ˝M�/ Š CŒD��
C ˚ CŒD��

�:

Recall from (2.3) that ŒD��
C maps to Œ†v� under the map denoted i� therein, and this

map also kills ŒD��
�. One can conclude that

hŒ…v�; Œ†v�i D hŒ…v�; ŒD��
Ci:

Now Kasten and Schmidt [16] have proved hŒ…v�; ŒD��
Ci ¤ 0, which proves the

lemma. ut
We are now justified in making the definition:

P1.�; �/ WD 1

hŒ…1�; Œ†1�i : (3.20)

L-Value as a Global Pairing of Cohomology Classes

Using (3.13) and (3.17) we can write:

#…;�… D
X

i

X

˛

xi ˝ �i;˛ ˝ m˛;

where the cusp form �i;˛; in the  -Whittaker model of…, looks like w…f ˝w1;i;˛ I
recall from (3.11) that w…f corresponds to �f . Similarly, using (2.4) and (3.18), we
may write

#ı
† D

X

j

X

ˇ

yj ˝ Ej;ˇ ˝ mˇ;

where the Eisenstein series Ej;ˇ is constructed by taking Eisenstein summation for
the function 'f ˝ '1;j;ˇ in the full induced representation †.�1; �2/; with 'f as is
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in (3.10). We get the global pairing

h#…;�…; #ı
†iC.Rf /

D P
i;j

P
˛;ˇ s.i; j/hm˛;mˇi

R
QS2.Rf /

�i;˛.�.g//Ej;ˇ.g/ dg

D vol.Rf /
P

i;j

P
˛;ˇ s.i; j/hm˛;mˇiI. 12 ; �i;˛;Ej;ˇ/:

The second equality is because of �f and 'f are both Rf invariant, and also by our
normalization of measure in section “The Choice of Measures” that vol.SO.n// D
1: Using (3.12) we get:

h#…;�…; #ı
†iC.Rf /

D 1

P1.�; �/
� vol.Rf /A† � V† � L†

LS†.
1
2
;… �†/ � Lf .

1
2
;… �†.�1; �2//
Lf .2; �1�

�1
2 /

:

(3.21)

Dividing by the period p�….…/ to get the rational class #ı
…;�…

now proves the
following

Theorem 3.29 Let … 2 Coh.G3; �/ with � 2 XC
0 .T3/, and †.�1; �2/ be the

induced representation of GL2.AF/ as in Sect. 2.3. Let � 2 XC
0 .T2/ be the dominant

integral ‘parallel’ weight determined by d1; d2 as: � D .�v/v2S1
, where each

�v D .�d2;�d1/: Assume that s D 1=2 is critical for L.s;… � †.�1; �2// and
that � � �_. Then there exist nonzero complex numbers P1.�; �/ and p�….…/
such that

Lf .
1
2
;… �†.�1; �2//

P1.�; �/ p�….…/ Lf .2; �1�
�1
2 /
D .vol.Rf /V†/ � .L† LS†.

1
2
;… �†//

�A† � h#ı
…;�…

; #ı
†iC.Rf /

:

This already shows that the left hand side is algebraic. Moreover we can study
the action of the Galois group of Q on the various quantities.

The Main Identity for the Critical Values Lf .m; … ˝ �/

Now recall the fact that the L-value at s D 1=2 attached to the pair of representations
.…;†.�1; �2// decomposes as

Lf .
1
2
;…�†.�1; �2// D Lf .1;…˝�1/Lf .0;…˝�2/ D Lf .1Cd1;…˝�ı

1 /Lf .d2;…˝�ı

2 /

Now we consider the four cases as delineated in Proposition 3.6. Before getting into
details, let’s comment that in each case the L-value L.2; �1��1

2 / in the denominator
of the left hand side of the above theorem, which is the same as L.2 C d1 �
d2; �ı

1�
ı�1
2 /, is in fact a critical value of a classical Dirichlet L-function of a finite

order Hecke character of F for the choices of dj and �ı
j , j D 1; 2:
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Case 1. � is even, that is, "�v D 11 for all v 2 S1:

Case 1a. m 2 f2; 4; : : : ; nevg. Take d1 D m � 1, d2 D �1, �ı
1 D �, and �ı

2 D 11.
Put �v D .1; 1� m/: Then Theorem 3.29 takes the form:

Lf .m;…˝ �/
P1.�;m/�C

r .…/ Lf .2C m; �/
D .vol.Rf /V†/ � .L† LS†.

1
2
;… �†//

�A† � h#ı
…;�…

; #ı
†iC.Rf /

; (3.22)

where the modified period is defined as

�C
r .…/ WD p�….…/Lf .�1;…/�1: (3.23)

Case 1b. m 2 f1�nev; : : : ;�3;�1g: Take d1 D 1, d2 D m, �ı
1 D 11, and �ı

2 D �.
Put �v D .�m;�1/: Then Theorem 3.29 takes the form:

Lf .m;…˝ �/
P1.�;m/�C

l .…/Lf .3 � m; ��1/
D .vol.Rf /V†/ � .L† LS†.

1
2
;… �†//

�A† � h#ı

…;�…
; #ı

†iC.Rf /
; (3.24)

where the modified period is defined as

�C
l .…/ WD p�….…/Lf .2;…/

�1: (3.25)

Case 2. � is odd, that is, "�v D sgn for all v 2 S1: In this case, we fix once and for
all, a totally odd quadratic Hecke character  of F.

Case 2a. m 2 f1; 3; : : : ; nodg: Take d1 D m�1, d2 D 0, �ı
1 D �, and �ı

2 D . Put
�v D .0; 1 �m/: Then Theorem 3.29 takes the form:

Lf .m;…˝ �/
P1.�;m/��

r .…/Lf .mC 1; ��1/
D .vol.Rf /V†/ � .L† LS†.

1
2
;… �†//

�A† � h#ı

…;�…
; #ı

†iC.Rf /
; (3.26)

where the modified period is defined as

��
r .…/ WD p�….…/Lf .0;…˝ /�1: (3.27)

Case 2b. m 2 f1 � nod; : : : ;�2; 0g: Take d1 D 0, d2 D m, �ı
1 D , and �ı

2 D �.
Put �v D .�m; 0/: Then Theorem 3.29 takes the form:

Lf .m;…˝ �/
P1.�;m/��

l .…/Lf .2 �m; ��1/
D .vol.Rf /V†/ � .L† LS†.

1
2
;… �†//

�A† � h#ı

…;�…
; #ı

†iC.Rf /
; (3.28)
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where the modified period is defined as

��
l .…/ WD p�….…/Lf .1;…˝ /�1: (3.29)

3.4 Galois Equivariance and Proof of Theorem 1.1

The Action of Aut.C/

We study Galois equivariance, i.e., behaviour under the action of � 2 Aut.C/ of all
the quantities in the main identity for each of the four cases. Let’s parse the Galois
action on the various ingredients involved in the main identities:

• The Poincaré duality pairing h ; i is Galois-equivariant. (See, for example, [20,
Prop. 3.14].)

• The Galois action on the class #ı
…;�…

. Due to our specific choice of finite
Whittaker vectors w…f , exactly as in [20, Prop. 3.15], we get

�.#ı
…;�…

/ D �.G.!†f //

G.!�†f /
#ı
�…;��…

D �.G.�1�2//
G.��1��2/

#ı
�…;��…

:

Furthermore, for Dirichlet characters�1 and �2, it’s well-known (see [27, Lemma
8]) that

�

� G.�1�2/
G.�1/G.�2/

�
D G.��1��2/

G.��1/G.��2/
:

Putting the above two together we get

�.#ı
…;�…

/ D �.G.�1/G.�2//
G.��1/G.��2/

#ı
�…;��…

: (3.30)

• To understand the Galois action on the class #ı
†; we begin with the function 'f

which is the finite part of '�1;�2 as defined in (3.10). Let’s denote 'f also as
'�1f ;�2f : Now, � 2 Aut.C/ acts on 'f by acting on all it’s local components.
The action of Aut.C/ on †v is given by acting on the values of a function in
the induced space (see [18, Sect. 1.1]). For the local components of '�1f ;�2f (with
notations suitably modified) we get for the spherical vectors:

�f sp
v .�1v; �2v/ D f sp

v .
��1v;

��2v/;

and from our choices of new vectors made in Proposition 3.8, we get for v 2
S† n S�2 :

�f new
v .�1v; �2v/ D f new

v .��1v;
��2v/;
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however, for v 2 S�2—the set of ramified primes for �2, we get:

�f new
v .�1v; �2v/ D �.qn2=2

v /

qn2=2
v

f new
v .��1v;

��2v/:

(Note that the quantity �.qn2=2
v /=qn2=2

v is˙1.) Putting these together we get

�'�1f ;�2f D
0

@
Y

v2S�2

�.qn2=2
v /

qn2=2
v

1

A'��1f ;� �2f :

Since the Eisenstein map F† in (2.4) is Aut.C/-equivariant, we get

�.#ı
†/ D

0

@
Y

v2S�2

�.qn2=2
v /

qn2=2
v

1

A#ı
�†: (3.31)

• Now we look at Galois action on the quantity A†. Recall from (3.6) that A� DQ
v2S†

Av and the values of Av are computed in Proposition 3.11. Now the volume
of Ov , by our choice of measures, is rational. We easily deduce that

�.A†/ D
0

@
Y

v2S�2

�.q�n2=2
v /

q�n2=2
v

1

A � �.G.�2//G.��2/
A�†: (3.32)

From (3.31) and (3.32) we get

�.A† #
ı
†/ D

�.G.�2//
G.��2/

A�† #
ı
�†: (3.33)

• The quantities L† and LS†.
1
2
;… � †/ are Galois equivariant as they are finite

products of local critical L-values; this follows from [20, Prop. 3.17].
• The volume terms vol.Rf / and V† are rational numbers by our choice of

measures.
• Finally, for a totally even Dirichlet character % of F, and an even positive integer

r, it’s well-known that we have the following rationality result for the critical
value Lf .r; %/:

�

�
Lf .r; %/

.2�i/rG.%/

�
D Lf .r; �%/

.2�i/rG.�%/ : (3.34)
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Proof of Theorem 1.1

The line of proof is the same in each of the four cases, and so we only present
the details in Case 1a, and leave the remaining three to the reader. To begin,
rewrite (3.22) as

Lf .m;…˝ �/
P11.�;m/�C

r .…/G.�/
D �

vol.Rf /V†
� � �L† LS†.

1
2
;… �†/� �

�
Lf .2Cm; �/

.2�i/2CmG.�/

�

�h#ı
…;�…

;A† #
ı
†i;

where P11.�;m/ D .2�i/2CmP1.�;m/: Now apply � 2 Aut.C/ to both sides. The
first three parentheses on the right hand side are Aut.C/-equivariant as explained
above. For � applied to the pairing of the cohomology classes, after using Galois-
equivariance of the duality pairing, and after using (3.30) and (3.33) we get

�
�h#ı

…;�…
;A† #

ı
†i
� D h#ı

�…;�…
;A�† #

ı
�†i

�.G.�1/G.�2/2/
G.��1/G.��2/2

:

In the current situation of Case 1a, we have G.�1/ D G.�ı
1/ D G.�/ and G.�2/ D

G.�ı
2/ D G.11/ D 1: Hence,

�

�
Lf .m;…˝ �/

P11.�;m/�C
r .…/G.�/

�
D �

vol.Rf /V�†

� � �L�† LS†.
1
2
; �… � �†/

�

�
�

Lf .2C m; ��/

.2�i/2CmG.��/

�
� h#ı

�…;�…
;A�† #

ı
�†i

�.G.�//
G.��/ ;

which is the same as

�

�
Lf .m;…˝ �/

P11.�;m/�C
r .…/G.�/

�
D Lf .m; �…˝ ��/

P11.��;m/�C
r .

�…/G.��/ �
�.G.�//
G.��/ ;

and which in turn may be rewritten as

�

�
Lf .m;…˝ �/

P11.�;m/�C
r .…/G.�/2

�
D Lf .m; �…˝ ��/

P11.��;m/�C
r .

�…/G.��/2 ;

proving the Galois-equivariant version of Theorem 1.1 in Case 1a. This implies in
particular that

Lf .m;…˝ �/ �Q.…;�/ P11.�;m/�C
r .…/G.�/2:
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In the remaining cases of 1b, 2a and 2b, the proof is similar; let’s suffice it to
mention two details:

1. The appearance of Gauß sums come from the L-value L.2; �1��1
2 / and from

the Galois action on cohomology classes as in (3.30) and (3.33), and total
contribution is of the form

G.�1��1
2 /G.�1�2/G.�2/ � G.�21�2/ � G.�1/2G.�2/:

2. The power of .2�i/ to modify P1.�;m/ comes from (3.34) as applied to

Lf .2; �1�
�1
2 / D L.2C d1 � d2; �

ı
1�

ı�1
2 /:

This gives us P21.�;m/ D P1.�;m/.2�i/3�m, P31.�;m/ D P1.�;m/
.2�i/mC1 and P41.�;m/ D P1.�;m/.2�i/2�m, in cases 1b, 2a, and 2b,
respectively.

This concludes the proof of Theorem 1.1.

3.5 Example: Symmetric Square L-Function of a Hilbert
Modular Form

Let ' be a primitive holomorphic cuspidal Hilbert modular form over F of weight
.k1; : : : ; kd/, where d D dF: Suppose that all the kj have the same parity, and
that ' is not of CM-type. The purpose of this section is to put on record that
Theorem 1.1 applies to give a rationality result for all the critical values of the
symmetric square L-function L.s;Sym2'; �/ attached to ', twisted by a finite order
Dirichilet character �.

We will work with the L-function L.s;Sym2'; �/ in the automorphic context,
toward which let ….'/ be the cuspidal automorphic representation of GL2.AF/

attached to '. By Gelbart–Jacquet [11] we know the existence of an isobaric
automorphic representation Sym2.….'// of GL3.AF/, defined as Sym2.….'// D
˝0
vSym2.…v.'//, where Sym2.…v.'// is an irreducible admissible representation

of GL3.Fv/ obtained via the local Langlands symmetric-square transfer of …v.'/:

If ' is not of CM-type, i.e., ….'/ is not a dihedral representation then it’s well-
known that Sym2.….'// is cuspidal. If L.s;Sym2.….'//˝ �/ denotes the standard
degree-3 L-function of Sym2.….'// twisted by � then we have

L.s;Sym2'; �/ D L.s � k0 C 1;Sym2.….'//˝ �/; (3.35)

where k0 D min.kj/: This may be seen as in the verification of [24, Thm. 1.4, (1)].
For convenience, let’s suppose that all the kj � 2 are even. Then ….'/ is

cohomological to the weight � D .�j/ where �j D ..kj � 2/=2;�.kj � 2/=2/:



Critical Values of L-Functions for GL3 � GL1 over a Totally Real Field 229

Following [21], we may verify that Sym2.….'// 2 Coh.G3ISym2.�// for the
weight Sym2.�/ D .Sym2.�j//; where Sym2.�j/ D .kj � 2; 0; 2 � kj/:

In the notation of Theorem 1.1, we get n D min.nj/ D k0 � 2: For convenience
again, let’s consider the case when � is totally even. Then the critical set for
L.s;Sym2.….'//˝ �/ is given by

f3 � k0; : : : ;�1I 2; 4; : : : ; k0 � 2g:

From (3.35) we get that the critical set for L.s;Sym2'; �/ is the set

f2; 4; : : : ; k0 � 2I k0 C 1; k0 C 3; : : : ; 2k0 � 3g:

This is to be interpreted as an empty set if k0 D 2: If m is critical for L.s;Sym2'; �/,
and is on the right of the center of symmetry, i.e., k0 C 1 � m � 2k0 � 3 and m is
odd, then Case 1a. of Theorem 1.1 takes the form:

L.m;Sym2'; �/ �Q.';�/ P11.Sym2.�/;m � k0 C 1/�C
r .Sym2.….'//G.�/2:

(3.36)

It’s an easy exercise to see that Q.Sym2.….'//; �/ 
 Q.….'/; �/ D Q.'; �/: (See
also statements (4) and (5) of [24, Thm. 1.4].) Moreover, we may state this result in
a Galois-equivariant manner.

A comparison of (3.36) with the main result of Sturm [28] for the critical values
of the symmetric-square L-functions for an elliptic modular form would lead us to
speculate that our global period�C

r .Sym2.….'// is related in some explicit way to
the Petersson inner product h'; 'i:
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Indecomposable Harish-Chandra
Modules for Jacobi Groups

Martin Raum

Abstract We describe some indecomposable .g;K/-modules for Jacobi groups
that admit an automorphic realization with possible singularities. A particular
tensor product decomposition of universal enveloping algebras of Jacobi Lie
algebras, which does not lift to the groups, allows us to study distinguished highest
weight modules for the Heisenberg group. We encounter modified theta series as
components of vector-valued Jacobi forms, whose arithmetic type is not completely
reducible.

1 Introduction

Analytic properties of modular forms can be described in an advantageous way
when passing to automorphic forms and inspecting the arising component at infinity,
which is a representation of a real Lie group. The resulting notion of .g;K/-modules
may be viewed as a systematic way of interpreting differential equations satisfied
by the initially studied modular form.

Among the important contributions of representation theory to modular forms is
the classification of irreducible local components in context of the local Langlands
Correspondence. For the infinite place, it was achieved by Knapp and Zucker-
man [12] and Langlands [13]. There are cases of automorphic Harish-Chandra
modules, principal series that correspond to Eisenstein series in the classical
language, for which local components at infinity are not irreducible. Their socle
series and extension classes have not been determined in full generality, but many
special cases are settled. In fact, any endeavor to handle extensions of Lie group
representations has to be started with care: Gel’fand and Ponomarev [10] illustrated
in the late ’60s that the class of all indecomposables is prohibitively large.

The theory of harmonic weak Maaß forms [5, 26] has generated innumerable
applications during the past decade. An overview of the status in 2009 can be found
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in [14]. Other variants of harmonic weak Maaß forms have entered the stage in the
mean time. Generalizing the growth condition in [15], a notion of harmonic weak
Maaß Jacobi forms was found in [3], which after correcting issues with singularities
led to a classification in [4]. That theory was formulated for so-called one-variable
Jacobi forms. Further generalizations to several elliptic variables were discussed
in [7, 23]. The author has also initiated a theory of harmonic weak Siegel Maaß
forms [22].

Connecting ideas from representation theory with the multitude of notions of
harmonic weak Maaß forms that begin to emerge, we suggest the study of the .g;K/-
modules connected to these Maaß forms. The first published instance of such a study
can be found in [17]. It was extended and employed for a proof of existence of
harmonic weak Siegel Maaß forms in [22]. In [2], Bringmann and Kudla attempted
a classification of certain .g;K/-modules for SL2.R/ by employing a condition on
their infinitesimal character. Their work suffices to cover most phenomena that have
so far been recorded in the literature on real-analytic modular forms, but [8] features
a “sesquiharmonic” Maaß form for the metaplectic cover of SL2.R/ that does not fall
into the scope of [2] as it produces a .g;K/-module with non-diagonalizable action
of the Casimir operator. In fact, at the end of [2], there is an infinite family of .g;K/-
modules for which it seems believable that corresponding weak Maaß forms can be
constructed.

In this paper, we focus on .g;K/-modules for the Jacobi group that are in the
sense of Corollary 2.2 supported on the Heisenberg Lie algebra. The decomposition
there reads ULie.GJ.V// Š ULie.SL2.R//˝ULie.H.V//z, where GJ.V/ and H.V/
are a Jacobi group and a Heisenberg group, respectively, that are associated to a real
quadratic space V , the universal enveloping Lie algebra is denoted by ULie, and
the subscript z denotes a localization at the center (see Sect. 2.6 for details). The
most prominent case of representations supported on the Heisenberg Lie algebra
arises from theta series. They generate .g;K/-modules that under the decomposition
in Corollary 2.2 yield highest weight modules for the Heisenberg group. The
parabolic subgroups associated with these highest weight modules are distinguished
by the action of sl2 on H.V/. To include .g;K/-modules generated by real-analytic
Andrianov-Siegel theta series, we suggest to consider highest weight modules of the
Heisenberg group with respect to further parabolic subgroups. This mimics some of
the essential features of cohomological representations of reductive groups [20].
A classification of such highest weight modules in terms of Verma modules is
executed in Sect. 4. For each of them we provide Jacobi forms that generate
it. Due to the relatively simple structure of the Heisenberg group, our highest
weight modules amount to forcing meromorphic or antimeromorphic behavior in
the elliptic variables of corresponding Jacobi forms. The Jacobi forms that we
provide deserve further discussion, which we postpone for the moment. From a
classical perspective the most interesting features are novel Jacobi slash actions,
whose discussion we also postpone.

Beyond highest weight modules, the notion of Harish-Chandra modules is crucial
for .g;K/-modules in general. Their definition in the case of reductive groups
requires that K-isotypical components are finite dimensional. We explain in Sect. 3
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why that definition for reductive groups cannot be extended in a straightforward way
to the case of the Jacobi groups. In fact, it would be too restrictive, and include only
meromorphic and antimeromorphic Jacobi forms, while excluding, for example,
real-analytic indefinite theta series [24, 26]. We suggest an ad hoc definition that
replaces the common notion of Harish-Chandra modules.

Our notion of Harish-Chandra modules for the Jacobi group leads us to the
second classification result in Sect. 5. We impose an additional condition inspired
by automorphic realizations: Weak modular realizations. Effectively, this condition
means that we restrict to .g;K/-modules that correspond to real-analytic Jacobi
forms with possible singularities. Such a condition is very much analogous to the
condition of being automorphic in the sense that it leads to a weak automorphic form
(i.e. an automorphic form with possible singularities). Weak modular realizations
are the raison d’être of this paper: to start identifying a class of real-analytic weak
modular forms whose theory can be founded not only on analysis but equally on
real representation theory and geometric arguments as in the proof of Theorem 4.2
of [5].

Our investigation of indecomposable Harish-Chandra modules leads us naturally
to consider indecomposable slash actions. Beyond the classical, scalar-valued Jacobi
slash action

ˇ̌
k;m

there are vector-valued ones. This extension from scalar-valued
to vector-valued Jacobi forms is well-known in the context of automorphic vector
bundles on Shimura varieties and mixed Shimura varieties. Though, it has not
yet spread very much in the literature on classical modular forms, it does emerge
in applications. The most established case of vector-valued modular forms are
associated to Weil representations, which occur in the context of theta series and
theta lifts. Another example is provided by correlation functions of logarithmic
conformal field theories. Skipping the details, we content ourselves with expressing
our expectation that higher correlation functions of specific logarithmic conformal
field theories have Fourier-Jacobi coefficients for the slash actions that we explain
now.

We simplify this exposition compared to what we treat in Sect. 4, and employ the
classical notion of Jacobi groups as in [9]. Inside the Jacobi group, there is a copy of
K�Z WD SO2.R/�R, which stabilizes the point .i; 0/ in the Jacobi upper half space.
Each of its representations yields a slash action. So far, in absence of any need for
a more general concept, only irreducible representations of Z have been considered.
They are one-dimensional and therefore yield scalar-valued, classical slash actions.
A typical reducible, indecomposable representation of Z can be realized by the
action on polynomials p.X/ 7! p.X C �/, � 2 Z. We denote the associated
slash action of weight k by

ˇ̌
k;0Œ1�

. In general, we obtain slash actions
ˇ̌
k;mŒd�

for any
d 2 Z�0, k 2 Z, and m 2 C.

We close the introduction with some open questions.

Degenerate Cases We assume throughout the paper that the quadratic space V is
non-degenerate. This excludes, in particular, the case of Jacobi forms of index 0,
which have applications to the counting of Feynman-like graphs [11]. Represen-
tations of the Heisenberg group, in this case descend to representation of the
Abelian group V ˝ W (see Sect. 2.2 for the notation), and the notion of highest
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weight modules continues to make sense. Extending Sect. 5 to this setting would be
interesting.

Higher Dimensional Quadratic Spaces In Sect. 5 we restrict to the case of one-
dimensional V . Including general V amounts to understanding singularities of b�-
functions that arise from [24] and extending holomorphicity statements from [7, 23]
to differential operators of order greater than 1.

Reductive Groups This paper focuses on the representation theory of the Heisen-
berg group, which is particularly accessible when amended with our notion of
Harish-Chandra modules. Recently, Bringmann and Kudla [2] studied .g;K/-
modules for SL2.R/, but required that the Casimir operator act by scalars. All
composition factors of the .g;K/-modules that they found are highest weight
modules. Bringmann and Kudla at the end of their treatment give an infinite family
of .g;K/-modules whose members have the very same set of composition factors
but for which the Casimir operator does not act by scalars. It would be interesting to
investigate how we can extend reasonably the notion of weak modular realizations
to SL2.R/. Monodromy around the cusps should play a key role.

2 Preliminaries

2.1 The Metaplectic Group

Let G WD G.R/ WD Mp2.R/ be the connected double cover of SL2.R/. We will view
G as the non-split central extension 0 ! f˙1g ! G ! SL2.R/ ! 1, and denote
elements as pairs .g; !/ with g D �

a b
c d

� 2 SL2.R/ and ! W H ! C a choice of
holomorphic square root of c� C d. Multiplication in this realization is given by
.g1; !1/.g2; !2/ D .g1g2; !1 ı g2 � !2/.

2.2 The Heisenberg Group

Let V WD V.R/ be a non-degenerate, real quadratic space with quadratic form q W
V ! R and bilinear form hv1; v2i D q.v1 C v2/ � q.v1/ � q.v2/. Denote its
complexification V˝C by V.C/. Fix the standard sympletic lattice W Š ZeW˚ZfW
with symplectic form !.eW ; fW/ WD 1. For convenience, we extend ! to V ˝W by
!.v1 ˝ w1; v2 ˝ w2/ WD 1

2
hv1; v2i!.w1;w2/. The dual of V is denoted by V_, and

given a lattice L 
 V , we let L_ be the dual lattice.
We let the Heisenberg group H.V/ attached to V be the one that is associated with

the symplectic space V ˝W. We write .�; �/ for elements of V ˝W arising from
the isomorphism of vector spaces V˝W Š V˚V that originates in the polarization
of W. Specifically, we have a short exact sequence 0! R! H.V/! V˝W ! 0,
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and multiplication in H.V/ is given concretely by

.�1; �1; �1/.�2; �2; �2/ D
�
�1 C �2; �1 C �2; �1 C �2 C 1

2
h�1; �2i � 1

2
h�2; �1i

�
.

Throughout the paper we write Z for the center of H.V/.
The action of G Š Sp.W.R// Š SL2.R/ on W from the right extends to an action

of G on H.V/. In W-coordinates we have

.�; �; �/ .g; !/ D .a�C c�; b�C d�; �/:

2.3 The Real Jacobi Group

For a real quadratic space V as above, the real Jacobi group GJ.V/ is the extension
0 ! H.V/ ! GJ.V/ ! G ! 1 of G by H.V/. Multiplication in GJ.V/ is defined
by

�
.g1; !1/; h1

� � �.g2; !2/; h2
� D �

.g1g2; !1 ı g2 � !2/; h1g2 � h1
�
:

Recall from the introduction that we write Z Š R for the center of GJ.V/.
We often consider elements of H.V/ as elements of GJ.V/ via the inclusion

H.V/ 
 GJ.V/. Shorthand notation for elements of G viewed as elements of GJ.V/
is provided by the following section to the canonical projection GJ.V/ � G:

G 3 g 7�! �
g; .0; 0; 0/

� 2 GJ.V/:

2.4 The Maximal Compact Subgroup

In the literature known to the author the group Spin2.R/�R 
 GJ.V/ (or SO2.R/�R
when working without double covers) was chosen as an analogue of the maximal
compact subgroup in the reductive case. This is most natural when considering
Jacobi forms as functions on HJ.V/ D H � V.C/. It also forces a diagonalizable
action of the center Z 
 GJ.V/. Since in this paper, we also consider functions on
eHJ.V/ D H � V.C/ � R, we set K D Spin2.R/ 
 GJ.V/. This provides us with
a richer supply of Jacobi forms, allowing for central representations that are not
completely reducible.
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2.5 The Jacobi Modular Group

Write � WD Mp2.Z/ for the preimage of SL2.Z/ under the natural projection G !
SL2.R/. If L 
 V is a lattice, the discrete Jacobi group � J.L/ is defined as

� J.L/ D ˚

 J D �.
; !/; .�; �; �/� W 
 2 SL2.Z/; !.�/2

D c� C d; �; � 2 L; � 2 1
2
hL;Li� 
 GJ.V/:

As opposed to most other authors, we have to include elements 
 J with � ¤ 0,
while the Jacobi group is usually defined as the quotient of our � J.L/ by its center.
Note also that if L is not even, then we enlarge the center correspondingly: we have
denoted by hL;Li � Q the image of L under the bilinear form associated to V .

2.6 The Jacobi Lie Algebra

Recall that we assume V non-degenerate. We write gJ.V/ for the Lie algebra
attached to GJ.V/. One reference for it is [7], which extends some of the theory
in [1].

The Lie algebra of G D Sp.W/ admits an sl2-triple .e; h; f / with matrix
realizations

e D � 0 10 0
�
; h D � 1 0

0 �1
�
; f D � 0 01 0

�
; (2.1)

which arise from W-coordinates. The Lie brackets are Œh; e� D 2e, Œh; f � D �2f , and
Œe; f � D h.

We can identify the underlying vector spaces of H.V/ and Lie.H.V// via the Lie
exponential. Under this identification we have the Lie bracket Œ.v1 ˝ w1; �1/; .v2 ˝
w2; �2/� D 2!.v1˝w1; v2˝w2/z, where z is a generator of the center z of Lie.H.V//.

The following ideas are explained in more detail in [7] and originate in [6, 16].
We let U.gJ.V// and ULie.H.V// be the universal enveloping algebras of gJ.V/ and
Lie.H.V//. Let

U.gJ.V//z WD U.gJ.V//˝z Frac.z/;

where Frac.z/ is the fraction field of U.z/. We denote by 1V 2 V˝V_ the canonical
diagonal. Consider the map � from sl2 to ULie.H.V//z:

�.e/ WD 1

2z
h1V ˝ eW ; 1V ˝ eWi; �. f / WD � 1

2z
h1V ˝ fW ; 1V ˝ fWi;

�.h/ WD 1

2z

�h1V ˝ eW ; 1V ˝ fWi C h1V ˝ fW ; 1V ˝ eWi
�
;

(2.2)
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where the scalar product is taken with respect to the middle components V_ of
V ˝ V_ ˝W.

Lemma 2.1 (cf. Section 5.1 of [7]) The map � is an isomorphism of the Lie
algebras sl2 and �.sl2/, where the image is equipped with the commutator bracket
of ULie.H.V//z.

Proof The map is an isomorphism of vector spaces, so that it remains to check the
Lie brackets:



�.e/; �. f /

� D �.h/;


�.h/; �.e/

� D 2�.e/;


�.h/; �.e/

� D 2�.e/:

We derive the first equality, and leave the others to the reader. Fix a basis .vi/i of V ,
and let .v_

i /i be the dual basis. We have 1V D P
i viv

_
i . Let aij D hvi; vji, so that

we have a�1
ij D hv_

i ; v
_
j i, where a�1

ij is the .i; j/- th entry of the matrix .aij/i;j. To
simplify notation, we write ei D vi ˝ eW 2 V ˝W and fi D vi ˝ fW . We then have

�.e/�. f / D � 1

4z2
X

i; j;k;l

a�1
ij a�1

ij eiej fk fl:

We apply commutation relations step-by-step and obtain

� 1

4z2

X

i; j;k;l

a�1
ij a�1

ij

�
ei fkej fl�akjei flz

� D � 1

4z2

X

i; j;k;l

a�1
ij a�1

ij

�
fkeiej fl�aikej flz�akjei flz

�

D � 1

4z2

X

i; j;k;l

a�1
ij a�1

ij

�
fkei flej � alj fkeiz� aikej flz � akjei flz

�

D � 1

4z2

X

i; j;k;l

a�1
ij a�1

ij

�
fkfleiej � ali fkejz� alj fkeiz� aikej flz � akjei flz

�

The first term is �. f /�.e/, and the remaining terms equal �.h/ after employingP
i;l a�1

ij aila�1
kl D ajk.

Corollary 2.2 (cf. Section 5.1 of [7]) The map

U.sl2/˝ULie.H.V//z �! U.gJ.V//z; a˝ b 7�! �
a � �.a/� b

is an isomorphism.
The above decomposition allows us to study the infinitesimal representation theory
of GJ.V/ in terms of that of SL2.R/ and H.V/. Both theories are well-known, and
their connections to the real Jacobi group have been observed previously [1, 7, 15].
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2.7 Parabolic Subalgebras

As a replacement for parabolic subalgebras in the reductive case, we consider a
decomposition of Lie.H.V// in terms of eigenspaces with respect to

k WD span
�
0 1�1 0

� 
 Lie.G/:

The following is in complete analogy with the definition of theta stable parabolic
subalgebras on page 57 of [20].

Write Lie.H.V// WD mH ˚ z, where mH is the space V ˝ W in Lie.H.V//.
The action of G on W yields a Lie algebra action of k on mH. The eigenspaces
with respect to this action, in coordinates, are V ˝ .1;˙i/. Given any orthogonal
decomposition V D VC ˚ V�, we set

mH.VC;V�/ WD �
VC ˝ .1;Ci/

�˚ �V� ˝ .1;�i/
� 
 Lie.H.V//;

qH.VC;V�/ WD mH.VC;V�/˚ z 
 Lie.H.V//:
(2.3)

2.8 .g; K/-Modules

Let G be a real reductive Lie group with Lie algebra g. Given a compact subgroup K
of G, we adopt Lepowsky’s definition of .g;K/-modules from page 80 of [21]: A
vector space V that is a g and a K-module is called a .g;K/-module if the following
conditions are satisfied:

1. For all v 2 V , k 2 K, and x 2 g, we have k.xv/ D .Ad.k/x/v.
2. For all v 2 V , the span of Kv is finite dimensional and K acts continuously on

span Kv.
3. For all x 2 Lie.K/ and v 2 V , we have xv D � d

dt exp.tx/v
�

tD0.

2.9 Upper Half Spaces

We write H WD f� 2 C W =.�/ > 0g and HJ.V/ WD H�V.C/ D f.�; z/ W � 2 H; z 2
V.C/g for the Poincaré upper half plane and the Jacobi upper half space. We write
x D <.�/, y D =.�/, u D <.z/, and v D =.z/, throughout. In accordance with our
choice of maximal compact subgroup K, we also considereHJ.V/ WD H � V.C/ � R

with elements typically denoted by .�; z; x0/, x0 2 R.

Remark 2.3 The notation x0 is connected to Siegel modular forms of genus 2. The
Siegel upper half space of genus 2 consists of certain matrices

� � z
z � 0

�
, and the real

part of � 0 is denoted by x0. This x0 is directly related to the x0 in this paper via a
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variant of the Fourier-Jacobi expansion that holds for arbitrary vector-valued Siegel
modular forms, including all indecomposable arithmetic types.

2.10 Slash Actions

There is an action of G and GJ.V/ on H and HJ.V/, respectively.

