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Abstract. Efficient classification under imbalanced class distributions
is currently of interest in data mining research, considering that tra-
ditional learning methods often fail to achieve satisfying results in such
domains. Also, the correct choice of the metric is essential for the recogni-
tion effort. This paper presents a new general methodology for improving
the performance of classifiers in imbalanced problems. The method, Evo-
lutionary Cost-Sensitive Balancing (ECSB), is a meta-approach, which
can be employed with any error-reduction classifier. It utilizes genetic
search and cost-sensitive mechanisms to boost the performance of the
base classifier. We present evaluations on benchmark data, comparing
the results obtained by ECSB with those of similar recent methods in
the literature: SMOTE and EUS. We found that ECSB boosts the perfor-
mance of traditional classifiers in imbalanced problems, achieving ∼45%
relative improvement in true positive rate (TPrate) and around 16% in
F-measure (FM) on the average; also, it performs better than sampling
strategies, with ∼35% relative improvement in TPrate and ∼12% in FM
over SMOTE (on the average), similar textTP rate and geometric mean
(GM) values and slightly higher area under de curve (AUC) values than
EUS (up to ∼9% relative improvement).

Keywords: Imbalanced classification · Meta-approach · Hybrid
methodology · Genetic algorithms · Cost-sensitive

1 Introduction

One of the current important challenges in data mining research is classification
under an imbalanced data distribution. This issue appears when a classifier has to
identify a rare, but important case. Domains in which class imbalance is prevalent
include fraud or intrusion detection, medical diagnosis, risk management, text
classification and information retrieval [7], unexploded ordnance detection [1],
or mine detection [33].

c© Springer International Publishing AG 2018
A.-A. Tantar et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation VI, Advances in Intelligent Systems and Computing 674,
https://doi.org/10.1007/978-3-319-69710-9_14



Evolutionary Cost-Sensitive Balancing 195

A classification problem is imbalanced if, in the available data, a certain
class is represented by a very small number of instances compared to the other
classes [16]. In practice, the problem is addressed with 2-class problems; multi-
class problems are translated to binary. As the minority instances are of greater
interest, they are referred to as positive instances (positive class).

This paper presents a new general methodology for improving the perfor-
mance of classifiers under imbalanced conditions. The method, Evolutionary
Cost-Sensitive Balancing (ECSB), is a hybrid meta-approach which combines
genetic search mechanisms with cost sensitive classification strategies. It involves
the identification of the optimal cost matrix and parameter settings for the given
problem, selected classifier (inducer) and evaluation metric. The method has
been evaluated on benchmark data and compared to recently proposed methods
for dealing with class imbalance, yielding significant performance improvements.

The rest of the paper is organized as follows: the next section reviews related
work in this area. Section 3 details the proposed ECSB method, which is followed
by its experimental validation in Sect. 4. Concluding remarks and future work
are discussed in the last section.

2 Learning in Imbalanced Scenarios

Establishing how to assess performance is essential in imbalanced problems.
The selection of an inappropriate measure may lead to unexpected predictions,
which are not in agreement with the problem goals. This section presents the
main evaluation metrics considered in imbalanced domains, a brief analysis of
the limitations of traditional algorithms and an overview of existing techniques
to tackle the imbalance.

2.1 Measuring Performance in Imbalanced Domains

The most employed evaluation measure for classification problems, the overall
accuracy, is unfit in imbalanced domains [8,32], since the minority class con-
tributes very little to its value. In highly imbalanced problems, a good recog-
nition of the majority class translates into a high accuracy, regardless of how
well the model identifies minority cases: for a data set with 99% examples for
one class and 1% for the other, a model which classifies everything as belonging
to the majority class yields 99% accuracy, while failing to identify any minority
example.

