
Advances in Intelligent Systems and Computing 674

Alexandru-Adrian Tantar
Emilia Tantar
Michael Emmerich
Pierrick Legrand
Lenuta Alboaie
Henri Luchian Editors

EVOLVE - A Bridge
between Probability,
Set Oriented Numerics,
and Evolutionary
Computation VI

Advances in Intelligent Systems and Computing

Volume 674

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Advances in Intelligent Systems and Computing” contains publications on theory,
applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually
all disciplines such as engineering, natural sciences, computer and information science, ICT,
economics, business, e-commerce, environment, healthcare, life science are covered. The list
of topics spans all the areas of modern intelligent systems and computing.

The publications within “Advances in Intelligent Systems and Computing” are primarily
textbooks and proceedings of important conferences, symposia and congresses. They cover
significant recent developments in the field, both of a foundational and applicable character.
An important characteristic feature of the series is the short publication time and world-wide
distribution. This permits a rapid and broad dissemination of research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India

e-mail: nikhil@isical.ac.in

Members

Rafael Bello Perez, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba

e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain

e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK

e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Győr, Hungary
e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA

e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan

e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia

e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico

e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil

e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland

e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong

e-mail: jwang@mae.cuhk.edu.hk

More information about this series at http://www.springer.com/series/11156

http://www.springer.com/series/11156

Alexandru-Adrian Tantar
Emilia Tantar • Michael Emmerich
Pierrick Legrand • Lenuta Alboaie
Henri Luchian
Editors

EVOLVE - A Bridge
between Probability,
Set Oriented Numerics,
and Evolutionary
Computation VI

123

Editors
Alexandru-Adrian Tantar
Computer Science and Communications
Research Unit

University of Luxembourg
Luxembourg
Luxembourg

Emilia Tantar
Interdisciplinary Centre for Security,
Reliability and Trust

University of Luxembourg
Luxembourg
Luxembourg

Michael Emmerich
Leiden Institute of Advanced Computer
Science

Leiden University
Leiden
The Netherlands

Pierrick Legrand
Bâtiment Leyteire, URF Sciences
et Modelisation

Université Bordeaux
Bordeaux
France

Lenuta Alboaie
Faculty of Computer Science
Alexandru Ioan Cuza University of Iasi
Iaşi
Romania

Henri Luchian
Faculty of Computer Science
Alexandru Ioan Cuza University
Iasi
Romania

ISSN 2194-5357 ISSN 2194-5365 (electronic)
Advances in Intelligent Systems and Computing
ISBN 978-3-319-69708-6 ISBN 978-3-319-69710-9 (eBook)
https://doi.org/10.1007/978-3-319-69710-9

Library of Congress Control Number: 2012944264

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The overarching goal of the EVOLVE international conference series is to build a
bridge between probability, statistics, set-oriented numerics, and evolutionary
computing, as to identify new common and challenging research aspects and solve
questions at the cross sections of these fields. There is a growing interest for
large-scale computational methods with robustness and efficiency guarantees. This
includes the challenge to develop sound and reliable methods, a unified terminol-
ogy, as well as theoretical foundations.

The 2015 edition of the EVOLVE conference was held on June 14–18, in Iaşi,
Romania, in conjunction with ECODAM Summer School on Evolutionary
Computing in Optimization and Data Mining. The aim of the conference is to
provide a bridge between probability, set-oriented numerics, and evolutionary
computation and to bring together experts from these disciplines. This was reflected
by the elaborate panel of invited speakers, namely Sorin Istrail (Brown University),
Dan Simovici (University of Massachusetts Boston), Kalyanmoy Deb (Michigan
State University), Carlos Coello Coello (CINVESTAV-IPN, Mexico City), and
Kenneth De Jong (George Mason University) and tutorials by Pierre Del Moral
(University of New South Wales), Iryna Yevseyeva (Newcastle University, UK),
Michael Emmerich (Leiden University), and Madalina Drugan (Vrije Universiteit
Brussels), all being leading experts in their field. The broad focus of the EVOLVE
conference made it possible to discuss the connection between these related fields
of study in computational science. The selected papers published in the proceedings
book have been peer reviewed by an international committee of reviewers (at least
three reviews per paper) and have been revised and enhanced by the authors after
the conference. The contributions are categorized into five major parts, which are as
follows:

– Multicriteria and Set-Oriented Optimization;
– Evolution in ICT Security;
– Computational Game Theory;
– Theory on Evolutionary Computation;
– Applications of Evolutionary Algorithms.

v

The 2015 edition shows a major progress in the aim to bring disciplines together,
the research on a number of topics that have been discussed in previous editions
of the conference matured over time, and methods have found their ways in
applications. In this sense, the book can be considered an important milestone in
this ongoing research effort.

June 2015 Alexandru-Adrian Tantar
Michael Emmerich

Emilia Tantar
Lenuta Alboaie
Henri Luchian

Pierrick Legrand

vi Preface

Organization

EVOLVE 2015 was organized by the Alexandru Ioan Cuza University of Iasi,
Romania, in cooperation with the Leiden University, the Netherlands, the
University of Luxembourg, and the University of Bordeaux, Inria Bordeaux
Sud-Ouest.

Executive Committee

General Chair

Henri Luchian Alexandru Ioan Cuza University of Iasi, Romania

Local Chair

Lenuta Alboaie Alexandru Ioan Cuza University of Iasi, Romania

Proceedings Chair

Alexandru Tantar University of Luxembourg, Luxembourg

Program Chairs

Michael Emmerich Leiden University, The Netherlands
Pierrick Legrand University of Bordeaux, France

vii

Financial Chair

Corina Forascu Alexandru Ioan Cuza University of Iasi, Romania

Tutorial Chair

Emilia Tantar University of Luxembourg, Luxembourg

Advisory Board

Enrique Alba University of Málaga, Spain
François Caron Inria Bordeaux Sud-Ouest, France
Frédéric Ciérou Inria Rennes Bretagne Atlantique, France
Carlos A. Coello Coello CINVESTAV-IPN, Mexico
Michael Dellnitz University of Paderborn, Germany
Frédéric Guinand University of Le Havre, France
Arnaud Guyader Université Rennes 2, Inria Rennes Bretagne

Atlantique, France
Arturo Hernández-Aguirre CIMAT, Guanajuato, Mexico
Günter Rudolph TU Dortmund, Germany
Marc Schoenauer Inria Saclay – Île-de-France, University Paris Sud,

France
Franciszek Seredynski Polish Academy of Sciences, Warsaw, Poland
El-Ghazali Talbi Polytech’Lille University of Lille 1, France
Marco Tomassini University of Lausanne, Switzerland
Massimiliano Vasile University of Strathclyde, UK

Special Sessions Chairs

Vito Basto Fernandes Leiria University, Portugal
Iryna Yevseyeva Newcastle University, UK
Michael T.M. Emmerich Leiden University, The Netherlands
Rodica Ioana Lung University Babes-Bolyai, Romania
Dan Dumitrescu University Babes-Bolyai, Romania
Jing Liu Xidian University, China
Asep Maulana Leiden University, The Netherlands
Lenuta Alboaie Alexandru Ioan Cuza University of Iasi, Romania
Adrian Iftene Alexandru Ioan Cuza University of Iasi, Romania
Marc Eduard Frincu University of Southern California, USA
Stephane Genaud ENSIIE Engineering School, France
Daniela Zaharie West University of Timisoara, Romania

viii Organization

Mihaela Breaban Alexandru Ioan Cuza University of Iasi, Romania
Madalina Ionita Alexandru Ioan Cuza University of Iasi, Romania
Dragos Gavrilut Alexandru Ioan Cuza University of Iasi, Romania

Program Committee

Series Chairs

Pierre del Moral Inria Bordeaux Sud-Ouest, France
Alexandru Tantar University of Luxembourg, Luxembourg
Emilia Tantar University of Luxembourg, Luxembourg
Michael Emmerich Leiden University, The Netherlands
Pierrick Legrand University of Bordeaux, France

All contributions went through a thorough full-paper peer review process. We
thank the referees for their voluntary effort.

Referees

Josiah Adeyemo
Thomas Baeck
Vitor Basto Fernandes
Francisco Chicano
Tudor Dan Mihoc
Luis Gerardo De

La Fraga
Andre Deutz
Jianguo Ding
Dan Dumitrescu
Enrique Dunn
Michael T.M. Emmerich
Vitor Basto Fernandes
Francisco Fernandez
Marc Eduard Frincu
Edgar Galvan
Noemi Gasko

Stephane Genaud
David Iclanzan
Adrian Iftene
Ahmed Kattan
Joanna Kolodziej
Pierrick Legrand
Rui Li
Jing Liu
Francisco Luna
Rodica Lung
Asep Maulana
James McDermott
Nicolas Monmarche
Sanaz Mostaghim
Reka Nagy
Gustavo Olague
Eunice Ponce-De-Leon

Eduardo
Rodriguez-Tello

Christoph Schommer
Ignacio

Segovia-Dominguez
Ofer Shir
Mihai Suciu
Alexandru-Adrian Tantar
Emilia Tantar
Leonardo Trujillo
Sergio Ivvan Valdez
Hao Wang
Fatos Xhafa
Iryna Yevseyeva
Daniela Zaharie
Zhiwei Zhang

Organization ix

Invited Speakers

Kalyanmoy Deb (Koenig Endowed Chair Professor, Michigan State University,
East Lansing, USA): A Theory-Based Termination Condition for Convergence in
Real-Parameter Evolutionary Algorithms

Prof. Pierre Del Moral (University of New South Wales, Australia): Particle
methodologies: a bridge across mathematics, physics, biology and information
theory

Prof. Kenneth De Jong (George Mason University, USA): High-Performance
Evolutionary Algorithms

Prof. Dr. Carlos Artemio Coello Coello (University of Massachusetts Boston,
USA): Problems in Evolutionary Multiobjective Optimization, CINVESTAV,
Mexico

Prof. Dr. Dan Simovici (University of Massachusetts Boston, USA): Exploring the
Graph of the Web

Prof. Sorin Istrail (Brown University, USA): Applications to Medical Genetics and
Computational Genomics

Invited Tutorials

Dr. Iryna Yevseyeva (School of Computing Science, Newcastle University, UK):
Multicriteria Decision-Aiding: Compensating and Non-compensating Methods

Dr. Madalina Drugan (Vrije Universiteit Brussel, Belgium): Evolutionary
Reinforcement Learning or Reinforcement Evolutionary Algorithms?

Dr. Michael T.M. Emmerich (LIACS, Leiden University): Set-Oriented
Multicriteria Optimization: Deterministic and Stochastic Methods

x Organization

Sponsoring Institutions and Partners

Organization xi

Contents

Multicriteria and Set-Oriented Optimization

Aggregate Selection in Multi-objective Biochemical Optimization
via the Average Cuboid Volume Indicator . 3
Susanne Rosenthal, Bernd Freisleben, and Markus Borschbach

On Gradient-Based and Swarm-Based Algorithms
for Set-Oriented Bicriteria Optimization . 18
Wilco Verhoef, André H. Deutz, and Michael T.M. Emmerich

Quadcriteria Optimization of Binary Classifiers: Error Rates,
Coverage, and Complexity . 37
Vitor Basto-Fernandes, Iryna Yevseyeva, David Ruano-Ordás,
Jiaqi Zhao, Florentino Fdez-Riverola, José Ramón Méndez,
and Michael T.M. Emmerich

Parameter Identification of Stochastic Gene Regulation Models
by Indicator-Based Evolutionary Level Set Approximation 50
Alexander Nezhinsky and Michael T.M. Emmerich

Evolution in ICT Security

On Using Cognition for Anomaly Detection in SDN 67
Emilia Tantar, Alexandru-Adrian Tantar, Miroslaw Kantor,
and Thomas Engel

Feature Creation Using Genetic Algorithms for Zero False
Positive Malware Classification . 82
Razvan Benchea, Dragos Gavrilut, and Henri Luchian

Multi-centroid Cluster Analysis in Malware Research 94
Ciprian Oprişa, George Cabău, and Gheorghe Sebestyen Pal

xiii

Computational Game Theory

Cooperation in Multicriteria Repeated Games . 107
Réka Nagy, Mihai Suciu, and Dan Dumitrescu

Evolving Game Strategies in a Dynamic Cournot
Oligopoly Setting . 118
Mihai Alexandru Suciu, Rodica-Ioana Lung, Noémi Gaskó,
Tudor-Dan Mihoc, and Dan Dumitrescu

Theory on Evolutionary Computation

Efficient Real-Parameter Single Objective Optimizer
Using Hierarchical CMA-ES Solvers . 131
Madalina M. Drugan

Multi-point Efficient Global Optimization Using Niching
Evolution Strategy . 146
Hao Wang, Thomas Bäck, and Michael T.M. Emmerich

Community Detection in NK Landscapes - An Empirical Study
of Complexity Transitions in Interactive Networks 163
Asep Maulana, André H. Deutz, Erik Schultes,
and Michael T.M. Emmerich

Applications of Evolutionary Algorithms

River Flow Forecasting Using an Improved Artificial
Neural Network . 179
Josiah Adeyemo, Oluwaseun Oyebode, and Derek Stretch

Evolutionary Cost-Sensitive Balancing:
A Generic Method for Imbalanced Classification Problems 194
Camelia Lemnaru and Rodica Potolea

Balancing the Subtours for Multiple TSP Approached with ACS:
Clustering-Based Approaches Vs. MinMax Formulation 210
Raluca Necula, Madalina Raschip, and Mihaela Breaban

Author Index . 225

xiv Contents

Multicriteria and Set-Oriented
Optimization

Aggregate Selection in Multi-objective
Biochemical Optimization via the Average

Cuboid Volume Indicator

Susanne Rosenthal1, Bernd Freisleben2, and Markus Borschbach1(B)

1 University of Applied Sciences, FHDW, Hauptstr. 2, Bergisch Gladbach, Germany
{Susanne.Rosenthal,Markus.Borschbach}@fhdw.de

2 University of Marburg, Hans-Meerwein-Str. 6, Marburg, Germany
freisleb@informatik.uni-marburg.de

Abstract. The identification of peptides that optimize several phys-
iochemical properties is an important task in the drug design process.
Multi-objective genetic algorithms are efficient and cost-effective meth-
ods to scan the highly complex search space for optimal candidate pep-
tides. A multi-objective genetic algorithm called NGSA-II has been pro-
posed in previous work with the aim of producing diverse high-quality
peptides in a low number of generations. An important component of
NSGA-II is the selection process that determines the high-quality indi-
viduals for the succeeding generation. This paper presents two kinds of
selection strategies for NSGA-II to guide the search process towards high-
quality peptides while maintaining diversity within the genetic material.
The proposed selection strategies rely both on tournaments, and use a
combination of fitness-proportionate selection and a discerning selection
criterion, which is front-based in one case and indicator-based in the
other case. The two strategies are compared to each other with respect
to the search behavior on a generic three-dimensional molecular mini-
mization problem.

Keywords: Indicator-based selection · Average cuboid volume ·
Aggregate selection · Multi-objective molecular optimization

1 Introduction

Peptides play a central role in the area of drug design due to their high specificity
and low toxicity profile. In the drug design process, native peptides or promising
protein fragments are transformed into pharmaceutically acceptable components
that have several optimized physiochemical properties [1].

A computer-aided drug design process is cost-effective and time-efficient. For
peptide optimization, a customized multi-objective genetic algorithm (MOEA)
called Non-dominated Sorting Genetic Algorithm (NSGA-II) has been proposed
with sophisticated mutation and recombination methods [12,13]. Although these

c© Springer International Publishing AG 2018
A.-A. Tantar et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation VI, Advances in Intelligent Systems and Computing 674,
https://doi.org/10.1007/978-3-319-69710-9_1

4 S. Rosenthal et al.

variation operators have a considerable influence on the algorithm’s performance,
the selection operator is the main component that scans the search space and
guides the search process [2]. In general, a good selection strategy is characterized
by an appropriate balance between exploration and exploitation in the search
process. Bäck [3] has shown that the selection process controls this balance
by guiding the process more or less in the direction of optimal solutions. A
search process is either more exploitative in the case that the search is directed
stringently towards an optimum solution or more explorative otherwise.

In this paper, we present novel selection strategies for NSGA-II applied to
molecular optimization. The design of the presented selection strategies is moti-
vated by the fundamental tasks of the selection operator on guiding the search in
a MOEA. Two selection strategies are presented. Both are based on tournament
selection and a combination of fitness-proportionate selection and a discern-
ing selection criterion, which is front-based in the first selection strategy and
indicator-based in the other one. The Average Cuboid Volume (ACV) indica-
tor is used as the discerning selection criterion in the indicator-based selection
strategy and has been recently introduced as a convergence indicator with the
ultimate aim of comparing solution sets of different sizes according to the prox-
imity to the Pareto front in a statistically reasonable way [23]. The probability of
selecting individuals by fitness-proportionate selection or the discerning criterion
is controlled via a probability parameter. These two strategies are compared to
each other to characterize their search behavior. The investigation of the selec-
tion performance also includes fine-tuning of the parameters. This comparison
is based on a generic three-dimensional molecular minimization problem.

This paper is structured as follows. In Sect. 2, related work is discussed. The
discerning selection criterion and the convergence indicator ACV are presented in
Sect. 3. In Sect. 4, the novel selection strategies are introduced. Section 5 presents
the remaining components of the customized NSGA-II. In Sect. 6, experimental
results are presented. Section 7 concludes the paper and outlines areas of future
work.

2 Related Work

Different selection strategies have been proposed in the field of Evolutionary
Algorithms (EA). Fitness-proportionate selection strategies are stochastic meth-
ods. These strategies are characterized by a non-zero probability of each solution
to be selected for reproduction: High-quality solutions have a higher chance to be
selected than low-quality ones. The most common strategies are Roulette Wheel
Selection (RWS) [4] and Stochastic Universal Sampling (SUS) [17]. These strate-
gies are usually visualized by a spinning wheel where each portion on the wheel
represents an individual and the size of the portion is proportional to the indi-
vidual’s fitness over the total fitness of the entire population. RWS selects one
individual by spinning the wheel, whereas in the case of SUS n equidistant point-
ers are placed around the wheel and n individuals are selected per spin. A more
common selection strategy is Tournament Selection (TS) [5]. The motivation for

Aggregate Selection in Multi-objective Biochemical Optimization 5

this strategy is the diversity within the genetic material ensured by change. Sev-
eral individuals are randomly selected from the population and compared to each
other regarding their fitness. The best individual is selected for reproduction. The
rank-based selection strategy assigns a selection probability to each individual
based on the discrete rank relative to the others in the entire population [6].
This probability assignment is realized via a mapping function that is optionally
linear or non-linear. The selection performance strongly depends on the type of
the mapping function. A more recent category are the indicator-based selection
strategies. These strategies make use of an indicator as the selection criterion
and have been proposed in the area of Multi-objective Evolutionary Algorithms
(MOEA): The Indicator-Based Evolutionary Algorithm (IBEA) [8] makes use of
a selection strategy that starts with the selection of the fittest individual and
deletes it from the population. The fitness values of the remaining individuals
are updated by a binary quality indicator, such as the epsilon-indicator Iε, the
hypervolume indicator IHV [8] or the R2-indicator [9]. In general, an arbitrary
indicator is applicable in IBEA. The indicator R2 is a recently introduced indica-
tor to evaluate the optimal solution set [10]. R2 does not require a Pareto optimal
reference set, but it depends on weight vectors and an ideal reference point. It
is popular for its low computational complexity, but for an increasing number
of objectives the calculation becomes as expensive as the hypervolume [11]. The
number of weight vectors is challenging, especially scaling them with the number
of objectives. R2 and the hypervolume are correlated by Pearsons’ correlation
coefficient with a statistically significant value of 0.76 [11]. Another indicator-
based selection strategy is used in the S-metric Selection Evolutionary Multi-
Objective Algorithm (SMS-EMOA) [7]. SMS-EMOA is a steady-state algorithm
and is especially designed to use the hypervolume indicator. The hypervolume
indicator serves as the selection criterion: In each iteration, a new individual is
produced, and based on the value of the hypervolume it is decided if this individ-
ual enters the non-dominated archive pool or not by calculating the hypervolume
of non-dominated solution subsets excluding one of the non-dominated solutions.
SPEA [19], PESA [20] and PAES [21] use region-based selection. SPEA also
makes use of binary tournament selection. The individuals for the succeeding
generation are selected from the union of the current and an external set con-
taining all non-dominated solutions. The selection probability of an individual
depends on a strength value that reflects the number of individuals dominated
by or equal to this individual. The individual-based selection in PESA divides
the objective space into hyperboxes. The selection probability of an individual
depends on a squeeze factor that is the number of individuals sharing the same
box. Binary tournament selection is used and the individual with the lowest
squeeze factor is chosen. PAES is a (1+1) evolutionary strategy and uses an
archive pool for selection and the hypergrid strategy. The selection is performed
between a current solution and a mutant regarding the dominance. If the mutant
enters the archive pool, the individual with the highest grid location count is
deleted.

6 S. Rosenthal et al.

3 The Average Cuboid Volume Indicator

The ACV indicator has been introduced by Rosenthal and Borschbach [23].
ACV is intended to evaluate the global convergence behavior of differently sized
populations for comparison purposes. The ACV indicator is given by

ACV =
1
n

n∑

i=1

(
k∏

j=1

(xij − rj)), (1)

where n is the number of individuals that are evaluated, k the number of objec-
tives and rj the pre-defined reference point. At this point, it is assumed that
the Multi-Objective Optimization Problem (MOP) has to be minimized. In this
case, the pre-defined reference point is chosen as the theoretical minimum limit
of the true Pareto front, which is usually known in a real-world MOP. As a
consequence, the lower the ACV indicator values are, the better is the global
convergence behavior of the evaluated solution set.

There are three main advantages of this indicator. First, ACV does not
require knowledge of the true Pareto front, which is usually unknown in real-
world problems. Second, ACV has a low computational complexity even if the
number of objectives increases. Third, ACV reflects the convergence behavior of
differently sized populations in a statistically reasonable way.

A normalized version of the ACV indicator is proposed below to ensure that
all objective function values have the same influence on the indicator values.
Therefore, a mapping of the objective values in the same range of [0; 1] is per-
formed by dividing every difference of the objective value and the corresponding
reference point component by the maximum norm:

ACVscaled =
1
n

n∑

i=1

⎛

⎝
k∏

j=1

(xij − rj)
x̄j

⎞

⎠ , with x̄j = maxi{xij}, ∀j = 1, ..., k (2)

Furthermore, the ACV indicator is also used to gain an insight into the
spatial volume covered by the optimal solutions relative to the volume of the
entire population. Therefore, a relative ACV measure is proposed to evaluate
the average cuboid volume by the solutions of the non-dominated solutions or
the individuals of the first front in relation to the average cuboid volume of the
entire population:

ACVrel =
1
f

∑f
i=1(

∏k
j=1(xij − rj))

1
n

∑n
i=1(

∏k
j=1(xij − rj))

, (3)

where f is the number of non-dominated solutions in the population. ACVrel

is quite different in terms of its significance from the hypervolume indicator,
since the quality of the non-dominated solutions is not related to the quality
of the entire population by the hypervolume, which usually refers only to the
non-dominated solutions. However, Pearson’s correlation coefficient between the

Aggregate Selection in Multi-objective Biochemical Optimization 7

ACVrel and the hypervolume values is statistically significant with a value of
0.6. A very small value of ACV (ACV ≈ 0) indicates that ACV of the first front
is much smaller than ACV of the whole population. In the case of ACVrel ≈ 1,
the ACV value of the first front is relatively high compared to the ACV value
of the whole population. A further interpretation of the relative ACV values has
to take into account the absolute ACV of the whole population.

4 Selection Strategies for NGSA-II

There are several issues when designing an appropriate selection strategy for a
MOEA in biochemical optimization. The first issue refers to the question of how
to guide the search in the direction of the Pareto optimal solutions. The second
issue is to ensure a high spread of the non-dominated solutions. The third issue
refers to the specific purpose of biochemical optimization: The selection has to
ensure a high diversity of the genetic material inherited to the succeeding pop-
ulation. The high diversity of the genetic material supports the global search
process. Ideally, the selection strategy has to comply with these three issues at
the same time. Furthermore, another component is important for the selection
process especially in the field of molecular optimization. The role of change in
the selection procedure imitates the aspect of change in a natural evolutionary
process. The proposed two selection strategies for NSGA-II differ from the tradi-
tional selection process of NSGA-II in avoiding the critical component crowding
distance to provide a reliably good algorithm performance independent of the
problem dimension.

4.1 Aggregate Selection

The aggregate selection strategy is motivated by the idea of guiding the search
in the direction of high-quality solutions while maintaining a high diversity of
the genetic material within the succeeding generation. This strategy starts with
tournament selection of x individuals from the population (Fig. 1) to include the
aspect of change of a natural evolutionary process in the selection strategy. The
solutions of the tournament set are ranked into fronts via fast non-dominated
sorting [18]. From this ranked tournament set, one individual is randomly cho-
sen from the first front with a probability p0 to guide the search process in
the direction of high-quality solutions with a particular probability. With a
probability 1 − p0, individuals are selected via front-based Stochastic Universal
Sampling (SUS) selection to ensure the diversity of the genetic material and
a non-dominated solution spread. SUS provides the opportunity to low quality
solutions to find their way in the succeeding generation. Low-quality solutions
potentially have high-quality genetic motifs, which produces high-quality solu-
tions in later generations. The number N of pointers is the number of identified
fronts by fast non-dominated sorting, and the segments are equal to the front
size. Therefore, the parameters of this selection strategy are the tournament size
(t.s.) and the probability of choosing the individuals from the first front. The
value p0 = 0% is further referred to as SUS selection.

8 S. Rosenthal et al.

Fig. 1. Aggregate selection strategy Fig. 2. ACV-based selection strategy
with SUS.

4.2 ACV-Based Selection

The ACV-based selection strategy (Fig. 2) is equal to aggregate selection where
the selection criterion - an individual is selected from the first front - is sub-
stituted by an ACV-based selection criterion. The basic idea of the ACV-based
selection criterion is motivated by the following consideration of the aggregate
selection strategy: Random selection of one individual from the first front does
not guarantee the selection of a high-quality individual with respect to all objec-
tive values, since the ranking into the first front is relative to the objective values
of other individuals in the tournament set. An ACVscaled value for each indi-
vidual of the tournament set is determined and the individual with the lowest
ACVscaled-value is selected. The ACV -value of an individual x0 is calculated by
applying Eq. (2) on X = {x0} with n = 1. The selection criterion differing from
aggregate selection is highlighted. The individual with the lowest ACVscaled-
value is the highest-quality solution and selected for reproduction. In the case
of multiple lowest ACVscaled-values, a random one is selected.

Aggregate Selection in Multi-objective Biochemical Optimization 9

4.3 Computational Complexity

The selection components that are mainly responsible for the difference of the
computational complexity (CC) between the aggregate and ACV-based selection
are Non-Dominated Sorting (NDS) of the tournament set and determination of
the ACVscaled-values for each solution in the tournament set. In the following, k
is the number of objective functions and N the t.s. The CC of NDS is O(k·N2) [18].
The selection of the solutions with the lowest ACVscaled-value starts with the
determination of the maximum value for each objective: This takes k · (N − 1)
operations for comparison. Furthermore, k · N divisions are performed to com-
plete the scaling. The calculation of ACVscaled for a t.s. of N takes k subtractions
and (k − 1) multiplications. The determination of the minimal ACVscaled-value
takes (N − 1) operations for comparison. In total, this procedure has a CC of
k · (N − 1) + k · N + N · (k + (k − 1)) + (N − 1) = 4kN − k − 1 operations, which
is a total CC of O(k · N) and therefore lower than the CC for NDS.

5 Other Components of NSGA-II

5.1 Individual Encoding and Search Space

The individuals represent peptides of length 20. The individuals are character
strings of length 20 consisting of the 20 characters symbolizing the canonical
amino acids. As a consequence, the search space has a complexity of 2020. This
encoding is the most intuitive way and it represents all feasible - and only fea-
sible - solutions. Another advantage is that the biochemical objective functions
make use of this character encoding. Therefore, this encoding does not require
a conversion of the data format.

5.2 Variation Operators

Several mutation and recombination operators have been tested within NSGA-II
[12–14]. The combination of recombination and mutation operators that achieved
the best performance is the linear recombination operator ‘LiDeRP’ and the
adaptation of the deterministic dynamic mutation of Bäck and Schütz [15]. The
combination of LiDeRP and the deterministic dynamic mutation provides the
most successful balance of exploitation and exploration of the search process.

The recombination operator LiDeRP varies the number of recombination
points over the generations via a linearly decreasing function:

xR(t) =
l

2
− l/2

T
· t, (4)

which depends on the length of the individual l, the total number of the gener-
ations T and the index of the actual generation t.

The deterministic dynamic operator of Bäck and Schütz [15] determines the
mutation probabilities via the following function with a = 2.

pBS = (a +
l − 2
T − 1

t)−1, (5)

10 S. Rosenthal et al.

The mutation rate is bounded by (0; 1
2]. The mutation rate of the first gener-

ation has been adapted to a lower starting mutation rate with a = 5. This is due
the fact that the combination of a high mutation and recombination probability
corresponds to a random creation of an individual.

5.3 Fitness Functions

Three fitness functions - also termed objective functions - are used in the bio-
chemical minimization problem. These fitness functions are as generic as possible
in the way that physio-chemical characteristics of peptides are usually calculated
by the descriptor values of each amino acid. The biochemical functions work on
the amino acid sequence or the primary structure. Two fitness functions are
provided by the BioJava library [16]: The first function determines the Molec-
ular Weight (MW) of each individual, since molecules for drug design have to
provide a maximally low MW for a good membrane permeability. The second
function is the Needleman-Wunsch algorithm that is used as a method for the
global sequence alignment to a pre-defined reference individual. This algorithm
refers to the common hypothesis that a high similarity between molecules refers
to similar molecular properties. The third fitness function calculates the average
hydrophilicity via the hydrophilicity scale of Hopp and Woods with a window
size equal to the peptide length [22]. A common problem of drug peptides is a low
solubility in aqueous solutions, especially peptides with stretches of hydrophobic
amino acids. These fitness functions act comparatively, since the individuals are
compared to a non-varying reference individual and therefore the MOP has to
be minimized. The absolute value is applied to the fitness function values to
achieve only positive function values.

6 Experimental Results

6.1 Experimental Setting

The starting population has a size of 100 randomly initialized individuals repre-
senting 20-mer peptides. For statistical reasons, each configuration is repeated
30 times until the 18th generation since we focus on early convergence [12,13].
These experiments are evaluated with regard to their convergence velocity and
the diversity within the solutions. The ACV indicators ACVscaled and ACVrel

as proposed in Eqs. (2) and (3) are used as convergence metrics for the entire
population and the quality of the Pareto optimal set. The reference point is cho-
sen as (0/0/0) which is the theoretical minimum limit of the Pareto front for the
three-dimensional minimization problem. The diversity within the population is
assessed via:

Δ =
∑

i,j=1,i<j

|dij − d̄|
N

with N =
(

n

2

)
=

n(n − 1)
2

,

Aggregate Selection in Multi-objective Biochemical Optimization 11

Fig. 3. ACVscaled of aggregate selection
with different p0-values and t.s. = 10.

Fig. 4. ACVscaled of ACV selection with
different p0-values and t.s. = 10.

where dij is the Euclidean distance of each possible combination of solutions. n
is the number of solutions, here n = 100, and d̄ is the average distance over all
determined distances. The values of diversity are scaled under the same criterion
for an optimal graphical presentation. Boxplots are created for the ACV and
diversity values of each configuration to provide important information about
location parameters and spread of the numerical data. Outliers are symbolized by
dots. An outlier is more than 1.5-times of the inter-quartile range away from the
boxplot quartiles. In general, a good performance of a configuration is achieved
if the ACV value is as small as possible and the diversity is as large as possible.

6.2 Evaluation

Two categories of configurations are evaluated for each selection strategy: The
first test series performs a variation of the selection parameter - the probability
parameter p0. Different probabilities are tested with the fixed tournament size
parameter t.s. = 10. Figure 3 represents the effect of aggregate selection with
different values of the probability p0. The increase of p0 results in a decrease
of the ACVscaled-values in differing intensity: The ACVscaled decrease by an
increase of p0 from 0% to 50% is remarkably higher than the decrease intensity
for a further probability increase. SUS or p0 = 0% achieves a remarkably high
spread of the ACVscaled-values indicating an unstable selection process. Figure 5
represents the diversity achieved with the aggregation selection and different p0-
values. SUS achieves the highest diversity, the further increase of p0 results in a
decrease of the diversity. The comparison of Figs. 3 and 5 reveals that the conver-
gence improvement is at the cost of diversity. The convergence improvement of
p0 = 50% to p0 = 60% is, on the average, higher than the average decrease of the
diversity values for the same p0-value. Therefore, the optimal choice is configured
to p0 = 60%. Figure 7 depicts the ACVrel-values of the aggregate selection for

12 S. Rosenthal et al.

Fig. 5. Diversity of aggregate selection
with different p0-values and t.s. = 10.

Fig. 6. Diversity of ACV-based selection
with different p0-values and t.s. = 10.

the different p0-values. The increase of p0 in this case results in a slight but con-
tinuous increase of the ACVrel-values indicating that the ACV-values of the first
front solutions are relatively high compared to the ACV-values of the entire pop-
ulation. These results reveal that the front-based selection of the tournament set
does not guarantee the selection of the highest quality solutions. Figures 4, 6 and
8 depict the ACVscaled, diversity and ACVrel-values of the ACV-based selection
with three different p0-values. Figure 4 reveals that an increase of p0 results in a
significant decrease of ACVscaled. The diversity values (Fig. 6) reveal, on the aver-
age, slight differences for the different p0-values. The highest diversity values on
the average are achieved for p=50%. The comparison of ACVscaled and diversity
values of the aggregate and ACV-based selection expose that the ACVscaled and
diversity values of the aggregate selection with p0 = 60% are highly related to the
corresponding values of the ACV-based selection with p0 = 50%. Figure 8 repre-
sents the ACVrel-values of the ACV-based selection. The increase of p0 = 40%
to 50% results in an improvement of the ACVrel-values. A further increase of
p0 reveals a stagnation of ACVrel. This indicates that the increase of p0 poten-
tially provides the guarantee selecting the highest-quality solutions. In general,
the ACVrel-values of the ACV-based selection are lower than the corresponding
values for the aggregate selection. Since aggregate selection with p0 = 60% and
ACV-based selection p0 = 50% achieve the best performance according to con-
vergence and diversity, the variation of the parameter t.s. is investigated for a
further improvement. Figures 9 to 11 depict the ACVscaled, diversity and ACVrel-
values of the test runs with the aggregate selection and different t.s. The increase
of the t.s. results in a continuous decrease of ACVscaled (Fig. 9) and therefore
in an improved convergence performance. The higher solution number in the
tournament set provides a higher-quality diversity between the solutions. The
diversity reveals slight changes of the values by the increase of the t.s on the
average; the diversity values are the highest for t.s. = 10 (Fig. 10). Otherwise,

Aggregate Selection in Multi-objective Biochemical Optimization 13

the results of ACVrel (Fig. 11) reveal that t.s. = 10 achieves the highest val-
ues and therefore the lowest quality non-dominated solutions on the average. In
general, the optimal value for t.s. is a trade-off between a higher computational
complexity in every iteration and the performance improvement. From this point
of view, the optimal choice of t.s. is about 10 for the aggregate selection strategy.

Figures 12 to 14 present the ACVscaled, diversity and ACVrel-values of the
test runs with the ACV-based selection and different t.s. The increase of the t.s.
from 6 to 10 results in a slight decrease of ACVscaled on the average (Fig. 12).
A further increase to t.s. = 15, ACVscaled almost stagnates. The increase of
the t.s. reveals an improvement of the diversity, once a higher improvement is
achieved by the increase of t.s. = 6 to 10 and a stagnation of the values by a
further increase (Fig. 10). The increase of the t.s. from 6 to 10 reveals a significant
increase of ACVrel (Fig. 14) and therefore an improvement of the non-dominated
solution quality. Otherwise, the results are skewed visibly by the position of the
median. A further increase of the t.s. to 15 results only in a slightly decreased
ACVrel. The reason for these results is the low range of the solution quality in a
tournament set of size 6. A further increase of the t.s. above 10 does not provide
a further quality enhancement according to convergence and diversity, since the
enhancement is restricted by the probability of selecting high-quality solutions
from the entire population in the tournament set. The optimal value for the t.s.
in the case of the ACV-based selection is easily accessible as t.s. = 10.

These performance results are compared to the performance of the traditional
and character-encoded NSGA-II. The process of NSGA-II is slightly changed
to preserve diversity: Binary tournament selection is used for parent selection,
whereas each individual is allowed to be presented two times as parent. Further,
single-point recombination is used and one-point mutation of each individual is
performed. The individuals for the succeeding generation are selected by binary
tournament selection with a preference for the solution with the largest crowding

Fig. 7. ACVrel of aggregate selection with
different p0-values and t.s. = 10.

Fig. 8. ACVrel of ACV-based selection
with different p0-values and t.s. = 10.

14 S. Rosenthal et al.

Fig. 9. ACVscaled of aggre-
gate selection with different
t.s. values and p0 = 60%.

Fig. 10. Diversity of aggre-
gate selection with different
t.s. values and p0 = 60%.

Fig. 11. ACVrel of aggre-
gate selection with different
t.s. values and p0 = 60%.

Fig. 12. ACVscaled of ACV-
based selection with differ-
ent t.s. values and p0 = 50%.

Fig. 13. Diversity of aggre-
gate selection with different
t.s. values and p0 = 50%.

Fig. 14. ACVrel of ACV-
based selection with differ-
ent t.s. values and p0 = 50%.

distance value. Figure 15 presents the performance results of this traditional
NSGA-II configuration. Even with the diversity preserving method, the diver-
sity values are the lowest compared to the performance results presented above
(Figs. 10 and 13). Furthermore, the ACVscaled values are remarkably higher and
therefore, NSGA-II provides the worst convergence compared to the results
of Figs. 9 and 12. The ACVrel results are also the highest and therefore the
non-dominated solutions provide are of a low quality compared to the entire
population.

Aggregate Selection in Multi-objective Biochemical Optimization 15

Fig. 15. Performance of NSGA-II with diversity preserving selection of the succeeding
generation: (a) ACVscaled, (b) Diversity and (c) ACVrel.

7 Conclusion

This paper has presented two types of selection strategies for the determination
of the succeeding generation in NSGA-II, a multi-objective genetic algorithm
applied to biochemical optimization. The focus of the selection strategies is the
guidance of the search process towards high-quality solutions while maintaining
genetic diversity. Both strategies have in common that they are based on tourna-
ment selection and are a combination of SUS as fitness-proportionate selection
and a discerning selection criterion. Aggregate selection uses a front-based strat-
egy as the discerning selection criterion, whereas ACV-based selection makes use
of the ACV indicator. In aggregate selection, the selection of a random individ-
ual from the first front does not guarantee the selection of the optimal solution
with respect to each objective function. To overcome this problem, ACV-based
selection is used to select the high-quality individuals in the multi-objective
sense based on the objective function values. Aggregate selection is compared
to ACV-based selection in terms of search behavior. In general, our evaluation
reveals that both selection strategies are comparable according to the conver-
gence behavior and the diversity, especially in the case of the optimum parame-
ter setting: p0 = 60%, t.s. = 10 for aggregate selection and p0 = 50%, t.s. = 10.
The advantage of ACV-based selection is the significantly higher quality, on
the average, of the first front and therefore of the non-dominated solutions. The
ACV indicator used as a discerning selection criterion guarantees a more focused
search process in the direction of high-quality solutions.

The presented strategies have the potential to be applied to other molecular
MOPs, since the proposed 3D-MOP is as generic as possible regarding the fitness
assignment of physiochemical properties. In the case that the objective functions

16 S. Rosenthal et al.

are the absolute values of the difference between the fitness value of the candi-
date peptide and the fitness value of the reference peptide, the zero point is an
advisable choice for the ACV indicator. Otherwise, the reference point has to be
newly defined. The influence of the reference point has not been investigated in
this work and is thus the limitation of this study.

In future work, the experiments will be performed on a higher-dimensional
biochemical optimization problem. The investigation of the impact of selection
strategies on the optimization performance of real-valued MOPs is also in inter-
esting area of future work.

References

1. Otvos, L.: Peptide-Based Drug Design: Methods and Protocols. Humana Press
Inc., Totowa (2000)

2. Dumitrescu, D., Lazzerini, B., Jain, L.C., et al.: Evolutionary Computation. CRC
Press LLC, Boca Raton (2000)

3. Bäck, T.: Selective pressure in evolutionary algorithms: a characterization of selec-
tion mechanisms. In: First IEEE Conference on Evolutionary Computing, vol. 1,
pp. 57–62 (1994)

4. Kumar, R.: Blending roulette wheel selection and rank selection in genetic algo-
rithms. Int. J. Mach. Learn. Comput. 2(4), 365–370 (2012)

5. Zhong, J., Hu, X., Gu, M., et al.: Comparison of performance between different
selection strategies on simple genetic algorithms. In: Proceedings of the Inter-
national Conference on Computational Intelligence for Modelling, Control and
Automations (2005)

6. Baker, J.: Adaptive selection methods for genetic algorithms. In: Proceedings of
an International Conference on Genetic Algorithms, pp. 101–111 (1985)

7. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume
measure as selection criterion. In: EMO 2005. LNCS, vol. 3410, pp. 62–76 (2005)

8. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Pro-
ceedings of the Eighth International Conference on Parallel Problem Solving from
Nature PPSN VIII, pp. 832–842 (2004)

9. Phan, D.H., Suzuki, J.: R2-Indicator based evolutionary algorithm for multiob-
jective optimization. In: Congress on Evolutionary Computation (CEC 2013), pp.
1836–1845 (2013)

10. Trautmann, H., Wagner, T., Brockhoff, D.: R2-EMOA: focused multiobjective
search using R2-indicator-based selection. In: Learning and Intelligent Optimiza-
tion, pp. 70–74 (2013)

11. Wagner, T., Trautmann, H., Brockhoff, D.: Reference articulation by means of
the R2 indicator. In: Evolutionary Multi-criterion Optimization (EMO 2013), vol.
7811, pp. 81–95 (2013)

12. Rosenthal, S., El-Sourani, N., Borschbach, M.: Introduction of a mutation specific
fast non-dominated sorting GA evolved for biochemical optimization. In: SEAL
2012. LNCS, vol. 7673, pp. 158–167 (2012)

13. Rosenthal, S., El-Sourani, N., Borschbach, M.: Impact of different recombination
methods in a mutation-specific MOEA for a biochemical application. In: Vanneschi,
L., Bush, W.S., Giacobini, M. (eds.) EvoBIO 2013. LNCS, vol. 7833, pp. 188–199
(2013)

Aggregate Selection in Multi-objective Biochemical Optimization 17

14. Rosenthal, S., Borschbach, M.: A benchmark on the interaction of basic variation
operators in multi-objective peptide design evaluated by a three dimensional diver-
sity metric and a minimized hypervolume. In: Emmerich, M., et al. (eds.) EVOLVE
- A Bridge between Probability, Set Oriented Numerics and Evolutionary Compu-
tation IV, pp. 139–153 (2013)

15. Bäck, T., Schütz, M.: Intelligent mutation rate control in canonical genetic algo-
rithm. In: Proceedings of the International Symposium on Methodology for Intel-
ligent Systems, pp. 158–167 (1996)

16. BioJava: CookBook, release 3.0. http://www.biojava.org/wiki/BioJava
17. Fonseca C.M., Fleming P.J.: Genetic algorithms for multiobjective optimization:

formulation, discussion and generalization. In: Proceedings of the Fifth Interna-
tional Conference on Genetic Algorithms (ICGA 1993), pp. 416–423 (1993)

18. Deb, K., Pratap, A., Agarwal, S.: A fast and elitist multiobjective genetic algo-
rithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

19. Corne, D.C., Knowles, J., Oates, M.J.: The pareto envelope-based selection algo-
rithm for multiobjective optimization. In: Proceedings of Parallel Problem Solving
from Nature PPSN VI, vol. 1917, pp. 839–848 (2000)

20. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

21. Knowles, J.D., Corne, D.W.: The pareto archived evolution strategy: a new base-
line algorithm for pareto multiobjective optimisation. In: Proceedings of the 1999
Congress on Evolutionary Computation (CEC 1999), pp. 98–105 (1999)

22. Hopp, T.P., Woods, K.R.: A computer program for predicting protein antigenic
determinants. Mol Immunol 20(4), 483–489 (1983)

23. Rosenthal, S., Borschbach, M.: Impact of population size and selection within a
customized NSGA-II for biochemical optimization assessed on the basis of the aver-
age cuboid volume indicator. In: Proceedings of the Sixth International Conference
on Bioinformatics, Biocomputational Systems and Biotechnologies, BIOTECHNO
2014, Charmonix, April 2014

http://www.biojava.org/wiki/BioJava

On Gradient-Based and Swarm-Based
Algorithms for Set-Oriented Bicriteria

Optimization

Wilco Verhoef(B), André H. Deutz, and Michael T.M. Emmerich

Multicriteria Optimization, Design and Analytics (MODA) Group, LIACS,
Leiden University, Niels Bohrweg 1, 2375 CA Leiden, The Netherlands

wilco@verhoef.nu, emmerix@gmail.com

http://moda.liacs.nl

Abstract. This paper is about the numerical solution of multiobjective
optimization problems in continuous spaces. The problem is to define a
search direction and a dynamical adaptation scheme for sets of vectors
that serve as approximation sets. Two algorithmic concepts are com-
pared: These are stochastic optimization algorithms based on coopera-
tive particle swarms, and a deterministic optimization algorithm based
on set-oriented gradients of the hypervolume indicator. Both concepts are
instantiated as algorithms, which are deliberately kept simple in order
to not obfuscate their discussion. It is shown that these algorithms are
capable of approximating Pareto fronts iteratively. The numerical stud-
ies of the paper are restricted to relatively simple and low dimensional
problems. For these problems a visualization of the convergence dynam-
ics was implemented that shows how the approximation set converges to
a diverse cover of the Pareto front and efficient set. The demonstration of
the algorithms is implemented in Java Script and can therefore run from
a website in any conventional browser. Besides using it to reproduce the
findings of the paper, it is also suitable as an educational tool in order
to demonstrate the idea of set-based convergence in Pareto optimization
using stochastic and deterministic search.

Keywords: Hypervolume indicator · Pareto front · Set-oriented
gradient · Particle swarm optimization · Multiobjective optimization ·
Algorithm animation

1 Introduction

Multi-objective optimization (MOO) is a class of optimization problems where
multiple objective functions are optimized simultaneously. MOO problems are
common in numerous fields including engineering, science, industry, drug dis-
covery, finance, and logistics. Given this broad range of application areas, there
is a big need for fast and reliable MOO algorithms.

c© Springer International Publishing AG 2018
A.-A. Tantar et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation VI, Advances in Intelligent Systems and Computing 674,
https://doi.org/10.1007/978-3-319-69710-9_2

On Gradient-Based and Swarm-Based Algorithms 19

In typical MOO problems, the objectives are conflicting. Thus, an optimal
solution for one objective is not optimal for the others. Hence, with conflicting
objectives, there is no single optimal solution for the problem. Instead, there is
typically a whole set of solutions in the decision space that are non-dominated
with respect to the Pareto dominance relation. We call this set the efficient set.
The image of the efficient set obtained by the objective functions is the Pareto
front. In continuous spaces they can be viewed as a trade-off curve (in 2-D) or a
trade-off (hyper)surface (in higher dimensions).

The Pareto front of a function with m objectives is typically a manifold of at
most m − 1 dimensions and it is not required to be connected. When approxi-
mating a Pareto front (and efficient set) by means of a finite approximation set it
is a common strategy to search for sets that maximize the size of the dominated
(hyper) space which is measured by the hypervolume indicator. In this paper
two different strategies for finding hypervolume-maximal sets will be discussed.

For this we will introduce new algorithms for multi-objective optimization,
namely a multi-objective cooperative particle swarm optimization MOCOPS
algorithm and a multi-objective gradient based optimization MOGO algorithm
(a modified version of a previously discussed set-based gradient strategy). Then
we will provide a numerical analysis of the dynamics of these algorithms on
bicriteria test problems.

The specific contribution of this research is three-fold. We will analyze the
performance of the new algorithmic concepts by using the hypervolume indica-
tor as a quality measure. Secondly this research will focus on an analysis and
comparison of the algorithms based on their dynamical visualization (anima-
tion). Finally, we will provide a tool that the interested reader can use to further
explore the proposed algorithmic concept in an interactive and easy to use web-
application.

The structure of the paper as follows: In Sect. 2 we will first introduce the
definitions and notation that are to be used in the remainder of the paper. More-
over we will provide a formal definition of the problem and review related work.
In Sect. 3 the different multi-objective optimization algorithms are presented. In
the Sect. 4 the dynamics of the algorithms on test problems will be compared.
We sum up the main findings in Sect. 5 and provide some directions that will
be interesting for future work. Instead of extensive statistical plots of repeated
runs, we will provide the user with an easy to use javascript program which can
be used in a web-browser to reproduce our results and gives the opportunity
for self-study of the new algorithms. A description of this visualization tool in
Appendices A will conclude the paper.

2 Background

2.1 Definitions and Notation

The space of candidate solutions is called the decision space. The space of objec-
tive function values with the decision space as domain is called the objective
space.

20 W. Verhoef et al.

For optimization, it is desirable to have an unambiguous way of determining
whether an arbitrary vector is considered better than another. For this rea-
son, you can define the relations weakly-Pareto-dominance and strictly-Pareto-
dominance between two vectors x,y ∈ R

m. Weakly-Pareto-dominance is a rela-
tion between two vectors where one vector is considered better or equal than
another. We will assume that our objective is minimization. Vector x weakly
Pareto-dominates vector y, if and only if Eq. (1) holds.

∀i∈{1,...,m} xi ≤ yi (1)

A vector x is considered to strictly Pareto-dominate a vector y if and only if

∀i∈{1,...,m} xi ≤ yi ∧ ∃i∈{1,...,m} xi < yi

The strict Pareto-dominance is a strict order where strict dominance of x
over y is denoted with x ≺ y.

Let S ⊆ R
d and f : S → R

m. In optimization problems S represents the deci-
sion space, and f the objective functions. The Pareto front of the minimization
problem is the non-dominated subset of the image of S under f . Formally, we
define the Pareto front YPF in Eq. 2:

YPF := {f(x) | x ∈ S ∧ �x′∈S f(x′) ≺ f(x)} (2)

The inverse image of the Pareto set with respect to f is called the efficient set.
The hypervolume indicator (HI) is a widely used measure for multi-objective

optimization indicating how well the population approximates the Pareto
Front [10]. More precisely, it is defined as the Lebesgue measure of the domi-
nated subspace by a population of m- dimensional vectors in the objective space
limited by a reference point (to keep it finite), in symbols:

HI(P) := λm

⎛
⎝ ⋃

y∈P

[y, r]

⎞
⎠ .

Here, λm denotes the Lebesgue measure in m dimensions, e.g. λ1 is the length,
λ2 is the area, λ3 is the volume, and so forth. The reference point is chosen
such that it is dominated by all relevant objective vectors. The choice of the
reference point should be large enough for it to be dominated by all points that
are generated in the optimization.

In this work, we will often consider the contribution of a single point to the
dominated hypervolume indicator. The hypervolume contribution of a vector in
the objective space (objective vector) in a multiset of such vectors (population)
is defined as the hypervolume of the total population of objective vectors, minus
the hypervolume of the population without that objective vector. Objective vec-
tors which are dominated by some vector in the population have a hypervolume
contribution of 0. The concepts of (Pareto) dominance, hypervolume and hyper-
volume contribution are clarified for two dimensions in Fig. 1.