.g; !/ � WD g � WD a� C b

c� C d
;

gJ .�; z/ WD .g; h/ .�; z/ WD �
.g; !/; .�; �; �/

�
.�; z/ WD

�a� C b

c� C d
;

zC �� C �
c� C d

�

(2.4)

for g 2 SL2.R/, .g; !/ 2 Mp2.R/, and h D .�; �; �/ 2 H.V/.
Cocycles for the corresponding actions on C1.H/ and C1.HJ.V// are

parametrized by k 2 1
2
Z and m 2 C (see [7]). For f 2 C1.H/ and � 2 C1.HJ.V//,

we define slash actions:

�
f
ˇ̌
k .g; !/

�
.�/ WD !.�/�2k f .g�/; (2.5)

�
�
ˇ̌
k;m gJ�.�; z/ WD �

�
ˇ̌
k;m

�
.g; !/; h

��
.�; z/ WD !.�/�2ke

�
mj.gJ; .�; z//

�
�
�
.g; h/.�; z/

�

(2.6)

with

j
��
.g; !/.�;�; �/

�
; .�; z/

�
WD �cq.zC �� C �/

c� C d
C hz; �i C q.�/� C 1

2 h�; �i C �:
(2.7)

Here and throughout e.x/ stands for exp.2�i x/, where x 2 C.

2.11 Functions on the Jacobi Group

We use .g;K/-modules to describe analytic properties of Jacobi forms. Let � W
HJ.V/ ! C be a smooth function with possible singularities. Let k 2 1

2
Z and

m 2 C. Then we let

�
Ak;m.�/

�
.gJ/ WD �

AR;k;m.�/
�
.gJ/ WD �

�
ˇ̌
k;m gJ�.i; 0/: (2.8)
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We write $k;m.�/ for the .g;K/-module that is generated by Ak;m.�/. If k and m
are clear from the context, we suppress them. Given a .g;K/-module $ , we say
that a function � on the Jacobi upper half space as above has analytic type $ if
$.�/ Š $ .

2.12 Singularities at Torsion Points

Consider the rational structure V.Q/ WD L ˝Z Q � V of V that arises from a
lattice L 
 V . A smooth function � W HJ.V/ ! C with possible singularities is
said to have singularities at torsion points (with respect to L), if the singularities
are locally of codimension at least 1 and the singular locus is locally given by
s_.z/ D ˛� C ˇ for some s_ 2 V.Q/_ and ˛; ˇ 2 Q.

2.13 Weak Jacobi Forms

Fix an integral lattice L 
 V . For the purpose of this paper a weak Jacobi form
of analytic type $ , Jacobi index mL (m 2 C), and weight k 2 1

2
Z, is smooth

function � W HJ.V/ ! C with possible singularities at torsion points of analytic
type $ such that

�
ˇ̌
k;m

gJ D � for all gJ 2 � J.L/

and �
ˇ̌
k;m
.�; �; 0/

ˇ̌
zD0 D O.1/ for every �;� 2 V.Q/ if � is not singular along

z D �� C �.

Remarks 2.4

(1) It is common to call certain holomorphic Jacobi forms with relaxed growth con-
ditions weak Jacobi forms—cf. Chapter III of [9]. We overlap this terminology
in order to tentatively unify notions of “weakly holomorphic modular forms”
and “harmonic weak Maaß forms”.

(2) Most authors fix a realization of the Jacobi group, by fixing a standard quadratic
space V and allowing cocycles to depend on an additional quadratic form. This
approach would force us to extend the center of GJ.V/ from R to V˝V . Details
can be found in [7]. Since the isomorphism class of GJ.V/ as a topological group
does not depend on the quadratic form q, reconciling those two approaches is
merely a matter of normalization. Our approach appears as the better one, if we
aim at studying the Jacobi group on its own, since we avoid using two unrelated
quadratic forms on V . When examining Jacobi forms in relation to, say, the
standard symplectic groups, it appears better to use the realization of GJ.V/
determined by a fixed embedding into Spn.R/ with n D 1C dim.V/.
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3 Harish-Chandra ULie.H.V//-Modules

Given a real reductive group G with Lie algebra g and maximal compact sub-
group K, a .g;K/-module $ is called a Harish-Chandra module if its K-isotypical
components are finite dimensional. Harish-Chandra modules are important in the
theory of reductive groups, but the notion has not yet been transferred to the Jacobi
group in a meaningful way.

First of all notice that holomorphic Jacobi forms (in the sense of [9] and [25])
generate .g;K/-modules that have finite dimensional K-isotypical components. On
first sight, this suggests that we adapt the notion of Harish-Chandra modules in a
straightforward way, asking for finite dimensional K-isotypical components.

3.1 Infinite Dimensional K-Types

We illustrate two kinds of issues. The first one arises from unitarizable representa-
tions of the Heisenberg group H.V/, if the dimension of V exceeds 1. The second
one arises from the outer tensor product of unitarizable representations of SL2.R/
and H.V/. We encounter it for any nontrivial V .

For indefinite V and an orthogonal decomposition V D VC ˚ V� into a positive
definite and a negative definite space, consider the theta series

�L;0
�
VC;V�I �; z� WD ydim V�

X

l2L

e
�
q.lC/� C hlC; zi C q.l�/� C hl�; zi

�
;

(3.1)

where subscripts˙ refer to the orthogonal projections onto V˙. It is a well-behaved
Jacobi form, but the .g;K/-module associated to it has infinite dimensional K-types.
Under the isomorphism in Corollary 2.2, we have

$
�
�L.V

C;V�/
� Š 1˝$�.V

C;V�/ as a module for U.sl2/˝ ULie.H.V//z

where the second tensor factor is unitarizable, but K-types are not finite dimensional.
Skewholomorphic Jacobi forms [18] are analogues of holomorphic Jacobi forms

whose original purpose was to accommodate a parity condition in [19]. Let � be a
skewholomorphic Jacobi form of weight k. Then we have

$
�
yk� 1

2 �
� Š $. f�/˝$� as a module for U.sl2/˝ ULie.H.V//z:

Here f� corresponds to � under the theta decomposition,$. f�/ is an antiholomor-
phic representation and $� is an irreducible representation of ULie.H.V//, where
V is one-dimensional. Both $. f�/ and $� have finite dimensional K-types. Their
outer tensor product, however, has infinite dimensional K-types.
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Infinite dimensional K-types have not yet been much of a problem. When
insisting on the square integrable representations of nonzero Jacobi index as in [15]
one automatically obtains unitary representations of ULie.H.V//z. The Stone-
von Neumann Theorem then yields sufficient control of the representations of
H.V/. To the author’s knowledge the only representation theoretic account of real
representations that are not square integrable was carried out in [4]. In this study,
the assumption that the Casimir operator acts by scalars narrowed down possibilities
sufficiently.

Our goal is to formalize and extend the theory in [4] of theb�-function from [26].
In such a context finiteness conditions on K-isotypical components are excessively
restrictive. Any theory of Jacobi forms building on a notion of .gJ.V/;K/-modules
with finite dimensional K-types remains limited to holomorphic (or meromorphic)
and antiholomorphic (or antimeromorphic) Jacobi forms.

3.2 Highest Weight Modules

Fix, for the time being, a real reductive group G with a maximal compact
subgroup K � G, Lie algebra g, and choice of positive roots. A .g;K/-module
is called a highest weight module if it is generated by a vector that is annihilated
by the action of all positive root spaces in g. The prototypical examples in our
context are the modules Aq.�/ of [20]. Notice that their highest weight vector is
annihilated by the complement of q (cf. Theorems 2.5 (c) and 5.3 (c) of op. cit.).
Highest weight modules are Harish-Chandra modules. From [20], we record the
fact that cohomological modules are highest weight modules.

Definition 3.1 A ULie.H.V//-module $ is a highest weight module if there is an
orthogonal decomposition V D VC ˚ V� and a cyclic vector w 2 $ such that
mH.VC;V�/w D 0.

Remarks 3.2

(1) The theta series �L.VC;V�/ in (3.1) yield highest weight modules
$.�L.VC;V�//.

(2) Pitale has shown in [15] that any square integrable Jacobi form � for one-
dimensional V gives rise to a .gJ.V/;K/-module

$.�/ Š $. f�/˝$�;

where $� is a highest weight module in the sense of Definition 3.1. This result
most likely extends to any nondegenerate V .

(3) In classical language, a highest weight module for V D VC ˚ V� corresponds
to a Jacobi form that is meromorphic in z� and antimeromorphic in zC. In [7],
Jacobi forms that are holomorphic in z were called semi-holomorphic.

In light of the discussions in Sect. 3.1, in [15], and in [2], we propose the
following definition.
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Definition 3.3 A ULie.H.V//-module$ is a Harish-Chandra module if it has finite
Jordan-Hölder length and its composition factors are highest weight modules in the
sense of Definition 3.1.

Remarks 3.4

(1) It is an interesting question whether or not Definition 3.3 can be rephrased more
intrinsically.

(2) Our motivation for Definition 3.3 is to provide an analogy both to coho-
mological .g;K/-modules and to .g;K/-modules for SL2.R/ arising from
harmonic weak Maaß forms. The later correspond to nonvanishing classes in de
Rham cohomology [5]. A similar phenomenon was observed for Siegel Maaß
forms [22]. Do these classes correspond to any natural one in a suitable .g;K/-
cohomology?

Indecomposable highest weight modules for ULie.H.V// arise from any orthog-
onal decomposition V D VC ˚ V� and any indecomposable representation �
of z. Assume that � is not nilpotent, and write � ! e.m�/, m ¤ 0 for the
corresponding character of Z. The dimension d of � determines it uniquely up to
twists by characters. We can extend � to a representation of qH.VC;V�/, by letting
mH.VC;V�/ act by zero. The Verma modules

$mŒd�.V
C;V�/ WD ULie.H.V//˝qH.VC;V�/ �

are indecomposable: For characters � this is clear from the Stone-von Neumann
Theorem, and the general case follows from indecomposability of � with respect to
U.z/, which is central in ULie.H.V//.

Proposition 3.5 Let V D VC ˚ V� be an orthogonal decomposition and let
$ be an indecomposable highest weight module of ULie.H.V// with respect to
mH.VC;V�/ with highest weight vector w. Let � be the qH.VC;V�/-representation
generated by w. Then we have

$ Š ULie.H.V//˝qH.VC;V�/ �: (3.2)

Proof Since w is a highest weight vector, mH.VC;V�/ acts on � as zero. It is
therefore indecomposable as a z-module. Consequently, the Verma module in (3.2)
is indecomposable, as argued above.

Remark 3.6 From the perspective of harmonic weak Maaß Jacobi forms, it is
natural to ask for Verma modules attached to finite dimensional representation �
of qH.VC;V�/ for which mH.VC;V�/ does not act as zero. We leave the proof of
the following statement to the reader: Let � be a finite dimensional representation
of qH.VC;V�/ such that mH.VC;V�/ acts as zero on its semisimplification. Let � 0
be the qH.VC;V�/-representation that agrees with � as a z-module and on which
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mH.VC;V�/ acts as zero. Then we have

ULie.H.V//˝qH.VC;V�/ � Š ULie.H.V//˝qH.VC;V�/ �
0:

4 Jacobi Forms that Generate Highest Weight Modules

Section 3 can be viewed as the abstract treatment of the analytic behavior of
harmonic weak Maaß Jacobi forms in the elliptic variable z. To connect .gJ.V/;K/-
modules and Jacobi forms, we introduce suitable slash actions for the Jacobi
group GJ.V/.

As a special case, Proposition 4.4 says that Jacobi forms on HJ.V/ necessarily
lead to .gJ.V/;K/-modules with central character. For this reason, we consider
functions oneHJ.V/ D H� V.C/� R instead. We start by lifting functions on HJ.V/
to functions on eHJ.V/. These lifts can be viewed as an intermediate object between
� W HJ.V/! C and Ak;m.�/ W GJ.V/! C. Given a function � W HJ.V/! C, set

e�.�; z; x0/ WD e.mx0/ �.�; z/: (4.1)

The action of GJ.V/ act oneHJ.V/ is given by

gJ .�; z; x0/ WD �.g; !/; .�; �; �/� .�; z; x0/

WD
�a� C b

c� C d
;

zC �� C �
c� C d

; x0 C j.gJ; .�; z//
�
:

This extends the action of GJ.V/ on HJ.V/, which is given in (2.4). In complete
analogy with (2.6), the slash actions jk;m on C1.eHJ.V// are defined by

�
�
ˇ̌
k;m

�
.g; !/; h

��
.�; z; x0/ WD !.�/�2ke

�
mj.gJ; .�; z//

�
�
�
.g; h/.�; z; x0/

�
:

A straightforward computation shows that

B�jk;mgJ D e�
ˇ̌
k;0

gJ for all gJ 2 GJ.V/: (4.2)

In particular, the lift of functions from HJ.V/ toeHJ.V/ preserves any suitable notion
of Jacobi forms.

Remark 4.1 The slash action on the right hand side of (4.2) does not depend on m.
Contributions of the Jacobi index m to the transformation law already arise from the
factor e.mx0/ on the right hand side of (4.1), where it is otherwise suppressed from
the notation.
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4.1 Slash Actions

Consider the space Poly.X; d/ of polynomials in X of degree at most d 2 Z�0 with
complex coefficients. The Z-representations

�mŒd�.�/P.X/ WD e.m�/ � P.X � �/

exhaust the finite dimensional, indecomposable representations of Z when m runs
through C and d runs through Z�0. For each k 2 Z, m 2 C, and d 2 Z�0, we define
a slash action jk;mŒd� on the space C 1.eHJ.V/ ! Poly.X; d// of smooth functions
fromeHJ.V/ to Poly.X; d/:

�
f
ˇ̌
k;mŒd�

..g; !/; h/
�
.�; z; x0/ WD !.�/�2k�mŒd�

�
j.gJ; .�; z//

�
�
�
.g; h/.�; z; x0/

�
:

(4.3)

Recall the lift Ak;m of functions on HJ.V/ to functions on GJ.V/ in Eq. (2.8). We
denote its generalization to functionseHJ.V/! Poly.X; d/ by Ak;mŒd�:

�
Ak;mŒd�.e�/

�
.gJ/ WD �

AR;k;mŒd�.e�/
�
.gJ/ WD �e�

ˇ̌
k;mŒd�

gJ�.i; 0/ 2 Poly.X; d/:

(4.4)

We write $k;mŒd�.e�/ for the .gJ.V/;K/-module that is generated by the
X-coefficients of A.e�/.

4.2 Jacobi Forms

Jacobi forms for the slash actions
ˇ̌
k;mŒd�

can be expressed in terms of the classical
ones. Observe that the invariance condition in the next definition includes invariance
with respect to Z. In applications to Fourier-Jacobi coefficients of Siegel modular
forms this invariance condition is satisfied naturally.

Definition 4.2 Let $ be a .gJ.V/;K/-module. A smooth function e� W eHJ.V/ !
Poly.X; d/ is called a Jacobi form of analytic type $ , weight k, Jacobi index mL,
and central depth d if the following conditions are satisfied:

(i) We havee�
ˇ̌
k;mŒd�


 J D e� for all 
 J 2 � J.L/ and all 
 J 2 Z.

(ii) We have $.e�/ Š $ .
(iii) For every �;� 2 V.Q/ we havee�

ˇ̌
k;mŒd�

.�; �; 0/
ˇ̌
zD0 D O.1/.

We denote the corresponding space by J.$; k; �mŒd�.L//.
Let $k denote the .g;K/-module of sl2 with highest weight vector corresponding
to modular weight k (i.e. the discrete series Dk�1 in the notation of Section 5.6.4
of [21]). Fix an orthogonal decomposition V D VC ˚ V�. Suppressing this
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decomposition from our notation, we set

J
�
k; �mŒd�.L/

� WD
dM

jD0
J
�
$k ˝$mŒj�.V

C;V�/; k; �mŒd�.L/
�
:

In the case of d D 0 and VC D f0g, V� D V , this coincides with the classical
definition of holomorphic Jacobi forms of weight k and index mL.

Remark 4.3 One can extend the above definition to Jacobi forms for subgroups of
� J.L/ or insert arithmetic types � (i.e. a representation of � J.L/) into the definition.

Proposition 4.4 Fix k 2 Z, m 2 C, and d 2 Z�0. The map

�
J
�
k; �m.L/

� �dC1 �! J
�
k; �mŒd�.L/

�
;
�
�0; : : : ; �d

� 7�!
dX

jD0
.X � x0/j�j

is an isomorphism.

Proof This is a straightforward consequence of the Z-invariance of X � x0:

X � x0 ˇ̌
k;mŒd�

.0; 0; �/ D �mŒd�.��/
�
X � .x0 C �/� D �

.X C �/ � .x0 C �/�

D X � x0:

Remark 4.5 Proposition 4.4 allows us to transfer the notion of theta decompositions
from usual Jacobi forms to Jacobi forms for indecomposable slash actions.

The previous remark shows that theta series remain the primary example of
Jacobi forms also in the setting of indecomposable slash actions. Assume that L
is integral. We adopt notation from [24]. In particular, let disc L be the discriminant
module of L and �L the corresponding Weil representation. Its representation space
has basis el, l 2 disc L. Let V D VC ˚ V� be an orthogonal decomposition into a
positive definite and a negative definite subspace. Set

�L.V
C;V�I �; z/ WD ydim V�

X

l2L_

el e
�
q.lC/� C hlC; zi C q.l�/� C hlC; zi

�

2 J
�

dim V
2
; �1.L/˝ �L

�
:

We have

$
�
�L.V

C;V�/
� Š 1˝$1Œ0�.V

�;VC/ as a module for U.sl2/˝ ULie.H.V//z:

Note that VC and V� are exchanged on the right hand side. This unfortunate notation
originates in the eigenvalues of k on mH.
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For any d 2 Z�0,we have

.X � x0/d �L
�
VC;V�I �; z� 2 J

�
dim V
2
; �1Œd� ˝ �L

�

and

$
�
.X � x0/d �L.V

C;V�/
� Š 1˝$1Œd�.V

�;VC/ as a module for

U.sl2/˝ ULie.H.V//z:

5 Weakly Modular Harish-Chandra ULie.H.V//-Modules

In this section we restrict to the case of one-dimensional V . Without loss of
generality, we may further assume that V is negative definite. Proposition 4.4
says that that all ULie.H.V//-modules $mŒd� have an “automorphic and modular
realization”. In this section we study which Harish-Chandra ULie.H.V//-modules
have weak modular realizations.

From the results in [4], we conclude that the one-variableb�-function generates a
.gJ.V/;K/-module whose attached ULie.H.V//-module fits into the exact sequence

$1Œ0�.V; f0g/ ,�! $.b�/ �� $1Œ0�.f0g;V/:

In the multi-variable case, analogs of the b�-function were found in [23], which
yield ULie.H.V//-modules that are two-step extensions of highest weight modules.
By following the strategy in loc. cit. further Harish-Chandra ULie.H.V//-modules
can be obtained from [24]. If V has signature .dC; d�/, their Jordan-Hölder length
is bounded by 1C d�.

Combining the notion of weak Jacobi forms from Sect. 2.13 and Definition 4.2
we obtain

Definition 5.1 Let $ be a .gJ.V/;K/-module. A smooth function e� W eHJ.V/ !
Poly.X; d/ with possible singularities at torsion points is called a Jacobi form of
analytic type$ , index mL, central depth d, and weight k if the following conditions
are satisfied:

(i) We havee�
ˇ̌
k;mŒd�


 J D e� for all 
 J 2 � J.L/ and all 
 J 2 Z.

(ii) We have $.e�/ Š $ .
(iii) For every �;� 2 V.Q/ we have e�

ˇ̌
k;mŒd�

.�; �; 0/
ˇ̌
zD0 D O.1/ if e� is not

singular along z D �� C �.

We denote the corresponding space by JŠ.$; k; �mŒd�.L//.
We propose a provisional definition of weakly modular (i.e. automorphic)
ULie.H.V//-modules: A ULie.H.V//-module $ is called weakly modular if it is
generated by a weak Jacobi form (of analytic type$) in the sense of Definition 5.1.
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Remark 5.2 Note that because of the singularities it is not clear whether every
ULie.H.V//-module that admits a weak automorphic realization also admits a weak
modular realization.

As evidence that weakly modular Harish-Chandra ULie.H.V//-modules are
an interesting class of modules, we offer the next theorem. It largely promotes
statements of [4] to the setting of the present paper.

Theorem 5.3 Let $ be an indecomposable, weakly modular Harish-Chandra
ULie.H.V//-module that admits an infinitesimal character. Then$ fits into an exact
sequence

$� ,�! $ �� $�;

where $� and$� are highest weight modules.

Remark 5.4 The bound on the socle length that results from Theorem 5.3 results
from our restriction that V is one-dimensional. Recall that examples that arise
from [24] have socle length at most 1C d�, where .dC; d�/ is the signature of V .
In [8], we have seen “sesquiharmonic” Maaß forms for Mp2.R/ that generate .g;K/-
modules of socle length 3.

Proof of Theorem 5.3 If $ is irreducible we are done. Otherwise, let $0 

$1 � � � 
 $ be the socle filtration of $ . Since $ is weakly modular, $1 is too.
Consider a modular realization �1 of it. By Theorem 1.1 (3) and Theorem 1.3 of [4],
it suffices to treat the case that �1 is a b�-function. Notice that it has meromorphic
singularities of order 1 with nonvanishing residues. Suppose that$ has socle length
at least 2. Then there is a modular realization of $2, and we may assume that it is
a preimage of �1 under mH.V; f0g/. Equation (5) in [4] yields a renormalized (and
complex conjugate) action of mH.V; f0g/ on �2. From that very equation, we see
that �2 cannot exist due to the singularities of �1. This implies that $ D $1, and
finishes the proof.
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Multiplicity One for Certain
Paramodular Forms of Genus Two

Mirko Rösner and Rainer Weissauer

Abstract We show that certain paramodular cuspidal automorphic irreducible rep-
resentations of GSp.4;AQ/, which are not CAP, are globally generic. This implies
a multiplicity one theorem for paramodular cuspidal automorphic representations.
Our proof relies on a reasonable hypothesis concerning the non-vanishing of central
values of automorphic L-series.

1 Introduction

Atkin-Lehner theory defines a one-to-one correspondence between cuspidal auto-
morphic irreducible representations of GL.2;AQ/ with archimedean factor in the
discrete series and normalized holomorphic elliptic cuspidal newforms on the upper
half plane, that are eigenforms for the Hecke algebra. As an analogue for the
symplectic group GSp.4;AQ/, a local theory of newforms has been developed by
Roberts and Schmidt [19] with respect to paramodular groups.

However, still lacking for this theory is the information whether paramodular
cuspidal automorphic irreducible representations of GSp.4;AQ/ occur in the cus-
pidal spectrum with multiplicity one. Furthermore, holomorphic paramodular cusp
forms, i.e. those invariant under some paramodular subgroup of Sp.4;Q/, do not
describe all holomorphic Siegel modular cusp forms. Indeed, at least if the weight
of the modular forms is high enough, one is lead to conjecture that the paramodular
holomorphic cusp forms exactly correspond to those holomorphic modular cusp
forms for which their local non-archimedean representations, considered from an
automorphic point of view, are generic representations. Under certain technical
restrictions, we show that this is indeed the case.
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To be more precise, suppose… D ˝v…v is a paramodular cuspidal automorphic
irreducible representation of GSp.4;AQ/, which is not CAP and whose archimedean
factor…1 is in the discrete series. Under the assumption of the hypothesis below we
prove that the local representations …v are generic at all non-archimedean places.
Furthermore, we show that the hypothesis implies that … occurs in the cuspidal
spectrum with multiplicity one and is uniquely determined by almost all of its local
factors…v . The hypothesis imposed concerns the non-vanishing of central L-values
and is crucial for our approach.

Hypothesis 1.1 Suppose … is a globally generic unitary cuspidal automorphic
irreducible representation of GSp.4;AQ/ and ˛ and ˇ > 0 are real numbers.
Then there is a unitary idele class character � W Q�nA�

Q
! C

�, locally trivial
at a prescribed non-archimedean place of Q, such that the twisted Novodvorsky
L-function

LNvd.…;�; s/ (1)

does not vanish at s D 1=2C i.˛ C kˇ/ for some integer k.
The analogous hypothesis for the group GL.4/ would imply our hypothesis, see
Proposition 4.4. The corresponding statement for GL.2/ is well-known [28, Thm. 4].
For GL.r/, r D 1; 2; 3, compare [7, 10]. An approximative result for GL.4/ has
been shown by Barthel and Ramakrishnan [2], later improved by Luo [13]: Given
a unitary globally generic cuspidal automorphic irreducible representation … of
GL.4;AQ/, a finite set S of Q-places and a complex number s0 with Re.s0/ ¤ 1=2

there are infinitely many Dirichlet characters � such that �v is unramified for v 2 S
and the completed L-functionƒ..� ı det/˝…; s/ does not vanish at s D s0.

We remark, there is good evidence for our result (Theorem 4.5) on genericity of
paramodular representations. In fact, the generalized strong Ramanujan conjecture
for cuspidal automorphic irreducible representations … D ˝0

v…v of GSp.4;AQ/

(not CAP) predicts that every local representation …v should be tempered. But
paramodular tempered local representations …v at non-archimedean places are
always generic by Lemma 3.2.

2 Preliminaries

The group G D GSp.4/ (symplectic similitudes of genus two) is defined over Z by
the equation

gtJg D �J

for .g; �/ 2 GL.4/ � GL.1/ and J D �
0 w�w 0

�
with w D �

0 1
1 0

�
. Since � is uniquely

determined by g, we write g for .g; �/ and obtain the similitude character

sim W G! GL.1/ ; g 7! �:
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Fix a totally real number field F=Q with integers o and adele ring AF D A1 �
Afin. For the profinite completion of o we write ofin � Afin. The paramodular group
Kpara.a/ � G.Afin/ attached to a non-zero ideal a � o is the group of all

g 2

0

BB@

ofin ofin ofin a�1ofin

aofin ofin ofin ofin

aofin ofin ofin ofin

aofin aofin aofin ofin

1

CCA \G.Afin/; sim.g/ 2 o�
fin:

An irreducible smooth representation … D …1 ˝ …fin of G.AF/ is called
paramodular if …fin admits non-zero invariants under Kpara.a/ for some non-zero
ideal a.

Two irreducible automorphic representations are said to be weakly equivalent
if they are locally isomorphic at almost every place. A cuspidal automorphic irre-
ducible representation of GSp.4/ is CAP if it is weakly equivalent to a constituent
of a globally parabolically induced representation from a cuspidal automorphic
irreducible representation of the Levi quotient of a proper parabolic subgroup. In
that case we say that … is strongly associated to this parabolic. The three standard
proper parabolic subgroups of G are the Borel B, Siegel parabolic P and Klingen
parabolic Q:

B D
� � � � �
0 � � �
0 0 � �
0 0 0 �

�
\G ; P D

� � � � �� � � �
0 0 � �
0 0 � �

�
\G ; Q D

� � � � �
0 � � �
0 � � �
0 0 0 �

�
\G :

3 Poles of Local Spinor Factors

Fix a local nonarchimedean place v of F with completion Fv , valuation character
	.x/ D jxjv for x 2 Fv, residue field ov=pv of order q and uniformizer $ 2 pv .
In this section we consider preunitary irreducible admissible representations…v of
GDG.Fv/. The non-supercuspidal…v have been classified by Sally and Tadic [22]
and we use their notation. Roberts and Schmidt [19] have designated them with
roman numerals. …v is called paramodular if it admits non-zero invariants under
the local factor at v of some paramodular group.

Remark 3.1 Every paramodular…v has unramified central character.
Indeed, the intersection of Kpara

v .a/ with the center of G is isomorphic to o�
v .

Lemma 3.2 For tempered preunitary irreducible admissible representations …v

the following assertions are equivalent:

i) …v is generic and has unramified central character,
ii) …v is paramodular.
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Proof By Remark 3.1, we can assume that …v has trivial central character. Then
this is a result of Roberts and Schmidt [19, 7.5.8]. ut
Recall that for every smooth character � WF�

v ! C
� the local Tate L-factor is

L.�; s/ D
(
.1 � �.$/q�s/�1 � unramified,

1 � ramified.

For a generic irreducible admissible representation …v of G and a smooth
complex character � of F�

v , Novodvorsky [15] has defined a local degree four
spinor L-factor LNvd.…v; �; s/. Piatetskii-Shapiro and Soudry [17, 18] have given
a construction of a local degree four spinor L-factor L.ƒ; /.…v; �; s/ for infinite-
dimensional irreducible admissible representations of G.1 This L-factor depends on
the choice of a Bessel model .ƒ; /. The Bessel models have been classified by
Roberts and Schmidt [20]. Poles of L.ƒ; /.…v; �; s/ are called regular if they occur
as poles of certain zeta integrals [18, §2]; the other poles are exceptional. For generic
…v every pole is regular [17, Thm. 4.3].

Lemma 3.3 For every generic irreducible admissible representation …v of G, the
quotient L.ƒ; /.…v; �; s/=LNvd.…v; �; s/ is holomorphic. If …v is also preunitary
and irreducible Borel induced and if ƒ is unitary, then L.ƒ; /.…v; �; s/ D
LNvd.…v; �; s/.

Proof L.ƒ; /.…v; �; s/ has only regular poles [17, Thm. 4.4]. For the case of non-
split Bessel models, the regular poles have been determined explicitly by Danisman2

[3–5]. For split Bessel models, see [21]. The poles of LNvd.…v; �; s/ have been
determined by Takloo-Bighash [27] and cancel each pole of L.ƒ; /.…v; �; s/. Irre-
ducible fully Borel induced…v are theta lifts from GSO.2; 2/, see [8, Thm. 8.2vi)],
so the second statement holds by Piatetskii-Shapiro and Soudry [18, Thm. 2.4]. This
also follows from [21] and [5]. ut
Lemma 3.4 Let …v be a preunitary non-generic irreducible admissible repre-
sentations of G, that is not one-dimensional, and � a unitary character. Then
L.ƒ; /.…v; �; s/ has a regular pole on the line Re.s/ D 1=2 exactly in the following
cases:

IIb …v Š .� ı det/ Ì � for a pair of characters �; � that are either both unitary
or satisfy �2 D 	2ˇ for 0 < ˇ < 1

2
with unitary �� . The regular poles with

Re.s/ D 1=2 come from the Tate factor L.	�1=2��; s/, so they occur if and
only if �� is unramified.

IIIb …v Š � Ì .� ı det/ for unitary characters � and � with � ¤ 1. The
regular poles with Re.s/ D 1=2 come from the Tate factors L.	�1=2�; s/ and
L.	�1=2��; s/, so they occur for unramified � or ��, respectively.

1Unfortunately, detailed proofs of their results are not available.
2Danisman assumes odd characteristic. This is used in the proof of [3, Prop. 4.3], but not necessary.
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Vb,c …v Š L.	1=2 StGL.2/; 	
�1=2�/ for unitary characters � and  with 2 D 1 ¤

. The regular poles with Re.s/ D 1=2 come from the Tate factor L.	�1=2�; s/
and appear for unramified � .

Vd …v Š L.	;  Ì	�1=2�/ for unitary characters � and  with 2 D 1 ¤ . The
regular poles with Re.s/ D 1=2 come from the Tate factors L.	�1=2�; s/ and
L.	�1=2�; s/, and occur for unramified � or � , respectively.

VIc …v Š L.	1=2 StGL.2/; 	
�1=2�/ for unitary � . The Tate factor L.	�1=2�; s/ gives

rise to regular poles with Re.s/ D 1=2 when � is unramified.
VId …v Š L.	; 1 Ì 	�1=2�/ for unitary � . The Tate factor L.	�1=2�; s/2 gives rise

to double regular poles with Re.s/ D 1=2 when � is unramified.
XIb …v Š L.	1=2�; 	�1=2�/, where � is a preunitary supercuspidal irreducible

admissible representation of GL.2;Fv/ with trivial central character and � is
a unitary character. The regular poles with Re.s/ D 1=2 occur with the Tate
factor L.	�1=2�; s/ when � is unramified.

Proof For non-split Bessel models, see Danisman [3–5]. For split Bessel models,
see [21]. ut
Lemma 3.5 Up to isomorphism, the paramodular non-generic preunitary irre-
ducible admissible representations…v of G are exactly the following:

IIb .� ı det/ Ì � , for characters �; � such that �� is unramified and either both
are unitary or �2D	2ˇ for 0 < ˇ < 1

2
with unitary characters �� ,

IIIb � Ì .� ı det/, for unramified unitary characters �; � with � ¤ 1,
IVd � ı sim, for unramified unitary characters � ,

Vb,c L.	1=2 StGL.2/; 	
�1=2�/, for  with 2D1¤ and unramified unitary � ,

Vd L.	;  Ì 	�1=2�/, for unramified unitary characters �;  with 2D1¤,
VIc L.	1=2 St; 	�1=2�/, for unramified unitary characters � ,
VId L.	; 1 Ì 	�1=2�/, for unramified unitary characters � ,
XIb L.	1=2�; 	�1=2�/, for a supercuspidal preunitary irreducible admissible rep-

resentation � of GL.2;Fv/ with trivial central character and an unramified
unitary character � .

Proof By Remark 3.1, we can assume that the central character is trivial. For
non-supercuspidal …v , see Tables A.2 and A.12 of Roberts and Schmidt [19].
Supercuspidal non-generic…v are not paramodular by Lemma 3.2. ut
Proposition 3.6 Let…v be a paramodular preunitary irreducible admissible repre-
sentation of G, that is not one-dimensional and � a unitary character. The following
assertions are equivalent:

i) …v is non-generic,
ii) the spinor L-factor L.ƒ; /.…v; �; s/ has a pole on the line Re.s/D1=2.

Proof By the previous two lemmas, for non-generic …v there is a regular pole on
the line Re.s/ D 1=2. If …v is generic, poles do not occur on the line Re.s/ D 1=2
by Lemma 3.3 and [27]. ut
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The proposition fails without the paramodularity assumption. For example, type
Vd is always non-generic, but has a pole in Re.s/D 1=2 if and only if � or � are
unramified.

4 Global Genericity

Let F D Q with adele ring A D R � Afin. In the following, … D…1 ˝ …fin is
a cuspidal automorphic irreducible representation of G.A/, not CAP, with central
character !…, such that …1 belongs to the discrete series. Global Bessel models
.ƒ; / of… are always unitary. We want to show that if… is paramodular, then…v

is locally generic at every nonarchimedean place v.
The Euler product L.ƒ; /.…;�; s/DQv L.ƒv; v/.…v; �v; s/ converges for s in a

right half plane and admits a meromorphic continuation to C [17, Thm. 5.3]. This is
the global degree four spinor L-series of Piatetskii-Shapiro and Soudry.

Proposition 4.1 (Generalized Ramanujan) The spherical local factors …v of
…fin are isomorphic to irreducible tempered principal series representations �1 �
�2 Ì � for unramified unitary complex characters �1; �2; � of Q�

v .

Proof See [31, Thm. 3.3]. ut
Proposition 4.2 … is weakly equivalent to a unique globally generic cuspidal
automorphic irreducible representation …gen of G.A/ whose archimedean local
component …gen;1 is the generic constituent in the local archimedean L-packet of
…1. The lift … 7! …gen commutes with character twists by unitary idele class
characters. The central characters of…gen and … coincide.

Proof See [29, Thm. 1]; the proof relies on certain Hypotheses A and B shown in
[31]. The lift commutes with twists because …gen is unique. The central characters
are weakly equivalent, so they coincide globally by strong multiplicity one for
GL.1;A/. ut
Proposition 4.3 If … is not CAP and not a weak endoscopic lift, then the
discrete series representation …1 is contained in an archimedean local L-packet
f…W1;…H1g such that the multiplicities of…W1˝…fin and…H1˝…fin in the cuspidal
spectrum coincide. Here …H1 denotes the holomorphic constituent and …W1 the
generic constituent.

Proof By Proposition 4.2, … is weakly equivalent to a globally generic representa-
tion …0 of G.A/, which satisfies multiplicity one [12]. Now [30, Prop. 1.5] implies
the statement. ut
Proposition 4.4 Suppose … is globally generic. Then there is a unique globally
generic automorphic irreducible representation Q… of GL.4;A/ with partial Rankin-
Selberg L-function
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LS. Q…; s/ D LS
.ƒ; /.…; 1; s/

for a sufficiently large set S of places. This lift is local in the sense that Q…v only
depends on…v . It commutes with character twists by unitary idele class characters.