For an imbalanced problem, the true positive rate, (TPrate), also referred to
as recall or sensitivity, is usually more important. However, there are other met-
rics, derived from the confusion matrix, which may also be relevant for assessing
the performance in certain problems. A series of composite measures have been
suggested by the scientific community for evaluating the performance in imbal-
anced problems: in [3,5,11] the area under the ROC curve (AUC) is employed;
the geometric mean (GM) is proposed in [2] and employed in several other stud-
ies [11,13]; the balanced accuracy (BAcc) is another symmetric measure which
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is more suited for imbalanced problems [4]; the f-measure, or f-score [8,13], and
its generalization – the f β-measure – provide a trade-off between the correct
identification of the positive class and the cost of false alarms (in number of
false positive errors). In [12] it is suggested that, in imbalanced problems, more
attention should be given to sensitivity (TPrate) than to specificity (TNrate).
In [8], the strategy to follow in imbalanced problems is to maximize the recall
while keeping the precision under control. Both statements hold true in most
imbalanced problems.

We argue that metric selection in imbalanced problems is essential for both
model quality assessment and guiding the learning process. The metric should
reflect the goal of the specific classification process, not just focus on the imbal-
ance. Thus, if we are additionally dealing with imbalance at the level of the
error costs, then associating a cost parameter to account for such disproportions
is appropriate. If, on the other hand, the focus is on identifying both classes
correctly, then an equidistant metric provides a fair estimation.

2.2 Existing Approaches for Dealing with Imbalance

The existing approaches for dealing with imbalanced problems can be split into:
data-centered, algorithm-centered and hybrid solutions.

1. Data-centered techniques focus on altering the distribution of the training
data: either randomly, or by making an informed decision on which instances
to eliminate or add (by multiplying existing examples, or artificially generat-
ing new cases). Under this category we find random over- and under-sampling,
or more elaborated approaches, such as Synthetic Minority Over-sampling
Technique (SMOTE) [5], Tomek links [27], the Condensed Nearest Neighbor
Rule (CNN) [14], One-Sided Selection (OSS) [17], the Neighborhood Clean-
ing Rule (NCL) [18], or Evolutionary Under-Sampling (EUS) [11]. In order to
maximize the classification performance in the mining step, one should care-
fully match the appropriate sampling technique to the learning algorithm
employed at that stage. Also, some methods require the analyst to set the
amount of re-sampling needed, and this is not always easy to establish. It
is acknowledged that the naturally occurring distribution is not always the
best for learning [31]. A balanced class distribution may yield satisfactory
results, but is not always optimal either. The optimal class distribution is
highly dependent on the particularities of the data at hand.

2. Algorithm-centered techniques, also known as internal approaches, refer to
strategies which adapt the inductive bias of classifiers, or newly proposed
methods for tackling the imbalance. For decision trees, such strategies include
adjusting the decision threshold at leaf nodes [24], adapting the attribute
selection criterion [22], or changing the pruning strategy [36]. For classification
rule learners, using a strength multiplier or different algorithms for learning
the rule set for the minority class is proposed in [12], while for association
rule learners, multiple minimum supports are employed in rule generation [21].
In [23], confidence weights are associated to attribute values (given a class
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label) in a kNN approach. For SVMs, class boundary alignment is proposed
in [35] and the use of separate penalty coefficients for different classes is
investigated in [20]. Newly proposed methods, which deal with the imbalance
intrinsically, include the biased minimax probability machine (BMPM) [15],
or the infinitely imbalanced logistic regression (IILR) [33].

3. Hybrid approaches combine data- and algorithm-centered strategies. A num-
ber of approaches in this category consist of ensembles built via boosting,
which also employ replication on minority class instances to second the
weight update mechanism. Also, the base classifiers may be modified to tackle
imbalanced data. Such approaches include SMOTEBoost [6], DataBoost-IM
[13], and a complex SVM ensemble [26]. Another hybrid strategy is the one
employed in cost-sensitive problems, to bias the learning process according to
the different costs of the errors involved [10,25,37]. The method we propose
in this paper falls into this category.