On Gradient-Based and Swarm-Based Algorithms 21

Fig. 1. This is an example of a population in the objective space. Objective vectors
in the population are displayed as slightly bigger (as compared to dominated points),
black, and filled circles in case they are not dominated by another objective vector in
the population. Objective vectors in the population are displayed in dots when they are
part of the dominated set. The set of points that is dominated by at least one point in
the population is colored light gray. The hypervolume contribution of objective vector
a is colored dark gray.

In the literature on multiobjective optimization algorithms, different terms
with similar meanings are used depending on the field of research. Below is a
short summary of interchangeable terms. With Table 1, an attempt has been
made to match each field with each of their terms, however when reasoning in
general about the algorithms, the terms used might be mixed together. However,
we decided to use the terms population, particles, and objective functions to
denote the essential entities in the discussed algorithms.

Table 1. Terminology in set-oriented optimization. The terms in bold font will be used
throughout this paper.

EA PSO Gradient optimization

fitness (function) fitness (function) objective function

individual particle (search) point, (candidate) solution

population swarm approximation set, μd-vector (cf. [6])

22 W. Verhoef et al.

Notation Description

S ⊆ R
d Decision space

I Set of objective vectors, subset of R
m

m Dimension of the objective space
d Dimension of the decision space
x ∈ S Representation of a particle in the decision space
y ∈ R

m Representation of a particle in the objective space
f : S → R

m Vector of objective functions
μ Population size
a ∈ S Particle
Φ : S

µ × S → R Fitness contribution of an individual to a population
HV : Iµ → R Hypervolume indicator of a solution w.r.t. a population of size μ
ΔHV : Iµ × I → R Hypervolume contribution of a single solution in a population
i ∼ u({a, b, c}) Denotes a uniform random discrete sample b ∈ {a, b, c}
x ∼ u([0, 1]) Denotes a uniform random continuous sample x ∈ [0, 1]
z ∼ N(0, I) Denotes a sample from the multivariate i.i.d. normal distribution

with mean value 0 and variance 1.

2.2 Problem Definition

For optimization, minimization is assumed for all objectives throughout this
work.

f(x) → min

The aspiration of the optimization algorithms in this paper is maximization of
the hypervolume indicator over the set of all populations of size μ. That will be
the measurement used for benchmarking:

HV (P) → max, P ∈ S
µ

For this the convergence dynamics of two different types of algorithms will be
compared - swarm-based optimization and gradient-based optimization.

2.3 Related Work

The idea to maximize the hypervolume indicator using population based search
was initiated first in the context of evolutionary multi-criterion optimization
algorithms. For instance, the S-Metric Selection-EMOA (SMS-EMOA) is a pop-
ular algorithm in this field [5]. Here the term ‘S-Metric’ is an alternative name
for the hypervolume indicator. In particular for small numbers of objective func-
tions (m = 2, 3) this algorithm performs very well in comparison with other
EAs, although recent research has shown that it does not always converge to the
globally Pareto optimal front (which is also the case for most other EMOAs).

Swarm based hypervolume optimization has been suggested before by
Mosthaghim et al. [13] in an algorithm oriented at the ‘follow a leader’ par-
adigm in classical particle swarm algorithm. In our paper we will completely

On Gradient-Based and Swarm-Based Algorithms 23

abandon this and present a cooperative search paradigm where each particle
can contribute in equal proportions to the success of a population.

Especially in the ‘fine tuning’ phase of the set-based optimization on differen-
tiable problems it is not very promising to use stochastic search algorithms with
isotropic mutation operators. This is because the local tangent cone in which
dominating solutions of a point can be found in the efficient space gets increas-
ingly acute and the opening angles converge to zero. This is why sampling steps
must be exactly in descent directions in order to get closer to the Pareto front.
This is where gradient-based search presents itself as an interesting alternative
to stochastic search.

Research about gradient optimization algorithms in MOO using the hyper-
volume indicator has been performed before [6]. In the research, computation
complexity of the algorithms is reported for a varying numbers of dimensions.
It was shown by Emmerich et al. [6] that essentially the hypervolume contribu-
tion gradients are the sub-gradient components of the entire population vector.
While [6] focuses on the computation of the Hypervolume gradient and its gen-
eral properties, its search dynamics were investigated on a couple of low dimen-
sional problems in [6]. Here a simple set-based gradient and set-based Newton
method was compared on bi-criterion problems. In our paper we will study an
improved version of this algorithm that introduces a non-zero gradient for dom-
inated points.

3 Optimization Algorithms

In this study we consider iterative (sequential) algorithms for Pareto optimiza-
tion. They generate a series of populations P0, P1, . . . , that (probabilistically)
converge to the Pareto front. Such processes will be visualized and studied using
a web-based interface.

On the website http://moda.liacs.nl/pareto-demo.html the two algorithms
under investigation are implemented in java script, an interpreter language
which features client side execution. The featured algorithms are a cooperative
swarm based algorithm and a hypervolume gradient method.

As opposed to single objective optimization, in multiobjective optimization
instead of a starting point a starting population needs to be provided for iter-
ative optimization algorithms. Alternatively, we may initialize the population
uniformly randomly within the search space or on points of a regular grid.

3.1 Multi-objective Particle Swarm Optimization Algorithm

In the interpretation we use in this paper a particle swarm optimization (PSO)
algorithm is a randomized search heuristics where a swarm of particles moves
gradually towards an optimal solution driven by randomized modification oper-
ators and interaction between the particles.

In conventional PSO algorithms, the swarm is driven by a leader, who is the
currently best individual in a population, and by local memories of particles on

http://moda.liacs.nl/pareto-demo.html

24 W. Verhoef et al.

their so-far best positions. In single-objective optimization such processes will
typically converge to local, or sometimes even to global optima. In multiobjective
optimization such an approach could be easily used to find a single point on
the Pareto front, but is not well suited to distribute points across the Pareto
front, because the particles all strive to resemble the leader which is counter-
productive when searching for a diverse set of solutions. To a certain extent this
can be compensated by assigning local leaders, but this makes the algorithm
quite complicated and adds parameters to the algorithm (i.e., number of leaders).

The use of traditional PSO for multi-objective optimization problems has
been addressed already in the literature, both in the context of general mul-
tiobjective optimization [4], and for finding Pareto fronts that maximize the
hypervolume indicator [13]. Both approaches let to algorithms that can produce
good approximations to Pareto fronts.

In this paper, however, we consider another approach that we will term coop-
erative particle swarm. This algorithm will have the following properties that
distinguishes it from previous swarm-based approaches:

– Leader-free: The particles in the population cooperate in covering the Pareto
front, instead of competing with each other. There is no leader in the swarm;
each particle strives to contribute to the global performance of the swarm.

– Indicator-based: The algorithms seeks to maximize an unary performance
indicator. Here the hypervolume indicator is used, but also other unary indi-
cators could be considered (e.g., reference point free hypervolume [8]).

The new approach is deliberately kept very simple. This is for two reasons:
Firstly we want to demonstrate that only a few essential components are needed
to steer a swarm towards a Pareto front. Secondly, simplicity will make the
algorithms easier accessible to a rigorous theoretical analysis. It will also be
easier to compare it on a conceptual level to the later discussed set-gradient
based algorithm.

We will term the approach Multiobjective Optimization by Cooperative
Particle Swarms (MOCOPS).

The pseudo-code for the proposed MOCOPS algorithm is given in Algo-
rithm 1. It starts with randomly initializing a set of particles. Then, in each
iteration of the algorithm, a particle is randomly selected and a small random
variation of this particle is generated by adding a vector of normally distributed
random numbers.

If the fitness contribution of the mutated particle relative to the population
is better than for the original position then the particle will move to the new
position: Firstly, it will be tested which one of the two positions leads to a
better hypervolume indicator of the population. Secondly, if both positions are
equally good (which will typically occur for dominated solutions), the point
that has a better value in the aggregated linear objective function with equal
weights is considered. Note that if one solution is dominated by the other solution
it will also be considered better in the latter comparison (because of positive
equal weighting). Therefore, eventually all solutions will strive towards the non-
dominated front and then their hypervolume contribution will be considered.

On Gradient-Based and Swarm-Based Algorithms 25

The cycle continues with picking a random particle again. The MOCOPS
algorithm is displayed in pseudocode in Algorithm1. Care must be taken to
ensure xnew ∈ S (e.g. by rejecting infeasible vectors).

Algorithm 1. Multiobjective Optimization by Cooperative Swarms
(MOCOPS)

Input initial population P0

while termination criterion is not reached do
t ← t + 1
s ∼ u({1, 2, . . . , n − 1, n})
xold = x(s)

P ← Pt \ {x(s)}
{Try to improve position of particle x(s)}
z ∼ N(0, I)
xnew = xold + σ · z
if HV (P ∪ {xnew}) > HV (P ∪ {xnew}) then

Pt ← P ∪ {xnew}
else if HV (P ∪ {xnew}) < HV (P ∪ {xold}) then

Pt ← P ∪ {xold}
else if f1(xnew) + f2(xnew) < f1(xold) + f2(xold) then

Pt ← P ∪ {xnew}
else

Pt ← P ∪ {xold}
end if

end while
Return Pt

One iteration of the bicriteria MOCOPS algorithm can be performed with
a time complexity in O(μ log μ) and its complexity is related to the problem of
computing the hypervolume contribution of a point which is discussed in [9].
However, by implementing the algorithm as an online algorithm, that is using
incremental update steps, we can compute a single iteration with time complexity
in O(log μ) (amortized over the number of iterations) [12]. Fast - linear time -
hypervolume update schemes are also known for three objective functions [11].
The computational complexity is expected to grow exponentially in the number
of objective functions [3], that is why the scheme does probably not lend itself
very well for many-objective optimization.

3.2 Adaptive Mutation

A weakness of the algorithm design of Algorithm 1 is that the particles are always
perturbed with the same distribution and average step-size. When a particle is
far away from the optimum a relative big step size will be beneficial. When the
solution is already very close to an optimal position then fine-tuning is required,
and thus smaller steps.

26 W. Verhoef et al.

To account for this we introduce a simple scheme for the adaptation of the
standard deviation. In earlier research it has been found that adapting the
mutation rate in a stochastic descend method a rate of 1

5 is a good heuristic
choice [1,2]. This has been called the 1/5th success rule. In our approach we
multiply σ or divide it by a scalar in order to keep the success rate of trial moves
approximately 1

5 . Heuristically this scalar has been determined as 4
√

1.04.
In earlier research it has been argued that self-adaptive step-size control does

not work in the context of multiobjective optimization, because the boundary
between the region where a point improves (Pareto dominates the original point)
and the region where a point does not improve becomes cusp-like. However,
in the context of hypervolume maximization the boundary between these two
spaces is, in most relevant cases, differentiable. This means that in the limit of
an infinitely small step-size always a success rate of 1/2 can be achieved, unless
the point is exactly on its optimal position on the Pareto front. This is because
the improvement region and non-improvement regions are locally separated by
a m−1 dimensional hyperplane, and the probability to generate a trial point on
either one side of the plane is the same.

3.3 Multi-objective Gradient Based Optimization Algorithm

The MOGO algorithm is a deterministic algorithm where each search point is
simultaneously directed by a search point dependent subgradient of the total
hypervolume gradient. For example, the search point x(i) could be directly
directed by the gradient of f . This will however lead to the convergence to
a local optimum. However, it is expected that using the gradient this way will
lead to little diversification. Therefore, instead we will be use a search direction
that is derived from the gradient of the entire population, which was derived in
[7] and discussed in more detail in [6]. This strategy leads to convergence as well
as to diversification (see for instance [14]).

In [6] it was shown that following the set-gradient of the hypervolume indi-
cator is equivalent to simultaneously moving the particles of a population in a
direction of steepest descent of their hypervolume contributions to the popula-
tion. This direction we will denote with ∇ΔHV (x, P) for some particle x ∈ P .

The MOGO algorithm we will propose next will basically follow the lines of
the gradient flow algorithm in [14], but some important modification will be made
in order to eliminate problems with losing dominated solutions and ‘creepyness’ –
a term used in [14] to describe problems caused by large differences in the length
of local gradient components.

We use the same definition of ∇ΔHV (x, P) as in [6] and, for the sake of
brevity, restrict our discussion on the bicriteria case.

On Gradient-Based and Swarm-Based Algorithms 27

Let f : R
d → R

2 denote the vector valued objective function. The Jacobian
Matrix of f at x is shown below1.

Jf (x) =

⎛
⎜⎝

∂f1
∂x1

(x) · · · ∂f1
∂xd

(x)

∂f2
∂x1

(x) · · · ∂f2
∂xd

(x)

⎞
⎟⎠ (3)

The values in a Jacobian indicate how the objective function values respond
on a change of the input. The hypervolume contribution derivative vector for
the mapping R2 → R

0
+ is defined below:

∇HV (y) :=

⎛
⎜⎝

∂ΔHV

∂y1
∂ΔHV

∂y2

⎞
⎟⎠ (4)

Its computation can be done by computing the lengths of the line segment in the
attainment surface (or ‘staircase’) that are adjacent to f(x). For a derivation,
see [6].

Multiplication of the matrix and vector yields a gradient of the ΔHV .

∇ΔHV (x, P) =
(
Jf (x)� · ∇HV (f(x))

)�
. (5)

In [14] an algorithm was studied that follows the flow of this gradient. It was
found to suffer from a strong discrepancy in the length of the subgradients for
different points which let to problems in convergence. In this study we coun-
teract this problem by using instead of ∇HV (y) the normalized subgradient
∇HV (y)/||∇HV (y)||:

∇NΔHV (x) :=
(
Jf (x)� · ∇HV (f(x))�

||∇HV (f(x))||
)

. (6)

This way the gradient direction does not change, but the difference in length of
sub-gradients is compensated for. Yet, the length of the total gradients decreases
in the proximity of hypervolume maximal solutions, which is desirable and makes
an additional step-size adaptation mechanism no longer needed.

Moreover, in order to not ‘lose’ points that are Pareto dominated within the
population – they have zero gradients – we propose to move them in the following
direction, which is guaranteed to point into the dominance cone in case of locally
non-dominated solutions

∇
(

−1
2
f1 − 1

2
f2

)
(x) = −1

2
(∇f1(x) + ∇f2(x)) . (7)

Instead of 1
2 , it is also possible to use a small positive step-size σ. This will be

done here and which also stresses the analogy to the step-size used in the swarm
based search.
1 In this paper we restrict ourselves to bicriteria optimization but the introduced

principles are applicable also in higher dimensions.

28 W. Verhoef et al.

The MOGO algorithm follows directly from these preliminaries. It starts
with initializing a randomly distributed population. For every search point the
descent vector is computed and added to the current solution. The algorithm
terminates if stagnation sets in because all descent directions are zero vectors.
The MOGO algorithm is displayed in Algorithm2.

Algorithm 2. Multiobjective Gradient-based Optimization (MOGO)
Initialize randomly distributed population
P0 = (x(1), . . . ,x(µ))
repeat

c ← 0
for i ∈ {1, . . . , μ} do

if ||∇ΔHV (x(i))|| 	= 0 then
q ← x(i) + σ · ∇NΔHV (x(i))

else if ∇(−f1 − f2)(x) 	= 0 then
q ← x(i) + σ∇(−f1 − f2)(x)

else
q ← x(i)

end if
x(i) ← q
c ← c + 1

end for
until c = μ

The computational time complexity of the MOGO algorithm is determined
by the time complexity for computing the full hypervolume gradient, the com-
ponents of which are used as descent directions. It was shown in [6] to be in
Θ(dμ + μ log μ) (provided the number of objective functions is lower than 4).

4 Evaluation

4.1 Test Problems

Problem 1. The objective functions for problem 1 are depicted below. The
reference point used for the hypervolume indicator will be the maximal point
(1.25, 1.25) (Fig. 2).

f1(x) = (x1)2 + (x2 − 0.5)2 (8)

f2(x) = (x1 − 1)2 + (x2 − 0.5)2 (9)

Problem 2. The objective functions for problem 2 are depicted below. The
reference point used for the hypervolume indicator will be the maximal point
(1, 1) (Fig. 3).

f1(x) = 1 − ((x1)2 + 1)(x2)2 (10)

f2(x) = 1 − ((x2)2 + 1)(x1)2 (11)

On Gradient-Based and Swarm-Based Algorithms 29

Fig. 2. The decision space and objective space of test problem 1 are shown using a
uniformly distributed population of 250000 particles. The area covered with dark gray
particles denote the efficient and Pareto set among the population. The area covered
with light gray particles resembles the subset which is dominated by the Pareto set of
the population. The efficient set is horizontal.

Fig. 3. The decision space and objective space of test problem 2 are shown using a
uniformly distributed population of 250000 particles. The area covered with dark gray
particles denote the efficient and Pareto set among the population. The area covered
with light gray particles resembles the subset which is dominated by the Pareto set of
the population. The efficient set is curved.

30 W. Verhoef et al.

4.2 Experiments Setup

In this paper the number of reported experiments is kept relatively small. Instead
of focussing on statistics we invite the reader to experiment with the implemen-
tation which is made available on the website http://moda.liacs.nl/pareto-demo.

With μ = 100 we are going to compare the different algorithms based on
the hypervolume indicator with varying amount of iterations. The amount of
iterations that will be used is 10, 100 and 1000. Each of these results will be
sampled from 100 tests. The 10, 100 and 1000 iterations tests will be performed
on both test problems. The MOCOPS will be benchmarked with and without
adaptive mutation. The MOCOPS algorithms will have their mutation rate
initialized with 0.2. The step size of the MOGO is initialized with 0.0008.

Also we will have a look at the dynamics of the algorithms in a visual way.
We will compare the converged populations of the different algorithms.

4.3 Description of Results

The results of the benchmark on problem 1 and 2 can respectively be found in
Tables 2 and 3. MOCOPS is the MOCOPS algorithm without adaptive muta-
tions and MOCOPS A is the MOCOPS algorithm with adaptive mutation.

In Figs. 4 and 5 the converged populations of respectively the MOCOPS and
MOGO algorithm are shown of test problem 2. It seems the algorithms converge
with a slightly different alignment. Both alignments are diverse and approximate
the real Pareto set well.

4.4 Discussion of Results

Looking at the benchmarks, it seems the performance of the algorithms is more or
less the same. The MOGO seems to perform slightly better than the MOCOPS

Table 2. Test problem 1

Algorithm 10 100 1000

MOCOPS 1.3602 1.3713 1.3879

MOCOPS adaptive 1.3609 1.3696 1.385

MOGO 1.3632 1.3812 1.3909

Table 3. Test problem 2

Algorithm 10 100 1000

MOCOPS 1.3604 1.3709 1.3879

MOCOPS adaptive 1.3606 1.37 1.3851

MOGO 1.3639 1.3807 1.3909

http://moda.liacs.nl/pareto-demo

On Gradient-Based and Swarm-Based Algorithms 31

Fig. 4. A screenshot of the converged population with the MOCOPS algorithm on
test problem 2.

Fig. 5. A screenshot of the converged population with the MOGO algorithm on test
problem 2.

variants. The visualization seems to offer more convenient information. Experi-
menting with the algorithms show that nearly the whole population quickly finds
a spot on the Pareto front with the MOGO algorithm. In the MOCOPS algo-
rithm some particles tend to lag behind. Since the MOGO algorithm updates
the whole population simultaneously, it is much faster with larger populations.

32 W. Verhoef et al.

5 Conclusion

It turns out both the algorithms perform well on the test problems in the sense
that they are capable to deliver precise approximations of the Pareto front.

However, the MOGO algorithm outperforms the MOCOPS algorithm. This
especially holds with a big population. The MOGO tends to get a nearly perfect
diversification. Notably, using the adaptations (gradient length normalization,
using the direction as in (7) for dominated points) that were introduced in this
paper the MOGO algorithms does not exhibit the problems that were observed
for earlier hypervolume-gradient descent schemes. At the same time, it needs to
be remarked here that the MOCOPS approach is more robust and does not
require differentiability. It is also more promising, when multimodal problems
should be considered, though further adaptation would certainly be required for
a competitive performance in the multimodal case as compared to other state-
of-the-art strategies developed for this problem domain.

For future research it will be interesting to see how the MOCOPS will per-
form when the adaptive mutation is performed individually instead of globally.
The analysis in this paper was on very simple optimization problems and at most
can serve as a proof of concept study. Experiments with more challenging test
problems and comparisons to state-of-the-art methods will be required before
the strategies proposed in this paper can be recommended for practical usage.
Based on the first results, we think both approaches to be interesting approaches
for further assessment and development.

A Appendices

A.1 Manual of the Application

The application and code is available online [15]. Using the application is
straightforward and does not need any installation or configuration. The appli-
cation can be started with any modern browser. The application is shown in
Fig. 6.

1. This is the sidebar with the interaction parameters.
(a) Pressing the Printable button sets the background color to white. Pressing

the Regular button will set the color scheme regular again.
(b) In the problem section you can choose a test problem.
(c) In the initialization section you can select the population size. You can

initialize the population with the set population size by pressing one of the
buttons. Pressing the Initialize randomly button will position the particles
at random in the decision space. Pressing the Initialize uniformly button
will try to position the particles uniformly in the decision space.

(d) In the algorithm section you can choose the optimization algorithm by
pressing Particle swarm optimization or Gradient based optimization.
Deselecting the Enable dominated set will enable the use of the whole
population. Pressing Adaptive mutation makes the MOCOPS algorithm

On Gradient-Based and Swarm-Based Algorithms 33

use the 1/5th success rule. The mutation rate for the MOCOPS algo-
rithm can be adjusted by using the slider. The step size of the MOGO
can be adjusted similarly with the other slider.

(e) In the optimization section you can select how many milliseconds delay
every iteration should have using the slider. A bigger delay can make the
dynamics of the algorithm clearer. The button Start will start the selected
algorithm. Pressing the button Stop will stop the algorithm again. The
Benchmark button will run some benchmarks and outputs the statistics in

Fig. 6. A screenshot of the interactive multi-objective optimization application.

Fig. 7. A screenshot during convergence of the population with the MOGO algorithm
on test problem 1.

34 W. Verhoef et al.

the browser console. In most browsers the console is accessible by pressing
F12.

(f) The application automatically adapts to the window size. Full screen
mode is available with F11.

2. The objective functions of the chosen test problem are shown here.
3. This part of the screen shows the decision space. Points of the efficient set

of the population are displayed in red squared dots. The particles which are
dominated by the particles in the efficient set are displayed as green dots.

4. This part of the screen shows the objective space. Points of the Pareto set
of the population are displayed in red squared dots. The particles which are
dominated by the Pareto set are shown as green dots.

Fig. 8. A screenshot during convergence of the population with the MOGO algorithm
on test problem 2.

Fig. 9. A screenshot with path tracing during the convergence of a population with
the MOCOPS algorithm on test problem 1.

On Gradient-Based and Swarm-Based Algorithms 35

Fig. 10. A screenshot with path tracing during the convergence of a population with
the MOCOPS algorithm on test problem 1 at a late stage.

Finally, we exhibit some example screenshots:

– Figure 7 shows a large population that is in the process of converging towards
the Pareto front starting from a uniformly distributed sample. The MOGO
algorithm is applied on Problem 1. Green, small points are dominated and
red squared dots are non-dominated with respect to the other points in the
population.

– Figure 8 shows a large population that is in the process of converging towards
the Pareto front starting from a uniformly distributed sample. The MOGO
algorithm is applied on Problem 2.

– Figure 9 shows a small population of particles moved by the MOCOPS algo-
rithm on Problem 1. Also, the traces of the recent moves of the particles are
visualized. Note, that points on the efficient set move sideways in order to find
their optimal position with respect to diversity (hypervolume contribution).

– Figure 10 shows the same population as shown in Fig. 9 at a later stage of the
convergence process.

References

1. Auger, A.: Benchmarking the (1+1) evolution strategy with one-fifth success rule
on the bbob-2009 function testbed. In: Proceedings of the 11th Annual Conference
Companion on Genetic and Evolutionary Computation Conference: Late Breaking
Papers, GECCO 2009, pp. 2447–2452. ACM, New York (2009)

2. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies–a comprehensive introduction.
Nat. Comput. 1(1), 3–52 (2002)

3. Bringmann, K., Friedrich, T.: Approximating the least hypervolume contributor:
Np-hard in general, but fast in practice. In: Evolutionary Multi-Criterion Opti-
mization, pp. 6–20. Springer (2009)

36 W. Verhoef et al.

4. Coello Coello, C.A., Lechuga, M.S.: Mopso: a proposal for multiple objective par-
ticle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary
Computation, CEC 2002, vol. 2, pp. 1051–1056. IEEE (2002)

5. Emmerich, M., Beume, N., Naujoks, B.: An emo algorithm using the hypervolume
measure as selection criterion. In: Evolutionary Multi-Criterion Optimization, pp.
62–76. Springer (2005)

6. Emmerich, M., Deutz, A.: Time complexity and zeros of the hypervolume indi-
cator gradient field. In: Schuetze, O., Coello Coello, C.A., Tantar, A.-A., Tantar,
E., Bouvry, P., Del Moral, P., Legrand, P. (eds.) EVOLVE - A Bridge between
Probability, Set Oriented Numerics, and Evolutionary Computation III. Studies in
Computational Intelligence, vol. 500, pp. 169–193. Springer International Publish-
ing (2014)

7. Emmerich, M., Deutz, A., Beume, N.: Gradient-based/evolutionary relay hybrid for
computing Pareto front approximations maximizing the S-metric. Springer (2007)

8. Emmerich, M.T.M., Deutz, A.H., Yevseyeva, I.: On reference point free weighted
hypervolume indicators based on desirability functions and their probabilistic inter-
pretation. Procedia Technol. 16, 532–541 (2014)

9. Emmerich, M.T.M., Fonseca, C.M.: Computing hypervolume contributions in low
dimensions: asymptotically optimal algorithm and complexity results. In: Evolu-
tionary Multi-Criterion Optimization, pp. 121–135. Springer (2011)

10. Fleischer, M.: The measure of pareto optima applications to multi-objective meta-
heuristics. In: Evolutionary Multi-Criterion Optimization, pp. 519–533. Springer
(2003)

11. Guerreiro, A.P., Fonseca, C.M., Emmerich, M.T.M.: A fast dimension-sweep algo-
rithm for the hypervolume indicator in four dimensions. In: CCCG, pp. 77–82
(2012)

12. Hupkens, I., Emmerich, M.: Logarithmic-time updates in sms-emoa and
hypervolume-based archiving. In: EVOLVE-A Bridge between Probability, Set Ori-
ented Numerics, and Evolutionary Computation IV, pp. 155–169. Springer (2013)

13. Mostaghim, S., Branke, J., Schmeck, H.: Multi-objective particle swarm optimiza-
tion on computer grids. In: Proceedings of the 9th Annual Conference on Genetic
and Evolutionary Computation, GECCO 2007, pp. 869–875. ACM, New York
(2007)

14. Hernández, V.A.S., Schütze, O., Emmerich, M.: Hypervolume maximization via
set based Newton’s method. In: Tantar, A.-A., Tantar, E., Sun, J.-Q., Zhang, W.,
Ding, Q., Schtze, O., Emmerich, M., Legrand, P., Del Moral, P., Coello Coello,
C.A. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and
Evolutionary Computation V. Advances in Intelligent Systems and Computing,
vol. 288, pp. 15–28. Springer International Publishing (2014)

15. Verhoef, W.: Interactive demo on multi-objective optimization, liacs, leiden uni-
versity, nl, wilco.verhoef.nu/projects/moo, bsc project (2015)

Quadcriteria Optimization of Binary
Classifiers: Error Rates, Coverage,

and Complexity

Vitor Basto-Fernandes1,2, Iryna Yevseyeva3, David Ruano-Ordás4,
Jiaqi Zhao5, Florentino Fdez-Riverola4, José Ramón Méndez4,

and Michael T.M. Emmerich6(B)

1 Instituto Universitario de Lisboa (ISCTE-IUL), University Institute of Lisbon,
ISTAR-IUL, Av. Das Forcas Armadas, 1649-026 Lisboa, Portugal

vitor.basto.fernandes@iscte.pt
2 School of Technology and Management, Computer Science

and Communications Research Centre, Polytechnic Institute of Leiria,
2411-901 Leiria, Portugal

vitor.fernandes@ipleiria.pt
3 School of Computer Science and Informatics, Faculty of Technology,

Cyber Technology Institute,
De Montfort University, Gateway House, The Gateway, Leicester LE1 9BH, UK

iryna@dmu.ac.uk
4 Informatics Engineering School, University of Vigo,

Campus As Lagoas S/N, 32004 Ourense, Spain
{drordas,riverola,moncho.mendez}@uvigo.es

5 The School of Computer Science and Technology, China University of Mining and
Technology, No 1, Daxue Road, Xuzhou 221116, Jiangsu, P.R. China

jiaqizhao88@126.com
6 Multicriteria Optimization, Design, and Analytics Group, LIACS,

Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
emmerich@liacs.nl

Abstract. This paper presents a 4-objective evolutionary multiobjec-
tive optimization study for optimizing the error rates (false positives,
false negatives), reliability, and complexity of binary classifiers. The
example taken is the email anti-spam filtering problem.

The two major goals of the optimization is to minimize the error rates
that is the false negative rate and the false positive rate. Our approach
discusses three-way classification, that is the binary classifier can also not
classify an instance in cases where there is not enough evidence to assign
the instance to one of the two classes. In this case the instance is marked
as suspicious but still presented to the user. The number of unclassified
(suspicious) instances should be minimized, as long as this does not lead
to errors. This will be termed the coverage objective. The set (ensemble)
of rules needed for the anti-spam filter to operate in optimal conditions
is addressed as a fourth objective. All objectives stated above are in
general conflicting with each other and that is why we address the prob-
lem as a 4-objective (quadcriteria) optimization problem. We assess the

c© Springer International Publishing AG 2018
A.-A. Tantar et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation VI, Advances in Intelligent Systems and Computing 674,
https://doi.org/10.1007/978-3-319-69710-9_3

38 V. Basto-Fernandes et al.

performance of a set of state-of-the-art evolutionary multiobjective opti-
mization algorithms. These are NSGA-II, SPEA2, and the hypervolume
indicator-based SMS-EMOA. Focusing on the anti-spam filter optimiza-
tion, statistical comparisons on algorithm performance are provided on
several benchmarks and a range of performance indicators. Moreover, the
resulting 4-D Pareto hyper-surface is discussed in the context of binary
classifier optimization.

Keywords: Binary classification · Three-way classification ·
Parsimony · Evolutionary multi-objective optimization · Parallel
coordinates

1 Introduction

An email anti-spam system consists of a set of boolean filtering rules, that oper-
ate jointly and support spam messages detection. Discovering the relative impor-
tance of these rules and assigning the corresponding scores (weights) of each rule
is a complex setup and maintenance process.

The need of frequent scores reassignment for existing rules and score settings
for new rules, to keep the anti-spam filter updated and running, requires the
adoption of machine learning and optimization techniques. In rule-based spam
filtering, several binary classification techniques are combined in a filter, allowing
for flexible creation and deployment of highly customized spam filtering. These
techniques include intelligent analysis of email content, collaborative querying
and information sharing on senders, deliveries and legitimacy verification. Each
technique individually is not able to provide efficient classification, but their
joint usage provide acceptable levels of classification quality.

Each rule corresponds to a logical test and has a score assigned for the filter
operation. An email message is checked (binary classified) by each rule, and the
final classification is done by comparing the sum of all the matching rule scores
with a required threshold value. When the sum is above an upper threshold
the message is classified as spam, when the sum is below a lower threshold the
message is classified as legitimate. Otherwise it is not classified and marked as
a boundary case.

Continuous creation of new ways to distribute spam, leads to the need of
continuous creation of new anti-spam filtering rules and corresponding scores
setting, in addition of scores updating of existing rules. Rules creation and scores
setting is mainly performed manually by system administrators based on expe-
rience, applying a try-and-error approach. It is a complex process that has to
take into account the existing rules knowledge base and the relative importance
of rules to assign individual scores.

This process involves the analysis of thousands of rules and scores to create
a complex highly customized anti-spam filter. The anti-spam filter is highly
dependent on the type of organization, business or leisure domains, location,
language, culture and other user specific criteria. The importance of different
objectives can change depending on the context. For instance, in leisure domains
false positive classifications may have less serious consequences than they would
have in business domains.

Quadcriteria Optimization of Binary Classifiers 39

A survey of literature on assisted/automatic configuration proposals is found
in the literature for the SpamAssassin anti-spam filtering in [3].

The general framework of the evolutionary multiobjective optimization app-
roach for automatic anti-spam filtering scores tuning presented here was pre-
sented by some authors of this paper in recent works [4–6]. So far the framework
was tested with at most three objective functions at a time. Now, the approach
is extended to a four-objective problem formulation, including three-way classifi-
cation (instead of binary classification) and parsimony (or complexity reduction
of the rule base system), in addition to false positive and false negative mini-
mization objectives.

This work is structured as follows. Section 2 presents the anti-spam filter
multiobjective optimization problem formulation and its relation to the machine
learning perspective. In Sect. 3, the 4-objective multiobjective optimization prob-
lem formulation is presented. Section 4 details the experiments design and proto-
col. Then Sect. 5 presents the results analysis and discussion. Finally, in Sect. 6
the authors present the conclusions and future research directions.

2 Multiobjective Problem Formulation

Machine learning problems often can be formulated as multiobjective optimiza-
tion problems. Maximizing classification performance metrics such as true pos-
itive rates and true negative rates, parsimony at the same time, trade-off new
information and forgetting outdated one and learning details while performing
model abstracting, are examples of typical machine learning trade-offs to be
achieved [7].

In multiobjective optimization problems m objective functions f = (f1, f2,
. . . , fm) must be optimized simultaneously, such that fk, k ∈ {1, ...,m} are real-
valued functions evaluated for points in some decision/input space (e.g., the
weights of the rules and values of thresholds to be found). Each point in the
decision space maps to an m dimensional vector in the so-called objective space,
containing the objective function values (e.g., false positive rate, false negative
rate, complexity and coverage of a classifier).

Solutions in the objective space are only partially ordered, that is two solu-
tions can either be in a dominance relation or they can be incomparable to each
other. A solution Pareto dominates another solution if it is better (lower for
minimization) or equal on all, and better on at least one objective. If for two
solutions neither the first dominates the second nor the second dominates the
first they are said to be incomparable. The solutions in the decision space that
are not dominated by other solutions are called efficient solutions and together
form the efficient set. The projections of these solutions into the objective space
are called Pareto optimal points and together form the Pareto front. In general,
the Pareto front of a problem with m objective functions is at most of dimension
m−1. This means that for the 4-objective problems considered in this work, the
Pareto fronts will be at most three dimensional.

Multiobjective optimization following the a posteriori approach results in the
efficient set and Pareto front – or an approximation to these sets. Selection of a

40 V. Basto-Fernandes et al.

single solution among Pareto optimal ones is done by or on behalf of the decision
maker according to his/her preferences [15]. The knowledge of the Pareto front
also reveals insights into the structure of the essential conflict between different
objective functions. This information can be useful for the classification system’s
designer in order to assess problem inherent trade-off or to see limitations on
what can possibly be achieved with a certain classification software by tuning
parameters.

In the following we seek to find approximations to Pareto fronts that arise
in the context of binary classifier tuning, and, more specifically, in tuning spam
classifiers. The following objective functions will be considered:

– Minimize false negative rates: A spam detection system’s major purpose is to
detect all spam messages. If a spam email is not detected this error is called
a false negative.

– Minimize false positive rates: A spam detection system should not mistakenly
classify legitimate emails, also called ham, as being spam emails. If an email
is classified as spam but it is not a spam email, we call this error a false
positive.

– Minimize the number of unclassified samples: Ideally a spam filter should
classify all instances. However, as discussed in [8,14], binary classification of
instances as positive or negative is sometimes too strict and can result in
high misclassification costs. Three-way classification can also leave an email
unclassified in case of low confidence in classification. In this case only a
warning or suspicious flag is provided and it is assumed that the user will
then correctly classify the email. This way, especially in badly supported
cases significant improvements on error rates can be achieved, albeit at the
cost of additional work for the user. Advantages of the so called three-way
classification approach are described in the literature as the ability to provide
a more complete feedback to the users, and in this sense reducing qualitatively
and/or quantitatively the misclassification rate.
Difficult instances to be classified (boundary cases) are marked as unclassified
and forwarded to the user for further examination. This way the maximization
of coverage is formulated as the minimization of the number of unclassified
samples.

– Minimize complexity: In previous work on anti-spam filter optimization [8],
it was observed that many rules were not participating in the classification
process and those with very small scores only marginally influenced the clas-
sification results. This observation suggests that in addition to minimizing
the occurrence of false positives and false negatives, the complexity of the
anti-spam filter (or its parsimony) can also be optimized. For the anti-spam
filtering case, we measure parsimony as the minimum number of rules with
score different from zero, that support a specific classification quality.

Several conflicts between these four objectives can be identified: Firstly,
there is a conflict between the false positive rate and the false negative rate. In
extreme cases of anti-spam systems tuning/configuration the system can always
have a zero false positive rate, that is a zero rate of legitimate messages lost.

Quadcriteria Optimization of Binary Classifiers 41

This rate is obtained for instance if no instance is marked as spam. Usually
this comes at the expense of higher false negative classifications. In the other
extreme, system tuning may classify a large number of instances as being spam.
In the most extreme case it might even classify all emails as spam. This will
minimize the false negative rate but comes at the expense of more legitimate
emails being dismissed (high false positive rate).

Secondly, there is typically a conflict between a high coverage of the classifier
and the error rates. Obviously, every instance that is not examined by the user
but instead automatically classified can potentially lead to misclassification costs
(increment of false positive and false negative rates). On the other hand the effort
of the user and his/her exposure to suspicious emails should be minimized.

Finally, there is a conflict between the error rates and the complexity of a
classifier. It goes without saying that extremely simple classifiers might have
a low accuracy while more complex classifiers can capture more complex rules
and therefore potentially yield classifiers with lower error rates. Here, it should
be noted that from a certain level onwards adding complexity to the classifiers
might not anymore yield to improvements in terms of error rates and even can
be counterproductive due to overfitting. To identify this critical complexity level
which will be obtained as an upper bound of the Pareto front, can be a valuable
output of multiobjective optimization.

The conflict between coverage and complexity seems to be of a somewhat
more complex nature and we will assess it by means of empirical results. In
our multiobjective problem formulation, 4-objectives are considered to be min-
imized, false positive rate, false negative rate, unknown classifications rate and
parsimony.

3 Quadcriteria Optimization Methods

The optimization or tuning of anti-spam filtering systems using rule ensembles
as classifiers is difficult to be accomplished with derivative-based determinis-
tic optimization techniques, because the behaviour of rules can be highly com-
plex, non-smooth and non-linear. This is why instead metaheuristics are used
for this task. Among the metaheuristics used for multiobjective optimization,
evolutionary multiobjective optimization algorithms (EMOAs) are allegedly the
most frequently and best studied approaches.

In our study, state-of-the-art EMOAs were selected for the anti-spam filtering
optimization problem, namely, NSGA-II [12], SPEA2 [16] and SMS-EMOA [17].
These methods are representative for the recently most relevant generational
Pareto-based, steady state Pareto-based and indicator-based EMOA approaches.
Testing representative methods from different optimization strategies groups,
allow the study of their behaviour and performance for the anti-spam filtering
problem.

In the current study the following formulation for the anti-spam filtering opti-
mization is adopted. A four-objective (fnr - false negative rate, fpr - false positive
rate, ur - unclassified rate, cr - complexity rate) binary-real representation deci-
sions variable formulation (a real valued scores vector and a binary string/vector

42 V. Basto-Fernandes et al.

for rules activation/deactivation), aiming at classifier performance and complex-
ity rate improvement is proposed. Minimizing these objectives, means reducing
the number of spam messages not identified by anti-spam filtering techniques,
reducing the number of legitimate messages classified as spam by mistake, reduc-
ing the number of unclassified messages, and reducing the number of rules used
in the classifier.

The anti-spam filtering problem is formulated here as a multiobjective opti-
mization problem on a mixed-integer decision space and with normalized objec-
tive function values in the range [0; 1] that are all to be minimized. These are
false negative rate (f1), false positive rate (f2), number of unclassified instances
divided by the number of instances (f3) and number of rules used by the classifier
divided by the total number of available rules (f4).

Minimization is assumed for all objectives, evaluated in decision space with a
vector of decision variables, w = (w1, w2, . . . , wn), with n being the total number
of rules. The output for all n rules of a filter is weighted by these in order to
compute a final score. It is also possible to assign a negative score to a rule.
The individuals of initial population are generated randomly with scores in the
[−5; 5] range. New individuals are also generated by variation operations in the
same range.

While a real decision variables vector is used for the representation of
the anti-spam rules scores settings in the interval [−5; 5], a binary vector
b = (b1, . . . , bn) ∈ {0, 1}n of decision variable, with each bit representing one
rule for the algorithm to activate (or deactivated) rules according to variation
and selection operators along the evolutionary process, allows the algorithm to
activate/deactivate rules and assess their relevance in the classification process.
In addition a lower and an upper threshold t1 and t2 are optimized by the algo-
rithm. Both thresholds are set in the interval [0; 1], with lower threshold being
always lower than the upper threshold. If the sum of rules’ score that match an
email message is below t1 it is classified as ham, if it is above t2 it is classified
as spam, and otherwise it remains unclassified. Therefore, the values of t1 and
t2 will have a direct impact on the number of unclassified samples but also on
the misclassification costs.

A normalized counting of false negatives, false positives, unknown messages
and number of active rules is adopted, leading all four objectives to assume
values in the range of [0;1], as described in Eqs. 1, 2, 3 and 4.

fnr(w, b, t1, t2) = fn(w, b, t1, t2)/TotalNumberOfSpamMessages → min (1)

fpr(w, b, t1, t2) = fp(w, b, t1, t2)/TotalNumberOfHamMessages → min (2)

ur(w, b, t1, t2) = #unclassified(w, b, t1, t2)/TotalNumberOfMessages → min
(3)

cr(w, b, t1, t2) =
n∑

i=1

bi/TotalNumberOfRules → min (4)

with w ∈ [−5, 5]n being the rules weights, b ∈ {0, 1}n being the rule activation
variables (n = TotalNumberOfRules), and (t1, t2) being the lower and upper

Quadcriteria Optimization of Binary Classifiers 43

threshold. Finally, in order to ensure that the thresholds are feasible we introduce
the constraints:

0 ≤ t1 ≤ t2 ≤ 1 (5)

4 Experimental Setup

In the next section, we describe the experimental setup and the performance
evaluation metrics used for the experiments results analysis. SpamAssassin is
the anti-spam filtering system adopted in our experiments due to wide adoption
by the open source community, the research community on anti-spam systems, its
wide commercial usage, and available email corpora. The SpamAssassin corpus
used in our experiments is composed of 9349 email messages, 2398 spam and
6951 legitimate messages [9].

The experiments phase was performed following the default spam filter con-
figuration present in the Debian GNU/Linux Squeeze distribution running Spa-
mAssassin 3.3.1 [10]. Filtering rules scores range fall under the interval [−5; 5].

From the 2440 rules available in SpamAssassin distribution, only those fitting
at least one message in the dataset are considered in the optimization experi-
ments. Actually, only 330 rules fit email messages and only those have been
considered in the optimization process.

Experiments were performed with jMetal [11] version 4.5, an optimiza-
tion framework for the development of multiobjective metaheuristics in Java.
A jMetal RealBinary encoding decision variables scheme was used where the
chromosome is constituted by an array of real values in the interval [−5;5] and a
bit string. The length of the chromosome is determined by the number of anti-
spam filtering rules effectively used (330). Each rule is associated with a real
value score in the [−5;5] interval and a one bit in the chromosome. If the ith

bit is 0 the ith rule is ignored, and otherwise the rule is active and considered
by the spam classifier with the ith corresponding real value score. Messages are
classified as spam when the sum of scores of active rules that match the message
is equal or greater than the defined threshold value.

NSGA-II, SPEA2 and SMS-EMOA algorithms stopping criteria are set to
a maximum of 25000 function evaluations. The SBX single point crossover and
polynomial bit flip mutation operators are used as the variation operators in the
experiments, with crossover probability 0.9 and mutation probability 1/n, where
n is the number of anti-spam filtering rules. Population size is 100 individuals for
all algorithms, archive size 100 for SPEA2 and offset set to 100 for SMS-EMOA.
In order to obtain robust performance statistics, all stochastic algorithms per-
form 30 independent runs.

Although performance assessment of multiobjective optimization algorithms
constitutes a complex task, involving outcome quality assessment, computing
resources usage, analysis of several runs of the stochastic based algorithms, in
addition of not having an absolute optimal for comparison purposes, a set of well
established performance indicators can be used and provide guidance for multi-
objective optimization algorithms performance assessment. General performance

44 V. Basto-Fernandes et al.

criteria include accuracy (or convergence) which measures how close the solu-
tions are to some known optimal, coverage (or uniformity) which measures how
many non-dominated solutions are generated and how well they are distributed,
and variance (or spread) which measures, for every objective, the maximum
range of non-dominated front covered by the generated solutions.

In order to evaluate and compare approximation sets from multiple runs
of two or more stochastic multiobjective optimizers, complementary techniques
must be combined.

Firstly, we use the 4-D hypervolume (HV) indicator as a measure for the size
of the subspace that is dominated by the Pareto front approximation. This dom-
inance compliant quality indicator has favorable theoretical properties (Pareto
compliants) and high values indicate a diverse set of solutions located close to
the true Pareto front. For the HV indicator a reference point is required. This
choice is problem specific and it is important that all points in the Pareto front
approximation are always dominated by the reference point.

The hypervolume indicator is accompanied by the SPREAD indicator. This
indicator shows how far Pareto front, spreads in objective space, or decision
space. The larger the spread of the Pareto front is, the wider range of values
on objectives it covers. This indicator is not Pareto compliant but is useful to
understand the geometry of the obtained Pareto fronts, in particular whether
also extreme parts are well covered.

A graphical representations of the 4D Pareto front is done by means of graph-
ical parallel coordinates. The objective functions determine the four parallel axis
of this diagram. Each solution in the Pareto front representation is represented
as a polyline. The diagram we used was made available by the statistical soft-
ware System R. The Pareto front that we visualized is the reference Pareto front,
that is the Pareto front obtained from the non-dominated subset of the union
of all Pareto front approximations obtained in the independent runs. The main
purpose of this graphic is to provide insights into the trade-offs of the anti-spam
filtering problem and to obtain a good compromise solution.

5 Results Analysis

The results presented in this section outline NSGA-II, SPEA2 and SMS-EMOA
algorithms behavior and performance on the 4-objectives anti-spam filtering
problem formulation.

Figure 1 shows the reference Pareto front, in other words, the best individuals
of all algorithms of all runs. It is clear from this figure that the anti-spam filtering
system may have very low fnr, fpr and ur, while using less than 38.5% of the
330 rules that match some message in the email corpus. Some solutions could
reach fnr, fpr, and ur, all falling under 1%, using around 16% of the anti-spam
filtering rules. The finding is confirmed by the plot in the scatterplot matrix in
Fig. 2, showing clearly the range in which there is a conflict between fnr and
complexity.

The experiments results confirm the trend of increasing the number of rules
in the anti-spam filtering system (due to the need of dealing with new spam

Quadcriteria Optimization of Binary Classifiers 45

Fig. 1. Reference front parallel coordinates plotting for four objectives anti-spam prob-
lem formulation.

message), has a marginal effect on progressively decreasing the relevance of the
rules set in the classifier quality, while having a considerable impact on classifier
complexity, and therefore on the computational effort. This suggests that in
order to introduce new rules, multiobjective optimization should be used to
avoid redundancy or near-redundant rules in a rule ensemble.

From the experiments it is also possible to conclude that the 4-objectives
classifier is able to reach high levels of accuracy with respect to the false negative
rate, false positive rate and unclassified rate, even when only a small fraction of
filtering rules are activated.

46 V. Basto-Fernandes et al.

Fig. 2. Scatterplot matrix of combined set of results. Of all values the logarithm with
basis 10 is taken.

Besides, our results provide first trends on the question which algorithms are
most suitable for the quadcriteria optimization of binary classifiers. Boxplots
depicting statistics on the multicriteria performance indicators hypervolume and
spread, are shown for the algorithms under consideration, namely NSGA-II,
SPEA2 and SMS-EMOA (Figs. 3 and 4). The boxplots represent graphically the

Fig. 3. Hypervolume boxplot for four objectives anti-spam problem formulation.

Quadcriteria Optimization of Binary Classifiers 47

Fig. 4. SPREAD boxplot for four objectives anti-spam problem formulation.

median, quartiles, and outliers of the statistics on each algorithm (30 runs, each).
The comparison of NSGA-II, SPEA2 and SMS-EMOA is done with respect to
the reference Pareto front.

From the boxplots we conclude that SMS-EMOA is clearly the best perform-
ing algorithm of all with respect to both hypervolume and spread indicators.
The second best performing algorithm with respect to hypervolume indicator is
SPEA2, and the second best algorithm with respect to spread indicator is NSGA-
II. It should be noted, however, that SMS-EMOA is also the most demanding
algorithm in terms of required CPU-time. For the same computation resources
used in our experiments to run all algorithms, a SPEA2 run duration could be
measured in a scale of seconds, NSGA-II in a scale of minutes and SMS-EMOA
in a scale of dozens of minutes. The hypervolume calculation of jMetal SMS-
EMOA implementation used in our experiments, follows traditional algorithms
approaches, which are relatively slow for 4-D hypervolume [18]. Recent faster
implementations are now available [19,20] and will be adopted in the future for
4-D hypervolume calculations.

6 Conclusions and Future Work

Introducing three-way classification and parsimony as additional and simulta-
neous optimization objectives, in addition to false negatives and false positives
minimization, revealed important improvements that can be achieved in modern
anti-spam filtering systems.

For the proposed 4-objectives problem formulation, it was found that a good
performance can be achieved with a small number of rules being used by the
anti-spam filtering classifier. It was observed that from 330 rules that match

48 V. Basto-Fernandes et al.

messages in the SpamAssassin data corpus, only 16% to 38.5% of rules are needed
to achieve classification error rates on all the other three objectives (fnr, fpr, ur)
under 1%.

The authors will take this results as the basis for further anti-spam filtering
and classifier optimization research, heading in two main directions. First, other
multiobjective and many-objectives optimization algorithms of high potential
for the anti-spam filtering type of problems will be studied and explored (e.g.
MOEA/D and NSGA-III), and also tailor made approaches for classification
such as CH-EMOA [1,8] or mixed integer optimization [2]. Secondly, analysis of
the rules that reveal highest contributions for the classification process will be
addressed, in order to assess not only quantitative classifier complexity, but also
to explore the nature of the rules most frequently present in the best solutions.
Knowledge exploration raised by this analysis was introduced by the authors in
[13]. There the authors point research hypothesis and directions with respect
to rules relative relevance analysis, and anti-spam rules automatic generation
guided by knowledge extracted by the means of multiobjective optimization
techniques.

Finally, it will be of interest to consider newly proposed visualization tech-
niques for 4-D Pareto fronts byTuša and Filipič [21], in order to gain additional
insight into the structure of the Pareto front data.

Acknowledgements. This work was partially funded by the [14VI05] Contract-
Programme from the University of Vigo. Iryna Yevseyeva acknowledges Engineering
and Physical Sciences Research Council (EPSRC), UK, and Government Communi-
cations Headquarters (GCHQ), UK, for funding Choice Architecture for Information
Security (ChAISe) project EP/K006568/1 as a part of Cyber Research Institute.