Proof For the existence and locality of the lift, see Asgari and Shahidi [1];
uniqueness follows from strong multiplicity one for GL.4/. It remains to be shown
that … 7! Q… commutes with character twists. Indeed, by Proposition 4.1, almost
every local factor is of the form…v Š �1��2Ì� with unitary unramified characters
�1; �2; � . Its local lift Q…v is the parabolically induced GL.4;A/-representation

Q…v Š �1�2� � �1� � �2� � � ;

[1, Prop. 2.5]. Therefore, the lift…v 7! Q…v commutes with local character twists at
the unramified…v. Strong multiplicity one for GL.4/ implies the statement. ut
Theorem 4.5 Suppose … D ˝v…v is a paramodular unitary cuspidal irreducible
automorphic representation of G.AQ/ that is not CAP nor weak endoscopic. We
assume that …1 is in the discrete series and that Hypothesis 1.1 holds. Then …v is
locally generic at all nonarchimedean places v.

Proof By Proposition 4.3 we may assume without loss of generality that …1 is a
holomorphic discrete series representation. By Propositions 4.2 and 4.3 there exists
a cuspidal automorphic irreducible representation „, weakly equivalent to … with
archimedean factor „1 Š …1, such that „v is locally generic at every non-
archimedean place v <1. There exist global Bessel models .ƒ; / and .ƒ„; „/

for … and „, respectively. By assumption … is paramodular, so by a twist we
can assume that the central character is trivial. The central characters of … and
„ coincide, so „ is also paramodular [19, Thm. 7.5.4].

Let S be the finite set of places, including1, such that „v Š …v is spherical for
every place v … S. For these v … S, the local L-factors coincide by Proposition 4.1
and Lemma 3.3. For every idele class character � this implies

L.ƒ; /.…;�; s/

L.ƒ„; „/.„;�; s/
D
Y

v2S

L.ƒv; v/.…v; �v; s/

L.ƒ„;v; „;v/.„v; �v; s/
: (2)

Now assume there is at least one non-archimedean place w 2 S where …w is not
generic. By Proposition 3.6, the right hand side of (2) must have an arithmetic
progression .sk/k2Z of poles sk D 1=2C i.˛ C kˇ/ with ˇ D 2�= ln.pw/ and some
real ˛ depending only on …w and �w. Indeed, we show below that the L-factors of
…1 Š „1 do not have poles on the line <.s/ D 1=2 for any Bessel model.
… is not CAP, so L.ƒ; /.…;�; s/ is holomorphic. Hence L.ƒ„; „/.„;�; sk/ D 0

for every k by (2). Especially, the partial L-function LS
.ƒ„; „/

.„;�; s/ vanishes at
s D sk for every k and every finite set S.

If Hypothesis 1.1 is true, there is k 2 Z and a unitary idele class character � of
Q

�nA� with �w D 1 such that for a sufficiently large finite set S, including all the
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archimedean and ramified places, the partial L-function LS
Nov.„;�; sk/ ¤ 0 does

not vanish. For v … S the local L-factors of Novodvorsky and Piatetskii-Shapiro
coincide by Proposition 4.1 and Lemma 3.3, so the same non-vanishing assertion
holds for LS

.ƒ„; „/
.„;�; sk/. This is a contradiction, so the place w does not exist.

It remains to be shown that the archimedean L-factor of …1 in the holomorphic
discrete series of lowest weight l � l0 � 3 does not admit poles on the line
Re.s/ D 1=2. Regular and exceptional poles can be defined analogous to the non-
archimedean case. By [17, Thm. 4.2], exceptional poles only occur on the line
<.s/ D �1=2 because the central character is unitary. By the archimedean analogue
of [3, Prop. 2.5], the regular poles are the poles of the archimedean regular zeta
integrals

�reg.v; �; s/ D
Z

R>0

'v.�/�.�/�
s�3=2d��

attached to the Bessel functions 'v.�/ D `.…1.diag.�; �; 1; 1/v/ for v 2 …1
and the Bessel functional `. In fact these zeta integrals are holomorphic for Re.s/ >
�3=2 and to show this it suffices to estimate the growth of 'v.�/ as �! 0.

The holomorphic lowest weight vector vhol 2 …1 satisfies j'vhol.�/j �
C�.lCl0/=2 exp.�c�/ with positive real constants C and c [26, (1-26)]. Since .l C
l0/=2 � 3, the zeta integral �reg.vhol; �; s/ converges for <.s/ > �3=2. The other
K1-types � of …1 are obtained from vhol by repeatedly applying the differential
operator (Maaß operator)

EC W C1.G.R//� ! C1.G.R//�˝Sym2 ;

see [14, §5.1]. It is easy to see that this can only improve convergence. ut
Corollary 4.6 In the situation of the theorem, if …1 is generic, then … is globally
generic.

Proof … is locally generic at every place. By Proposition 4.2, there is a globally
generic automorphic representation …gen, weakly equivalent to …. By a result of
Jiang and Soudry [12], … D …gen in the cuspidal spectrum. ut

A cuspidal automorphic irreducible representation … of G.A/, not CAP, is
a weak endoscopic lift if there is a pair of cuspidal automorphic irreducible
representations �1; �2 of GL.2;A/ with the same central character, and local spinor
L-factor

L.ƒv ; v/.…v; �; s/ D L.�1;v; s/L.�2;v; s/ :

at almost every place [31, §5.2]. This condition does not depend on the global Bessel
model .ƒ; / by Proposition 4.1 and Lemma 3.3.
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Proposition 4.7 Suppose a paramodular cuspidal irreducible automorphic repre-
sentation … Š ˝v…v of G.AQ/ is a weak endoscopic lift with local archimedean
factor…1 in the discrete series. Then … is globally generic.

Proof �1 and �2 are attached to holomorphic elliptic modular forms [31, Cor. 4.2].
They are locally tempered at every place v by the Ramanujan conjecture (Deligne).
The local endoscopic lifts…v are also tempered [31, §4.11]. At the non-archimedean
places …v is then generic by Lemma 3.2. Then the archimedean factor …1 is
generic [31, Thm. 5.2]. Hence … is globally generic [31, Thm. 4.1], [12]. ut

5 Multiplicity One and Strong Multiplicity One

We show the multiplicity one theorem and the strong multiplicity one theorem for
paramodular cuspidal automorphic representations of G.AQ/ under certain restric-
tions. It is well-known that strong multiplicity one fails without the paramodularity
assumption [6, 11].

Lemma 5.1 A cuspidal automorphic irreducible representation … of G.AQ/,
that is strongly associated to the Borel or Klingen parabolic subgroup, is never
paramodular.

Proof Every such representation is a theta lift … D �.�/ of an automorphic
representation � of GOT.AQ/ for an anisotropic binary quadratic space T over Q,
see Soudry [24]. Let dT be the discriminant of T, then T is rationally equivalent to
.K; t � NK/ for the norm NK of the quadratic field K DQ.

p�dT/ and a squarefree
integer t. Fix a non-archimedean place v of Q that ramifies in K. The norm form on
KwDK ˝Qv remains anisotropic. By Lemma A.1, the local Weil representation of
G.Qv/ � GOT.Qv/ is not paramodular. Thus the global Weil representation is not
paramodular either. Since paramodular groups are compact, the functor of passing
to invariants is exact and therefore the paramodular invariant subspace of… D �.�/
is zero. ut
Theorem 5.2 (Multiplicity One) Suppose… is a paramodular cuspidal automor-
phic irreducible representation of G.A/ with archimedean factor…1 in the discrete
series. If Hypothesis 1.1 holds, … occurs in the cuspidal spectrum with multiplicity
one.

Proof A weak endoscopic lift occurs in the cuspidal spectrum with multiplicity at
most one [31, Thm. 5.2]. If… is CAP, it is strongly associated to the Siegel parabolic
by Lemma 5.1. Then it is a Saito-Kurokawa lift in the sense of Piatetskii-Shapiro
[16] and occurs with multiplicity one [9, (5.10)]. If … is neither CAP nor weak
endocopic, we can assume that…1 is generic by Proposition 4.3. By Corollary 4.6,
… is globally generic and the assertion holds by a result of Jiang and Soudry [12].

ut
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Theorem 5.3 (Strong Multiplicity One) Suppose two paramodular automorphic
cuspidal irreducible representations …1, …2 of G.AQ/ are locally isomorphic at
almost every place. Assume that the archimedean local factors are either both in
the generic discrete series or both in the holomorphic discrete series of G.R/. If
Hypothesis 1.1 holds,…1 D …2 coincide in the cuspidal spectrum.

Proof Suppose …1 and …2 are not CAP. After possibly replacing the archimedean
factor by the generic constituent in its local L-packet, we can assume that both
…1 and …2 are globally generic by Corollary 4.6 and Proposition 4.7. Strong
multiplicity one holds for globally generic representations [12, 25].

If …1 and …2 are CAP, they are strongly associated to the Siegel parabolic by
Lemma 5.1 and occur as Saito-Kurokawa lifts in the sense of Piatetskii-Shapiro
[16]. For each non-archimedean place v, the local factors …1;v and …2;v are non-
generic and belong to the same Arthur packet. Exactly one constituent of this Arthur
packet is non-tempered [23, §7]. Both local factors…1;v and…2;v are non-tempered
by Lemma 3.2 and therefore isomorphic. The local factors …1;1, …2;1 at the
archimedean place are in the discrete series, so they are isomorphic to the unique
discrete series constituent of the archimedean Arthur packet [23, §4]. Thus …1 and
…2 are locally isomorphic at every place. They coincide in the cuspidal spectrum by
Theorem 5.2. ut

Appendix 1: The Weil Representation

Let K=F be a ramified quadratic field extension of a local nonarchimedean number
field F with principal ideals pK and p. The anisotropic binary quadratic form
T D .K;NK=F/ defines the F-bilinear form .x; y/T D .xNy C Nxy/=2 for x; y 2 K
where N is the Galois conjugation on K=F. Fix a non-trivial additive character  of
F with conductor pc, the largest broken ideal in the kernel of  . The Schrödinger
model of the smooth Weil representation! of G.F/�GOT.F/ is given by the space
of Schwarz-Bruhat functions � 2 S.K2 � F�/ with the action of G.F/ given on
generators by

!. I2 sw
0 I2

/�.x; t/ D  .t
X

i;j

sij.xi; xj/T/�.x; t/ ;

!. 0 w�w 0 /�.x; t/ D 
2. ı T/
Z

K2
�.y; t/ .2t

X

i

.xi; yi/T/dty :

Here 
. ı T/ is the Weil index. The Haar measure is normalized, depending on t,
such that ! preserves the L2-scalar product in S.K2�F�/. The action of h 2 GO.T/
is by

!.h/�.x; t/ D j det hj�1�.h�1x;NK=F.h/t/ :
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Lemma A.1 The Weil representation ! of G.F/� GOT.F/ is not paramodular.

Proof Suppose � 2 S.K2�F�/ is invariant under Kpara.pn/ for some n. For .x; t/ in
the support of � we must have .t

P
i;j sij.xi; xj/T/ D 1 for every . I2 sw

0 I2
/ 2 Kpara.pn/.

This implies t$�n
F .x1; x1/T 2 pc and t.x2; x2/T 2 pc, so �. � ; t/ has support in

p
c�vF.t/Cn
K � p

c�vF.t/
K :

By the same argument, !. 0 w�w 0 /�. � ; t/ has support in p
c�vF.t/�n
K � p

c�vF.t/
K . By

Fourier theory, �. � ; t/ is constant on cosets modulo

p
c�vF.t/Cn
K d�1

K=F � p
c�vF.t/
K d�1

K=F

with the relative different ideal dK=F D pK . This implies � D 0. ut

Appendix 2: On Regular Poles Attached to Split Bessel Models
for GSp(4)

For infinite-dimensional representations … of G D GSp.4;F/ with central char-
acter !…, where F is a local non-Archimedean field, Piatetskii-Shapiro [17] has
constructed a local L-factor

L.ƒ; /.…; s/

attached to a choice of a Bessel model .ƒ; /. To be precise, fix the standard Siegel
parabolic subgroup P D MN in G with Levi M and unipotent radical N as above. For
a non-degenerate linear form  of N, the connected component QT of the stabilizer
of  in M is isomorphic to the unit group L� for a quadratic extension L=F. A
Bessel character is a pair .ƒ; / whereƒ is a character ofeT . The coinvariant space
….ƒ; / with respect to the action of eTN by .ƒ; / is at most one-dimensional [17,
Thm. 3.1], [20, Thm. 6.3.2]. If it is non-zero, we say … has a Bessel model. Such a
Bessel model is called anisotropic or split, depending on whether L is a field or not.
The Bessel models have been classified by Roberts and Schmidt [20].

The local factor L.ƒ; /.…; s/ has a regular part Lreg
.ƒ; /.…; s/ and an exceptional

part Lex
.ƒ; /.…; s/. For generic … it coincides with its regular part [17, Thm. 4.3].

Danisman [3–5] has shown that the regular part does not depend on the choice
of an anisotropic Bessel model. Especially, for generic … and anisotropic Bessel
models the L-factor L.ƒ; / coincides with the L-factor that was constructed by
Novodvorsky [15] in a completely different way. One may therefore expect that
the L-factor does not depend on the choice of any Bessel model. This expectation
was formulated by Piatetski-Shapiro and Soudry [18, p.1] and proven for the case
of Borel induced … [18, Thm. 2.4]. Further motivation originated from the results
of Danisman.
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In [21] we determine the regular part of L.ƒ; /.…; s/ for split Bessel models. For
non-generic … there are finitely many split Bessel models. The regular part of the
L-factors attached to arbitrary Bessel models is the product of Tate L-factors given
in Table 1, as shown in [21]. Hence the expectation holds true for non-generic …,
i.e. Lreg

.ƒ; /.…; s/ is independent of any Bessel model.
In general, however, this is false. For generic … there are infinitely many

split Bessel models and for certain cases the attached L-factor is a divisor of
Novodvorsky’s L-factor. For the precise results we refer to [21].

Table 1 Regular part of L-factors for non-generic infinite-
dimensional …

Type … Lreg
.ƒ; /.…; s/

IIb .�1 ı det/Ì � L.s; �/L.s; 	�1=2�1�/L.s; �
2
1�/

IIIb �1 Ì .� ı det/ L.s; 	�1=2�1�/L.s; 	�1=2�/

IVb L.	2; 	�1�St/ L.s; 	3=2�/

IVc L.	3=2St; 	�3=2�/ L.s; 	�3=2�/L.s; 	1=2�/

Vb L.	1=2St; 	�1=2�/ L.s; 	�1=2�/

Vc L.	1=2St; 	�1=2�/ L.	�1=2�/

Vd L.	;  Ì 	�1=2�/ L.	�1=2�/

VIb �.T; 	�1=2�/ L.s; 	1=2�/

VIc L.	1=2St; 	�1=2�/ L.s; 	�1=2�/

VId L.	; 1Ì 	�1=2�/ L.s; 	�1=2�/

VIIIb �.T; �/ 1

IXb L.	; 	�1=2�/ 1

XIb L.	1=2�; 	�1=2�/ L.s; 	�1=2�/

Let us briefly recall the notation. Up to equivalence, we can assume the split
Bessel model is given by  

� I2 s
0 I2

� D  .tr.s/=2/ for a non-trivial additive character
 of F and some character ƒ of QT D fdiag.t1; t2; t1; t2/ j t1; t2 2 F�g. For fixed
central character !…, every ƒ is uniquely determined by its restriction to �.t1/ D
ƒ.t1; 1; t1; 1/. We have a decomposition N D QN�S where QN is in the kernel of and
S commutes with eT . Let T D fdiag.1; 1; t; t/ j t 2 F�g � G. For every TS-module
E of finite length it can be shown that the canonical morphism ES ! ES from
S-invariants to S-coinvariants is injective and we consider the finite-dimensional
quotient as a T-module

L.E/ D ES=ES :

For an irreducible representation … of G, the space of coinvariants with respect to
the action of eTeN by � defines a TS-module e… D …� of finite length. It turns out
that the quotient L.e…/ completely determines the regular part of the L-function:
For T-characters � let a.�/ be the multiplicity of � in the semisimplification of the
T-module L.e…/. The regular part of the L-factor is the product of Tate L-factors
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Lreg
.ƒ; /.…; s/ D

Y

�

L.	�3=2!…��1; s/a.�/ :

Notice a.�/ ¤ 0 implies that � occurs as a T-character in the unnormalized Siegel
Jacquet module…N because e…S D .…N/QT;ƒ. For unitary generic… this connection
with the Siegel-Jacquet module easily implies that L.ƒ; /.s;…/ does not have a
pole on the critical line <.s/ D 1=2. Indeed, these poles come from characters �
with j�j D 	�1. For generic unitary … it follows from the list of constituents in
the Siegel-Jacquet module [19, A.3], that they do not occur. For our application in
Lemma 3.3, this is crucial.

To calculate the factor a.�/, we study the T-module L.e…/. For semisimple e…
we would have L.e…/ D 0, so the non-trivial L-factors come from indecomposable
extensions of TS-modules. We observe that the L-factor is the expected one if and
only if e…S vanishes. The analogous assertion in the anisotropic case holds true
by Proposition 4.7 of Danisman [3]. In the split case the necessary information is
provided by a combination of various techniques, as for instance P3-theory in the
sense of Roberts and Schmidt [19], a detailed study of the Siegel-Jacquet module
and the analysis of induced representations for which … is an irreducible quotient.
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22. Sally, P., Tadić, M.: Induced representations and classifications for GSp.2;F/ and Sp.2;F/.

Mém. Soc. Math. Fr. 52, 75–133 (1994)
23. Schmidt, R.: The Saito-Kurokawa lifting and functoriality. Am. J. Math. 127(1), 209–240

(2005)
24. Soudry, D.: The CAP representations of GSp.4/. J. Reine Angew. Math. 383, 97–108 (1988)
25. Soudry, D.: A uniqueness theorem for representations of GSO.6/ and the strong multiplicity

one for generic representations of GSp.4/. Isr. J. Math. 58(3), 257–287 (1988)
26. Sugano, T.: Holomorphic cusp forms on quaternion unitary groups. J. Fac. Sci. Univ. Tokyo

Sect. 1A 31, 521–568 (1984)
27. Takloo-Bighash, R.: L-functions for the p-adic group GSp.4/. Am. J. Math. 122(6), 1085–1120

(2000)
28. Waldspurger, J.-L.: Correspondence de Shimura et quaternions. Forum Math. 3, 219–307

(1991)
29. Weissauer, R.: Existence of Whittaker models related to four dimensional symplectic Galois

representations. In: Modular Forms on Schiermonnikoog, pp. 67–149. Cambridge University
Press, Cambridge (2008)

30. Weissauer, R.: Four dimensional Galois representations. In: Tilouine, J., Carayol, H., Harris,
M., Vignéras, M.-F. (eds.) Formes automorphes (II), Le cas du groupe GSp.4/. Asterisque, vol.
302, pp. 67–149. Société Mathématique de France, Paris (2005)

31. Weissauer, R.: Endoscopy for GSp.4/ and the Cohomology of Siegel Modular Threefolds.
Lecture Notes in Mathematics, vol. 1968. Springer, Berlin (2009)



Restriction of Hecke Eigenforms
to Horocycles

Ho Chung Siu and Kannan Soundararajan

Abstract We prove a sharp upper bound on the L2-norm of Hecke eigenforms
restricted to a horocycle, as the weight tends to infinity.

1 Introduction

A central problem in “quantum chaos” is to understand the limiting behavior
of eigenfunctions. An important example that has attracted a lot of attention is
that of Maass cusp forms with large Laplace eigenvalue on the modular surface
X D SL2.Z/nH. Let � denote such a Maass form, with eigenvalue�, and normalized
to have L2-norm 1: that is,

R
X j�.z/j2 dxdy

y2
D 1. Then the Quantum Unique Ergodicity

(QUE) conjecture of Rudnick and Sarnak [15] states that the measure �� D
j�.z/j2 dxdy

y2
tends to the uniform measure on X as � ! 1. If � is also assumed

to be an eigenfunction of all the Hecke operators, then QUE holds by the work of
Lindenstrauss [13], with a final step on escape of mass provided by Soundararajan
[19]. Thus, the measure�� does not concentrate on subsets of X with small measure,
but is uniformly spread out. A finer problem is to understand how much the measure
can concentrate on sub-manifolds; for example, on a geodesic, or a closed horocyle,
or even at just a point (that is, bounding the L1 norm). The letter of Sarnak to
Reznikov [16] draws attention to such restriction problems, and these problems
(and generalizations) have been studied extensively in recent years, see for example
[1, 2, 4, 11, 12, 20–22].

This note is concerned with a related question for holomorphic modular forms
for SL2.Z/ that are also eigenfunctions of all Hecke operators, when the weight k
becomes large. Let f be a Hecke eigenform of weight k on the modular surface X,
with L2-norm 1: that is,

Z

X
ykj f .z/j2 dxdy

y2
D 1:
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To f , we associate the measure �f D ykj f .z/j2 dxdy
y2

. The analog here of QUE states

that �f tends to the uniform measure 3
�

dxdy
y2

as k!1, and this is known to hold by
the work of Holowinsky and Soundararajan [6]. As with Maass forms, one may now
ask for finer restriction theorems for holomorphic Hecke eigenforms. We study the
problem of bounding the L2-norm of Hecke eigenforms on a fixed horocycle, and
establish the following uniform bound.

Theorem 1 Let f be a Hecke eigenform of weight k on X D SL2.Z/nH with L2-
norm normalized to be 1. Let ı > 0 be fixed. Uniformly in the range 1=k � y �
k1=2�ı we have

Z 1

0

ykj f .z/j2dx � C.ı/;

for some constant C.ı/.
Our result gives a uniform bound for the L2-norm restricted to horocycles,

answering a question from Sarnak [16]. In the Maass form situation, Ghosh et al.
[4] establish weaker restriction bounds (of size ��) for the corresponding problem,
and Sarnak [16] notes that uniform boundedness there follows from the Ramanujan
conjecture and a sub-convexity bound (in eigenvalue aspect) for the Rankin-Selberg
L-function L.s; � � �/. One might hope to strengthen and extend Theorem 1 in the
following two ways. First, Young [22, Conjecture 1.4] has conjectured that for any
fixed y > 0, the restriction of�f to the horocycle Œ0; 1�C iy still tends to the uniform
measure, as k!1: in particular, as k!1

Z 1

0

ykj f .z/j2dx! 3

�
:

Second, one might expect that two different eigenforms f and g of weight k are
approximately orthogonal on the horocycle Œ0; 1�C iy, so that (as k!1)

Z 1

0

ykf .xC iy/g.xC iy/dx! 0:

Our proof, which relies crucially on bounds for mean-values of non-negative
multiplicative functions in short intervals, does not allow us to address these refined
conjectures.

2 Preliminaries

Let f be a Hecke eigenform of weight k on X D SL2.Z/nH. Write

L.s; f / D
1X

nD1

�f .n/

ns
D
Y

p

�
1 � ˛p

ps

��1�
1 � ˇp

ps

��1
;
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where �f .n/ are the Hecke eigenvalues for f , and ˛p, ˇp D ˛�1
p are the Satake

parameters. Our L-function has been normalized such that the Deligne bound reads
j�f .n/j � d.n/ (the divisor function), or equivalently that j˛pj D jˇpj D 1.

The symmetric square L-function L.s; sym2 f / is defined by

L.s; sym2 f / D �.2s/
1X

nD1

�f .n2/

ns
D
Y

p

�
1 � ˛

2
p

ps

��1�
1 � 1

ps

��1�
1 � ˇ

2
p

ps

��1
:

From the work of Shimura [17] we know that L.s; sym2 f / has an analytic contin-
uation to the entire complex plane, and satisfies a functional equation connecting s
and 1 � s: namely, with �R.s/ D ��s=2�.s=2/,

ƒ.s; sym2 f / D �R.sC 1/�R.sC k � 1/�R.sC k/L.s; sym2 f / D ƒ.1� s; sym2 f /:

Moreover, Gelbart and Jacquet [3] have shown that L.s; sym2 f / arises as the L-
function of a cuspidal automorphic representation of GL.3/. Invoking the Rankin-
Selberg L-function attached to sym2 f , a standard argument establishes the classical
zero-free region for L.s; sym2 f /, with the possible exception of a real Landau-Siegel
zero (see Theorem 5.42 of [8]). The work of Hoffstein and Lockhart [5] (especially
the appendix by Goldfeld, Hoffstein and Lieman) has ruled out the existence of
Landau-Siegel zeroes for this family. Thus, for a suitable constant c > 0, the region

R D
n
s D � C it W � � 1 � c

log k.1C jtj/
o

does not contain any zeroes of L.s; sym2 f / for any Hecke eigenform f of weight k.
Lastly, we shall need a “log-free” zero-density estimate for this family, which

follows from the work of Kowalski and Michel (see [9], and also the recent works
of Lemke Oliver and Thorner [10], and Motohashi [14]).

Lemma 2 There exist absolute constants B, C, and c such that for all 1=2 � ˛ � 1,
and any T we have

jf� D ˇ C i
 W L.�; sym2 f / D 0; ˇ � ˛; j
 j � Tgj � C.T C 1/Bkc.1�˛/:

The special value L.1; sym2 f / shows up naturally when comparing the L2

normalization and Hecke normalization of a modular form. Suppose f has been
normalized in such a way that

Z

X
ykj f .z/j2 dx dy

y2
D 1:
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Then the Fourier expansion of f .z/ is given by (see, for example, Chapter 13 of [7])

f .z/ D Cf

1X

nD1
�f .n/.4�n/

k�1
2 e.nz/; (1)

where

Cf D
� 2�2

�.k/L.1; sym2 f /

�1=2
:

We can now state our main lemma, which refines Lemma 2 of [6], and allows us to
estimate L.1; sym2 f / by a suitable Euler product. Below we use the notation g � h
to denote g	 h and h	 g.

Lemma 3 For any Hecke eigenform f of weight k for the full modular group, we
have

L.1; sym2 f / � exp
�X

p�k

�f . p2/

p

�
:

Proof Let 1 � � � 5
4
, and consider for some c > 0 and x � 1, the integral

1

2�i

Z cC1

c�1
�L0

L
.sC �; sym2 f /.sC 1/�.s/xsds; (2)

which we shall evaluate in two ways. Here we shall take x D kA for a suitably large
constant A. On one hand, we write

�L0

L
.s; sym2 f / D

1X

nD1

ƒsym2 f .n/

ns

whereƒsym2 f .n/ D 0 unless n D pk is a prime power, in which case

ƒsym2 f . pk/ D .˛2k
p C 1C ˇ2k

p / log p;

so that jƒsym2 f .n/j � 3ƒ.n/ for all n. Using this in (2), and integrating term by
term, using

1

2�i

Z

.c/
.sC 1/�.s/ysds D e�1=y

�
1C 1

y

�
;
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we obtain

1

2�i

Z

.c/
�L0

L
.sC �; sym2 f /.sC 1/�.s/xsds D

1X

nD2

ƒsym2 f .n/

n�
e�n=x

�
1C n

x

�
:

(3)

On the other hand, shift the line of integration in (2) to <.s/ D �3=2. We
encounter poles at s D 0, and at s D � � � for non-trivial zeroes � D ˇ C i

of L.s; sym2 f /. Computing these residues, we see that (2) equals

� L0

L
.�; sym2 f / �

X

�

x��� .� � � C 1/�.� � �/

C 1

2�i

Z

.�3=2/
�L0

L
.sC �; sym2 f /xs.sC 1/�.s/ds: (4)

Differentiate the functional equation of L.s; sym2 f / logarithmically, and use Stir-
ling’s formula. Thus with s D � 3

2
C it we obtain that

�L0

L
.sC �; sym2 f /	 log.k.1C jtj/C

ˇ̌
ˇ̌L

0

L
.1 � s � �; sym2 f /

ˇ̌
ˇ̌	 log.k.1C jtj//:

Therefore the integral in (4) may be bounded by O..log k/x�3=2/, and we conclude
that

X

n

ƒsym2 f .n/

n�
e�n=x

�
1C n

x

�
D �L0

L
.�; sym2 f /

�
X

�

x��� .�C 1 � �/�.� � �/C O.x�3=2 log k/: (5)

We now bound the sum over zeros in (5). Write � D ˇ C i
 , and split into terms
with n � j
 j < n C 1, where n D 0, 1, 2, : : :. If n � j
 j < nC 1, we may check
using the exponential decay of the �-function that

j� � � C 1jj�.� � �/j 	 .� � ˇ/�1e�n:

Therefore the contribution of zeros from this interval is

	
X

n�j
 j<nC1

xˇ��

� � ˇ e�n:

Splitting the zeros further based on 1� . jC 1/= log k � ˇ < 1� j= log k (and using
the zero free region, so that � � ˇ � . jC 1/= log k) the above is

	 e�n
log kX

jD0

x1���j= log k

. jC 1/= log k
jfˇC i
 W 1� . jC1/= log k � ˇ < 1� j= log k; n � j
 j < nC1g:
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Now using the log-free zero density estimate from Lemma 2, and recalling that
x D kA, the quantity above is

	 e�nx1�� log k
log kX

jD0

e�jA

jC 1.nC 1/
Bkc. jC1/= log k 	 .nC 1/Be�nx1�� log k;

provided A � c C 1 is large enough. Now summing over n, we conclude that the
sum over zeros in (5) is	 x1�� log k.

Use this bound in (5), and integrate that expression over 1 � � � 5=4. It follows
that

log L.1; sym2 f / D
1X

nD2

ƒsym2 f .n/

n log n
e�n=x

�
1C n

x

�
C O.1/ D

X

p�x

�f . p2/

p
CO.1/;

since the contribution of prime powers above is easily seen to be O.1/, and since

X

p�x

1

p

ˇ̌
ˇ1 � e�p=x

�
1C p

x

�ˇ̌
ˇC

X

p>x

1

p
e�p=x

�
1C p

x

�
D O.1/:

Exponentiating, we obtain

L.1; sym2 f / � exp
�X

p�x

�f . p2/

p

�
� exp

�X

p�k

�f . p2/

p

�
;

since x D kA, and
P

k<p�kA 1=p	 1. This concludes our proof. ut

3 Proof of Theorem 1

The Fourier expansion (1) and the Parseval formula give

Z 1

0

ykj f .z/j2dx D C2
f

4�

1X

nD1

�f .n/2

n
.4�ny/ke�4�ny

	 1

�.k/L.1; sym2 f /

1X

nD1

�f .n/2

n
.4�ny/ke�4�ny: (6)

For  � 0, note that

ke�

�.k/
� pk

�
k

�k
ek� 	

(p
k exp.�.k � /2=.4k// if  � 2kp
k.e=2/k� if  > 2k;

(7)
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where the first bound follows because log.1 C t/ � t � t2=4 for jtj � 1 (with
t D . � k/=k), and the second bound from log.1C t/ � t log 2 for t � 1.

The estimate (7) with  D 4�ny shows that the sum in (6) is concentrated around
values of n with j4�ny� kj about size

p
k. To flesh this out, let us first show that the

contribution to (6) from n with 4�ny � 2k is negligible. Using the second bound
in (7), such terms n contribute (using that L.1; sym2 f /� .log k/�1, which follows
from Lemma 3 or [5])

	 1

L.1; sym2 f /

X

n�k=.2�y/

�f .n/2

n

p
k.e=2/k�4�ny

	pk log k
X

n�k=.2�y/

�f .n/2

n

1

n
e�k=10 	 e�k=20:

This contribution to (6) is clearly negligible.
It remains to handle the contribution from those n with 4�ny � 2k. Divide such

n into intervals of the form j
p

k � j4�ny � kj < . jC 1/pk, where 0 � j 	 pk.
We use the first bound in (7) with  D 4�ny, and in the range j

p
k � j4�ny � kj <

. jC 1/pk this gives

1

�.k/

.4�ny/k

n
e�4�ny 	

p
ke�j2=4

n
	 yp

k
e�j2=8;

provided y � 1=k say. Thus the contribution from the terms j
p

k � j4�ny � kj <
. jC 1/pk is

	 ye�j2=8

p
kL.1; sym2 f /

X

j
p

k�j4�ny�kj<. jC1/pk

�f .n/
2: (8)

At this stage, we appeal to a result of Shiu (see Theorem 1 of [18]) bounding
averages of non-negative multiplicative functions in short intervals.

Lemma 4 Let g be a non-negative multiplicative function with (i) g. pl/ � Al for
some constant A, and (ii) g.n/ 	� n� for any � > 0. Then for any ı > 0, if
xı � z � x, we have

X

x<n�xCz

g.n/	A;ı
z

log x
exp

�X

p�x

g. p/

p

�
:

Applying this lemma in (8), in the range y � k1=2�ı , we may bound that
quantity by

	 ye�j2=8

p
kL.1; sym2 f /

p
k

y log k
exp

�X

p�k

�f . p/2

p

�
:
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Since �f . p/2 D �f . p2/C 1, the above bound when combined with Lemma 3 yields
	 e�j2=8, and summing this over all j gives	 1. Thus we conclude that the quantity
in (6) is bounded, completing the proof of our theorem.
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On the Triple Product Formula: Real
Local Calculations

Michael Woodbury

Abstract We consider a triple of admissible representations �j for j D 1; 2; 3

of GL2.R/ of weights kj with k1 � k2 C k3. Test vectors are given, and using a
formula of Michel-Venkatesh explicit values for local trilinear forms are computed
for these vectors. Using this we determine the real archimedean local factors in
Ichino’s formula for the triple product L-function. Applications both new and old to
subconvexity, quantum chaos and p-adic modular forms are discussed.

1 Introduction

Let F be a number field and A D AF the ring of adeles. We consider a triple of
GL2 automorphic representations �1; �2; �3 over F such that the product of the
central characters is trivial. Let … D �1 ˝ �2 ˝ �3 and denote by ƒ.s;…/ the
corresponding (completed) L-function corresponding to the natural 8-dimensional
tensor product representation of the L-group GL2 �GL2 �GL2. This L-function has
a distinguished history. Indeed, if �3, for example, corresponds to an Eisenstein
series and �1 and �2 to modular forms with q-expansions f D P

n�1 af .n/qn and
g D P

n�1 ag.n/qn, then, up to some additional Gamma factors, ƒ.s;…/ is the
Rankin-Selberg convolution L-function

L.s; f � g/ D
X

n�1

af .n/ag.n/

ns

whose importance in number theory can hardly be overstated. Thinking of this as a
triple product L-function was an important point of view taken in the work of Michel
and Venkatesh in [17] in which they established subconvexity bounds for GL2 type
L-functions simultaneously in all aspects.
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The case in which all three representations are cuspidal was first taken up by
Garrett in [5] and by Piateski-Shapiro and Rallis in [21]. Garrett, by essentially
integrating a triple of cusp forms f ; g; h with Fourier coefficients as above against a
certain Eisenstein series for Sp6, was able to give an integral representation for the
triple product L-function

L.s; f � g � h/ D
X

n�1

af .n/ag.n/ah.n/

ns
;

and he used this to prove a functional equation and meromorphic continuation. This
work has since been extended by many authors. (See for example [6, 7, 25] and [11].)
The main result of [11] (to be described below) is the culmination of these formulas.
It has the advantage of being valid for any choice of test vectors; however, from the
standpoint of number theoretic applications, Watson’s more explicit result has been
particularly applicable in number theory and quantum chaos precisely due to its
more explicit form. Most notably among these applications are subconvexity results
(See for example [1]) and to the so-called Quantum Unique Ergodicity conjecture
which is now a theorem of Holowinsky and Soundarajan (see [8] and [23] and [25]).