2.3 Limitations of Traditional Techniques

It is widely acknowledged that the nature of imbalanced problems is manifold.
The essential data characteristic in such areas is the imbalance ratio (IR), i.e.
the ratio between the number of instances in the majority (mMaj) and minority
classes (mMin) – Eq. (1). Other data meta-features which have been shown to
influence the behavior of classifiers in such domains are the size and the com-
plexity of the data [16] and the instances per attribute ratio (IAR), i.e. the ratio
between the total number of instances (m) and the number of attributes recorder
per instance (n), which combines size and complexity information [19] – Eq. (2):

IR =
mMaj

mMin
(1)

IAR =
m

n
(2)

Also, particularities related to the distribution of the minority samples, such
as too many “special cases” in the minority class, may affect the classifiers’
capability to recognize all cases of interest (within-class rarity, small disjuncts
problem [32]).

Several studies [16,29] indicate that most traditional classifiers are affected
by the class imbalance problem to some extent. This is mainly because the
assumptions followed in the training process don’t usually hold in imbalanced
problems. First of all, classifiers attempt to maximize accuracy, which is not an
appropriate measure in imbalanced domains. Moreover, they assume the same
distribution in the training and test samples, meaning that the model is cus-
tomized for a certain distribution which is not the actual occurring distribution.
Such a situation appears, for example, when dealing with dynamic distributions
(such as the distribution of flu cases, which changes according to the season).
Also, the rare cases may be very costly to obtain (in terms of time required,
economic costs and/or pain). Moreover, even if the actual distribution is known,
it may not be optimal for learning [30].
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In [19], the authors perform a systematic analysis of the effect of class imbal-
ance on the performance of six different classifiers, using 32 binary (or binarized)
real-life benchmark data sets. The performance of all the classifiers evaluated
seemed to be affected by the imbalance. Another conclusion of the study refers
to the factors affecting classifier performance. The reduction in performance
becomes more severe as the IR increases. However, for the same IR, larger IAR
values are associated with improved classifier performance. Therefore, techniques
for increasing the value of IAR (i.e. larger data set size and/or smaller complex-
ity) may lead to an improved behavior.

3 Evolutionary Cost-Sensitive Balancing (ECSB)

The objective of the ECSB method is to improve the performance of a classi-
fier (inducer) in imbalanced domains. It is a meta-methodology, which can be
employed with any error-reduction classifier. Two strategies are simultaneously
followed by the method: (1) use a cost-sensitive meta-classifier to adapt to the
imbalance and (2) tune the base classifier’s parameters. The outcome of the
method is a tuple <M, S> for the triple <p, i, m>, where M is a cost matrix
and S is the set of resulting parameter settings for the given problem (p), selected
inducer (i) and evaluation metric (m). M is employed in conjunction with the
cost-sensitive classifier, in order to build a more efficient classification model,
focused on better identifying the underrepresented/interest cases. The search
for M and S is performed through evolutionary mechanisms. The cost-sensitive
component employs a meta-classifier to make its base classifier cost-sensitive,
taking into account the misclassification costs. The main mechanisms for wrap-
ping cost-sensitivity around traditional classifiers usually focus on employing
a larger penalty for the errors on classes with higher misclassification cost, or
modifying the training data such that the costly cases are proportionally better
represented than the others.

The general flow of the method is presented in Fig. 1. The inputs are: the
problem (p), translated in terms of a set of labeled examples (i.e. the training
set), the base inducer (i) and the metric (m) to use for assessing the performance
of i. The result of the method is a <M, S> tuple, which is used by a (meta-)
cost-sensitive classifier to build the final classification model.