References

1. Wang, P., Emmerich, M., Li, R., Tang, K., Bäck, T., Yao, X.: Convex hull-based
multi-objective genetic programming for maximizing receiver operating character-
istic performance. IEEE Trans. Evol. Comput. 19(2), 188–200 (2015)

2. Li, R., Emmerich, M.T., Eggermont, J., Bäck, T., Schütz, M., Dijkstra, J., Reiber,
J.H.: Mixed integer evolution strategies for parameter optimization. Evolu. Com-
put. 21(1), 29–64 (2013)

3. Basto-Fernandes, V., Yevseyeva, I., Méndez, J.R.: Anti-spam multiobjective
genetic algorithms optimization analysis. Int. Resour. Manage. J. 26(1), 54–67
(2012)

4. Yevseyeva, I., Basto-Fernandes, V., Méndez, J.R.: Survey on anti-spam single and
multi-objective optimization. In: Cruz-Cunha, M.M., Varajo, J., Powell, P., Mart-
inho, R. (eds.), ENTERprise Information Systems. Communications in Computer
and Information Science, vol. 220, pp. 120–129. Springer, Heidelberg (2011)

5. Basto-Fernandes, V., Yevseyeva, I., Méndez, J.R.: Optimization of anti-spam sys-
tems with multiobjective evolutionary algorithms. Int. Resour. Manage. J. 26,
54–67 (2012)

6. Yevseyeva, I., Basto-Fernandes, V., Ruano-Ordás, D., Méndez, J.R.: Optimising
anti-spam filters with evolutionary algorithms. Expert Syst. Appl. 40(10), 4010–
4021 (2013)

Quadcriteria Optimization of Binary Classifiers 49

7. Jin, Y.: Multi-objective Machine Learning. Studies in Computational Intelligence.
Springer, Heidelberg (2006)

8. Zhao, J., Basto-Fernandes, V., Jiao, L., Yevseyeva, L., Maulana, A., Li, R.,
Bäck, T., Emmerich, M.T.M.: Multiobjective optimization of classifiers by means
of 3-d convex hull based evolutionary algorithm, ARXIV Computer Science
abs/1412.5710 (2014). http://arxiv.org/abs/1412.5710

9. The Apache SpamAssassin Project - SpamAssassin public corpus (2005). http://
spamassassin.apache.org/publiccorpus

10. SpamAssassin Team: The apache spamassassin project (2011). http://
spamassassin.apache.org/

11. Durillo, J.J., Nebro, A.J.: jMetal: a java framework for multi-objective optimiza-
tion. Adv. Eng. Softw. 42, 760–771 (2011)

12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

13. Basto-Fernandes, V., Yevseyeva, I., Frantz, R.Z., Grilo, C., Daz, N.P., Emmerich,
M.: An automatic generation of textual pattern rules for digital content filters
proposal, using grammatical evolution genetic programming. Procedia Technol.
16, 806–812 (2014)

14. Yao, Y.: The superiority of three-way decisions in probabilistic rough set models.
Inf. Sci. 181(6), 1080–1096 (2011)

15. Miettinen, K.: Nonlinear Multiobjective Optimization. Springer, New York (1999)
16. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evo-

lutionary algorithm. In: Proceedings of EUROGEN 2001, Athens Greece. CIMNE,
Barcelona (2001)

17. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume
measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A.,
Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg
(2005)

18. While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes.
IEEE Trans. Evol. Comput. 16(1), 86–95 (2012)

19. Emmerich, M.T.M., Fonseca, C.M.: Computing hypervolume contributions in low
dimensions: asymptotically optimal algorithm and complexity results. In: Evolu-
tionary Multi-Criterion Optimization. Springer, Heidelberg (2011)

20. Guerreiro, A.P., Fonseca, C.M., Emmerich, M.T.: A fast dimension-sweep algo-
rithm for the hypervolume indicator in four dimensions. In: CCCG, pp. 77–82
(2012)

21. Tušar, T., Filipič, B.: Visualizing 4D approximation sets of multiobjective optimiz-
ers with prosections. In: Proceedings of the 13th Annual Conference on Genetic
and Evolutionary Computation, pp. 737–744. ACM (2011)

http://arxiv.org/abs/1412.5710
http://spamassassin.apache.org/publiccorpus
http://spamassassin.apache.org/publiccorpus
http://spamassassin.apache.org/
http://spamassassin.apache.org/

Parameter Identification of Stochastic Gene
Regulation Models by Indicator-Based
Evolutionary Level Set Approximation

Alexander Nezhinsky and Michael T.M. Emmerich(B)

LIACS, Leiden University, Niels Bohrweg 1, Leiden, The Netherlands
m.t.m.emmerich@liacs.leidenuniv.nl

http://moda.liacs.nl

Abstract. Continuous level set approximation seeks to find a set of
points (parameter vectors) that approximates the set of sets of para-
meters that for a given function map to a given output value. In this
work we will look at a class of difficult to solve level set problems with
innumerably many solutions and show how their solution sets can be
approximated by robust evolutionary search methods.

In particular, this paper seeks to solve noisy parameter identification
problem from biology where the task is to find the set of parameter set-
tings of a stochastic gene regulatory network, simulated by Gillespie’s
algorithm with delays, that match existing observations. In this context
the necessity of active diversity maintenance and adaptation of search
operators to find all feasible subspaces is studied. As a result a robust
implementation and default setting of evolutionary level set approxima-
tion (ELSA) for noisy parameter identification problems will be devel-
oped and validated. The validation uses two classical gene regulatory
networks and it is demonstrated that a larger set of reaction parame-
ters can be found that potentially could explain the observed stochastic
dynamics.

Keywords: Stochastic simulation · Evolutionary level set approxima-
tion · Parameter identification · Stochastic gene regulatory networks

Given some function f : Rn → R, a level set (approximation) problem (LSP)
is the problem of finding (or approximating) the set of input vectors that are
mapped to a function value below or equal to a certain threshold τ , i.e. approx-
imating the set

L = {x ∈ R
n| f(x) ≤ τ}

In the remainder L will be called the level set and f the target function.
We will also consider a variation of this problem, which is to approximately

solve equation systems:

L = {x ∈ R
n| ||f(x) − T || ≤ ε}

c© Springer International Publishing AG 2018
A.-A. Tantar et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation VI, Advances in Intelligent Systems and Computing 674,
https://doi.org/10.1007/978-3-319-69710-9_4

Parameter Identification of Stochastic Gene Regulation Models 51

where T ∈ R is some target value, and ε ≥ 0 is the desired minimal accuracy.
Structurally the two problems are very similar, although in the second formula-
tion the user needs to also define a desired minimal accuracy.

LSPs occur in various application domains. For instance the problem of find-
ing solution sets of under-determined non-linear equation systems, finding solu-
tions to constraint satisfaction problems, finding the basins of attraction for
an attractor of a dynamical system, and parameter identification problems in
systems modeling can be formulated as LSPs.

In the literature there are many methods described for solving such models by
means of analysis and differential calculus. For differentiable functions, among
these, level set continuation methods are commonly used. They start with a
single feasible point that is for instance found by minimization of ||f(x) − τ ||,
and then construct new candidate points by using linear approximations to the
level curves (the local tangent space). Due to linearization these approximations
are not exactly on a desired position on the level curve and a correction step
corrects for this error. By smart bookkeeping strategies, the level set is gradually
covered by subsequent applications of such predictor corrector steps [6].

In this work we are interested in a method that also works for non-
differentiable and noisy f . Moreover, the methods that are discussed in this
paper are direct methods, meaning that they do not require knowledge about
the internal structure of f and consider f as a black box.

The work is structured as follows: Sect. 1 introduces the evolutionary level set
approximation (ELSA) algorithm and discusses how it differs from algorithms
from diversity optimization, such as NOAH. Then, in Sect. 2 we discuss the
application problem, the parameter identification of stochastic gene regulatory
networks (SGRNs) and provide two concrete problems in Section sec:problems.
In Sect. 4 we discuss the experimental setup and preliminary experiments on
determining the noise level, which is required to set an appropriate accuracy.
The results from the application of ELSA on the SGRNs are described in Sect. 5.
In this section we also describe modifications to the standard ELSA algorithm
that were required to make it solve the problem. The paper concludes with a
summary of the main findings and highlighting of some important topics for
future research (Sect. 6).

1 Evolutionary Level Set Approximation

Evolutionary level set approximation (ELSA) has been recently proposed as a
heuristic solution method for LSPs [2]. ELSA is a population-based stochastic
search algorithm that, if successful, converges to a set that is evenly distributed
across the level set. In brief, one iteration of this algorithm can be described as
the stochastic process on the state space (Rn)μ (populations of size μ):

The pseudo code of the basic ELSA method is provided with Algorithm 3.
First a random start population of μ individuals is generated using stochas-
tic operators. Then a new solution is created by stochastic variation based on
a solution in Pt (or, in case of recombination, based on multiple solutions).

52 A. Nezhinsky and M.T.M. Emmerich

In the default case, it is created by uniformly randomly selecting an individual
in P and mutating it by means of a small normally distributed perturbation. The
selection method selects the subset of size μ that is optimal with respect to an
augmented diversity measure. The algorithm is kept simple, because this makes
it easier to analyze its dynamics. However, later in this work we will motivate a
number of modifications of the basic schemes that will be required to solve the
application problem.

Algorithm 3. Evolutionary Level Set Approximation
1. Initialize population P0 of size μ.
2. Evaluate all solutions in P0 using f and mark all infeasible solutions (i.e. solutions

with f(x) > τ).
3. While convergence is not reached

(a) Generate a new solution xnew ∈ R
n by copying (some) solution(s) in P and

applying an mutation (or recombination) operator.
(b) Qt ← Pt ∪ {xnew}
(c) Evaluate the solution using f .
(d) Determine the minimal contributor xmc to an augmented diversity metric in

Pt.
(e) Pt+1 ← Qt \ {xmc}.
(f) t ← t + 1.

4. Return Pt

1.1 Augmented Diversity Indicators

The augmented diversity measure considers with first priority the number of
feasible solutions in a solution set. To evaluate feasible subsets, their diversity
metric (indicator) will be assessed. Formally the augmented diversity indicator
is constructed as follows:

Q+(P) = Diversity(P ∩ L) + Penalty(P − L),

where P − L = {x ∈ P | f(x) > τ} and L ∩ P can be computed by removing the
infeasible solutions from P , because it holds

L ∩ P = P − (P − L).

Now, given a set of infeasible solutions, say A, and an upper bound for the
longest distance between two points in the feasible set (Diameter), the penalty
is computed by

Penalty(A) := Diameter · |A| +
∑

x∈A

f(x) − τ.

This way, for the diversity indicators that we consider in this work it is guaran-
teed that the a replacement of a infeasible solution by a feasible solution always

Parameter Identification of Stochastic Gene Regulation Models 53

leads to an improvement of the indicator. Eventually, this will lead to a conver-
gence of the ELSA algorithm to a diverse, feasible subset.

Different diversity and representative measures were suggested for guiding
ELSA:

– Solow Polasky Diversity [9,10]
– Averaged Distance to Nearest Neighbor (ADNN), and
– Averaged Distance Indicator (ADI) [2]

The first two indicators are computed based on a distance matrix Dij , that is
the distance of all solutions in the approximation set P , i = 1, . . . , n, j = 1, . . . , n,
n = |P |.

The Solow Polasky Diversity [9] is an indicator that is used in conserva-
tion biology for measuring biodiversity. It was used for diversity optimization
by Ulrich and Thiele [10] and computes the sum of entries in the inverse of
the matrix M with mij = e−θDij . In detail, let R = M−1 then SP (P) =∑

i=1

∑
j=1 rij . It is straightforward to conclude that the Solow Polasky diversity

metric requires an appropriate choice of θ which is sensitive to the conditioning
of M . This makes it difficult to apply in degenerate or noisy cases. The sensi-
tivity to settings of θ was confirmed in the experiments reported in Emmerich
et al. 2013.

The ADNN indicators comprise different types of averages of the distances
to nearest neighbors in a set. Let D(p, P) denote the distance of p to its nearest
neighbor in D \ {p}. Then we define:

ADNNMax(P) = max
p∈D

{D(p, P)}

ADNNΣ(P) =
∑

p∈D

D(p, P)

ADNNΠ(P) =
∏

p∈D

D(p, P)

Among these the ADNNΠ(P) turns out to be robust over a wide range of prob-
lems, why we will consider it in this work. As compared to the other two indica-
tors, this indicator due to its product form favors solution sets where the variance
of the distances to the nearest neighbor is relatively small. The result are sets
that are more evenly spread across the search space.

In Emmerich et al. 2013 the ADI indicator was introduced as a third indi-
cator. It is especially well suited to find representative finite approximations of
point sets and is related to the averaged Haussdorff distance [8]. However, it
requires Voronoi cell partitionings and is computationally more involved, espe-
cially in high dimensional search spaces. The approximation sets achieved with
the computationally much simpler ADNNΠ look very similar to those achieved
with ADI, why we will consider only the ADNNΠ indicator in this work.

Note, that as opposed to the ADI and SP diversity the ADNN indicators do
not have the monotonicity property. The monotonicity property states that when

54 A. Nezhinsky and M.T.M. Emmerich

adding a point to a set the diversity should grow. This property is important
when measuring diversity of sets of different size, but is not required in the
context of ELSA, which features a constant population size and a penalty term
that enforces that adding points to the feasible set (and therby removing a
infeasible point) improves the indicator.

There is another conceptual downside with the ADNN indicator as compared
to the previously mentioned indicators, which was not discussed in the previous
literature. The following example will illustrate it:

Example 1. Assume two solution sets on the real line, that is A = {1, 2, 5, 6}
and B = {1, 2, 3, 4} with all solutions feasible. A natural choice for a distance
between two points on the real line would be Dij = |xi − xj |, i = 1, . . . , 4. Then
ADNNΠ(A) = ADNNΠ(B), although intuitively one would find A to be more
diverse than B.

However, in the empirical studies that were conducted so far these cases did
not affect convergence to well distributed sets. A reason for this could be that
the globally optimal set requires solutions to be evenly spread. In the above
example, for instance, if the usable part of the real line is the interval [1, 7] the
evenly spaced sets A = {1, 3, 5, 7} is the unique maximum of ADNNΠ over all
sets of size 4.

1.2 Theoretical Discussion

The process of ELSA can be described as a Markovian Process governed by the
stochastic recursion:

P0 = Init();Pt+1 = Select(Pt ∪ {Variate(P)}), t = 1, 2, . . .

In theory, given a mutation operator with sufficient support, ELSA converges
in probability to a local optimum of a diversity indicator and it is ascertained
that all points will eventually reach the feasible set. The reason for this is that
replacing an infeasible solution by a feasible solution always leads to the improve-
ment of the augmented diversity indicator, and in case of equal sized feasible sets
the diversity indicator of a set can only stay equal or increase.

2 Stochastic Simulation of Gene Regulatory Networks

A gene regulatory network is constituted by a collection of DNA segments within
a cell which govern gene expression levels and protein concentrations over time.
The DNA segments dynamically interact with each other through their RNA and
protein expression products. Whereas classically gene regulatory networks were
modeled deterministically by means of systems of ordinary differential equations,
more recently stochastic simulation receives increased attention as biologists
want to study adaptations in which stochasticity plays a crucial role. One such
example is bet-hedging, a strategy where in a homo-genetic population different

Parameter Identification of Stochastic Gene Regulation Models 55

phenotype traits are developed according to some evolved distribution in order
to make the population robust to environmental fluctuations [11].

In this paper we are less concerned with the adaptive value of stochasticity
but rather want to devise robust simulation and optimization tools to study
these systems. The stochastic simulation of gene regulatory networks has been
studied in past work and the common method is to use extensions of Gillespie’s
algorithms for reaction systems with delay [1,3] which was originally developed
as a statistically sound and efficient simulation algorithm for chemical reaction
systems with known reactions and reaction rates. It is typically used for modeling
systems with a small number of molecules. To use these algorithms for simulating
gene regulatory networks it is required to introduce delays, for instance the time
it takes from a factor docking to a promotor to the start of translation, or small
delays for the transport of messenger RNA fragments from the DNA to the
ribosome.

We have used an example SGRN as shown in [7]. The network is a stochastic
simulation of transcription and translation. It is modeled as a delayed chemical
reaction. Each reaction i has a variable ki which is the reaction’s rates and
proportional to the probability of a reaction to occur in a certain time interval.
We have simulated the network over time t. As result we have the output data
that consists of concentrations of certain proteins as each time stamp. We want
to retrieve a feasible collection of input values k for the network, based on output
concentration of certain molecules under the assumptions that the initial k values
are not known during output analysis.

An overview of this process is given in Fig. 1. First we simulate a GRN with
known k values. Resulting concentrations of certain proteins are represented

Fig. 1. Overview of the proposed framework.

56 A. Nezhinsky and M.T.M. Emmerich

as f(k). Then we run an Evolutionary Algorithm to predict k′ based on the
output f(k). The first iteration k′will not be predicted but randomly set. The
values of k′ are then again fed to the GRN simulator and concentrations of
proteins are gained as f(k′). f(k′) is then compared to f(k) based on some fitness
function. The more the concentrations match each other the better the result of
the fitness function. Based on the fitness function the quality of predicted k′is
evaluated and the Evolutionary Algorithm is rerun.

2.1 Simulation of Gene Regulatory Network by Gillespie Algorithm

For simulation our GRN we use a stochastic model, since deterministic models
may not accurately describe such systems when the number of molecules is
small. Stochastic model simulation is done by the use of the Gillespie algorithm.
Gillespie’s algorithm consists of the following steps.

1. Initialization: Molecules, reaction rates (k) and random number generators
are initialized during this step.

2. Monte Carlo sampling: Randomly choose next reaction to execute (multinom-
inal distribution) and the time interval to the next reaction (exponential
distribution). The probability of executing a reaction is proportional to the
number of molecules and the reaction rates. Moreover, the time to the next
reaction depends on these parameters, too.

3. Update: Increase the time by the chosen time interval and update the molecule
count based on the chosen reaction outcome.

4. Iterate: Unless the simulation time has been exceeded, loop back to the Monte
Carlo step.

3 Problem Definitions

We have chosen to simulate a problem that uses a GRN as described in Ribeiro
et al. 2006 [7]. The problem involves measurements of monomers. Problem sim-
ulations involve the possibility to select the presence or absence of two inducers.
As a result of a single run of the network the amounts of two proteins r1 and r2

are of interest.

3.1 Monomer Problem by Ribeiro et al.

From the network that is proposed by [7] we chose the initial settings for the
following reaction elements: RNAP , Pro1, Pro2, Pro1r2, Pro2r1, r1, r2, Ind1,
Ind2. The following initial element amounts are assumed: RNAP = 50, Pro1 =
1, Pro2 = 1. The values τi denote delays after reactions. These are the times
before a certain element again becomes available to the system. Before this time
the element is locked (deactivated) in the stochastic simulation. In order to
simulate the network with the presence of only the first inducer we set Ind1 = 1
and Ind2 = 0, to simulate the presence of both inducers we set Ind1 = 1 and
Ind2 = 1. All other elements are set to 0.

Parameter Identification of Stochastic Gene Regulation Models 57

Regular Reactions. Proposed reactions are taken from [7]. The stoichiometric
reaction equations are given by:

1. RNAP + Pro1
k1→ Pro1(τ1) + RNAP (τ2) + n1 × r1(τ3)

2. RNAP + Pro2
k2→ Pro2(τ1) + RNAP (τ2) + n2 × r2(τ3)

3. r2 + Pro1
k3→ Pro1r2

4. r1 + Pro2
k4→ Pro2r1

5. Pro1r2 + Ind1
k5→ Pro1 + r2 + Ind1

6. Pro2r1 + Ind2
k6→ Pro2 + r1 + Ind2

7. r1
k7→

8. r2
k8→

Additionally some reactions do not instantly produce resulting elements after
execution, but resulting elements are created with a certain delay. To account
for this we introduce delayed elements: RNAP (τ2), Pro1(τ1), Pro2(τ1), r1(τ3),
r2(τ3). Delayed elements are treated as reactions. The delayed processes are then:

9. RNAP (τ2)
k9→ RNAP

10. Pro1(τ1)
k10→ Pro1

11. Pro2(τ1)
k11→ Pro2(τ1)

12. r1(τ3)
k12→ r1

13. r2(τ3)
k13→ r2

The array ni comprises constants that represent the rate of translation of mRNA.
We assume ni = 1. Stochastic rate reactions are assumed to be 1s−1, k1, . . . , k6 =
1.0, with an exception of the decay reactions k7, k8 = 0.001. All values are taken
from [7].

As described in [4] (page 3) the half lives τ can be converted from corre-
sponding rate constants by τi = ln 2

ki
. And thus ki = ln 2

τi
. For τ2 = 20.0 we set

k9 = ln 2/20.0, for τ1 = 1.0 we set k10, k11 = ln 2, and for τ3 = 10.0 we set
k12, k13 = ln 2/10.0. for τ3 = 10.0 we set k12, k13 = ln2/10.0.

Propensities of Reactions. Propensities are the probability that the reaction
given in equation i occurs and are depending on availability of elements on the
left side of the equation and stochastic rate reaction ki for the reactions 1 to 13:

P1 = k1 × RNAP × Pro1

P2 = k2 × RNAP × Pro2

P3 = k3 × r2 × Pro1

P4 = k4 × r1 × Pro2

P5 = k5 × Pro1r2 × Ind1

P6 = k6 × Pro2r1 × Ind2

P7 = k7 × r1

58 A. Nezhinsky and M.T.M. Emmerich

P8 = k8 × r2

P9 = k9 × RNAP (τ2)
P10 = k10 × Pro1(τ1)
P11 = k11 × Pro2(τ1)
P12 = k12 × r1(τ3)
P13 = k13 × r2(τ3)

In order to validate the implementation of the new MATLAB simulator, we
compared its result with that of the GRN simulator by Ribeiro et al. [7]. The
amounts of two proteins r1 and r2 are measured over time.

3.2 Objective Function

The objective function allows us to compare how well a proposed solution looks
like the original solution. In our case we compare the graphs that represent
concentrations of the resulting proteins over time: r1 and r2 for the monomer
problem. An often used measurement in case of comparing two graphs would
be a root mean square error (RMSE). In order to be able to perform RMSE an
interpolation step of the resulting data is needed since the two sets can have a
different time distribution.

Fig. 2. Sampled trajectories (left), Known average trajectory of molecular concentra-
tions (right)

Parameter Identification of Stochastic Gene Regulation Models 59

Calculating the fitness by considering a single run RMSE however is not
satisfactory. Due to the stochasticity of the simulation, RMSE with same k
give different results. Therefore it is unrealistic to demand a zero RMSE. The
bandwidth of the simulation results can be assessed from Fig. 2 (left). A solution
would be to average the f(x) from over multiple runs. We would like to estimate
what the amount of runs would be to retrieve a trustworthy RMSE while keeping
the amount of rerunning the network to a minimum as shown in Fig. 2 (right).

4 Experimental Setup

Next, experiments are described for testing the ability of ELSA to find correct
and alternative settings for k. For both considered problems we compute time
series for the given k. Then we use ELSA to find back the parameters.

4.1 Monomer Problem

To calculate a trustworthy RMSE(A,B) for model A and model B of we com-
pute A m times, then take an average of the runs Ā = 1

m

∑m
i=1 Ai. In this case

this is the average of concentrations of r1and r2 at each time stamp. Averag-
ing is done over the runs. Then the same for solution B is done, B is recalcu-
lated n times into B̄. Then we consider the value of RMSE(Ā, B̄) instead of
RMSE(A,B) for the calculations.

In order to determine optimal number of m and n when comparing two
solutions we assume that A and B are actually created from the same input
values, and thus the error between them should be minimal. To accomplish for
that we recalculate A m = 30 times. After that we try different values for n
and compare the RMSE(Ā, B̄) values. All of the experiments were in addition
rerun 100 times (for each experiment RMSE(Ā, B̄) was recalculated 100 times
and average a and standard deviation σ computed. The following results were
acquired:

1. For m = 30, n = 1: a = 115, σ = 67
2. For m = 30, n = 10: a = 36, σ = 15
3. For m = 30, n = 20: a = 29, σ = 11

From these results we can see that a and σ do not change after n = 20 (values
are the same for n = 20 and n = 30). Therefore it is safe to assume that for
correct rmsa(Ā, B̄) can be calculated with n = 30, m = 20.

4.2 Gene Expression Problem

In a similar way as for the monomer we need to determine a sufficient number of
mc and nd when comparing the two solutions C and D for the gene expression
problem. To accomplish for that we recalculate C mc = 30 times. After that we
try different values for n and compare the RMSE(C̄, D̄) values. The following
results were acquired.

60 A. Nezhinsky and M.T.M. Emmerich

1. For m = 30, n = 1: a = 75.
2. For m = 30, n = 2: a = 56.
3. For m = 30, n = 10: a = 27, σ = 4.
4. For m = 30, n = 15: a = 22, σ = 2.
5. For m = 30, n = 20: a = 19, σ = 2.
6. For m = 30, n = 30: a = 19, σ = 2.

From these results we can see that a and σ does not change after n = 20,
anymore. Therefore we assume that for correct RMSE(C̄, D̄) can be calculated
with n = 30, m = 20;

5 Level Set Approximation Results

Evolutionary algorithms are population based optimization algorithms. Pop-
ulation evolves by making use of such concepts such as mutation, crossover
and fitness-based selection. The root mean square error fitness function deter-
mines the quality of solutions (= candidate parameter sets). We have evaluated
CMA-ES and ELSA approaches. CMA-ES provides a single solution, is quasi
parameter-free and is optimized for noisy data. CMA-ES can be extended with
niching which makes sure multiple optima being maintained in niches [5].

5.1 CMA-ES Evaluation

We ran CMA-ES for the monomer problem with the following settings: m =
30 n = 1 fmin = 115 evalmax = 5000/n. We have chosen n = 1 for speed
performance, we have chosen fmin = 115 since a = 115 when two sets are
equal and compared with m = 30 n = 1. The results that were obtained during
5 runs: f < fmin was reached at: 4160 evaluations, 2810 evaluations, > 5000
evaluations, 1040 evaluations and 1080 evaluations. In Fig. 3 (Right, Middle)
some resulting graphs are shown. Additionally we have tried running CMA-ES
with niching enabled with the following settings: m = 30 n = 1 fmin = 115
evalmax = 5000/n and the number of niches q = 2. The algorithm was rerun 5

Fig. 3. Left, Middle: CMA-ES convergence history. In the cases above f < fmin was
reached at: 4160 evaluations (416generations) and 1040 evaluations (104 generations).
Left: CMA-ES with niching (2 niches) evaluation results.

Parameter Identification of Stochastic Gene Regulation Models 61

Fig. 4. ELSA evaluation results. In the case above f < fmin was never reached within
5000 evaluations (left graph). In the right graph we see that all the possible solutions
collapse to almost the same values.

times, but f < fmin was never reached within 5000 evaluations. However, again
the lacking ability of the CMA-ES to find a feasible solution was preventing in
this case to find any feasible solution. In Fig. 3 (Right).

5.2 ELSA Evaluation

We ran ELSA with the following settings: m = 30 n = 1 fmin = 115 (error
threshold), evalmax = 5000/n, and 14 points to approximate the level set. The
algorithm was rerun 5 times, but f < fmin was never reached within 5000 eval-
uations. A notable problem was that all the solutions would collapse to same
pattern as shown in Fig. 4. In order to improve on these results we have consid-
ered minor modification of the default ELSA algorithm. Within the default ELSA
algorithm child solutions are generated from parents by multi-point mutation. In
our ELSA modification child solutions are created either by random generation
(ratio 0.25), random recombination (ratio 0.25), one-point mutation (ratio 0.25)
or generated from parent by multi-point mutation (ratio 0.25).

We ran this ELSA modification with the same settings as previously: m = 30
n = 1 fmin = 115 evalmax = 5000/n with 14 levelsets. The algorithm was rerun
5 times, f < fmin was reached at the following amount of evaluations:

1. First point < fmin at iteration 173, all points < fmin at iteration 775;
2. First point < fmin at iteration 907, all points < fmin at iteration 1448;
3. First point < fmin at iteration 1452, all points < fmin at iteration 2059;
4. First point < fmin at iteration 2118, all points < fmin at iteration 3316;
5. First point < fmin at iteration 657, all points < fmin at iteration 1164;

62 A. Nezhinsky and M.T.M. Emmerich

Fig. 5. Modified ELSA evaluation results. In the case above f < fmin was never
reached just after 1000 evaluations (left graph). In the right graph we see that the
possible solutions show a high variety of values.

Fig. 6. Top left graph is the ground truth graph or r1 and r2 concentrations. Bottom
left graph is one of the runs is shown with convergence of the results. Top right graph
shows the 14 levelsets found by the algorithm. Bottom right graph is ther1 and r2
concentrations created from the best solution.

Parameter Identification of Stochastic Gene Regulation Models 63

We can see that all the levelsets reached fmin within evalmax ≈ 2000 evaluations
which makes the modified ELSA a better algorithm then the standard approach
CMA-ES for this problem. Additionally, the solution space now shows a high
variety of different solutions, as can be seen in Fig. 5.

Now that we have found a good approach for the problem we want to create
even less noisy solutions. In order to do so we adjust values of n during runtime.
Initial run settings:m = 30 n = 1 fmin1 = 115+67 evalmax = 5000/n. When the
solutions with these settings are found, f < fmin1 for all levelsets, we continue
running but with the following settings: n = 2 fmin2 = 78+48. When f < fmin2

for all levelsets, we continue running but with the following settings: n = 10
fmin3 = 36+15. When f < fmin3 for all levelsets, we continue running but with
the following settings: n = 20fmin4 = 29 + 11. Results show fast convergence
(Fig. 6) with fitness values around 30.

6 Conclusions and Outlook

ELSA was used as a method to calibrate parameters in stochastic gene regula-
tory networks (SGRN). Stochastic simulation by Gillespie’s algorithm is used to
compute a stochastic trajectory. The SGRN (Ribeiro et al. 2006) was used as a
test case. The system has 8 reaction rates (prospensities). The ‘task’ for ELSA
was to find the reaction rates that give rise to an observed average trajectory
(see Fig. 1, right). The systems behaviour was given by the averaged trajectory
of the number of certain molecules. As for ELSA the true reaction rates were
unknown it has to find them back by minimizing the RMSE until it is below the
threshold and to find a diverse set of solutions with RMSE below threshold. The
study showed that the standard version of ELSA and a restart method based
on the uncertainty handling CMA-ES (Hansen et al. 2009) did not manage to
generate diverse sets, whereas, after some modification of the mutation operator,
introducing a random switch between large and small mutation, ELSA was able
to identify a diverse set of reaction parameter settings (see Fig. 1, left). Each one
of the found parameter settings can be a possible explanation of the system’s
behaviour and further knock out experiments would have to be conducted to
narrow down the search space to a single solution. The main conclusion from
the method is that not only the selection method is crucial for obtaining a suf-
ficient performance but also the variation operators. The interplay between the
two need to be in the focus of future scientific investigations.

Acknowledgements. The authors gratefully acknowledge financial support by the
Netherlands Science Organization (NWO) within the Computational Life Science/
BETNET Project.

64 A. Nezhinsky and M.T.M. Emmerich

References

1. Cai, X.: Exact stochastic simulation of coupled chemical reactions with delays. J.
Chem. Phys. 126(12), 124108 (2007)

2. Emmerich, M.T.M., Deutz, A.H., Kruisselbrink, J.W.: On quality indicators for
black-box level set approximation. In: EVOLVE-A Bridge between Probability, Set
Oriented Numerics and Evolutionary Computation, pp. 157–185. Springer (2013)

3. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

4. Hayot, F., Jayaprakash, C.: Nf-κb oscillations and cell-to-cell variability. J. Theor.
Biol. 240(4), 583–591 (2006)

5. Li, R., Eggermont, J., Shir, O.M., Emmerich, M.T.M., Bäck, T., Dijkstra, J.,
Reiber, J.H.C.: Mixed-integer evolution strategies with dynamic niching. In: Par-
allel Problem Solving from Nature–PPSN X, pp. 246–255. Springer (2008)

6. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. AMS,
vol. 153. Springer, New York (2003)

7. Ribeiro, A., Zhu, R., Kauffman, S.A.: A general modeling strategy for gene reg-
ulatory networks with stochastic dynamics. J. Comput. Biol. 13(9), 1630–1639
(2006)

8. Schutze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged haus-
dorff distance as a performance measure in evolutionary multiobjective optimiza-
tion. IEEE Trans. Evol. Comput. 16(4), 504–522 (2012)

9. Solow, A.R., Polasky, S.: Measuring biological diversity. Environ. Ecol. Stat. 1(2),
95–103 (1994)

10. Ulrich, T., Thiele, L.: Maximizing population diversity in single-objective optimiza-
tion. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation, pp. 641–648. ACM (2011)

11. Veening, J.-W., Smits, W.K., Kuipers, O.P.: Bistability, epigenetics, and bet-
hedging in bacteria. Annu. Rev. Microbiol. 62, 193–210 (2008)

Evolution in ICT Security

On Using Cognition for Anomaly
Detection in SDN

Emilia Tantar(B), Alexandru-Adrian Tantar, Miroslaw Kantor,
and Thomas Engel

Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg, 4 Rue Alphonse Weicker,

2721 Luxembourg, Luxembourg
{emilia.tantar,alexandru-adrian.tantar,
miroslaw.kantor,thomas.engel}@uni.lu

Abstract. Through this position paper we aim at providing a proto-
type cognitive security service for anomaly detection in Software Defined
Networks (SDNs). We equally look at strengthening attack detection
capabilities in SDNs, through the addition of predictive analytics capabil-
ities. For this purpose, we build a learning-based anomaly detection ser-
vice called Learn2Defend, based on functionalities provided by Openday-
light. A potential path to cognition is detailed, by means of a Gaussian
Processes driven engine that makes use of traffic characteristics/behavior
profiles e.g. smoothness of the frequency of flows traversing a given node.
Learn2Defend follows a two-fold approach, with unsupervised learning
and prediction mechanisms, all in an on-line dynamic SDN context. The
prototype does not target to provide an universally valid predictive ana-
lytics framework for security, but rather to offer a tool that supports the
integration of cognitive techniques in the SDN security services.

1 Introduction

Security in Software Defined Networks (SDNs) spans over different layers, fol-
lowing mainly two perspectives: (i) the security of an SDN infrastructure in
itself and (ii) enhancing the security of already existing networks brought to
the SDN context. The SDN architecture offers the advantage of a centralized
holistic perspective over the entire network and a clear separation between the
data plane, the control plane and the applications layer. This opens the path for
service improvement and implicitly for security as a service, built on top of the
controller offered functionalities.

Different security aspects are under investigation, ranging from policy
enforcement, to traffic anomaly detection [19] and mitigation [10] or DoS attack
detection and mitigation [4]. The global network perspective enables also cop-
ing with aspects as malicious administrators behavior, including misconfig-
urations [17]. Tools were also developed for enabling configuration integrity
checks [1], or going even further and enabling virtualization [25]. Initial efforts

c© Springer International Publishing AG 2018
A.-A. Tantar et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation VI, Advances in Intelligent Systems and Computing 674,
https://doi.org/10.1007/978-3-319-69710-9_5

68 E. Tantar et al.

have been made [14] also in proposing good practice guidelines to protect SDN
networks.

Although progress is continuously being reported, one major issue requiring
further investigation relates to the efficiency and scalability of security mecha-
nisms, in front of the big data challenge, as flows are continuously being gener-
ated. On a more practical note, security applications, built on top of the con-
troller, depend on the efficiency of the south-bound protocol statistics collection
and processing [10]. Although several protocol alternatives were developed, e.g.
ForCES [28], OpenFlow [18] imposes as a de facto standard, being both sup-
ported and promoted by the Open Networking Foundation(ONF) and providing
the needed communication collaborative ground that enables the integration of
different vendors equipment for example. Technical solutions are being devel-
oped, e.g. by making use of combined sFlow and OpenFlow capabilities, for
raising the data collection burden. This empowers anomaly detection of large
scale malicious events, measured through metrics such as the entropy. Never-
theless the data analysis still remains a major concern and when looking at the
cognitive dimension emerged in SDN for security purposes, one cannot help in
noticing that control loops and autonomic network management are amongst
the ancestors of cognitive techniques for SDN [27]. Active security prototypes
for SDN [13] make use for example of feedback control loops. Security control
loops have been reviewed [27] and their advantages and drawbacks highlighted.

Since the eighties [6], statistical approaches and machine learning or cogni-
tion oriented approaches remain the driving forces in providing security in the
networking context, and this remains valid for SDN also. Neural networks, K-
means clustering or Markov models are only some of the application examples
in the SDN context for anomaly detection [16]. Naive techniques make use of
fixed confidence bounds in detecting anomalous behavior, with variations such
as moving average [23] to adapt to the dynamically fed traffic flows. However,
when considering these paths, one should be cautious, as no universal approxi-
mator exists and a good understanding of the network characteristics can provide
valuable results [26].

What catches the eyes, from the implementation perspective, is the open-
source development of controllers, with candidates as Pox [22], Nox [11], Flood-
light [8], Beacon [7], Opendaylight [21] and the need of a prototype platform
enabling fast and easy integration of predictive analytics behavior in a highly
controllable environment. Through this paper we address this issue by propos-
ing an open-source prototype for Cognitive security in SDN, for the purpose of
anomaly detection, called Learn2Defend.

The remainder of this paper is organized as follows. We start with a brief
overview of anomaly detection, in Sect. 2. Subsect. 2.1 provides an outline of
Gaussian Processes, followed by a description of the data collection and training
algorithms in Subsect. 2.2 (extension of the Defense4All framework to include
cognition mechanisms). Section 3 provides a structural view of the prototype
solution we built, including a description of the testbed and brief preliminary
showcase running results. We end with conclusions in Sect. 4.

On Using Cognition for Anomaly Detection in SDN 69

2 Prototyping Cognitive Behavioral Security: Anomaly
Detection

Following the classification provided in [6], various types of statistical profiling
can be put in place based on collected data. The Learn2Defend prototype, pro-
posed hereafter, can be considered as an intrusion detection system, according
to the taxonomy of [5] as historical attack data can be made available from the
controller, while topological network information and statistics regarding the
current network status can be also provided from the controller.

Behavioral security prototypying in SDN was previously considered for attack
detection and mitigation in the context of data centers; considering statistics tar-
geting both switches and routers [15]. Following the emergence of virtualization,
the proposed perspective was built on top of an NFV/SDN context. In the follow
up we provide prototypying an attack detection/mitigation system by means of
open-source platforms. Do note that a thorough knowledge of the network par-
ticularities is essential in fine tailoring and choosing the appropriate tools for
performing online data analysis, as in the case of classical networks [26].

We start by depicting, in Fig. 1 the prototype cognitive security module,
together with controller functionalities of interest and inherited communication

OpenFlow

OpenFlow
OpenFlow

OpenFlow

OpenFlow

OpenFlow

Application layer

 Defense4All Learn2Defend

Host
Tracker

Statistics
Manager

Topology
Manager

Fig. 1. SDN Holistic abstraction, including cognitive security third party application.

70 E. Tantar et al.

module. This is followed by an architectural view of the road to cognition, from
the Gaussian processes modeling perspective.

2.1 A Road to Cognition: Gaussian Processes Modeling

The machine learning domain, in general, and anomaly detection, in particular,
include a large array of methods. Examples include decision trees, artificial neural
networks, support vector machines or Bayesian methods [2,3,24]. Some of these
methods are intended for clustering, some for classification while others look at
regression problems. However, one is generally determined to select one class
over another based on criteria such as the nature of the data to work with,
expected output, flexibility or, more importantly, trade-off between training and
prediction/classification time. With respect to the area we deal with, we chose
to use Gaussian Processes (GPs) [24] mainly due to their non-parametric nature,
high flexibility and interesting training-prediction trade-off (at the scale of our
instances). A strong advantage GPs have is their ability to easily integrate any
prior knowledge with respect to data by selecting or adapting some specific kernel
function (details to be provided later). Moreover, GPs where shown, for some
specific classes, to be a direct equivalent of a neural network with infinitely many
hidden units (limit case) [20]. Another aspect we are interested in is being able
to give confidence bounds for our predictions.

Gaussian Processes (GP) can be thought of as a generalization of the
Gaussian distribution [24]. If samples are visualized as functions (spanning an
infinite number of points), if any linear combination of any finite number of
points along these functions has a multivariate Gaussian distribution, the process
is said to be Gaussian.

A GP is a non-parametric stochastic model capable of providing predictions
given a subset of ‘observed’ points. It makes use of random variables with a
joint multivariate Gaussian distribution. The model in itself can be seen as an
unknown function that maps any input point x ∈ R

d to an output y = f(x),
y ∈ R

n, with the implicit underlying assumption that f(x) is a (multivariate)
Gaussian random variable. The values y1, . . . , yn can be thus seen as being drawn
from N (μ,Σ), where Σi,j is the covariance of the outputs (that correspond to
the inputs xi and xj). For a GP, the covariance matrix is modeled by a kernel,
denoted in the follow-up as K(xi, xj); this is in fact the core of the GP model.

A GP model is fully described by its mean μ(x) and covariance function
K(xi, xj); the covariance can also be interpreted as a distance metric between
two input points. Not surprisingly, the quality of a GP strongly depends on the
kernel. As the kernel models the interactions and overlap between the various
components, it should consider, if possible, the nature of the data to deal with,
e.g. smoothness, cyclic or repeating patterns. This is however not always pos-
sible. In our case, specifically, the way data looks is strongly influenced by the
environment it originates from (hardware components, network topology, users,
usage, etc.), and we can not consequently make any before-hand assumptions.
Some examples of kernel functions include constant, linear, Gaussian noise or
squared exponential functions, among many others.

On Using Cognition for Anomaly Detection in SDN 71

For the scope of our study and for prototyping, we decided to make use
of a Squared Exponential (SE) invariant kernel (also known as a Radial Basis
Function or Gaussian kernel), defined as follows:

K(xi, xj) = exp
(

−|xi − xj |2
2�2

)
(1)

where � is a characteristic length-scale [24]; such a kernel implies a smooth
process. If this assumption is thought not to hold given a specific e.g. network
or hardware resources setup, one can also refer to using a Matérn class kernel;
despite being more computationally intensive (not directly fit for our case), the
Matérn class of covariance functions has the advantage of being able to infer
smoothness from the data. For details on GPs or kernels, please refer to [24].
Also, please do note that while a Gaussian assumption may (indeed) not hold in
all (network traffic) cases, it was preferred working with a Squared Exponential
kernel given that it offers (i) a sufficient tradeoff in terms of descriptive coverage
and computational constraints (w.r.t. this specific application and setup); and
(ii) a sufficient approximation of the different stochastic processes that combine
into a single signal, i.e. as observed in dense traffic patterns.

Using the SE provides the equivalent of a Bayesian linear regression where the
covariance is defined as a linear combination of an infinite number of Gaussian
basis functions [9,24]. Among others, the SE definition assumes a high correlation
among close points while distant points are uncorrelated. This fits our setup and
study framework, while being however easily inter-changeable to fit any other
(more complex or significantly different) case.

A simple approach, if such a kernel refinement is needed, is to extend the
anomaly detection engine (described later more in detail) to make use not of one
but of a set of differently configured GPs; one can then simply select a best-fit
kernel or use a voting-like approach. Note that it is also possible to construct
a completely new kernel by combining existing ones (according to some well
defined rules, not detailed as out of scope for our study), mixing, for example,
patterns for cyclic and increasing trends or smoothness, if some prior knowledge
about the data is available.

We identify first the basic needs of such a cognitive security protoype:
(i) enable real-time data gathering and (ii) provide support for out-of-the-box
machine learning techniques. The cognitive behavioral security pipeline is as fol-
lows: a counter is instantiated on a specific port for a specific protocol, multiple
protocols can be considered for the same port. Build a training set based on
historical data, create the initial behavioral model based on the training data.
Online dynamically adapt the model corresponding to the regular profile based
on newly feed data (the re-training phase). Use only labeled data for the online
training.

Also, as with using a regression-based approach, it is possible in a similar
manner to interpose a classification component. The main constraint one has
to consider at this point is however the incurred computational load. An e.g.
random forest based approach may, in specific case, be more effective but, at the

72 E. Tantar et al.

same time, may pose a too significant load when in dense traffic. An extensive
comparative analysis is considered for a future study where several network
setups and load cases need to be surveyed. For the limit of this study we only
referred to the (already deployed in live traffic) baseline moving average based
detection.

2.2 Learning and Building Profiles

The framework is broken into several components, e.g. filtering, pre-
processing, classification and/or regression-based detection. We namely make use
of two independent processes, one for building a training set and the second one
for identifying anomalous flows, pseudo-code in Algorithm 1 and Algorithm 3,
respectively. The aim is to allow a flexible design where different algorithms
can be inter-connected in a (relatively) black-box manner. For our scope and
w.r.t. the fixed aim of study, we address the problem of detecting outliers via a
regression-based approach. A significant deviation from a pre-trained model, in
this setup, is reported as a potential sign of e.g. potential intrusion/abnormal
traffic.

Both the training set construction and the anomaly detection algorithms
make use of what we will refer to as ‘instances’, i.e. fixed length arrays of data
flow bytes. Algorithm 1 uses a sliding window approach to construct the training
set. The algorithm is deployed in live traffic conditions. For our concept we rely
on raw data (assembled into instances), e.g. size in bytes associated to (a subset
of) keys to monitored sampled based on time of arrival (irregular); it is equally
possible using, for example, traffic patterns or online (running) statistics. Traffic
logs, i.e. packet size for a given (subset of) key(s), are assembled as samples
and then used to build a baseline model. Logs, w.r.t. our configuration and in
most of our interest cases, show a stable profile and relatively high correlation
degree. Note that the current (real-life deployed) detection approach, nonetheless
sufficiently effective, relies on a moving average statistics.

For anomaly detection we build an ‘observed’ instance in a similar manner
(sliding window at the level of single readings and not over full instances). The
size of an instance (number of attributes) as well as the number of instances
required for training are fixed in advance. The main reason for using such an
approach is to remain coherent even if trend shifts appear in the data. While we
consider a Gaussian Process prediction model, other similar models or classifiers
can be used as well, either independently or simultaneously, e.g. making use of
differently sized windows, for short- and long-term views, or using offline screened
data exclusively.

The training set construction algorithm is called in iterative manner (online
dataset construction) and, the algorithm by itself, iterates as long as flow data
is available; for this example we assume that we look at bytes. All flow data not
labeled as being for training is skipped (lines 3–5). This allows one to control
when model updates are (or should not be) made. A traffic key is generated
next, based on the protocol and port pair (line 6). If the key is monitored, then
we enter the training set construction segment of the algorithm (lines 8–22).

On Using Cognition for Anomaly Detection in SDN 73

Algorithm 1. Online training set and Gaussian Processes predictor construction.

while flow data available do

data ← flow data

if data is not for training then
continue;

end if

key ← { protocol, port }

if key is monitored then

if fIndex ¡ numAttributes then
trainingInst{ fIndex } ← data.bytes
fIndex ← fIndex + 1

end if

if fIndex = numAttributes then

if ‖ trnset ‖ = learningThreshold then
trnset ← trnset / trnset{ 0 }

end if

trnset ← trnset ∪ trainingInst

instance ← {empty instance}
for j ∈ [0, numAttributes − 1] do

instance{ j } ← trainingInst{ j+1 }
end for
trainingInst ← instance
fIndex ← numAttributes-1

end if

if ‖ trnset ‖ = learningThreshold then
detector ← build { trnset }

end if
end if

end while

Please do note that it is possible to specify all or only a limited set of keys to be
monitored, with no restriction, as required. If we did not yet fill a full training
instance (line 8), we append the value read to the instance and increment the
field/attribute ‘fIndex’ value correspondingly (lines 9–10); ‘fIndex’ is assumed to
be a global variable, first initialized to 0. If now the training instance is complete
(line 12), we can add it to the training set. If we reached the learning threshold
(number of instances to trigger the construction of the detector component), we

74 E. Tantar et al.

first discard the oldest instance in the training set (lines 13–15), and then we
add the training instance (line 16) constructed at the previous step. All values in
the instance used to collect flow data (for this key) are shifted to the left (lines
17–22); this step makes place for a future flow data value. Last, inside the ‘key is
monitored’ branch, if the learning threshold was reached, we build the detector
(lines 24–26).

Algorithm 2. Multiobjective Optimization by Cooperative Swarms (MOCOPS)
Input initial population P0

while termination criterion is not reached do
t ← t + 1
s ∼ u({1, 2, . . . , n − 1, n})
xold = x(s)

P ← Pt \ {x(s)}
{Try to improve position of particle x(s)}
z ∼ N(0, I)
xnew = xold + σ · z
if HV (P ∪ {xnew}) > HV (P ∪ {xnew}) then

Pt ← P ∪ {xnew}
else if HV (P ∪ {xnew}) < HV (P ∪ {xold}) then

Pt ← P ∪ {xold}
else if f1(xnew) + f2(xnew) < f1(xold) + f2(xold) then

Pt ← P ∪ {xnew}
else

Pt ← P ∪ {xold}
end if

end while
Return Pt

For an outline of the data collection process, please see Algorithm 3. We
assume that index is a ‘globally’ visible variable, initially set to 0 (first ele-
ment of an instance). The algorithm iterates while there is still flow data avail-
able. We first retrieve the flow key (line 2) and, if the key is among the ones
being monitored, we enter the data collection/prediction segment (lines 3 to
25). Next, we collect flow data (line 4). If ‘index’ is less than ‘numAttributes’
(number of attributes/size of an instance), we add the newly read data to
‘observed’ at the position currently indicated by ‘index’. The result is that
we construct the instance as new data is read. Then, ‘index’ is incremented
to indicate the next position available in the ‘observed’ instance. If we have a
complete instance (‘index’ = ‘numAttributes’, line 9), we can screen ‘observed’
using detection (Gaussian Processes for our case, pre-trained using Algorithm 1).
Namely, if the learning threshold, i.e. minimum number of instances for train-
ing, was reached, we determine the expected value μ and the variance σ of the
flow (lines 11 and 12). If the observed (actual) value is outside the 95% interval
([μ−2σ, μ+2σ]), then we add the ‘{protocol, port}’ pair to the set of anomalous

On Using Cognition for Anomaly Detection in SDN 75

Algorithm 3. Outline of the process used to read data and that runs predictions
with a confidence bounds check.

while flow data available do

key ← flow key

if key is monitored then

data ← flow data { key }

if index ¡ numAttributes then
observed{ index } ← data.bytes
index ← index + 1

end if

if index = numAttributes then

if reached learning threshold then
μ ← detector.classify{ observed }
σ ← detector.stdev{ observed }
if data.bytes /∈ [μ − 2σ, μ + 2σ] then

idPair ← { protocol, port }
anomalous ← anomalous ∪ idPair

end if
end if

instance ← {empty instance}
for j ∈ [0, numAttributes − 1] do

instance{ j } ← observed{ j+1 }
end for
observed ← instance
index ← numAttributes-1

end if
end if

end while

flows. Note that the variance is calculated with respect to the context data stored
in ‘observed’ and is not some fixed value; it is also determined by the nature of
the data that was used for training. Having filled a full instance, i.e. ‘observed’,
we now need to accommodate a new flow data reading. Lines 18–23 discard the
first reading in ‘observed’ and shift all other values to the left; the ‘index’ is set
accordingly (the last array entry in ‘observed’ can now receive a new value). The
loop terminates when no more flow data is available. The algorithm by itself is
called in iterative manner whenever data becomes available.

76 E. Tantar et al.

3 Learn2Defend: Cognitive Security in SDN Preliminary
Prototype

The Learn2Defend cognitive behavioral security prototype has been developed
by having as base architecture the open-source Defense4all [23] communication
mechanisms and interfacing them with the Weka [12] machine learning open
platform capabilities. A general layered system architecture of Learn2Defend is
depicted in Fig. 2.

Fig. 2. Learn2Defend architecture and module inheritage.

It should be noted, that although built on top of the Defense4all communica-
tion and data collection modules, the Learn2Defend service runs as an indepen-
dent service. No dependencies are required from the Defenese4all, as the needed
modules have been integrated entirely in the service.

3.1 Testbed Description

In order to test Learn2Defend functionalities in a realistic scenario, we prepared
a testbed consisting of 8 TP-LINK TL-WR1043ND v1.8 wireless routers (see
Fig. 4) with an underlying network topology as depicted in Fig. 3.