To describe Ichino’s formula, let us write �j D ˝v�j;v as a (restricted) tensor
product over the places v of F, with each �j;v an admissible representation of
GL2.Fv/. Let h�; �iv be a (Hermitian) form on �j. Then, assuming that 'j D ˝'j;v 2
�j;v is factorizable,1 for each v we can consider the form obtained by integrating the
matrix coefficient associated to 'v D '1;v ˝ '2;v ˝ '3;v:

I0
v.'v/ D

Z

PGL2.Fv/
h�v.gv/'1;v; '1;vivh�v.gv/'2;v; '2;vivh�v.gv/'3;v; '3;vivdgv;

(1.1)
and the normalization

Iv.'v/ D �Fv .2/
�2 Lv.1;…v;Ad/

Lv.1=2;…v/
I0
v.'v/: (1.2)

We call I0
v and Iv trilinear forms although this is somewhat of an abuse of language

since it actually defines a quadratic form on the triple product.
Ichino proved (in the case that each �i is cuspidal) that there is a constant C

(depending only on the choice of measures) such that

ˇ̌
ˇ̌
Z

ŒGL2�
'1.g/'2.g/'3.g/ dg

ˇ̌
ˇ̌
2

3Y

jD1

Z

ŒGL2�
j'j.g/j2 dg

D C

23
� �F.2/

2 � ƒ.1=2;…/
ƒ.1;…;Ad/

Y

v

Iv.'v/

h'v; 'viv (1.3)

1As a restricted tensor product, we have chosen vectors '0i;v 2 �v for all but finitely many places
v. We require that the local inner forms must satisfy h'0i;v; '0i;viv D 1 for all such v.
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whenever the denominators are nonzero. Note that the notation ŒGL2� represents the
quotient A� GL2.Q/nGL2.A/. By the choice of normalizations, the product on the
right hand side of (1.3) is in fact a finite product as each factor is identically 1 when
all of the input data is unramified.

In order to derive number theoretic applications from Ichino’s formula, it is
necessary to compute (or at least control) the local factors at the infinite and
ramified finite places. This is the topic of the author’s PhD thesis [26] wherein
Watson’s formulas and explicit generalizations are derived from (1.3) by computing
local trilinear forms. (In the nonarchimedean case, for example, the trilinear forms
were computed for triples of representations with—potentially distinct—squarefree
level.) Using this, a certain hypothesis of Venkatesh from [24] was proved thereby
leading to subconvexity results analogous to [1], but in the level instead of
eigenvalue aspect. This topic is further taken up by Hu in [9] and [10] wherein
higher ramification is considered with applications similar to those of [18].

In addition to the results outlined above, the triple product L-function plays an
important role in the work of Darmon, Lauder and Rotger (see [3]) as well as
others in relation to the so-called elliptic Stark conjecture, a generalization of Stark’s
conjecture that is closely related to the Birch-Swinnerton-Dyer conjecture. In this
work it is critical to know that up to a computable power of � , the central critical
value of the completed triple product L-function is rational. This work takes as a
necessary starting step the evaluation of the right hand side of (1.3) in the case
that the triple of representations comes from two weight one modular forms and a
weight two modular form—a case which was not covered by Watson. The relevant
calculation at the infinite case is one of the results of the current paper.

To be more explicit, in this paper we treat the question of determining test vectors
at the real infinite places and compute the corresponding trilinear forms. This work
builds in particular on the results of [26] and the appendix to [22]. We also remark
that our choice of test vectors is inspired greatly by Popa [19]. Moreover, although
we give results in most cases only for one choice of test vectors, using [16] one can
deduce the values of the trilinear form at other test vectors as well.

Since we will be considering only the local case from this point onward, unless
otherwise specified, we drop the subscript v from all local objects. Hence, for
example, I. f1 ˝ f2 ˝ f3/, L.s;…/ etc. refer to the local normalized trilinear and
L-factors of (1.2) at a real place. With this in place, the following is the main result
of this paper.

Theorem 1 Suppose that �j for j D 1; 2; 3 are irreducible admissible unitary
representations of GL2.R/ of weights kj for which the product of central characters
is trivial.2 If we assume3 that k1 � k2 C k3 then there exists a choice of test
vectors f . j/ 2 �j such that f D f .1/ ˝ f .2/ ˝ f .3/ satisfies I. f / ¤ 0. (See

2This implies directly that k1 C k2 C k3 is even.
3By Prasad [20], this assumption is necessary as otherwise Iv is identically zero.
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Propositions 3.2, 3.3, 3.4 and 3.5 for the choice of vectors and explicit values of
I. f / in each case.)

In particular,4 if k1 D k2 C k3 there exist fj 2 �j such that

I. f .1/ ˝ f .2/ ˝ f .3//

h f .1/; f .1/ih f .2/; f .2/ih f .3/; f .3/i D c.…/ D
(
2 if k1 � 2;
1 otherwise.

(1.4)

Equivalently, setting… D �1˝�2˝�3, there exist f . j/ 2 �j such that h f . j/; f . j/i D 1
for each j D 1; 2; 3, and for which the matrix coefficients ˆj.g/ D h�1.g/f . j/; f . j/i
satisfy

I0. f / D
Z

PGL2.R/
ˆ1.g/ˆ2.g/ˆ3.g/ dg D c.…/

�R.2/
2L. 1

2
;…/

L.1;…;Ad /
: (1.5)

The right hand side of (1.5) is given explicitly in terms of the parameters of �j and
the Gamma function in Table 2.

Remark 1 In the applications in [22] and [3] it is essential that one has an exact
formula (in the latter case at least up to rational factor) for the triple product L-
function.

Remark 2 With the hindsight of Ichino’s formula which linked the local trilinear
forms to certain zeta integrals on the group Sp6, the evaluation of the archimedean
local trilinear forms in the case that two or more of the representations are (weight
zero) principal series was essentially worked out by Ikeda in [13] and by Watson
[25] as evaluations of these zeta integrals. Moreover, [12] gives Theorem 1 for k3 >
1. As such, the principal new contribution of our work here is to give a generalized
and uniform treatment. Moreover, the calculations in the case of k2 D 1 and/or
k3 D 1 as well as the more general results in Propositions 3.2, 3.3, 3.4 and 3.5 are
new. Besides giving these new results, we believe that the present proofs illustrate
how the method is widely and easily applicable.

The proof of Theorem 1 is obtained on a case by case basis considering
all possible combinations of representations �1; �2; �3. We give an overview of
the relevant representation theoretic background in Sect. 2 and then compute the
trilinear forms in Sect. 3. The normalizing factor in (1.2) relating I0 and I can be
calculated following the prescription for the local Langlands correspondence given
in [15]. We include an overview of this theory and record the relevant factors for
each of the possible cases in an Appendix.

4In this special case we also assume that if kj D 0 for all j then a certain invariant � D 0 defined in
Sect. 3.1 in terms of the representations �j.
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2 Background and Notation

We now set notation and give definitions for the representation theory of GL2.R/
that will be used in the sequel. This theory is well known. See [2] or [14] for
complete details.

2.1 Admissible Representations of GL2.R/

Given an automorphic representation ˝v�v of GL2.AF/, as discussed in the
introduction, for all real places v of F the local factor �v is an admissible .gl2;K/-
module where gl2 is the Lie algebra of GL2.R/ and

K D SO.2/ D ˚�� D
�

cos � � sin �
sin � cos �

��
:

Using a slight abuse of language we refer to such a module as an admissible
representation of GL2.R/.

Let n W K ! C be given by n.�� / D ein� . Recall that restricting any irreducible
admissible representation � to K there exists a nonnegative integer wt.�/ such that

�j jK '
M

jnj�wt.�/
n�wt.�/ .mod 2/

C n:

An element � 2 � is said to have weight n if � corresponds, via this isomorphism, to
an element in C n. The integers n appearing in the decomposition above are called
the weights of � . Accordingly, we say that � has even or odd weight depending on
whether wt.�/ is even or odd respectively.

We define the following subgroups of GL2.R/:

A D ˚a.y/ D � y 0
0 1

� j y 2 R
��;

Z D ˚z.u/ D � u 0
0 u

� j u 2 R
��;

N D ˚n.x/ D � 1 x
0 1

� j x 2 R
�
:

We can construct all such representations via the induced representations which
are defined in terms of (quasi-)characters �j W R� ! C

� of the form �j.x/ D
sgn.x/�j jxjsj where sgn W R� ! f˙1g is the sign character x 7! x=jxj, �j 2 f0; 1g
and sj 2 C. Then

B.�1; �2/ WD
8
<

:f W GL2.R/! C

ˇ̌
ˇ̌
ˇ̌
f .
�

a b
0 d

�
g/ D �1.a/�2.d/j ad j1=2f .g/
for all g 2 GL2.R/;

f is smooth and K-finite.

9
=

; :
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It is easy to see that for any f 2 B.�1; �2/,

f .z.u/a.y/g/ D sgn.u/ıjuj� sgn.y/�1 jyjsf .g/

where ı 2 f0; 1g is such that ı � �1 C �2 .mod 2/, s D 1
2
.1 C s1 � s2/ and � D

s1Cs2. Given this, we define �ı;�.s; �/ WD B.�1; �2/where �1 D sgn�j � jsC��1
2 and

�2 D sgnı��j � j�sC�C1
2 . We also use the notation �ı;�.s/ WD �ı;�.s; 0/. The above

makes clear that the central character of �ı;�.s; �/ is given by sgnıj � j�.
Twisting by the determinant we have

jdet.�/j �2 ˝ �ı;�.s; 0/ ' �ı;�.s; �/;

and hence it follows that �ı;�.s/ is the unique such twist of �ı;�.s; �/ such that the
central character is sgnı.

We denote by fm;s the weight m vector in �ı;�.s/ satisfying fm;s.�� / D eim� . Note
that this is nonzero if and only if m � ı .mod 2/. The set of all such vectors forms
a basis.

There exists an intertwining operator from � D B.�1; �2/ D �ı;�.s; �/ to e� WD
B.�2; �1/ D �ı;ı��.1� s/. If Re.s/ > 1

2
, this is given by M.s/ W � ! e� defined via

�
M.s/f

�
.g/ WD

Z 1

�1
f .wn.x/g/ dx; (2.1)

where w D . 0 �1
1 0 /. We drop � from the notation as the map is independent of the

choice of � within the class of twists of �ı;�.s/. By analytic continuation, M.s/
extends to other values of s, �. It sends the weight m vector fm 2 � to a multiple
ofef m 2 e� . As long as �ı;�.s; �/ is irreducible (which is the case unless s D k

2
or

s D 1 � k
2

with k > 1 an integer satisfying k � ı .mod 2/) the map M.s/ is an
isomorphism.

Given � D B.�1; �2/ D �ı;�.s; �/ the contragradient is b� D B.��1
1 ; �

�1
2 / D

�ı;�.1 � s;��/ with pairing

.�; �/ W � �b� ! C; . f ; h/ WD
Z

K
f .�/h.�/ d� (2.2)

(We normalize the measure d� on K such that vol K D 1.) In the case of the unitary
principal series, the characters �j D ��1

j , and so we can identify the contragradient
with the complex conjugate � . Then the we have a Hermitian form h f ; gi WD
. f ; g/ on � . In general, for unitary representations � one has b� D e� . Using the
intertwining operator M.s/ one can define a Hermitian form h f ; gi WD . f ; cM.s/g/
for a suitable constant c.

For global applications (i.e., to be applied towards (1.3)), one only needs the
results of this paper for choices of .s; �/ such that these representations are
unitarizable. Note that �ı;�.s; �/ is unitarizable if and only if �ı;�.s/ is unitarizable
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and the central character is unitary, i.e., � 2 iR. Therefore up to twists by unitary
characters, the unitary representations are differentiated as follows.

• If s D 1
2
C 	 with 	 2 iR�, �ı;�.s/ is called an even or odd weight (unitary)

principal series according as ı D 0 or 1 respectively. Since �ı;�. 12 C 	/ '
�ı;ı�� . 12 � 	/, in the case of ı D 1, it suffices to consider �1;�. 12 C it/ only in the
case of � D 0.

• If ı D 0 and s D 1
2
C 	 and s0 D 1

2
C 	0 with 	; 	0 2 .� 1

2
; 1
2
/ n f0g, we have that

�0;�.s/ ' �0;�0 .s0/ if and only if � D �0 and s0 D 1 � s (meaning that 	0 D �	).
These are called complementary series.

• If s D k
2

or s D 1 � k
2

for some k � 1 then �ı;�.s/ D 0 unless k � ı

.mod 2/. (The choice of � is irrelevant.) Then, for such s with k > 1, �ı;�.s/ is
not irreducible; however, there is a representation �k

dis, called the (holomorphic)
weight k discrete series, which is an irreducible .gl2;O.2//-module. The weight
k discrete series is isomorphic to a subrepresentation if s D k

2
and a quotient if

s D 1 � k
2

if k > 1, and �1dis ' �1;0.
1
2
/. We refer to �1dis as a limit of discrete

series.

To conclude this section we record the action of the Laplace-Beltrami operator

� D �y2
�
@2

@x2
C @2

@y2

�
C y

@2

@x@�
; (2.3)

and the raising and lowering operators

R D e2i�

�
iy
@

@x
C y

@

@y
C 1

2i

@

@�

�
; L D e�2i�

�
�iy

@

@x
C y

@

@y
� 1

2i

@

@�

�

(2.4)

on f 2 � D �ı;�.s/ in terms of the coordinates n.x/a.y/�� on GL2.R/. These act via

�f D s.1 � s/f (for all f 2 �/;

and

Rfm;s D
�

sC m

2

�
fmC2;s; Lfm;s D

�
s � m

2

�
fm�2;s: (2.5)

2.2 Whittaker Models and Functions

Given an irreducible admissible representation � D �ı;�.s/ or � D �k
dis and a

character  W R ! C
�, there is a unique space W.�;  / of Schwartz functions

W W GL2.R/! C such that

W.n.x/g/ D  .x/W.g/ for all g 2 GL2.R/; (2.6)



282 M. Woodbury

and, under the action �.g/W.h/ D W.hg/, � ' W.�;  /.
We denote by Wm 2W.�;  / the unique up to constant vector of weight m, i.e.,

the vector which satisfies �.��/Wm D eim�Wm. There exists an explicit intertwiner
� !W.�;  / given by

f 7! Wf .g/ D
Z

R

f .wn.x/g/ .x/ dx:

Hence, if fm;s 2 �ı;�.s/ as defined in the previous section, the functions Wfm;s satisfy
the same relations as given in (2.5) for the raising and lowering operators. Rather
than work with this intertwiner directly, we simply require that Wm 2 W.�;  / be
a weight m vector such that

RWm D
�

sC m

2

�
Wm; LWm D

�
s � m

2

�
Wm�2;

and

�. . �1 0
0 1 / /Wm D .�1/ıW�m (2.7)

hold for all m. This defines the collection fWmg, therefore, up to a common constant
multiple. Moreover, if � D �ı;�.s/ one sees via (2.6) that

Wm.a.�y// D .�1/�CıWm.a.y//; (2.8)

so in this case Wm.y/ is determined by its values on y > 0. In the case � D �k
dis, we

will see that Wm.a.y// is nonzero either for y > 0 or y < 0 (depending on  and m).
Following the strategy of [19] (which itself is based on [14]), in Proposition 2.1

we describe certain functions W 2 W.�;  /. We do so in terms of the modified
Bessel function, K	.y/, which5 up to a constant is the unique solution with moderate
growth (as y!1) to the differential equation

0 D f 00.y/C 1

y
f 0.y/ �

�
	2

y2
C 1

�
f .y/: (2.9)

Fixing the constant, we take for y > 0

K	.y/ D 1
2

Z 1

0

e� y
2 .tC 1

t /t	d�t;

which is easily seen to satisfy (2.9) and have exponential decay as y!1.

5Contrary to commonly used notation, in [19] this function is referred to as J	 .
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In the sequel, we will make use of the identities

Z 1

0

K	.y=2/K�.y=2/y
sd�y D 22s�3 �.

sC�C	
2

/�.
s��C	

2
/�.

sC��	
2

/�.
s���	
2

/

�.s/
;

(2.10)
which is valid for Re.s/ > jRe.�/j C jRe.	/j, and

Z 1

0

e�y=2K	.y=2/y
sd�y D �1=2 �.sC 	/�.s� 	/

�.sC 1
2
/

; (2.11)

which holds whenever Re.s/ > jRe 	j. These are equations (6.8.48) and (6.8.28) of
[4] respectively. We will also need the additional fact that

d

dz
K	.z/ D �1

2

�
K	�1.z/C K	C1.z/

�
(2.12)

D 	

z
K	.z/ � K	C1.z/: (2.13)

Proposition 2.1 Suppose that  .x/ D e
 ix=2 with 
 2 f˙g. Let W


˙k 2W.�k
dis;  /

be vectors of weight˙k respectively. Up to scalar, for k � 0 these are given by

W��k.a.y// D WC
k .a.y// D

(
yk=2e�y=2 if y > 0

0 otherwise.
(2.14)

and W�
k .a.y// D WC

�k.a.y// D .�1/kWC
k .a.�y//.

Writing s D 1
2
C 	, we may choose W


0 ;W


�2;W



2 2W.�0;�.s/;  / such that

W

0 .a.y// D sgn.y/�jyj1=2K	.jyj=2/; (2.15)

.W

�2 �W


2 /.a.y// D sgn.y/�C1jyj3=2K	.jyj=2/; (2.16)

and

.W

�2 CW


2 /.a.y// D
sgn.y/�C1

4

�
2jyj�1=2K	.jyj=2/ (2.17)

� jyj1=2�K	�1.jyj=2/C K	C1.jyj=2/
��
:

Finally, we may choose W


˙1 2W.�1;0.s/;  / such that

.W

�1 CW


1 /.a.y// D yK� 1
2C	.jyj=2/; (2.18)

and

.W

�1 �W


1 /.a.y// D jyjK 1
2C	.jyj=2/: (2.19)
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Remark 3 Note that our choice of character  is not the same as that given in
[19] resulting in slightly different formulas. One advantage of our choice (as will
be shown) is the corresponding functions Wm will be solutions of the classical
differential equation of Whittaker.

Proof Given that � has central character sgnı , any function Wm 2 W.�;  / of
weight m satisfies

Wm.z.u/n.x/a.y/��/ D sgn.u/ıei.
 x
2Cm�/Wm.a.y//: (2.20)

Suppose that � D s.1 � s/ is the eigenvalue of the action of the Laplace operator�
on � . Then combining this with the definition of � from (2.3) applied to (2.20), it
is easy to see that wm.y/ D Wm.a.y// satisfies the differential equation

w00 C

�1
4
C 
m

2y
C �

y2

�
w D 0: (2.21)

which, writing s D 1
2
C 	, has solutions Wm;	.y/ and W�m;	 .�y/, the so-called

Whittaker functions. Since only Wm;	 has moderate growth as y ! 1, together
with (2.8), we find—provided that6 W


m 2 W.�ı;�.s/;  / and s … 1
2
Z—that for

m � 0,

W

m.a.y// D

(
Wm;	 .y/ if y > 0;

.�1/�CıWm;	.�y/ if y < 0:

Combined with (2.7), this defines Wm.a.y// for all m � ı .mod 2/ and for all y ¤ 0.
Applying the operators R and L given in (2.4) to Wm we find that

�
	 C 1˙ m

2

�
wm˙2 D ˙

�m � y

2

�
wm C yw0

m: (2.22)

If � D �k
dis, one has that Wk must be annihilated by L. (This fact is true for k D 1

as well.) Using this leads to the differential equation

2yw0
k.y/C

�
y � k

2

�
wk D 0;

which can be solved using elementary methods. The restriction on the growth leads
immediately to (2.14). The formula for W�k follows from (2.7).

For the remainder of the proof we note that the choice of 
 effects only the
sign of m appearing in (2.21). This means that W�

m is the weight m vector such

6It is necessary, of course, that m D wt.�/C 2n for some n 2 Z�0.
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that W�
m .a.y// D WC�m.a.y//. For the purpose of the rest of the proof, therefore, it

suffices to take 
 D C and we drop it from the notation.
Now we consider the case of � D �0;�.s/. If we let w0.y/ D y1=2f .y=2/ and plug

this into (2.21), after simplifying, we arrive at Eq. (2.9). Since f D K	 has moderate
growth as y ! 1, clearly y1=2K	.y=2/ does as well. Equation (2.15) follows by
applying (2.8).

Next, we apply (2.22) in the case of m D 0 which yields

2sw2 D �yw0 C 2yw0
0 and 2sw�2 D yw0 C 2yw0

0:

Hence

w�2.y/� w2.y/ D yw0.y/

s
; w�2.y/C w2.y/ D 2yw0

0.y/

s
:

Note that since � is a principal series, s ¤ 0. In the first case, using the formula for
w0.y/ from above gives (2.16). Then (2.17) is obtained similarly using (2.12).

Finally, we now assume � D �1;0.s/. Applying (2.22) in the case of m D ˙1
leads to the system of equations

	w1 D
��1 � y

2

�
w�1 C yw0�1.y/;

	w�1 D
�

y � 1
2

�
w1 C yw0

1.y/:

We now set f D w1 C w�1 and g D w1 � w�1, so that adding and subtracting these
two formulas we find that

.2	 C 1/f D ygC 2yf 0 (2.23)

.2	 � 1/g D� yf � 2yg0:

This simplifies further to

f 00 � 1
y

f 0 �
�
.2	 � 1/2 � 4

4y2
C 1

4

�
f D 0:

Plugging f .y/ D yK.y=2/ into the above, we find that K satisfies the differential
equation

0 D K00.y/C 1

y
K0.y/�

 
.	 � 1

2
/2

y2
� 1

!
K.y/:

Comparing this with (2.9), the formula (2.18) for f D W1 C W�1 follows readily,
using the fact that f .y/ is odd. (That f is odd is a direct consequence of (2.7).) On
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the other hand, using (2.13) and (2.23), we see that g D W1 �W�1 satisfies

yg.y/ D .2	 C 1/f .y/� 2yf 0.y/

D .2	 C 1/K	� 1
2
.y=2/� 2y.�.y=2/K	C 1

2
.y=2/C .	 C 1=2/K	�1=2.y=2//

D y2K	C 1
2
.y=2/:

This is valid for y > 0 and leads directly to (2.19) since g is an even function. ut
Proposition 2.2 The norms of the vectors from Proposition 2.1 are as follows.
The vector Wk 2 W.�k

dis;  / satisfies hWk;Wki D .k � 1/Š. The vectors W˙` 2
W �ı;�.

1
2
C 	/ with ` D 0; 1; 2 and ` � ı .mod 2/ satisfy hW`;W`i D ��.1C`

2
C

	/�. 1C`
2
� 	/.

Proof If � is a discrete series or a unitary principal series then the inner product on
W.�;  / is given by

hW;W 0i D
Z

K

Z

R�

W.a.y/�/W.a.y/�/d�y d�:

Thus, using the integral representation �.s/ D R1
0

yse�yd�y for the Gamma
function, we see in the case of the discrete series �k

dis that

hWk;Wki D
Z 1

0

e�yyk�1 dy D �.k/ D .k � 1/Š:

We write the norms of each of the functions (2.15), (2.16) and (2.19) in terms
of (2.10). For W D W0 this is completely straightforward. The case of W D W˙2 is
somewhat more complicated, and so we go through the proof in detail. First, writing
wm.y/ D Wm.a.y//, note that if we set f� D w�2 � w2 and fC D w�2 C w2, then f�
is an odd function of y and fC is even. Thus

hW˙2;W˙2i D
Z

R�

w˙2.y/w˙2.y/d�y

D
Z

R�

�
fC.y/˙ f�.y/

2

� 
fC.y/˙ f�.y/

2

!
d�y

D 1

4

Z

R�

�
fC.y/fC.y/C f�.y/f�.y/

�
d�y

D 1

2

Z 1

0

�
fC.y/fC.y/C f�.y/f�.y/

�
d�y:
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One calculates easily using (2.10) that

Z 1

0

fC.y/fC.y/ d�y D ��.3
2
C it/�. 3

2
� it/:

The calculation of
R1
0

f�.y/f�.y/ d�y is similar (but messier) and gives the same
result. Putting this together leads to the claimed result for W˙2.

The case of W˙1 is similar. We leave the details to the reader. ut
Remark 4 Note that

Z

K
Wm.a.y/�/Wn.a.y/�/ d� D 0

unless m D n. In particular this implies that hW`˙W�`;W`˙W�`i D 2��.1C`2 C
	/�. 1C`

2
� 	/ if ` ¤ 0.

3 Computing Trilinear Forms

For j D 1; 2; 3, let �j be irreducible admissible unitary representations of GL2.R/.
We assume that the product of their central characters is trivial. Thus, without loss
of generality, if !j is the central character of �j we may assume that !j.z.u// D
sgn.u/ıj for ıj 2 f0; 1g satisfying

ı1 C ı2 C ı3 � 0 .mod 2/: (3.1)

As a matter of notation, we will denote an element of �j by f . j/, and similarly
elements of W.�j;  / will be denoted by W. j/. The calculation of the trilinear form
is simplified by using the Whittaker models of �j for j D 1; 2 due to the following
result of [17].

Proposition 3.1 (Michel-Venkatesh) Let �1; �2; �3 be tempered representations
of GL2.R/ with �3 a principal series. Fix isometries �1 ! W.�1;  / and �2 !
W.�2;  / for .x/ D eix=2. Via these isometries, associating to f . j/ 2 �j for j D 1; 2
vectors W. j/ in the Whittaker models, the form `RS W �1 ˝ �2 ˝ �3 ! C given by

`RS. f .1/˝f .2/˝f .3//Dp4�
Z

K

Z

R�

W.1/.a.y/�/W.2/.a.y/�/f .3/.a.y/�/jyj�1 d�y d�

(3.2)
satisfies j`RSj2 D I0

v. f .1/ ˝ f .2/ ˝ f .3// where I0 is as in (1.1).

Remark 5 The constant
p
4� is an artifact of the fact that the formula given in

[17] (in which this constant does not appear) is valid in the particular case that
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 .x/ D e2� ix. Adjusting to our case of  .x/ D eix=2 has the effect of multiplying by
this constant.

To ease notation we will assume henceforth that h f . j/; f . j/i D 1. This implies
that the map �j !W.�j;  / given by f . j/ 7! W. j/=hW. j/;W. j/i1=2 is an isometry to
which we may apply Proposition 3.1.

As remarked in [17], the non-tempered case (including the complementary
series) can also be treated with Proposition 3.1 via a polarization which we describe
now. In this generality, we associate to f 2 � a vectoref 2 b� such that up to constant
ef D M.s/f and . f ;ef / D 1. In the case of the weight m vector f D fm;s 2 �ı;�.s/, this
implies thatef D f�m;1�s. We denote by eW . j/ the image ofef . j/ in W.e�j;  / as above.

So, under the assumption that f . j/ andef . j/ satisfy . f . j/;ef . j// D 1, we see that the
polarized form of Proposition 3.1 gives

I0
v. f .1/˝ f .2/˝ f .3// D `RS.W.1/ ˝W.2/ ˝ f .3//`RS.eW.1/ ˝ eW.2/ ˝ef .3//

.W.1/; eW.1//.W.2/; eW .2//
: (3.3)

Following our convention for choosingef from f , the calculation of norms given in
Proposition 2.2 gives the correct values for .W; eW/ even in the case that � is not
unitarizable. In the sequel, we will use this polarized form throughout.

Remark 6 For f D f .1/˝ f .2/˝ f .3/, the trilinear from I0. f /
hf ;f i is clearly invariant under

scaling f . j/ by a nonzero constant, hence in defining the particular choice of test
vectors in the sequel (or equivalently in Proposition 2.1) the exact choice of scalar
is not so important. We refer to a choice such that hf ; f i D . f ;ef / D 1 as normalized.

For the remainder of this section we adopt the notation wt.�j/ D kj, and we
assume that if f`;m; ng D f1; 2; 3g with k` D maxfk1; k2; k3g then k` � km C kn.
The condition on the central characters implies that k1 C k2 C k3 is even.

3.1 The Case of Three Principal Series

We consider first the situation in which �j D �ıj;�j .
1
2
C 	j/ for all j D 1; 2; 3 with

ı1 C ı2 C ı3 even. Attached to such a triple we define � 2 f0; 1g be such that
� � �1 C �2 C �3 .mod 2/.

Proposition 3.2 Let �j be principal series representations with � as above. Then
we may arrange that .ı1; �1/ D .0; �/ and .ıj; �j/ D .ı; �0/ for j D 2; 3. If ı D 0

there exists a choice of normalized test vectors f . j/ 2 �j such that

I. f .1/ ˝ f .2/ ˝ f .3// D
�
4�4

�j

��
(3.4)

where �j is the eigenvalue of the Laplace-Beltrami operator on �j for either j D 2

or j D 3, i.e. �j D 1
4
� 	2j .
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When ı D 1 there is a choice of normalized test vectors such that I. f .1/˝ f .2/˝
f .3// D 1.

Remark 7 Strictly speaking our proof is only valid for parameters 	j such that
certain integrals of the type (2.9) and (2.10) are convergent. To get the more general
result one must employ analytic continuation. When the parameters correspond to
unitary representations, the proof below is complete.

Proof Suppose first that ı D 0. Let W.1/ D W0,

W.2/ D
(

W0 if � D 0
W�2�W2p

2
if � D 1; and f .3/ D

(
f0 if � D 0
f�2Cf2p

2
if � D 1:

Note that with these choices the restriction of W.1/W.2/f .3/ to A is an even
function. This is because for any f 2 �3 the restriction to A satisfies f .a.y// D
c sgn.y/�jyj 12C	3 for some constant c.

By Proposition 2.2 and Remark 4, hW. j/;W. j/i D ��.1
2
C 	j/�.

1
2
� 	j/ for

j D 1; 2 and any choice of �; �0. Also, note that h f .3/; f .3/i D 1 in any case.
We claim that

`RS.W
.1/ ˝W.2/ ˝ f .3// D 2�C2	3

p
�

.1
2
C 	3/�

Q

j2˙ �.1C2�2 C 
1	1C
2	2C	3

2
/

�. 1C2�
2
C 	3/

: (3.5)

We verify this in the case of � D 1 by computing

`RS.W
.1/ ˝W.2/ ˝ f .3// D p�

Z

R�

.W0W�2f2 �W0W2f�2/.a.y//jyj�1d�y

D p�
Z

R�

W0.W�2 �W2/.a.y// sgn.y/jyj� 1
2C	3d�y

D 2p�
Z 1

0

y
3
2C	3K	1.y=2/K	2.y=2/ d�y

D 21C2	3p�
Q

j2˙ �.34 C 
1	1C
2	2C	3

2
/

�. 3
2
C 	3/

D 21C2	3
p
�

1
2
C 	3

Q

j2˙ �.34 C 
1	1C
2	2C	3

2
/

�. 1
2
C 	3/

:

The other case is similar.
Computing `RS.eW.1/ ˝ eW.2/ ˝ef .3// as above has the net effect of giving exactly

the same result except with 	3 replaced by �	3. Thus, combining (3.5) with
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Proposition 2.2, we see that (3.3) now gives

I0
v. f .1/ ˝ f .2/ ˝ f .3// D

�
4

�3

�� Q

jD˙ �.

1C2�
4
C 
1	1C
2	2C
3	3

2
/

�
Q3

jD1 �. 12 C 	j/�.
1
2
� 	j/

:

Finally, we divide by the normalizing factor in Table 2 for …1 and thus obtain the
desired result.

Now suppose that ı D 1. We choose f .1/ D f0; 12C	1 ,

f .2/ D
f1; 12C	2 � .�1/�f�1; 12C	2p

2
; and f .3/ D

f1; 12C	3 � f�1; 12C	3p
2

:

Thus W.1/ D W0 and W.2/ D W1�.�1/�W�1p
2

. Note again that having made these

choices the product W.1/W.2/f .3/ has the property that its restriction to A is an even
function.

By a computation very similar to that above, we find

`RS.W
.1/ ˝W.2/ ˝ f .3// D p�

Z

R�

�
W0W1f�1 C .�1/�W�1f1

�
.a.y//jyj�1 d�y

D p�
Z

R�

�
W0.W1 C .�1/�W�1/

�
.a.y// sgn.y/jyj	3� 1

2 d�y

D 2p�
Z

1

0

y1C	3K	1.y=2/K	2� 1
2

C�.y=2/ d�y

D p�22	3
Q

2˙

�. 1C2�
2
C 
	1C	2C	3

2
/�. 3�2�

2
C 
	1�	2C	3

2
/

�.1C 	3/ :

Multiplying by the appropriate polarizing factor, and dividing by the appropriate
norms as before, we find that

I0. f .1/ ˝ f .2/ ˝ f .3// D
Q

j2˙ �.1C2�2 C 
1	1C
2.	2C	3/

2
/�. 3�2�

2
C 
1	1C
2.	2�	3/

2
/

�
Q

2˙ �.12 C 
	1/�.1C 
	2/�.1C 
	3/

:

Since this agrees with the corresponding factor in Table 2 it follows that the
normalized trilinear form satisfies I. f .1/ ˝ f .2/ ˝ f .3// D 1 as claimed. ut
Remark 8 As discussed in the introduction, the case of three weight zero principal
series representations was treated by Watson in [25] but only in the case ı D 0.
We remark that the way in which he uses � agrees with our notation. He did not
give a test vector in the case that � D 1, but showed that if one takes f . j/ to be
the weight zero vector for each of j D 1; 2; 3, the resulting trilinear from will be
zero. This is immediately evident from our method above, as the resulting function�
W.1/W.2/f .3/

�
.a.y// will be an odd function of y.
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3.2 The Case of Two Principal Series and a Discrete Series

Note that this case was worked out in [22] when k is even and both principal series
are weight zero. We extend the result here to arbitrary k and allow that the principal
series be odd.

Proposition 3.3 Suppose that �1 D �k
dis and �j D �ıj;�j .

1
2
C	j/ such that kCı2Cı3

is even. Then if ı D ı2 C ı3 � 1 there exists a choice of normalized test vectors
f . j/ 2 �j such that

I. f .1/ ˝ f .2/ ˝ f .3// D .2�/k�1

�ı�1
�. 1Cım

2
C 	m/�.

1Cım
2
� 	m/

�. kC1
2
C 	m/�.

kC1
2
� 	m/

; (3.6)

where f`;mg D f2; 3g satisfies ı` D 0.
Otherwise, (if ı2 D ı3 D 1),

I. f .1/ ˝ f .2/ ˝ f .3// D 2�k;j.2�/
k�2 �.1C 	j/�.1 � 	j/

�. k
2
C 1C 	j/�.

k
2
C 1 � 	j/

; (3.7)

for j D 2 or j D 3 and �k;j D . k
2
/2 � 	2j .