3.1 The Cost-Sensitive Component

Cost-sensitive learning encompasses several algorithms which focus on minimiz-
ing the total expected cost instead of the classifier error. A taxonomy of the
types of costs involved in inductive concept learning can be found in [28], the
most important being the misclassification and the test costs. The first category
includes the costs which are conventionally considered by most cost-sensitive
classifiers, and attempts to quantify the different impact that distinct errors
produce. Several solutions address the second category also, which models dif-
ferent types of costs involved in acquiring the data (time, physical pain, money,
etc.).
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Fig. 1. General ECSB flow

We focus only on misclassification costs, since they can be employed to bias
the learning process such as to provide a better identification for the minor-
ity class instances. The misclassification costs are represented via a cost matrix
(cij)nxn, where cij represents the cost of misclassifying an instance of class j as
being of class i. For imbalanced problems, we usually focus on binary classifica-
tion, i.e. n = 2:

C =
(

c11 c12
c21 c22

)
(3)

The main diagonal elements (c11 and c22) represent the costs of correct iden-
tification and are normally smaller than or equal to 0 (i.e. reward or no penalty);
c12 is the cost of a false negative (i.e. failing to identify a positive) and c21 cap-
tures the reverse situation. One of the most important difficulties when dealing
with different error costs is to quantify misclassification costs. Even if it is rela-
tively easy to determine which errors are more severe than others (e.g. in medical
diagnosis c12 > c21), it is difficult to quantify the gravity of an error exactly,
since this may translate, indirectly, to more serious social/moral dilemmas, such
a putting a price tag on human life.

In our approach, the cost matrix (M) for the given imbalanced problem is
determined indirectly, following a genetic search. We can influence the result
of the search by tuning the fitness function employed, which can be more eas-
ily translated, given a specific problem, than directly setting the cost matrix.
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For example, it is more reasonable to state that the objective is to maximize
both TPrate and TNrate in medical diagnosis, or to maximize precision in online
advertising, than it is to set specific error costs.

The implementation of the cost-sensitive component has been carried out
within the Waikato Environment for Knowledge Analysis (WEKA) framework
[34]. Three cost-sensitive strategies have been considered:

(1) use an ensemble method to re-label the training instances accord-
ing to the Bayes optimal prediction principle, which minimizes the
conditional risk (MC ) [10];

(2) reweight training instances according to the total cost assigned to
each class (CSr) [34];

(3) predict the class with minimum expected misclassification cost,
instead of the most likely class (CS ) [34].

3.2 The Genetic Component

We have utilized the General Genetic Algorithm Tool for implementing the
genetic component [9]. It provides the traditional genetic algorithms (GA) search
organization, parent selection and recombination techniques. The specificity of
our implementation is the problem representation and the fitness function(s)
employed.

The search process starts with the initial population, i.e. a set of potential
solutions, generated randomly (lines 1 and 2 in the pseudocode snippet below).
By repeatedly applying recombination operators to some of the individuals in
the population over a number of cycles, an element (or group of elements) is
expected to emerge as a good quality approximate solution to the given prob-
lem (the loop between lines 3 and 9). Following a strategy similar to steady
state evolution, in each cycle a number of new offspring is generated (additional
pool). After evaluating their fitness (line 7), the fittest p size individuals out of
the old population and the additional pool (the newly generated offspring) will
constitute the new population (line 8):
(1) population = generate initial population(p size )
(2) evaluate fitness (population)
(3) repeat

(4) parents = select(population)
(5) offspring = crossover(parents)
(6) mutate(offspring)
(7) evaluate fitness (offspring)
(8) insert (offspring, population)
(9) until (termination condition)
(10) return best individual

This strategy considers elitism implicitly. The search process stops when
one of the following occurs: the optimal fitness value is reached, the difference
between the fitness values of the best and the worst individuals in the current
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population is 0, or a fixed (pre-determined) number of crossover cycles have been
performed.

Each individual consists of four chromosomes: the first two representing each
a misclassification cost (elements of M), and the last two representing parameters
for the base classifier (elements of S). Although we have considered only two
parameters for S – since most base classifiers used in the experiments have only
two important learning parameters – the method can be extended to search
for a larger number of parameters, depending on the tuned classifier. The first
two chromosomes in the individual represent the meaningful coefficients of the
2× 2 cost matrix. We assume the same reward (i.e. zero cost) for the correct
classification of both minority and majority classes. Each chromosome consists
of 7 genes, meaning that each cost is an integer between 0 and 127. We considered
this to be sufficient to account even for large IRs. Gray coding is employed to
ensure that similar genotypes produce close manifestations (phenotypes).