This commodity hardware was updated with Pantou firmware which supports
OpenFlow and OpenWrt5, which is a common Linux-based operating system
allowing embedded devices to route network traffic. Such a modified firmware
supports version 1.0 of OpenFlow, and version 10.03.1 (Backfire) of OpenWrt.

On Using Cognition for Anomaly Detection in SDN 77

OpenFlow
S3

Controller

192.168.1.11
OpenFlow

S4
OpenFlow

S6
OpenFlow

S7 192.168.1.12

OpenFlow
S2

OpenFlow
S9

OpenFlow
S10

Learn2Defend

Fig. 3. Testbench infrastructure, including a separate machine hosting the
Learn2Defend service.

Fig. 4. Image of the physical testbed.

As an SDN controller we used Hydrogen release of the OpenDaylight [21]
controller (ODL). The OpenDaylight controller communicates with OpenFlow
switches and exposes a unified interface to program OpenFlow switches. The
communication with the Learn2Defend application is performed using the ODL
REST API. Two additional hosts with an Ubuntu 12.04 64-bit OS were used
to demonstrate different attack and fault scenarios in the network. A snapshot

78 E. Tantar et al.

Fig. 5. View of the testbed depicted by the OpenDaylight GUI.

Fig. 6. ICMP testing - using the Defense4all service (top) and Learn2Defend service
(middle). TCP testing using Learn2Defend (bottom).

of OpenDaylight GUI with implemented physical topology has been presented
in Fig. 5.

Through Learn2Defend we aim in providing enhanced attack detection capa-
bilities, by bringing the power of predictive analytics and incorporating machine
learning capabilities for the attack/anomaly detection in SDN. Some cap-
tured attacks are illustrated hereafter, obtained employing confidence bounds
in Defense4all for TCP flows (Fig. 6), respectively per switch behavioral profil-
ing by means of Gaussian processes (TCP flows - Fig. 6 and ICMP traffic Fig. 6).

Although promising concerning the time required to perform attack detec-
tion, we aim further in covering long-lived/short-lived, small flows/large flows
and following on the parameters tunning proposed in [15]. In parallel, it is also
envisaged a real-life data feeding of the network in order to approach with a
higher fidelity a production scenario.

On Using Cognition for Anomaly Detection in SDN 79

4 Conclusion

Through this paper we provide a first view at a prototype solution, open-source
platform for anomaly detection. Learn2Defend brings the scalability and flexi-
bility of predictive analytics into the SDN attack detection world. In addition
to extending Defense4All, the main achievement we have with respect to the
proposed prototype solution, is that we offer a first view of a potential cognitive
Gaussian Processes based architecture. Among other features, it allows includ-
ing prior knowledge about the data to monitor via specific or custom designed
kernel functions. Furthermore, the solution can be easily extended to simulta-
neously look at short- and long-term correlations, capture different patterns or
use a set of classifiers in a voting-like scheme. No substantial change, in terms
of implementation, is required as we exploit the ‘unified’ interface Weka pro-
vides, i.e. moving from one predictive method/classifier to a different approach
is merely a question of changing only a few lines of code (declaration and para-
meter specification).

The entire design makes use of online data collection, and thus allows to
easily switch from one type of monitoring to another, as required (or perform
a full new retraining). Ongoing work is made for an extensive testing on real-
life data, with future refinements on mitigation mechanisms, e.g. via virtualized
honeynets.

Acknowledgment. This publication is based in parts on work performed in the
framework of the IDSECOM project, INTER/POLLUX/ 13/6450335, and CoSDN
project, INTER/POLLUX/12/4434480, both funded by the Fonds National de la
Recherche, Luxembourg.

References

1. Al-Shaer, E., Al-Haj, S.: Flowchecker: configuration analysis and verification of
federated openflow infrastructures. In: Sager, T., Ahn, G.-J., Kant, K., Lipford,
H.R. (eds.) SafeConfig, pp. 37–44. ACM (2010)

2. Bishop, C.M.: Pattern recognition and machine learning. In: Information science
and statistics. Springer, New York (2006)

3. Bishop, C.M., Nasrabadi, N.M.: Pattern recognition and machine learning. J. Elec-
tron. Imaging 16(4), 049901 (2007)

4. Braga, R., Mota, E., Passito, A.: Lightweight ddos flooding attack detection using
nox/openflow. In: IEEE 35th Conference on Local Computer Networks (LCN),
2010, pp. 408–415, Oct 2010

5. Debar, H., Dacier, M., Wespi, A.: Towards a taxonomy of intrusion-detection sys-
tems. Comput. Netw. 31(8), 805–822 (1999)

6. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. 13(2),
222–232 (1987)

7. Erickson, D.: The beacon OpenFlow controller. In: Proceedings of the 2nd ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN
2013, pp. 13–18. ACM, New York (2013)

80 E. Tantar et al.

8. Floodlight project. http://www.projectfloodlight.org
9. Genton, M.G.: Classes of kernels for machine learning: a statistics perspective. J.

Mach. Learn. Res. 2, 299–312 (2002)
10. Giotis, K., Argyropoulos, C., Androulidakis, G., Kalogeras, D., Maglaris, V.: Com-

bining openflow and sflow for an effective and scalable anomaly detection and
mitigation mechanism on sdn environments. Comput. Netw. 62, 122–136 (2014)

11. Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., Shenker,
S.: Nox: towards an operating system for networks. SIGCOMM Comput. Commun.
Rev. 38(3), 105–110 (2008)

12. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

13. Hand, R., Ton, M., Keller, E.: Active security. In: Proceedings of the Twelfth
ACM Workshop on Hot Topics in Networks, HotNets-XII, pp. 17:1–17:7. ACM,
New York (2013)

14. Kreutz, D., Ramos, F.M.V., Veŕıssimo, P.J.E., Rothenberg, C.E., Azodolmolky,
S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE
103(1), 14–76 (2015)

15. Krishnan, R., Krishnaswamy, D., Mcdysan, D.: Behavioral security threat detec-
tion strategies for data center switches and routers. In: IEEE 34th International
Conference on Distributed Computing Systems Workshops (ICDCSW), 2014, pp.
82–87, June 2014

16. Kukliński, S., Wytrebowicz, J., Dinh, K.T., Tantar, E.: Application of cognitive
techniques to network management and control. In: Tantar, A.-A., et al. (eds.)
EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolution-
ary Computation V, pp. 79–93. Springer, Cham (2014)

17. Matsumoto, S., Hitz, S., Perrig, A.: Fleet: defending sdns from malicious adminis-
trators. In: Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, HotSDN 2014, pp. 103–108. ACM, New York (2014)

18. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: OpenFlow: enabling innovation in campus networks. In:
Proceedings of the ACM SIGCOMM 2008 conference, vol. 38(2), pp. 69–74 (2008)

19. Mehdi, S.A., Khalid, J., Khayam, S.A.: Revisiting traffic anomaly detection using
software defined networking. In: Sommer, R., Balzarotti, D., Maier, G. (eds.)
Recent Advances in Intrusion Detection. Lecture Notes in Computer Science, vol.
6961, pp. 161–180. Springer, Heidelberg (2011)

20. Neal, R.M.: Bayesian Learning for Neural Networks. Springer, New York (1996)
21. OpenDaylight project, 01 May 2015. http://www.opendaylight.org
22. POX controller. http://www.noxrepo.org/pox/about-pox
23. Radware. Defense4All, User Guide (2014) https://wiki.opendaylight.org/view/

Defense4All:Main
24. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning

(Adaptive Computation and Machine Learning). MIT Press, Cambridge (2005)
25. Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M., McKeown,

N., Parulkar, G.: FlowVisor: A Network Virtualization Layer. Technical report
, Deutsche Telekom Inc. R&D Lab, Stanford, Nicira Networks (2009)

26. Sommer, R., Paxson, V.: Outside the closed world: On using machine learning for
network intrusion detection. In: IEEE Symposium on Security and Privacy (SP),
2010, pp. 305–316, May 2010

http://www.projectfloodlight.org
http://www.opendaylight.org
http://www.noxrepo.org/pox/about-pox
https://wiki.opendaylight.org/view/Defense4All:Main
https://wiki.opendaylight.org/view/Defense4All:Main

On Using Cognition for Anomaly Detection in SDN 81

27. Tantar, E., Palattella, M.R., Avanesov, T., Kantor, M., Engel, T.: Cognition: a
tool for reinforcing security in software defined networks. In: Tantar, A.-A., et al.
(eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evo-
lutionary Computation V, Advances in Intelligent Systems and Computing, vol.
288, pp. 61–78. Springer, Cham (2014)

28. Yang, L., Dantu, R., Anderson, T.A., Gopal, R.: Forwarding and Control Element
Separation (ForCES) Framework, RFC 3746. The Internet Engineering Task Force,
April 2004

Feature Creation Using Genetic Algorithms
for Zero False Positive Malware Classification

Razvan Benchea(B), Dragos Gavrilut, and Henri Luchian

Faculty of Computer Science, Iaşi, Romania
{rbenchea,gdt,hluchian}@infoiasi.ro

http://www.infoiasi.ro

Abstract. This paper presents a Genetic Programming approach to
feature extraction in the frame of the perceptron algorithm described in
[1]. While feature extraction has the potential of increasing the accuracy
of classification, fully exploring the huge space of possible combinations
of the initial 45150 features would make the approach infeasible; Genetic
Programming provides a proper way of tackling the search for relevant
features. In turn, the extracted features are used to train an algorithm
- One Side Class Perceptron - designed to minimize the number of false
positives; accuracy is increased. In the experiments, the classifier using
the extracted features was run on a dataset consisting of 358,144 files.
The results show that our overall approach and implementation is fit for
real-world malware detection.

Keywords: Genetic programming · Genetic algorithms · Malware
detection · Feature creation · Feature extraction

1 Introduction

Due to increase in computing power in the last decade we are now able, in
the training phase, to explore more of the feature space and combine existing
features into newer ones in order to achieve a better separability. In this paper
we will try to develop new features from existing ones in order to achieve a better
classification accuracy on large datasets.

We work with a modified version of the perceptron algorithm, called the One
Side Class Perceptron (OSCP) [1] and we try to modify its features in order to
achieve a better classification. Even though we know that by combining each
feature with the others through a method called mapping we can increase the
accuracy significantly, this method has some serious drawbacks when it comes to
using it on an ordinary computer due to the large memory space needed to store
this huge feature set. Our purpose is to find a smaller set of features, obtained
through a series of transformation from the original feature set, that can produce
a similar result with the mapped version of the perceptron but using a smaller
amount of memory. In order to achieve this we will use genetic programming to
evolve features that are good at separating records from two classes.

c© Springer International Publishing AG 2018
A.-A. Tantar et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation VI, Advances in Intelligent Systems and Computing 674,
https://doi.org/10.1007/978-3-319-69710-9_6

Feature Creation Using Genetic Algorithms 83

In this paper we only limit the operators for the genetic feature creation to
the boolean set of operator {and , not}; and is used for crossover operations while
not is used for mutation. We choose to work only with this limited set because
we want to achieve a similar result to the mapped version of the OSCP algorithm
which only uses the and operator. This way, we can compare the results in a
more accurate way. In a future paper, the operator set will be expanded in order
to see if this improves the accuracy.

Using the methods described in this paper we create features that when used
with the OSCP algorithm achieve the same accuracy as selecting the best 600
features among the 358144 created by the mapped version of the OSCP. We
take the experiments one step further and try to find the minimum number of
features needed to achieve the same results as the mapped version. As it turns
out, we only need 4000 features, 15 times less required by the OSCP mapped
version.

Our domain of application is malware detection and more exactly the process
of separating clean executable files from malicious ones. Since we want this algo-
rithm to be integrated into an antivirus product there are some important restric-
tions that limit the algorithm classification ability.

1. The first one refers to the number of false positives: since marking a non-
malicious file as infected can lead to system corruption or important document
loss it is very important that the algorithm performs at a very low false
positive rate. Even though this may lead to a lower detection rate, this is
preferable since in practice, the rest of the detection rate is assured by other
mechanisms (i.e. hand written heuristics).

2. The second restrictions is about speed: since an antivirus product works in
the background and scans almost every file being accessed by almost every
process, it is very important to not bring an overhead to the system that will
affect the user experience. For this reason, the testing phase of the algorithm
must be very fast. The training speed is not very restrictive, but of course,
since we are testing the algorithm on large datasets it is important that the
training will finish in a reasonable amount of time.

The paper is further organized in the following sections: Sect. 2 describes
the methods used by other authors of applying genetic programming in order
to create features or classify malicious and benign files. Section 3 describes our
methodology, the problems we encountered when testing the algorithms as well
as the results. In Sect. 4 we bring our conclusions and plans for future work.

2 Related Work

In this section we discuss different approaches taken by other authors in order to
solve similar problems. Even though the application of these methods is different
than ours they all have in common feature creation using genetic programming.

Two distinct patterns can be observed when trying to combine features
extracted using genetic algorithms with a classifier. The difference lies in the
construction of the fitness function:

84 R. Benchea et al.

For the first case, the feature creation process and the classification process
are well divided. The first process, which is the feature creation, uses a fitness
function that increases the chance that the resulted features will be good at
discriminating different classes of records. After the first process is finished, the
classifier can use the original features in order to achieve a good accuracy. Even
though the feature creation process is fast it only increases classifier accuracy if
this is dependent on the fitness function used in the genetic algorithm. This is
also the approach that we take in this paper. Examples of algorithms that use
this approach can be found in [2] and [3]. The authors of [2] achieved a 75%
increase of the maximum available speed of a program by trying to correctly
predict loop unrolling in a compiler. This was obtained by using a decision tree
as a classifier while the fitness function evaluated how close to the right unroll
factor did the features get. In [3] authors try to detect faults in mechanical
bearings by creating features that are a function of the original attributes. The
resulted features are based on trigonometric functions and arithmetic operators.
The fitness function used is the Fisher criterion which is very similar to our
fitness function. The authors test these features using a multi layer perceptron
as well as a support vector machine, both of them achieving a 6% increase in
accuracy. However, in both of these cases, the dataset is very small, of only 160
samples in [3] and 57 records in [2].

For the second case, in order to develop features that are best suited for a
certain classifier, the fitness function uses the classifier algorithm to decide which
features survive to the next generation. While this method has the aforemen-
tioned advantage is not well suited for large datasets since a training procedure
must be carried on for each generation. Such examples can be found in [4–8].
Even though it is applied in different way, the k-NN algorithm, used by [4,6]
and [5] seems to produce good results when used in relation to the fitness func-
tion. The authors of [6] used it to evaluate the weight adjusted using a genetic
algorithm. By also using a genetic algorithm for feature selection they achieved
a 79% accuracy. Weight adjusting using genetic programming for a k-NN clas-
sifier was also adopted by [5]. Like in the approach we use in this paper, the
authors also combined original features between them using the and operator.
This reduced the error rate from 88% to 0%. Finally, the authors of [4] tested
features created using mathematical operators that are able to find relations
between close pixels by using both a k-NN classifier as well as a decision tree.
The decision tree provided better results.

A more generic chromosome was described by authors of [7] in a framework
called Eprep. Each chromosome stores one of the three possible classification
algorithms (Generalized Linear machine, k-NN and Maximum Likelihood), as
well as a mathematical combination of the original features created using non
linear functions. The fitness function decides the best chromosomes by comput-
ing the number of misclassified samples from a validation set. From the 9 public
datasets tested, on 2 of them the error rate has dropped by half when classifica-
tion was done using these new features. A reduction rate from 11.9783 to 0.0887

Feature Creation Using Genetic Algorithms 85

was achieved by authors of [8] by using a svm in the fitness function for feature
extraction and selection.

When it comes to malware detection using genetic programming, the results
obtained by two different papers, [9] and [10], are quite different. Both of the
authors tested the classification task using evolutionary and non-evolutionary
algorithms. In the first paper, most of the evolutionary algorithms (XCS, UCS,
Gassist-ADI, GAssist-Intervalar and Slave) were outperformed by non evolu-
tionary ones (iterative rule learners: RIPPER, SLIPPER and PART, decision
tree: C4.5 and an instance based rule learner: RIONA) in terms of accuracy. In
the second comparison between genetic and non-genetic algorithms, good results
were obtained by UCS (85.28%) as well as the SVM. However, the support vec-
tor machine completely missed a malware family. The differences between these
result could be due to the way features are being constructed, since the authors
of [10] used network traffic as attributes. An attempt to compare a classifier that
uses weights adjusted using a genetic algorithm and non evolutionary algorithms
can be found in [11]. The features are created using n-grams of function calls.
When using n-grams of size 6, the classifier achieved 0% false positives and out-
performed other non-evolutionary algorithms (svm, decision tree, propositional
rule learner (ripper) and naive bayes). However, the dataset is too small (280
files) to consider the malware classification problem solved.

The authors of [12] implemented a system called Realgo that tries to mimic
the human immune system. It works by trying to evolve “antigens” that are
similar in structure to known virus signatures. For false positives reduction, the
antigens are validated on a dataset of clean files and if files are detected, the
antigen is removed. Even though this system seems interesting, validating it on
a very large dataset might result in poor antigens due to possible noise in the
database.

3 Methodology

3.1 Motivation

As briefly detailed in the introduction, we use the OSC perceptron algorithm
for classification. This algorithm works as a normal perceptron algorithm that
has a separate training phase after each iteration where the model generated by
the previous iteration is trained with the items that belong to a certain class
(in our case items that represent clean files). This phase is repeated until every
item from a specific class is correctly classified. While this algorithm has the
advantage of obtaining 0 false positive in the training phase it also decreases the
detection rate significantly.

The experiments performed in this paper are carried on using a database of
358,144 records that correspond to 42940 malware files and 315204 clean files
collected over the last 2 month. The idea is to use only fresh malware files
(malware that appeared in the last couple of month) as this is more relevant
for the malicious attacks landscape of these days. For each of these files, 300
boolean features are extracted. These features represent behavior characteristics

86 R. Benchea et al.

extracted using an emulator (i.e. if it copies itself into different location, if it
modifies certain registry keys, if it connects to different services or Internet
addresses, etc.) and static information that is extracted from the file (i.e. if it is
linked to a certain library, it if has certain strings, if it uses certain x86 assembly
instructions and so on). The initial database was larger than this one containing
more than 500000 files. In practice these databases have different files that are
considered noise. One example would be a file infector. While a file infector is
a malware file, the features extracted from this file are likely to be very similar
if not identical to the one of the original-uninfected host file. This can result
in two records that belong to different classes to have the same set of features
(or very similar ones). As the OSP algorithm is design to make sure that all of
the record that belong to a specific class are correctly classified (in our case the
benign files), the detection rate decrease dramatically in this case-that specific
records will act as an out-lier in the database. As file infectors are not suited for
this kind of detection, we decided to remove this kind of files (and similar ones
like keygens, adware, spyware) from the database.

Once the dataset is created we perform a 3-fold cross validation using the
OSC perceptron algorithm in the following way:

– The first approach is to use the methodology presented above, where we use
the features as they are present in the dataset.

– For the second one we create a new set of attributes by combining each feature
with all the others.

Given the original set of features F = {F1, F2, F3, Fn}, where in our case
n = 300, the new set of features, F ′ = {F ′

1, F
′
2, F

′
3, F

′
k}, where k = n×(n+1)

2 , are
generated in the following way:

Algorithm 1. Mapping method for OSC algorithm
F ′ ← {}
for i = 1 → n do

for j = i → n do
F ′ ← F ′ ∪ {Fi ∧ Fj}

end for
end for

We refer to this method of obtaining new features as mapping. The results can
be seen in Table 1. The detection rate is significantly improved by the usage of
the mapping method. However, the memory footprint is increased exponentially
in this case. If we consider that each feature is stored into one bit of memory, the
original set consisting of 300 features occupies approximately 38 bytes for each
record. Since the database consists of 358144 records its memory foot print is
around 14 MBytes. However, when the mapping method is used, the number of
features is 45150; this means 5644 bytes for each record and the entire database
needs approximately 2 Gb of memory (more than 150 times bigger than the

Feature Creation Using Genetic Algorithms 87

initial one). While 2 Gb is acceptable for current hardware, when using larger
databases, it may be unfeasible to use this method.

The next logical step is to figure out a method for reducing the number of
new features while preserving the detection rate. The first idea is to sort all of
the 45150 features after the F2 score and select the best 600 features and use
only them. The F2 function is presented in Eq. 1.

F2i =
(μ+

i − μ̄i)2 + (μ−
i − μ̄i)2

(σ+
i)2 + (σ−

i)2
(1)

Where μ+
i /μ−

i represent the means of the positive and negative sets, and
σ+
i /σ0

i represent the standard deviations of the positive and negative sets. For
more information about the F2 measure the reader is invited to consult [13].

The results of using the first 600 features according to the F2 function can
be seen in Table 1.

Table 1. The results of the 3-fold cross-validation for OSP, OSP-MAP algorithms

Algorithm Detection False positive Accuracy

OSP 51.12% 17 94.96 %

OSP-MAP 85.35% 44 98.21 %

OSP-MAP-BEST-600-F2 65.55% 15 95.86 %

Even though the results obtained from using the best 600 features are better
it is important to notice that these were obtained only after generating all 45150
features. So, even though we do not solve the memory problem, we can try to use
these results as a threshold. More exactly, we will try to achieve similar results
without going through the process of generating all the features.

3.2 Feature Creation Using Genetic Algorithms

In order find the best features that can solve our problem we use genetic
algorithms.

Since the mapping method achieved very good results by just using the and
operator, we decide to use the same operator in order to produce new chromo-
somes. So, every chromosome is actually a series of features each one being con-
nected with the others using the and operator. More precisely, given the original
set of features F = F1, F2, ..., Fn, we consider a chromosome C = G1, G2, ...Gk,
where Gi is a gene within this chromosome. Gi is represented as an integer,
non-null number, that respects the following condition: 1 <= |Gi| <= n, where
Gi refers to the i-th feature from F.

The crossover operation is implemented by randomly choosing a splitting
point of two chromosomes and exchanging genes between them. The splitting

88 R. Benchea et al.

Algorithm 2. Convert Chromosome to Feature
function ConvertChromosomeToFeatureF,C
F ′ ← {}
for all G ∈ C do

if G > 0 then
F ′ ← F ′ ∪ {FG−1}

else
F ′ ← F ′ ∪ {FG−1}

end if
end for
end function

point can be any value from 0 to the length of the chromosome. This way, chromo-
somes of just one gene can be combined without any other necessary validation.
Since the and operator is commutative, in case a gene is used multiple times in
a chromosome, only one instance is kept.

When it comes to the mutation operation, this is implemented using the not
boolean operator. However, using the not operator can lead to some chromosomes
achieving the lowest fitness score if the same gene is used in both the positive
and the negative form (resulted from negation operator). To prevent this, we
eliminated both genes, thus considering that the genes are canceling each other.
After the evolution process is finish, each chromosome is converted into a new
feature according to Algorithm 2. Note that, internally, the features that are
mutated (they have a not operator applied), are represented using negation.

On each generation, a total of 1000 crossover operations are being performed
by randomly selecting a pair of chromosomes and choosing a crossover point. In
order to make the algorithm use as many of the original features as possible,
on each generation the original features are also added. This also brings more
diversity into each generation. The mutation is being applied with a probability
of 3% on the chromosomes resulted after the crossover operation.

The fitness function used is the F2 function. This is computed on each of the
1000 offspring as well as their parents (300 chromosomes) and only the best 300
are being kept.

The Evolution process is described in the algorithms bellow. Considering P ,
a population of individuals, P is initialized according to Algorithm3.

Algorithm 3. Initial Population
function InitialPopulationF
P ← {}
for all Fi ∈ F do

C ← {i + 1}
P ← P ∪ {C}

end for
end function

Feature Creation Using Genetic Algorithms 89

The steps taken to evolve one generation to another are detailed in
Algorithm 4.

3.3 Problems and Solutions

In the attempts to get more powerful features, several problems were encoun-
tered. These problems, as well as the solutions applied are presented in the
following paragraphs.

In our first attempts, even though the chromosomes score kept getting better
with every generation, the classification results were decreasing. After analyzing
the chromosomes an interesting aspect can be observed: many of the features
are actually prefixes for the others. Even though each of them has a very high
fitness score, when used together in the classifier they are actually treated as a
single feature since they separate the same set of files.

An example of the resulted features can be seen in Table 2. The first and the
second columns represent the number of benign and malicious files, respectively,
where the chromosome is being activated, while the last column represent the
chromosome. The numbers that make up the chromosome are the original feature
index. If it is a negative number, then a not operator (resulted from mutation) is
being applied on that feature. As it can be seen, all of the 4 chromosomes actually
separate the same number of benign and malicious files since they all contain
the genes −237,−52, 239, 245, 246. A classification score computed on different
iterations can be seen in Table 3. Using these chromosomes in a classifier will
bring the same result as using only one of them.

Table 2. Problematic features with high F2 score

Benign records Malicious records Feature chain

26023 583 −237, −52, 239, 245, 246, 254,

26023 583 −237, −52, 239, 245, 246, 252, 266,

26023 583 −237, −52, 239, 245, 246, 251, 252, 254

26023 583 −237, −52, 239, 245, 246, 251, 252, 254, 255, 266

When investigating the results we observe that more than half of the resulted
chromosomes are created in this way. This explains why the detection rate
decreases with every iteration.

In order to fix this we limit the length of the resulted chromosomes to a
constant. Even this does not fix the problem it blocks the chromosomes from
getting too big after the first iterations.

Another problem that we observe is that the linear separability between
certain records decreases after using the new features. This is because there
are many features that are being activated in both of the benign and mali-
cious files. In order to solve this problem the original features are also added,

90 R. Benchea et al.

Algorithm 4. Evolve Population
function EvolvePopulationP
combination ← 0
newPop ← {}
while combination < combinationsThreashold do

C1 ← P [Random(|P |)]
C2 ← P [Random(|P |)]
cut1 ← Random(|C1|)]
cut2 ← Random(|C2|)]
C1left =

⋃cut1
i=1 C1i

C1right =
⋃|C1|

i=cut1+1 C1i

C2left =
⋃cut2

i=1 C2i

C2right =
⋃|C2|

i=cut2+1 C2i
CLL ← {}
CRR ← {}
CLR ← {}
CRL ← {}
if Random(100) > 50 then

CLL ← C1left ∪ C2left
CRR ← C1right ∪ C2right
if Random(100) > mutationThreashold then

index1 = Random(|CLL|)
CLLindex1 = −CLLindex1

index2 = Random(|CRR|)
CRRindex2 = −CRRindex2

end if
else

CLR ← C1left ∪ C2right
CRL ← C1rightt ∪ C2left
if Random(100) > mutationThreashold then

index1 = Random(|CLR|)
CLRindex1 = −CLRindex1

index2 = Random(|CRL|)
CRLindex2 = −CRLindex2

end if
end if
if CLL not empty then

newPop ← newPop ∪ {CLL}
end if
if CRR not empty then

newPop ← newPop ∪ {CRR}
end if
if CLR not empty then

newPop ← newPop ∪ {CLR}
end if
if CRL not empty then

newPop ← newPop ∪ {CRL}
end if

end while
return newPop
end function

Random(n) generates a random number from 0 to n using an uniform distribution

Feature Creation Using Genetic Algorithms 91

Table 3. Results on different iteration for arbitrary length features

Iteration number Detection

1 64.67 %

2 64.83 %

5 66.15 %

10 61.83 %

20 58.4 %

40 59.6 %

thus obtaining a total of 600 features. We test this new method selecting the best
300 chromosomes from the generic algorithm, adding the 300 original features
and limiting the size of a chromosome to a constant. The results can be seen in
Table 4.

Table 4. Results on different iterations for limited length features

Iteration number Detection

1 63.82 %

5 68.31 %

As it can be observed in Table 4, after 5 iterations the detection rate is big-
ger than the one obtained using the best 600 features provided by the mapping
method. As this method provides good results (with only 600 features), we decide
to increase the number of features that will be generated by the genetic algo-
rithm and see if we can get close to the detection rate provided by the mapping
method (85%). We also increase the size of the population from 1000 to 6000
chromosomes in order to give the algorithm a chance to produce better individu-
als that will translate in relevant features. Table 5 shows that with 3000 or 4000
features we get close to the detection rate obtained by the mapping method.
(85.35% detection rate) but with 15 times less features.

All of the tests in this paper were carried out using a computer with Intel
Xeon CPU E5-2440 (2.4 ghz, 24 cores) with 24 Gb of ram and running Windows

Table 5. Results using different number of features

Number of features Population size Detection rate False positives Accuracy

1000 3000 73.01% 21 96.74%

2000 5000 77.16% 30 97.24%

3000 6000 80.66% 31 97.65%

4000 8000 81.16% 34 97.71%

92 R. Benchea et al.

Server 2008 SP1. The OSCP algorithm was tested in a 3-fold cross validation
limited to 500 iterations.

4 Conclusions and Future Work

In the beginning of the paper we proposed to achieve a good detection rate,
similar to the one provided by the OSCP algorithm but with a smaller memory
foot-print. We achieved this by using a genetic algorithm and generating 15 times
less features than our target. We also presented some pitfalls that one should
avoid when using this kind of strategy - mainly the creation of multiple features
derived from the same predecessors that will only isolate a limited amount of
records from the database

For the future we plan to test the same method using multiple Boolean
operators as well as bringing some parallelism to the future creation. This will
allow us to test our method on larger datasets. We also plan to analyze and
test different techniques for controlling bloat in the variable length chromosome.
Another aspect that we are currently interested is the proactivity provided by
the genetic generated features.

References

1. Gavrilut, D., Benchea, R., Vatamanu, C.: Optimized zero false positives perceptron
training for malware detection. In: SYNASC, pp. 247–253 (2012)

2. Leather, H., Bonilla, E., O’Boyle, M.: Automatic feature generation for machine
learning based optimizing compilation. In: Proceedings of the 7th Annual
IEEE/ACM International Symposium on Code Generation and Optimization,
CGO 2009, Washington, DC, USA, pp. 81–91. IEEE Computer Society (2009)

3. Guo, H., Jack, L., Nandi, A.: Feature generation using genetic programming with
application to fault classification. IEEE Trans. Syst. Man Cybern. Part B Cybern.
35(1), 89–99 (2005)

4. Kowaliw, T., Banzhaf, W., Kharma, N., Harding, S.: Evolving novel image features
using genetic programming-based image transforms. In: 2009 IEEE Congress on
Evolutionary Computation, CEC 2009, pp. 2502–2507, May 2009

5. Pei, M., Goodman, E.D., Punch, W.F.: Feature extraction using genetic algorithms.
In: Proceedings of International Symposium on Intelligent Data Engineering and
Learning’98 (IDEAL98), Hong Kong, p. 98 (1997)

6. Punch, W., Goodman, E., Pei, M., Chia-Shun, L., Hovland, P., Enbody, R.: Further
research on feature selection and classification using genetic algorithms (1993)

7. Sherrah, J.R., Bogner, R.E., Bouzerdoum, A.: The evolutionary pre-processor:
automatic feature extraction for supervised classification using genetic program-
ming. In: Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H.,Riolo,
R.L., (eds.) Genetic Programming 1997: Proceedings of the Second Annual Con-
ference, Stanford University, CA, USA, pp. 304–312. Morgan Kaufmann (1997)

8. Ritthoff, O., Klinkenberg, R., Fischer, S., Mierswa, I.: A hybrid approach to feature
selection and generation using an evolutionary algorithm. In: Proceedings of 2002
U.K. Workshop on Computational Intelligence (UKCI-02), pp. 147–154 (2002)

Feature Creation Using Genetic Algorithms 93

9. Shafiq, M.Z., Tabish, S.M., Farooq, M.: On the appropriateness of evolutionary
rule learning algorithms for malware detection. In: Proceedings of the 11th Annual
Conference Companion on Genetic and Evolutionary Computation Conference:
Late Breaking Papers, pp. 2609–2616. ACM (2009)

10. Rafique, M.Z., Chen, P., Huygens, C., Joosen, W.: Evolutionary algorithms for clas-
sification of malware families through different network behaviors. In: Proceedings
of the ACM Genetic and Evolutionary Computation Conference (GECCO). ACM
Press (2014). To appear

11. Mehdi, S.B., Tanwani, A.K., Farooq, M.: IMAD: in-execution malware analysis
and detection. In: Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, pp. 1553–1560. ACM (2009)

12. Edge, K.S., Lamont, G.B., Raines, R.A.: A retrovirus inspired algorithm for virus
detection and optimization. In: Proceedings of the 8th Annual Conference on
Genetic and Evolutionary Computation, GECCO 2006, New York, NY, USA, pp.
103–110. ACM Press (2006)

13. Loong, S.N.K., Mishra, S.K.: De Novo SVM classification of precursor microR-
NAs from genomic pseudo hairpins using global and intrinsic folding measures.
Bioinform. Comput. Appl. Biosci. 23, 1321–1330 (2007)

Multi-centroid Cluster Analysis in Malware
Research

Ciprian Oprişa1,2(B), George Cabău1,2, and Gheorghe Sebestyen Pal2

1 Bitdefender, 1, Cuza Vodă Street, City Business Center,
400107 Cluj-Napoca, Romania

{coprisa,gcabau}@bitdefender.com
2 Technical University of Cluj-Napoca, 28, Gh. Bariţiu Street,

Room M01A, 400027 Cluj-Napoca, Romania
gheorghe.sebestyen@cs.utcluj.ro

Abstract. Verdicts assignment is a recurring problem in malware
research and it involves deciding if a given program is clean or infected
(if it contains malicious logic). Since the general problem of identify-
ing malicious logic is undecidable, a certain amount of manual analysis
is required. As the collections of both clean and malicious samples are
continuously increasing, we would like to reduce the manual work to a
minimum, by using information extracted by automated analysis systems
and the similarity between some programs in the collection.

Based on the assumption that similar programs are likely to share
the same verdict, we have designed a system that selects a subset from
a given collection of program samples for manual analysis. The selected
subset should be as small as possible, given the constraint that the other
verdicts must be inferable from the manually-assigned ones. The system
was tested on a collection of more than 200000 clusters built using the
single linkage approach on a collection of over 20 million samples.

Keywords: Malware · Clustering · Graph analysis · Dominating set

1 Introduction

Malware research involves working with large collections of potentially malicious
samples. To decide whether a given sample contains malicious logic is a difficult
task, even for a human [4]. For instance, a sequence of instructions that encrypt
the user’s personal files might be contained in a benign program that helps the
user to protect his privacy. The same sequence of instructions could be used
to encrypt the user’s personal files in order to demand a ransom for restoring
them. The only difference is that in the first case the user desires the effect of
the program (i.e. the encryption of the files) while in the second case the user is
rather tricked into running the malware.

The difficulty of malicious logic detection was shown more formally by Cohen.
His paper [5] focuses on a particular type of malicious logic, called computer virus
c© Springer International Publishing AG 2018
A.-A. Tantar et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation VI, Advances in Intelligent Systems and Computing 674,
https://doi.org/10.1007/978-3-319-69710-9_7

Multi-centroid Cluster Analysis in Malware Research 95

(formally defined as a sequence of symbols that replicate themselves in a Turing
machine). The paper states that “it is undecidable whether an arbitrary program
contains a computer virus”. The claim is proved by reducing the virus detection
to the halting problem [17].

Although methods for detecting whether a program is malicious or not exist
(most of them involve running the sample in a controlled environment to detect
malicious actions [6]), they cannot fully substitute manual analysis performed by
human researchers. Indeed, if known malicious actions are observed, the program
can be classified as malware, but if nothing is observed, no claim can be made.
We notice here the similarity with the halting problem [17]: by executing an
algorithm, we can observe if it halts after a certain amount of time. However, if
it still runs, we cannot draw any conclusion.

In this paper, we will deal with the fact that manual analysis can’t be fully
substituted but we will try to reduce it as much as possible. By studying a
large collection of programs from the last 3 years (∼108 samples), both clean
and malicious we have observed that there are some similarities between them.
Different versions of the same application or different generations of the same
malware family will share similar code.

The following section will present some related work, highlighting the
advancements brought by the authors work. The third section will describe the
process of programs clustering and argue about the verdicts assignment issue.
The problems will be addressed in the next section, where we will show how to
select meaningful centroids from a cluster and use them to automatically assign
verdicts to every other sample. The algorithm was tested on a real-world collec-
tion of samples and the experimental results are shown in the 5th section. The
final section draws the conclusions and provides some ideas for future work.

2 Related Work

The problem of clustering a large collection of binary programs in order to ease
their analysis have been previously studied. The preferred features for cluster-
ing are OpCode n-grams, which are sequences of consecutive operation codes,
extracted from the disassembled code.

Bilar [3] has studied the OpCodes extracted from both clean and malicious
samples and run a frequency analysis on them. His analysis showed that OpCodes
can help to discriminate between different program classes and successfully iden-
tify malware samples. Raw n-grams, as simple sequences of consecutive bytes
showed promising results in [1], as the authors showed that similar programs
have many common n-grams. Further refinements were shown in [15], where
OpCodes and n-grams were combined in order to build powerful classifiers.

Clustering techniques can also be applied on non-executable malware, like
PDF files. The authors of [18] worked on a large corpus of documents. First,
they separated the samples collection in similarity classes then clustered using
different methods.

Features extracted by dynamic analysis can also work with clustering algo-
rithms. The authors of [2] built behavioral profiles and found connections

96 C. Oprişa et al.

between malware samples with different appearances. Their method proved to
be scalable and managed to cluster 75000 samples in less than three hours.

The current work takes a step further to the automated malware analysis
process by analyzing existing clusters and selecting a representative subset that
is worth further analysis.

3 Clustering and Verdicts

Previous work has shown how to compute the distance between two pro-
grams [12], based on features extracted from a program’s code and how to per-
form cluster analysis [13], even on large collections.

In what follows, we will denote by S, the set of all feature sets extracted
from the sample programs. The recurring issue in malware analysis is the ver-
dicts assignments. Each sample should be given a verdict, that can be clean or
infected, as in Eq. 1.

verdict : S → {clean, infected} (1)

A distance function d, as in Eq. 2 will compute the dissimilarity between two
samples.

d : S × S → [0, 1] (2)

For instance, the extracted features can be a set of n-grams, as in [13]. In this
case the Jaccard distance can be used (dJ(S1, S2) = 1 − |S1∩S2|

|S1∪S2|). However, the
reasoning will be similar for any metric distance defined on S that takes values
between 0 and 1.

For such a metric d, we will make the following assumption: for two samples
A,B ∈ S the probability they will share the same verdict is:

P (verdict(A) = verdict(B)) = 1 − d(A,B)
2

(3)

Basically, Eq. 3 states that two samples that are very similar (the distance
between them is small) are likely to share the same verdict. However, if the
samples are completely dissimilar (d(A,B) = 1), no assumption can be made
(the probability will be 0.5).

The first step for minimizing the manual work of assigning verdicts to each
sample is to cluster them. We will use the single linkage approach [16], in order
to ensure that each pair of samples that are similar enough will end up in the
same cluster. More formally, for a given distance threshold θ, ∀A,B ∈ S such
that d(A,B) ≤ θ, we will have cluster(A) = cluster(B). For dealing with a
large collection of samples, we will use the locality-sensitive hashing approach
from [13] that gives a very good approximation of the clusters.

Each cluster can be interpreted as a connected graph, G = (V,E), where
V ⊂ S is the set of all features sets associated to the samples in that cluster.
Two nodes are connected by an edge if their distance is smaller than the threshold

Multi-centroid Cluster Analysis in Malware Research 97

θ: E = {(u, v) ∈ V × V | d(u, v) ≤ θ}. Also, each edge will be weighted. The
weight function is the distance between the two nodes, as in Eq. 4.

w : E → [0, 1]
w((u, v)) = d(u, v) (4)

The biggest issue with the single linkage approach is the chaining effect.
Sample A can be similar with B and B can be similar with C, while A and C
are not necessarily similar. The issue is illustrated in Fig. 1, where we have used
simple lines to represent distances smaller than the threshold θ and dashed lines
for larger distances.

B

A
C

Fig. 1. Chaining effect illustrated

The single linkage approach would place the nodes A, B and C from Fig. 1
in the same cluster. To minimize the amount of work required to assign verdicts
for all samples, a researcher can be asked to assign verdicts only for some of the
elements of a cluster. Then, by association, the verdict can be extended to the
neighboring nodes in the graph. Because of the chaining effect, we will only allow
verdict extension to the neighboring nodes. For instance, if we have a verdict
given by a human for the node A, we can expand the verdict to the node B,
but we won’t expand it further from B to C, so we will have to request further
investigations for sample C. If we asked the human to analyze the sample B, the
verdict can be directly extended to both nodes A and C, reducing the human
work to a single analysis.

Another issue may arise for the cluster in Fig. 1 if A and C will be given
different verdicts (e.g. A is declared clean and B infected). In this case, further
human investigation is necessary in order to establish the correct verdict for B.
However, if A and C were given the same verdict, the verdict for B could be
automatically inferred with a high degree of confidence.

By generalizing the above issues to any graph, we can define the two main
problems that the next section will try to solve:

– Given a cluster of possibly malicious programs, select a subset of samples to be
manually analyzed so that the rest of verdicts can be inferred by neighborhood
associations.

– For a cluster where some of the samples already have verdicts (given by
humans or automated systems), determine if the rest of the verdicts can
be automatically inferred or there are conflicts that need to be addressed
manually.

98 C. Oprişa et al.

4 Multi-centroid Selection Algorithm

Several clustering algorithms use the concept of centroid. For instance, the k-
means algorithm [11] determine a set of centroids, then groups the remaining
points around them, by proximity. Such centroids can be used as representative
points for the cluster. However, hierarchical clustering methods, such as single
linkage do not use centroids.

In order to manually analyze the most relevant samples, we would like to
determine one or more centroids for every cluster. The rule that we have estab-
lished in the first section, to infer verdicts only for the direct neighbors of the
analyzed nodes will require a subset of samples, such that each sample in a
cluster is either a centroid or is adjacent to one.

This problem of finding such a set of centroids is called in literature
the minimum dominating set and has been proved to be NP-hard [8]. It
can be linearly reduced to the set cover problem [10] which already has a
(1+log |V |)-approximation [9]. The problem was also proved not be (1−ε) log |V |-
approximable for any ε > 0 [7]. An exact algorithm has been published by van
Rooij and have a complexity of O(1.5048n) [14].

The (1+ log |V |)-approximation algorithm was adapted from [9] to find a set
of centroids for a given graph in Algorithm 1.

Algorithm 1. find-multiple-centroids(G)
Require: A cluster of samples, represented as a graph G = (V,E)
Ensure: The set of centroids, C ⊂ V

1: C ← ∅
2: NotReached ← V
3: for all v ∈ V do
4: Neighb[v] ← {v} ∪ {u ∈ V | (v, u) ∈ E}
5: end for
6: while NotReached �= ∅ do
7: c ← arg max

v∈NotReached
|Neighb[v]|

8: C ← C ∪ {c}
9: crtReach ← Neighb[c]

10: NotReached ← NotReached \ crtReach
11: for all v ∈ crtReach do
12: Neighb[v] ← Neighb[v] \ crtReach
13: end for
14: end while
15: return C

The algorithm starts by initializing the set of centroids with the empty set
(line 1) and the set of nodes that have not been reached yet with V (line 2).
For each node, we will build a neighborhood set, comprised of itself and all the
other nodes directly reachable from it (line 4).

Multi-centroid Cluster Analysis in Malware Research 99

While the set of nodes that weren’t reached yet is not empty, the node with
the highest neighborhood is selected as a new centroid (lines 7–8). Its entire
neighborhood is then eliminated from the list of nodes not reached yet (line 10)
and from the neighborhoods of its neighbors (line 12).

The greedy part of the algorithm is the selection of the next centroid (line
7) as the node with the highest neighborhood, considering only the nodes not
yet reached. This heuristic tries to eliminate as many nodes as possible from
the NotReached set at each step. The smaller number of steps, the smaller the
number of centroids for that cluster will be.

For each iteration of the algorithm, at least one vertex is eliminated from
the NotReached set, so we have at most |V | iterations. In each iteration, the
vertex with the largest neighborhood is selected (line 7), also in O(|V |) steps, so
the complexity so far is O(|V |2). The subtraction of the currently reachable set
from the neighborhoods (line 12) has a running time proportional with size of
crtReach, assuming the sets are implemented as look-up tables. However, each
node will only be eliminated once from the neighborhoods, so this operation also
takes O(|V |2). We conclude that the running time of Algorithm 1 is quadratic
in the cluster size.

After a set of centroids is selected and some verdicts are assigned to each
of them, the verdicts can be extended to all the nodes in the graph. When all
the verdicts for the centroids agree (all of the centroid samples are clean or all
of them are infected), the problem is trivial, as every node in the graph will
share the same verdict. If some centroids are given different verdicts, there will
be at least one contradictory edge (the two ends of the edge will have different
verdicts). Since the graph is connected, there will either be two centroids that
are directly connected and have different verdicts, or there will be a non-centroid
node adjacent to both a clean and an infected centroid.

The aforementioned contradictions may appear for two reasons:

– some verdicts were incorrectly assigned
– some nodes that are connected by an edge are in fact not similar

To discern between the two cases and to fix the graph verdicts, further human
intervention is required. An analyst can identify incorrectly assigned verdicts and
fix them or he can remove some edges of the graph in order to separate it into
smaller connected components with uniform verdicts.

5 Experimental Results

We have tested the algorithm presented in this paper on a collection of more than
one million clusters built using the single linkage approach from more than 20
million unique samples. The tests ran on a machine with Intel i7 vPro processor
at 2 GHz with 8 GB of RAM.

For Algorithm 1 we are interested on how much the human effort was reduced,
by computing the size of the centroids for different cluster sizes. Since the number
of centroids is influenced by the cluster shape, not only by the cluster size, we

100 C. Oprişa et al.

Table 1. Average number of centroids and running times for various cluster sizes

Cluster size Avg. nr. centroids Avg. running time (ms)

2–9 1.411 0.036

10–19 1.796 0.061

20–29 2.567 0.126

30–39 3.191 0.192

40–49 3.741 0.232

50–59 4.338 0.254

60–69 4.926 0.320

70–79 5.611 0.406

80–89 6.112 0.462

90–99 6.766 0.568

100–109 6.889 0.617

110–119 7.352 0.729

120–129 8.438 0.832

130–139 8.530 0.931

140–149 8.170 1.082

150–159 8.609 1.150

160–169 11.113 1.307

170–179 10.667 1.402

180–189 11.299 1.514

190–199 11.231 1.594

200–209 11.556 1.791

210–219 13.691 1.916

220–229 14.468 2.087

230–239 13.852 2.221

240–249 13.790 2.313

have split the clusters into groups of similar sizes and computed the average
number of centroids for each group. Table 1 shows this number of centroids,
along with the average running time for computing the centroids of a cluster.

The average number of centroids found by Algorithm 1 in a graph of size n is
shown in Fig. 2. Although the trend line shows a linear dependency, the slope is
only 5.37 ·10−2 so the amount of samples in cluster that require manual analysis
is greatly reduced.

Figure 3 confirms the theoretical analysis of the algorithm’s complexity and
shows its quadratic running time. For most clusters, finding the centroids requires
less than two milliseconds.

Multi-centroid Cluster Analysis in Malware Research 101

0 50 100 150 200 250

5

10

15

n

N
um

be
r
of

ce
nt
ro
id
s

Fig. 2. Number of centroids found by Algorithm 1

0 50 100 150 200 250

0

0.5

1

1.5

2

2.5
·10−3

n

A
ve
ra
ge

ru
nn

in
g
tim

e
(s
)

Fig. 3. Running time of Algorithm 1

6 Conclusions and Future Work

This paper showed some solutions for reducing the amount of manual work
performed by malware analysts while classifying large collections of potentially
malicious samples.

The issue was how to select a subset of representative samples from a cluster
of similar ones, such that every other sample is similar with at least a sample

102 C. Oprişa et al.

that was selected. The problem was reduced to the minimum dominating set, a
known NP-hard problem that allows an approximation algorithm.

Experimentally, we have shown that the number of centroids is about 5%
of the cluster size, so the manual analysis is reduced with almost 95%. The
running time of the approximation algorithm is quadratic, but even a Python
implementation renders very fast execution times (1 or 2 ms).

As future work, we will try to develop a method for automatically solving
the conflicts between the manually or automatically assigned verdicts.

References

1. Abou-Assaleh, T., Cercone, N., Kešelj, V., Sweidan, R.: N-gram-based detection
of new malicious code. In: Proceedings of the 28th Annual International Computer
Software and Applications Conference, COMPSAC 2004, vol. 2, pp. 41–42. IEEE
(2004)

2. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable,
behavior-based malware clustering. In: NDSS, vol. 9, pp. 8–11. Citeseer (2009)

3. Bilar, D.: Opcodes as predictor for malware. Int. J. Electr. Secur. Digit. Forensics
1(2), 156–168 (2007)

4. Bishop, M.: Computer Security: Art and Science. Addison-Wesley, Reading (2002)
5. Cohen, F.: Computational aspects of computer viruses. Comput. Secur. 8(4),

297–298 (1989)
6. Colesa, A.: Fast creation of short-living virtual machines using copy-on-write ram-

disks. In: 2014 IEEE International Conference on Automation, Quality and Testing,
Robotics, pp. 1–6. IEEE (2014)

7. Feige, U.: A threshold of ln n for approximating set cover. J. ACM (JACM) 45(4),
634–652 (1998)

8. Hedetniemi, S.T., Laskar, R.C.: Bibliography on domination in graphs and some
basic definitions of domination parameters. Discrete Math. 86(1), 257–277 (1990)

9. Johnson, D.S.: Approximation algorithms for combinatorial problems. In: Proceed-
ings of the Fifth Annual ACM Symposium on Theory of Computing, pp. 38–49.
ACM (1973)

10. Kann, V.: On the approximability of NP-complete optimization problems. Ph.d.
thesis, Royal Institute of Technology Stockholm (1992)

11. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, California, USA, pp. 281–297 (1967)

12. Oprisa, C., Cabau, G., Colesa, A.: From plagiarism to malware detection. In: 2013
15th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), pp. 227–234. IEEE (2013)

13. Oprisa, C., Checiches, M., Nandrean, A.: Locality-sensitive hashing optimizations
for fast malware clustering. In: 2014 IEEE International Conference on Intelligent
Computer Communication and Processing (ICCP), pp. 97–104. IEEE (2014)

14. van Rooij, J.M., Nederlof, J., van Dijk, T.C.: Inclusion/exclusion meets measure
and conquer. In: Algorithms-ESA 2009, pp. 554–565. Springer (2009)

15. Shabtai, A., Moskovitch, R., Feher, C., Dolev, S., Elovici, Y.: Detecting unknown
malicious code by applying classification techniques on opcode patterns. Secur. Inf.
1(1), 1–22 (2012)

Multi-centroid Cluster Analysis in Malware Research 103

16. Sibson, R.: Slink: an optimally efficient algorithm for the single-link cluster method.
Comput. J. 16(1), 30–34 (1973)

17. Turing, A.M.: On computable numbers, with an application to the entscheidung-
sproblem. J. Math. 58(345–363), 5 (1936)

18. Vatamanu, C., Gavriluţ, D., Benchea, R.: A practical approach on clustering mali-
cious pdf documents. J. Comput. Virol. 8(4), 151–163 (2012)

Computational Game Theory

Cooperation in Multicriteria Repeated Games

Réka Nagy(B), Mihai Suciu, and Dan Dumitrescu

Babes-Bolyai University, Cluj-Napoca, Romania
reka@cs.ubbcluj.ro

Abstract. In classical Game Theory a rational player’s goal is to maxi-
mize its payoff by choosing a strategy that is best response to the oppo-
nent’s strategy. This theoretical presumption leads to mutual defection
in dilemma games. Despite theoretical prediction in real life situations
players tend to cooperate. Our goal is to develop a model that overcomes
some of the limitations of classical models. We investigate the emergence
of cooperation for the Prisoner’s Dilemma game in a spatial framework
with multicriteria payoffs. We propose a multicriteria model where a
second criterion, that reflects the identity of a player, is introduced.
Numerical experiments show that the second criterion promotes coop-
eration without any external interactions. The proposed model allows
the interaction of different type of players which leads to more realistic
outcomes.