Proof We arrange the representations and take test vectors such that

W.1/ D Wk 2W.�k
dis;  /;

W.2/ D W��ı2 2W.�ı2;�2 .
1
2
C 	2/;  /;

f .3/ D f�kCı2; 12C	3 2 �ı3;�3 . 12 C 	3/:

Since Wk.a.y// is supported on y > 0, we see that

`RS.W
.1/ ˝W.2/ ˝ f .1// D2p�

Z 1

0

y
k�1
2 C	3e�y=2W��ı2 .a.y// d�y

In the case that ı2 D 0, one follows the same procedure as in the proof of
Proposition 3.2 to arrive at

I0. f .1/ ˝ f .2/ ˝ f .3// D 4�

.k � 1/Š

Q

j2˙ �. k

2
C 
2	2 C 
3	3/

�. k
2
C 	3/�. k

2
� 	3/�. 12 C 	2/�. 12 � 	2/

;

from which (3.7) follows as before.
We now consider the case ı2 D 1, for which

W��1.a.y// D
jyj
2

�
K	2� 1

2
.jyj=2/C sgn.y/K	2C 1

2
.jyj=2/

�
:
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Therefore,

`RS.W
.1/ ˝W.2/ ˝ f .1// Dp�

Z
1

0

y
kC1
2 C	3e�y=2

�
K	2� 1

2
.jyj=2/C K	2C 1

2
.jyj=2/

�
d�y

D2�. k

2
C 	3/

Q

j2˙

�. k
2
C 
2	2 C 
3	3/

�. k
2
C 1C 	3/

;

where in the final step we have used (2.11) and the functional equation s�.s/ D
�.sC 1/ in order to simplify. Again polarizing this and dividing by the appropriate
norms, this implies that

I0. f .1/ ˝ f .2/ ˝ f .3// D 4��

.k � 1/Š

Q

j2˙ �. k

2
C 
2	2 C 
3	3/

Q

2˙ �. k

2
C 1C 
	3/�. 12 C 
	2/

;

where � D . k
2
/2 � 	23 . Dividing this by the appropriate normalizing factor from

Table 2 and simplifying gives (3.7) in the case of j D 3. Switching the roles of �2
and �3 gives the other case. ut

3.3 The Case of One Principal Series and Two Discrete Series

We now assume that �j D �kj

dis for j D 1; 2 and �3 D �ı;�. 12 C 	/.
Proposition 3.4 Let �j D �

kj

dis for j D 1; 2 with k1 � k2. Let �3 be a principal
series representation of weight zero if k1 C k2 is even and of weight one otherwise.
Then there exists a choice of normalized test vectors f . j/ 2 �j such that

I. f .1/ ˝ f .2/ ˝ f .3// D .2�/k1�k2

�ı

�. 1Cı
2
C 	/�. 1Cı

2
� 	/

�. k1�k2C1
2
C 	/�. k1�k2C1

2
� 	/ : (3.8)

where � D 1
2
� 	2 is the eigenvalue of � on �3.

Proof Let ı D wt.�3/. We take f .1/ to be the weight k1 vector, f .2/ the weight �k2
vector and f .3/ the weight k2� k1 vector. Then W.1/ D WC

kj
and W.2/ D W��k2

. Since

`RS.W
.1/ ˝W.2/ ˝ f .3// Dp4�

Z 1

0

y
k1Ck2
2 � 1

2C	e�y d�y D p4�� � k1Ck2�1
2
C 	�;

using (3.3) we find that

I0. f .1/ ˝ f .2/ ˝ f .3// D 4��. k1Ck2�1
2
C 	/�. k1Ck2�1

2
� 	/

.k1 � 1/Š.k2 � 1/Š :
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We again divide by the normalizing factor for…3 from Table 2 to obtain the desired
result. ut

3.4 The Case of Three Discrete Series

Let us assume that �j D �
kj

dis for j D 1; 2 and �3 D �ı;0.
k3
2
/ where ı 2 f0; 1g has

the same parity as k3, so that �k3
dis 
 �3. Note then that e�3 D �ı;0.1� k3

2
/ which has

�
k3
dis as a quotient.

In this situation, the form `RS descends to a trilinear form on �k1
dis ˝ �k2

dis ˝ �k3
dis,

and we will take as a hypothesis that the polarization of the form j`RSj2 in fact gives
the correct trilinear form on �k1

dis˝ �k2
dis ˝ �k3

dis. Note that this is unconditionally true
if k3 D 1, and in the special case that k1 D k2C k3 the answer that we obtain by this
method is correct.

Proposition 3.5 Let �j D �kj

dis for j D 1; 2; 3 and k1 � .k2 C k3/ D 2m � 0. There
exists a choice of normalized test vectors f . j/ 2 �j such that

I. f .1/ ˝ f .2/ ˝ f .3// D 2.2�/2m

�k3Cm�1
k3�1

� : (3.9)

Proof As test vectors, we choose f .1/ to be the weight kj vector, f .2/ to be the weight
�k2 vector, and f .3/ D fk2�k1 . Then the computation of `RS proceeds exactly as in
the previous section but with 	 D k3�1

2
. This immediately implies that

I0. f .1/ ˝ f .2/ ˝ f .3// D 4��. k1Ck2Ck3
2

� 1/�. k1Ck2�k3
2

/

.k1 � 1/Š.k2 � 1/Š
in the case at hand. Note, however, that the normalizing factor of the previous section
does not agree with that here unless k3 D 1. That is to say that the triple product
local L-factor L. 1

2
;…/ for … D �k1

dis ˝ �k2
dis ˝ �ı;0. s

2
/ does not specialize to that for

… D �k1
dis˝�k2

dis˝�k3
dis as s! k3. Moreover, the adjoint L-factor L.s; �ı;0.

k3
2
/;Ad / D

L.s; �ı;0.1 � k3
2
/;Ad / has a pole at s D 1

2
if k3 � 2. In any event, dividing by the

correct normalizing factor gives the result. ut
Remark 9 One may ask why the above proof doesn’t also apply in the case that
k1 < k2 C k3. By Prasad [20], the form must be zero in this case, although at first
glance it may not appear to be so. However, it is easy to see from Proposition 2.1 that
for weight mj vectors f . j/ if the form `RS. f .1/ ˝ f .2/ ˝ f .3// ¤ 0 then the weights
m1 and m2 must have opposite parity. Thus, in the special case that m1 D k1 and
m2 D �k2, the vector f .3/ has weight �k3 C m where m D k3 C k2 � k1 which
corresponds to a vector in �k3

dis if and only if k1 � k2 C k3.
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3.5 Proof of Theorem 1

The calculations of the previous sections cover all possible cases �1; �2; �3 satisfy-
ing the hypotheses of Theorem 1, and in each case the corresponding test vectors
f . j/ are shown to satisfy I. f .1/ ˝ f .2/ ˝ f .3// ¤ 0.

In particular, if all three representations are principal series, then k1 D k2 D ı

and k3 D 0. In the case that ı D 0 if we assume moreover that � D 0, from
Proposition 3.2 one sees by (3.4) that I. f .1/ ˝ f .2/ ˝ f .3// D 1. In the case ı D 1

Proposition 3.2 says immediately that I. f .1/ ˝ f .2/ ˝ f .3// D 1.
If exactly one of the representations is a discrete series then either k1 D 1 and the

other representations are a weight 1 and a weight 0 principal series, or k1 D 2 and
both of the other representations are weight 1 principal series. In the first case, the
result follows from Proposition 3.3 by applying (3.6) in the case that k D 1, ı2 D 0
and ı3 D 1. In the latter case one applies (3.7) with k D 2, from which we obtain

I. f .1/ ˝ f .2/ ˝ f .3// D 2�2;j�.1C 	j/�.1 � 	j/

�.2C 	j/�.2 � 	j/
D 2;

since �.2C 	j/�.2� 	j/ D .1� 	2j /�.1C 	j/�.1� 	j/ D �2;j�.1C 	j/�.1� 	j/.
If two of the representations are discrete series, then we may assume that �3 is

a principal series of weight k3 D ı 2 f0; 1g and k1 D k2 C ı > 1. This case
corresponds to Proposition 3.4. Specializing (3.8) gives I. f .1/ ˝ f .2/ ˝ f .3// D 1 if
ı D 0, and I. f .1/ ˝ f .2/ ˝ f .3// D 2 if ı D 1, as claimed.

Finally, the case that all three representations are discrete series is treated in
Proposition 3.5. The assumption that k1 D k2 C k3 means that m D 0 in which
case the right hand side of (3.9) is obviously 2. �

Acknowledgements The author wishes to thank Kathrin Bringmann under whose supervision
and encouragement he worked during most of the writing and editing of this paper and the
University of Cologne for providing working conditions and an environment in which this work
was accomplished. He thanks as well the referee for suggestions that have led to an improved
presentation and greater clarity of exposition.

Appendix: Normalizing L-Factors

The goal of this appendix is to record the normalizing L-factors for the triple product
L-function appearing in (1.2). These factors are determined by applying the local
Langlands correspondence relating finite dimensional semisimple representations
of the Weil group WR to admissible representations of GL2.R/ as detailed in [15].
The local factors will be described in terms of

�R.s/ D ��s=2�.s=2/; and �C.s/ D �R.s/�R.sC 1/ D 2.2�/�s�.s/:
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We recall the following elementary facts:

�.s/ D �.s/; �R.1/ D 1; �R.2/ D 1

�
; �C.m/ D .m � 1/Š

2m�1�m
:

Local Langlands Parameters for GL2.R/

We recall briefly the local Langlands correspondence for GL2.R/. (See [15] for
complete details.) Let WR D C

� [ jC� with j2 D �1 and jzj�1 D Nz for z 2 C
� be

the Weil group. For ı 2 f0; 1g and t 2 C, we have the 1-dimensional representation
of WR given by

�1.ı; t/ W z 7! jzjt
j 7! .�1/ı:

Moreover, if m 2 Z and t 2 C we have the 2-dimensional representation

�2.m; t/ W
rei� 7!

�
r2teim� 0

0 r2te�im�

�

j 7!
�
0 .�1/m
1 0

� ;

which is easily checked to be irreducible except when m D 0. The following is a
simple exercise.

Lemma A.1 Every semisimple finite-dimensional representation of WR is a direct
sum of irreducibles of the type �1 and �2 as defined above. Under the operations of
direct sum and tensor product, the following is a complete set of relations.

�2.m; t/ '�2.�m; t/

�2.0; t/ '�1.0; t/˚ �1.1; t/
�1.ı1; t1/˝ �1.ı2; t2/ '�1.ı; t1 C t2/ ı � ı1 C ı2 .mod 2//

�1.ı; t1/˝ �2.m; t2/ '�2.m; t1 C t2/

�2.m1; t1/˝ �2.m2; t2/ '�2.m1 C m2; t1 C t2/˚ �2.m1 �m2; t1 C t2/:

Moreover, ife� denotes the contragradient of � then

B�1.ı; t/ ' �1.ı;�t/; and B�2.m; t/ ' �2.m;�t/:

Given an irreducible admissible representation � of GL2.R/ we associate to it
a representation �.�/ of WR. For example, if B.�1; �2/ D B.sgn�1 j�js1 ; sgn�2 j�js2/
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Table 1 Representations of WR attached to admissible unitary representations of GL2.R/

� �.�/ Ad.�.�//

�ı;�.
1
2

C 	/ �1.�; 	/˚ �1.ı C �;�	/ �1.0; 0/˚ �1.ı; 2	/˚ �1.ı;�2	/
�k

dis �2.k � 1; 0/ �1.1; 0/˚ �2.2k � 2; 0/

is irreducible the corresponding representation of WR is �1.�1; s1/˚ �1.�2; s2/. We
record how this correspondence works in Table 1 for representations with central
character sgnı. (We let ı C � 2 f0; 1g be the reduction of �Cı modulo 2.) Note that
the third column of the table is calculated using Lemma A.1 and the identity

Ad.�/ ' �˝e�� �1.0; 0/:

Triple Product and Adjoint L-Factors

We associate to each of �1.ı; t/ and �2.m; t/ the L-functions

L.s; �1.ı; t// D �R.sC ı C t/; L.s; �2.m; t// D �C.sC m
2
C t/: (A.1)

More generally, given � ' �1 ˚ �2 ˚ � � � ˚ �r a (semisimple) representation of WR

with �j irreducible we define

L.s; �/ D
rY

jD1
L.s; �j/:

Using this definition it follows, setting L.s; �;Ad/ D L.s;Ad.�.�/// and
combining (A.1) with Table 1, that

L.1; �;Ad // D
8
<

:
�R.2/�C.k/ if � D �k

dis;

�. 1Cı
2
C 	/�. 1Cı

2
� 	/

�1Cı
if � D �ı;�. 12 C 	/:

(A.2)

Recall that we are considering admissible representations �1; �2; �3 of GL2.R/
such that … D �1 ˝ �2 ˝ �3 has trivial central character. This means that we may
assume without loss of generality that the central character of each �j is of the form
sgnıj with ı1 C ı2 C ı3 � 0 .mod 2/.

Proposition A.2 Consider… D �1˝�2˝�3 a triple product of admissible GL2.R/
representations. Let

L.s;…/ D L.s; �.�1/˝ �.�2/˝ �.�3//;
L.s;…;Ad / D L.s;Ad.�.�1//˝ Ad.�.�2/˝ Ad.�.�3//:
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Table 2 Normalizing factors for triple product L-function at a real place

…
�R.2/

2L. 1
2
;…/

L.1;…;Ad /

…1

Q

j2˙ �. 1C2�

4
C 
1	1C
2.	2C	3/

2
/�.

1C2�C2ı.1�2�/

4
C 
1	1C
2.	2C	3/

2
/

�1C4�.1�ı/
Q3

jD1 �.
1Cıj

2
C 	j/�.

1Cıj

2
� 	j/

…2
.2�/3�k�ı2Cı3�2

.k � 1/Š

Q

jD˙1 �.

k
2

C 
2	2 C 
3	3/
Q2

jD1 �.
1Cıj

2
C 	j/�.

1Cıj

2
� 	j/

…3
2�ı

.2�/k1�k2�1

Q

2˙ �. k1Ck2�1

2
C 
	/�. k1�k2C1

2
C 
	/

.k1 � 1/Š.k2 � 1/Š�. 1Cı
2

C 	/�. 1Cı
2

� 	/

…4
�.

k1Ck2Ck3
2

� 1/�.
k1Ck2�k3

2
/�.

k1�k2Ck3
2

/�.
k1�k2�k3

2
C 1/

.2�/k1�k2�k3�1.k1 � 1/Š.k2 � 1/Š.k3 � 1/Š

The normalizing factors relating I to I0 in (1.2) for

…1 D �0;�. 12 C 	1/˝ �ı;�0 . 1
2
C 	2/˝ �ı;�0 . 1

2
C 	3/;

…2 D �k
dis ˝ �ı2;�2 . 12 C 	2/˝ �ı3;�3 . 12 C 	3/;

…3 D �k1
dis ˝ �k2

dis ˝ �ı;�. 12 C 	/ (with k1 � k2 C ı/;
…4 D �k1

dis ˝ �k2
dis ˝ �k3

dis (with k1 � k2 C k3/

are given by Table 2.

Proof A simple exercise in applying Lemma A.1 gives the following.

�.…1/ D
� M


j2˙

�1.�; 
1	1 C 
2.	2 C 	3//
�
˚
� M


j2˙

�1.� C ı; 
1	1 C 
2.	2 � 	3//
�

�.…2/ D
M


j2˙

�2.k � 1; 
2	2 C 
3	3/

�.…3/ D �2.k1 C k2 � 2; 	/˚ �2.k1 C k2 � 2; 	/˚ �2.k1 � k2;�	/˚ �2.k1 � k2;�	/
�.…4/ D �2.k1 C k2 C k3 � 3; 0/˚ �2.k1 C k2 � k3 � 1; 0/

˚ �2.k1 � k2 C k3 � 1; 0/˚ �2.k1 � k2 � k3 C 1; 0/

Combining each of these with the appropriate factors for L.1; �;Ad / from (A.2)
together with �R.2/

2 gives the result. ut
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An Introduction to the Theory
of Harmonic Maass Forms

Claudia Alfes-Neumann

Abstract In this note we give a short introduction to the theory of harmonic Maass
forms. We start by introducing modular forms and Maass forms and then present
the notion of (vector valued) harmonic Maass forms as developed by Bruinier and
Funke in [4]. We end by giving two recent applications of this theory.

1 Modular Forms

In this section we introduce modular forms. For a thorough introduction to the topic
see for example [9, 10, 12, 13].

By H WD fz 2 C W =.z/ > 0g we denote the complex upper half-plane. The
special linear group SL2.Z/ D f

�
a b
c d

� W ad� bc D 1g acts on H by fractional linear
transformations

z 7! Mz D azC b

czC d
; where M D

�
a b
c d

�
:

We note that the group SL2.Z/ is generated by the matrices T and S, where

T D
�
1 1

0 1

�
; S D

�
0 �1
1 0

�
:

Throughout, we let z D xC iy 2 H with x; y 2 R and we write q WD e2� iz.
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Definition 1.1 Let k 2 Z. A holomorphic function f W H ! C is called a modular
form of weight k for SL2.Z/, if:

(1) f
�

azCb
czCd

�
D .czC d/kf .z/ for all M D � a b

c d

� 2 SL2.Z/.

(2) f is holomorphic at the cusp1.

Since
�
1 1
0 1

� 2 SL2.Z/, we find f .zC 1/ D f .z/ and therefore f .z/ has a Fourier
expansion. By condition .2/ it is of the form

f .z/ D
1X

nD0
a.n/qn:

Remark 1.2 The most common generalizations of this definition are the follow-
ing:

(1) We can also take k 2 1
2
Z. Note that we have to change the transformation law

in condition (1) of Definition 1.1 (see for example [12]).
(2) We can replace SL2.Z/ by other (congruence) groups. Most frequently, we will

replace SL2.Z/ by

�0.N/ D
��

a b
c d

�
W c � 0 .mod N/

	
;

where N � 1 is an integer. Note that we have to consider more than one cusp in
condition (2) of Definition 1.1 in this case.

(3) We can require a different transformation behaviour in condition (1). For

example, we can require f
�

azCb
czCd

�
D .cz C d/k�.d/f .z/ for all M D �

a b
c d

� 2
SL2.Z/, where � is a Dirichlet character.

(4) We can change condition (2) in Definition 1.1.

• If we require that f vanishes at the cusp1, we obtain a cusp form of weight
k for SL2.Z/ whose Fourier expansion at1 is of the form

f .z/ D
1X

nD1
a.n/qn:

• If we allow f to have poles of finite order at the cusp1, we obtain a weakly
holomorphic modular form of weight k for SL2.Z/ whose Fourier expansion
at1 is of the form

f .z/ D
1X

nDm

a.n/qn;

for some m 2 Z.
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We denote the space of modular forms of weight k for �0.N/ by Mk.N/, the space
of cusp forms of weight k for �0.N/ by Sk.N/ and the space of weakly holomorphic
modular forms of weight k for �0.N/ by MŠ

k.N/.

1.1 Modular Forms and Number Theoretic Functions

Number theoretic functions often occur as the Fourier coefficients of modular forms.
In many cases this knowledge leads to a better understanding of the corresponding
number theoretic function. In particular, this is one reason why the study of modular
forms is crucial in many areas of mathematics.

For example, one can consider as number theoretic functions a.n/ for n 2 N:

1. the function r2.n/ D #f.a; b/ 2 Z
2 W a2 C b2 D ng which counts the number of

ways n can be written as a sum of two squares;
2. the divisor function �k�1.n/ DPdjn dk�1 for k 2 N;
3. the partition function p.n/ which counts the number of ways n can be written as

a sum of integers less or equal to n.

We can then consider the formal generating series

f .q/ D
1X

nD1
a.n/qn:

Often one is “lucky” and this generating series is a modular form when viewed as a
function in z, where q D e2� iz.

Since Mk.N/ and Sk.N/ are finite dimensional vector spaces, it is a finite
computation to verify a given identity between the Fourier coefficients of different
modular forms. Often this leads to a “nice” formula for a.n/.

Coming back to our examples we obtain:

1. The function ‚2.z/ DP1
nD0 r2.n/qn is a modular form of weight 1. Comparing

the coefficients of‚2.z/ with the Fourier coefficients of another modular form in
the space, we obtain the formula

r2.n/ D 4
X

djn
d>0 odd

.�1/ d�1
2 :

This reproves an old theorem of Fermat, namely that every prime p � 1 .mod 4/
is the sum of two squares.

2. The Eisenstein series

E2k.z/ D 1

2

X

c;d2Z
.c;d/D1

1

.czC d/2k
D 1 � 4k

B2k

1X

nD1
�2k�1.n/qn (1.1)
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is a modular form of weight 2k for SL2.Z/, when k � 2. Here, B2k denotes the 2k-
th Bernoulli number. Using that E4.z/2 D E8.z/ we obtain the following identity
between divisor sums

n�1X

mD1
�3.m/�3.n � m/ D �7.n/� �3.n/

120
:

3. Let �.z/ be the Dedekind �-function. We have that

q�1=24
1X

nD0
p.n/qn D 1

�.z/

is a weakly holomorphic modular form of weight �1=2. Although, this space
is not finite dimensional Bruinier and Ono [7] were able to show that one can
exploit this fact to obtain an algebraic formula for p.n/ (see Sect. 4.1).

A second reason for the popularity of modular forms is that they appear in a vari-
ety of subdisciplines of mathematics and physics such as Lie theory, combinatorics,
string theory, algebraic geometry and others. See for example Zagier’s part of [9]
or [15].

2 Maass Forms

In 1949 Hans Maass defined so-called Maass forms, generalizations of modular
forms that are not required to be holomorphic on H any more.

Definition 2.1 Let � � SL2.Z/ be a Fuchsian group of the first kind (i.e. discrete
with finite covolume in SL2.Z/). A function f W H ! C is called a Maass form on
� with eigenvalue � D r.1 � r/ 2 C, if:

(1) f .Mz/ D f .z/ for all M 2 � .

(2) �0 f D r.1 � r/f , where �0 D �y2
�
@2

@x2
C @2

@y2

�
.

(3)
R
F.�nH/ j f .z/j2 dxdy

y2
< 1, where F.� n H/ denotes a fundamental domain for

the action of � on H.

Remark 2.2 If we additionally require that the 0-th Fourier coefficient
R 1
0

f .xCiy/dx
of a Maass form f vanishes (at all cusps), we obtain a Maass cusp form on � with
eigenvalue � D r.1 � r/ 2 C.

Note that for arbitrary � it is not even clear that Maass cusp forms exist. Selberg
was able to show that they do exist when � is a congruence subgroup of level N � 1.
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We summarize some more famous results on Maass forms (see [11]):

1. It is known that the eigenvalue � D r.1� r/ either satisfies <.r/ D 1
2

or 1
2
� r �

1, which implies � � 1
4
, or � < 1

4
respectively. The latter eigenvalues are called

exceptional and there can only be finitely many of them. A famous conjecture of
Selberg predicts that actually all eigenvalues are � 1=4 when � is a congruence
subgroup.

2. The spectral decomposition with respect to � of the Hilbert space of square-
integrable functions can be described via Maass forms.

3 Harmonic Maass Forms

In their work On Two Geometric Theta Lifts [4] Bruinier and Funke came up with the
following space of automorphic forms in a sense combining the notion of modular
forms and Maass forms.

Definition 3.1 Let k 2 Z. A smooth function f W H ! C is called a harmonic
(weak) Maass form of weight k for SL2.Z/, if:

(1) f .Mz/ D .czC d/kf .z/ for all M D � a b
c d

� 2 SL2.Z/.

(2) �k f D 0, where �k D �y2
�
@2

@x2
C @2

@y2

�
C iky

�
@
@x C i @

@y

�
is the hyperbolic

Laplace operator of weight k.
(3) f .z/ D O.e�y/ as y!1 for some � > 0.

Again, we can generalize this definition to include half-integral weights or other
groups than SL2.Z/.

We denote the space of harmonic Maass forms of weight k for �0.N/ by Hk.N/.
If we replace condition .3/ by

(3’) there is a Fourier polynomial Pf .z/ 2 CŒq�1� such that

f .z/� Pf .z/ D O.e��y/

as y!1 for some � > 0,

we obtain the space HC
k .N/ of harmonic Maass forms of weight k for �0.N/.

Caution This is the original notation as used by Bruinier and Funke in [4]. Note
that both, functions in HC

k .N/ and Hk.N/, are called harmonic Maass forms. Other
authors often denote these spaces by different names.

Obviously, we have

Sk.N/ 
 Mk.N/ 
 MŠ
k.N/ 
 HC

k .N/ 
 Hk.N/:
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Lemma 3.2 Let k ¤ 1. Every f 2 Hk.N/ has a Fourier expansion of the shape

F.z/ D
X

n��1
cC

f .n/q
n C c�

f .0/y
1�k C

X

n�1
n¤0

c�
f .n/H.2�ny/e2� inx;

where H.w/ D e�w
R1

�2w e�tt�kdt. For k D 1 we have to replace c�
f .0/y

1�k by
c�

f .0/ log.y/.

If f 2 HC
k .N/, k < 1, then

f .z/ D
X

n��1
cC

f .n/q
n C

X

n<0

c�
f .n/�.1� k; 4�jnjy/qn;

where �.˛; y/ D R1
y e�tt˛�1dt is the incomplete �-function.

Proof Let k ¤ 1 (the proof for k D 1 is similar). We briefly sketch the proof (see
[4] for more details). Since f .z/ is periodic, we have f .z/ D P

n2Z cf .n; y/e2� inx.
Writing C.2�ny/ WD cf .n; y/ and using that �kf D 0 we obtain

@2

@w2
C.w/ � C.w/C k

w

�
@

@w
C.w/C C.w/

�
D 0: (3.1)

If n D 0, then cf .0; y/ is a linear combination of 1 and y1�k and if n ¤ 0, then (3.1)
has two linearly independent solutions, namely e�w and H.w/. ut
Remark 3.3 In the above situation, we say that f splits into a holomorphic part f C
and a non-holomorphic part f �, where

f C.z/ D
X

n��1
cC

f .n/q
n; and

f �.z/ D c�
f .0/y

1�k C
X

n�1
n¤0

c�
f .n/H.2�ny/e2� inx:

3.1 Examples of Harmonic Maass Forms

Example 3.4 (The Eisenstein Series E�
2 .z/) We define

E�
2 .z/ WD �

3

�y
C E2.z/;

where E2.z/ is the Eisenstein series of weight 2 as defined in (1.1).
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Lemma 3.5 The function E�
2 .z/ is a harmonic Maass form of weight 2 for SL2.Z/

in H2.1/.

Proof Here we briefly sketch the proof of this lemma. We have to show that

E�
2 .zC 1/ D E�

2 .z/ (which is clear) and E�
2

�
� 1z
�
D z2E�

2 .z/. For the second claim

we employ Hecke’s trick (which is necessary since E2 does not converge absolutely).
Therefore, we let

G2.s; z/ WD 1

2

X

.m;n/2Z2nf.0;0/g

1

.mzC n/2jmzC nj2s
; for s 2 Cwith <.s/ > 0:

Then G2.s; z/ converges absolutely and therefore G2.s;Mz/ D .cz C d/2jcz C
dj2sG2.s; z/ for all M D �

a b
c d

�
. It remains to show that lims!0 G2.s; z/ D �2

6
E�
2 .z/.

In order to do so, one defines

Is.z/ WD
Z 1

�1
1

.zC t/2jzC tj2s
dt

and then shows the following:

• G2.s; z/ �P1
mD1 Is.mz/ converges absolutely and locally uniformly,

• lims!0 G2.s; z/ �P1
mD1 Is.mz/ D �2

6
E2.z/,

• lims!0

P1
mD1 Is.mz/ D � �

2y . ut
Example 3.6 (Zagier’s Weight 3=2 Eisenstein Series) We let �n be a discriminant
and H.n/ be the usual Hurwitz class number. We define

G.z/ D � 1
12
C

1X

nD1
H.n/qn C 1

16�
p

y

1X

nD�1
ˇ
�
4�n2y

�
q�n2 ;

where ˇ.s/ D R1
1

t�3=2e�stdt.
Using Hecke’s trick as in Example 3.4 one can prove the following theorem.

Theorem 3.7 Zagier’s Eisenstein series G.z/ is a harmonic Maass form of weight
3=2 for �0.4/ in H3=2.4/.

Example 3.8 (Ramanujan’s Mock Theta Functions) These functions were intro-
duced by Ramanujan in his famous last letter to Hardy. We present two of the
functions Ramanujan wrote down:

f .q/ D
1X

nD0

qn2

.�qI q/2n
; !.q/ D

1X

nD0

q2n.nC1/

.qI q/2nC1
;

where .aI q/n WD Qn�1
jD0 .1 � aq j/.



306 C. Alfes-Neumann

Although Ramanujan claimed that these functions transform like modular forms,
it remained mysterious for a long time what exactly he meant by that. In 2002,
Sander Zwegers was able to “complete” Ramanujan’s mock modular forms by
adding a nonholomorphic function and to show that they then satisfy the desired
transformation behaviour.

Theorem 3.9 (Theorem 3.6 in [18]) Define

F.z/ D .q�1=24f .q/; 2q1=2!.q1=2/; 2q1=2!.�q1=2//t

and

G.z/ D 2i
p
3

Z i1

�Nz
.g1.w/; g0.w/;�g2.w//tp�i.wC z/

dw;

where g0; g1; g2 are weight 3=2 unary theta functions defined in [18]. Let H.z/ D
F.z/� G.z/. Then

H.zC 1/ D
0

@
��1
24 0 0

0 0 �3
0 �3 0

1

AH.z/;

H

�
�1

z

�
D D p�iz

0

@
0 1 0

1 0 0

0 0 �1

1

AH.z/:

In other words, H is a vector valued harmonic Maass form of weight 1=2 in HC.
Therefore, Ramanujan’s mock theta functions are the holomorphic parts of weight
1=2 harmonic Maass forms in HC.

3.2 Important Differential Operators

We define the Maass raising operator Rk and the Maass lowering operator Lk by

Rk WD 2i
@

@z
C k

y
;

Lk WD �2iy2
@

@Nz :

The following lemma summarizes some essential properties of these operators.
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Lemma 3.10 For a continuously differentiable function f and M 2 SL2.R/ we have

Rk. f jkM/ D .Rk. f //jkC2M;

Lk. f jkM/ D .Lk. f //jk�2M;

where . f jkM/.z/ D .czC d/�kf .Mz/. Moreover,

��k D LkC2 ı Rk C k D Rk�2 ı Lk:

The �-Operator and a Pairing Defined by Bruinier and Funke

Define

k WD 2iyk @

@Nz D yk�2Lk:

Bruinier and Funke showed that this differential operator relates harmonic Maass
forms to usual modular forms.

Theorem 3.11 ([4]) We have

k W HC
k .N/! S2�k.N/

and

k W Hk.N/! M!
2�k.N/:

Moreover, k. f / D k. f �/ and k is surjective.
Recall the Petersson inner product. Let f ; g 2 Mk.N/ and

. f ; g/k WD
Z

�0.N/nH
f .z/g.z/yk dxdy

y2
;

whenever the integral converges.

Proposition 3.12 ([4]) For g 2 Mk.N/ and f 2 HC
2�k.N/ define

fg; f g WD .g; 2�k. f //k:

Then the following hold:

• This induces a non-degenerate pairing between HC
2�k.N/=M!

2�k.N/ and Sk.N/.
• If g.z/ D P

n�0 a`.n/qn and f C.z/ D P
n��1 bC

` .n/q
n denote the Fourier

expansion of g and f C respectively at the cusp `, then

fg; f g D
X

`

X

n�0
a`.�n/bC

` .n/:
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Remark 3.13 Some authors prefer to use the notion of a mock modular form and
the shadow of a mock modular form. Here a mock modular form is the holomorphic
part of a harmonic Maass form. For f 2 HC

k .N/ we call k. f / 2 S2�k.N/ its shadow.
A mock theta function is a mock modular form of weight 1=2 or 3=2 whose shadow
is a unary theta function.

The Differential Operator D

We let

D WD 1

2�i

@

@z
:

Note that D does not preserve modularity (but by adding a “correction term” it does,
see the definition of Rk). Moreover we have D. f / D D. f C/ for f 2 Hk.N/, so the
role played by D for the holomorphic part is similar to the role played by  for the
nonholomorphic part.

Theorem 3.14 ([8]) For k 2 N�2 we have

Dk�1 W H2�k.N/! MŠ
k.N/;

and the image consists of those h 2 MŠ
k.N/ which are orthogonal to cusp forms with

respect to the (regularized) Petersson inner product and which also have constant
term 0 at all cusps of �0.N/.

3.3 Vector Valued Harmonic Maass Forms

Let V be a rational quadratic space with a non-degenerate bilinear form . ; / of
signature .bC; b�/ and let Q.X/ D 1

2
.X;X/ be the associated quadratic form. We let

L 
 V be an even lattice of full rank and denote by L0 its dual lattice. Then L0=L is
a finite abelian group, called the discriminant group of L.

We let Mp2.R/ be the metaplectic group. It is a double cover of SL2.R/ and
consists of pairs .M; �/ with M D �

a b
c d

�
and � W H ! C holomorphic such that

�.z/2 D czC d. Here, we denote by
p

w D w1=2 the principal branch of the square
root. Multiplication is defined via

.M; �.z//.M0; �0.z// D .MM0; �.M0z/�0.z// for .M; �/; .M0; �0/ 2 Mp2.Z/:

The map

�
a b
c d

�
7!
��

a b
c d

�
;
p

czC d

�
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defines a locally isomorphic embedding of SL2.R/ into Mp2.R/. By Mp2.Z/ we
denote the inverse image of SL2.Z/ under the covering map Mp2.R/ ! SL2.R/.
Note that

Mp2.Z/ D
�
T D

��
1 1

0 1

�
; 1

�
; S D

��
0 �1
1 0

�
;
p

z

��
:

We let CŒL0=L� D
nP

h2L0=L aheh W ah 2 C

o
be the group algebra of L. Here, eh

denotes the standard basis elements of CŒL0=L�.
There is a unitary representation �L of Mp2.Z/ on CŒL0=L� which is defined

through the action of the generators T; S 2 Mp2.Z/ given by

�L.T/eh D e2� iQ.h/eh;

�L.S/eh D
p

i
b��bC

pjL0=Lj
X

h02L0=L

e�2� i.h;h0/eh0 :

The representation �L is called the Weil representation attached to L.

Definition 3.15 A smooth function f W H ! CŒL0=L� is called a harmonic Maass
form of weight k with respect to the representation �L and the group Mp2.Z/ if:

(1) f .Mz/ D �.z/2k�L.M; �/f .z/ for .M; �/ 2 Mp2.Z/.
(2) �k f D 0.
(3) f .z/ D O.e�y/ as y!1 for some � > 0.

We denote this space by Hk;�L . The spaces HC
k;�L
;M!

k;�L
;Mk;�L ; Sk;�L are defined

correspondingly.
The Fourier expansion of a function f 2 HC

k;�L
is then given by

X

h2L0=L

X

n��1
cC

f .n; h/q
neh C

X

h2L0=L

X

n<0

c�
f .n; h/H.2�ny/e2� inxeh:

Remark 3.16

(1) For a unimodular, even lattice, we recover the definition of scalar valued
harmonic Maass forms.

(2) The components of harmonic Maass forms in Hk;�L are scalar valued harmonic
Maass forms (since �L factors through SL2.Z=NZ/ if bC � b� is even (where
N is the level of L) and a double cover of SL2.Z=NZ/ if bC � b� is odd).

Example 3.17 We let

V D
�

X D
�

x1 x2
x3 �x1

�
2 Q

2�2
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with Q.X/ D N det.X/. Then, .V;Q/ is a rational quadratic space of signature .1; 2/.
Moreover we let

L D
��

b �a=N
c �b

�
W a; b; c 2 Z

	

with dual lattice

L0 D
��

b=2N �a=N
c �b=2N

�
W a; b; c 2 Z

	
:

Then L0=L ' Z=2NZ. The function

G.z/ WD
X

r2Z=12Z
�12.r/�.z/

�1er

is a weakly holomorphic modular form of weight �1=2 transforming with respect
to �L with principal part q�1=24.e1 � e5 � e7 C e11/.