Fitness ranking is used to avoid premature convergence to a local optimum,
which can occur if in the initial pool some individuals dominate, having a sig-
nificantly better fitness than the others. Since establishing how to assess perfor-
mance is essential in imbalanced problems and there is no universally best met-
ric, which captures efficiently any problem’s goals, we have implemented several
different fitness functions, both balanced and (possibly) imbalanced. For consis-
tency with the literature, we sometimes employ TPrate and sometimes recall for
referring to the same measure:

GM(geometric mean) =
√

TPrate ∗ TNrate (4)

BAcc(balanced accuracy) =
TPrate + TNrate

2
(5)

FM(fβ-measure = (1 + β2)
prec ∗ recall

prec + recall
(6)

LIN (linear combination betweenTPrate,TNrate) = α∗TPrate +(1−α)∗TNrate

(7)
PLIN (linear combination between recall, prec.) =α∗Recall+(1−α)∗Prec (8)

4 Experimental Work

This section presents the experiments performed to validate the ECSB method
and to compare it with recent proficient strategies. Subsect. 4.2 presents the
general setup: it includes the evaluation methodology employed throughout the
experiments, as well as the mechanisms and settings employed. Two different
evaluation suites are then presented, with discussions of the results. A first set
of tests evaluates comparatively the performance of different specializations of
ECSB on large IR, small IAR data sets, since previous analyses [19] have shown
that classifiers are most affected on such problems; the second presents a com-
parison between ECSB and a prominent under-sampling strategy for imbalanced
data: Evolutionary Under-Sampling [11].
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4.1 Experimental Setup

Experiments have been carried using 2-fold cross-validation. Generally, we have
compared (1) the results of the base classifier with default settings (Base) with
(2) the results obtained by the same classifier following data pre-processing with
SMOTE [5] and default settings (Base+SMOTE ), (3) the results obtained by the
classifier following a parameter tuning stage, performed with the genetic com-
ponent of ECSB (ECSBT ) and (4) the results obtained by a classifier wrapped
in our ECSB method (ECSB).

The specific mechanisms and setting values employed for the genetic compo-
nent are presented in Table 1. Several fitness functions have been considered. No
tuning has been performed on settings of the component so far. Five classifiers
have been included in the experimental study, belonging to different categories:
lazy methods (k-nearest neighbor, kNN), Bayesian methods (Naive Bayes, NB),
decision trees (C4.5), support vector machines (SVM) and ensemble methods
(AdaBoost.M1, AB). Table 2 describes the parameters considered for the base
classifiers (in ECSB and ECSBT).

4.2 General Validation on Large IR, Small IAR Data Sets

We have performed a first analysis on benchmark data sets having large IR and
small IAR values, as considered in [19] – Table 3. This combination of imbalance-
related factors has a strong negative influence on the performance of classifiers.
All three cost-sensitive strategies were considered (MC, CS and CSr), and five
different fitness functions (GM, BAcc, FM with β = 1, LIN and PLIN, the last
two having α = 0.7).

This results in 15 combinations for the ECSB method, compared with the
results obtained by the classifier alone (Base), the classifier with SMOTE
(Base+SMOTE ) and the classifier with tuned parameter values (ECSBT ).

Table 1. Specific genetic mechanisms employed

Setting Value

Population type Single, similar to steady state

Initial population Random

Population size 20

Additional pool 10

Crossover cycles 200

Parent selection Roulette wheel

Recombination operators Crossover: random crossover, 4 points

Mutation: single bit uniform mutation, 0.2 rate

Fitness functions GM; BAcc; FM; LIN; PLIN

Other Fitness ranking

Elitism, implicit with use of single population
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Table 2. Base classifiers parameter ranges

Classifier Parameters Type and range

kNN K – number of neighbors Integer between 1 and 10

C4.5 C – confidence ratio Real, between 0 and 0.4

M – min. number of instances per leaf Integer, between 1 and 5

NB n.a n.a.