1 Introduction

In classical Game Theory (GT) choices made by rational and conscious individu-
als determine the outcome of a game. A player maximizes its payoff by choosing
a strategy that is best response to the one chosen by its opponent. Thus players
have no reason to change their chosen strategies. Real-life interactions between
players who belong to the same group are better modeled by repeated games.
Through repeated interactions one can learn from its opponents, the actions of
a player may influence the actions of the group and conversely.

Since its appearance the Prisoner’s Dilemma game (PD) has raised many
open question in Game Theory, most of them related to the emergence of coop-
eration. The repeated version of the game, Iterated Prisoner’s Dilemma (IPD),
has been used as a model for many real world phenomena in areas such as social
dilemmas [1], evolutionary biology [2], governance of commons [3,4]. Despite the
vast research in the area building more accurate models is still a challenge.

It is known, that even though cooperation is in the common interest of a pop-
ulation and in the long term gives the best gains, self interest demands defection.
Standard GT models show that the outcome of the IPD game is a population
where everyone defects, which leads to the worst possible outcome. However,
despite theoretical predictions in real world situations there exists cooperation.

c© Springer International Publishing AG 2018
A.-A. Tantar et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation VI, Advances in Intelligent Systems and Computing 674,
https://doi.org/10.1007/978-3-319-69710-9_8

108 R. Nagy et al.

Based on theoretical models the rational choice is defection, but real players
have a willingness to cooperate [5–7].

Cooperation in the IPD game has been widely studied [1,8,9]. Several addi-
tional mechanisms like punishments [2,6,10], group selection [11], reciprocal
altruism, etc. have been introduced in order to promote cooperation.

In our approach, we consider that standard Game Theory models have some
limitations. The standard IPD models are overly simplified and consider that
players are fully rational agents whose only goal is to maximize their own pay-
offs. The fact that real players have a tendency for cooperation is neglected.
Real players are not always rational and they often make their choices based on
more than one criteria. Moreover, it is unrealistic to assume that all players are
uniform.

Our goal is to develop a model that overcomes some of these limitations.
We believe that by taking into account the nature of real players more realistic
models can be built. We propose a model that besides the actual payoffs also
takes into account the players’ tendency to cooperation. We study the Prisoner’s
Dilemma within the context of multicriteria games [12] and we attempt to better
model the irrational nature of real life agents. We aim to create a more realistic
interaction model between real life agents.

2 Multicriteria Games - Games with Vector Payoffs

In real life situations players usually make decisions considering more than one,
often conflicting, criteria. Most of the times, these criteria are not measured by
the same unit, they can not be aggregated into one single criterion.

Multicriteria games (or games with vector payoffs) [12] are natural extensions
of standard non-cooperative games and offer a more realistic model for real life
situations.

A finite strategic multicriteria game is defined as a system

Γ = ((N,Si, ui), i = 1, n),

where:

– N represents a set of n players, N = {1,, n};
– for each player i ∈ N , Si represents the set of pure strategies available to its,

Si = {si1 , si2 , ..., sim}, S = S1 ×S2 × ...×Sn is the set of all possible strategy
profiles;

– for each player i ∈ N,ui : S → Rr represents the vector payoff function,
where r ∈ N is the number of criteria.

We consider that each player is a maximizer.
Any multicriteria game G with r criteria is composed of r standard non-

cooperative games: G1, ..., Gr. If all players have only one criterion (r = 1) then
we have a standard non-cooperative game.

Cooperation in Multicriteria Repeated Games 109

The main solution concept in Game Theory is Nash equilibrium [13,14].
Nash equilibrium has been adapted to multicriteria games in various versions
[12,15–18].

The most studied multicriteria equilibrium concept is the Pareto-Nash equi-
librium introduced in [12]. The Pareto-Nash equilibrium concept is an extension
of the Nash equilibrium for single-criterion games and is based on Pareto domi-
nation.

A strategy profile s∗ ∈ S is a Pareto-Nash equilibrium if and only if the
following condition holds

ui(s∗) �P ui(si, s∗
−i), ∀si ∈ Si,∀i ∈ N.

3 Modeling Identity in a Multicriteria Game Theory
Framework

Multicriteria games are suitable for building more adequate game models. They
capture in a realistic way the conflicting elements that contribute to the decision
process. With the help of multicriteria games, beyond the actual gain, a player’s
tendency to cooperation can also be considered.

Standard single criterion games can be thus transformed into muticriteria
games by extending the payoff function. We consider a game with two criteria:
the first criterion is the standard payoff while the second criteria captures the
player’s inclination towards cooperation.

Multicriteria PD. One of the most relevant questions regarding real agents
is whether they are willing to act in a way that is favorable for the community
or they act only to maximize their own gain. All players benefit by mutual
cooperation, but in the same time the temptation to defect against a cooperator
is high. However fair play suggests the best strategy would be to cooperate.

Real life agents do not make their decision based only on actual payoffs.
Beyond the actual payoffs their identity determines their choices. For example
an agent with a cooperator identity is less likely to defect even though rational
thinking implies defection regardless of the strategy of the opponent.

The payoff matrix for the generalized standard PD game is:

C D

C (R, R) (S, T)

D (T, S) (P, P)

For the game to be an actual dilemma the conditions T > R > P > S and
2 · R > T + S must hold.

A multicriteria PD extends the standard game by adding a second payoff
that captures the players’ tendency to play strategy C or D. We refer to this
second criterion as an identity payoff. In case of a player who favors strategy C
the identity-payoff for cooperating is considerably larger than for defecting. For
the multicriteria version of the game we propose the following payoff matrix:

110 R. Nagy et al.

C D

C [(R, r); (R, r)] [(S, s); (T, t)]

D [(T, t); (S, s)] [(P, p); (P, p)]

The payoffs for the first criterion (R, S, T , and P) are the actual gains and
are equal to the payoffs of the standard PD game. The payoffs for the second
criterion (r, s, t, and p) correspond to the identity payoffs. In order to capture
a cooperative identity, we propose the following relation between the values of
the identity payoff: r > s > p > t.

While actual payoffs suggest defection, the identity payoffs are higher for
cooperation. So even if cooperation does not necessarily imply high material
benefits, it offers a moral gain. The actual payoff is the highest when defecting
against a cooperator, i.e. playing strategy D against strategy C. However the
identity payoff in this situation is very low.

Since the first criteria suggests defection and the last criteria suggests coop-
eration, the multicriteria PD has no multicriteria Nash equilibrium.

3.1 Multicriteria IPD

When the Prisoner’s Dilemma is played only once, cooperation between players
is not likely to happen. Considering only the actual payoffs (i.e. considering only
the material gain), no matter what the opponent does, a player can win more by
playing strategy D. However, if the game is repeated mutual cooperation seems
a rational choice.

The Iterated Prisoner’s Dilemma [8,19,20] is a spatial model where each
player is regarded as an element of a matrix. Initially, the players choose ran-
domly between cooperation or defection. According to the standard IPD, the
game is repeated for several rounds; in each round a player plays the Prisoner’s
Dilemma with all its neighbors, including herself. The payoff of each player is
equal to the total payoff earned in each of these games. At the end of each round
the players imitate their most successful neighbor. The dominant strategy in
these settings is D. If the temptation to defect is high enough, defectors invade
the whole space [1,8].

Cooperation is essential for evolution [20]. Several rules that punish defectors
and reward cooperators have been introduced in order to achieve cooperation
[6,10,11,21].

Punishing defectors, localized interactions between cooperators and relying
on reputation promotes cooperation in the population [2,10,22,23]. In case of
the public good game, punishment leads to cooperation if non-cooperative agents
are punished by reducing their payoff [6].

Group selection plays an important role in promoting a cooperative behav-
ior [11]. If no punishment is present in the group then altruistic cooperation
decreases, but when altruistic punishers are present agents with a defector behav-
ior are excluded. Agents that reinforce a cooperative behavior are not removed
from the population during the game.

Cooperation in Multicriteria Repeated Games 111

We propose the use of multicriteria games to simulate more accurately real
life interactions. We use no auxiliary techniques to promote cooperation. The
base of the proposed model is the multicriteria PD with identity payoffs that
favor cooperation. We use a lattice to model players interactions; it provides
a simple topology which permits the investigation of the effect of the second
criterion.

An n × n square lattice is considered, thus the number of players is n2. The
game is repeated for K rounds. In each round, each player plays with all its
neighbors (in a spatial framework based on a lattice there are 8 neighbors -
considering all nodes that surround a player). For the sake of simplicity, the
most widely studied update rule is adopted [19]. At the end of each round t each
player i changes its strategy according to the following rules:

– the cumulative payoff for each criteria (the total payoffs for all the 8 games
played in round t) is computed for all players as follows:
(u1

i , u
2
i) = (

∑8
j=1 u1

j ,
∑8

j=1 u2
j);

– the cumulative payoff of each player is compared to the payoffs of neighbors;
– if there is a neighbor whose cumulative vector payoff Pareto dominates the

payoffs of player i, than player i adopts the strategy of that neighbor;
– in case there are more than one neighbors with better payoffs one of them is

chosen randomly.

In other words each player imitates the most successful neighbor with respect to
Pareto domination.

Modeling different identities. In standard GT models, all players are uniform
and are guided by the same goal. The interaction of different types of players
is not possible. In order to achieve this, we weight the second criterion of the
payoff function with parameter λ ∈ [0, 1]. By altering the value of the parameter
λ we can model players with different tendencies to cooperation.

The parameter λ permits the modeling of players having different inclinations
towards cooperation. Introducing a parameter to the second criterion allows us
to simulate a heterogeneous population.

4 Numerical Experiments

We study the effect of the second criterion on the emergence of cooperation. By
introducing an identity criterion we hope to better model real life interactions
and promote cooperation without any external interactions.

Experimental setup. Trough numerical experiments we observe the emergence
of cooperation in different environments:

1. In order to set a baseline we study the classical IPD [19]. It is known that
this yields to a defecting population.

2. Next we study a homogeneous environment (see Experiment 2), all players
have the same identity and the same payoffs. Our goal is to study whether by
introducing an identity payoff leads us to a population that plays strategy C.

112 R. Nagy et al.

3. We attempt to build a more realistic model by emulating a heterogeneous
environment (see Experiment 3). Two type of players are considered having
different, more or less cooperative, identities.

For our experiments we consider a 100 × 100 matrix (10000 players). The
game is repeated for 150 rounds. Presented results represent the average over 30
independent runs.

Experiment 1 - Standard IPD. Values for the standard Prisoners Dilemma
game are: R = 3, T = 5, S = 0, and P = 1.

(a) Round 1 (b) Round 2 (c) Round 5

Fig. 1. IPD - The population in different rounds. In just a few rounds strategy D is
adopted by the all players. (blue - players that choose strategy C, red - players with
strategy D, yellow indicates a player that has just switched from C to D, and green -
players that switch from D to C). (Color figure online)

Figure 1 depicts the population for the IPD in different rounds of the game.
The initial population (Fig. 1a) is randomly initialized, 30% of players will play
strategy D. However, in round 2 the majority of the population defects, while in
round 5 a final state is reached, when there is a small island of cooperators and
the rest of the population defects. By round 150 the whole population adopts
strategy D.

As Fig. 1 shows the standard IPD does not promote cooperation. If one tries
to promote cooperation in this environment additional techniques must be con-
sidered.

Experiment 2 - Multicriteria PD. We study the evolution of cooperation in
case of a multicriteria IPD game. Beyond the standard payoff, a second criterion
is added to the payoff function. This criterion captures the player’s identity or
its tendency for cooperation. In case of the multicriteria version of the game for
the first criterion we keep the values as in the standard game and for the second
criterion we use the following setting: r = 3, t = 0, s = 3, and p = 1. For the
payoff matrix considered the second criterion favors cooperation.

The outcome of spatial evolutionary games, if no external rules are defined,
is the Nash equilibrium. Figure 2 depicts the evolution of cooperation for differ-
ent rounds of the game. The percentage of defectors in the first round is 30%,
and defectors are randomly distributed. In round 25 the ratio of defectors is

Cooperation in Multicriteria Repeated Games 113

(a) Round 1 (b) Round 25 (c) Round 150

Fig. 2. Experiment 2. - Iterated Multicriteria PD. The population in different rounds.
After each round there are less and less players that choose strategy D, by round 150
every player cooperates.

0 100 200 300 400 500
7000

7500

8000

8500

9000

9500

10000

round

n
o
.
o
f
c
o
o
p
e
ra

to
rs

Fig. 3. The number of cooperators in each round.

reduced to 15% and defectors are grouped together in small islands. The islands
of defectors persist through the rounds. After round 50 these islands get smaller
and smaller and eventually, after round 150, all players adopt strategy C.

Figure 3 represents the number of cooperators for each round. At the begin-
ning the number of defectors is relatively big, but it slowly decreases in each
round, and by round 150 100% of the population cooperates.

Numerical experiments show that the outcome of the game is not influenced
by the distribution of the initial strategies. Regardless of the initial distribution,
eventually all players end up with strategy C.

Experiment 3 - Multicriteria PD - Different Types of Players. We
experiment with a model where players are allowed to have different identities,
they can be more or less cooperative. We model two types of players: players
having a cooperator identity and players having a defector identity. Note that
the identity of the player does not necessarily determine the chosen strategy. A
player with a cooperator identity can easily choose strategy D and also, a player
with a defector identity can adopt the strategy C.

Figure 4a explores the case when the percentage of the players having a coop-
erator identity (λ = 1) is 90% and the percentage of players that are initialized
with strategy C is 50%, i.e. the population has a tendency for cooperation but
initially only half of the players will play strategy C. Figure 5a shows the per-
centage of players that adopted strategy C for cooperative players (λ = 1) and

114 R. Nagy et al.

(a)

(b)

Fig. 4. Strategy evolution in Iterated Multicriteria Prisoner’s Dilemma. First figures
from the left presents the identity of the players, a black square corresponds to a player
with a defector identity (λ = 0) and a white square corresponds to a player with a
cooperator identity (λ = 1). The rest of the figures present each players strategy in
rounds 25, 100, and 125.

players with defector identity (λ = 0, red line). We can observe that a coopera-
tive identity promotes the spread of strategy C. The number of “defectors” that
choose strategy C is relatively constant.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

(a)

λ=0

λ=1

(a)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

(b)

λ=0

λ=1

(b)

Fig. 5. Evolution of percentage of strategy C in each round for Fig. 4a and b.

Cooperation in Multicriteria Repeated Games 115

Figure 4b illustrates the case when the majority of the population has a
cooperator identity, and less that 1% have a defector identity (60 players) and
they are grouped in three small islands. Cooperative players in the neighborhood
of defectors might adopt the strategy D, but in contrary to the classical IPD,
the strategy D does not spread trough the population. We can conclude that
players stick to their identity.

4.1 Discussion

In the case of the multicriteria PD where the second criterion favors cooperation,
in our experiments, Nash equilibrium is not reached. Thus no predictions can be
made for the repeated scenario. We study the influence of the second criterion
(called identity payoff) on the emergence of cooperation in IPD.

Three cases are investigated:

1. Classical IPD (one criterion): we can observe that players adopt the strategy
D (Fig. 1).

2. Multicriteria IPD: a second criterion is introduced, thus there are two conflict-
ing criteria. Numerical experiments show that cooperation emerges regardless
the initial strategy distribution.

3. Multicriteria IPD - players with different identities (λ ∈ {0, 1}): in a situation
where multiple identities are present we can observe that in most cases players
choose a strategy that corresponds to their identity.

Based on our experiments we can conclude, that the introduction of identity
payoffs helps the emergence of cooperation. When all players have the same
(cooperating) identity no additional techniques or rules need to be defined in
order to reach a cooperating population. In case there are two types of players
a more realistic outcome is obtained: a population where some cooperate and
some defect. The identity of the players has an effect on the adopted strategy.
Players with a cooperative identity choose defection only when they have players
with defector identity in their neighborhood. When players with cooperative
identity are present in the population the strategy D is not adopted by the
entire population.

5 Summary and Conclusions

The Iterated Prisoner’s Dilemma is used to model a wide range of real life sit-
uations from biological evolution to social interactions. Classical Game Theory
predicts that the outcome of the game is defection. However the emergence of
cooperation can be observed in many naturally occurring PD situations.

Multicriteria games offer an ideal framework for the study of IPD and up to
our knowledge they have not been used for model IPD models. Multicriteria
games allow the development of more realistic models, where the decision making
is based on more than one criteria. The fact that real players have an inclination
towards cooperation, is neglected in standard models. Thus adding a second

116 R. Nagy et al.

criterion that models the identity of a player to the standard game is a natural
choice. This way basic single criterion cooperation dilemmas are extended to
multicriteria games.

We study the emergence of cooperation in multicriteria IPD. In contrary
to the standard payoff, the identity payoff favors cooperation. Based on our
numerical experiments we can conclude, that the introduction of identity payoffs
helps the emergence of cooperation; cooperation is reached solely based on the
identity criterion.

In real life situations players involved in a game are rarely uniform. Usually
real life interactions involve players that think differently and have different
goals. We propose a model that encompasses players with different identities.
Based on our experiments we can conclude that player will choose the strategy
that best reflects their identity - which is a more realistic outcome.

References

1. Nowak, M.A., May, R.M.: The spatial dilemmas of evolution. Int. J. Bifurcation
Chaos (IJBC) 3(1), 35–78 (1993)

2. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314(5805),
1560–1563 (2006)

3. Ostrom, E.: Governing the Commons-The Evolution of Institutions for Collective
Actions. Political Economy of Institutions and Decisions. Cambridge University
Press, Cambridge (1990)

4. Ostrom, E., Gardner, R., Walker, J.: Rules, Games, and Common-Pool Resources.
University of Michigan Press, Ann Arbor (1994)

5. Fehr, E., Gächter, S.: Cooperation and punishment in public goods experiments.
Am. Econ. Rev. 90(4), 980–994 (2000)

6. Fehr, E., Gächter, S.: Altruistic punishment in humans. Nature 415(6868), 137–140
(2002)

7. Wedekind, C., Milinski, M.: Human cooperation in the simultaneous and the alter-
nating prisoner’s dilemma: Pavlov versus generous tit-for-tat. Proc. Nat. Acad. Sci.
93(7), 2686–2689 (1996)

8. Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359,
826–829 (1992)

9. Szabó, G., Fáth, G.: Evolutionary games on graphs. Phys. Rep. 446(4–6), 97–216
(2007)

10. Brandt, H., Hauert, C., Sigmund, K.: Punishment and reputation in spatial public
goods games. Proc. R. Soc. London Ser. B Biol. Sci. 270(1519), 1099–1104 (2003)

11. Boyd, R., Gintis, H., Bowles, S., Richerson, P.J.: The evolution of altruistic pun-
ishment. Proc. Nat. Acad. Sci. 100(6), 3531–3535 (2003)

12. Shapley, L.S., Rigby, F.D.: Equilibrium points in games with Vector payoffs. Naval
Res. Logistics Q. 6(1), 57–61 (1959)

13. Nash, J.: The bargaining problem. Econometrica 18(2), 155–162 (1950)
14. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)
15. Borm, P., Tijs, S., van den Aarssen, J.: Pareto Equilibria in Multiobjective Games.

Technical report, Tilburg University (1988)
16. Zhao, J.: The equilibria of a multiple objective game. Int. J. Game Theory 20,

171–182 (1991)

Cooperation in Multicriteria Repeated Games 117

17. Wang, S.Y.: Existence of a Pareto equilibrium. J. Optim. Theory Appl. 79, 373–384
(1993)

18. Borm, P., van Megen, F., Tijs, S.: A perfectness concept for multicriteria games.
Math. Meth. Oper. Res. 49, 401–412 (1999)

19. Axelrod, R., Hamilton, W.: The evolution of cooperation. Science 211(4489), 1390–
1396 (1981)

20. Nowak, M.A., Tarnita, C.E., Antal, T.: Evolutionary dynamics in structured pop-
ulations. Philos. Trans. R. Soc. B Biol. Sci. 365(1537), 19–30 (2010)

21. West, S.A., Griffin, A.S., Gardner, A.: Evolutionary explanations for cooperation.
Current Biol. 17(16), R661–R672 (2007)

22. Jacquet, J., Hauert, C., Traulsen, A., Milinski, M.: Shame and honour drive coop-
eration. Biol. Lett. 7(6), 899–901 (2011)

23. Sasaki, T., Uchida, S.: The evolution of cooperation by social exclusion. Proc. R.
Soc. B Biol. Sci. 280(1752), 20122498 (2013)

Evolving Game Strategies in a Dynamic Cournot
Oligopoly Setting

Mihai Alexandru Suciu(B), Rodica-Ioana Lung, Noémi Gaskó,
Tudor-Dan Mihoc, and Dan Dumitrescu

Centre for the Study of Complexity, Babeş-Bolyai University, Cluj Napoca, Romania
mihai-suciu@ubbcluj.ro

http://csc.centre.ubbcluj.ro

Abstract. A Cournot oligopoly is used as a benchmark for Nash equilib-
ria tracking and detection in a dynamic setting. Several dynamics that
induce different trajectories for the equilibria are considered: random,
linear, cosine, and spiral. A new Extremal Optimization based method
is tested on the proposed dynamic setting.

1 Introduction

Ever since it was proposed by Antoine Augustin Cournot [3] in 1838 the oligopoly
model was extensively studied and used for education, research and applications.

With the emergence of dynamic games several models have been studied in
order to develop more useful computational solutions. A large range of modifi-
cations of the classical Cournot game and their study methodologies have been
applied, but ultimately the results are not satisfactory.

The instability of Nash equilibria for nonlinear discrete-time Cournot duopoly
games where players have heterogeneous behaviors was investigated by Agiza and
Elsadany in 2004 [1]. As expected the dynamics of their model becomes complex,
chaotic and highly unpredictable. In order to improve the stability of equilibrium
for this game a research has been conducted by Rong and Chen [6]. Their main
goal was to find solutions for equilibria’s sensitive dependence on initial condi-
tions. Another study for Nash equilibrium in dynamic games lead Karafyllis et
al. [7] to provide sufficient conditions for a robust global asymptotic stability.
However these models are have strong mathematical constrictions making them
difficult to be applied for concrete problems.

Binschi proposed a nonlinear discrete time Cournot duopoly game, where
players have adaptive expectations [2] and faced the same problem: instability -
the long run solution strongly depends on the initial conditions. In his paper he
proposed a method based on the method of critical curves to study the global
bifurcations that conduct to basins of attraction for equilibria as the model
parameters vary.

c© Springer International Publishing AG 2018
A.-A. Tantar et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation VI, Advances in Intelligent Systems and Computing 674,
https://doi.org/10.1007/978-3-319-69710-9_9

Evolving Game Strategies in a Dynamic Cournot Oligopoly Setting 119

A more practical approach was the attempt to model a competitive dynamic
electricity market similar to the one from US developed by Kian [8]. Highlighting
the benefices of using a dynamic game versus a static one is probably the main
result, and one of the its drawbacks of is the fact that was not compared with
a real market (even a simplified one). Greenfield and Kwoka developed also in
[5] an oligopoly model to investigate investment and production of electricity in
a market where demand evolves over time, and the two players are completely
independent.

Another practical problem was analyzed by Qiao Ru Li et al. in [9]. Using evo-
lutionary computation techniques they solved a dynamic mixed behavior traffic
network model. Evolutionary methods proved also in [14] to be reliable tech-
niques in approximating game equilibria in dynamic games.

In this paper a new approach to dynamic games and equilibria in a dynamic
setting is proposed. The static Cournot oligopoly model is used as the bases
for a dynamic model to be used as a benchmark for computational intelligence
methods that aim to approach dynamic games. The dynamic Cournot oligopoly
is appropriate for this task as it can be scaled to any number of players and
the exact position of the Nash equilibrium can be computed at any moment
analytically.

Following the construction of the benchmark a new algorithm for computing
and tracking equilibria in large games is proposed, the Dynamic Nash Extremal
Optimization (DNEO) and its performance is compared to that of the Dynamic
Equilibria Tracking Differential Evolution in [15].

2 Some Basic Notions

A non cooperative game Γ = (N,S,U) is defined by a set of players N , a set of
actions S available to them and a set of payoff functions U :

– N is the set of players, N = {1, 2, . . . , n}, n is the number of players;
– for each player i ∈ N , Si is the set of actions available to him and

S = S1 × S2 × ... × Sn

is the set of all possible situations of the game. An element s ∈ S is called a
strategy profile of the game;

– for each player i ∈ N , ui : S → R represents the payoff function of i, and
U = (u1, u2, . . . , un)

The most popular solution concept in non-cooperative Game Theory is the Nash
equilibrium [13], which is a strategy profile such that no player can increase its
payoff by unilaterally deviating. Formally, a Nash equilibrium is a strategy profile
s∗ ∈ S such that the inequality:

ui(si, s∗
−i) ≤ ui(s∗),∀i = 1, .., n,∀si ∈ Si,

holds, where (si, s∗
−i) denotes the strategy profile obtained from s∗ by replacing

the strategy of player i with si.

120 M.A. Suciu et al.

Let s and s∗ be two strategy profiles; k(s∗, s) denotes the number of players
which benefit by deviating from s∗ to s [4]:

k(s∗, s) = card{i ∈ N,ui(si, s∗
−i) > ui(s∗), si �= s∗

i }.

We say that strategy s∗ is better than strategy s with respect to Nash equilib-
rium, and we write s∗ ≺N s, if the inequality:

k(s∗, s) < k(s, s∗)

holds. k(s∗, s) is a relative quality measure of s and s∗ with respect to the
Nash equilibrium. The relation ≺N is considered as a generative relation of Nash
equilibrium, i.e. that the set of non-dominated strategies with respect to ≺N

induces the Nash equilibrium [11].
A more realistic approach is to consider that some aspects of the game change

in time. We can consider changes in the set of players (some may leave the
game, others may enter), in the set of strategy profiles, or changes in the form
of the payoff functions. In the following we will consider the latter and write
Γ (t) = (N,S,U(t), t ∈ N), where ui(s, t) : S × N → R, i = 1, . . . , n form U(t).

In this way we obtain a dynamic game [10] in which the state of the game
from a moment t to moment t + 1 may or may not depend on the choices of
players at moments 0, . . . , t.

The Nash equilibrium concept does not extend to dynamic games directly. Sev-
eral solution concepts maintain the Nash equilibrium unilateral deviation philos-
ophy, but implement it differently depending on the type of game and dynamic
approach considered. Examples are the Open Loop Nash Equilibrium (OLNE)
and the Markov Perfect Nash Equilibrium (MPNE), The OLNE computes the
NE for each instance of the game moving from t to t+1 until the end of the game.
The MPNE starts with the last epoch and moves toward the first one [10].

In our approach we consider computing the Nash equilibrium at each moment
t and if the game setting requires it, to include the results in subsequent epochs.
The scope of this endeavor is to compute and track the equilibria of such a game
by using evolutionary computation tools. Moreover, we want to find out if we
can identify certain trends in the movement of equilibria in time and cope with
games with large number of players.

3 Discrete-Time Dynamic Cournot Oligopoly

In the following we will consider a discrete-time dynamic Cournot oligopoly
benchmark with different dynamics and number of players.

A static asymmetric Cournot oligopoly [3] models n companies that produce
s1, s2,...,sn quantities of a product. The payoff function for the company i can
be computed as:

ui(s1, ..., sn) = si ·
⎛
⎝bi −

∑
j=1,n

sj

⎞
⎠ , i = 1, ..., n

where bi, i = 1, ..., n are constants derived from the economic model.

Evolving Game Strategies in a Dynamic Cournot Oligopoly Setting 121

The Nash equilibrium in this case, NE = (NE1, NE2, ...NEn), is:

NEi = bi − 1
n + 1

(
n∑

k=1

bk

)
.

A discrete-time dynamic Cournot oligopoly model can be easily derived
by inducing a change in the parameter controlling the payoffs, i.e. b =
(b1, b2, . . . , bn). Different types of changes will induce different dynamics in the
position of the Nash equilibria of the game. Thus we can induce some random
dynamics by using a certain probability distribution or we can induce a change
following a certain trend.

Cauchy perturbation. If we consider a Cauchy perturbation we modify b by:

bi(t + 1) = bi(t) + Φ(0, γ), (1)

where Φ(0, γ) represents a random number generated from a Cauchy distribution
with mode 0 and scale parameter γ. Here γ controls the amplitude of the change
from moment t to t + 1.

Linear dynamics. Let the game dynamics be described by the following equation:
⎧⎪⎪⎨
⎪⎪⎩

b(t) = a · t + b,

a =
8
50

(n + 1),

b = (n + 1),

(2)

where b(t) represents the value of the payoff parameter at generation t and
n represents the number of players. In this case, the Nash equilibrium of the
game is:

NE =
b(t)

n + 1
.

Figure 1(left) represents the trajectory of the NE in time.

0 10 20 30 40 50
0

5

10

15

20

25

30

epochs

b

NE strategy

(a) Linear dynamics

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

epochs

b

NE strategy

(b) Cosine dynamics

Fig. 1. The trajectory of NE and b in the linear case (a) and cosine (b).

122 M.A. Suciu et al.

Cosine dynamics. Let the game dynamics be described by the following equation:

b(t) = t cos(t) + 10 (3)

where b(t) represents the value of the payoff parameter at generation t. The
trajectory of the NE in this case is represented in Fig. 1, right (Fig. 2).

0 2 4 6 8 10 12 14 16 18
−2

0

2

4

6

8

10

12

14

16

b

NE strategy

(a) 2 players

−5 0 5 10 15 20

−5

0

5

10

15

−10

−5

0

5

10

15

b

NE strategy

(b) 3 players

Fig. 2. The trajectory of the NE and b for the spiral dynamics for 2 players (a) and 3
players (b).

Spiral dynamics. For a Cournot duopoly the dynamics of parameter b is
described by the following equations:

{
b1(t) = t cos(t) + 10,
b2(t) = t sin(t) + 10,

(4)

where bi(t) represents the value of the payoff parameter at moment t for player i.
For three players the dynamics of the game is described as:

⎧⎨
⎩

b1(t) = t cos(t) + 10,
b2(t) = t sin(t) + 10,
b3(t) = t.

(5)

4 Dynamic Nash Extremal Optimization

In [15] a Differential Evolution algorithm, DET-DE is designed to compute and
track Nash equilibria for a discrete-time Cournot oligopoly. The main features of
DET-DE are: using a sentinel to identify if a change has occurred in the search
space and using an adaptive mutation to boost the search after a change has
been identified.

While DET-DE proved to be very efficient for games with small number of
players (up to 10), further research showed that it did not scale very well to
larger games, which was not surprising since it did not scale well for the static

Evolving Game Strategies in a Dynamic Cournot Oligopoly Setting 123

case either [12]. However, the Nash Extremal Optimization algorithm in [12]
does scale well, and therefore we have tried to adapt it to track the NE also in
the dynamic environment.

The Dynamic Nash Extremal Optimization (DNEO) proposed is based on
NEO [12] with the following new features: DNEO uses a population of EO indi-
viduals that independently search the space; DNEO uses a sentinel to identify
changes in the search space; and to cope with changes, the best configuration for
each EO pair of individuals is re-initialized in order to encourage the exploration
of the new fitness landscape (Algorithm 1). DNEO uses only two parameters,
the population size and the maximum number of iterations.

Algorithm 1. Dynamic Nash Extremal Optimization
1: Initialize randomly the population P of strategy profiles;
2: For each Pk ∈ P set P best

k := Pi;
3: repeat
4: if Change detected then
5: Re-initialize all P best

k ;
6: end if
7: With each individual Pk ∈ P :
8: - evaluate ui for each player i;
9: - find player j with the worst payoff, i.e. satisfying uj ≤ ui for all i;

10: - replace randomly strategy of player j in Pk;
11: if Pk Nash ascends P best

k then
12: set P best

k := Pk.
13: end if
14: until maximum number of iterations is reached.
15: Return the non-dominated elements of P best at each epoch of the dynamic game.

5 Numerical Experiments

Numerical experiments were performed on all the four types of dynamics pre-
sented on Sect. 3. Results were averaged over 10 independent runs using different
seeds for the random numbers generators.

Parameter settings. For the DET-DE we considered the following parameters: a
population of 100 individuals and 50 epochs. On Each epoch the value b changed
(according to the desired dynamic) and the search took place for 200 generations;
σ = {0.5, 1, 5}, pmin = 0.01, pmax = 0.07. The basic DE parameters were:
Cr = 0.8, and F = 0.2 (at each change F was set to 0.5 and was linearly
decreased to 0.2). The probability of mutation, when a change was detected,
was directly proportional with the amplitude of the change [15].

DNEO ran with a population of 50 individuals for the same number of gen-
erations and epochs as DET-DE.

124 M.A. Suciu et al.

Cauchy perturbation. γ was set between 1 and 2. Box plots representing the
results obtained with DET-DE and DNEO for 2, 10, and 100 players are pre-
sented in Fig. 3. As expected, DET-DE did not scale well to 100 players, while
DNEO performed significantly better compared to DET-DE only for 100 players,
which is also true for the static variant of Cournot.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

DET−DE DNEO

di
st

an
ce

 to
 N

E

2 players

0

0.5

1

1.5

2

2.5

3

3.5

4

DET−DE DNEO

10 players

20

30

40

50

60

70

80

DET−DE DNEO

100 players

Fig. 3. Average minimum distance (for each epoch) to the NE for 2, 10, and 100 players,
for the DET-DE and DNEO. Differences between the two methods are significant
according to a Wilcoxon non-parametric test.

We may draw the conclusion that for small number of players DET-DE is
more appropriate, while DNEO can be used for large games. Following this
conclusion, the rest of the dynamics were only studied with DET-DE.

Linear dynamics. Figure 4 presents the results obtained for a 2 player Cournot
dynamic game with a linear dynamics with b ∈ [3, 27]. As it can be observed
DET-DE is able to track the Nash Equilibrium of the game in each epoch.

0 2000 4000 6000 8000 10000
0

0.5

m
in

 d
is

ta
n

c
e

 t
o

 N
a

s
h

generations

0 2000 4000 6000 8000 10000
0

20

40

b

DET−DE min distande to nash

b

(a) Mean distance to NE.

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

generations

b

player 1 strategy

player 2 strategy

(b) Strategies in each epoch.

Fig. 4. Two player linear dynamic Cournot game: mean distance to Nash equilibrium
and b values in each round (left), strategies for each player and b values in each round
(right).

Evolving Game Strategies in a Dynamic Cournot Oligopoly Setting 125

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

m
in

 d
is

ta
n

c
e

 t
o

 N
a

s
h

generations

0 2000 4000 6000 8000 10000
0

5

10

15

20

b

DET−DE min distande to nash

b

(a) Mean distance to NE.

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

12

14

16

18

20

generations

b

player 1 strategy

player 2 strategy

(b) Strategies in each epoch.

Fig. 5. Two player cosine dynamic Cournot game: mean distance to Nash equilibrium
and b values in each round (left), strategies for each player and b values in each round
(right).

0 2000 4000 6000 8000 10000
0

0.5

1

m
in

 d
is

ta
n

c
e

 t
o

 N
a

s
h

generations

0 2000 4000 6000 8000 10000
0

10

20

b

DET−DE min distande to nash

b

(a) Mean distance to NE.

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

12

14

16

18

20

generations

b

player 1 strategy

player 2 strategy

player 3 strategy

(b) Strategies in each epoch.

Fig. 6. Three player cosine dynamic Cournot game: mean distance to Nash equilib-
rium and b values in each round (left), strategies for each player and b values in each
round (right).

Cosine dynamics. Figure 5 and 6 presents the results obtained for 2 and 3 players.
Again DET-DE was capable to track the position of the NEs. In both cases (2
and 3 players) t ∈ [0, 12] is increased with step 0.25 in each generation.

Spiral dynamics. Figures 7 and 8 illustrate the results obtained for 2 and 3
players. DET-DE follows the Nash Equilibrium of the game each epoch.

126 M.A. Suciu et al.

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

generations

g
e

n
e

ra
ti
o

n
s

DET−DE min distande to nash

(a) Mean distance to NE.

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

s1

s
2

b

player 1,2 strategy

(b) Strategies in each epoch.

Fig. 7. Two player spiral dynamic Cournot game: mean distance to Nash equilibrium
and b values in each round (left), strategies for each player and b values in each round
(right).

0 0.5 1 1.5 2 2.5 3

x 10
4

0

1

2

3

4

5

6

7

generations

d
is

ta
n
c
e
 t
o
 N

a
s
h

DET−DE min distande to nash

(a) Mean distance to NE.

−5
0

5
10

15
20

−10

0

10

20
−10

−5

0

5

10

15

s1s2

b

player 1,2 strategy

(b) Strategies in each epoch.

Fig. 8. Three player spiral dynamic Cournot game: mean distance to Nash equilibrium
and b values in each round (left), strategies for each player and b values in each round
(right).

6 Conclusions and Further Work

This paper tackles the problem of computing and tracking the Nash equilibrium
of a discrete - time dynamic Cournot oligopoly with four types of dynamics
with two evolutionary approaches: a differential evolution one, DET-DE and
one based on extremal optimization - DNEO.

For the considered games, DET-DE performed significantly better than
DNEO for a small number of players (2,10); for 100 players the results obtained
by DNEO were in turn much better than those of DET-DE, but still not very
precise, indicating that further work may include a hybridization that would
improve both results.

Evolving Game Strategies in a Dynamic Cournot Oligopoly Setting 127

Acknowledgments. The authors would like to acknowledge the support received
from the OPEN-RES 212/2012 grant (www.uefiscdi.gov.ro).

References

1. Agiza, H., Elsadany, A.: Nonlinear dynamics in the Cournot duopoly game with
heterogeneous players. Phys. A: Stat. Mech. Appl. 320, 512–524 (2003), http://
www.sciencedirect.com/science/article/pii/S0378437102016485

2. Bischi, G.I., Kopel, M.: Equilibrium selection in a nonlinear duopoly game with
adaptive expectations. J. Econ. Behav. Organ. 46(1), 73–100 (2001), http://www.
scopus.com/inward/record.url?eid=2-s2.0-0001902879&partnerID=tZOtx3y1

3. Cournot, A.: Recherches sur les Principes Mathematique de la Theorie des
Richesses. Hachette, Paris (1838)

4. Dumitrescu, D., Lung, R.I., Mihoc, T.D.: Generative relations for evolutionary
equilibria detection. In: Proceedings of the 11th Annual Conference on Genetic
and Evolutionary Computation (2009)

5. Greenfield, D., Kwoka, J.: The Cost Structure of Regional Transmission Organi-
zations. Energy J. 32(4), 183–218 (2011), http://www.scopus.com/inward/record.
url?eid=2-s2.0-84864972092&partnerID=tZOtx3y1

6. Hu, R., Chen, Q.: Chaotic dynamics and chaos control of cournot model with
heterogenous players. In: Jiang, L. (ed.) Proceedings of the 2011 International
Conference on Informatics, Cybernetics, and Computer Engineering (ICCE 2011),
November 19-20, 2011, Melbourne, Australia SE - 70. AISC, vol. 110, pp. 549–557.
Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-25185-6 70

7. Karafyllis, I., Jiang, Z.P., Athanasiou, G.: Nash equilibrium and robust stability in
dynamic games: a small-gain perspective. Comput. Math. Appl. 60(11), 2936–2952
(2010), http://www.sciencedirect.com/science/article/pii/S0898122110007510

8. Kian, A.R., Cruz, J.B.: Bidding strategies in dynamic electricity markets. Decis.
Support Syst. 40(3-4), 543–551 (2005), http://www.scopus.com/inward/record.
url?eid=2-s2.0-24944591946&partnerID=tZOtx3y1

9. Li, Q.R., Ma, S.F., Chen, L., Long, Y., Wei, L.Y.: Genetic algorithm app-
roach to dynamic mixed behavior traffic network equilibrium problem. Chang’an
Daxue Xuebao (Ziran Kexue Ban)/J. Chang’an Univ. (Nat. Sci. Ed.) 27(6), 87–
90 (2007), http://www.scopus.com/inward/record.url?eid=2-s2.0-38549157564&
partnerID=tZOtx3y1

10. Long, N.V.: A Survey of Dynamic Games in Economics, vol. 1. World Scientific
Publishing Co. Pte. Ltd. (2010), http://EconPapers.repec.org/RePEc:wsi:wsbook:
7577

11. Lung, R.I., Dumitrescu, D.: Computing Nash equilibria by means of evolutionary
computation. Int. J. Comput. Commun. Control 3, 364–368 (2008)

12. Lung, R.I., Mihoc, T.D., Dumitrescu, D.: Nash extremal optimization and large
cournot games. In: NICSO, pp. 195–203 (2011)

13. Nash, J.: Non-Cooperative Games. Ann. Math. 54(2), 286–295 (1951), http://dx.
doi.org/10.2307/1969529

www.uefiscdi.gov.ro
http://www.sciencedirect.com/science/article/pii/S0378437102016485
http://www.sciencedirect.com/science/article/pii/S0378437102016485
http://www.scopus.com/inward/record.url?eid=2-s2.0-0001902879&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-0001902879&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84864972092&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84864972092&partnerID=tZOtx3y1
http://dx.doi.org/10.1007/978-3-642-25185-6_70
http://www.sciencedirect.com/science/article/pii/S0898122110007510
http://www.scopus.com/inward/record.url?eid=2-s2.0-24944591946&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-24944591946&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-38549157564&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-38549157564&partnerID=tZOtx3y1
http://EconPapers.repec.org/RePEc:wsi:wsbook:7577
http://EconPapers.repec.org/RePEc:wsi:wsbook:7577
http://dx.doi.org/10.2307/1969529
http://dx.doi.org/10.2307/1969529

128 M.A. Suciu et al.

14. Suciu, M., Gaskó, N., Lung, R.I., Dumitrescu, D.: Nash equilibria detection for
discrete-time generalized cournot dynamic oligopolies. SCI, vol. 512, pp. 343–
354 (2014), http://www.scopus.com/inward/record.url?eid=2-s2.0-84883646840&
partnerID=tZOtx3y1

15. Suciu, M.A., Lung, R.I., Gaskó, N., Dumitrescu, D.: Differential evolution for
discrete-time large dynamic games. In: Proceedings of the IEEE Congress on Evo-
lutionary Computation, CEC 2013, Cancun, Mexico, June 20-23, 2013, pp. 2108–
2113 (2013), http://dx.doi.org/10.1109/CEC.2013.6557818

http://www.scopus.com/inward/record.url?eid=2-s2.0-84883646840&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84883646840&partnerID=tZOtx3y1
http://dx.doi.org/10.1109/CEC.2013.6557818

Theory on Evolutionary Computation

Efficient Real-Parameter Single Objective
Optimizer Using Hierarchical CMA-ES Solvers

Madalina M. Drugan(B)

Artificial Intelligence Lab, Vrije Universiteit Brussels,
Pleinlaan 2, 1050 Brussels, Belgium

madalina.drugan@gmail.com

Abstract. Monte Carlo Tree Search (MCTS) is a novel machine learn-
ing paradigm that is used to find good solutions for complex optimization
problems with very large search spaces (like playing GO). We combine
MCTS with Covariance Matrix Adaptation Evolution Strategies (CMA-
ES) to efficiently optimize real-parameter single objective problems by
balancing the exploitation of promising areas with the exploration of new
regions of the search space. The novel algorithm is called hierarchical
CMA-ES and it is influenced by both machine learning and evolution-
ary computation research areas. Like in evolutionary computation, we
use a population of individuals to explore the commonalities of CMA-
ES solvers. These CMA-ES solvers are structured using a MCTS tree
like structure. Our experiments compare the performance of hierarchical
CMA-ES solvers with two other algorithms: the standard CMA-ES opti-
mizer, and an adaptation of MCTS to solve real-parameter problems.
The hierarchical CMA-ES optimizer has the best empirical performance
on several benchmark problems.

1 Introduction

Natural paradigms are a major inspiration source in many areas of statistics and
computer science. Machine Learning (ML) could be considered a collection of
nature inspired paradigms that map inputs (as sensors and other empirical data
structures) using learning and optimization paradigms to automatically build a
model that makes predictions or decisions. A recent trend in ML is the transfer
of knowledge from one area to another. Multi-armed bandits (MAB) [5] is a well-
established decision problem that was studied since the 1930s with application in
different domains. Although at first they seem very different, MAB and EC are
two learning techniques that address basically the same problem: the maximiza-
tion of the agent’s reward in MAB and fitness function in EC in an unknown
environment. The MAB paradigm is attractive because it provides a mathemat-
ical framework for modelling decision making with a simple algorithm, while the
main strength of EC is its general applicability and computational efficiency.
We highlight two important differences between the EC and MAB techniques:
c© Springer International Publishing AG 2018
A.-A. Tantar et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation VI, Advances in Intelligent Systems and Computing 674,
https://doi.org/10.1007/978-3-319-69710-9_10

132 M.M. Drugan

(1) EC is a stochastic optimization algorithm for large (usually) determinis-
tic environments, whereas MAB is (usually) a non-stochastic algorithm for sto-
chastic environments. (2) EC optimizes multi-dimensional search spaces whereas
multi-dimensional environments are a hot topic in MABs. Section 2 gives a short
overview of the ML techniques used.

Real-parameter single objective problems are complex optimization problems
that require engineered design techniques to solve them. Evolutionary Strategies
(ES) [3] is a variant of EC for continuous environments that uses only muta-
tion to generate new individual solutions and deterministically selects the best
individuals. ES considers that a well-performing optimizer tunes its parameters
automatically since manually tuning parameters is a time and resource consum-
ing process. Covariance Matrix Adaptation Evolution Strategies (CMA-ES) [8]
wants to be a parameter free ES that generates new solutions using a multi-
variate normal distribution to learn the distribution of the solutions. CMA-ES
is a popular derivative free numerical optimization technique due to its large
applicability on non-linear, non-convex, continuous optimization functions.

Our main contribution is to steer real-parameter optimization with a variant
of Monte Carlo Tree Search (MCTS) that uses hierarchical CMA-ES solvers.
Each node in the hierarchy of MCTS is a CMA-ES solver over a search space
defined by a D-rectangle. The search space of a parent CMA-ES solver is itera-
tively decomposed in a tree of finer disjunct D-rectangles that have associated
CMA-ES solvers as well. Each CMA-ES solver has associated: (1) a population
of solutions from which the generation of new individual solutions is adapted,
and (2) a value corresponding with the mean fitness of the individual solutions
in the corresponding D-rectangle. A solver is selected according to its value such
that the most promising regions are exploited the most by sampling fit individual
solutions in the corresponding D-rectangle. On the other hand, each solver can
be selected with a non-zero probability such that new regions of the search space
are sampled. Similarly as in MCTS, the exploration versus exploitation balance
is maintained by selecting the less fit CMA-ES solvers with low frequency and
fit solvers with high frequencies.

Section 3 introduces the tree structure to be used with the variant of MCTS
for real-parameter optimization. Each node in the tree is characterised by a D-
rectangle representing the Cartesian product of D continuous and contiguous
intervals and a value representing the mean value of the individuals sampled in
the D-rectangle. The relation between nodes is explained.

In Sect. 4, we introduce a real-coded MCTS with the goal of finding the
optimal solution of a given continuous function. It starts from a set of solu-
tions generated uniformly at random, and Monte Carlo tree like search gradually
focuses towards promising areas of the search space. We classify these algorithms
using two main policies to generate individual solutions: (1) uniform random,
and (2) adaptive normal distributions. Each iteration, a population of solutions
is generated from a node selected with a stochastic multi-armed bandit (MAB)
paradigm [5]. We use two different policies to traverse the MCTS nodes: (1) from
the root to leaves in a top-down manner and (2) selecting the most promising
node anywhere in the MCTS tree.

Efficient Real-Parameter Single Objective Optimizer 133

Section 5 combines real-coded MCTS with CMA-ES solvers [2] into an effi-
cient optimizer for multi-dimensional environments. We call this algorithm hier-
archical CMA-ES solver. The nodes in MCTS are CMA-ES solvers on bounded
D-rectangles that generate individuals solutions using an adaptive multivariate
normal distribution. Hierarchical CMA-ES solver is different than real-coded
MCTS because the later uses the uniform random distribution to generate new
individuals.

Section 6 experimentally compares the proposed algorithms and their vari-
ants on several multi-dimensional benchmark functions [10] for real-parameter
optimization. We show that the most efficient algorithm is hierarchical CMA-
ES solvers and we explain its performance using several metrics for both opti-
mization and learning. If the standard CMA-ES requires large populations to
efficiently solve a problem, we experimentally show that hierarchical CMA-ES
solvers work well with small populations and bounded search spaces. Section 7
concludes the paper.

2 Preliminaries

Multi-armed bandits. Stochastic MAB [1] is a popular mathematical formal-
ism to study sequential decision-making under uncertainty where the objective
is to maximize a long-term objective. An agent must choose between N -arms
such that the expected reward over time is maximized. The distribution of the
stochastic pay-off of the different arms is assumed to be unknown to the agent.
A MAB algorithm starts by uniformly exploring the N -arms, and then gradually
focuses on the arm with the best observed performance. Since, the means are
unknown one has to allocate a number of trials over the different arms so that,
based on the obtained rewards, the optimal arm is identified as soon as possible
and this with (very) high confidence.

Exploration vs exploration trade-off in EC and MABs. The exploration
(the search for new useful solutions) versus exploitation (the use and propagation
of such solutions) trade-off is an attribute of successful adaptation in both MAB
and EC. In EC, the exploration implies the evaluation of new solutions that
could have low fitness and the exploitation means the usage of already known
good solutions, e.g. selection. Selecting and using these trade-off strategies are
not trivial and actually, they can increase the time needed to find an acceptable
solution.

In MAB, exploration means that one tries a suboptimal arm to improve
the estimate of the mean reward value while exploitation means that one tries
the best observed so far arm which is not necessarily the true best arm. An
arm selection policy determines which arm is selected at what time step based
on the rewards obtained so far. The selection policies for the MAB-problem is
essential for its performance. An important heuristic that has emerged is that
good policies, e.g. variants of the upper confidence bound (or UCB) policy, are
optimistic in the face of uncertainty [11].

134 M.M. Drugan

There are many variants of MABs with different goals (i.e. minimizing the
loss of pulling suboptimal arms or identifying optimal arms), with different mech-
anisms for efficient optimization.

Monte Carlo Tree Search (MCTS). One MAB variant is the hierarchical
bandit approach, or MCTS, [4,9] where the reward of one arm in the hierarchy is
the reward of another node that is one level deeper in the hierarchy [11]. MCTS
is a recently proposed search method that builds a search tree in an incremental
and asymmetric manner accordingly to a tree policy that selects the node with
the highest priority to expand. The tree policy needs to balance exploration
versus exploitation, which for MCTS methods resembles the same trade-off as in
EC. Exploration means to search in areas not sampled yet, whereas exploitation
means to search in promising areas. Each round in MCTS consists of four steps:
selection, expansion, simulation, and back-propagation.

Selection starts from the root, it selects successive expandable child nodes
down to a leaf node. It selects child nodes that expand the tree towards the
most promising moves, which is the essence of MCTS. A node is expandable
if it represents a non-terminal state and it is unvisited. Expansion: unless a
stopping criteria is met, MCTS creates one or more child nodes and chooses
from them a node, designated as the current node, using a tree policy. If no
child was created, the simulation starts from a leaf node. Simulation plays at
random from the current node using a default policy. Back-propagation uses the
results from the previous steps to update the information in the nodes on the
path from the current node to the root. MCTS is a statistical any-time algorithm
for which more computing power means better results.

A popular technique to design MCTS is to use stochastic bandits, i.e. upper
confidence bound (UCB1) [1]. To select the next node to expand, the rewards are
sampled from an unknown distribution. UCB1 is a very simple and efficient MAB
and has appealing theoretical properties. Each promising candidate is evaluated
according to the UCB1 policy. This class of algorithms is denoted as the upper
confidence bound for tree (UCT) [9]. UCT builds incrementally a search tree
using random samples in the search space by expanding the nodes selected by
the arm selection policy [4]. This approach is largely responsible for the success
of Monte Carlo Tree Search (MCTS) where other methods fail, e.g. for the game
of GO.