4 Applications

In this section we present two applications of the theory of harmonic Maass forms.
First, we review how Bruinier and Ono [7] derived an algebraic formula for the
partition function p.n/. Second, we present a result of Bruinier and Ono [6] and
Alfes et al. [2] relating the Fourier coefficients of weight 1=2 harmonic Maass forms
to the vanishing of the central value and the central derivative of an L-function of an
elliptic curve.

For more applications of the theory of harmonic Maass forms see [16]. Moreover,
a book by Bringmann, Folsom, Ono and Rolen will appear soon [3].

4.1 An Algebraic Formula for p.n/

We let V;L;L0 be as in Example 3.17 and define the Heegner divisor of discriminant
.m; h/ on �0.N/ nH by

Z.m; h/ D
X

X2�0.N/nLm;h

Z.X/;

where Lm;h D fX 2 LC h W Q.X/ D mg and Z.X/ is the image of DX D Span.X/ 2
H in �0.N/ n H counted with multiplicity 1=j N�Xj. Here, �X denotes the stabilizer
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of X in �0.N/ and N�X is its image in PSL2.Z/. For more on such divisors see Eric
Hofmann’s notes in this volume.

Remark 4.1 An element X D
�

b=2N �a=N
c �b=2N

�
2 Lm;h gives rise to a quadratic form

Œa; b;Nc� of discriminant D D b2 � 4Nac satisfying b � h .mod 2N/ via

M.X/ D
�

a b=2
b=2 Nc

�
D X

�
0 N
�N 0

�
;

(and vice versa). Then, we arrive at the often more familiar notion of CM points
(i.e. solutions z 2 H of Q.z; 1/ D 0, where Q D Œa; b;Nc�).

We now consider a theta lift which employs the so-called Kudla-Millson theta
function ‚L.�; z; 'KM/ as an integration kernel. For more on theta lifts see Eric
Hofmann’s notes on his course.

The function‚L.�; z; 'KM/ is a non-holomorphic modular form of weight 3=2 for
Mp2.Z/ and representation �L in the variable � . In z it is a �0.N/-invariant .1; 1/-
form on H. Moreover, it decays square exponentially in z towards the cusps.

Thus, it makes sense to define the Kudla-Millson theta lift of a function F 2
HC
0 .N/ by

IKM.�;F/ D
Z

�0.N/nH
F.z/‚L.�; z; 'KM/: (4.1)

Theorem 4.2 ([5]) For F 2 HC
0 .N/ the Kudla-Millson lift IKM.�;F/ is a harmonic

Maass form of weight 3=2 for �L in H3=2;�L . The coefficient of index .m; h/, m > 0,
is given by the so-called trace of the CM values of F, namely by

t.FIm; h/ WD
X

z2Z.m;h/

F.z/:

Remark 4.3 The goal of Bruinier and Funke was to generalize a result of Zagier
[17] stating that the generating series of the traces of singular moduli is a weakly
holomorphic modular form of weight 3=2 and to combine this with the fact that the
Eisenstein series of weight 3=2 in Example 3.6 is essentially the generating series
of the traces of CM values of the constant function 1.

And as it turns out, we have IKM.�; j� 744/ D g1 (in Zagier’s notation, see [17])
and IKM.�; 1/ D E3=2.�/.

In 2010 Bruinier and Ono [7] defined the following extension of the Kudla-
Millson lift, now taking weight �2 forms as an input. Let F 2 HC

�2.N/ and define

IKM.�;F/ D L3=2;�

Z

�0.N/nH
R�2;zF.z/‚L.�; z; 'KM/d�.z/:
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Theorem 4.4 ([7]) In this situation, IKM.�;F/ is a harmonic Maass form of weight
�1=2 for �L in HC

�1=2;�L
and the coefficient of index .m; h/, m > 0, of the

holomorphic part is given by

� 1

2m

1

4�
t.R�2FIm; h/:

In order to obtain an algebraic formula for the partition function p.n/ we
want to realize G.�/ WD P

r2Z=12Z �12.r/�.�/�1er in the image of IKM.�;F/ for a
“nice enough” F. (It turns out that “nice enough” means that F has to be weakly
holomorphic and its Fourier coefficients need to be in a certain number field.)

Roughly, the proof then goes as follows:

• We compute the lift of Poincaré series (whose principal part is non-trivial only at
the cusp1). These form a basis of the space of harmonic Maass forms of weight
�2 with non-trivial principal part only at the cusp1.

• We construct a linear combination of Poincaré series F whose lift has the same
principal part as G.�/ (using the theory of Atkin-Lehner involutions).

• It turns out that

F.z/ D 1

2

E2.z/� 2E2.2z/� 3E2.3z/C 6E2.6z/

�.z/2�.2z/2�.3z/2�.6z/2
:

• Since the principal part of C � IKM.�;F/ � G.�/ is zero for a suitable constant
C, we obtain that C � IKM.�;F/ D G.�/ via the bilinear pairing of Bruinier and
Funke.

Therefore,

p.n/ D 1

24n� 1
X

z2Z.24n�1;1/
P.z/;

where P WD 1
4�

R�2F.z/.
Now using the language of quadratic forms Bruinier and Ono showed that for

D > 0 with .D; 6/ D 1, r2 � �D .mod 24/ and a primitive quadratic form Q
of discriminant �D with 6ja and b � 1 .mod 12/, the number 6 � D � P.˛Q/ is an
algebraic integer contained in the ring class field corresponding to the order OD,
where ˛Q denotes the corresponding CM point.

Remark 4.5

(1) Even though we did not need harmonic Maass forms explicitly when deriving
the formula for p.n/ above, they and the underlying theory are crucial when
proving certain properties of the Kudla-Millson lift.

(2) In [14] Larson and Rolen showed that the factor 6 in the statement above can
be omitted, that is D � P.˛Q/ is always an algebraic integer.
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4.2 Fourier Coefficients of Weight 1=2 Harmonic Maass Forms
and the Vanishing of Central L-Derivatives of Elliptic
Curves

We let E be an elliptic curve over Q of conductor p, i.e.

E W y2 D x3 C axC b; a; b 2 Q:

Moreover, we let L.E; s/ be the Hasse-Weil zeta function of E. In the following we
consider twists of E for a fundamental discriminant�, that is

E.�/ W �y2 D x3 C axC b:

By the famous Modularity Theorem it is well-known that for every elliptic curve E,
there is a cusp form GE.z/ DPn�1 aE.n/qn 2 S2. p/ such that

L.E.�/; s/ D L.GE; ��; s/ D
1X

nD1
��.n/aE.n/n

�s;

where �� is the usual Kronecker character.
In 2006 Bruinier and Ono proved a theorem relating the vanishing of the central

value and central derivative of such an L-function to the coefficients respectively the
algebraicity of the coefficients of weight 1=2 harmonic Maass forms.

Even though the statement is phrased in terms of vector valued forms we chose
to present the result in the language of scalar valued forms for ease of notation.

Theorem 4.6 ([6]) Let f 2 HC
1=2.4p/ be a harmonic Maass form of weight 1=2 for

�L and let g D 1=2. f / 2 S3=2.4p/. Moreover, we let G 2 S2. p/ be the cusp form
which is the image of g under the Shimura correspondence. That is, we are in the
following situation:

We write f .�/ D P
n��1 cC

f .n/q
n C P

n<0 c�
f .n/�.1=2; 4�jnjv/qn for the

Fourier expansion of f . Moreover, assume that L.G; 1/ D 0. Then the following
hold:

(1) If� < 0 is a fundamental discriminant for which
�
�
p

�
D 1, then L.G; ��; 1/ D

C � c�
f .�/

2 for an explicit constant C.
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(2) If � > 0 is a fundamental discriminant for which
�
�
p

�
D 1, then

L0.G; ��; 1/ D 0 , cC
f .�/ 2 Q:

The proof of the first part follows from the fact that Waldspurger and Kohnen and
Zagier described the coefficients of the cusp form g D . f / in this way. The proof
of the second part is much harder and makes use of generalized Borcherds products,
algebraicity results for differentials of the third kind and the Gross-Zagier formula.

The author, Griffin, Ono and Rolen proved a more intrinsic version of this
theorem. Let GE 2 S2. p/ be a cusp form of weight 2 corresponding to an elliptic
curve E. They defined a canonical preimage FE of GE under 0 and made use of
a theta lift similar to the Kudla-Millson theta lift (see [2] for the definition of the
lift I). Then the following diagram is Hecke-equivariant:

We briefly describe the canonical preimage of GE. We let ƒE be the lattice
associated to the elliptic curve E via the analytic parametrization. We recall the
Weierstrass �-function

�.ƒEI t/ WD 1

t
C

X

w2ƒEnf0g

�
1

t � w
C 1

w
C t

w2

�
:

Furthermore, we make use of the modular parametrization. We let EE.t/ be the
Eichler integral of a cusp form GE defined as

EE.z/ WD �2�i
Z i1

z
GE.�/d� D

1X

nD1

aE.n/

n
� qn:

Moreover, we let S.ƒE/ WD lims!0C

P
w2ƒEnf0g 1

w2jwj2s . Eisenstein observed that the
function

��.ƒEI t/ D �.ƒEI t/ � S.ƒ/t � �

a.ƒE/
t

is lattice invariant, where a.ƒE/ is the area of a fundamental parallelogram for ƒE.
This implies that

W�
E .z/ WD ��.ƒE; EE.z//

is modular of weight 0. We have the following theorem.
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Theorem 4.7 There is a modular function ME.z/ on �0. p/ with algebraic Fourier
coefficients for which W�

E .z/ � ME.z/ is a harmonic Maass form of weight 0 on
�0. p/. We call the functionWE.z/ DW�

E .z/�ME.z/ a Weierstrass harmonic Maass
form.

We write I.�;WE.z// D P
n��1 cC

E .n/q
n CPn<0 c�

E .n/�.1=2; 4�jnjv/qn for
the Fourier expansion of I.�;WE.z//.

Theorem 4.8 ([2]) With the same notation as above the following are true:

(1) If � < 0 is a fundamental discriminant for which
�
�
p

�
D 1, then

L.E.�/; 1/ D 0 if and only if c�
E .�/ D 0:

(2) If � > 0 is a fundamental discriminant for which
�
�
p

�
D 1, then

L0.E.�/; 1/ D 0 if and only if cC
E .�/ is in Q:

Remark 4.9 Using the properties of the lift I and the explicit description of the
Fourier coefficients of I.�;WE.z// we can give a different proof for this theorem
than Bruinier and Ono (see [1]).

Acknowledgements The author thanks the referee, Eric Hofmann and Markus Schwagenscheidt
for comments on an earlier version of this paper.
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Elementary Introduction to p-Adic Siegel
Modular Forms

Siegfried Böcherer

Abstract We give an introduction to the theory of Siegel modular forms mod p
and their p-adic refinement from an elementary point of view, following the lines
of Serre’s presentation (J.-P. Serre, Formes modulaires et fonctions zeta p-adiques.
In: Modular Functions of One Variable III. Lecture Notes in Mathematics, vol. 350.
Springer, New York, 1973) of the case SL(2).

1 Introduction

In the late sixties of the last century Serre [18] and Swinnerton-Dyer [22] created
a theory of p-adic modular forms, which was soon reformulated and refined by
Katz [12] in a geometric language. Later on S. Nagaoka and others started to
generalize that theory (in the classical language) to Siegel modular forms. In these
notes we give a naive introduction, emphasizing level changes and generalizations of
Ramanujan’s theta operator (i.e. derivatives). Compared with the theory for elliptic
modular forms at some points new techniques are necessary. Also some aspects do
not appear at all in the degree one case, in particular mod p singular modular forms
and also vector-valued modular forms. We will focus on the scalar-valued modular
forms, but the vector-valued case will arise naturally in the context of derivatives.
We will not enter into the intrinsic theory for the vector-valued case (see e.g. [11]
and other papers by the same author); all vector-valued modular forms which appear
in our notes arise from scalar-valued ones.

Our naive point of view is that p-adic modular forms encode number theoretic
properties (congruences) of Fourier coefficents of Siegel modular forms. We
understand that there is a much more sophisticated geometric point of view; in these
notes we completely ignore the geometric theory (see e.g. [11, 24, 25]).
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2 Basics on Siegel Modular Forms

Mainly to fix notation, we summarize basic facts on Siegel modular forms here. The
reader should consult [1, 9, 14] for details.

The symplectic group

Sp.n;R/ WD fM 2 GL.2n;R/ j JnŒM� D Jng

acts on the Siegel upper half space

Hn WD fZ D Zt D X C iY 2 C
.n;n/ j Y > 0g

by

.M;Z/ 7�! M < Z >WD .AZ C B/.CZ C D/�1:

Here Jn denotes the alternating form given by the 2n � 2n matrix Jn WD
�
0n �1n

1n 0n

�

and for matrices U;V we put UŒV� WD VtUV whenever it makes sense; we

decompose the matrix M into block matrices of size n by M D
�

A B
C D

�
.

There are good reasons to look at vector-valued automorphy factors:
For a finite-dimensional polynomial representation � W GL.n;C/ �! GL.V�/ we

consider V D V�-valued functions F W Hn �! V; the group Sp.n;R/ acts on such
functions from the right via

�
F j� M

�
.Z/ WD �.CZ C D/�1F.M < Z >/:

As usual, we write jk M instead of F j� M if � D detk.
We write �n D Sp.n;Z/ for the full modular group and for N � 1 we define the

principle congruence subgroup of level N by

�.N/ WD fM 2 �n j M � 12n mod Ng:

We will denote by � any group which contains some �.N/ as a subgroup of finite
index; typically we will consider the groups

�0.N/ WD f
�

A B
C D

�
2 �n j C � 0 mod Ng
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and

�1.N/ WD f
�

A B
C D

�
2 �n j C � 0 mod N; det.A/ � det.D/ � 1 mod Ng:

The space Mn
�.�/ of Siegel modular forms of degree n for � consists of all

holomorphic functions F W Hn �! V , which satisfy the transformation properties
F j� 
 D F for all 
 2 �; only for n D 1 we need additional conditions in the
cusps, for n > 1 such conditions are automatically satisfied (“Koecher principle”).

The functions F 2 Mn
�.�/ are periodic, i.e. F.ZCS/ D F.Z/ for all S 2 N �Z.n;n/sym ,

their Fourier expansion is then conveniently written in the form

F.Z/ D
X

T

aF.T/e
2� i 1N trace.TZ/: (1)

Here T runs over the set ƒn� of all symmetric half-integral matrices of size n, which
are positive semidefinite.

If we want to emphasize the formal aspects of such a Fourier expansion, then we
can view (1) as a formal series as follows:

With Z D .zij/ 2 Hn we put qi;j D e2�
p�1zij and we write for T 2 ƒn�

qT WD
Y

i<j

q
2tij
ij

Y

j

q
tjj
jj :

We consider the qij as formal variables and we may then view

X

T

aF.T/q
T

as an element of

CŒqij; q
�1
ij ŒŒq1; : : : ; qn�� with qj WD qjj:

We mention two typical examples of number-theoretic interest:

Example 1 (Siegel Eisenstein Series) We consider � D detk with an even integer
k > nC 1 and

En
k.Z/ WD

X

M

1 jk M D
X

M

det.CZ C D/�kI

here M runs over Sp.n;Z/1nSp.n;Z/, where Sp.n;Z/1 is defined by the condition
C D 0.

This defines an element of Mn
k .�

n/ with rational Fourier coefficients with
bounded denominators (this is not obvious!).
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Example 2 (Theta Series) Let S 2 2 �ƒm
> be a positive definite even integral matrix

of size m D 2k and of level N (i.e. N is the smallest positive integer such that
N � S�1 2 ƒm

>). Then

#n
S .Z/ WD

X

R2Z.m;n/
e� itrace.XtSXZ/

defines an element of

Mn
k .�0.N/; �S/ WD fF 2 Mn

k .�1.N// j F jk 
 D �S.det.D// � F 8
 2 �0.N/g

with the quadratic character

�S.:/ D
�
.�1/k det.S/

:

�
:

It is obvious that such theta series have integral Fourier coefficients.
For a subring R of C we denote by Mn

k .�/.R/ the R submodule of all modular
forms with all their Fourier coefficients in R. This notion can be extended in an
obvious way to the vector-valued case after fixing a basis of the representation space
of �.

Let N denote a primitive root of unity and denote by ON the ring of integral
elements in the N-th cyclotomic field. Then we have the following

Fundamental Property

Mk.�.N// D Mn
k .�.N//.ON /˝ C;

in particular, the field of Fourier coefficients of a modular form is finitely gen-
erated and all modular forms and the Fourier coefficients of a modular form in
Mn

k .�.N//.Q/ have bounded denominators.
The property above will be crucial at several points below (sometimes implicitly).

We take this for granted and refer to the literature [20]. In some cases (squarefree
levels and large weights) elementary proofs are available, using the solution of
the basis problem (“all modular forms are linear combinations of the theta series
introduced above”, see [3]).

Remark We note here two important differences between elliptic modular forms
and Siegel modular forms of higher degree:

No Obvious Normalization For n > 1 there is no good notion of “first Fourier
coefficient” and (even for Hecke eigenforms) we cannot normalize modular forms
in a reasonable arithmetic way (note that a normalization by requesting the Petersson
product to be one is not an arithmetic normalization!).

Hecke Eigenvalues and Fourier Coefficients Fourier coefficients and Hecke
eigenvalues are different worlds for n > 1. We briefly explain the reason in the
simplest case (scalar-valued modular forms of level one): For g 2 GSpC.n;Q/ with
gtJng D � �Jn we consider for �n D Sp.n;Z/ the double coset �n �g ��n D S�n �gi
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with representatives gi D
�

Ai Bi

0 Di

�
with At

i � Di D �. Then we define a Hecke

operator acting on F 2 Mn
k .�

n/ by

F 7�! G WD F j �n � g � �n WD
X

i

det.Di/
�kF..Ai � Z C Bi/ � D�1

i :/

We may plug in the Fourier expansion F D P
aF.T/qT and we get for the Fourier

coefficients of aG.S/ a formula of type

aG.S/ D a linear combination of aF.T/ with D�1
i TAi D S;

in particular, S and T are rationally equivalent up to a similitude factor.
The conclusion is that Hecke operators give relations between Fourier coeffi-

cients only within a rational similitude class of positive definite matrices T 2 ƒn
>.

For n � 2, the set ƒn
> however decomposes into infinitely many such rational

similitude classes. In some sense this is a situation similar to the perhaps more
familiar case of degree one modular forms of half-integral weight.

Our aim here will be to study congruences among Fourier coefficients of Siegel
modular forms (not congruences among eigenvalues!).

The reader interested in congruences for eigenvalues should consult the work of
Katsurada [13], who studies congruences between eigenvalues of different types of
automorphic forms (lifts and non-lifts); in a different direction (connection to Galois
representations) one may look at the work of Weissauer [23].

3 Congruences

3.1 The Notion of Congruences of Modular Forms

For a prime p we denote by 	p the (additive) p-adic evaluation 	p W Q �! Z[f1g,
normalized by 	p. pt/ D t. For a modular form F DPT aF.T/qT 2 Mn

k .�1.N//.Q/
we put

	p.F/ WD inff	p.aF.T// j T 2 ƒng:

By the boundedness of denominators, this number is > �1.
We defined this notion only for scalar-valued modular forms with Fourier

coefficients in Q, but we can easily generalize it to modular forms with Fourier
coefficients in C by extending 	p to the field generated by the Fourier coefficients.
Furthermore, we can define it also for vector-valued modular forms after fixing
coordinates and taking the minimum of 	p on the coordinates (this depends on the
choice of coordinates!).
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Definition For F;G 2 Mn
k .�1.N//.Q/ we define

F � G mod pm ” 	p.F � G/ > 	.F/C m:

Note that this definition avoids trivial congruences.

Remark In case of Hecke eigenforms, such congruences for modular forms imply
congruences for eigenvalues (but not the other way around!).

3.2 Congruences and Weights

A first observation is that such congruences cannot occur among modular forms of
arbitrary weights:

Theorem I For a prime p and a positive integer N coprime to p we consider � D
�1.N/\�0. pl/. Then for Fi 2 Mn

ki
.�/. with i D 1; 2 a congruence F1 � F2 mod pm

implies a congruence among the weights:

k1 � k2 mod

�
. p � 1/pm�1 if p 6D 2

2m�2 if p D 2; m � 2:
For n D 1 this is a result of Katz [12, Corollary 4.4.2]. The case of general degree

can be deduced from that by associating to F and G suitable elliptic modular forms
f and g with the same weights (possibly with larger level) and satisfying the same
congruence (see [6] for details).

As a special case, we mention

Corollary For an odd prime p a modular form F 2 Mn
k .�/.Q/ with � as above, can

be congruent mod pm to a constant only if . p � 1/ � pm�1 j k holds.

3.3 Mod p Singular Modular Forms

Singular modular forms are a topic which is specific for higher degree, see [9]; there
is an analogue mod p:

Definition We call a modular form F D P
aF.T/qT 2 Mn

k .�/.Q/ with 	p.F/ D 0

a mod p-singular modular form of rank r, 0 � r � n � 1 iff aF.T/ � 0 mod p for
all T 2 ƒn with rank.T/ > r and if there exists T0 2 ƒn with rank.T0/ D r such
that aF.T0/ ¤ 0 mod p.

Theorem II If F 2 Mn
k .�0.N// is mod p singular of rank r, then

2k � r � 0 mod . p � 1/pm�1

if p is odd.
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The proof is inspired by the method used to prove a similar statement for true
singular modular forms [9]: One considers a Fourier-Jacobi-expansion F.Z/ DP

S2ƒr
�
�S.z1; z2/e2� itrace.Sz4/ with

Z D
�

z1 z2
zt
2 z4

�
; z1 2 Hn�r; z4 2 Hr:

We choose T0 2 ƒn with rank r such that aF.T0/ ¤ 0 mod p; without loss of

generality we may assume that T0 equals

�
0 0

0 So

�
with So 2 ƒr

>. The “theta

expansion” of the special Fourier-Jacobi coefficient �S0 allows us to arrive at a
modular form h of degree r and weight k � r

2
which is constant mod p. We may

then apply the corollary to h2.

Example Let S be a positive definite even integral quadratic form in m variables.
We assume that S has an integral automorphism � of order p (the existence of such
quadratic forms will be considered below). Let l be the maximal number of linearly
independent fixed points of � . Then #n

S is mod p singular of rank l.
Other types of examples can be constructed using Siegel Eisenstein series; here

divisibility properties of certain Bernoulli numbers play an important role, see [4].

3.4 Existence Theorem

In degree 1 the Clausen-von Staudt property of Bernoulli numbers Bp�1 implies that
the Eisenstein series of weight p� 1

Ep�1.z/ D 1 � 2p � 2
Bp�1

X

nD1

0

@
X

djn
dp�2

1

A e2� inz

is congruent 1 mod p for p � 5. In higher degree the situation is more complicated,
the Siegel Eisenstein series of weight p� 1 is not necessarily congruent 1 modulo p
for irregular primes, see [16].

Before stating a general existence theorem we introduce the “zero dimensional
cusps” for a group �0. p/. It is a consequence of the Bruhat decomposition for the
symplectic group over a finite field that a complete set of representatives for the
double cosets

�0. p/nSp.n;Z/=Sp.n;Z/1
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is given by the nC 1 elements

!i WD

0
BBB@

0i 0

0 1n�i

�1i 0

0 0n�i

1i 0

0 0n�i

0i 0

0 1n�i

1
CCCA .0 � i � n/: (2)

The theorem below assures the existence of level p modular forms congruent to
1 mod p and with nice behaviour mod p in the other cusps. This is a very usefull
technical tool. The proof will be based on the existence of certain quadratic forms
with automorphisms of order p. The advantage of theta series (when compared with
Eisenstein series) is that the Fourier expansions in all cusps are accessible. This
point of view is new even for degree one.

We briefly recall the theta transformation formula relevant for us: Let S be an
even integral symmetric matrix, positive definite, det.S/ D p2r of size m D 2k and
0 � j � n. Then

#n
S jk !j D w.S/j � p�jr

X

X

e� iSŒX�Z :

Here w.S/ D ˙1 is the Hasse-Witt invariant of S and X runs over

S�1 � Zm � � � � � S�1 � Zm
„ ƒ‚ …

j

�Zm : : :Zm
„ ƒ‚ …

n�j

:

Theorem III

a) p odd: 9F 2 Mn
p�1.�0. p// W F � 1 mod p

b) p � nC 3 W 9Fp�1 2 Mn
p�1.Sp.n;Z// W Fp�1 � 1 mod p

c) p � nC 3 W 9kp W 9F 2 Mn
kp
.�0. p// W

F � 1 mod p and F jkp !i � 0 mod p .1 � i � n/:

Proof (sketch)

a) We consider the root lattice

Ap�1 WD f.x1; : : : ; xp/ 2 Z
p j

X

i

xi D 0g

inside the standard euclidean space R
p. We can act on this lattice by the

symmetric group Sp; the only lattice point fixed by a � 2 Sp of order p is 0.
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In particular, the orthogonal sum Ap�1 ? Ap�1 corresponds to an even integral
positive definite symmetric matrix S of determinant p2 with an (integral)
automorphism of order p without nontrivial fixed point. The theta series #n

S has
the requested properties [5].

b) We put T WD p � S�1 with S from above, then

Fp�1 WD ˙p. p�2/n� n.nC1/
2

X


2�0. p/2nSp.n;Z/

#n
T jp�1 
:

The sign depends on the Hasse invariant of the underlying quadratic space.
c) This is more complicated: One has to use not only the lattice Ap�1 ? A�1 but

several lattices L1 : : :LnC1 with determinants p2; : : : ; p2nC2 (all with automor-
phisms of order p without nonzero fixed points). One can construct such lattices
from certain ideals in the cyclotomic field generated by p-th roots of unity. In a
first step one may then use linear combinations of theta series for such lattices to
construct modular forms Gi 2 Mn

p�1.�0. p// such that

Gi jp�1 !j � 1 mod p .0 � j � i/

Gi jp�1 !iC1 � 0 mod p:

Typically, the Gi have high powers of p in the denominators of their Fourier
coefficients in the cusps !j with j > iC 1. We may then construct Fkp by taking
suitable products of powers of the Gi.

3.5 The Ring of Modular Forms Mod p d’après Raum-Richter

The existence theorem above is an ingredient in the following beautifull recent result
(the proof goes beyond our elementary approach).

We define the ring QMn;p of modular forms mod p as the image of the ring
˚kMn

k .�
n/.Z. p// under the reduction mapQmod p

F D
X

aF.T/q
T 7�!

X

T

AaF.T/q
T :

After Faltings/Chai the ring˚kMn
k .�

n/.Z. p// of modular forms with coefficients in
Z. p/ is finitely generated:

˚kMn
k .�

n/.Z. p// ' Z. p/ŒX1; : : : ;Xr�=C

with some ideal C describing the relations. One may in particular write the modular
form Fp�1 as a polynomial B in the generators X1; : : :Xr (or rather their images
mod C).
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Theorem of Raum-Richter [17]
For p � nC 3 we have

QMn;p ' FpŒX1; : : : ;Xr�= QCC < QB � 1 > :

We can rephrase this by saying that by reduction mod p, the only new relation
among the generators is the one coming from Fp�1 � 1 mod p.

4 p-Adic Modular Forms and Level Changes

Definition A formal series

F D
X

T2ƒn
�

a.T/qT .a.T/ 2 Zp/

is called p-adic modular form if there is a sequence Fj of level one modular forms
Fj 2 Mn

kj
.Sp.�n//.Z. p// such that the sequence .Fj/ converges p-adically to F, i.e.

	p.F � Fj/ �! 1, which means that all the sequences aFj.T/ converge p-adically
to a.T/ uniformly in T.

Some Comments

• It follows from our Theorem I that such a p-adic modular form has a weight in
Z=. p � 1/ � Z � Zp.

• One can generalize the notion of p-adic modular form to the vector-valued case
in an obvious way.

• Clearly, all level one Siegel modular forms with Fourier coefficients in Zp are
p-adic modular forms.

• It can happen, that such a p-adic limit is itself a modular form, possibly with
nontrivial level: A nice example is exhibited by Nagaoka [15] following an
observation by Serre in the degree one case [18]: the sequence of Eisenstein
series

�
En

km

�
m2N with km D 1 C p�1

2
pm�1 converges p-adically to a weight one

modular form for �0. p/, if p � 3 mod 4, more precisely, it is proportional to
the genus Eisenstein series for the genus of positive binary quadratic forms of
discriminant �p.

Proposition All modular forms F 2 Mn
k .�0. p//.Z. p// are p-adic (p any odd prime).

We give here a proof for p � nC 3 and refer to [7] for a different proof covering
the general case.

We use the existence of a modular form Fkp as in Theorem IIIc)
and we consider for N 2 N a “trace function”

GN WD
X


2�0. p/nSp.n;Z/

�
F �FN

kp

�
jkCNkp 
:
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According to (2), GN decomposes naturally into nC 1 summands

GN D
X

i

GN;i with GN;i WD
X


i

�
F � FN

kp

�
jkCNkp .!i � 
i/;

where the 
i run over certain elements of Sp.n;Z/1.
For i � 1 we have 	p.FN

kp
jNkp/ � N and therefore GN;i will be divisible by a

high power of p if N is large (the denominators which possibly appear in the Fourier
expansion of F jk !i will be compensated. As for GN;0 D F � FN

kp
we observe that

FN
kp

is congruent one modulo pm provided that N is chosen as N D pm�1.
We therefore get that GN is a level one form congruent to F modulo a high power

of p provided that N D pm with m sufficiently large.
The proposition can be generalized to prime power levels:

Proposition A modular form F 2 Mn
k .�0. pm// is p-adic ( p odd, m arbitrary).

We can use the U. p/-operator, defined on Fourier series by

X
a.T/q 7�!

X
a. p � T/qT :

Such an operator maps modular forms for �0. pm/ to modular forms for �0. pm�1/,
provided that m � 2. It is sufficient to show that F is congruent to a modular form
for �0. pm�1/ modulo high powers of p, m � 2. One can start from the elementary
observation

Fp j U. p/ � F mod p

and then apply the same procedure (with F as in Theorem IIIa)) to

1

p
.F � F � Fp j U. p//

to get a congruence mod p2; iteration gives the desired result; this proof is a
straightforward generalization of the one by Serre [19] for degree one.

Remark There is a delicate difference between the two propositions: the first one
generalizes in an obvious way to vector-valued situations, whereas for the second
proposition a substitute for taking a p-th power is necessary. A natural choice is
taking the p-th symmetric tensor; one can get results along this line, but the notion
of p-adic modular form has to be generalized, because one varies the representation
space V�.
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5 Derivatives

In general, derivatives of modular forms are not modular (by derivatives we mean
here holomorphic derivatives!)

But there are bilinear holomorphic differential operators, usually called “Rankin-
Cohen” operators, e.g. for n D 1 and integral weights k; l with l 6D 0

Œ ; �k;l W
(

M1
k .�/ �M1

l .�/ �! M1
kClC2.�/

. f ; g/ 7�! 1
2� i

�
f 0 � g � k

l f � g0�

We explain how one can use such Rankin-Cohen-operators to prove that derivatives
of modular forms are p-adic modular forms; our proof is different from the usual one
which uses the Eisenstein series of weight 2, see [18]; note that we cannot expect
in higher degree to find a function analogous to the weight 2 Eisenstein series.
We advertise here that the Rankin-Cohen operators, together with modular forms
congruent one mod p are an appropriate substitute, which also works in higher
degree.

To get a congruence mod p in degree one, we may use

Œ f ;F �k;p�1 � 1

2�i
f 0 mod p

with F as in Theorem IIIa). For congruences mod pm, this does not work with
Fpm�1

, because of l D . p � 1/pm�1 in the denominator of the Rankin-Cohen-
operator. We can avoid this problem, if we use the operator V , defined by g j
V.t/.z/ WD g.t � z/ and consider

Œ f ;Fpm�1 j V. pm/�k;. p�1/pm�1 � 1

2�i
f 0 mod pm:

Here we increase the level by the operator V. pm/; this can be avoided by using a
modular form H of level one and some weight h satisfying

H � Fpm�1 j V. pm/ mod pm:

Then Œ f ;H�k;h � 1
2� i f

0 mod pm holds. Note that the existence of H is assured by our
proposition and by Theorem I, the weight of H is under control. Clearly this line of
reasoning also works for higher derivatives. Furthermore, this proof contains all the
ingredients for generalization to higher degree:

First we introduce a symmetric n � n matrix @ of partial derivatives on Hn:

.@/i;j WD
8
<

:

@
@zii

if i D j

1
2
@
@zij

if i ¤ j
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We fix a weight k and a (possibly vector-valued) automorphy factor � and l D
. p � 1/pm�1 with suitable m. Let Hol.Hn;V�I j�/ denote the vector space of all
holomorphic V�-valued functions on Hn, equipped with the action of Sp.n;R/
defined by the automorphy factor �; if � D detk, we just write Hol.HnI jk/ We
consider a bilinear holomorphic differential operator

Œ ; �k;l W Hol.HnI jk/ �Hol.HnI jl/ �! Hol.Hn;V�; j�˝detkCl /;

which is equivariant for the action of Sp.n;R/, i.e.

ŒF jk g;G jl g�k;l D ŒF;G�k;l j�˝detkCl g

for all holomorphic functions F;G and all g 2 Sp.n;R/, in particular, it maps
.F;G/ 2 Mn

k .�/ �Mn
l .�/ to an element of Mn

�˝detkCl.�/.

We impose the following three conditions

(RC1) ŒF;G�k;l is a polynomial in the derivatives of F and G, more precisely,
there exists a V�-valued polynomial with rational coefficients in two matrix
variables R1;R2 2 C

n;n
sym, homogeneous of degree �, such that

ŒF;G�k;l D .2�i/��P.@Z1 ; @z2 /.F.Z1/ � G.Z2//jZDZ1DZ2

(RC2) We write P D P
j Pj where the Pj are homogenous of degree j when

viewed as polynomials in the second variable R2 alone. Then P0 should be
independent of l.

(RC3) The coefficients of P depend continuously on l (p-adically)

Comment The existence of such bilinear differential operators is not a problem
if we stay away from finitely many values of k and l; this is a matter of invariant
theory, see [8, 10]. The condition (RC2) however is delicate and has to be checked
case by case as far as I can see.

Using such a Rankin-Cohen operator, we can now define analogues of Ramanu-
jan’s theta-operator

f D
X

atq
t 7�! �. f / D 1

2�i
f 0 D

X

t

t � a.t/qt:

For a Rankin-Cohen operator Œ ; �k;l and F 2 Mn
k .�/ we define a V�-valued

operator by

‚k;�.F/ WD .2�i/��P0.F/:

Exactly by the same reasoning as for degree one we may show now



330 S. Böcherer

Theorem IV For a modular form F 2 Mn
k .Sp.n;Z//.Z.p// and a Rankin-Cohen

operator Œ ; �k;l with properties (RC1). (RC2), (RC3) the theta operator defines a
V�-valued p-adic modular form‚k;�.F/:

To explain our principle examples, we introduce some convenient notation
following [9, III.§6]: For 0 � i � n and a n � n matrix A let AŒi� be the matrix
of size

�n
i

� � �n
i

�
consisting of the determinants of all submatrices of size i.