AB P – weight threshold for weight pruning Integer, between 1 and 127

I – number of iterations Integer, between 1 and 30

SVM C – complexity Real, between 1 and 100

E – exponent Integer, between 1 and 11

Table 3. Large IR, small IAR data sets

Dataset #Examples #Attributes IR IAR

Chess IR5 2002 37 5 54

Ecoli om remainder binary 336 8 15.8 42

Ecoli imu remainder binary 336 8 8.6 42

Glass VWFP binary 214 10 11.59 21

German IR10 769 21 10.14 37

The results are presented in Fig. 2. For viewing purposes, we have numbered
the different methods from 1 to 18; please refer to the legend for identification.
Each bar in the diagrams represents the overall average score (under the specific
metric) obtained by all five classifiers, using the corresponding method. For
example – in diagram (b), the first bar represents the overall average TPrate

obtained by all five classifiers on all data sets, under imbalance conditions, while
the fourth bar represents the overall average TPrate obtained by all five classifiers
on all data sets obtained by ECSB using BAcc as fitness measure and CS as cost-
sensitive strategy.

Several remarks can be made regarding these results: (1) using balanced met-
rics as fitness measures, such as GM or BAcc, produces significant improvements
in the TPrate (second and fourth groups in Fig. 2(b); (2) FM is not effective as
fitness measure (third group in all diagrams); (3) the linear combination between
TPrate and TNrate (α = 0.7) as fitness function does not improve TPrate signif-
icantly (fifth group in Fig. 2(b)), but instead it improves Prec (fifth group in
Fig. 2(c)); (4) the linear combination between recall and precision (α = 0.7) as
fitness score yields the most important improvement in TPrate (last group in
Fig. 2(b)), but it degrades precision (Fig. 2(c)) – since α = 0.7, more importance
is given to improving recall than to precision; (5) for the SVM, both the TPrate

and the precision are significantly improved through the ECSB method (Fig. 2(b)
and (c), the top portion of the bars); (6) out of the three cost-sensitive strategies
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Fig. 2. Balanced accuracy, TPrate and Precision obtained by the various methods on
the large IR, small IAR data
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evaluated, the most successful is CS (the first bar in each group from the second
to the last), i.e. predict the class with minimum expected misclassification cost.

Therefore, balanced metrics (except FM) are generally appropriate as fitness
measures for ECSB in imbalanced problems; when the recall is of utmost impor-
tance (e.g. medical diagnosis), using the linear combination between recall and
precision, with a high value for α, is appropriate; this is also suitable when both
precision and recall (TPrate) are important (e.g. credit risk assessment), but with
a lower value for α. Cost-sensitive prediction is the most appropriate strategy to
employ.

4.3 Comparative Analysis with Evolutionary Under-Sampling

A second analysis was performed on a set of 28 imbalanced benchmark problems
from [11], in order to compare our results with the performance of the Evolu-
tionary Under-Sampling (EUS) strategy presented there. EUS has been shown
to produce superior results when compared to state-of-the-art under-sampling
methods, making it a good candidate for imbalanced data sets, especially with
a high imbalance ratio among the classes. In this set of experiments, we have
employed CS as cost-sensitive strategy and GM as fitness function – because it is
the function employed in the most successful EUS model. We have also consid-
ered in the comparison the classifier with default settings (Base), the classifier
with SMOTE and default settings (Base+SMOTE ) and the classifier with tuned
parameter values (ECSBT ).