[7] proposes the schemata bandits algorithm to solve binary combinatorial
optimisation problems, like the trap functions and NK landscape, where poten-
tial solutions are represented as bit strings. The schemata from the schema the-
orem for genetic algorithms are structured as hierarchical multi-armed bandits
in order to focus the optimisation in promising areas of the search space.

[6] uses a variant of MCTS to optimize continuous and stochastic sequential
decision making problems.

Efficient Real-Parameter Single Objective Optimizer 135

3 Real-Parameter Tree Structure

In order to adapt Monte Carlo Tree Search (MCTS) to global optimization of
continuous functions, we use a different definition for nodes and leaves for multi-
dimensional real-parameter environments. We consider only maximization prob-
lems, a requirement of the multi-armed bandit paradigm. The tree is structured
as follows:

Tree nodes. Each node in the tree has the four attributes: (1) a D-rectangle,
(2) a value, (3) several children and (4) at most one parent. Here, we consider
D larger or equal to 1, thus D ≥ 1 and that the search space is normalised in all
D dimensions. Consider a node i in the tree. Let mj

i and M j
i be the upper and

the lower bound in each dimension j for the D-rectangle of node i, respectively,
such that 0 ≤ mj

i < M j
i ≤ 1. A D-rectangle is defined as the Cartesian product

over all dimensions ×1≤j≤D[mj
i ,M

j
i). A D-rectangle is defined as the Cartesian

product over all dimensions ×1≤j≤D[mj
i ,M

j
i).

The most general node in the tree is called root. The root of the tree has
associated a D-rectangle representing the bounds of the D dimensional contin-
uous search space to be optimised. The root node has no parents and it has a
D-rectangle that contains all the other D-rectangles in the tree. For simplicity,
we assume that all the edges of any D-rectangle associated with a node are
equal, and thus we have D-cubes. The root node has a D-cube defined by the
Cartesian product [0, 1] × . . . × [0, 1] in all D dimensions. The root’s volume is
the product over all intervals of length 1.

A leaf node is a D-cube with no children; thus this node is not split in other
smaller D-cubes.

Children. Let K be the fixed number of equal sized non-overlapping intervals
considered in each dimension K ≥ 2. Each node i, which is not a leaf, has KD

children defined as the Cartesian product of K subintervals in each dimension.
Thus, each interval [mj

i ,M
j
i) is divided in each dimension j in K disjoint subin-

tervals of length ξj
i ← �Mj

i −mj
i

K �. Each child of the i-th D-cube ×1≤j≤D[mj
i ,M

j
i]

is another D-cube ×1≤j≤D[mj
i + kj

K ξj
i ,m

j
i + kj

i+1

K ξj
i), where the index kj

i ranges
from 0 till K − 1.

Parents. Each node that is not the root has a single parent for which the D-cube
contains the D-cube of its children.

Value of nodes. Each node in the tree, thus also the leaves and the root,
has associated a value that is the mean fitness value of the solutions inside the
bounds of that node. Let {s1, s2, . . . , sni

} be the set of ni solutions evaluated
in the i-th D-cube. The estimated value of this node is ̂fi =

∑ni

j=1
f(sj)

ni
. When

ni ← ∞, the estimated value of this node is fi =
∫ Mi

mi
f(x)d(x) the area under

function f is the estimated value of the corresponding D-cube. By convention,
when there is no individual solution generated in a D-cube, the value of that
node is set to the minimal value ̂fi = 0.001 and ni = 1 such that the node will

136 M.M. Drugan

be sampled sometimes. Each time a child is selected, we update the counters
n ← n + 1 and ni ← ni + 1.

Tree properties. Let � be the number of nodes on the path between the root
and a leaf. Each leaf i has a minimal size of the interval min1≤j≤D M j

i −mj
i > ε,

where ε > 0 a small number. Then, � ← logK� 1
M0

i −m0
i
�.

When K = 2, the tree has the longest path between the root and a leaf. A
complete tree with length � has KD� nodes. This means that if K = 2, D = 10
and � = 10, we could have 210

10
nodes in the complete tree which is a huge

number. The root alone has 2D = 210 = 1024 children, and a path generated by
a solution from the root to the leaf has � = 210 nodes. When 103 solutions are
generated uniformly at random, we may generate 106 nodes of the tree.

Therefore, a computational feasible MCTS algorithm generates a small set of
nodes from this tree by focusing the search in the promising areas of the search
space. In the next section, we will present several methods to traverse the tree
and to generate solutions in this tree.

Fig. 1. Cubes representing the root and its 8 children.

An example. If K = 2 and D = 3, then there will be 23 = 8 children for each
node of the tree. Thus, the root has 8 children with the corresponding cubes
[0, 0.5]3, [0, 0.5]2 × [0.5, 1], [0, 0.5] × [0.5, 1]2, and so on. Note that these cubes
have equal volume that is 0.53 = 1/8 from the root’s volume. Similarly, a child
of such cube has exactly 1/8 · 1/8 = 1/64 from the root’s volume. Figure 1 show
that spatial distribution of the 8 children cubes into the cube representing the
parent.

Let s1 = (0.2, 0.7, 0.9), s2 = (0.6, 0.2, 0.7) and s3 = (0.3, 0.8, 0.9) be 3 sam-
pled individual solutions. Let f : [0, 1]D → R be a continuous real-valued
function and f(s) is the value of solution s. As expected, the root node con-
tains all solutions. Further, two solutions correspond to a child of the root,
s1 s3 ∈ [0, 0.5] × [0.5, 1]2, and the third solution corresponds to another of the
root’s children s2 ∈ [0.5, 1] × [0, 0.5] × [0.5, 1]. The estimated value of the root is
the mean of the three solutions whereas the estimated value of the node contain-
ing the solutions s1 and s3 is their mean, and the estimated value of the node
containing s2 is equal to f(s2). If no other solutions are generated, the rest of the
root’s children have the default minimal value of 0.001, which is a pessimistic
initialization. Figure 2 illustrates the example of MCTS structure with K = 2
and D = 3.

Efficient Real-Parameter Single Objective Optimizer 137

Fig. 2. An example of real-parameter MCTS optimizer.

1: function Baseline real-parameter MCTS rMCTSN
2: Generate N random individual solutions, and set n ← N {Initialization}
3: Build a first Monte Carlo Tree instance
4: while the stopping criteria is NOT met do

5: Select the node i that maximizes the value ̂fi + C ·
√

lnn
ni

{Selection}
6: Generate N solutions Si ← {s1, . . . , sN} in the selected node i {New solutions}
7: for all solutions sj in the population Si do
8: Update the mean value and the counters of all the nodes that contain sj

{Update}
9: end for

10: n ← n + N ;
11: end while
12:
13: return the best individual solution found
14: end function

4 Real-Parameter MCTS Algorithms

In this section, we investigate several selection and propagation policies for
Monte Carlo Tree Search (MCTS) for real-parameter optimization. We classify
the algorithms using two criteria. We consider two policies to select a node, and
these are: (1) a top-down approach that select nodes by traversing the tree from
the root to the leaves, and (2) a uniform approach where all the nodes in the tree
are considered for selection. The latter policy is specific for the standard MCTS,
whereas the former policy is a top-down approach similar with deterministic
optimistic optimization (DOO) [11]. We also consider two policies for generating
solutions in the selected nodes using either: (1) a uniform random distribution,
or (2) a covariance adaptive matrix that adapt a multi-variate distribution (this
approach is introduced in Sect. 5).

138 M.M. Drugan

4.1 Baseline Real-Parameter MCTS

A baseline real-parameter MCTS algorithm considers all the tree nodes for selec-
tion, and it generates solutions using a uniform distribution on the selected
D-cube. The pseudo-code is presented in Function BASELINE REAL- PARA-
METER MCTS (rMCTS).

At the initialization, a set of N initial solutions is generated uniform ran-
domly in the initial D-cube [0, 1]D, where D ≥ 1. Using each of these initial
solutions, we update from the root to the leaves the estimated value for all the
nodes whose D-cube contains that solution. This represents the first instance of
the Monte Carlo tree. A tree iteration includes the following successive steps:
(1) the selection of a tree node, (2) the generation of a population set of N solu-
tions within the selected node, and (3) the update of the tree for each individual
solution.

A UCB1 policy is associated with the tree, such that each iteration, a tree
node i is selected using the index value of the UCB1 algorithm

̂fi + C

√

ln n

ni
(1)

where ̂fi is the average fitness value of the solutions in the i-th D rectangle.
The counter ni represents the number of times the node i is selected, and n is
the total number of solutions that were generated by rMCTS. The exploration
parameter C > 0 is usually set to C = 2, but its value usually depends on the
properties of the optimization problem.

The first component of Eq. 1 corresponds to exploitation. A node with a high
average fitness is selected more often than a node with low average fitness. The
second component of Eq. 1 corresponds to exploration and allows low fitted nodes
to be sometime selected in order to explore new regions of the search space. N
individual solutions, Si ← {s1, . . . , sN} are generated uniform randomly within
the bounds of the D-cube associated with i. For each individual solution s, we
update the mean fitness value of all nodes that contain the fitness value of s.
Thus, the value of the node i is updated, but also the average fitness value of all
nodes, from the root to the leaves, on a path that contains that node. rMCTS
stops when a maximum number of solutions was evaluated.

4.2 Top-Down Node Real-Parameter MCTS

The top-down selection policy always starts with the root node and ends up in a
leaf node that contains an individual solution. The pseudo-code of this algorithm
is given in Function TOP-DOWN REAL-PARAMETER MCTS (tMCTS). Each
tree node is associated to a UCB1 strategy to select a child of the node. tMCTS
uses the same index for the UCB1 strategy like in Eq. 1, but with different
meaning.

Efficient Real-Parameter Single Objective Optimizer 139

1: function Top-down real-parameter MCTS tMCTSN
2: Generate N random individual solutions, and set n ← N {Initialization}
3: Build a first Monte Carlo tree instance
4: while the stopping criteria is NOT met do
5: Select the root node {Selection}
6: while the node i was visited before and i is not a leaf node do
7: Select the node j that maximizes the index value ̂fij + C ·

√

lnni
nij

8: end while
9: Generate N individual solutions Si ← {s1, . . . , sN} in the selected node i {New

solutions}
10: for all solutions sj in the population Si do
11: Update the mean value and the counters of all the nodes that contain sj

{Update}
12: end for
13: n ← n + N
14: end while
15:
16: return the best individual solution found
17: end function

Let i be a tree node. We select a child node j of the node i using a UCB1
with the index value

̂fij + C

√

ln ni

nij
(2)

where the estimated value ̂fij equals the average fitness value of solutions corre-
sponding to node j, and thus also to its parent node i. The counter ni indicates
how many time the node i was selected whereas the counter nij measures how
many times the child j was selected using the UCB1 instance. The parameter C
is a positive real, as before.

Solutions are generated for nodes there are selected for the first time, or for
leaf nodes. For each solution generated, the tree is updated as before.

The counters of two UCB1 strategies associated to nodes that are not on the
same path between the root and a leaf have independent counters and values.
Two UCB1 strategies that are on the same path are correlated, the closer on
the same path they are, the larger the correlation. Thus, a parent and its chil-
dren have correlated UCB1 index values since they share some of the individual
solutions.

The baseline and top-down policies for the real-parameter MCTS are exper-
imentally compared in Sect. 6. In order to compare the algorithms, we use the
same stopping rule, naming a maximum number of generated solutions.

Related work. Interesting parallels can be made between the tMCTS and the
deterministic optimistic optimization (DOO) [11]. The main difference is the use
of a population of solutions in tMCTS, which has an impact on both updating
and expansion rules. For example, in DOO, each node is evaluated using a single

140 M.M. Drugan

1: function Hierarchical CMA-ES solvers CMA-MCTSλ,N
2: Assign uniform weights ωi = 1/λ {Initialization}
3: Generate N random individual solutions and initialize root’s (λ, N) CMA-ES
4: Build a first Monte Carlo tree instance
5: while the stopping criteria NOT met do

6: Select the node i that maximizes the value ̂fi + C
√

lnn
ni

{Selection}
7: Generate N individual solutions Si ← {s1, . . . , sN} using the corresponding

(λ, N) CMA-ES solver {New Solutions}
8: for all best λ solutions s in the population Si do
9: for all the nodes j that contain s do

10: {Update}
11: Update the mean value and the counters of j
12: Update the corresponding (λ, N) CMA-ES solver
13: end for
14: end for
15: n ← n + N ; t ← t + 1
16: end while
17:
18: return the best individual solution found
19: end function

function evaluation in the middle of the representing interval, whereas in tMCTS
the value of each function is the average fitness of individual solutions spread in
the same interval. This is an improvement in our algorithm because the value of
each node is a better approximation of the expected optimal value in the given
interval.

4.3 Exploration/Exploitation Trade-Off

We consider that the exploration/exploitation trade-off in real-parameter MCTS
algorithms is a measure of the selection pressure that is correlated with the
size of the generated population N . A large population size N means a smaller
number of selection steps in the tree but a lower selection pressure. The selection
pressure comes from the successive tree iterations of solutions meaning that two
solutions generated in different tree iterations are correlated. The best nodes in
the previous iterations generate solutions in the current and future iterations,
whereas the solutions in the same tree iteration are independently generated.

Another way to control the exploration/exploitation trade-off is the explo-
ration parameter C in the UCB1 index from Eq. 1 and 2. A small C value means
that the node with the best fit individuals is selected very often, whereas a
large C gives a large weight to the exploration term meaning that all nodes are
selected often. Thus, unlike in a standard MCTS, both the population size and
the exploration parameter control the exploration/exploitation trade-off.

Efficient Real-Parameter Single Objective Optimizer 141

5 Hierarchical CMA-ES Solvers

In this section, we propose a variant of the real-coded Monte Carlo Tree Search
(MCTS) that interlace with (λ,N) CMA-ES solvers to efficiently exploit the
structural information contained in the individual solutions. We denote this
algorithm as hierarchical CMA-ES solvers (CMA-MCTS) and its pseudo-code is
presented in Function HIERARCHICAL CMA-ES SOLVERS. A tree with only
one node, the root node, coincides with the standard (λ,N) CMA-ES algorithm.
Each node of this tree has associated one (λ,N) CMA-ES solver to generate pop-
ulations of solutions that exploit the promising regions of the search space.

Baseline CMA-MCTS algorithm. CMA-MCTS alternates the selection and
updating steps of MCTS with the generation of new fit solutions of (λ,N) CMA-
ES. At initialization, N individuals are uniform randomly generated and the
(λ,N) CMA-ES of the root node is initialized from this population. Like in the
standard CMA-ES, the best fraction of the proposed individual solutions, λ, are
used to update the covariance matrix and the step size of each (λ,N) CMA-ES
solver. The mean value of the selected node is also updated using the best λ
solutions generated by the corresponding (λ,N) CMA-ES solver.

Each iteration, a node i is selected using a UCB1 strategy over all nodes
in MCTS, like in the baseline real-parameter MCTS. The larger the estimated
mean fitness ̂fi is, the higher the probability that the node i is selected. A tree
node with a bad estimation could be selected less often, therefore the exploration
term C

√

lnn
ni

ensures that each tree node gets a fair number of trials, where C, n

and ni as before. There are N solutions sampled with the corresponding CMA-
ES solver. The most fit λ solutions are used to update the estimated functions
of the tree nodes on the path between the root node, the selected node and the
possible leaves. In case a solution is generated outside the bounds of the given
D-cube, we ignore that solution and, instead, we sample a new solution within
the given bounds. This step is the expansion step because new tree nodes are
created when the leaf node is not already in MCTS. The algorithm stops when
a maximum number of individual solutions were sampled.

CMA-ES solver. In the following, we describe the CMA-ES algorithm we use
in each node of CMA-MCTS. Consider the selected node i. At initialization, the
first generation of N individual solutions {x

(1)
1 , . . . , x

(1)
N } are uniform randomly

generated. A first estimation of the covariance matrix for ̂C(1)
i is computed for

the first N solutions with the following equation

̂C(t)
i =

λ
∑

j=1

ωj

(

x
(t)
1:N − µ

(t)
i

)

σ(t)
·
(

x
(t)
1:N − µ

(t)
i

)T

σ(t)
(3)

where i = 1 for the root node. The mean µ
(t)
i is updated for the t-th iteration

µ
(t)
i =

λ
∑

i=1

ωix
(t)
i:N

142 M.M. Drugan

where
∑N

i=1 ωi = 1, and ω1 ≥ ω2 ≥ . . . ≥ ωN > 0. Only a fraction of solutions
λ, where 1 ≤ λ ≤ N , are selected to update the covariance matrix and the fitness
mean. The λ individual solutions that are selected are the most fit individuals
from the population. This is considered similar to the truncation selection. x(t)

j:N

is the j-th best individual out of {x(t)
1 , . . . ,x(t)

N } individuals and j : N denotes
the index of the i-th ranked individual a population of N individuals for a
maximization problem, f(x(t)

1:N) ≥ f(x(t)
2:N) ≥ . . . ≥ f(x(t)

N :N). In a practical
setting, λ ≈ �N

2 �, and ωi ∝ N − j + 1.
Iteratively, in each selected node i, a population on N individuals is generated

from a normal distribution

x(t)
i ∼ µ

(t)
i + σ

(t)
i N

(

0, ̂C(t)
i

)

where σ
(t)
i is the variance, or the step size, it is also adapted

σ
(t+1)
i = σ

(t)
i × e

cσ
dσ

(
‖p

(t+1)
σ ‖

E‖N(0,I)‖ −1

)

where

p(t+1)
σ = (1 + cσ)p(t)

σ +
√

cσ(2 − cσ)mωC(t)
i

−1/2µ
(t+1)
i − µ

(t)
i

σ(t)

and m−1
ω =

∑N
i=1 ω2

i , cσ = mω+2
D+mω+5 and dσ = 1 + cσ + 2max{0,

√

mω−1
D+1 − 1}.

For each node i, its covariance matrix is updated from the previous covariance
matrix

C(t+1)
i = (1 − c1 − cm + (1 − hσ)c1cc(2 − cc))C

(t)
i + c1p(t+1)

σ (p(t+1)
σ)T + cm · ̂C(t)

i

where ̂C(t)
i is the empirical covariance matrix defined in Eq. 3 and c1 =

2
(D+1.3)2+mω

, cc = 4+mω/D
D+4+2mω/D , and cm = min{1 − c1, 2

mω−2+1/mω

(D+2)2+mω
}. We take

p(t+1)
c = (1 + cc)p(t)

c + hσ

√

cc(2 − cc)mω
µ

(t+1)
i − µ

(t)
i

σ(t)

where hσ = 1 if ‖p(t+1)
σ ‖ <

√

1 − (1 − cσ)2(t+1)(1.4+2/(D+1))E‖N (0, I)‖, and
hσ = 0 otherwise.

Exploration/exploitation trade-off. CMA-ES introduces another mecha-
nism that commands exploration/exploitation trade-off. A large λ means a
smaller selection pressure inside a single CMA-ES, which leads to a smaller
adjustment in the covariance matrix. A small λ implies a higher selection pres-
sure, but also a higher time of reaction if the distribution of the selected solutions
changes considerably. The weights and the learning rate of a covariance matrix
are two other parameters that fine tune the performance of a single CMA-ES.
Note that in the current version of the algorithm, CMA-ES of each tree node
evolves independently of other CMA-ES from other nodes. The interplay between
different exploration/exploitation parameters is considered future work.

Efficient Real-Parameter Single Objective Optimizer 143

6 Experimental Section

In this section, we compare the performance of five algorithms on a set of bench-
mark real-parameter single objective problems [10]. Because MCTS algorithms
solve maximization problems, the test problems were transformed from mini-
mization to maximization problems.

Tested algorithms. We compare three algorithms.

– tMCTS is the top-down approach of real-parameter MCTS introduced in
Sect. 4.2 where all the tree nodes have associated a UCB1 to select from their
children

– tCMA-MCTS is the top-down approach of hierarchical CMA-ES solvers
where all the tree nodes have associated a UCB1 to select from their chil-
dren and a CMA-ES solver

– CMA-ES is the standard algorithm or a MCTS with a single node associated
with a single CMA-ES solver

We have performed experiments also with the baseline real-parameter MCTS
algorithm (rMCTS) from Sect. 4.1 with a single UCB1 strategy for the entire
tree and with the baseline hierarchical CMA-ES solvers (CMA-MCTS) from
Sect. 5 with a single UCB1 strategy for the entire tree but a CMA-ES for each
tree node. But the results were not very different from the top-down approach
of the homologous algorithms.

For each test function, the number of dimensions is D = 10, and the number
of child nodes is 2D, thus K = 2. Each function is a minimization function
that is transformed into a maximization function by subtracting the maximum
value for that function the function value for each solution. The interval in each
dimension is [−30.0, 30.0] and the interval of a leaf in MCTS is set to ε = 10−6.

The population size is N = 26 = 64. We have performed experiments with
larger population sizes (N = 100 and N = 256) but the results deteriorate for
all algorithms (except for CMA-ES) due to its low selection pressure.

All the algorithms run until a maximum of 105 individual solutions were
generated, and the experiments were independently repeated for 30 times.

Results. To compare the performance of MCTS for real-parameter optimization,
we consider measures for both optimization and multi-armed bandits: (i) the
optimal individual solution found, (ii) the average of total solutions, (iii) the
number of tree nodes, (iv) average estimated values of tree nodes, and (v) the
entropy on the frequencies on selecting the tree nodes. To make the algorithms
resemble even more CMA-ES, we only select the highest 50% percent of the
population, λ = 32 that is generated each population. In fact, the best solutions
were generated when only 5% percent of the generated solutions were used,
meaning λ = 2.

In Table 1, we show that hierarchical CMA-ES finds a higher optimal solution
than the other two algorithms, even though the average of the solutions for
hierarchical CMA-ES is smaller than for real-coded MCTS. Note that the average
per tree node is much smaller since many of the nodes would be visited only

144 M.M. Drugan

Table 1. Performance of the tested algorithms.

Single node CMA-ES solver CMA-ES

Function Best sol Mean sol nr nodes Mean nodes Entropy

Rastrigin 7205 ± 1326 1123 ± 206 1.0 ± 0.0 1123 ± 6153 0.0 ± 0.0

SchafferF6 2.417 ± 0.02 0.0659 ± 1.427 1.0 ± 0.0 0.0696 ± 0.374 0.0 ± 0.0

Ackleys 24.518 ± 0.22 20.205 ± 0.002 1.0 ± 0.0 20.205 ± 0.002 0.0 ± 0.0

SchafferF7 0.094 ± 0.009 -0.333 ± 0.0 1.0 ± 0.0 -0.0318 ± 0.095 0.0 ± 0.0

Rosenbrock 7.618E8 ± 1.023E7 8.159E7 ± 108560 1.0 ± 0.0 8.158E7 ± 4.394E8 0.0 ± 0.0

Hierarchical CMA-ES solvers CMA-MCTS

Rastrigin 8707 ± 372 1176 ± 352 12298 ± 2452 32.78 ± 176.56 5.36 ± 0.045

SchafferF6 5.62 ± 0.001 1.17 ± 0.017 22346 ± 1259 0.0329 ± 0.177 8.289 ± 0

Ackleys 37.34 ± 7.16 23.77 ± 4.49 10052 ± 3747 0.685 ± 3.69 4.34 ± 0.035

SchafferF7 0.111 ± 0.0 -0.08 ± 0.0 28547 ± 666 -0.0014 ± 0.0079 8.608 ± 0.0

Rosenbrock 7.784E8 ± 0.0 8.128E7 ± 4443732 15490 ± 3287 4298478 ± 2.31E7 5.42 ± 0.061

Real-parameter MCTS rMCTS

Rastrigin 8374 ± 174 8193 ± 241 7094 ± 1135 84.56 ± 523.4 3.606 ± 0.0

SchafferF6 3.731 ± 0.157 0.59 ± 0.629 44808 ± 47 0.046 ± 0.103 9.764 ± 0.0

Ackleys 30.134 ± 1.016 25.78 ± 1.6 13660 ± 10024 0.338 ± 1.823 4.46 ± 0.004

SchafferF7 0.091 ± 0.009 -3.655 ± 0.0023 44686 ± 188 -0.0364 ± 0.195 9.735 ± 0.0

Rosenbrock 7.779E8 ± 252463 6.323E8 ± 985717 6730 ± 1270 8191552 ± 4.41E7 3.284 ± 0.0

few times in 105 generated solutions. The number of tree nodes generated with
hierarchical CMA-ES is smaller, and the average of the generated tree nodes is
smaller than for the real-coded MCTS.

7 Conclusions

We have proposed a real-parameter optimization paradigm that adapts Monte
Carlo tree search (MCTS), generally acknowledged as an efficient method to
find good solutions for very large and complex problems like playing games as
GO, to maximize a real coded function. The multi-dimensional search space is
iteratively decomposed in disjunct D-cubes, each D-cube representing a node
in MCTS. The estimated value of each D-cube corresponds with the average
value of the individual solutions generated in the D-cube. Two policies to select
a node in the tree are investigated. Like in the standard MCTS, all nodes in a
tree are considered at once for selection with a stochastic multi-armed bandit
algorithm that selects often nodes with high estimated rewards and has a non-
zero probability of selecting any node in the tree. The top-down approach assigns
to each node a multi-armed bandits to select one of its children.

The policy used to generate new solutions is crucial for explo-
ration/exploitation trade-off of the real-parameter MCTS. The simplest strategy
to generate solutions use a uniform random distribution over a selected D-cube
but the selection pressure, and thus the quality of the solution, is lower than
when the solutions are generated with an adaptive multi-variate normal distri-
bution, like in CMA-ES. Hierarchical CMA-ES solvers is a MCTS that uses a
CMA-ES solver in each tree node.

Efficient Real-Parameter Single Objective Optimizer 145

The experimental results shows that the hierarchical CMA-ES solver out-
performs both real-parameter MCTS with a uniform random distribution and a
standard CMA-ES algorithm. We conclude that hierarchical CMA-ES solvers is
an efficient algorithm doe to its efficient mechanism of generating solutions in
D-cubes of different dimensions. We showed that, unlike the standard CMA-ES,
the hierarchical CMA-ES solvers can work with a small population of solutions
and bounded search spaces.

Acknowledgements. Madalina M. Drugan was supported by FWO project
G.087814N “Multi-criteria RL”.

References

1. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach.
Learn. Res. 3, 397–422 (2002)

2. Auger, A., Hansen, N.: Tutorial CMA-ES: evolution strategies and covari-
ance matrix adaptation. In: Genetic and Evolutionary Computation Conference,
GECCO 2013, pp. 499–520 (2013)

3. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies: a comprehensive introduction.
J. Nat. Comput. 1(1), 3–52 (2002)

4. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P.I., Rohlfshanger,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo
tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–46 (2012)

5. Bubeck, S., Cesa-Bianchi, N.: Regret Analysis of Stochastic and Nonstochastic
Multi-armed Bandit Problems. In: Foundations and Trends in Machine Learning,
vol. 5 (2012)

6. Couetoux, A.: Monte Carlo Tree Search for Continuous and Stochastic Sequential
Decision Making Problems. PhD thesis, Université Paris Sud - Paris XI (2013)

7. Drugan, M.M., Isasi, P., Manderick, B.: Schemata bandits for binary encoded com-
binatorial optimisation problems. In: Simulated Evolution and Learning - 10th
International Conference (SEAL), pp. 299–310 (2014)

8. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective
optimization. Evol. Comput. 15(1), 1–28 (2007)

9. Kocsis, L., Szepesvari, C.: Bandit based monte-carlo planning. In: Machine Learn-
ing: European Conference of Machine Learning (ECML) (2006)

10. Liang, J.J., Qu, B.Y., Suganthan, P.N., Chen, Q.: Problem definitions and evalu-
ation criteria for the cec 2015 competition on learning-based real-parameter single
objective optimization. Technical Report Technical Report 201411A, Computa-
tional Intelligence Laboratory, Zhengzhou University, Zhengzhou China (2015)

11. Munos, R.: From bandits to monte-carlo tree search: the optimistic principle
applied to optimization and planning. Found. Trends Mach. Learn. 7(1), 1–129
(2014)

Multi-point Efficient Global Optimization Using
Niching Evolution Strategy

Hao Wang(B), Thomas Bäck, and Michael T.M. Emmerich

Leiden Institute of Advanced Computer Science, Leiden University,
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

{h.wang,m.t.m.emmerich,t.h.w.baeck}@liacs.leidenuniv.nl

Abstract. The Efficient Global Optimization (EGO) is capable of using
limited function evaluation budget to find the global optimum. However,
EGO is by design not built for parallelization, which is an important
technique to speed up the costly computer codes. Some approaches have
been developed to fix this issue. e.g. Constant Liar Strategy. In this
article we propose an alternative way to obtain multiple points in the
Efficient Global Optimization cycle, where a niching evolution strategy
is combined into the classic EGO framework. The new approach is dis-
cussed and compared to other methods which aim at the same goal. The
proposed approach is also experimented on the selected test functions.

Keywords: Global optimization · Expected improvement · Kriging ·
Niching evolution strategies

1 Introduction

Metamodelling or surrogate modelling is widely applied for tasks where the com-
puter codes are expensive. The global optimization task arises naturally for the
expensive computer codes, where the goal is to consume a limited number of
computer code evaluations to locate the global optimal design.

In order to solve the global optimization task, the Efficient Global Opti-
mization algorithm is proposed in [7], which is developed based on Kriging
metamodel [8,13] and Expected Improvement criterion [10]. Kriging method
has received the most attention among all the metamodels. If no noise presents
in the computer codes, Kriging predictions are exact, meaning that the predic-
tions perfectly match the observed data. Kriging method can be considered from
Gaussian Process respective and offers a Kriging variance as prediction uncer-
tainty measure. Expected Improvement exploits both the Kriging prediction and
the variance to give a qualitative measure for the points in the search space.

Although EGO is quite successful to solve multi-model test problems [7], it
also has some limitations. First, it only deals with single objective functions.
However, in the real application, multiple objective functions are common cases.
An EGO-based multiobjective optimization algorithm using S-metric selection is

c© Springer International Publishing AG 2018
A.-A. Tantar et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation VI, Advances in Intelligent Systems and Computing 674,
https://doi.org/10.1007/978-3-319-69710-9_11

Multi-point Efficient Global Optimization Using Niching Evolution Strategy 147

proposed in [12] to extend the capability of classical EGO algorithm. In addition,
several multiobjective EGO algorithms are compared and analysed in [23].

In the real application, the parallelization of costly computer codes is a com-
mon way to accelerate the model evaluations. EGO algorithm by design can not
fit into the parallelization framework because only one new point can be gen-
erated in each EGO iteration. To tackle this issue, the Multi-points Expected
Improvement criterion (q-EI) is defined [17], aiming at providing multiple solu-
tions to be parallelly evaluated. q-EI criterion is hard to compute exactly and
the analytical expression is only derived for 2-EI [3]. A recent work manages to
compute it exactly by Tallis formulas [1]. However, it is still difficult to maximize
the q-EI criterion. Two strategies called Kriging Believer and Constant Liar are
devised to approximately maximize the q-EI criterion [3].

This article aims at proposing an alternative way to obtain q points in each
EGO iteration. However, instead of following the difficult q-EI maximization
problem, we utilize a niching evolution strategy [19] to obtain q local maxima of
EI criterion. The niching approach guarantees the q points obtained are diverse
such that in the search space, those q points would possibly locate in the different
basins of attraction.

This article is organised as follows: Sect. 2 briefly introduces all the back-
ground methods that we rely on and the related work. In Sect. 3, we discuss in
detail our idea of applying niching evolution strategy into EGO framework and
compare its similarities and differences to the Constant Lair Strategy. In Sect. 4,
we provide the tested results from 6 selected test functions. Finally, Sect. 5 con-
cludes the paper.

2 Background and Related Work

In this section, the basic idea of the Efficient Global Optimization and the tech-
niques behind it: Kriging metamodel and Expected Improvement are briefly
introduced. Prior to applying niching evolution strategy, its basic algorithmic
framework is discussed here. We also introduce the Constant Lair Strategy which
manages to maximize q-EI approximately in order to compare to our niching
approach.

2.1 Efficient Global Optimization

The Efficient Global Optimization algorithm [7] (EGO) is founded on the Kriging
interpolation method [8] and the Expected Improvement criterion [10]. It is
designed for the case where function evaluation is expensive.

Kriging. It is a stochastic interpolation approach, which stems from earth
science [8] and originally targets at mining problems. It has been widely used as
a metamodel in the design and analysis of computer experiments [15,16], where
the time-consuming computer model simulations are replaced by prediction from

148 H. Wang et al.

the Kriging model trained beforehand. Note that Kriging method is also termed
as Gaussian Process Regression [13] in the statistical machine learning literature.

Normally, in the design and analysis of computer experiments, Kriging
method is trained on the some design sites X = {x1, . . . ,xn} where n is the
number of design sites. The observed response value corresponding to each of
the design site is computed from an objective function y(·) and denoted as
y = {y(x1), . . . , y(xn)}. Kriging method interpolates unknown sites by modelling
the response values as a Gaussian Process (GP), which is completely defined by a
prescribed mean function m(x) and a covariance function k(x,x′) [13, Chap. 2.2]:

m(x) = E[y(x)],
k(x,x′) = E[(y(x) − m(x))(y(x′) − m(x′))].

When the mean function is assumed to be constant and unknown, the method
is called Ordinary Kriging (OK) on which the EGO algorithm is built. Then the
response value can be express as [3]:

y(x) = m + ε(x),

where m is the constant but unknown mean function and ε(x) represents a
stationary GP with zero mean and covariance function k(·, ·).

Now we wish to predict y∗ = y(x∗) at an unknown site x∗. Without giving
the derivation, the posterior conditional distribution on the observed response
values is a Gaussian distribution and reads:

y∗|y ∼ N
(
mOK(x), s2OK(x)

)
.

The posterior conditional mean function mOK(·) is used as the predictor and
s2OK(·) measures the uncertainty of the prediction. The prediction variance is
of high importance for the development of expected improvement. The detailed
derivation and the expression for posterior mean and covariance function can be
found in [3,13].

Expected Improvement. The simple optimum-seeking process on the Kriging
model is not satisfactory because it pretends the Kriging model is exact and does
not use the uncertainty (prediction variance) provided by the model. Sampling
on sites possessing high uncertainty might also be promising because the real
response value would be possibly better than the value predicted.

The Expected improvement [7] is the way to combine and balance between
the approach to search for site with the good Kriging mean and the approach
to search for the site with high Kriging variance. Given a minimization task, it
is defined as:

EI(x) = E[max{0,min(y) − y(x)} | y]

=
∫ min(y)

−∞
(min(y) − u)

1
sOK(x)

φ

(
u − mOK(x)

sOK(x)

)
du,

Multi-point Efficient Global Optimization Using Niching Evolution Strategy 149

where φ(·) denotes the density function of the standard normal distribution.
It is a integration of the possible improvement at the site x and serves as the
compromise between Kriging mean and variance. The expected improvement is
increasing when Kriging variance increases and when Kriging mean decreases.

The Efficient Global Optimization. EGO [7] is proposed to efficiently solve
global optimization based on EI criterion. It iteratively finds promising sample
sites by maximizing the EI criterion. The sample sites generated are evaluated
according to the objective function and inserted back into the Kriging training
set. EGO then re-estimates the hyper-parameters of the Kriging model using the
updated training set. The algorithmic framework is given in Algorithm1.

Algorithm 1. Efficient Global Optimization
1 Generate design sites X and evaluate them: y = y(X)
2 Fit the Kriging model hyper-parameters (covariance function parameters) to the

design sites.
3 while the stop criteria are not fulfilled do
4 Find global optimum of EI criterion: x′ = argmaxxEI(x)
5 Evaluate x′: y′ = y(x′) and add x′, y′ to X,y.
6 Re-estimate the Kriging model hyper parameters
7 end while

On the Branin function [7,17], EGO performs successfully [7] and iteratively
finds all three global minima. Its main disadvantage is that the parallel evaluation
is not possible because the sample generated in the next iteration depends on
the current sample point. This limits its ability in the real application where
computer simulations are extremely time-consuming but parallelable.

2.2 Multipoint EGO: Constant Liar Strategy

In order to allow for parallel function evaluations, the EGO must look for multi-
ple search points at one iteration to update the Kriging model. The multi-point
expected improvement criterion (q-EI) is proposed [17] as an generalization of
EI to solve this task. Less formally, q-EI criterion involves the expectation of
the smallest order statistic among a collection of correlated Gaussian random
variables, which is neither easy to compute and thus nor easy to maximize.
A computational feasible method called “Constant Liar” (CL) is suggested by
David Ginsbourger et. al. [3] as an approximated q-EI maximization. CL strat-
egy perform q stepwise sequential EI maximization in which the Kriging model
is updated at each step without hyper parameter re-estimation. A constant value
L set by the user is used as a “lie” to the true response value for every point
found in the EI maximization. Three different L values are suggested in the first
place: min{y},mean{y} and max{y}. It has been observed that CL behaves in
the way that the visited points generate a repulsion from each other [3].

150 H. Wang et al.

2.3 Niching Evolution Strategies

In this section, the niching evolution strategies will be briefly introduced. In gen-
eral, Evolutionary Algorithms (EAs) have the tendency to converge quickly into
a single solution in the search space. However, in many problem solving scenario
(e.g. global optimization), locating and maintaining multiple solution/optima is
required. Niching is developed to achieve this goal by forming sub-populations
in order to maintain the population diversity of EAs. The most successful tech-
niques are fitness sharing [4] and Crowding [2].

Although initially niching was proposed mainly for Genetic Algorithms
(GAs), it has also been introduced to classic (1 +, λ) self-adaptive Evolution
Strategies by Ofer et. al [19]. Later, it is further developed for the derandom-
ized ES [18] including the well-known Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [5] and finally evolved into a self-adaptive approach which
allows for the niche radius and the niche shape adaptation [20]. In this paper,
we will only focus on the (1 +, λ)-niching evolution strategies with fixed niche
radius and spherical niche shape.

Algorithm 2. (1 +, λ)-Niching ES
1 Initialize D-set {Di}q+p

i=1

2 Set generation counter c ← 0
3 while the stop criteria are not fulfilled do
4 for i = 1 → (q + p) do
5 Generate λ mutations according to Di

6 end for
7 Evaluate the population using fitness function
8 Obtain the dynamic peaks set DPS by performing Dynamic Peak Identification.

9 for p in DPS do
10 Set p as a new search point
11 Inherit the D-set from the parent of p and update the D-set accordingly.
12 end for
13 if N = size of DPS < q then
14 Generate N − q new search points and reset corresponding D-sets.
15 end if
16 c ← c + 1
17 if c mod κ = 0 then
18 Randomly re-generate (q + 1)th . . . (q + p)th D-sets.
19 end if
20 end while

The (1 +, λ)-niching evolution strategies works as follows: provided q optima
expected to investigate, the niching procedure initializes q + p so-called “D-
sets” [21] which are evolution strategy kernels containing all the adapted strategy
parameters (step-size, covariance matrix) as well as decision parameters (current
search point/solution, mutation vectors). Each D-set defines the current search

Multi-point Efficient Global Optimization Using Niching Evolution Strategy 151

point and all the internal information regarding an evolution strategy in a given
time during the evolution. The q D-sets are meant for identifying q possible
local optima/peaks while p D-sets are for “non-peak” domain, which are ran-
domly regenerated every κ generations. The purpose of p “non-peak” D-sets is
to explore the search space so that new niches would emerge and the proba-
bility of finding undiscovered optima is increased. The niching procedure then
proceeds to generate λ offspring for each D-set. The population of λ · (q + p)
offspring are evaluated according the fitness function. Using their corresponding
fitness values, the selection of p search points is conducted based on dynamic
peak identification (DPI) algorithm [9] based on a prescribed niche radius ρ.
The functionality of DPI is to select a subset from the population in which each
search point have a good fitness value and is not within the radius of the rest
points. The selected p search points are considered as parental points for the
next generation and their D-sets are inherited from their parents. Finally, the
D-sets are updated based on the selected points. The process above is repeated
until the termination criteria are satisfied. The algorithmic framework is listed
in Algorithm 2.

3 Combining EGO with Niching

Considering EI criterion as an objective function, our approach is motivated by
the observation that the EI landscape is usually highly multi-modal [7]. The orig-
inal EGO algorithm aims at finding the global optimum of EI landscape, which
is another global optimization task and thus hard to solve (actually solved by
the exhaustive branch-and-bound method). EGO samples at the current global
maximum of EI and updates the Kriging model such that the Kriging variances
of sample and the region around it are reduced due to the Kriging property. This
leads to a sudden decrease of landscape around the global optimum just found.
Because of this, the local optimum before the change would possibly become
new global optimum and thus will be visited in the next iteration.

Instead of using the sequential EI landscape changing to “expose” promising
point, we propose to combine EGO with a niching method as an alternative,
where the niching method is applied on the EI landscape. In one iteration, it
is possible to use niching method to locate the global optimum of EI as well
as some local optima that would be explored in the next few iterations in the
classic EGO. The resulting algorithm will be called q-EGO with niching.

Furthermore, the niching method guarantees that the multiple points found
are distinct, which means the chance that two points stay in the same basin of
attraction is marginal. Intuitively, due to the region with high expected improve-
ment possibly leads to a promising region in the objective search space, the com-
bined algorithm is expected to locate and maintain multiple high performance
regions in the objective search space at the same time.

From the niching perspective, q-EGO with niching can be considered as a
meta-model assisted niching algorithm where the niche formation is performed

152 H. Wang et al.

on the EI landscape instead of the real objective function. Therefore, the opti-
mization procedure benefits from saving objective function evaluations especially
when the evaluations are expensive.

Compared to the Constant Liar Strategy [3], q-EGO with niching is also
expected to have a repulsion behaviour between points in one iteration, by the
design of niching formation. However, the CL repulsion is caused by changing
the EI landscape, which results in “hiding” the current point found from the
optimization procedure. The CL repulsion behaviour is enhanced with increasing
liar value L. The setting L = max{y} and L = mean{y} leads to a space filling
behaviour [3]. The behaviours of the niching approach and the CL strategy are
further compared and visualized on the Himmelblau’s function:

yH(x1, x2) = (x2
1 + x2 + 11)2 + (x1 + x2

2 − 7)2

The Himmelblau’s function has four global optima locating at (3, 2),
(−2.81, 3.13), (−3.78,−3.23) and (3.58,−1.85) with global minimal value 0. The
contours of it is shown in Fig. 1, left. In order to show that niching approach can
maintain multiple distinct points, we choose four points to be generated in each
iteration, which are expected to identify four global optima on the Himmelblau’s
function. The algorithm behaviour in four iterations are illustrated in Fig. 2.

Fig. 1. Left: the contour lines of Himmelblau’s function with four global optima marked
by black triangles. Right: Histogram of q-EI criterion value measured on a 4-point EGO
with niching through 10 iterations, which is test on the Himmelblau’s function. The
values are collected from 100 runs.

In Fig. 2, we compare the CL strategy with L = min{y} (CL min) to q-
EGO with niching in four consecutive iterations (from top to bottom). Both of
the two approaches locate the four basins of attraction. They also explore the
search space while keep tracking all the points found, showing a trade-off between
exploitation and exploration. The difference is that the niching approach is not

Multi-point Efficient Global Optimization Using Niching Evolution Strategy 153

Fig. 2. On Himmelblau’s function: 4-point EGO in four iterations. The white circles
indicates the current sites found in each iteration while black stars show the sites
sampled in history. Left: Constant Lair Strategy using min{y}. Right: The q-EGO
with niching

154 H. Wang et al.

likely to sample two point in one high performance region while CL min strategy
would result in two (or even more) points explore the same region (see step 3
and 4 in the figure).

In addition, we also estimate the q-EI criterion values of points found from
a 4-point EGO with niching on the Himmelblau’s function. The estimation is
conducted by Monte Carlo simulations of the q-EI formula [3]. The collection of
q-EI values are shown in a Histogram in Fig. 1, right. In the following experiment
section, the q-EI values of points provided by CL strategy and EGO with niching
are compared.

For implementation issues, we choose the niching-DR2 [19] among many other
niching evolution strategies to apply into EGO. It is the niching version of a
so-called “the second derandomized evolution strategy” (DR2) [11]. We choose
niching-DR2 because it is both simple to implement and converge fast. The
parameters of niching-DR2, which are listed in Algorithm2 are set as following:
the function evaluation budget is set the be 103(q + p). κ that controls the
frequency of sub-population resampling is set to 10. The niche radius ρ required
by DPI procedure is computed as follow [19]:

ρ =
r
n
√

q
, r =

1
2

√√
√
√

n∑

k=1

(xk,max − xk,min)2,

where n is the dimensionality and xk,max, xk,min are the upper and lower bound
of each coordinate in the search space. The termination criterion for the niching
ES is current chosen as depletion of function evaluation budget.

4 Experiment

In this section, we test the q-EGO with niching and three Constant Lair variants:
CL min, CL max and CL mix on a collection of test functions. The CL mix
strategy [1] is a mixture of CL min and CL max in which two batches of points
are generated from CL min and CL max and the batch of better q-EI value is
provided to the Kriging model. For all the tests we use the DiceKriging and
DiceOptim packages [14]. The experiment is in three parts: First we list the
test functions selected. Then, the global convergence is compared among all the
tested algorithms and finally the q-EI value of the points found are compared.
All the algorithms are tested in 10 iterations and all the results are averaged
over 100 runs. The reason to choose a small number of iterations as test run
length is simple: on one hand, the classic EGO algorithm is capable of locating
all the optima on several test functions [7] using 10 to 20 iterations. Thus, longer
runs is not necessary. On the other hand, due to our observations, most of the
space explorations and the Kriging model updates happen in the first 10 to
15 iterations on the 2-D functions, in which the EGO algorithm makes large
progress.

Multi-point Efficient Global Optimization Using Niching Evolution Strategy 155

4.1 Test Functions

We select 6 artificial multi-modal continuous functions and list them in the
following:

– Transformed Hartman6 function is defined on [0, 1]6 and is a unimodal func-
tion. the original function is transformed by − log(−Hartman6(x)). This is
the test-case where multipoint EGO with niching is expected to perform
badly. We set q = 3 on this function.

– M is a hyper-grid multi-global function. Its global optima are uniformly dis-
tributed and have optimal value of −1. The function expression is listed below.
We test the algorithms in 2-D where 10 minima are located in [0, 1]2.

M(x) = − 1
n

n∑

i=1

sinα(5πxi).

Note that n is the dimensionality and we choose α = 6.
– Branin function is a multi-global function and a classical test-case in global

optimization [7,17]. It is defined in 2-D with three global optima. The global
minimal value is roughly 0.4.

– Rastrigin function [22] is a multi-modal function, which have only one global
optimum and surrounded by number of local minima. The test is performed
on 2-D. It has 6 optima in the space [0, 1.5]2.

– Himmelblau’s function is a multi-global function which is introduced previ-
ously in this paper. The search space is [−5, 5]2.

– The well-known Ackley function is a multi-modal function and has only one
global optimum. The global optimum has much lower value than the local
optima.

We choose the number of points (q) generated in each iteration equals to the
number of minima with two exception: on Hartman6 which is a unimodal func-
tion, we choose q = 3 and on Ackely function where the local optima increases
exponentially with the increasing distance to the global optimum, we choose
q = 9. For Hartman6 function, we would like to show that the q-EGO with nich-
ing would perform quite badly with q > 1 setting. We thus choose a moderate
value q = 3. For Ackley with range [−5, 5]2, there are 8 sub-optimal locations
whose function values are the same, inferior to the global optimal but superior
to the rest local optima. We would like to locate such sub-optima as well as the
global one and thus choose q = 9.

4.2 Global Convergence Results

We use the relative mean squared error proposed in [1] to measure the conver-
gence rate to the global optimum. It is defined as:

rMSEi =
1
p

p∑

k=1

(
yk

i − y∗

y∗

)2

.

156 H. Wang et al.

rMSEi denotes the relative mean squared error at iteration i. p is the number
of runs performed while yk

i is the minimum value observed at iteration i in run
number k. Note that we translate some of the test function optimal value to
prevent 0 in order to calculate the rMSE. The relative mean square error on
each test function are shown in Fig. 3. Note that rMSE is scaled by log 10.

On the unimodal function Hartman6, the results of 3-points EGO show that
the q-EGO with niching performs much worse that any variants of CL strategy.
This is the expected behaviour because the niches formed on the EI landscape
of Hartman6 does not maps to any local optima and the niching method is
performing space-filling using all three niches.

On the multi-modal Rastrigin function, q-EGO with niching actually outper-
forms all the CL variants. On the Branin function, q-EGO with niching performs
equally with CL max in the first three iterations and make a large acceleration
from the four iteration. On the M function, q-EGO niching works much worse
in the first 6 iteration and accelerates again in the later iterations. On Rastrigin
function, the same behaviour has shown. We consider the reason is that initially
the Kriging prediction response surface may differs from the real landscapes
drastically such that the niches formed on the EI landscape do not map to any
high performance region. After the model is kept updating for some iterations,
the local optima of objective function would possibly create local optima in the
EI landscape, which attracts the niches.

On the Himmelblau’s function. q-EGO with niching is the worst one ini-
tially and finally catch the CL mix from iteration 8. On the Ackley function,
q-EGO with niching performs roughly the same with the CL min Strategy and
outperform both CL min and CL mix after iteration 5.

The rMSE values measured in the last iteration of the test (step 10) are also
summarized in Fig. 4 as box plots. In addition to the mean values reported in
Fig. 3, it shows the median, the first and third quartiles and outliers.

In general, convergence plots suggest that initially the q-EGO with niching
performs worse or equally to the CL variants and accelerates the convergence
after some iterations of Kriging model updates. Furthermore, such behaviour
may even suggest a possible mixture approach where the CL strategy is applying
in the beginning and then the algorithm is switched to niching method to gain
from the acceleration.

4.3 q-EI of Search Points

The average q-EI value of the points generated in each iteration are computed by
Monte Carlo simulations [3] and shown in Fig. 5. The plotted values are scaled by
log 10. All the average q-EI values decreases with respect to increasing iterations,
as expected. There is no clue who is the winner in general. Focusing on the first
4 iterations, q-EI values of the search points found by the niching approach are
roughly smaller than the q-values by CL variants on Hartman6, M and Ackley
function. On Rastrigin and Himmelblau function, the proposed algorithm gives
higher q-EI values in the middle (iteration 4, 5, 6) of the test. On the Branin

Multi-point Efficient Global Optimization Using Niching Evolution Strategy 157

Fig. 3. Convergence to the global optimum of tested algorithm. square: CL max, circle:
CL min, diamond: CL mix, triangle: q-EGO with niching. The convergence is measure
by relative mean square error to the global optimal value. The x-axis is the iteration
steps. The y-axis is log 10(rMSE).

158 H. Wang et al.

Fig. 4. Box-plot of rMSE values measured in the last iteration. The upper and lower
“hinge” correspond to the first and third quartiles (the 25th and 75th percentiles). The
thick black line inside box shows the median. The outliers are plotted in circles. The
upper whisker extends from the hinge to the highest value that is within 1.5 * IQR of
the hinge and the lower whisker extends from the hinge to the lowest value within 1.5
* IQR of the hinge, where IQR is the inter-quartile range.

Multi-point Efficient Global Optimization Using Niching Evolution Strategy 159

Fig. 5. Average q-EI value of points found by tested algorithm. square: CL max, cir-
cle: CL min, diamond: CL mix, triangle: q-EGO with niching. The q-EI criterion is
approximated by Monte Carlo simulations. The x-axis is the iteration steps. The y-
axis is average q-EI measured.

160 H. Wang et al.

function, the differences are not significant. In general, the q-EGO with niching
shows a much faster q-EI value reduction when the iteration goes upper than 8.