Examples For 0 � i � n and F DP aF.T/qT 2 Mn
k .�/ we put

‚Œi�F WD
X

T

aF.T/ � T Œi�qT

For F 2 Mn
k .�0. pr//.Z. p// this expression‚Œi�.F/ is congruent mod pm to a level

one modular form with automorphy factor

kC. p�1/pm0

det ˝.
r‚ …„ ƒ

2; : : : ; 2; 0; : : : ; 0/„ ƒ‚ …highest weight of �

for a sufficiently large m0, in particular, ‚Œi�F is a p-adic (vector-valued) modular
form. This is in particular true for

‚Œn�.F/ D
X

T

aF.T/ det.T/qT

and

‚Œ1�.F/ D
X

T

aF.T/ � TqT :

In fact, the corresponding Rankin-Cohen bracket for ‚Œi�.F/ can be constructed
completely explicitly: We define polynomials Qi;j.R; S/ in variables R; S 2 C

.n;n/
sym by

.RC xS/Œi� D
iX

jD0
Qi;j.R; S/x

j:

Then there is an explicit linear combination of the

Qi;j.@Z1 ; @z2 /.F.Z1// � G.Z2/Z1DZ2

with leading term .‚Œi�F/ � G.

Remark If F 2 Mn
k .�/.Z. p// is mod p singular of rank r, then‚ŒrC1�.F/ � 0 mod p

holds, but not only mod p singular modular forms have this property: let S be a
positive definite quadratic forms in m D 2k variables with rankFp.S/ D n � j < n;
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we assume that S has no nontrivial integral automorphism. The theta series #n
S DP

T a.T/qT is not mod p singular, because a.S/ D 2. On the other hand, one has

‚Œn�jC1�#n
S � � � � � ‚Œn�#n

S � 0 mod p:

6 Outlook: Quasimodular Forms

There is a sophisticated theory of nearly holomorphic modular forms due to Shimura
[21]; they behave like modular forms, but they are no longer holomorphic: they are
polynomials in the entries of Y�1 with holomorphic coefficients. A very famous
example is the nonholomorphic Eisenstein series of weight 2:

1 � 3

�iy
� 24

X
�1.n/q

n:

A quasimodular form is then defined as the constant term of such a nearly
holomorphic function. Using the calculus of Rankin-Cohen operators and the
full theory of nearly holomorphic modular forms, one can then show that such
quasimodular forms are also p-adic modular forms [2].
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Liftings and Borcherds Products

Eric Hofmann

Abstract This chapter serves as a brief introduction to the theory of theta-liftings
with the main focus on Borcherds’ singular theta-lift and the construction of
Borcherds products. Thus, after a few initial examples for liftings, we proceed to
develop the tools needed to understand how the Borcherds lift works. Namely, we
go through the construction of symmetric domains for orthogonal groups, introduce
vector-valued modular forms and explain the definition of the Siegel theta-function.
Then, we give a detailed treatment of the regularization recipe for the theta-integral
and of the proof for the key properties of the additive lift: the location and type of its
singularities. Finally, in the closing section, we sketch how to obtain a multiplicative
lifting and the Borcherds’ products.

1 Introduction

The present course notes are based on three lectures held by the author during a
preparatory course for the conference ‘L-functions and automorphic forms’. Their
purpose is to give a brief introduction to theta-liftings, in which input functions
(usually modular forms) are ‘lifted’ by integrating them against a suitable theta-
function. The main focus lies on the singular theta-lift of Borcherds [4], which
leads up to the construction of Borcherds products through a multiplicative lifting.
This lifting yields meromorphic modular forms for an indefinite orthogonal group of
signature .2; n/, n � 2, which take their zeros and poles along certain arithmetically
defined divisors called Heegner divisors and which posses absolutely convergent
infinite product expansions (called ‘Borcherds product expansions’).

Special cases of such infinite products were already obtained by Borcherds in
an earlier paper [3], however using completely different methods. This construction
was originally motivated by the theory of generalized Lie (super-)algebras (see e.g.
[36] or [15]).
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The singular theta-lift we will concentrate on takes weakly holomorphic modular
forms (see Definition 1.1 below) for the elliptic modular group SL2.Z/ and lifts them
to modular forms for an indefinite orthogonal group.

It should be mentioned that the theoretical reason, why such a lifting using a
theta-function is possible, is that SL2.Z/ and SO.2; n/ form what is called a dual
reductive pair in the sense of Howe [see 25].

Overview

In the first section, we give a few examples of liftings that can be realized as theta
lifts. This includes a special case of Borcherds’ original construction from [3].
In Sect. 3, we go through the construction of symmetric domains for indefinite
orthogonal groups of signature .2; n/, n � 1. Further, we define orthogonal modular
groups related to lattices (Sect. 3.2) and introduce Heegner divisors (Sect. 3.3). The
section closes with a definition of orthogonal modular forms (see p. 350).
The main section, Sect. 4 (p. 351) covers the singular theta-lift:
First, we study the metaplectic double cover of SL2.Z/, a representation of which
is used to define vector valued modular forms (see p. 352), generalizing the usual
definition of scalar valued modular forms, see Definition 1.1.
Next, in Sect. 4.2, we introduce the Siegel theta-function which is employed in the
lifting, and formulate the theta-integral. We will indicate, why in this particular case
it is necessary to consider, on the one hand, weakly holomorphic forms as input
functions, and, on the other hand, to use a regularized integral.
The regularization procedure is described in detail in Sect. 4.3. We derive one of the
main properties of Borcherds’ singular lifting, namely the location and type of its
singularities (Theorem 4.2). Also we briefly outline some of the main steps used in
the actual evaluation of the theta-lift, without going into further detail (see p. 362).
Finally, in Sect. 4.4 the singular theta-lift is used to define the multiplicative lifting:

Borcherds products are explained as solutions of a multiplicative Cousin prob-
lem, namely of finding a meromorphic functions with divisor supported on the
singularities of the singular theta-lift. We formulate a version of Borcherds’ theorem
[4, Theorem 13.3], with a simplified form of the infinite product expansion.

1.1 Basic Definitions and Notation

Throughout these notes, as usual, the integers are denoted by Z, and the positive
integers by N. Also, Q is the field of rational numbers, R denotes the reals, and C

the complex numbers.
We recall some basic definitions from the theory of modular forms, details of

which can be found in many places, for example in [2, 16, 26], [12, part I] or [31].
As usual, the complex upper half-plane is denoted by H D fz 2 CI =z > 0g.

Throughout, � will be used to denote a point in H, with � D u C iv, with u and v
the real and the imaginary part of � , respectively. Also, we denote by H

� the union
of H with its rational boundary points, i.e. H� D H [Q [ fi1g.
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The special linear group SL2.Z/ D
˚�

a b
c d

� I a; b; c; d 2 Z; ad � bc D 1� operates
on H by fractional linear transformations,

M� D a� C b

c� C c
if M D

�
a b
c d

�
:

A standard fundamental domain for this operation is given by

F :D ˚� D uC ivI jzj > 1;� 1
2
< u < 1

2

�
:

Also, recall that SL2.Z/ is generated by the two matrices T D � 1 10 1
�

and S D � 0 �1
1 0

�
.

Beside SL2.Z/, known as the full (elliptic) modular group, subgroups of finite
index are also called modular groups. These include the families of congruence
subgroups, most importantly �0.N/, �1.N/ and �.N/ for N a positive integer, their
level:

�0.N/ D
��

a b
c d

�
I c � 0 mod N

	
;

�1.N/ D
��

a b
c d

�
I c � 0 mod N; a � d � 1 mod N

	
;

�.N/ D
��

a b
c d

�
I b � c � 0 mod N; a � d � 1 mod N

	
:

Note that SL2.Z/ D �0.1/ D �1.1/ D �.1/.
Let � be a modular group. The �-equivalence classes of Q[fi1g are called the

cusps of � . The equivalence class of fi1g is usually referred to as the cusp at1.
Note that for the full modular group SL2.Z/, this is the only cusp.

Now, we recall the definition of modular forms.

Definition 1.1 Let � be a modular group, k an integer and � a group character of
� . A holomorphic function f W H ! C is called a holomorphic modular form of
weight k for � , with character �, denoted f 2 Mk.�; �/ if

1. f .M�/ D �.M/.c� C d/kf .�/ for all M D � a b
c d

� 2 � ,
2. f is holomorphic at all cusps.

If further f vanishes at all cusps, f is called a cusp form. The space of cusp forms
(for � , with weight k and character �) is denoted Sk.�; �/.

Contrastingly, if instead of satisfying condition 2. f is only meromorphic at
the cusps, f is called a weakly holomorphic modular form. The space of weakly
holomorphic modular forms is denoted MŠ

k.�; �/.
Clearly, we have Sk.�; �/ 
 Mk.�; �/ 
 MŠ

k.�; �/. Similarly, the notations
Sk.�/, Mk.�/ and MŠ

k.�/ are used, if the character is trivial.
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More generally, we will also consider modular forms of half-integer weight. For
this, if k 2 1

2
Z, one has to replace condition 1. in the definition and require, in its

place

f .M�/ D �.M/j.M; �/2kf .�/ for all M D
�

a b
c d

�
2 �;

with a suitable automorphy factor j.M; �/. In particular, if � D �0.4N/ the
automorphy factor is given by j.M; �/ D �0.M�/=�0.�/, where �0.�/ D P

n2Z qn2

is the usual Jacobi theta function [see 26, Chapter IV].
Finally, modular forms have Fourier expansions since the matrix T D � 1 10 1

�
, one

of the two generators of SL2.Z/, acts on H as � 7! � C 1. As every modular group
� , being of finite index, contains some power of T, modular forms are periodic with
positive integer periods, and hence can be expanded as Fourier series around the
cusp at infinity and around all other cusps. Thus, for example if � is modular group
with T 2 � (e.g. one of the �0.N/’s), and k an integer, the Fourier expansion of
f 2 MŠ

k.�/ around1 takes the form

f .�/ D
X

m��1
a.m/qm; q D e.�/ D e2� i� :

There are only finite many non-zero terms with m < 0. Further, if f 2 Mk.�/, then
a.m/ ¤ 0 only for m � 0. Finally, if f is a cusp form, a.m/ ¤ 0 implies m > 0.

For an overview of further notation, the reader is advised to consult (Table 1).

2 Examples of Liftings

In this section we will give some examples for liftings, all of which can, in fact,
be realized as theta-liftings, using the theory of Howe duality (which is beyond the
scope of the present course notes [see 25]). However, this is not the only way such
liftings can be formulated, and indeed, the examples in this section were originally
constructed using other methods.

2.1 Convolution of L-Series

Our first two examples were discovered in the 1970s using convolution of L-
series:

1. The Shimura lift, discovered by Goro Shimura [37] which takes certain half-
integer weight cusp form of level 4N .N � 1/ to integral weight modular forms
of level 2N.
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Table 1 Some frequently used notation

H The complex upper half-plane (p. 334)

F A standard fundamental domain  H (p. 334)

�0.N/, �1.N/, �.N/ Principal congruence subgroups of SL2.Z/ (p. 335)

Sk.�/, Mk.�/, MŠ
k.�/ Spaces of modular forms for a modular group �

Sk.�; �/;Mk.�; �/;MŠ
k.�; �/ (see Definition 1.1)

�0 D P
n2Z qn2 The Jacobi theta-function

MC

k .�/ A Kohnen plus-space (see p. 338)

X0.N/ A modular curve ' �0.N/nH,

X0.N/� its compactification

V D V.Q/, V.R/ A quadratic space over Q, with V.R/ D V ˝Q R

and signature .2; n/ (see p. 343)

q.	/, .	; 	/ The quadratic and the bilinear form of V,

x2 D .x; x/ D 2q.x/ (see p. 343)

SO.V/, O.V/ The orthogonal and the special orthogonal group of V,

OC.V/ The spinor kernel in SO.V/ (see p. 343)

V.C/ D V.R/˝R C The complexification of V.R/

D, K, H Models for the symmetric domain of SO.V/.R/,

see Sect. 3.1

`, `0 Isotropic lattice vectors in V with .`; `0/ D 1

V0.R/ D V.R/\ `\ `0 A Lorentzian subspace

Z, z, Z`, w.z/ See Sect. 3.1, p. 345

L, L0, L=L0 A lattice in V, its dual and the discriminant group,

(p. 348)

�L The discriminant kernel and

X� the modular variety �LnD. (p. 348)

D� A primitive Heegner divisor (Definition 3.2, p. 349),

Z.�;m/ a Heegner divisor of index (�, m)

Mp2.R/ The metaplectic double cover of SL2.R/ (p. 351)

Mp2.Z/ D fSL2.Z/, e�0.N/ The pre-images of SL2.Z/ and �0.N/ in Mp2.R/

�L, ��

L The Weil representation and its dual

CŒL0=L� The group algebra of L0=L

Sk;�L , Mk;�L , MŠ
k;�L

Space of vector valued modular forms (p. 352)

Hk;�L , HC

k;�L
Spaces of harmonic Mass forms, see (p. 353)

h	; 	i A hermitian pairing on CŒL0=L�

‚L.z; �/ The Siegel theta function for L (p. 355)

d� D dudv
v2

The left-invariant measure on H
R reg

Regularized integral (Sect. 4.3)

ˆ.z; f / The singular theta lift of f

‰.z; f / The multiplicative lift of f (Sect. 4.4)
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2. The Doi-Naganuma correspondence, between modular forms for the elliptic
modular group SL2.Z/ and modular forms for the Hilbert modular group,
constructed by Koji Doi and Hidehisa Naganuma [see 17].

Shimura’s Lifting

Let us turn to the Shimura lift first, an overview of which can be found e.g. in [35,
Chapt. 3].

Suppose that N and � are positive integers, with N square-free, and that � is a
character modulo N. Further, assume that g is a cusp form of half-integer weight
contained in S�C 1

2
.�0.4N/; �/, with Fourier expansion given by

g.�/ D
1X

nD1
b.n/qn:

Let t be a positive square-free integer and define a Dirichlet character ‰t by setting

‰t.n/ :D �.n/ �
 
�1
n

!� 
t

n

!
.n 2 N/:

Denote by L.s; ‰t/ DPn>0 ‰t.n/n�s the Dirichlet L-series attached to ‰t.
Further, let fat.n/gnD1;2;::: be a sequence of complex numbers given by

1X

nD1

at.n/

ns
D L.s � � C 1;‰t/ �

1X

nD1

b
�
tn2
�

ns
:

Then, the q-expansion with coefficients at.n/ defines a modular form, called the
Shimura lift of g:

1X

nD1
at.n/q

n D: St;�.g/.�/;

contained in M2�.�0.2N/; �2/. Further, if � � 2, the lift St;�.g/ is a cusp form,
whereas for � D 1, St;�.g/ is cuspidal only for certain g. (More precisely, for g
contained in the orthogonal complement of the subspace spanned by unary theta
series [see 35, p. 53].)

In 1975, Shinji Niwa [see 33] refined Shimura’s lifting and realized it as a theta-
lift.

Kohnen’s Theory We introduce the Kohnen plus space MC
�C 1

2

.�0.4N//. It consists

of modular forms with Fourier expansions of the form

g.z/ D
X

.�1/�n � 0;1 mod 4

b.n/ qn; (1)
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with coefficients b.n/ ¤ 0 only for n which satisfy .�1/�n � 0; 1 .mod 4/. The
plus space was introduced by Winfred Kohnen as he studied the properties of the
Shimura lift with respect to Hecke operations [see 27].

Furthermore, extending Shimura’s results in [28, 29], he showed that the two
spaces of newforms SC;new

�C 1
2

.�0.4N// and Snew
2� .�0.N// are isomorphic. The isomor-

phism is given by a linear combination of Shimura lifts. Some authors refer to this
Hecke-invariant isomorphism as the ‘Shimura correspondence’.

The Doi-Naganuma Correspondence

Our next example is due to Doi and Naganuma [17] and was discovered at around
the same time as Shimura’s lifting. See [13, Sections 1.7, 1.10] and [12, II. Section
3.1] for details.

In order to formulate the correspondence, we briefly recall some facts about
Hilbert modular forms [see 12, II. Sections 1.3, 1.6]: Let d > 1 be a square-free
integer and denote by K the real quadratic field K D Q.

p
d/. We shall assume that

the narrow class number of K is one.
Denote by OK the ringer of integers in K and by d�1 the inverse different ideal.

Further, for a 2 K denote by a0 the Galois conjugate of a.
The special linear group SL2.K/ is embedded into SL2.R/�SL2.R/ through the

two real embeddings of K. It acts on H�H through fractional linear transformations.
For z D .z1; z2/ 2 H

2, we have

�
a b
c d

�
z :D

�
az1 C b

cz1 C d
;

a0z2 C b0

c0z2 C d0

�
if

�
a b
c d

�
2 SL2.K/:

The Hilbert modular group �K D SL2.OK/ acts properly discontinuously.
Let k be an integer. A holomorphic Hilbert modular form F for �K of (parallel)

weight k is a holomorphic function F W H2 ! C which transforms according to

F.
z/ D �cz1 C d
�k�

c0z2 C d0�k
F.z/ for all 
 2 �K ; 
 D

�
a b
c d

�
: (2)

We denote by MH;k .�K/ the space of holomorphic Hilbert modular forms of weight
k for �K . Note that by the Koecher principle [see 12, II. Theorem 1.20] if a Hilbert
modular form F is holomorphic on H

2, it is automatically holomorphic at the cusp
1, and indeed at all cusps. Here, as usual, by the cusps of H2, we mean the �K-
equivalence classes of elements in P

1.K/.
We will describe what it means for a Hilbert modular form F to holomorphic at

the cusp1 using the Fourier expansion. From this one can obtain the description
for the other cusps through conjugation, noting that for any � 2 P

1.K/, one can take
� 2 SL2.K/ with �1 D �.
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Since the stabilizer of1 in �K contains a finite index subgroup acting by trans-
lations [see 12, p. 113], for F 2 MH;k .�L/, with the transformation behavior (2),
this implies the existence of a Fourier expansion of the following form:

F.z/ D a.0/C
X

	2d�1

	�0

a.	/e .tr.	z// :

Here, the sum ranges over totally positive 	 (denoted 	 � 0), if, as implied by the
Koecher principle, F is holomorphic at 1. Then, one further sets F.1/ D a.0/.
Finally F is called a cusp form, if in addition to F being holomorphic, one has
F.1/ D 0.

Now, given F 2 MH;k .�K/ with Fourier coefficients a.	/, we introduce a
Dirichlet series denoted L.s;F/ as follows:

L.s;F/ :D
X

	2d�1=U
	�0

a.	/N.	d/�s:

Here, U denotes the set of squares of totally positive units in OK , while for an ideal
a the norm is denoted N.a/.

Now, we are ready to describe the Doi-Naganuma lifting: Suppose f .�/ DP
n�0 a.n/qn is a Hecke eigenform in Mk.�0.1//, with even weight k. Let L.s; f /

be the attached Dirichlet series and denote by L.s; f ; �d/ a twist by the quadratic
character �d D

�
d
	
�
:

L.s; f / D
X

n>0

a.n/n�s; L.s; f ; �D/ D
X

n>0

�d.n/a.n/n
�s:

Denote by LDN.s/ the product of these two Dirichlet series,

LDN.s; f / :D L.s; f / � L.s; f ; �d/:

Then, there is a Hilbert modular form DN. f / 2 MH;k .�K/, the Doi-Naganuma lift
of f , with precisely this Dirichlet series, so that L.s;DN. f // D LDN.s; f /.

Remark 2.1 Of course this is not exactly the way Doi and Naganuma originally
stated their result in [17]. In 1973, Naganuma obtained the following version [see
32]: Assume that d D p is a prime and let K D Q.

p
p/. Let f .�/ D P

n a.n/qn

be a normalized Hecke eigenform in Mk.�0.p/; �p/, with �p a character of order
two, and let f �.�/ DPn a.n/qn. Then, we have L.s;DN. f // D L.s; f / � L.s; f �/ and
DN. f / 2 MH;k .�K/.
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2.2 Borcherds Products

In [3] Richard E. Borcherds introduced his famous multiplicative lifting. The
methods he used are totally unrelated to either convolutions of L-series or, indeed,
theta-correspondences. In contrast to this, Borcherds’ later, much more general
construction in [4], which we will study in Sect. 4, is formulated as a theta-lift.

For now, though, we describe only a special case from [3]: Here, the input
functions for the multiplicative lifting are contained in MC;Š

1
2

.�0.4//, i.e they are

weakly holomorphic modular forms of level 4, weight 1
2

and satisfy a plus-space
condition like in (1). They are lifted to meromorphic modular forms for the full
modular group SL2.Z/, which have infinite product expansions, and, in their Fourier
expansion (around the cusp at infinity), integral Fourier coefficients and leading
coefficient one. Further, they take their zeros and poles along linear combinations
of rational divisors, called Heegner divisors:

Heegner Divisors (Classical) Heegner divisors are subsets of H arising as the pre-
images under H! X0.N/ .N 2 N/ of certain rational divisors on the modular curve
X0.N/ ' �0.N/nH, for a precise definition [see 20, Section IV.1].

In the present setting, the level N is 1, and Heegner divisors are given as follows:
Let D be a negative integer, with D a square modulo 4. Let a; b; c with a > 0 be
integers satisfying b2 � 4ac D D. Thus, a; b; c are the coefficients of an integral
binary quadratic form, with D as its discriminant.

A point � 2 H satisfying a�2 C b� C c D 0 is then called a CM-point of
discriminant D. Finally, the Heegner divisor of discriminant D consists of all CM-
points of that discriminant. Often, it is useful to consider divisors supported at cusps
as Heegner divisors, too.

We will encounter a generalization of this concept of Heegner divisors in Sects. 3
and 4 below.

The Multiplicative Lifting Let QH.�/ denote the following generating series

QH.�/ :D
X

n�0;3 mod 4
n�0

H.n/qn;

where H.n/ are the usual Hurwitz class numbers. They are modified class numbers
given as follows [see 14, Section 5.3.2]: For n D 0 one sets H.0/ D � 1

12
. Otherwise,

for n > 0, if h.�n/ is the usual class number of primitive positive definite quadratic
forms with discriminant�n, then

H.n/ D
X

d2jn
w
� n

d2

�
� h
�
� n

d2

�
where w.n/ D

8
ˆ̂<

ˆ̂:

1
3

n D 3;
1
2

n D 4;
1 n > 4:
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In particular, if �n < �4 is a fundamental discriminant, H.n/ D h.�n/.
Now, let f .�/ be a weakly holomorphic modular form contained in MC;Š

1
2

.�0.4//,

and assume that the Fourier expansion of f around the cusp at 1 is given byP
n>n0

a.n/qn with integer coefficients a.n/, with a.n/ D 0 unless n � 0; 1

.mod 4/. Then, the Borcherds lift ‰.�; f / of f is a meromorphic modular form of
weight a.0/ for the full modular group SL2.Z/ which has an absolutely converging
infinite product expansion (a ‘Borcherds product’) as follows [see 3, Theorem 14.1]:

‰.�; f / D q�h
1Y

nD1
.1 � qn/a.n

2/ : (3)

Here, h denotes the constant coefficient of the product f .�/ QH.�/.
Further ‰.�; f / has integer coefficients in its Fourier expansion around infinity,

and leading coefficient one. Also, its divisor is supported on a linear combination of
Heegner divisors or possibly the cusp. More precisely, if � 2 H is a CM-point of
discriminant D < 0, its multiplicity in div.‰.�; f // is given by

P
n>0 a.Dn2/.

We note two further important properties:

1. The map ‰ W f 7! ‰.�; f / is multiplicative, with ‰. f C g/ D ‰. f /‰.g/.
2. Any meromorphic modular form for the modular group SL2.Z/, the divisor of

which is a linear combination of Heegner divisors (possibly including the cusp),
can be realized as a Borcherds product‰. f / for some f 2 MC;Š

1
2

.�0.4//.

By these two properties, the map ‰ becomes an isomorphism between the additive
group MC;Š

1
2

.�0.4// and the multiplicative group of meromorphic modular forms

satisfying the conditions given above for ‰.�; f /.

Examples We present some examples following [3, Section 14] and [35, Section
4.2]. A basis for the space MC;Š

1
2

.�0.4// consists of functions ffdgd� 0;3.4/ given by

f0.�/ D 1C
X

n>0

2qn2 ; fd.z/ D q�dC
X

D>0

a.D; d/ qD; d D 3; 4; 7; : : : : (4)

Note that f0.�/ is simply the Jacobi theta-function �0.�/. Given f0 and f3, further fd’s
can be obtained inductively by observing that fd�4.�/j.4�/ has the leading term q�d.
(For an explicit formula defining f3.�/ D q�3 � 248qC : : : , see [35, (4.4), p. 70] or
[3, Example 2, p. 202]).

From (3) and (4), one has:

‰.�; fd/ D q�H.d/
1Y

nD1
.1 � qn/a.n

2;d/ :

with H.d/ a Hurwitz class number as defined above. For applications of this formula
see [35, Chapter 4].
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Now, for two examples:

1. Let f .z/ D 12f0.�/ D 12�0.�/. Then, f .z/ D 12 C 24q C 24q4 C : : : and for
‰.�; f /, we have

‰.�; f / D q
Y

n>0

.1 � qn/24 D �.�/;

which is just the usual modular discriminant function, with divisor supported at
the cusp.

2. Consider g.�/ D 4f0.�/ C f3.�/. Then, one finds that ‰.�; g/ D E4.�/, the
Eisenstein series of weight 4, since this is the only holomorphic modular form of
weight 4 with leading coefficient one. Modulo the action of SL2.Z/, the divisor
div.‰.g// is, of course, given by � D 1

2
.1Cp�3/.

3 Orthogonal Groups

We give a brief introduction to the theory of symmetric domains for indefinite
orthogonal groups and of orthogonal modular forms. Further details on these topics
can be found in a number of places, for instance [6, 23] or [18].

In this section, let V D V.Q/ be a quadratic space over Q of signature .2; n/,
n � 1, endowed with a non-degenerate indefinite bilinear form, denoted .�; �/. Let
q.x/ D 1

2
.x; x/ be the attached quadratic form. Further, we will often the notation

x2 D .x; x/. Denote by V.R/ D V ˝Q R, the real quadratic space obtained from
V.Q/ by extension of scalars, with .�; �/ likewise extended to a real-valued form. For
later use, we also introduce the notation V.C/ D V˝QC for the complexified space
with .�; �/ extended to a complex bilinear form.

The orthogonal group of V is denoted O.V/. Considered as an algebraic group
defined over Q, its set of real points is given by O.V/.R/, the orthogonal group of
V.R/. Similarly, the special orthogonal groups of V.Q/ and V.R/ are denoted by
SO.V/ and SO.V/.R/, respectively.

Now, there is an exact sequence with the spin group SpinV , wherein � denotes
the spinor norm:

(5)

Looking at the sets of real points, the image of SpinV .R/ (which, of course is the
kernel of �) is the connected component of the identity in SO.V/.R/. It is referred
to as the spinor kernel and denoted OC.V/.R/.
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3.1 Models for the Symmetric Domain of SO.V/

Let KSO be a maximal compact (path-connected) subgroup of SO.V/.R/. A
symmetric domain for the operation of SO.V/.R/ on V.R/ is given by the quotient

SO.V/.R/=KSO:

It is isomorphic to the Grassmannian of two-dimensional positive definite oriented
subspaces, called the Grassmannian model:

D :D fv 
 V.R/I dim v D 2; q jv� 0; v orientedg:

Note that D has two connected components, they correspond to the two choices of
orientation and are stabilized by the spinor-kernel OC.V/.R/.

Also, each v 2 D, through the decomposition V.R/ D v˚ v?, fixes an isometry
between V.R/ and the standard pseudo-Euclidean space R

2;n, with quadratic form
q.x/ D 1

2

�
x21 C x22 � x23 � � � � � x2nC2

�
. Denoting the special orthogonal groups of

R
2;n, R

2;0 and R
0;n by SO.2; n/, SO.2/ and SO.n/, respectively, we obtain an

isomorphism

SO.V/.R/=KSO ' SO.2; n/= .SO.2/ � SO.n// :

Remark For the orthogonal group O.V/.R/ a symmetric domain is given by

O.V/.R/=KO ' O.2; n/= .O.2/ �O.n// ;

with KO a maximal compact subgroup. In this case, the Grassmannian model
consists simply of the two-dimensional positive-definite subspaces of V.R/ (without
orientation), and there is only one connected component.

The Projective Cone Model

Let V.C/ be the complexified space V.C/ D V ˝Q C, as above. Further, denote by
PV.C/ the projective space

PV.C/ D .V.C/ n f0g/ =C�;

and by � W V.C/ n f0g �! PV.C/ the canonical projection.
The positive cone model K is defined as the following subset of PV.C/:

K :D ˚ŒZ� 2 PV.C/I .Z;Z/ D 0; �Z; NZ� > 0� ;

a complex projective manifold of dimension n with two connected components.
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Given Z 2 V.C/ with �.Z/ 2 K, write Z in the form Z D X C iY with X;Y 2
V.R/. From the definition of K, we have

.X;Y/ D 0 and X2 D Y2 > 0:

In other words, if �.Z/ 2 K, the real and the imaginary part of Z constitute an
orthogonal, normalized and oriented basis for a two-dimensional positive subspace
of V.R/.

Thus, immediately, we have an isomorphism between the models D and K given
by a real-analytic map:

K �! D

ŒZ� 7�! RX C RY:

We take note of the following properties of K:

1. The special orthogonal group acts on K, with gŒZ� D ŒgZ� for g 2 SO.V/.R/.
2. There is an element of order two which interchanges the two connected

components of K, thus acting by complex conjugation. In contrast to this, the
action of the spinor kernel OC.V/.R/ stabilizes the connected components.

The Tube Domain Model

Suppose there are two isotropic vectors `, `0 2 V.Q/, with .`; `0/ D 1. Later on, we
will further require there to be an integral lattice L 
 V with ` 2 L and that `0 is in
contained in the dual lattice L0 (see Sect. 3.2).

Consider the subspace V0.R/ D V.R/ \ `? \ `0?. This is a Lorentzian space,
as the restriction .�; �/ jV0 is a quadratic form with signature .1; n � 1/. The
complexification V0.C/ is a complex quadratic space with the extension of .�; �/ jV0 ,
as usual. Now, the tube domain model is defined as the set

H :D fz D xC iy 2 V0.C/I q.y/ > 0g : (6)

There is an isomorphism between H and K given by

H 
�! K W z 7�! 

Z`.z/ :D zC `0 � q.z/`

�
:

Whence further,

H 
�! D W z 7�! w.z/ :D R<Z`.z/C R=Z`.z/:
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A first non-trivial example for this construction is the following:

Example 3.1 Let n D 1. Then, V0.C/ D C and we have

H D ˚z D xC iy 2 CI .=z/2 > 0
� ' H [H:

We remark at this point, that it may sometimes be useful to restrict to one connected
component, as the example shows.

The action of G D SO.V/.R/ on H is described by the following diagram (with
g 2 G):

�→

�→

�→�→

In order for this diagram to commute, we must have



gZ`.z/

� D 
Z`.gz/
�

.8g 2 G;8z 2 H/ :

Thus, an automorphy factor j.g; z/ W G �H! C is defined by setting

gZ`.z/ D j.g; z/Z`.gz/ .g 2 G; z 2 H/:

Note that if g is actually contained in g 2 SO.V0/.R/, this automorphy factor is
trivial.

Example 3.2 Again, let n D 1. Further, let the level N be an integer, N � 1. We
consider the space

V D fx 2 Mat.2 � 2;Q/ I tr.x/ D 0g ;

with the quadratic form q.x/ D �N det.x/ and the bilinear form .x; y/ D CN tr.xy/.
Setting

` D
�
0 1=N
0 0

�
; `0 D

�
0 0

1 0

�
; we get V0 D Q

�
1 0

0 �1
�
:

Also, clearly, `2 D `02 D 0 and .`; `0/ D 1. The isomorphisms between the tube
domain, the projective cone and the Grassmannian model are given by
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[( )]

Now, consider the subgroup of GL2.R/ consisting of matrices A with det.A/ D ˙1.
One can define an isometric action on V.R/ by setting

.A;X/ 7! AXAadj;

where Aadj denotes the usual adjoint matrix of A, i.e. with AAadj D det.A/E2. Thus,
there is a homomorphism fA 2 GL2.R/I det.A/ D ˙1g �! O.V/.R/. Its kernel is
a subgroup of order two, as clearly A and �A have the same image. We note that
SL2.R/! OC.V/.R/.

On K, the action is given as follows: Let A D � a b
c d

� 2 GL2.R/ with det A D ˙1.
Then,

A

�
z �z2

1 �z

��
D


A

�
z �z2

1 �z

�
Aadj

�
D
�
.azC b/.czC d/ �.azC b/2

.czC d/2 �.azC b/.czC d/

��
:

The automorphy factor thus is given by j.g; z/ D .cz C d/2. Also, we see that the
action on H is compatible with the usual action of SL2.R/ on H[ NH through Möbius
transformations z 7! azCb

czCd .

Example 3.3 Let n D 2. A commonly used model for this case is the following

V D Mat
�
2 � 2;Q�; q.X/ D � det.X/:

After setting

` D
�
1 0

0 0

�
; `0 D

�
0 0

0 �1
�
;

the subspace V0 is given by

V0 D
��

0 x1
x2 0

�
I x1; x2 2 Q

	
:

Now, a subset of eK of V.C/ with �
�eK
� D K is given by

eK D
��

z1z2 z1
z2 1

�
I z1; z2 2 C

	
:
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Hence, for the tube domain, we have

H D
��

z1z2 z1
z2 1

�
2 eK I =z1 � =z2 > 0

	
' �H �H

�[ �H �H
�
:

We can define an isometric action of SL2.R/ � SL2.R/ on V.R/ by setting

.A;B/X D AXBadj .A;B 2 SL2.R/;X 2 V.R// ;

with Badj the adjoint matrix of B. From this we get a homomorphism SL2.R/ �
SL2.R/ ! O.V/.R/, which can be shown to be an isogeny. Its image is the
connected component O.V/.R/C and the kernel is a subgroup of order 4 [see 18, p.
15]. The action on H is compatible with the usual action of SL2.R/ � SL2.R/ on
C � C:

��
a1 b1
c1 d1

�
;

�
a2 b2
c2 d2

��
W .z1; z2/ 7�!

�
a1z1 C b1
c1z1 C d1

;
a2z2 C b2
c2z2 C d2

�
:

We remark that through SL2.K/ ,! SL2.R/ � SL2.R/ (see p. 339), one has a
homomorphism from SL2.K/ to O.V/.R/C. Hence, the symmetric domain of the
Hilbert modular group can be considered as a connected component of H.

3.2 Lattices and Modular Groups

In the following, let L be an even integral lattice in V , meaning that �2 2 2Z for all
� 2 L (i.e. q.�/ 2 Z for all �). Let L0 be the dual lattice of L, defined as

L0 D fv 2 V.R/I .�; v/ 2 Z for all � 2 Lg � L:

The quotient L0=L is called the discriminant group of L. Let SO.L/ be the group of
isometries of L in SO.V/. By �L 
 SO.L/, we denote the discriminant kernel of L,
the subgroup acting trivially on the discriminant group. By a modular group we shall
understand a subgroup � 
 SO.L/ which is commensurable with the discriminant
kernel. In particular, a modular group has finite index in SO.L/.

Let us introduce one further notation. As in Sect. 3.1, let `, `0 be isotropic vectors
with .`; `0/ D 1 and, further, assume that ` 2 L and `0 2 L0. Then, we denote by L0
the Lorentzian lattice given by L\ `? \ `0?. Note that V0.Q/ D L0 ˝Q, where V0
is the Lorentzian space used in the construction of the tube domain.

Definition 3.1 Let � � �L be a modular group. The quotient X� D �nD is called
the (non-compact) modular variety associated to � . By the theory of Baily-Borel,
there is a compactification, which we denote by X�

� . See [18, Chapter II]. For a more
general background [see 5, Sections I.4, I.5].
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Remark 3.1 The compactified modular variety X�
� gives rise to a Shimura variety

[see 7, Section 1.5] (of course, one has to take the non-archimedian places into
account for this, too).