The results of this second analysis are shown in Tables 4 and 5. It can be
observed that ECSB significantly boosts the performance of classifiers when
compared to their behavior on the original problem (except for the AUC for
AdaBoost.M1 – Table 5); on the average, there is ∼25% relative improvement
on the GM and ∼5% on the AUC; the most significant improvements have been
obtained for the SVM classifier (∼86% relative improvement on GM and 16%
on AUC). Also, it yields significant improvements over SMOTE and ECSBT
(∼17% and ∼14%, respectively, relative improvement on GM and ∼5% and
∼2%, respectively, on AUC). Slight improvements over the best EUS method

Table 4. Average GM (with standard deviations) obtained by the various methods

Geometric Mean (GM)

Best EUS Base Base+SMOTE ECSBT ECSB

mean stddev mean stddev mean stddev mean stddev mean stddev

kNN .797 .169 .731 .225 .744 .218 .762 .230 .817 .173

C4.5 .660 .317 .716 .254 .635 .307 .796 .179

NB .754 .202 .771 .164 .754 .202 .814 .129

AB .640 .314 .658 .306 .619 .323 .798 .188

SVM .431 .401 .558 .358 .750 .213 .803 .184



206 C. Lemnaru and R. Potolea

Table 5. AUC (with standard deviations) obtained by the various methods

Area Under tin-Curve (AUC)

Best EUS Base Base+ SMOTE ECSBT ECSB

mean stddev mean stddev mean stddev mean stddev mean stddev

kNN .809 .170 .803 .144 .803 .144 .848 .140 .867 .128

C4.5 .797 .147 .797 .147 .786 .157 .830 .125

NB .873 .110 .873 .110 .874 .111 .874 .111

AB .892 .15 892 .105 .891 .098 .878 .121

SVM .714 .175 .714 .175 .790 .143 .830 .132

have also been observed (i.e. the specialization of EUS which achieved the best
performance in the above cited work): up to 9% relative improvement in AUC.

5 Conclusions and Future Work

Classification under imbalanced conditions is one of the current challenges in
data mining research, triggered by the needs of specific application domains.
All traditional algorithms are affected to some extent by the class imbalance
problem. Also, the correct choice of the metric (or combination of metrics) to
assess – and ultimately improve, is essential for the success of a data mining effort
in such areas, since most of the time improving one metric degrades others.

A series of methods which deal with the class imbalance have been proposed
in the literature over the last years. Sampling strategies are important because
they can be used as pre-processing strategies. However, some approaches are
difficult to employ by a less experienced user – e.g. some require to set the
amount of sampling. Most importantly, to maximize their effect, they need to
be matched to the specific classifier employed. Modifications to basic algorithms
have also been proposed in the literature, with good performance improvements,
but each is restricted to a specific class of techniques.

In this paper we propose a general hybrid strategy for improving the perfor-
mance of classifiers in imbalanced problems. The method, Evolutionary Cost-
Sensitive Balancing (ECSB), is a meta-approach, which can be employed with
any error-reduction classifier. Two strategies are followed by the method simul-
taneously: tune the base classifier’s parameters and use a cost-sensitive meta-
classifier to adapt to the imbalance. A great advantage of the method, besides
its generality, is that it needs little knowledge of the base classifier; instead,
it requires specific knowledge of the domain to select the appropriate fitness
measure.

We have performed several evaluations on benchmark data, to compare ECSB
with current state of the art strategies for imbalanced classification. The results
have demonstrated the following:
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– ECSB significantly improves the performance of the base classifiers,
achieving superior results to sampling with SMOTE or adapting the
algorithm to the imbalance via evolutionary parameter selection;

– ECSB achieves superior results to current prominent approaches in
literature: SMOTE and Evolutionary Under-Sampling;

– the most successful cost-sensitive strategy is predicting the class with
minimum expected misclassification cost, instead of the most likely
class (CS);

– balanced metrics are generally appropriate as fitness functions (except
for the F-measure).

Our current focus is on adding an extra layer to the genetic search compo-
nent, which will focus on finding the most suitable GA parameters for the given
problem.
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