5 Conclusion and Further Works

In this article, we first briefly review the Efficient Global Optimization algorithm
and the q-EI criterion aiming at the parallelization of the function evaluations.
The strategy to approximate q-EI maximization, Constant Liar is also briefly
discussed and compared the our proposed approach. We discuss the niching
evolution strategy framework and the combination of EGO and niching ES in
detail. The proposed method, q- EGO with niching and CL together are tested
on 6 selected functions. Both the convergence to the global optimum and the
q-EI measured on the search point are summarized. In general, the q-EGO with
niching works a little bit worst than the CL strategies at the first place of the
optimization process while it shows a significant acceleration of convergence after
some iterations.

The parameter q that determines the number of the niches, is roughly set
according to the number of the local optima in the search space. The effects of
varying the q setting on the algorithm performance is yet unclear and should be
investigated in the further, which is of high importance because the number of
the local optima is usually not accessible in the real application.

As suggested by the results on convergence, it might be possible to mix
niching ES with CL strategy. By using the CL strategy initially and switch to
the niching method, the algorithm would benefit from both.

The time-complexity of q-EGO with niching is determined by the function
evaluation budget since it is completely consumed. We did not compare the
time-complexity to the CL strategy and thus is left for the further research.

As mentioned before, the q-EGO niching can also be viewed as a meta-model
assisted niching approach. Therefore, it is reasonable to compare its performance
to other classical niching evolution algorithm.

In the last, we should also consider how to adopt the multi-point EGO with
niching algorithm to the multi-objective optimization problems. A recent pro-
posal of multi-points for parallel evaluation in the multi-objective optimization
problem can be found in [6].

Acknowledgements. The authors gratefully acknowledge financial support by the
Netherlands Organisation for Scientific Research (NWO) within the project PROMI-
MOOC.

References

1. Chevalier, C., Ginsbourger, D.: Fast Computation of the multi-points expected
improvement with applications in batch selection, pp. 59–69. Springer, Heidelberg
(2013)

2. De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems.
Ph.D. thesis, Ann Arbor, MI, USA, (1975). AAI7609381

Multi-point Efficient Global Optimization Using Niching Evolution Strategy 161

3. Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize
optimization. In: Computational Intelligence in Expensive Optimization Problems,
pp. 131–162. Springer (2010)

4. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal
function optimization. In: Genetic Algorithms and Their Applications: Proceed-
ings of the Second International Conference on Genetic Algorithms, pp. 41–49.
Lawrence Erlbaum, Hillsdale (1987)

5. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

6. Horn, D., Wagner, T., Biermann, D., Weihs, C., Bischl, B.: Model-based multi-
objective optimization: taxonomy, multi-point proposal, toolbox and benchmark.
In: Evolutionary Multi-Criterion Optimization, pp. 64–78. Springer (2015)

7. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

8. Krige, D.G.: A statistical approach to some basic mine valuation problems on the
witwatersrand. J. Chem. Metall. Min. Soc. S. Africa 52(6), 119–139 (1951)

9. Miller, B.L., Shaw, M.J.: Genetic algorithms with dynamic niche sharing for mul-
timodal function optimization. In: 1996 Proceedings of IEEE International Con-
ference on Evolutionary Computation, pp. 786–791. IEEE (1996)

10. Mockus, J.B., Mockus, L.J.: Bayesian approach to global optimization and appli-
cation to multiobjective and constrained problems. J. Optim. Theor. Appl. 70(1),
157–172 (1991)

11. Ostermeier, A., Gawelczyk, A., Hansen, N.: Step-size adaption based on non-
local use of selection information. In: Proceedings of the International Conference
on Evolutionary Computation. The Third Conference on Parallel Problem Solv-
ing from Nature: Parallel Problem Solving from Nature, PPSN III, pp. 189–198,
Springer, London (1994)

12. Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization
on a limited budget of evaluations using model-assisted S-metric selection. In:
Parallel Problem Solving from Nature–PPSN X, pp. 784–794. Springer (2008)

13. Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning. Adap-
tive Computation and Machine Learning. MIT Press, Cambridge (2006)

14. Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: two R pack-
ages for the analysis of computer experiments by kriging-based metamodeling and
optimization. J. Stat. Softw. 51(1), 1–55 (2012)

15. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer
experiments. Stat. Sci. 4(4), 409–423 (1989)

16. Santner, T.J., Williams, B.J., Notz, W.: The Design and Analysis of Computer
Experiments. Springer Series in Statistics. Springer (2003)

17. Schonlau, M.: Computer Experiments and Global Optimization. University of
Waterloo (1998)

18. Shir, O.M., Bäck, T.: Dynamic niching in evolution strategies with covariance
matrix adaptation. In: The 2005 IEEE Congress on Evolutionary Computation,
2005, vol. 3, pp. 2584–2591. IEEE (2005)

19. Shir, O.M., Bäck, T.: Niching in evolution strategies. In: Proceedings of the 7th
Annual Conference on Genetic and Evolutionary Computation, pp. 915–916. ACM
(2005)

20. Shir, O.M., Emmerich, M., Bäck, T.: Self-adaptive Niching CMA-ES with maha-
lanobis metric. In: IEEE Congress on Evolutionary Computation, 2007, CEC 2007,
pp. 820–827. IEEE (2007)

162 H. Wang et al.

21. Shir, O.M.: Niching in derandomized evolution strategies and its applications in
quantum control. Natural Computing Group, LIACS, Faculty of Science, Leiden
University (2008)

22. Zhigljavsky, A., Žilinskas, A.: Stochastic global optimization, vol. 9. Springer (2007)
23. Zaefferer, M., Bartz-Beielstein, T., Naujoks, B., Wagner, T., Emmerich, M.: A

case study on multi-criteria optimization of an event detection software under lim-
ited budgets. In: Evolutionary Multi-Criterion Optimization, pp. 756–770. Springer
(2013)

Community Detection in NK Landscapes
- An Empirical Study of Complexity Transitions

in Interactive Networks

Asep Maulana1(B), André H. Deutz1, Erik Schultes1,2,
and Michael T.M. Emmerich1

1 LIACS, Leiden University, Niels Bohrweg 1, 2375 CA Leiden, The Netherlands
e.a.schultes@liacs.leidenuniv.nl

2 Human Genetics Department, Leiden Center for Data Science,
Leiden University Medical Centre, 111 Snellius Niels Bohrweg 1,

2333 CA Leiden, The Netherlands
http://moda.liacs.nl

Abstract. NK-landscapes have been used as models of gene interaction
in biology, but also to understand the influence of interaction between
variables on the controllability and optimality organizations as a whole.
As such, instead of gene networks they could also be models of econom-
ical systems or social networks. In NK-landscapes a fitness function is
computed as a sum of N trait values. Each trait depends on the vari-
able directly associated with the trait and K other variables – so-called
epistatic variables. With increasing number of interactions the rugged-
ness of the function increases (local optima). The transition in complexity
resembles phase transitions, and for K ≥ 2 the problem to find global
optima becomes NP hard. This is not the case if epistatic variables are
local, meaning that all interactions are local.

In this research we study NK-landscapes from the perspective of com-
munities and community detection. We will not look at communities of
epistatic links but instead focus on links due to correlation between phe-
notypic traits. To this end we view a single trait as an individual agent
which strives to maximize its contributed value to the net value of a
community. If the value of a single trait is high whenever that of another
trait is low we regard these traits as being conflicting. If high values of
one trait coincide with high values of other traits we regard the traits as
supporting each other. Finally, if the value of two traits is uncorrelated,
we view their relationship as being neutral. We study what happens to
the system of traits when the NK-landscape undergoes a critical transi-
tion to a more complex model via the increment of k. In particular, we
study the effect of locality of interaction on the shape and number of the
emerging communities of traits and show that the number of communi-
ties reaches its lowest point for medium values of k and not, as might be
expected, for a fully connected epistatic matrix (case k = N − 1).

Keywords: NK-landscapes · Community detection · Complex net-
works · Locality · Landscape analysis

c© Springer International Publishing AG 2018
A.-A. Tantar et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation VI, Advances in Intelligent Systems and Computing 674,
https://doi.org/10.1007/978-3-319-69710-9_12

164 A. Maulana et al.

1 Introduction

NK-Models (or NK-Landscapes) were introduced in Kauffman and Levin [8] as
models of how the fitness of an organism is related to gene interaction. They
also gained popularity in the study of complex organizations (see Anderson [3])
and innovation networks (see Frenken [6]).

In the classical NK-model the parameter N describes the number of compo-
nents in a network (genes, agents, or nodes in an distributed system) and each
component is associated with a control variable xi and a trait function or out-
put value fi. k describes the degree of interaction between these components.
For each component of the system (i ∈ {1, . . . , N}), the value of fi depends
on the value of the variable xi that is associated with it and k other variables
xe(i,1), . . . , xe(i,k). These k variables are called the epistatic variables. The fitness
of the NK-landscape is the sum of these values:

F (x1, . . . , xN) =
N∑

i=1

fi(xi, xe(i,1), ..., xe(i,k)) (1)

In Eq. 1 the values of E := e(i, j), i ∈ {1, . . . , N}, j ∈ {1, . . . , k} is the epista-
tic matrix that determines which variable interacts with which other variable.

Based on the locality of the epistatic matrix two variants of the NK-
landscapes are distinguished: The epistatic variables of gene i can be adjacent
with respect to the index i (local interactions) or their choice can be random
(global interactions). Note, that in case of adjacent epistatic genes the indices are
mapped cyclically, i.e. gene N is a direct neighbor with gene 1 (wrap around).
This way every gene has two direct neighbors. If more than two epistatic genes
need to be defined we collect the genes in an increasingly big radius (2-step
neighbors, 3-step neighbors and so on). The notion of neighborhood stems here
from the idea of physical location on a DNA, that, for the sake of simplicity is
viewed as a ring.

Figure 1 shows a visualization of the epistasis structure that arises based on
these choices.

We can now introduce a concrete realization of a function F , for instance by
using the classical binary NK-landscape where each variable can only obtain the
values 0 and 1. For this we will define ‘upper case’ Fi component functions that
will accept a bit string the components of which correspond to the values of x
(Goedel encoding of the vector):

F (x1, . . . , xN) =
N∑

i=1

Fi(20xi + 21xe(i,1) + · · · + 2kxe(i,k)), x ∈ {0, 1}N (2)

Each one of the functions Fi is looked up in a table of size 2k+1. Each of these
tables comprises 2k+1 random numbers that are sampled from a uniform distri-
bution in [0,1] (see, e.g. [2]). This was done in order to make the model simple
and to not introduce additional complexity in its construction [8]. Subsequent

Community Detection in NK Landscapes 165

f1

f2

f3

f4

e(1, 1)
e(1, 2)

e(2, 1)

e(2, 2)
e(3, 1)

e(3, 2)
e(4, 1)

e(4, 2)

f1

f2

f3

f4

e(1, 2)

e(1, 1)

e(2, 1)

e(2, 2)

e(3, 1)

e(3, 2)

e(4, 1)

e(4, 2)

Fig. 1. (Left hand side) Example of an NK-Landscape epistasis network for N = 4,
k = 2 and adjacent epistatic genes. (Right hand side) Example of an NK-Landscape
epistasis network for N = 4, k = 2 and randomly assigned epistatic genes. The arrows
labeled with e(i, j) ∈ {1, . . . , N} indicate the epistatic genes that influence the gene
with index i ∈ {1, . . . , N} for j ∈ {1, ..., k}.

analysis revealed interesting, emergent behavior of NK-Landscapes already on
this very basic level. One interesting feature of NK-landscapes is that their
properties critically depend on the choice of k. Some interesting properties that
depend on the choice of k are summarized in the following list (see also [2]):

– k = 0 (no epistasis):
• The problem is separable.
• There exists a unique global and local optimum.

– k = 1
• A global optimum can be found in polynomial time.

– k ≥ 1
• Adjacent epistatic genes: Time complexity is in O(Nk).
• Randomly assigned epistatic genes: Finding global optimum becomes NP

complete; time complexity is in O(2N) under the assumption that P �=
NP .

– k = N − 1
• Random function value assignment; causality is lost and finding the global

optimum takes Ω(2N) time.

An interesting research question is: What happens to the structure of the
problem at the critical transitions from simple (k = 0), via polynomially opti-
mizable k = 1 or problems with adjacent epistatic genes for greater k, to complex
networks k = 2 (global interactions). And how does this differ from complete
random function value assignments at the level of k = N − 1.

166 A. Maulana et al.

In order to study this we propose to study in more depth the interaction
between the components of F , namely the functions Fi. A new perspective to
look at this question is to view the Fi as objective functions in a many objec-
tive optimization problem. The novel perspective taken is to view these trait
functions as objective functions that seek to contribute to F with the highest
possible contribution, or, that seek to obtain the best adaptive value. This yields
a multiobjective optimization problem, which can be written as:

F1(x) → max, . . . , FN (x) → max, x ∈ {0, 1}N (3)

The correlation between trait functions can be determined if the input vector
is viewed as a random sample. Different trait functions Fi can support each other
(positive correlation), be neutral with respect to each other (zero correlation),
or conflict with each other (negative correlation).

It is noted that the maximization of each single component function takes
time Ω(2k) due to the random assignment process. By introducing interaction
the complexity of the optimization task grows. So far it is unknown what exactly
happens at the transition from binary to ternary interactions, that is from from
polynomially time solvable to NP complete problems, and we hope that corre-
lation and community analysis will shed some new light on this.

In summary the contributions of our work will be as follows. In order to better
understand the transitions in complexity in NK-landscapes from the perspective
of communities of component functions we will

1. visualize the community structure among the different Fi trait functions using
state-of-the-art algorithms from community detection

2. provide statistics on number of communities and modularity for different
values of k

3. discuss correlation and squared correlation as a measure of connectedness in
both adjacent and random NK-landscapes

In the following Sect. 2 we will discuss basic concepts in community detection.
Then, in Sect. 3 the approach will be discussed in detail, i.e. how to perform
community detection among the different Fi trait functions, and how to use the
squared correlation measure for global statistics. The results will be discussed
in Sect. 4, followed by a brief summary and outlook (Sect. 5).

2 Community Detection

In community detection it is the goal to identify subgraphs that are densely
connected (communities) and separate them from subgraphs with members that
have less strong links to the community. A measure for how well a community
belongs together is the modularity of a community. The modularity is high if
there are many links with height among members of the community and only few
and low weighted links to members outside the community. Besides maximization
of modularity one might also consider multidimensional scaling as a means to

Community Detection in NK Landscapes 167

find communities. This method interprets link weights as distances and then uses
distance-based clustering approaches to find communities.

Originating from social science, community detection is nowadays also used
in many other network related problems, such as protein-protein-interaction net-
works and telecommunication networks.

Two common methods for community detection are the Louvain method [5]
and the VOS method [10]. Both methods have been implemented in the Pajek
software tool [4].

The Louvain1, for community detection algorithm is an algorithm for per-
forming community detection (clustering) in networks by heuristically maximiz-
ing a modularity function. The Louvain algorithm can be used to detect commu-
nities in very large networks within short computing times. On the other hand,
VOS clustering algorithm is often used as an algorithm for community detection
in networks. The difference is that VOS clustering is based on the betweenness
centrality. VOS is closely related to multidimensional scaling in so far as the
distance between objects is reflected in the planar visualization.

For details on the community detection algorithms the reader is advised to
follow the references [5] and, respectively, [10].

3 Approach

The graph that we consider has the N nodes. Each node is associated with a
component function Fi. Links between the nodes are weighted by the correlation
between the two function values.

Let (Ω, S, P) denote a probability space, where S is the event space and Ω
denote the set of elementary outputs – here chosen as the input space X =
{0, 1}N . We will only consider singletons as events and write ω instead of {ω}.
In the following we consider the entire input space X = {0, 1}N , and a uniform
distribution over this set. For each trait function Fi the random variables Fi :
Ω → R are defined as Fi : ω �→ Fi(ω). Next, consider a sample Ω′ ⊆ Ω and
the realizations of random variables F1(ω), . . . , Fm(ω) for ω ∈ Ω. Now, for the
group of paired evaluations of Fi and Fj the empirical correlation coefficient can
be computed by means of

ρe
ij =

1
1−|Ωs|

∑
ω∈Ωs

(Fi(ω) − Fi)(Fj(ω) − Fj)
√

1
1−|Ωs|

∑
ω∈Ωs

(Fi(ω) − Fi)
√

1
1−|Ωs|

∑
ω∈Ωs

(Fj(ω) − Fj)

Now, ρe
ij serves as an estimate of the correlation ρij between Fi and Fj . The value

of the correlation ρij ranges from perfect anti correlation (−1), via independence
(0), to perfect correlation (+1).

In the context of optimization of the Fi functions, we can interpret this
correlation as follows:
1 Named after the university of Louvain-de-Neuve in Belgium where this method was

originated.

168 A. Maulana et al.

– Positively correlated trait functions can be interpreted as trait functions that
support each other. This means that maximizing one function will imply that
also the other function will obtain high values.

– Uncorrelated trait functions are considered to be independent of each other.
They can be maximized in isolation from each other. The NK-landscape value
can be maximized by independently maximizing these traits.

– Negatively correlated objective functions are in a strong conflict with each
other, that is increment of one value typically will lead to a deterioration of
the other value. Intuitively, one might expect that if there are many conflicting
trait functions the maximization of the NK-landscapes gets more difficult.

The next two examples of a correlation matrix of NK-Landscape for k = 0
and k = 1 with N = 10 are provided with Tables 1 and 2 respectively. Note,
that in case k = 0 not all correlations between different trait functions are 0,
although from the construction of the NK-Landscape all trait functions should
be independent in the case k = 0. The finiteness of the sampling space makes
it however unlikely that also the statistical correlation is exactly the same. For
k = 1, clearly some correlations have values higher than zero and higher than

Table 1. Correlation coefficient matrix for N = 10 and k = 0

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 1.0000 −0.0135 0.0128 −0.0143 0.0115 −0.0115 −0.0322 0.0000

0.0000 0.0000 −0.0135 1.0000 0.0128 −0.0143 0.0115 −0.0115 −0.0322 0.0000

0.0000 0.0000 0.0128 0.0128 1.0000 −0.0428 0.0345 −0.0345 −0.0966 0.0000

0.0000 0.0000 −0.0143 −0.0143 −0.0428 1.0000 0.0576 −0.0576 −0.1612 0.0000

0.0000 0.0000 0.0115 0.0115 0.0345 0.0576 1.0000 −0.1279 −0.3576 0.0000

0.0000 0.0000 −0.0115 −0.0115 −0.0345 −0.0576 −0.1279 1.0000 0.3576 0.0000

0.0000 0.0000 −0.0322 −0.0322 −0.0966 −0.1612 −0.3576 0.3576 1.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table 2. Correlation coefficient matrix for N = 10 and k = 1

1.0000 −0.2366 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.2463

−0.2366 1.0000 0.3247 0.0149 0.0132 −0.0105 0.0097 0.0108 0.0304 0.0000

0.0000 0.3247 1.0000 0.4545 −0.0047 0.0037 −0.0035 −0.0039 −0.0109 0.0000

0.0000 0.0149 0.4545 1.0000 −0.0334 0.0197 −0.0183 −0.0203 −0.0573 0.0000

0.0000 0.0132 −0.0047 −0.0334 1.0000 −0.0648 0.0394 0.0439 0.1236 0.0000

0.0000 −0.0105 0.0037 0.0197 −0.0648 1.0000 −0.3341 −0.0653 −0.184 0.0000

0.0000 0.0097 −0.0035 −0.0183 0.0394 −0.3341 1.0000 0.8035 0.3192 0.0000

0.0000 0.0108 −0.0039 −0.0203 0.0439 −0.0653 0.8035 1.0000 0.3549 0.0000

0.0000 0.0304 −0.0109 −0.0573 0.1236 −0.184 0.3192 0.3549 1.0000 0.0000

−0.2463 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Community Detection in NK Landscapes 169

all correlations for the previous case. As we will see, this strong correlation will
vanish again quickly for values of k � 1.

In summary correlation analysis is applied to derive the weights of links
between the pairs of component functions. The N × N correlation matrix is
interpreted as a weighted graph with weighs in [−1, 1]. This way, it can be ana-
lyzed using graph theoretic algorithms and in particular by community detec-
tion. Thereafter, statistics on macroscopic properties of the community graphs
can be applied to find regularities that might reveal new insights in the critical
transition(s) of the landscape’s complexity as k grows.

4 Results

Results depicted in Figs. 4, 5, 6, 7 and 8 visualize the concrete results of the com-
munity detection obtained and visualized with Pajek using Louvain and, respec-
tively, VOS clustering. First, let us summarize results for the Louvain method.
Figure 4 and respectively, Fig. 5 show the transition of community structures
for randomly assigned genes and, respectively, for adjacent epistatic genes. The
value of k is chosen from 0 to N − 1.

From the visual impression it is clear that the highest degree of separation is
obtained in the case k = 0 for both epistatic link structures (random, adjacent).

The nodes that belong to the same community are indicated by nodes which
share the same color. The number of communities reaches its minimum for k = 2.
A confirmation of this can be obtained when plotting the number of communities
over different values of k, which is done in Fig. 2 for randomly assigned epistatic
genes and in Fig. 3. The value of k = 2 is a clear optimum in all cases.

This is surprising, because it might be expected that for k = N − 1 all nodes
merge to one big community. This is not the case and – in first approximation

Fig. 2. Community detection by Louvain clustering algorithm based on randomly
assigned epistatic genes.

170 A. Maulana et al.

Fig. 3. Community detection by Louvain clustering algorithm based on adjacent epista-
tic genes.

Fig. 4. Community detection by Louvain clustering algorithm based on randomly
assigned epistatic genes.

– might be explained by the fact that nodes can also negatively influence each
other (conflicting nodes). Note, that the number of communities grows at a
slower rate for adjacent epistatic genes. This coincides with the slower increase
of computational complexity [11].

Analogous findings have been made with the VOS clustering method for
community detection. Figures 7 and 8 show the community structures, whereas
Figs. 9 and 10 show the results. The correspondence between the two different
approaches for community detection underpin that the findings are not an arti-
fact of the method. More dissonance between Louvain and VOS methods is found
for the number of communities for high levels of k. However, in all methods the

Community Detection in NK Landscapes 171

Fig. 5. Community detection by Louvain clustering algorithm based on Neighborhood
selection with adjacent epistatic genes.

Fig. 6. Comparison of correlation between a node in the network community (as result
of community detection), based on randomly assigned epistatic genes and adjacent
epistatic genes.

172 A. Maulana et al.

Fig. 7. Community detection by VOS clustering algorithm based on Neighborhood
selection with randomly assigned epistatic genes.

Fig. 8. Community detection by VOS clustering algorithm based on Neighborhood
selection with adjacent epistatic genes.

general trend can be observed that the number of communities first decreases
and then grows again.

A conjecture we obtained from the pictures is that the correlations or anti-
correlations are first very strong and then weaken again. This can be measured
by the squared correlation. It is an indication on how much the results of two
nodes depend on each other (either positively or negatively). Values close to zero
indicate independence of the results at two different nodes. The average squared
correlation between nodes in the network is shown in Fig. 6 – both for adjacent
and randomly assigned epistatic genes.

Clearly both landscapes have a peak at low values of k. What is striking, is
that the peak for the NK-landscape with low values of k has a sharp decay in

Community Detection in NK Landscapes 173

Fig. 9. Community detection by VOS clustering algorithm based on randomly assigned
epistatic genes.

Fig. 10. Community detection by VOS clustering algorithm based on adjacent epistatic
genes.

average squared correlation, whereas the decay for the adjacent case is gradual.
Again this coincides with the finding that for randomly assigned epistatic genes
a sharp transition in computational complexity appears whereas the transition
is gradual for the case of adjacent epistatic genes.

Viewing the plot one might even speculate that the observed phenomena is a
sawtooth transition. This is found in other complex systems at the edge of chaos
and is conjectured to be a universal law for macroscopic observations at the
transition from systems with complex, but still predictable behavior, to chaotic
and unpredictable systems (see for instance Adriaans [1]). Further analysis on
larger models and the theoretical analysis of analogies between the models will
be required to either confirm or reject this interesting hypothesis.

174 A. Maulana et al.

Table 3. Comparison clustering algorithm applied in community detection, Louvain
clustering Algorithm compare to VOS clustering algorithm with randomly assigned
epistatic genes

Louvain clustering VOS clustering

k NC Q k NC Q

0 9 0.842457 0 8 0.8645009

1 6 0.459726 1 5 0.6995902

2 5 0.613504 2 4 0.5636842

3 7 0.630355 3 7 0.6158102

4 7 0.606203 4 6 0.6416844

5 7 0.741914 5 7 0.6716613

6 10 0.701109 6 8 0.6608056

7 10 0.718037 7 10 0.7180642

8 10 0.717084 8 10 0.7285837

9 9 0.757455 9 10 0.7050733

Table 4. Comparison clustering algorithm applied in community detection, Louvein
clustering Algorithm compare to VOS clustering algorithm with adjacent epistatic
genes

Louvein clustering VOS clustering

k NC Q k NC Q

0 9 0.842457 0 8 0.8645009

1 6 0.677228 1 5 0.7196617

2 6 0.714034 2 4 0.6285909

3 6 0.713723 3 5 0.6452446

4 8 0.663882 4 8 0.6670689

5 7 0.656833 5 7 0.6213816

6 9 0.679317 6 7 0.6804879

7 8 0.691417 7 10 0.6805063

8 9 0.680426 8 9 0.7017337

9 10 0.715158 9 7 0.6856205

In the plots of Figs. 2 and 3 (Louvain) and Figs. 9 and 10 (VOS) we also
show the observed modularity of community components. Here we shift a bit
more emphasis on the results of the Louvain method as it explicitly seeks to find
communities based on modularity. However, the graphical results are less clear
for this and to find a trend we also put the tables with the numerical results in
Table 3 (Random) and Table 4 (Adjacent). From these numerical results it can
be obtained that the modularity of the communities first decreases slightly and

Community Detection in NK Landscapes 175

then goes up again. Clearly the highest average modularity is achieved for k = 0
in which case nodes are relatively isolated. Again, the peak is pronounced a bit
stronger for randomly assigned epistatic genes.

5 Summary and Outlook

This paper looked at the graph derived from the correlation structure among
the component functions of an NK-landscape Model. The results show that the
community structure that is detected for this ‘correlation graph’ does not cor-
respond with the community structure of the epistatic link network which has
many components for small values of k and only one big component for k = N−1
(every gene is linked to every other gene). Instead the correlation network has
the lowest number of components for k = 2. For values lower and higher the
number of communities clearly grows. As the critical transition from polynomial
time solvable maximization problems to NP complete maximization problems
appears at the transition from k = 1 to k = 2 (for random networks) we suspect
that these findings might be not coincidental. We show also that the average
squared correlation reaches a sharp peak near this value of k. This peak is less
pronounced for adjacent epistatic genes which do not undergo a critical transi-
tion but a gradual transition in terms of complexity.

So far we have only studied the case N = 10 and studies on larger networks
are required in the future to improve the generality of the findings. A problem
that needs to be solved for such studies is how to tame the ‘explosion’ in the
size of the random number tables needed to generate the NK-landscapes. A
useful proposal has been made by Altenberg [2], who suggested to re-generate
the random numbers on-the-fly when needed and provided a function that can
be used for this.

Further work is also required to understand these findings from a theoretical
point of view. For now, the findings show that it will be interesting to study not
only the network structure gleaned from the epistatic links but also the resulting
network structure obtained from correlation patterns among phenotypic traits.
Perhaps one of the most interesting conjectures that should be investigated is
the transition of the correlation structure that revealed a sawtooth shape. The
examination of this and analogies with other models that undergo a sawtooth
transition could be an interesting topic of a follow up work.

Last but not least, in the different context of multiobjective and many-
objective optimization [7] the problem of maximizing the components of a NK
landscape could yield an interesting test case for many objective optimization
with a tunable degree of correlation between the objective functions. To this
end, first results on how to exploit community structure for more effective max-
imization have recently been shown on a different optimization problem [9].

Acknowledgements. Michael Emmerich gratefully acknowledges inspiration from
the Lorentz Center Workshop on ‘What is Complexity and How do We Measure it?’
organized by Erik Schultes, Lude Franke, and Peter Adriaans in the Lorentz Center

176 A. Maulana et al.

Leiden, November 2014. Asep Maulana gratefully acknowledges financial support by
the Indonesian Endowment Fund for Education (LPDP).

References

1. Adriaans, P.: Facticity as the amount of self-descriptive information in a data set
(2012). arXiv preprint: arXiv:1203.2245

2. Altenberg, L.: Nk landscapes. In: Michalewicz, Z., Bäck, T., Fogel, D. (eds.) Hand-
book of Evolutionary Computation. Oxford University Press (1997)

3. Anderson, P.: Perspective: complexity theory and organization science. Organ. Sci.
10(3), 216–232 (1999)

4. Batagelj, V., Mrvar, A.: Pajek-program for large network analysis. Connections
21(2), 47–57 (1998)

5. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. J. Stat. Mech. Theor. Exp. 2008(10), P10008 (2008)

6. Frenken, K.: A complexity approach to innovation networks. The case of the aircraft
industry (1909–1997). Res. Policy 29(2), 257–272 (2000)

7. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimiza-
tion: a short review. In: IEEE Congress on Evolutionary Computation, pp. 2419–
2426. Citeseer (2008)

8. Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged
landscapes. J. Theor. Biol. 128(1), 11–45 (1987)

9. Maulana, A., Jiang, Z., Liu, J., Bäck, T., Emmerich, M.: Reducing complexity in
many objective optimization using community detection. In: IEEE Conference on
Evolutionary Computation, Sendai, Japan, May 2015

10. van Eck, N.J., Waltman, L.: VOS: a new method for visualizing similarities between
objects. In: Decker, R., Lenz, H.-J. (eds.) Advances in Data Analysis. Studies in
Classification, Data Analysis, and Knowledge Organization, pp. 299–306. Springer,
Heidelberg (2007)

11. Weinberger, E.D.: Local properties of Kauffmans n-k model: a tunably rugged
energy landscape. Phys. Rev. A 44(10), 6399 (1991)

http://arxiv.org/abs/1203.2245

Applications of Evolutionary Algorithms

River Flow Forecasting Using an Improved
Artificial Neural Network

Josiah Adeyemo(B), Oluwaseun Oyebode, and Derek Stretch(B)

Civil Engineering Department, University of Kwazulu Natal, Durban, South Africa
adeyemoja@gmail.com , 215082067@stu.ukzn.ac.za

Abstract. Artificial neural network (ANN) is a popular data-driven
modelling technique that has found application in river flow forecast-
ing over the last two decades. This can be attributed to its ability to
assimilate complex and nonlinear input-output relationships inherent
in hydrological processes within a river catchment. However despite its
prominence, ANNs are still prone to certain problems such as overfitting
and over-parameterization, especially when used under limited availabil-
ity of datasets. These problems often influence the predictive ability of
ANN-derived models, with inaccurate and unreliable results as resultant
effects. This paper presents a study aimed at finding a solution to the
aforementioned problems. Two evolutionary computational techniques
namely differential evolution (DE) and genetic programming (GP) were
applied to forecast monthly flow in the upper Mkomazi River, South
Africa using a 19-year baseline record. Two case studies were consid-
ered. Case study 1 involved the use of correlation analysis in selecting
input variables during model development while using DE algorithm for
optimization purposes. However in the second case study, GP was incor-
porated as a screening tool for determining the dimensionality of the
ANN models, while the learning process was subjected to sensitivity
analysis using the DE-algorithm. Results from the two case studies were
evaluated comparatively using three standard model evaluation criteria.
It was found that results from case study 1 were considerably plagued
by the problems of overfitting and over-parameterization, as significant
differences were observed in the error estimates and R2 values between
the training and validation phases. However, results from case study 2
showed great improvement, as the overfitting and memorization problems
were significantly minimized, thus leading to improved forecast accuracy
of the ANN models. It was concluded that the conjunctive use of GP and
DE can be used to improve the performance of ANNs, especially when
availability of datasets is limited.

Keywords: Artificial Neural Networks · Differential evolution · Genetic
Programming · River flow

1 Introduction

The management of water resource systems has always been a major concern to
water managers and decision makers, most especially in water-stressed countries
c© Springer International Publishing AG 2018
A.-A. Tantar et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation VI, Advances in Intelligent Systems and Computing 674,
https://doi.org/10.1007/978-3-319-69710-9_13

180 J. Adeyemo et al.

such as South Africa. Hydrologists and water resources engineers have devel-
oped various approaches towards managing the relatively little amount of water
in these regions in order to meet increasing profile of water demand. However,
explosive increase in population continues to place higher demands on the lim-
ited water resources. A major constituent of the hydrologic cycle streamflow
(river flow), remains a vital point of reference in water resources management
due to its role as a major source of freshwater accessibility for the sustainabil-
ity of man, animal and the natural environment. Thus streamflow prediction is
highly essential to the making of worthwhile decisions by relevant stakeholders.
Various approaches that have been employed by researchers with the aim of
predicting river flows. However, insufficient datasets often pose serious challenge
to the achievement of accurate and reliable predictions (Babovic and Keijzer
2002). Therefore, there is a need to find out suitable approaches that could serve
as alternatives in the bid to achieving accurate and reliable predictions in data
sparse regions. Evolutionary computation (EC) and global optimization tech-
niques have gained much popularity in hydrological modelling studies due to
their ability to produce robust models while also enhancing faster convergence
towards global optimum (Olofintoye et al. 2014; Oyebode and Adeyemo 2014a;
2014b). The ease with which they are integrated into other modelling techniques
is also considered to be a major reason for their prominence. As part of a current
research project (Modelling of streamflow response to hydroclimatic variables in
the upper Mkomazi River, South Africa), the performance of two evolutionary
inspired data-driven modelling techniques - genetic programming (GP) and dif-
ferential evolution (DE)-trained artificial neural networks (DE-ANN) are being
compared. This is done with the aim of determining the better approach to
be adopted for river flow prediction in the upper Mkomazi River under limited
availability of datasets. The initial results of the application of GP to modelling
flow dynamics in upper Mkomazi River have been reported in Oyebode et al.
(2014), which does not include a performance comparison with the ANN tech-
nique. By contrast, the purpose of this paper is to present the development and
application of the DE-ANN to the upper Mkomazi River, and then to compare
its predictions with GP monthly flow estimates. There is naturally some aspect
of this paper which has the same connection with Oyebode et al. (2014), but
the emphases are different. Two case studies involving the use of ANNs are pre-
sented. Case study 1 involve the use of the same set of input variables employed
in GP model development, while the second case study entails the introduction
of early stopping method, incorporation of GP as a screening tool, and the sub-
jection of the ANN learning process to sensitivity analysis. For the purpose of
identification, the ANNs in Case study 1 and 2 will hereafter be referred to as
ANN-1 and ANN-2 respectively, and their results in comparison with that of GP
are presented thereafter.

River Flow Forecasting Using an Improved ANN 181

2 Methodology

2.1 Artificial Neural Networks (ANNs)

ANNs are computational intelligence (CI) techniques inspired by the neurological
processing ability of the human brain. ANNs consist of a pool of simple process-
ing units called neurons which communicate by sending signals to each other
over a large number of weighted connections (Krse and van der Smagt 1996).
The operating principles of ANNs is based on parallel distributed information
processing that is capable of storing experiential knowledge gained through the
process of learning, and making it available for future use (Elshorbagy et al.
2010). The processing units function by receiving inputs from external sources
or other neurons in the network and computing output signals which is trans-
mitted to other units. These processing units are found in layers commonly
categorized as input, hidden and output layers. Non-linearities inherent in the
inputs of the system being modelled are transformed into a linear space by the
use of an activation function in the hidden layer of the network. The commonly
used activation functions are sigmoidal functions such as the logistic and hyper-
bolic tangent functions (Maier and Dandy 2000). The major network topologies
that characterize the architecture of ANNs are the feed-forward neural networks
(FFNN) and the recurrent neural networks; with multilayer perceptron (MLP),
radial basis function (RBF) networks, Kohonens self-organizing feature maps
(SOFM) and Elman-type RNN as the most popular ANNs (Coulibaly and Evora
2007; Jha 2007). Numerous specialized learning algorithms have been employed
for the purpose of training and subjecting ANNs to adaptive learning. Examples
include methods such as back propagation (BP), Levenberg Marquardt (LM),
conjugate descent (CG), genetic algorithm (GA) and differential evolution (DE).
Hence, the ability of ANNs to assimilate complex and nonlinear input-output
interactions makes it suitable for predictive studies in the field of water resources.
The multilayer feed-forward neural network (FFNN) architecture was employed
in this study. The FFNN was trained using differential evolution (DE) algo-
rithm. DE has been effectively applied for solving real-world science and engi-
neering problems due to its ability to diffuse close to the global optimum solu-
tion (Qian and Zhao 2007; Adeyemo and Otieno 2010; Pal et al. 2010). With
specific reference to ANN training, DE has been found to produce improved
and faster convergence using only small number of parameters for its algorithm
setup, unlike other training algorithms such as BP, LM, CG and GA which are
either susceptible to local optima, or require high computational times and huge
number of iterations to obtain satisfactory results (Piotrowski and Napiorkowski
2011; Oyebode and Adeyemo 2014b). The reader is referred to Storn and Price
(1997) and Abdul-Kader (2009) for details on the working principles of DE.

2.2 Study Area and Datasets

The Mkomazi catchment is located in the KwaZulu-Natal province of South
Africa and the third largest river in the province. The catchment situated

182 J. Adeyemo et al.

around 29◦17’24”E and 29◦35’24”S, derives its source from the upper Drakens-
berg mountains and discharges into the Indian Ocean, draining an area of about
4 400 km2. The river is of approximately 160 km in length and elevated at about
3 300 m above sea level, stretching from the Northwest to the Southeast region.
The climate is characterized by high seasonality with dry winters and summer
rainfall season as Mean Annual Precipitation (MAP) varies between 700 and
1200 mm year-1 with highly intra- and inter-seasonal flows (Flugel and Marker
2003). The MAP is higher in the upper, higher elevations of the river catchment
(950 mm to about 1 200 mm) (Taylor et al. 2003), and as a result, a signifi-
cant amount of catchment runoff is generated in the upper part of the catch-
ment. Datasets relating to the study area were provided by the Department
of Water Affairs (DWA) and the South African Weather Service (SAWS). His-
torical monthly records of flow were obtained from DWA for a 19-year period
(1994–2012) from gauging station U1H005 (Mkomazi River @ Lot 93 1821) with
geographical coordinates between 29◦44’37.3” South longitudes and 29◦54’17.8”
East latitudes were applied in this study. The SAWS provided the correspond-
ing climatic data (rainfall and temperature) from three independent weather
stations namely Pietermaritzburg, Shaleburn and Giant Castle stations located
within the study area.

2.3 Selection of Input Variables

The datasets made available by DWA and SAWS include river flows, rainfall
and temperature which cover a 19-year period (1994–2012). In this study, the
dependency between input variables and the associated lag effect were deter-
mined using correlation analysis. Table 1 presents the results of the correlation
analysis used in selecting input variables into the GP input space. The results
showed high correlation between the flows for the past three years and that of
any given year. The results also indicated that flow for the given year highly
corresponds to the rainfall and temperature values of the preceding year across
the three independent weather stations. However, outcome of the analysis on
higher number of lags other than the reported ones produced lower correlation
values, and were therefore discarded.

The input vector spaces of the GP models were populated with a total of
nine (9) input variables. These inputs comprise of flows for a given month in the
last three (3) years (Qt, Qt−1, Qt−2), rainfall values from the three independent
weather stations for the same month in the preceding year (R1t, R2t, R3t), and
their corresponding temperature values (T1, T2, T3). The numbers 1, 2 and 3
represent Pietermaritzburg (PMB), Shaleburn, and Giant Castle weather sta-
tions respectively. The approach employed for monthly flow prediction in this
study was to adopt a 1-year lead time using individual monthly models. Thus a
total of twelve individual monthly models were developed, while the flow being
modelled for a given month in the next year is designated as the target output
Qt+1. The mathematical representation of the 1-year lead time model adopted
can be expressed as:

Qt+1 = f(Qt, Qt−1, Qt−2, R1t, R2t, R3t, T1t, T2t, T3t) (1)

River Flow Forecasting Using an Improved ANN 183

Following the construction and formulation of the input vector space, the flows
and the climatic datasets prepared for each month constituted sixteen (16) data
points. As part of the model development process, the datasets were split into
two subsets using a random sampling method with two-third of the datasets
used for model training and the remaining one-third for validation.

Table 1. Results of correlation analysis showing the relationship between historical
values of input parameters and target output

Input parameters Target output (Qt+l)

Qt 0.9983

Qt−1 0.9957

Qt−2 0.9966

R1t 0.7256

R2t 0.9203

R3t 0.8856

T1t 0.8605

T2t 0.8046

T3t 0.8072

3 Model Development

3.1 Case Study 1

As earlier mentioned, the multilayer FFNN topology was employed in this study.
The architectural design of the FFNN models developed comprised of three
layers: one input, one hidden and one output layer. The modelling strategy
employed was to subject the ANN-1 to the same set of data used in the develop-
ment of the GP-derived models as reported in Oyebode et al. (2014). This was
done to avoid any form of bias. Thus, the input layer of the ANN-1 models com-
prised of nine input nodes, representing the nine selected input variables used
for the GP models, while the output node comprised of only one neuron (the
target output). The optimal architecture of each monthly model was determined
by incrementally varying the number of hidden layer nodes from 2 to 10 using a
single stepping approach. The DE algorithm which was utilized in training the
network was run for 10 000 generations for each of the monthly models on an
Intel Core i7 PC with 3.40 GHz and 4 GB; same as the one used for the GP algo-
rithm run. The DE algorithm was however written using Visual Basic for Appli-
cations (VBA) programming language. The population size, NP, and crossover
constant, CR, were used to control the algorithm run, while the mutation scale
factor, F, controlled the amplification of differential variation during the run.

184 J. Adeyemo et al.

Following the suggestion of Price and Storn (2013), the DE control parameters,
NP, CR and F were set at “D multiplied by 10”, 0.9 and 0.4 respectively, (where
D is the number of weights and biases in the selected architecture). In terms
of data-preprocessing, a logistic sigmoidal-type activation function of between 0
and 1 was used in the hidden layer of the FFNN, to rescale the inputs in the
range 0.1–0.9. The rescaling of the inputs to the extreme ranges of the activation
function was avoided in accordance with the advice of Maier and Dandy (2000).
It has been earlier established that the rescaling of input variables towards the
extreme bounds of the activation function could reduce the size of the weight
updates, thus resulting into flats spots during training (Maier and Dandy 2000).
A linear activation function was however employed in the output layer, in order
for the network to transform nonlinearities in the inputs into a linear space.

3.2 Case Study 2

One of the major challenges that confronts modellers in the application of
ANNs in hydrological modelling studies is over-parameterization of inputs. Thus
in this second case study, an attempt was made to curb the effects of over-
parameterization which may likely occur in case study 1; considering that limited
amount of datasets were employed. The approach applied was to introduce GP
as a screening tool for selecting the input variables into the input vector space
of the ANN-2 models. Results reported in Oyebode et al. (2014) have already
established the ability of GP to screen and prioritize input variables according
to their contribution to the fitness of the best program solutions, thereby deter-
mining the impacts of each input variable on predictions made. The impact of
each input variable is a function of its frequency of occurrence during the GP
algorithm run, and this is computed upon successful completion of each GP algo-
rithm run. Table 2 presents the impact of each of the input variables used for river
flow prediction in the study. The results are scaled between 0.0 and 1.0. A value
of 1.0 in the frequency column indicates that the particular variable appeared in
100 Following the input impact results computed by GP (see Table 2), four out
of the nine variables were selected for the development of ANN-2 models. The
selection of the four input variables was based on their impacts on the predictive
accuracy of the GP models. Therefore, the dimensionality of the ANN-2 models
was reduced when compared with the ANN-1 models. In addition, different com-
binations of input variables were used across the twelve monthly models unlike
in ANN-1 where the same combination was employed in all the models. Table 3
presents the selection and combinations of the four input variables used for the
development of each monthly model.

Furthermore, the learning process of the ANN-2 models was fine-tuned by
subjecting the DE algorithm to sensitivity analysis. This involved varying the
parameter settings during the run to determine the optimal parameters that will
generate the least errors. CR was varied between 0.5–0.9, while F was altered
between 0.1–0.5. Both CR and F were adjusted incrementally using a stepping
value of 0.1. An early-stopping method was also introduced to avoid the problem
of overfitting. Early stopping seeks to identify the point where minimum error

River Flow Forecasting Using an Improved ANN 185

Table 2. Impacts of input variables in terms of their frequency of occurrence in the
best team programs of each GP monthly model

Inputs Frequency of input variables

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Avg.

Qt 0.83 0.97 0.67 0.67 0.43 0.53 0.50 0.77 0.60 0.30 0.63 0.43 0.61

Qt−1 0.77 0.47 0.43 0.70 0.53 0.53 0.63 0.60 1.00 0.70 0.83 0.40 0.63

Qt−2 0.50 0.40 0.63 0.83 0.53 0.50 0.90 1.00 0.80 0.93 0.77 0.60 0.70

R1t 0.67 0.53 0.20 0.63 0.20 0.37 0.83 0.83 0.27 0.67 0.60 0.73 0.54

R2t 0.63 0.53 0.43 0.40 0.53 0.73 0.97 0.20 0.50 0.70 0.53 0.53 0.56

R3t 0.63 0.57 0.47 0.63 0.30 0.33 0.40 0.60 0.23 0.83 0.60 0.33 0.49

T1t 0.53 0.70 0.97 0.97 0.23 0.30 0.50 0.30 0.60 0.23 0.50 0.63 0.54

T2t 0.80 0.77 0.47 0.43 0.43 0.73 0.63 0.70 0.27 0.90 0.80 0.47 0.62

T3t 0.60 0.47 0.57 0.37 0.53 0.73 0.23 0.57 0.27 0.27 0.67 0.57 0.49

Table 3. Combination of input variables used in developing the ANN-2 models

Inputs Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Qt X X X X X X

Qt-1 X X X X X X X

Qt-2 X X X X X X X X X

R1t X X X X

R2t X X X X X

R3t X

T1t X X X X X

T2t X X X X X X

T3t X X X X X

on the validation datasets starts to increase, and immediately stops training to
prevent overfitting. With the exception of the incorporation of GP and early-
stopping methods, as well as the fine-tuning of the DE algorithm, all other
parameter settings and procedural steps employed in developing the ANN-1
models were maintained.

In all, nine input variables were used in the ANN-1 models, while four were
used in the ANN-2 models. Thus the optimal network architecture in both case
studies is a function of the optimal number of hidden nodes that returns the
minimum error between observed and predicted values at the end of the run.
Three (3) standard model evaluation criteria namely, mean absolute percent
error (MAPE), root mean square error (RMSE) and coefficient of determination
(R2) were used to investigate the performance of the monthly models developed
in this study, and their mathematical expressions reported in Oyebode et al.
(2014).

186 J. Adeyemo et al.

4 Results and Discussions

The performance of all the models developed by the ANNs (ANN-1 and ANN-2)
was subjected to test by adopting the three performance evaluation criteria used
for the GP models (i.e. MAPE, RMSE and R2). The performance of ANN models
were evaluated against those obtained using the GP technique. The performance
evaluation results are presented in Tables 4 and 5, while the optimal network
architectures are presented in Table 6. The performance of the different models
in predicting flows in the upper Mkomazi River is analyzed and presented with
reference to each of the case studies.

Table 4. Comparison of MAPE, RMSE and R2 values between GP and ANNs during
training

Month Training Phase

MAPE (%) RMSE R2

GP ANN-1 ANN-2 GP ANN-1 ANN-2 GP ANN-1 ANN-2

Jan 3.9401 1.2865 3.2593 1.4968 0.6778 1.7259 0.9964 0.9992 0.9951

Feb 0.9966 0.4008 7.2021 0.4974 0.2689 5.7134 0.9994 0.9997 0.8653

Mar 3.6570 3.1207 91.2276 1.2469 1.1404 41.5205 0.9982 0.9989 0.1176

Apr 5.6798 3.4220 50.1606 1.0710 0.7181 8.4563 0.9891 0.9949 0.2966

May 2.6864 0.6667 1.7045 0.1982 0.0694 0.1627 0.9970 0.9991 0.9961

Jun 1.1854 1E-08 0.1711 0.0607 7E-10 0.0081 0.9986 1.0000 1.0000

Jul 1.2691 0.2050 27.5932 0.0558 0.0150 1.3923 0.9985 1.0000 0.6224

Aug 4.2479 4.1465 15.3046 0.1047 0.1799 0.5216 0.9972 0.9918 0.9302

Sep 11.1474 5.3100 10.9293 0.0607 0.2615 0.4853 0.9988 0.9984 0.9946

Oct 3.1860 4.2952 58.9866 0.1607 0.4268 4.4800 0.9994 0.9953 0.4610

Nov 4.2854 2.2617 34.0076 0.4855 0.2183 3.5226 0.9975 0.9995 0.8667

Dec 6.0007 1E-10 23.6360 0.8642 3E-11 5.5912 0.9972 1.0000 0.8304

Average 4.0235 2.0929 27.0152 0.5252 0.3313 6.1317 0.9973 0.9981 0.7480

4.1 Case Study 1

It can be observed from Table 4 that both the GP and ANN-1 models provided
very competitive performance during the training phase, with the ANN-1 models
having a slight edge over the GP models. During training, the ANN-1 models
converged better towards zero than the GP models, while producing the lowest
errors in the months of June and December. An agreement in the maximum
MAPE estimates of the GP and ANN-1 models can be noticed, as both tech-
niques (GP and ANN-1) produced maximum MAPE estimates in the month of
September 5.31% and 11.1% respectively. It can also be noted that the RMSE
estimates recorded by the ANN-1 models was in line with the orientation of its

River Flow Forecasting Using an Improved ANN 187

Table 5. Comparison of MAPE, RMSE and R2 values between GP and ANNs during
validation

Month Validation Phase

MAPE (%) RMSE R2

GP ANN-1 ANN-2 GP ANN-1 ANN-2 GP ANN-1 ANN-2

Jan 3.4179 65.407 45.769 1.3535 29.1835 13.0723 0.9969 0.0992 0.8444

Feb 3.0490 22.707 61.138 1.0126 18.3385 19.1202 0.9923 0.9651 0.9509

Mar 4.3077 35.350 17.067 1.3797 20.2504 10.6233 0.9932 0.3559 0.6991

Apr 6.1725 21.983 18.862 1.1868 6.3037 5.3593 0.9741 0.5174 0.6993

May 1.8900 57.279 57.748 0.1245 3.8866 3.9262 0.9954 0.2272 0.2234

Jun 0.5932 40.584 9.4256 0.0325 1.6614 0.4419 0.9990 0.6659 0.7441

Jul 0.7575 87.680 21.531 0.0257 2.5899 0.6496 0.9999 0.5788 0.5137

Aug 7.5730 58.147 46.672 0.3401 3.9421 1.3623 0.9881 0.0080 0.9306

Sep 5.1472 100.67 107.54 0.1983 1.8091 1.8671 0.9740 0.2979 0.2917

Oct 6.1092 125.09 58.171 0.2653 3.3390 1.7698 0.9905 0.0959 0.6667

Nov 2.1735 255.03 11.610 0.2918 24.8077 1.3853 0.9978 0.1231 0.9707

Dec 2.4802 89.395 87.983 0.5242 16.0652 8.3457 0.9978 0.0917 0.9295

Average 3.6392 65.407 45.769 0.5612 11.0148 5.6602 0.9916 0.3355 0.7053

MAPE estimates, as the minimum RMSE values converged towards zero and
were also generated in the months of June and December. The maximum RMSE
of 1.14 was however produced in the March model. Although, the performance of
the ANN-1 models was marginally better in most of the months during training,
some dominance by the GP models were however evident in the August, Septem-
ber and October models. The R2 values in both techniques (GP and ANN) were
found to be comparable, as high correlation between observed and predicted
flows were recorded. The R2 values ranged between 0.9918–1.0000 in the ANN-1
models, and 0.9891–0.9994 in the GP models. Generally, the performance of the
GP and ANN-1 models during training can be said to be comparable, but with
the ANN-1 models producing better convergence in most cases. This is in cor-
relation with the study of Ni et al. (2010) where ANN performed slightly better
than GP during the training phase.