Example 3.4 In the setup of Examples 3.1 and 3.2, and using the same notation, the
following set L is an even integral lattice and L0 its dual:

L D
��

b �a=N
c �b

�
I a; b; c 2 Z

	
; L0 D

��
b=2N �a=N

c �b=2N

�
I a; b; c 2 Z

	
:

The discriminant group L0=L is isomorphic to Z=2NZ. It is easily verified that �0.N/
acts trivially on the discriminant group and, in fact, �0.N/ D �L \OC.L/.

In classical language, the modular variety corresponding to the quotient �nH is
given by the modular curve X0.N/. In particular, for N D 1, we have SL2.Z/nH� '
X0.1/�, [see 16, Section 2.4, Section 7]. Its points correspond to isogeny classes of
elliptic curves (more generally, the points of X0.N/ describe cyclic N-isogenies of
elliptic curves).

3.3 Special Cycles

For the following, [cf. 23, Section 2.1.2] or [cf. 6, p. 119]. Let W 
 V.R/
be a negative definite one-dimensional subspace. Then, a codimension-one sub-
Grassmannian is given by

DW :D fv 2 DI v ? Wg 
 D:

It defines a codimension-one submanifold of the projective cone K, also denoted by
DW which, in turn, corresponds to a subset of the tube domain. In the following, if
w is a negative definite vector, we further simplify notation by setting Dw :D DRw.

Example 3.5 Taking up the n D 1 Examples 3.1, 3.2 and 3.4 set N D 2 and consider

w D
�

b=4 c=2
�a=2 �b=4

�
; with a; b; c 2 Z and b2 � 4ac < 0:

Then,

Dw D
�

z 2 H [ NHI 2 tr

�
w �
�

z �z2

1 �z

��
D 0

	

D ˚z 2 H [ NHI az2 C bzC c D 0�:

Then, Dw consists of CM-points in H [ NH. (By a common abuse of notation, Dw is
also used to denote the subset of the tube domain.)
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The case where W is defined by a lattice vector is particularly important. As before,
let L be an even integral lattice, and L0 it dual. We define:

Definition 3.2

1. Assume that � is a lattice vector with � 2 L0 and with q.�/ D m, m 2 Z<0. Then,
D� is called the primitive Heegner divisor attached to �.

2. Let 
 2 L0=L be an element of the discriminant group and m a negative integer.
The Heegner divisor of index .
;m/ is defined as

Z.
;m/ :D
X

�2
CL
q.�/Dm

D�: (7)

The sum runs over a system of representatives for 
 2 L0=L.

Note that the sum in (7) is �L-invariant. Thus, Z.
;m/ is, in fact, the pre-image
under the canonical projection of a divisor on the modular variety X�L D �LnH.
Usually, the term Heegner divisor is used both for the divisor on X�L and for its
pre-image. Also by abuse of notation, both are denoted Z.
;m/.

3.4 Modular Forms

We use the notation established before. Hence, let L be an even integral lattice, and
�L 
 SO.L/ the discriminant kernel of L. Also assume that the isotropic vectors
from Sect. 3.1 are lattice vectors, with ` 2 L, `0 2 L0. Then, the tube domain is
contained in V0.C/ D L0 ˝ C with L0 D L \ `? \ `0?.

Definition 3.3 Let k be an integer and � an orthogonal modular group. A function
f W H! C is called a holomorphic modular form of weight k on � , if the following
conditions are satisfied:

1. f .
z/ D j.
; z/kf .z/ for all 
 2 � .
2. f is holomorphic on H.
3. f is holomorphic on the boundary of H.

Note that by the Koecher principle [see 18, Theorem IV.3.6], for holomorphic
modular forms, the third condition can be omitted if n > 2. More generally, the
Koecher principle is valid, if the Witt-rank of V D L˝Z Q, i.e. the dimension of a
maximal totally isotropic subspace, is less than n. (For example, this is the case for
Hilbert modular forms, cf. p. 339.)
Meromorphic (etc.) modular forms are defined similarly, with 2. and 3. replaced by
suitable conditions on H and on the boundary components. Also, the definition can
easily be extended to accommodate for half-integral weights and multiplier systems.

We will not say much about the properties of modular forms for orthogonal
groups, but let us at least mention that they admit Fourier expansions:
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If f is a modular form for a modular group � , as in Definition 3.3, there is a
lattice M in V0 such that f .zC �/ D f .z/ for all � 2 M. For example, if � D �L,
then M D L0. Thus, f has a Fourier expansion of the form

f .z/ D
X

�2M0

a.�/e ..�; z// :

Due to the Koecher principle or, if necessary, by condition 3., �’s with a.�/ ¤ 0

satisfy a positivity condition [see 18, Section IV.3].

4 The Singular Theta Lift

For this section, recall our convention that � D uC iv denote a point in the complex
upper half-plane H. In the following,

p
� D �1=2 is the principal branch of the

complex square root, with arg.
p
�/ 2 ���

2
; �
2

�
. Further, z shall denote a point in H

and w.z/ the attached positive definite subspace in D.
We would like to mention some general references, which, among them, cover

most of this section: Beside the original works of Borcherds [4] and of Bruinier [6],
these are [36] and the lecture notes [7].

4.1 The Weil Representation

Consider the metaplectic group Mp2.R/, the double cover of SL2.R/. It can be
written as the set of pairs .M; �.�//, with M 2 SL2.R/ and �.�/ a holomorphic
square root of c� C d. In particular, Mp2.Z/ is generated by the elements

S D
��
0 �1
1 0

�
;
p
�

�
; and T D

��
1 1

0 1

�
; 1

�
:

The center of Mp2.Z/ is generated by

Z D S2 D .TS/3 D
���1 0

0 �1
�
; i

�
:

If � is an elliptic modular group, we denote the pre-image under Mp2.Z/! SL2.Z/
by e�, i.e. e�1 D Mp2.Z/, e�0.N/ etc.



352 E. Hofmann

Now, there is a representation �L of Mp2.Z/ on the group algebra CŒL0=L�,
defined through the action of the above generators on the basis elements e�:

�L.T/e� D e .q.�// e�;

�L.S/e� D
p

i
n�2

pjL0=Lj
X

	2L0=L

e .�.�; 	// e	:

Also, the action of Z is given by �L.Z/e� D in�2e�.
Essentially, �L is the Weil representation, for more details we refer to Shintani

[see 38] and, for a description using the language of adeles, to [7, Sections 3.1, A].

Remark 4.1 If n is even, the representation �L of Mp2.Z/ factors through a
representation of SL2.Z/. Also, the representation factors over the finite group
Mp2.Z=NLZ/, where NL is the level L, defined as the the smallest positive integer N
satisfying Nq.
/ 2 Z for all 
 2 L0; if n is even, �L factors over SL2.Z=NLZ/.

We denote the standard hermitian scalar product on CŒL0=L� by h�; �i, i.e.

˝ X

�2L0=L

a�e�;
X

b�e�
˛ D

X

�2L0=L

a�b�: (8)

With this, for �; 	 2 L0=L and .M; �/ 2 Mp2.Z/, the matrix coefficient ��	.M; �/
of the representation �L is given by

��	.M; �/ D
˝
�L.M; �/e�; e	

˛
:

Finally, the dual representation ��
L for .M; �/ 2 Mp2.Z/ given in terms of its matrix

coefficients is the complex conjugate of the matrix
�
��	.M; �/

�
�;	2L0=L

.
We briefly recall the definitions of vector-valued modular forms for the represen-

tation �L, more details can be found in the course notes of Claudia Alfes-Neumann
[1].

Definition 4.1 Let k 2 1
2
Z be a half-integer. A smooth function f W H ! CŒL0=L�

which transforms under �L according to

.M; �/f .�/ D �.�/2k�L.M; �/f .M�/; ..M; �/ 2 Mp2.Z//

is called

1. a weakly holomorphic modular form, if f is holomorphic on H and meromorphic
at the cusp1,

2. a holomorphic modular form, if f is holomorphic on H and at the cusp, Further,
f is called a cusp form if f is holomorphic and vanishing at the cusp.
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We denote the by Sk;�L 
 Mk;�L 
 MŠ
k;�L

the spaces of cusp forms, holomorphic
modular forms and weakly holomorphic modular forms transforming under the Weil
representation, respectively.
We remark that, similarly, vector valued modular forms can be defined for the dual
representation ��

L , i.e Sk;��
L

, Mk;��
L

and MŠ
k;��

L
.

Next, following [9, Section 3] we introduce harmonic Maass forms.

Definition 4.2
Let k 2 1

2
Z A twice continuously differentiable function f W H ! C is called a

harmonic Maass form (or harmonic weak Maass form) with representation �L for
Mp2.Z/ if

1. .M; �/f .�/ D �.�/2k�L.M; �/f .M�/ for all .M; �/ 2 Mp2.Z/,
2. There is a C > 0 such that f .�/ D O

�
eCv
�

as v !1 (uniformly in u),
3. f is annihilated by the weight-k Laplace operator,�kf .�/ D 0, with

�k D �v2
�
@2

@u2
C @2

@v2

�
C iku

�
@

@u
C i

@

@v

�
:

We denote the space of harmonic Maass forms by Hk;�L .
Further we denote by HC

k;�L
the subspace of harmonic Maass forms f , which

additionally to 1.–3. satisfy the following condition: The image of f under the -
operator

k :D 2ivk @

@Nz
is a cusp form for the dual representation ��

L with k.f /.�/ 2 S2�k;��
L

.
Note that the component functions of an elliptic modular form f D P

� f�e�
are scalar valued elliptic modular forms of the appropriate type (i.e. weakly
holomorphic, holomorphic or cuspidal) and the same weight for (at least) the
principal congruence subgroup �.NL/, where the level NL is determined as in
Remark 4.1. The same applies for harmonic Maass forms.

Due to invariance under T 2 Mp2.Z/, a weakly holomorphic modular form
f with representation �L, admits a Fourier expansion around the cusp 1 of the
following form:

f .�/ D
X

�2L0=L

X

m2ZCq.�/
m��1

c.�;m/qme�; (9)

with only finitely many m < 0 for which c.�;m/ ¤ 0. If f is a holomorphic modular
form, then c.�;m/ ¤ 0 only for m � 0, and for a cusp form, c.�;m/ ¤ 0 only for
m > 0.

The Fourier expansion of a harmonic Maass form f 2 HC
k;�L

.k ¤ 1/ consists
of a holomorphic part fC similar to (9) and a non-holomorphic part f� involving
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certain special functions, see for example [1, Section 3]. We will need the Fourier
expansion only in the case where k < 1, for which it takes the following form:

f .�/ D f C.�/C f �.�/

D
X

�2L0=L

X

m��1
cC.m; �/qme� C

X

�2L0=L

X

m<0

c�.m; �/� .1 � k; 4�jmjv/ qme�;

(10)
with the incomplete Gamma function �.a; x/ D R1

x e�rra�1dr [cf. 34, 8.2.2].

Remark 4.2 As Bruinier and Funke have shown [see 9] the condition . f /.�/ 2
S2�k;��

L
for f 2 HC

k;�L
has immediate consequences for the growth behavior of f :

Denote by P. f / the principal part of f , i.e. the Fourier polynomial given by

P. f /.�/ :D
X

�2L0=L

X

m2ZCq.�/
0>m��1

c.�;m/qme�:

Then, for f 2 HC
k;�L

, f � P. f / decays exponentially as v ! 1. For the Fourier
expansion given in (10) ( for k ¤ 1), this is can also be seen from the asymptotic
behavior of the incomplete Gamma function.

4.2 Siegel Theta Functions

In this section we want to introduce the Siegel theta-function attached to the lattice
L, integrating against which will yield the theta-lift. For a concise yet very readable
treatment in the language of representation theory see [30].

Definite Theta Functions To begin, we start with a simple example for a theta-
function attached to a lattice. For this, let M be a positive definite even lattice, of
rank l � 1 and endowed with a quadratic form q.�/. Then, generalizing the well
known Jacobi theta-function �0.�/ DPn2Z qn2 , one sets, if M is unimodular

‚M.�/ D
X

�2M

q
1
2 �

2 D
X

�2M

e
�
q.�/ �

�
:

Otherwise, if M0=M is non-trivial, one sets

‚M.�/ D
X

�2M0=M

X

�2�CM

e
�
q.�/ �

�
e�:

Clearly, in both cases the series converges absolutely and uniformly and hence
defines a holomorphic function on H. Using Poisson summation, it is fairly straight-
forward to show that ‚M.�/ transforms as a modular form of weight l=2.
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If, contrastingly, the lattice is indefinite, to assure absolute convergence of the
theta-series, we have to replace q.�/ by a majorant.

The Siegel Theta Function Thus, let L be an indefinite even lattice, as in Sect. 3,
with L 
 V and with V D L ˝ Q an indefinite quadratic space of signature
.2; n/. The quadratic form is again denoted q.�/. We will now attach an absolutely
convergent theta-series to L and at the same time obtain a function on H � D.

Recall that D consists of maximal positive definite (oriented) subspaces. Given
a maximal positive definite subspace w 
 V.R/, we decompose V D w ˚ w?.
Naturally, w? is negative definite. Writing a 2 V.R/ as aw C aw? , the majorant
qw.a/ is given by q.aw/ � q.aw?/.

Further, recall that to every z 2 H, we can associate a positive definite subspace
w.z/ 2 D. To simplify notation, we write az and az? for the projections aw.z/ and
aw.z/? , respectively. Now, for � D uC iv 2 H, we define

1

2
.x; x/z;� :D q.x/ uC qw.z/.x/v D q.xz/ � C q

�
xz?

� N�: .x 2 V.R// :

Then, for every z 2 H, the following function, called the Gaussian, is rapidly
decreasing,

�.x; z; �/ :D e
�
1
2
.x; x/z;�

�
; (11)

in other words, � is a Schwartz function on V.R/.
This leads to the following definition of a theta-function attached to L:

Definition 4.3 The Siegel theta-function‚L.�; z/ W H � D! CŒL0=L� is given by

‚L.�; z/ D
X

�2L0=L

��.�; z/e�; (12)

with component functions

��.�; z/ D
X

�2�CL

�.�; z; �/ D
X

�2�CL

e
�
�q.�z/C N�q

�
�z?

��
: (13)

Due to the rapid decay of the Gaussian, the series defining‚L.�; z/ is absolutely
convergent. Its transformation behavior is given by the following theorem, which
can be proved using Poisson summation [see 4, Theorem 4.1].

Theorem 4.1 For 
 D �� a b
c d

�
; �.�/

� 2 Mp2.Z/, we have

‚L.
�; z/ D �.�/2�.�/n�L.
/‚L.�; z/:

Also, ‚L.�; z/ is invariant under SO.V/.R/.
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It is worth mentioning that the theorem in [4] is much more general. For example,
Borcherds allows for arbitrary signature . p; n/ and also covers Siegel theta-
functions with a fairly general harmonic polynomial as an additional factor together
with �.x; z; �/.

The Theta Integral Now, let f 2 Mk;�L be a modular form transforming under the
Weil representation �L, and consider the theta-integral given by

Z

F
hf .�/;‚L.�; z/iv d� .with d� D du dv

v2
/: (14)

Here, F denotes a fundamental domain for the operation of Mp2.Z/, while h�; �i is
the hermitian scalar product on CŒL0=L� from (8). Note that d� is the left-invariant
Haar measure for the operation of Mp2.Z/ on H.

By Theorem 4.1, if f has weight k D 1 � n=2, the expression under the integral
is invariant under Mp2.Z/. Thus, we may expect to evaluate the integral by using
unfolding.

However, there are two problems:

1. The space M1� n
2 ;�L is often trivial. Indeed, if n > 2, then M1� n

2 ;�L D f0g.
2. A possible solution is to extend to MŠ

1� n
2 ;�L

, allowing f to be weakly holomorphic.
However this entails a new difficulty: The integral in (14) no longer converges.
(Hence the name ‘singular’ theta-lift.)

Thus, if we admit weakly holomorphic modular form contained in MŠ
1� n

2 ;�L
as input

functions, which is desirable, we have to replace the theta-integral in (14) by a
suitably regularized integral. This is what we will do in the next section.

Remark 4.3 To avoid these difficulties, one can also use a more refined kernel
function instead of the Gaussian. Most commonly, one introduces a homogeneous
polynomial as a further factor, the degree of which then enters into the transforma-
tion behavior of the theta-function.

An example for this is the following kernel function, 'r .r 2 N/ defined as

'r.�; z; �/ :D .�;w.z//

.y; y/r
�.�; z; �/ .z 2 H/:

With this kernel function, the theta-integral is Mp2.Z/-invariant for input functions
of weight k D 1 � n

2
C r. Indeed, for suitable r > 1, the space Mk;�L is non-trivial.

Also, in this case the theta-integral converges without need for any regularization.
The kernel function 'r leads to the Shintani-Oda-Gritsenko lifting, see [38]
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4.3 The Regularized Theta Lift

We set k D 1� n
2
. Somewhat more generally, following Bruinier and Funke [9], we

extend MŠ
k;�L

to HC
k;�L

, the space of harmonic Maass forms introduced in Sect. 4.1.

Recall from (10) the Fourier expansion for a harmonic Maass form f 2 HC
k;�L

(note
that k < 1):

f .�/ D
X

�2L0=L

�
f C
� .�/C f �

� .�/
�
e�

D
h X

m��1
cC.m; �/qm C

X

m<0

c�.m; �/� .1 � k; 4�jmjv/ qm
i
e�;

(15)

where we denote by f C
� and f �

� the components of the holomorphic part f C and the
non-holomorphic part f � of f , respectively. Recall that each component function
f� D f C

� C f �
� is a scalar valued harmonic Maass form.

Note the asymptotic behavior of the non-holomorphic part for v ! 1: Since
the incomplete �-functions (or, more generally the M-Whittaker functions they are
related to) are of rapid decay [see 34, Sections 8.11, 8.12 and 13.21], f � decays
rapidly, too. (Also, see Remark 4.2.)

Thus, for the question of convergence or non-convergence of the theta-integral
in (14), only the f C part plays a role. So, to formulate the necessary regularization
recipe, we look at the integral

R
F
˝
f C; ‚L

˛
v d�.

The regularization we describe is due to Harvey, Moore [22] and Borcherds [4],
[see also 6, Section 2.2]. For t 2 R>0, define the truncated fundamental domain Ft

as follows

Ft :D F \ f� 2 HI =� � tg D ˚� D uC ivI j� j > 1;� 1
2
< u < 1

2
; 0 < v � t

�
:

Clearly Ft is compact. Hence, since ‚L and f C are holomorphic as functions of �
on H, the definite integral

Z

Ft

˝
f C; ‚L

˛
v d�

is well-defined. One can take the limit t ! 1 and, providing it exists, define the
regularized integral accordingly.

Actually, the constant coefficient cC.0; 0/ still poses a problem, as we will see
presently. But, excluding this coefficient, the following regularization can be used.

Definition 4.4 (Regularization 1) If the constant term cC.0; 0/ in the Fourier
expansion of f vanishes, the regularized integral is defined as

Z reg

F
hf ; ‚Liv d� :D lim

t!1

Z

Ft

hf ; ‚Liv d�:
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We note that since the integral is definite, we are allowed to interchange the order
of integration.

To see why it is necessary to require cC.0; 0/ D 0, consider the Fourier
expansions of f C.�/ and of ‚L.�/. (Note that the expression under the integral is
periodic with period length 1):

f C.�/ D
X

�2L0=L

X

m

cC.�;m/e.m�/e�;

‚L.�/ D
X

�2L0=L

X

�2�CL

e�4�vq.�z/ e.�q.�/ �/e�: (16)

Due to absolute convergence, we many integrate term by term. Thus,

Z 1
2

� 1
2

˝
f C; ‚L

˛
.�/du D

X

�2L0=L

X

m

cC.�;m/
X

�2�CL

e�4�q.�z/v

Z 1
2

� 1
2

e .u.m � q.�/// du

D
X

�2L0=L

X

�2�CL

e�4�q.�z/v cC.�; q.�//:

(17)
Hence, the contribution of the constant term to the integral over Ft is given by

cC.0; 0/ lim
t!1

Z

Ft

v
dvdu

v2
D cC.0; 0/ lim

t!1

Z t

vD0

dv

v
D cC.0; 0/

Z 1

vD0

dv

v
C lim

t!1

Z t

1

dv

v

�
:

Clearly, on the right hand side, the first integral is divergent, as is the limit of the
second integral.

Thus, a slightly more elaborate regularization recipe is needed here, which of
course also works if cC.0; 0/ D 0:

Definition 4.5 (Regularization 2) If for s 2 C with <.s/� 0 the limit

g.s/ D lim
t!1

Z

Ft

hf ; ‚Liv1�sd�

exists and has a meromorphic continuation on C, then the regularized integral is
defined as the constant term of the Laurent expansion of g.s/ at1 s D 0, denoted
CsD0Œg.s/�:

Z reg

F
hf ; ‚Liv d� :D CsD0


lim

t!1

Z

Ft

hf ; ‚Liv1�s d�

�
:

1If 0 happens to be a pole, yet another, slight variation of this recipe is needed, see [6].
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The regularized lift will give us a smooth function ˆ.z; f / which still has some
singularities. Beside determining their location, we also want to describe the
behavior ofˆ.z; f / around these singularities. For the following it is somewhat more
natural to consider the regularized integral as a function on D, rather than on H.

We define the type of a singularity as follows:

Definition 4.6 Let U 
 D be an open subset and f ; g functions on a dense open
subset of U. We say that f has a singularity of type g, if f � g can be continued to a
real analytic function on U. In this case, we write f 'U g.

Let f 2 HC
k;�L

be a harmonic Maass form with Fourier expansion as in (15).
Further, assume that cC.�;m/ 2 Z for all m < 0. We define a Heegner divisor
associated to f by setting

Z. f / :D
X

�2L0=L

X

m<0

cC.�;m/Z.�;m/; (18)

where the Z.�;m/ are the Heegner divisors of index .�;m/ from Definition 3.2.

Theorem 4.2 (Borcherds-Bruinier, cf. [4, Theorem 6.2], [6, Theorem 2.12]) The
function ˆ.z; f / given by the regularized integral

ˆ.z; f / D
Z reg

F
h f ; ‚Li v d�; (19)

considered as a function on D, is real-analytic on D n sup.�2Z. f // and takes
singularities of logarithmic type along the divisor �2Z. f / (i.e. for every w 2 D,
there is a neighborhood w 2 U 
 D and a local equation Div.g/ D �2Z. f / jU
with a meromorphic function g, such that ˆ 'U logjgj).
We give a brief sketch of the calculations involved in the proof, following [7]:

Proof To determine the divisor of ˆ.z; f /, we need to work out the integral up to
smooth functions. First, split up the integral into two parts, one over z 2 F with
=z � 1 and one over z with =z > 1.

ˆ.z; f / D
Z reg

F1

hf ; ‚Liv d�C
Z reg

F>1

hf ; ‚Liv d�:

Clearly, the first integral is smooth, and it suffices to consider the second integral.
Further, due to the rapid decay of the non holomorphic part, only the contribution
of f C matters here. Thus, consider

lim
t!1

Z t

vD1

Z 1
2

uD� 1
2

˝
f C; ‚L

˛
v1�sd�: (20)

Since the expression under the integral is periodic in the indeterminate � , we can
insert the Fourier expansion of f C and‚L and carry out integration over u, as above.
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With (17) we get:

lim
t!1

Z t

vD1

X

�2L0

e�4�q.�z/vcC.�; q.�//
dv

vsC1 :

We now split the sum into three parts: First, the sum over � ¤ 0 with q.�/ �
0, second the term for � D 0 and third the sum over � with q.�/ < 0. Also,
since the integral is definite, we can interchange the order of integration. Absolute
convergence allows the limit to be taken term-wise.

So, first consider

Z t

vD1

X

0¤�2L0

q.�/�0

e�4�q.�z/vcC.�; q.�//
dv

vsC1 : (21)

We will estimate the growth of the sum under the integral: Applying the Hecke
estimate [see e.g. 12, I. Proposition 8] to the Fourier coefficients cC.�; q.�//, we
see that their asymptotic behavior as q.�/ increases is O.ec

p
q.�//with some constant

c > 0. We rewrite the argument of the exponential as follows:

�4�q.�z/ v D 2�


q
�
�z?

� � q.�z/
�
v � 2�q.�/ v:

Note that the first term is a negative define quadratic form. It follows that the
asymptotic behavior of cC.�; q.�//e�4�q.�z/v is given by O.e�q.�//. Hence, the
integral (21) contributes only a smooth function.

Now, for the term with � D 0: We get the integral expression

cC.0; 0/
Z t

vD1
dv

vs
;

of which, after regularization, only a constant remains.
Finally, from the third sum, with q.�/ < 0, we get the following contribution to

the regularized integral

X

�2L0

q.�/�0

cC.�; q.�// CsD0
Z 1

vD1
e�4�q.�z/v

dv

v1Cs

�
:

We can express this in terms of the incomplete �-function,�.a; x/ D R1
x e�rra�1dr

[cf. 34, 8.2.2], with a D 0 and x D 4�jq.�z/j. Thus, after regularization and up to
smooth functions,ˆ.z; f / is given by

ˆ.z; f / '
X

�2L0

q.�/�0

cC.�; q.�//� .0; 4�jq.�z/j/ :



Liftings and Borcherds Products 361

Now, we study the behavior ofˆ.z; f / locally around a given point w.z0/ 2 D. From
the definition of �.a; x/, by partial integration,

�.0; x/ D � Œe�r log.r/�1x C
Z 1

x
e�r log.r/ dr:

one can see that near x D 0, the function �.0; x/ behaves like � log.x/ and is
otherwise smooth. Thus, we write the above sum as follows:

X

�2L0=L

X

m<0

cC.�;m/
 X

�2�CL
q.�/Dm
�6?z0

�
�
0; 4�j�2z j

�C
X

�2�CL
q.�/Dm
�?z0

�
�
0; 4�j�2z j

� �
:

The first, sum over all � with � 6? w.z0/ contributes a function which is smooth
on a small neighborhood of w.z0/. This can be shown using reduction theory. The
remaining � with � ? w.z0/ generate a positive definite sublattice, and thus the
second sum is finite. Hence, locally near w.z0/ and up to smooth functions ˆ.z; f /
is given by the finite sum

�
X

�2L0=L

X

m<0

cC.�;m/
X

�2�CL
q.�/Dm
�?z0

logj�2z j:

We conclude that the divisor of ˆ.z; f / is given by a locally finite sum of the
primitive Heegner divisors D�, and get div.ˆ/ D �2Z. f /. Also, clearly, the
singularities are of logarithmic type, as claimed. This completes the proof. ut
Remark 4.4 Beside its singularities, the function ˆ.z; f / has a number of further
remarkable properties. Just to mention a few:

1. Bruinier showed that ˆ.z; f / is an eigenfunction of the SO.V/.R/-invariant
Laplacian [6, Theorem 4.6, 4.7]. He further used this result to construct a lifting
into the cohomology [see 6, Chapter 5].

2. Also, ˆ.z; f / can be used to define a smooth .1; 1/-form on the modular variety
X� , which satisfies a current equation. Naturally, this leads to various geometric
applications for example in Arakelov theory [see 11].

In particular, in the special case where f is a weakly holomorphic modular
form, this current equation implies that

@2

@zi@Nzj

h
ˆ.z; f /C cC.0; 0/ logjyj2

i
D 0 .0 � i; j � n/ :

This means that ˆ.z; f / is pluriharmonic on H n Z. f /.
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The Evaluation of the Integral The calculations involved in the evaluation of the
regularized theta integral are quite involved and too extensive to reproduce here. But,
at least, we want to outline some of the main points. Let f be a weakly holomorphic
modular form with f 2 MŠ

k;�L
, k D 1 � n=2.

Borcherds observed that the Siegel theta-function ‚L can be expressed through
the Siegel theta-function of the smaller, Lorentzian lattice L0 D L \ `? \ `0?.
Likewise, using the Fourier expansion of the input function f one can define a
vector valued modular form fL0 W C ! CŒL0

0=L0� transforming under the Weil
representation of the lattice L0 [see 4, Theorems 5.2 and 5.3]. Using partial Poisson
summation, Borcherds then decomposed the regularized theta-integral [4, Theorem
7.1], with one part given by, essentially, the regularized theta-lift for signature
.1; n�1/ of fL0 , with‚L0 as the theta-function, and further terms which are evaluated
by unfolding.

The evaluation of the Lorentzian part (actually, in there, there is again a
contribution of a positive definite lattice contained in L0, which however evaluates to
a constant) gives piecewise polynomial functions. The singularities can be evaluated
quite similarly to the proof of Theorem 4.2, except that in the end their type is
not logarithmic. They also lie along Heegner divisors, which dissect the symmetric
domain of the Lorentzian orthogonal group SO.1; n/ into connected components.
On each connected component, many terms cancel, leaving only piecewise linear
functions, which Borcherds gathers into a term involving a Weyl vector [cf. 4,
Section 10]. This is where the Weyl chambers—connected components of H with
wall-crossing occurring between them—and the Weyl vector terms in Theorem 4.4
below originate from: in the contribution of the Lorentzian part.

4.4 Borcherds Products

Our main references for the following are [4, Section 13] and [6, Section 3.2]. In
this section, we assume the signature of V to be .2; n/ with n � 2. Further, let f
denote a weakly holomorphic modular form with f 2 MŠ

k;�L
, with k D 1 � n

2
.

We define ‰.z; f / as a meromorphic function on H with div.‰/ D Z. f / by
setting

ˆ.z; f /C cC.0; 0/ logjyj2 D �2 logj‰.z; f /j:

To see why this works, we note that the multiplicative Cousin problem is universally
solvable on H [see 19, Section V.2], since the components of H are convex. Hence
there exists a meromorphic function g with divisor Z. f /; for this, one has to show
thatˆ.z; f / is pluriharmonic i.e. all mixed second derivatives @i

N@jˆ .1 � i; j � n�1/
vanish (see Remark 4.4).

Then,ˆ� logjgj extends to a pluriharmonic real analytic function on H. Further,
this implies that there is a holomorphic function h with <.h/ D ‰ � logjgj [see 21,
Section IX.C], and one can set ‰ D ehg. (For a detailed version of this argument
[see 6, p. 82ff] or [cf. also 8, Lemma 6.6]).
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Since ˆ.z; f / is invariant, ‰.z; f / transforms under �L according to

‰.
z; f / D �.
/ � j.
; z/cC.0;0/=2‰.z; f /;

with some multiplier system � . It can be shown that � has at most finite order, using
a result of Margulis (for n > 2). (For n D 2 an embedding trick has to be employed
first.) See [4, Lemma 13.1], [6, Section 3.4]. Thus, ‰ is a meromorphic modular
form of weight cC.0; 0/=2.

Now we are ready to formulate Borcherds’ celebrated result [4, Theorem 13.3]:

Theorem 4.3 (Borcherds) Let f 2 MŠ
k;�L

be a weakly holomorphic modular form
with Fourier expansion f D P

�:m cC.�;m/qn, satisfying2 cC.�;m/ 2 Z for all
m � 0. Then, there is a meromorphic function ‰.z; f / on H with the following
properties:

i) ‰.z; f / is a modular form of weight cC.0; 0/=2 with respect to �L with a
multiplier system of (at most) finite order.

ii) The divisor of ‰.z; f / is given by

Div.‰.z; f // D Z. f /;

where Z. f / D
X

�2L0=L

X

m<0

cC.�:m/Z.�:m/

is the Heegner divisor associated to f , see (18).
iii) For z 2 H with jyj2 � 0 and z in the complement of the set of poles, ‰.z; f / has

an absolutely convergent infinite product expansion.

To simplify notation, instead of the general product expansion for ‰.z; f / from [4,
Theorem 13.3.5], we will give a simplified version. Consider the following setup:

Assume that L D L0˚H, the direct sum of a lattice L0 of signature .1; n�1/ and
a hyperbolic plane H, i.e. a unimodular lattice of signature (1,1). We set V0.R/ D
L0 ˝Z R (so H is adapted to L0). Then, part iii) of Theorem 4.3 can be formulated
as follows:

Theorem 4.4 For z 2 H with jyj2 � 0 and z in the complement of the set of poles,
the absolutely convergent infinite product expansion of ‰.z; f / takes the following
form:

‰.z; f / D e
�
.�W. f /; z/

� Y

�2L0
0

.�;W/>0


1 � e ..�; z//

�cC.�;q.�//

:

2If we want to avoid a rational weight for ‰.z; f /, we must further assume that cC.0; 0/ 2 2Z. In
this case, the multiplier system in i) is a character [see 6, Theorem 3.22 i)].
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Here, W 
 V0.R/ denotes a Weyl chamber for f and �W. f / 2 V0.R/ is the Weyl
vector attached to W and f .

The Weyl chambers occurring in the theorem are connected components of H;
together with the associated Weyl vectors, they can often be determined explicitly,
using results of Bruinier [see 6, p. 88]. It is worth noting, that while the Weyl
vector parts and the infinite product parts differ depending on the Weyl chamber,
the product as a whole is actually the same for all Weyl chambers.

Remark 4.5 Assume that the signature of V D L ˝ Q is .2; n/ with n � 3. Then,
by the Koecher principle, if in the sum in ii) all coefficients cC.�;m/ are positive,
it follows that ‰.z; f / is a holomorphic orthogonal modular form.

Contrastingly, if n D 2, as the Koecher principle fails in general, this line of
reasoning only works for those lattices L where the Witt rank is smaller than n, see
Definition 3.3.

Finally, for the case n D 1, excluded above, Theorem 4.3 is mostly still correct,
except for one caveat: The multiplier system is not guaranteed to have finite order.
Bruiner and Ono give a precise criterion for this [see 10, Section 6], which in the
present setting can be stated as follows: The order is finite if for all m < 1 the
Fourier coefficients cC.�;m/ of the input function f are rational. As can further be
shown, this is equivalent to f being perpendicular to the subspace spanned by unary
theta series.

Example 4.1 Let L be the even unimodular lattice of signature .2; 2/. Then, L is
given by the direct sum of two hyperbolic planes, and the Witt rank here is 2. The
space of input functions is given by MŠ

0.�.1// D CŒj�, where j D j.�/ is the modular
invariant.

For example, let J.�/ D j.�/ � 744. Then,

‰.z; J/ D j.z1/ � j.z2/ D q�1
1

Y

m>0
n2Z

�
1 � qm

1 qn
2

�c.mn/
;

with q1 D e.z1/ and q2 D e.z2/. A complete treatment of this case is carried out in
[24].

Example 4.2 We now turn to the case n D 1, see Remark 4.5. Consider the
following lattice of the form introduced in Example 3.4 (here, N D 1):

L D
��

b a
c �b

�
I a; b; c 2 Z

	
:

Then,

L0=L D
��
0 0

0 0

�
;

��1=2 0

0 �1=2
�	

:
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As the space of input functions MŠ
1
2 ;�L

is isomorphic to MŠ;C
1
2

.�0.4//, we recover

the examples of Borcherds products from Sect. 2.2. (It can also be shown that the
criterion of Bruinier and Ono mentioned in Remark 4.5 is satisfied.)

We remark that as elliptic modular forms these products have double the weight
that they have as orthogonal modular forms. The reason for this is that SL2.R/ is
isomorphic to SpinV.R/ and the map from SpinV.R/ to OC.V/.R/ is two-to-one [cf.
10, Section 5] or [cf. 4, Example 14.4].

Remark 4.6 In [10], Bruinier and Ono study a generalization of Borcherds’ con-
struction for signature .2; 1/, using a twisted Siegel theta function and with
harmonic Maass forms as input functions. One of their results [10, Theorem
6.1] is the existence of generalized Borcherds products, which, however can have
multiplier systems of infinite order.
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