On the other hand, GP models performed considerably better than the ANN-
1 models during validation, as the ANN-1 produced higher error estimates. The
errors produced in the GP models were better converged towards zero, and were
estimated to be 0.6%–7.6% and 0.03–1.38 for MAPE and RMSE respectively.
In furtherance to that, all the GP models maintained the highly positive cor-
relations recorded during training, with R2 values of 0.9740–0.9999. However,
the error estimates in the ANN-1 models increased substantially, yielding higher
MAPE and RMSE estimates, while generating lower R2 values. This may be con-
sidered as a result of poor learning which arises when small amount of datasets

188 J. Adeyemo et al.

are used for model training in ANNs (Zhang et al. 2010). It can be inferred
that ANN-1 simply memorized the learning process as evident in the training
results, and thus led to its inability to produce adequate generalization on the
validation datasets as also experienced by Nourani et al. (2011). Furthermore, it
was noticed that the optimization of the network architecture (number of hidden
layer nodes) resulted in higher computational demands in terms of training time
and computer memory. More understanding in this regard can be found from
Table 6 which presents the optimal network architecture of the individual ANN
models as determined by the DE algorithm, and returned at each end of the run.

Table 6. Network architecture showing number of hidden layer nodes in the ANN
models.

Month Optimal network architecture

ANN-1 ANN-2

Jan 9-10-1 4-4-1

Feb 9-7-1 4-3-1

Mar 9-10-1 4-3-1

Apr 9-7-1 4-3-1

May 9-10-1 4-4-1

Jun 9-5-1 4-5-1

July 9-7-1 4-3-5

Aug 9-8-1 4-4-1

Sep 9-7-1 4-5-1

Oct 9-9-1 4-4-1

Nov 9-10-1 4-3-1

Dec 9-4-1 4-5-1

It was found during the runs that the training speed became slower with
increase in number of hidden layer nodes. The reduction in training speed can
be considered as a function of the increment in number of synaptic connec-
tions between units and adjacent network layers. Thus, as the number of hidden
layer nodes increased, greater amount of weight/load was imposed on the net-
work. This observation agrees with Karthikeyan et al. (2013) recent submission
in their groundwater level prediction study, that the number of hidden layer
nodes influences computational time. Unlike the ANN-1 models, the GP models
produced better generalization at a faster learning rate; a product of its ability
to distribute the semi-isolated population space into multiple subpopulations,
called demes (Oyebode and Adeyemo 2014b). Although, all the simulations in
this study were carried out on the same computer, the average computational
time of the GP and ANN-1 models were 4 and 8 h respectively. Figures 1 and 2
present plots of observed against predicted flows. The plots clearly show some

River Flow Forecasting Using an Improved ANN 189

few under- and over-estimations of the observed values by the ANN-1 models.
Despite ensuring that the validation datasets were within the range of the train-
ing datasets, the variations between observed and ANN-1 predicted values during
the months of high flows (January, February and March) were more pronounced
than that of the months characterized by low flows (June and July).

4.2 Case Study 2

As presented in Table 7, significant improvement can be noticed in the perfor-
mance of the ANN-2 models compared to the ANN-1 models. Although, the
error estimates produced during training were higher than those recorded by the
ANN-1 models, it can be observed that the models achieved better convergence
in the validation phase. This is evident as the errors produced during validation
were far less than those produced during training. This implies that the overfit-
ting and memorization problems that plagued the ANN-1 models were totally
eliminated in the ANN-2 models. This is an indication that the introduction of
the early stopping method in the second case study was effective in prevent-
ing the occurrence of overfitting in the ANN-2 models. Similar experience was
reported in a rainfall-runoff modelling study conducted by Siou et al. (2012).
In the study, early stopping was also found to have successfully prevented the
occurrence of overfitting in ANN-derived models thereby resulting to improved
forecast accuracy. The superiority of the ANN-2 models over ANN-1 models is
quite noticeable in the R2 values, as the observed and ANN-2 predictions were
reasonably correlated, with the exception of the May and September models.
A computation of the relative MAPE, RMSE and R2 differences between the
ANN models during validation is presented in Table 6, with the ANN-2 models
producing lower MAPE and RMSE estimates, and higher R2 values in most of
the months.

It is clearly evident from the results that the incorporation of the GP tech-
nique and fine-tuning of the ANN learning process led to the improved perfor-
mance of the ANN-2 models. The introduction of GP as a screening tool, to
reduce the dimensionality of the models obviously facilitated quick convergence
and reduced over-parameterization effects. In the same vein, the subjection of the
DE algorithm to sensitivity analysis invigorated the search for better solutions,
and consequently resulted into improved performance with a less complex model
architecture. Table 6 clearly shows that the ANN-2 models were able to produce
better performance using a less complex architecture (number of hidden nodes).
Therefore, it can be said that the methodologies adopted in case study 2 pre-
vented the imposition of higher amount of load on the network (as experienced
in case study 1), and consequently translated into lesser computational time.
Although, the GP models exhibited dominance in terms of predictive accuracy,
convergence rate and adaptation to rare occurrences of extreme events (Figs. 1
and 2), results show that the ANN-2 models produced better predictions and
faster convergence when compared to the ANN-1 models. Thus results from this
paper indicate that the synergistic integration of the EC techniques (GP and
DE) as well as incorporation of early stopping method are promising techniques

190 J. Adeyemo et al.

Table 7. Relative differences between the ANN models during validation

Month Relative differences (%)

MAPE RMSE R2

Jan 30.0 55.2 88.3

Feb 62.9 4.1 1.5

Mar 51.7 47.5 49.1

Apr 14.2 15.0 26.0

May 0.8 1.0 1.7

Jun 76.8 73.4 10.5

Jul 75.4 74.9 11.2

Aug 19.7 65.4 99.1

Sep 6.4 3.1 2.1

Oct 53.5 47.0 85.6

Nov 95.4 94.4 87.3

Dec 1.6 48.1 90.1

Average 43.3 48.6 52.4

Fig. 1. Observed and predicted flows by the GP and ANN models (January–June)

River Flow Forecasting Using an Improved ANN 191

Fig. 2. Observed and predicted flows by the GP and ANN models (July–December)

that could be adopted for improving the performance of ANNs in river flow
forecasting, and by extension in water-related modelling studies.

5 Conclusions

In this paper, the performance of two data-driven modelling techniques namely
genetic programming (GP) and differential evolution (DE)-trained artificial
neural networks (ANNs) were investigated comparatively for monthly river flow
prediction using limited amount of datasets. Two case studies were considered in
the application of ANNs. Correlation analysis, used for determining the predic-
tor variables in the GP technique was adopted in the first case study. However,
in the second case study, GP, DE and early stopping methods were integrated
for optimization purposes. The ANN models in the first case study were found
to be plagued by the problems of overfitting and over-parameterization, which
is typical of ANNs when confronted with small-sized datasets. The ANN models
developed in the second case study however show-cased improved performance
through the conjunctive effort of early stopping method, GP and DE. Although
high difficulty exists in modelling hydrological processes with limited datasets,
this study demonstrates the benefits that can be derived from the incorporation
of evolutionary computation techniques such as GP and DE. Considering the
ease at which they can be integrated into other modelling techniques, they can

192 J. Adeyemo et al.

be adopted in the development of modular and hybrid models. This will fur-
ther assist decision makers in addressing issues relating to planning and effective
management of water resources.

References

Abdul-Kader, H.: Neural networks training based on differential evolution algorithm
compared with other architectures for weather forecasting34. IJCSNS 9(3), 92–99
(2009)

Adeyemo, J., Otieno, F.: Differential evolution algorithm for solving multi-objective
crop planning model. Agric. Water Manage. 97(6), 848–856 (2010)

Babovic, V., Keijzer, M.: Rainfall runoff modelling based on genetic programming.
Nordic Hydrol. 33(5), 331–346 (2002)

Coulibaly, P., Evora, N.: Comparison of neural network methods for infilling missing
daily weather records. J. Hydrol. 341(1), 27–41 (2007)

Elshorbagy, A., Corzo, G., Srinivasulu, S., Solomatine, D.: Experimental investigation
of the predictive capabilities of data driven modeling techniques in hydrology part
1: concepts and methodology. Hydrol. Earth Syst. Sci. 14(10), 1931–1941 (2010)

Flugel, W., Marker, M.: The response units concept and its application for the as-
sessment of hydrologically related erosion processes in semiarid catchments of South-
ern Africa. ASTM Spec. Tech. Publ. 1420, 163–177 (2003)

Jha, G.K.: Artificial neural networks and its applications (2007). http://www.iasri.res.
in/ebook/ebadat/5-Modeling

Karthikeyan, L., Kumar, D.N., Graillot, D., Gaur, S.: Prediction of ground water levels
in the uplands of a tropical coastal riparian wetland using artificial neural networks.
Water Resour. Manage. 27(3), 871–883 (2013)

Krse, B., van der Smagt, P.: An Introduction to Neural Networks, 8th edn. The Uni-
versity of Amsterdam, Amsterdam (1996)

Maier, H.R., Dandy, G.C.: Neural networks for the prediction and forecasting of water
resources variables: a review of modelling issues and applications. Environ. Model.
Softw. 15(1), 101–124 (2000)

Ni, Q., Wang, L., Ye, R., Yang, F., Sivakumar, M.: Evolutionary modeling for stream-
flow forecasting with minimal datasets: a case study in the West Malian River.
Environ. Eng. Sci. 27(5), 377–385 (2010)

Nourani, V., Kisi, Ö., Komasi, M.: Two hybrid artificial intelligence approaches for
modeling rainfall runoff process. J. Hydrol. 402(1), 41–59 (2011)

Olofintoye, O., Adeyemo, J., Otieno, F.: A combined pareto differential evolution app-
roach for multi-objective optimization. In: EVOLVE-A Bridge Between Probability,
Set Oriented Numerics, and Evolutionary Computation III, pp. 213–231. Springer
(2014)

Oyebode, O., Adeyemo, J.: Reservoir inflow forecasting using differential evolution
trained neural networks. In: Tantar, A.-A., et al. (eds.) EVOLVE-A Bridge between
Probability, Set Oriented Numerics, and Evolutionary Computation V, Advances
in Intelligent systems and Computing, vol. 288, pp. 307–319. Springer, Switzerland
(2014a)

Oyebode, O., Adeyemo, J., Otieno, F.: Monthly streamflow prediction with limited
hydro-climatic variables in the upper Mkomazi River, South Africa using genetic
programming. Fresenius Environ. Bull. 23(3), 708–719 (2014)

http://www.iasri.res.in/ebook/ebadat/5-Modeling
http://www.iasri.res.in/ebook/ebadat/5-Modeling

River Flow Forecasting Using an Improved ANN 193

Oyebode, O.K., Adeyemo, J.A.: Genetic programming: principles, applications and
opportunities for hydrological modelling. Int. J. Environ. Ecol. Geomatics Earth
Sci. Eng. 8(6), 305–311 (2014b)

Pal, S., Qu, B., Das, S., Suganthan, P.: Optimal synthesis of linear antenna arrays with
multi-objective differential evolution. Prog. Electromagnet. Res. PIER B 21, 87–111
(2010)

Piotrowski, A.P., Napiorkowski, J.J.: Optimizing neural networks for river flow forecast-
ing Evolutionary Computation methods versus the Levenberg Marquardt approach.
J. Hydrol. 407(1), 12–27 (2011)

Price, K., Storn, R.: Differential Evolution (DE) for Continuous Function Approxi-
mation (2013). http://www1.icsi.berkeley.edu/∼storn/code.html. Accessed 19 July
2013

Qian, G., Zhao, X.: On time series model selection involving many candidate ARMA
models. Comput. Stat. Data Anal. 51(12), 6180–6196 (2007)

Siou, L.K.A., Johannet, A., Valrie, B.E., Pistre, S.: Optimization of the generalization
capability for rainfall runoff modeling by neural networks: the case of the Lez aquifer
(Southern France). Environ. Earth Sci. 65(8), 2365–2375 (2012)

Storn, R., Price, K.: Differential evolution a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

Taylor, V., Schulze, R., Jewitt, G.: Application of the indicators of hydrological alter-
ation method to the Mkomazi River, KwaZulu-Natal, South Africa. African J.
Aquatic Sci. 28(1), 1–11 (2003)

Zhang, L., Mernyi, E., Grundy, W.M., Young, E.F.: Inference of surface parameters
from near-infrared spectra of crystalline H2OH2O ice with Neural Learning. Publ.
Astron. Soc. Pacific 122(893), 839–852 (2010)

http://www1.icsi.berkeley.edu/~storn/code.html

Evolutionary Cost-Sensitive Balancing:
A Generic Method for Imbalanced

Classification Problems

Camelia Lemnaru(B) and Rodica Potolea

Computer Science Department, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania

{Camelia.Lemnaru,Rodica.Potolea}@cs.utcluj.ro

Abstract. Efficient classification under imbalanced class distributions
is currently of interest in data mining research, considering that tra-
ditional learning methods often fail to achieve satisfying results in such
domains. Also, the correct choice of the metric is essential for the recogni-
tion effort. This paper presents a new general methodology for improving
the performance of classifiers in imbalanced problems. The method, Evo-
lutionary Cost-Sensitive Balancing (ECSB), is a meta-approach, which
can be employed with any error-reduction classifier. It utilizes genetic
search and cost-sensitive mechanisms to boost the performance of the
base classifier. We present evaluations on benchmark data, comparing
the results obtained by ECSB with those of similar recent methods in
the literature: SMOTE and EUS. We found that ECSB boosts the perfor-
mance of traditional classifiers in imbalanced problems, achieving ∼45%
relative improvement in true positive rate (TPrate) and around 16% in
F-measure (FM) on the average; also, it performs better than sampling
strategies, with ∼35% relative improvement in TPrate and ∼12% in FM
over SMOTE (on the average), similar textTP rate and geometric mean
(GM) values and slightly higher area under de curve (AUC) values than
EUS (up to ∼9% relative improvement).

Keywords: Imbalanced classification · Meta-approach · Hybrid
methodology · Genetic algorithms · Cost-sensitive

1 Introduction

One of the current important challenges in data mining research is classification
under an imbalanced data distribution. This issue appears when a classifier has to
identify a rare, but important case. Domains in which class imbalance is prevalent
include fraud or intrusion detection, medical diagnosis, risk management, text
classification and information retrieval [7], unexploded ordnance detection [1],
or mine detection [33].

c© Springer International Publishing AG 2018
A.-A. Tantar et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation VI, Advances in Intelligent Systems and Computing 674,
https://doi.org/10.1007/978-3-319-69710-9_14

Evolutionary Cost-Sensitive Balancing 195

A classification problem is imbalanced if, in the available data, a certain
class is represented by a very small number of instances compared to the other
classes [16]. In practice, the problem is addressed with 2-class problems; multi-
class problems are translated to binary. As the minority instances are of greater
interest, they are referred to as positive instances (positive class).

This paper presents a new general methodology for improving the perfor-
mance of classifiers under imbalanced conditions. The method, Evolutionary
Cost-Sensitive Balancing (ECSB), is a hybrid meta-approach which combines
genetic search mechanisms with cost sensitive classification strategies. It involves
the identification of the optimal cost matrix and parameter settings for the given
problem, selected classifier (inducer) and evaluation metric. The method has
been evaluated on benchmark data and compared to recently proposed methods
for dealing with class imbalance, yielding significant performance improvements.

The rest of the paper is organized as follows: the next section reviews related
work in this area. Section 3 details the proposed ECSB method, which is followed
by its experimental validation in Sect. 4. Concluding remarks and future work
are discussed in the last section.

2 Learning in Imbalanced Scenarios

Establishing how to assess performance is essential in imbalanced problems.
The selection of an inappropriate measure may lead to unexpected predictions,
which are not in agreement with the problem goals. This section presents the
main evaluation metrics considered in imbalanced domains, a brief analysis of
the limitations of traditional algorithms and an overview of existing techniques
to tackle the imbalance.

2.1 Measuring Performance in Imbalanced Domains

The most employed evaluation measure for classification problems, the overall
accuracy, is unfit in imbalanced domains [8,32], since the minority class con-
tributes very little to its value. In highly imbalanced problems, a good recog-
nition of the majority class translates into a high accuracy, regardless of how
well the model identifies minority cases: for a data set with 99% examples for
one class and 1% for the other, a model which classifies everything as belonging
to the majority class yields 99% accuracy, while failing to identify any minority
example.

For an imbalanced problem, the true positive rate, (TPrate), also referred to
as recall or sensitivity, is usually more important. However, there are other met-
rics, derived from the confusion matrix, which may also be relevant for assessing
the performance in certain problems. A series of composite measures have been
suggested by the scientific community for evaluating the performance in imbal-
anced problems: in [3,5,11] the area under the ROC curve (AUC) is employed;
the geometric mean (GM) is proposed in [2] and employed in several other stud-
ies [11,13]; the balanced accuracy (BAcc) is another symmetric measure which

196 C. Lemnaru and R. Potolea

is more suited for imbalanced problems [4]; the f-measure, or f-score [8,13], and
its generalization – the f β-measure – provide a trade-off between the correct
identification of the positive class and the cost of false alarms (in number of
false positive errors). In [12] it is suggested that, in imbalanced problems, more
attention should be given to sensitivity (TPrate) than to specificity (TNrate).
In [8], the strategy to follow in imbalanced problems is to maximize the recall
while keeping the precision under control. Both statements hold true in most
imbalanced problems.

We argue that metric selection in imbalanced problems is essential for both
model quality assessment and guiding the learning process. The metric should
reflect the goal of the specific classification process, not just focus on the imbal-
ance. Thus, if we are additionally dealing with imbalance at the level of the
error costs, then associating a cost parameter to account for such disproportions
is appropriate. If, on the other hand, the focus is on identifying both classes
correctly, then an equidistant metric provides a fair estimation.

2.2 Existing Approaches for Dealing with Imbalance

The existing approaches for dealing with imbalanced problems can be split into:
data-centered, algorithm-centered and hybrid solutions.

1. Data-centered techniques focus on altering the distribution of the training
data: either randomly, or by making an informed decision on which instances
to eliminate or add (by multiplying existing examples, or artificially generat-
ing new cases). Under this category we find random over- and under-sampling,
or more elaborated approaches, such as Synthetic Minority Over-sampling
Technique (SMOTE) [5], Tomek links [27], the Condensed Nearest Neighbor
Rule (CNN) [14], One-Sided Selection (OSS) [17], the Neighborhood Clean-
ing Rule (NCL) [18], or Evolutionary Under-Sampling (EUS) [11]. In order to
maximize the classification performance in the mining step, one should care-
fully match the appropriate sampling technique to the learning algorithm
employed at that stage. Also, some methods require the analyst to set the
amount of re-sampling needed, and this is not always easy to establish. It
is acknowledged that the naturally occurring distribution is not always the
best for learning [31]. A balanced class distribution may yield satisfactory
results, but is not always optimal either. The optimal class distribution is
highly dependent on the particularities of the data at hand.

2. Algorithm-centered techniques, also known as internal approaches, refer to
strategies which adapt the inductive bias of classifiers, or newly proposed
methods for tackling the imbalance. For decision trees, such strategies include
adjusting the decision threshold at leaf nodes [24], adapting the attribute
selection criterion [22], or changing the pruning strategy [36]. For classification
rule learners, using a strength multiplier or different algorithms for learning
the rule set for the minority class is proposed in [12], while for association
rule learners, multiple minimum supports are employed in rule generation [21].
In [23], confidence weights are associated to attribute values (given a class

Evolutionary Cost-Sensitive Balancing 197

label) in a kNN approach. For SVMs, class boundary alignment is proposed
in [35] and the use of separate penalty coefficients for different classes is
investigated in [20]. Newly proposed methods, which deal with the imbalance
intrinsically, include the biased minimax probability machine (BMPM) [15],
or the infinitely imbalanced logistic regression (IILR) [33].

3. Hybrid approaches combine data- and algorithm-centered strategies. A num-
ber of approaches in this category consist of ensembles built via boosting,
which also employ replication on minority class instances to second the
weight update mechanism. Also, the base classifiers may be modified to tackle
imbalanced data. Such approaches include SMOTEBoost [6], DataBoost-IM
[13], and a complex SVM ensemble [26]. Another hybrid strategy is the one
employed in cost-sensitive problems, to bias the learning process according to
the different costs of the errors involved [10,25,37]. The method we propose
in this paper falls into this category.

2.3 Limitations of Traditional Techniques

It is widely acknowledged that the nature of imbalanced problems is manifold.
The essential data characteristic in such areas is the imbalance ratio (IR), i.e.
the ratio between the number of instances in the majority (mMaj) and minority
classes (mMin) – Eq. (1). Other data meta-features which have been shown to
influence the behavior of classifiers in such domains are the size and the com-
plexity of the data [16] and the instances per attribute ratio (IAR), i.e. the ratio
between the total number of instances (m) and the number of attributes recorder
per instance (n), which combines size and complexity information [19] – Eq. (2):

IR =
mMaj

mMin
(1)

IAR =
m

n
(2)

Also, particularities related to the distribution of the minority samples, such
as too many “special cases” in the minority class, may affect the classifiers’
capability to recognize all cases of interest (within-class rarity, small disjuncts
problem [32]).

Several studies [16,29] indicate that most traditional classifiers are affected
by the class imbalance problem to some extent. This is mainly because the
assumptions followed in the training process don’t usually hold in imbalanced
problems. First of all, classifiers attempt to maximize accuracy, which is not an
appropriate measure in imbalanced domains. Moreover, they assume the same
distribution in the training and test samples, meaning that the model is cus-
tomized for a certain distribution which is not the actual occurring distribution.
Such a situation appears, for example, when dealing with dynamic distributions
(such as the distribution of flu cases, which changes according to the season).
Also, the rare cases may be very costly to obtain (in terms of time required,
economic costs and/or pain). Moreover, even if the actual distribution is known,
it may not be optimal for learning [30].

198 C. Lemnaru and R. Potolea

In [19], the authors perform a systematic analysis of the effect of class imbal-
ance on the performance of six different classifiers, using 32 binary (or binarized)
real-life benchmark data sets. The performance of all the classifiers evaluated
seemed to be affected by the imbalance. Another conclusion of the study refers
to the factors affecting classifier performance. The reduction in performance
becomes more severe as the IR increases. However, for the same IR, larger IAR
values are associated with improved classifier performance. Therefore, techniques
for increasing the value of IAR (i.e. larger data set size and/or smaller complex-
ity) may lead to an improved behavior.

3 Evolutionary Cost-Sensitive Balancing (ECSB)

The objective of the ECSB method is to improve the performance of a classi-
fier (inducer) in imbalanced domains. It is a meta-methodology, which can be
employed with any error-reduction classifier. Two strategies are simultaneously
followed by the method: (1) use a cost-sensitive meta-classifier to adapt to the
imbalance and (2) tune the base classifier’s parameters. The outcome of the
method is a tuple <M, S> for the triple <p, i, m>, where M is a cost matrix
and S is the set of resulting parameter settings for the given problem (p), selected
inducer (i) and evaluation metric (m). M is employed in conjunction with the
cost-sensitive classifier, in order to build a more efficient classification model,
focused on better identifying the underrepresented/interest cases. The search
for M and S is performed through evolutionary mechanisms. The cost-sensitive
component employs a meta-classifier to make its base classifier cost-sensitive,
taking into account the misclassification costs. The main mechanisms for wrap-
ping cost-sensitivity around traditional classifiers usually focus on employing
a larger penalty for the errors on classes with higher misclassification cost, or
modifying the training data such that the costly cases are proportionally better
represented than the others.

The general flow of the method is presented in Fig. 1. The inputs are: the
problem (p), translated in terms of a set of labeled examples (i.e. the training
set), the base inducer (i) and the metric (m) to use for assessing the performance
of i. The result of the method is a <M, S> tuple, which is used by a (meta-)
cost-sensitive classifier to build the final classification model.

3.1 The Cost-Sensitive Component

Cost-sensitive learning encompasses several algorithms which focus on minimiz-
ing the total expected cost instead of the classifier error. A taxonomy of the
types of costs involved in inductive concept learning can be found in [28], the
most important being the misclassification and the test costs. The first category
includes the costs which are conventionally considered by most cost-sensitive
classifiers, and attempts to quantify the different impact that distinct errors
produce. Several solutions address the second category also, which models dif-
ferent types of costs involved in acquiring the data (time, physical pain, money,
etc.).

Evolutionary Cost-Sensitive Balancing 199

Fig. 1. General ECSB flow

We focus only on misclassification costs, since they can be employed to bias
the learning process such as to provide a better identification for the minor-
ity class instances. The misclassification costs are represented via a cost matrix
(cij)nxn, where cij represents the cost of misclassifying an instance of class j as
being of class i. For imbalanced problems, we usually focus on binary classifica-
tion, i.e. n = 2:

C =
(

c11 c12
c21 c22

)
(3)

The main diagonal elements (c11 and c22) represent the costs of correct iden-
tification and are normally smaller than or equal to 0 (i.e. reward or no penalty);
c12 is the cost of a false negative (i.e. failing to identify a positive) and c21 cap-
tures the reverse situation. One of the most important difficulties when dealing
with different error costs is to quantify misclassification costs. Even if it is rela-
tively easy to determine which errors are more severe than others (e.g. in medical
diagnosis c12 > c21), it is difficult to quantify the gravity of an error exactly,
since this may translate, indirectly, to more serious social/moral dilemmas, such
a putting a price tag on human life.

In our approach, the cost matrix (M) for the given imbalanced problem is
determined indirectly, following a genetic search. We can influence the result
of the search by tuning the fitness function employed, which can be more eas-
ily translated, given a specific problem, than directly setting the cost matrix.

200 C. Lemnaru and R. Potolea

For example, it is more reasonable to state that the objective is to maximize
both TPrate and TNrate in medical diagnosis, or to maximize precision in online
advertising, than it is to set specific error costs.

The implementation of the cost-sensitive component has been carried out
within the Waikato Environment for Knowledge Analysis (WEKA) framework
[34]. Three cost-sensitive strategies have been considered:

(1) use an ensemble method to re-label the training instances accord-
ing to the Bayes optimal prediction principle, which minimizes the
conditional risk (MC) [10];

(2) reweight training instances according to the total cost assigned to
each class (CSr) [34];

(3) predict the class with minimum expected misclassification cost,
instead of the most likely class (CS) [34].

3.2 The Genetic Component

We have utilized the General Genetic Algorithm Tool for implementing the
genetic component [9]. It provides the traditional genetic algorithms (GA) search
organization, parent selection and recombination techniques. The specificity of
our implementation is the problem representation and the fitness function(s)
employed.

The search process starts with the initial population, i.e. a set of potential
solutions, generated randomly (lines 1 and 2 in the pseudocode snippet below).
By repeatedly applying recombination operators to some of the individuals in
the population over a number of cycles, an element (or group of elements) is
expected to emerge as a good quality approximate solution to the given prob-
lem (the loop between lines 3 and 9). Following a strategy similar to steady
state evolution, in each cycle a number of new offspring is generated (additional
pool). After evaluating their fitness (line 7), the fittest p size individuals out of
the old population and the additional pool (the newly generated offspring) will
constitute the new population (line 8):
(1) population = generate initial population(p size)
(2) evaluate fitness (population)
(3) repeat

(4) parents = select(population)
(5) offspring = crossover(parents)
(6) mutate(offspring)
(7) evaluate fitness (offspring)
(8) insert (offspring, population)
(9) until (termination condition)
(10) return best individual

This strategy considers elitism implicitly. The search process stops when
one of the following occurs: the optimal fitness value is reached, the difference
between the fitness values of the best and the worst individuals in the current

Evolutionary Cost-Sensitive Balancing 201

population is 0, or a fixed (pre-determined) number of crossover cycles have been
performed.

Each individual consists of four chromosomes: the first two representing each
a misclassification cost (elements of M), and the last two representing parameters
for the base classifier (elements of S). Although we have considered only two
parameters for S – since most base classifiers used in the experiments have only
two important learning parameters – the method can be extended to search
for a larger number of parameters, depending on the tuned classifier. The first
two chromosomes in the individual represent the meaningful coefficients of the
2× 2 cost matrix. We assume the same reward (i.e. zero cost) for the correct
classification of both minority and majority classes. Each chromosome consists
of 7 genes, meaning that each cost is an integer between 0 and 127. We considered
this to be sufficient to account even for large IRs. Gray coding is employed to
ensure that similar genotypes produce close manifestations (phenotypes).

Fitness ranking is used to avoid premature convergence to a local optimum,
which can occur if in the initial pool some individuals dominate, having a sig-
nificantly better fitness than the others. Since establishing how to assess perfor-
mance is essential in imbalanced problems and there is no universally best met-
ric, which captures efficiently any problem’s goals, we have implemented several
different fitness functions, both balanced and (possibly) imbalanced. For consis-
tency with the literature, we sometimes employ TPrate and sometimes recall for
referring to the same measure:

GM(geometric mean) =
√

TPrate ∗ TNrate (4)

BAcc(balanced accuracy) =
TPrate + TNrate

2
(5)

FM(fβ-measure = (1 + β2)
prec ∗ recall

prec + recall
(6)

LIN (linear combination betweenTPrate,TNrate) = α∗TPrate +(1−α)∗TNrate

(7)
PLIN (linear combination between recall, prec.) =α∗Recall+(1−α)∗Prec (8)

4 Experimental Work

This section presents the experiments performed to validate the ECSB method
and to compare it with recent proficient strategies. Subsect. 4.2 presents the
general setup: it includes the evaluation methodology employed throughout the
experiments, as well as the mechanisms and settings employed. Two different
evaluation suites are then presented, with discussions of the results. A first set
of tests evaluates comparatively the performance of different specializations of
ECSB on large IR, small IAR data sets, since previous analyses [19] have shown
that classifiers are most affected on such problems; the second presents a com-
parison between ECSB and a prominent under-sampling strategy for imbalanced
data: Evolutionary Under-Sampling [11].

202 C. Lemnaru and R. Potolea

4.1 Experimental Setup

Experiments have been carried using 2-fold cross-validation. Generally, we have
compared (1) the results of the base classifier with default settings (Base) with
(2) the results obtained by the same classifier following data pre-processing with
SMOTE [5] and default settings (Base+SMOTE), (3) the results obtained by the
classifier following a parameter tuning stage, performed with the genetic com-
ponent of ECSB (ECSBT) and (4) the results obtained by a classifier wrapped
in our ECSB method (ECSB).

The specific mechanisms and setting values employed for the genetic compo-
nent are presented in Table 1. Several fitness functions have been considered. No
tuning has been performed on settings of the component so far. Five classifiers
have been included in the experimental study, belonging to different categories:
lazy methods (k-nearest neighbor, kNN), Bayesian methods (Naive Bayes, NB),
decision trees (C4.5), support vector machines (SVM) and ensemble methods
(AdaBoost.M1, AB). Table 2 describes the parameters considered for the base
classifiers (in ECSB and ECSBT).

4.2 General Validation on Large IR, Small IAR Data Sets

We have performed a first analysis on benchmark data sets having large IR and
small IAR values, as considered in [19] – Table 3. This combination of imbalance-
related factors has a strong negative influence on the performance of classifiers.
All three cost-sensitive strategies were considered (MC, CS and CSr), and five
different fitness functions (GM, BAcc, FM with β = 1, LIN and PLIN, the last
two having α = 0.7).

This results in 15 combinations for the ECSB method, compared with the
results obtained by the classifier alone (Base), the classifier with SMOTE
(Base+SMOTE) and the classifier with tuned parameter values (ECSBT).

Table 1. Specific genetic mechanisms employed

Setting Value

Population type Single, similar to steady state

Initial population Random

Population size 20

Additional pool 10

Crossover cycles 200

Parent selection Roulette wheel

Recombination operators Crossover: random crossover, 4 points

Mutation: single bit uniform mutation, 0.2 rate

Fitness functions GM; BAcc; FM; LIN; PLIN

Other Fitness ranking

Elitism, implicit with use of single population

Evolutionary Cost-Sensitive Balancing 203

Table 2. Base classifiers parameter ranges

Classifier Parameters Type and range

kNN K – number of neighbors Integer between 1 and 10

C4.5 C – confidence ratio Real, between 0 and 0.4

M – min. number of instances per leaf Integer, between 1 and 5

NB n.a n.a.

AB P – weight threshold for weight pruning Integer, between 1 and 127

I – number of iterations Integer, between 1 and 30

SVM C – complexity Real, between 1 and 100

E – exponent Integer, between 1 and 11

Table 3. Large IR, small IAR data sets

Dataset #Examples #Attributes IR IAR

Chess IR5 2002 37 5 54

Ecoli om remainder binary 336 8 15.8 42

Ecoli imu remainder binary 336 8 8.6 42

Glass VWFP binary 214 10 11.59 21

German IR10 769 21 10.14 37

The results are presented in Fig. 2. For viewing purposes, we have numbered
the different methods from 1 to 18; please refer to the legend for identification.
Each bar in the diagrams represents the overall average score (under the specific
metric) obtained by all five classifiers, using the corresponding method. For
example – in diagram (b), the first bar represents the overall average TPrate

obtained by all five classifiers on all data sets, under imbalance conditions, while
the fourth bar represents the overall average TPrate obtained by all five classifiers
on all data sets obtained by ECSB using BAcc as fitness measure and CS as cost-
sensitive strategy.

Several remarks can be made regarding these results: (1) using balanced met-
rics as fitness measures, such as GM or BAcc, produces significant improvements
in the TPrate (second and fourth groups in Fig. 2(b); (2) FM is not effective as
fitness measure (third group in all diagrams); (3) the linear combination between
TPrate and TNrate (α = 0.7) as fitness function does not improve TPrate signif-
icantly (fifth group in Fig. 2(b)), but instead it improves Prec (fifth group in
Fig. 2(c)); (4) the linear combination between recall and precision (α = 0.7) as
fitness score yields the most important improvement in TPrate (last group in
Fig. 2(b)), but it degrades precision (Fig. 2(c)) – since α = 0.7, more importance
is given to improving recall than to precision; (5) for the SVM, both the TPrate

and the precision are significantly improved through the ECSB method (Fig. 2(b)
and (c), the top portion of the bars); (6) out of the three cost-sensitive strategies

204 C. Lemnaru and R. Potolea

Fig. 2. Balanced accuracy, TPrate and Precision obtained by the various methods on
the large IR, small IAR data

Evolutionary Cost-Sensitive Balancing 205

evaluated, the most successful is CS (the first bar in each group from the second
to the last), i.e. predict the class with minimum expected misclassification cost.

Therefore, balanced metrics (except FM) are generally appropriate as fitness
measures for ECSB in imbalanced problems; when the recall is of utmost impor-
tance (e.g. medical diagnosis), using the linear combination between recall and
precision, with a high value for α, is appropriate; this is also suitable when both
precision and recall (TPrate) are important (e.g. credit risk assessment), but with
a lower value for α. Cost-sensitive prediction is the most appropriate strategy to
employ.

4.3 Comparative Analysis with Evolutionary Under-Sampling

A second analysis was performed on a set of 28 imbalanced benchmark problems
from [11], in order to compare our results with the performance of the Evolu-
tionary Under-Sampling (EUS) strategy presented there. EUS has been shown
to produce superior results when compared to state-of-the-art under-sampling
methods, making it a good candidate for imbalanced data sets, especially with
a high imbalance ratio among the classes. In this set of experiments, we have
employed CS as cost-sensitive strategy and GM as fitness function – because it is
the function employed in the most successful EUS model. We have also consid-
ered in the comparison the classifier with default settings (Base), the classifier
with SMOTE and default settings (Base+SMOTE) and the classifier with tuned
parameter values (ECSBT).

The results of this second analysis are shown in Tables 4 and 5. It can be
observed that ECSB significantly boosts the performance of classifiers when
compared to their behavior on the original problem (except for the AUC for
AdaBoost.M1 – Table 5); on the average, there is ∼25% relative improvement
on the GM and ∼5% on the AUC; the most significant improvements have been
obtained for the SVM classifier (∼86% relative improvement on GM and 16%
on AUC). Also, it yields significant improvements over SMOTE and ECSBT
(∼17% and ∼14%, respectively, relative improvement on GM and ∼5% and
∼2%, respectively, on AUC). Slight improvements over the best EUS method

Table 4. Average GM (with standard deviations) obtained by the various methods

Geometric Mean (GM)

Best EUS Base Base+SMOTE ECSBT ECSB

mean stddev mean stddev mean stddev mean stddev mean stddev

kNN .797 .169 .731 .225 .744 .218 .762 .230 .817 .173

C4.5 .660 .317 .716 .254 .635 .307 .796 .179

NB .754 .202 .771 .164 .754 .202 .814 .129

AB .640 .314 .658 .306 .619 .323 .798 .188

SVM .431 .401 .558 .358 .750 .213 .803 .184

206 C. Lemnaru and R. Potolea

Table 5. AUC (with standard deviations) obtained by the various methods

Area Under tin-Curve (AUC)

Best EUS Base Base+ SMOTE ECSBT ECSB

mean stddev mean stddev mean stddev mean stddev mean stddev

kNN .809 .170 .803 .144 .803 .144 .848 .140 .867 .128

C4.5 .797 .147 .797 .147 .786 .157 .830 .125

NB .873 .110 .873 .110 .874 .111 .874 .111

AB .892 .15 892 .105 .891 .098 .878 .121

SVM .714 .175 .714 .175 .790 .143 .830 .132

have also been observed (i.e. the specialization of EUS which achieved the best
performance in the above cited work): up to 9% relative improvement in AUC.

5 Conclusions and Future Work

Classification under imbalanced conditions is one of the current challenges in
data mining research, triggered by the needs of specific application domains.
All traditional algorithms are affected to some extent by the class imbalance
problem. Also, the correct choice of the metric (or combination of metrics) to
assess – and ultimately improve, is essential for the success of a data mining effort
in such areas, since most of the time improving one metric degrades others.

A series of methods which deal with the class imbalance have been proposed
in the literature over the last years. Sampling strategies are important because
they can be used as pre-processing strategies. However, some approaches are
difficult to employ by a less experienced user – e.g. some require to set the
amount of sampling. Most importantly, to maximize their effect, they need to
be matched to the specific classifier employed. Modifications to basic algorithms
have also been proposed in the literature, with good performance improvements,
but each is restricted to a specific class of techniques.

In this paper we propose a general hybrid strategy for improving the perfor-
mance of classifiers in imbalanced problems. The method, Evolutionary Cost-
Sensitive Balancing (ECSB), is a meta-approach, which can be employed with
any error-reduction classifier. Two strategies are followed by the method simul-
taneously: tune the base classifier’s parameters and use a cost-sensitive meta-
classifier to adapt to the imbalance. A great advantage of the method, besides
its generality, is that it needs little knowledge of the base classifier; instead,
it requires specific knowledge of the domain to select the appropriate fitness
measure.

We have performed several evaluations on benchmark data, to compare ECSB
with current state of the art strategies for imbalanced classification. The results
have demonstrated the following:

Evolutionary Cost-Sensitive Balancing 207

– ECSB significantly improves the performance of the base classifiers,
achieving superior results to sampling with SMOTE or adapting the
algorithm to the imbalance via evolutionary parameter selection;

– ECSB achieves superior results to current prominent approaches in
literature: SMOTE and Evolutionary Under-Sampling;

– the most successful cost-sensitive strategy is predicting the class with
minimum expected misclassification cost, instead of the most likely
class (CS);

– balanced metrics are generally appropriate as fitness functions (except
for the F-measure).

Our current focus is on adding an extra layer to the genetic search compo-
nent, which will focus on finding the most suitable GA parameters for the given
problem.

Acknowledgement. The work of the authors is supported by European Social Fund,
via Programme POSDRU, DMI 1.5, ID 137516 – PARTING

References

1. Aliamiri A: Statistical Methods for Unexploded Ordnance Discrimination. PhD
Thesis. Department of Electrical and Computer Engineering. Northeastern Uni-
versity. Boston, MA (2006)

2. Barandela, R., Sanchez, J.S., Garcia, V., Rangel, E.: Strategies for learning in class
imbalance problems. Pattern Recogn. 36(3), 849–85 (2003)

3. Batista, G.E.A.P.A, Prati, R.C., Monard, M.C.: A study of the behavior of several
methods for balancing machine learning training data. ACM SIGKDD Explor.
Newslett. 6(1), 20—29 (2004). doi:10.1145/1007730.1007735

4. Brodersen, K.H., Ong, C.S., Stephen, K.E., Buhmann, J.M.: The balanced accu-
racy and its posterior distribution. In: Proceedings of the 20th International Con-
ference on Pattern Recognition, pp. 3121–3124 (2010)

5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

6. Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: SMOTEboost: improving
prediction of the minority class in boosting. In: Proceedings of the Seventh Euro-
pean Conference on Principles and Practice of Knowledge Discovery in Databases,
pp. 107—119 (2003)

7. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from
imbalanced data sets. SIGKDD Explor. 6(1), 1–6 (2004)

8. Chawla, N.: Data Mining from Imbalanced Data Sets: An Overview. Data Mining
and Knowledge Discovery Handbook. Springer, US (2006)

9. Derderian, K.: General Genetic Algorithm Tool (2002), http://www.karnig.co.uk/
ga/ggat.html

10. Domingos, P.: MetaCost: a general method for making classifiers cost-sensitive. In:
Proceedings of the Fifth International Conference on Knowledge Discovery and
Data Mining, pp. 155–164. ACM Press (1999)

11. Garcia, S., Herrera, F.: Evolutionary undersampling for classification with imbal-
anced datasets: proposals and taxonomy. Evol. Comput. 17(3), 275–306 (2009)

http://dx.doi.org/10.1145/1007730.1007735
http://www.karnig.co.uk/ga/ggat.html
http://www.karnig.co.uk/ga/ggat.html

208 C. Lemnaru and R. Potolea

12. Grzymala-Busse, J.W., Stefanowski, J., Wilk, S.: A comparison of two approaches
to data mining from imbalanced data. J. Intell. Manuf. 16, 565–573 (2005)

13. Guo, H., Viktor, H.L.: Learning from imbalanced data sets with boosting and data
generation: the databoost-IM approach. Sigkdd Explor. 6, 30–39 (2004)

14. Hart, P.E.: The condensed nearest neighbor rule. IEEE Trans. Inf. Theory IT-14,
515—516 (1968)

15. Huang, K., Yang, H., King, I., Lyu, M.R.: Imbalanced learning with a biased
minimax probability machine. IEEE Trans. Syst. Man Cybern. B Cybern. 36(4),
913–923 (2006)

16. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell.
Data Anal. J. 6(5), 429–449 (2002)

17. Kubat, M., Matwin, S.: Addressing the course of imbalanced training sets: one-
sided selection. In: ICML, pp. 179—186 (1997)

18. Laurikkala, J.: Improving Identification of Difficult Small Classes by Balancing
Class Distribution. Technical Report A-2001-2. University of Tampere (2001)

19. Lemnaru, C., Potolea, R.: Imbalanced Classification Problems: Systematic Study.
Issues and Best Practices. LNBIP, vol. 102, pp. 35–50 (2012)

20. Lin, Y., Lee, Y., Wahba, G.: Support vector machines for classification in nonstan-
dard situations. Mach. Learn. 46, 191–202 (2002)

21. Liu, B., Ma, Y., Wong, C.K.: Improving an association rule based classifier. In:
Proceedings of the 4th European Conference on Principles of Data Mining and
Knowledge Discovery, pp. 504–509 (2000)

22. Liu, W., Chawlam, S., Cieslak, D., Chawla, N.: A robust decision tree algorithms
for imbalanced data sets. In: Proceedings of the Tenth SIAM International Con-
ference on Data Mining, pp. 766–777 (2010)

23. Liu, W., Chawla, S.: Class Confidence Weighted kNN Algorithms for Imbalanced
Data Sets. Advances in Knowledge Discovery and Data Mining. LNCS, vol. 6635,
pp. 345–356 (2011)

24. Quinlan, J.R.: Improved estimates for the accuracy of small disjuncts. Mach. Learn.
6, 93–98 (1991)

25. Sun, Y., Kamel, M.S., Wong, A.K.C., Wang, Y.: Cost-sensitive boosting for clas-
sification of imbalanced data. Pattern Recogn. 40(12), 3358–3378 (2007)

26. Tian, J., Gu, H., Liu, W.: Imbalanced classification using support vector machine
ensemble. Neural Comput. Appl. 20(2), 203–209 (2011)

27. Tomek, I.: Two modifications of CNN. IEEE Trans. Syst. Man Commun. SMC-6,
769—772 (1976)

28. Turney, P.: Types of cost in inductive concept learning. In: Proceedings of the
Workshop on Cost-Sensitive Learning at the Seventeenth International Conference
on Machine Learning. Stanford University, California (2000)

29. Visa, S., Ralescu, A.: Issues in mining imbalanced data sets-a review paper. In:
Proceedings of the Sixteen Midwest Artificial Intelligence and Cognitive Science
Conference, pp. 67–73 (2005)

30. Weiss, G.M., Provost, F.: The Effect of Class Distribution on Classifier Learn-
ing: An Empirical Study. Technical Report ML-TR-44. Department of Computer
Science, Rutgers University (2001)

31. Weiss, G.M., Provost, F.: Learning when training data are costly: the effect of class
distribution on tree induction. J. Artif. Intell. Res. 19, 315–354 (2003)

32. Weiss, G.: Mining with rarity: a unifying framework. SIGKDD Explor. 6(1), 7—19
(2004)

33. Williams, D., Myers, V., Silvious, M.: Mine classification with imbalanced data.
IEEE Geosci. Remote Sens. Lett. 6(3), 528–532 (2009)

Evolutionary Cost-Sensitive Balancing 209

34. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

35. Wu, G., Chang, E.Y.: Class-boundary alignment for imbalanced dataset learning.
In: Proceedings of the ICML 2003 Workshop on Learning from Imbalanced Data
Sets (2003)

36. Zadrozny, B., Elkan, C.: Learning and making decisions when costs and probabil-
ities are both unknown. In: Proceedings of the Seventh International Conference
on Knowledge Discovery and Data Mining, pp. 204–213 (2001)

37. Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods
addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1),
63–77 (2006)

Balancing the Subtours for Multiple TSP
Approached with ACS: Clustering-Based
Approaches Vs. MinMax Formulation

Raluca Necula1(B), Madalina Raschip2, and Mihaela Breaban1

1 Alexandru Ioan Cuza University, Iasi, Romania
{raluca.necula,pmihaela}@info.uaic.ro

2 University of Neuchatel, Neuchatel, Switzerland
madalina.raschip@unine.ch

Abstract. The algorithms belonging to the Ant Colony Optimization
metaheuristic can be naturally applied to shortest path related prob-
lems. Although not so intensively studied as TSP, the multiple traveling
salesman problem (multiple-TSP) is a straightforward extension of TSP
of practical importance, requiring more than one salesman to be used
for covering the whole set of cities. This work tackles the MinMax for-
mulation of multiple-TSP, which aims at obtaining balanced subtours
for the salesmen. An Ant Colony System that follows the MinMax for-
mulation is proposed. Two other algorithms combining K-Means and
Fuzzy C-Means clustering with Ant Colony Systems are described. The
experimental analysis investigates the performance of the proposed algo-
rithms from a bi-objective perspective, counting for the total length/cost
of a solution and its balancing degree measured as the amplitude of its
subtours.

Keywords: Multiple-TSP · Ant colony optimization · Fuzzy clustering ·
Hybridization

1 Introduction

The single-depot multiple-TSP problem can be stated as follows. There are m
salesmen who must visit a number of cities, n. Each city must be visited exactly
once by a salesman and each salesman must start and end its subtour at the same
depot. The objective is to minimize the total distance traveled by the salesmen.

Derived from the well-known TSP problem, multiple-TSP is more difficult
to solve, since in addition it requires to determine the optimal allocation of
cities to the subtours of salesmen such that each city is visited only once by one
salesman and the total cost of the traveled subtours is minimized. Multiple-TSP
gained less interest in the literature than TSP, although it is more suited for
real-world problems related to scheduling and routing. In [1], a comprehensive
review of applications for multiple-TSP is presented, ranging from school bus
c© Springer International Publishing AG 2018
A.-A. Tantar et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation VI, Advances in Intelligent Systems and Computing 674,
https://doi.org/10.1007/978-3-319-69710-9_15

Balancing the Subtours for Multiple TSP Approached with ACS 211

routing problem to mission planning, which arises in the case of autonomous
mobile robots.

Since multiple-TSP is a NP-hard problem, which is difficult to solve, exact
methods cannot be successfully applied for solving large size instances of
multiple-TSP in a reasonable time. Numerous approaches were developed in
literature based on deterministic or probabilistic heuristics [1]. Encouraged by
their initial success when applied to the standard TSP, metaheuristics like ant
colony optimization were proposed in the literature for solving multiple-TSP.
Such a first method is introduced in [2], where the authors propose an Ant Sys-
tem to solve the multiple-TSP with ability constraints, in which the number of
cities visited by each salesman is limited.

The criterion of balancing the workloads amongst salesmen, desired in real-
world scenarios, but less addressed in the literature, is considered in [3]. A tabu
search heuristic as well as two exact algorithms are the approaches proposed for
solving this variant of multiple-TSP. Besides these methods, other approaches
like adaptive neural networks [4] or ant colony [5] were proposed in literature. In
[5] an ant colony system algorithm is developed, where a team of ants construct
in parallel solution to the problem. The member of a team that will make a move
is chosen according to the route lengths, most of the time being the one with the
minimum route length. The main idea is to move always the member of a team
with the minimum route length to guarantee approximately even route lengths.

There are also papers that considers both objectives, minimizing the total
distance traveled by all the salesmen, respectively minimizing the maximum dis-
tance traveled by a salesman, and supply results for both of them. A genetic
algorithm is proposed in [6], where the authors present a new chromosome rep-
resentation that works with the classical genetic operators for the TSP. The
representation dramatically reduces the number of redundant solutions. In [7]
two new metaheuristics based on artificial bee colony and invasive weed opti-
mization are proposed, whilst in [8] a market-based solution is employed, where
the problem is of assigning mobile agents to tasks. In [9] the two objectives are
treated independently. The approach is based on a hybrid Max-Min Ant System
algorithm, which is combined with a local improvement procedure.

A good balance of workloads among salesmen is also obtained by using clus-
tering algorithms. In [10] a clustering algorithm which minimizes the variation
of distances traveled within each cluster is proposed. A variety of evolutionary
computation algorithms and paradigms for the euclidean multiple TSP are com-
pared in [11]. The first level of optimization namely, the optimal subdivision of
cities into groups is considered. The neighborhood attractor schema which is a
variation of k-means influences the chromosome representation.

In this study we consider the variant of multiple-TSP, denoted as MinMax
multiple-TSP, in which we aim to minimize the longest subtour of a salesman,
such that to achieve fairness among salesmen. This formulation leads to obtaining
balanced subtours, in which the workload among salesmen is evenly distributed.
This paper is organized as follows. In Sect. 2 an integer linear programming for-
mulation for the MinMax multiple-TSP is presented, that can be used for solving

212 R. Necula et al.

the problem with exact methods. Section 3 summarizes the Ant Colony System,
as the underlying algorithm for the proposed methods that will be described in
Sect. 4. Section 5 presents the conducted experiments and the obtained results,
whilst the final remarks will be concluded in Sect. 6.

2 The Single-Depot Multiple Traveling Salesman
Problem

Several integer linear programming formulations for the multiple-TSP were pro-
posed in the literature. A review of them is presented in [1]. We will refer only
to the formulation for the MinMax variant of the multiple-TSP.

The multiple-TSP can be defined over a directed graph G = (V,A), with V
being the set of nodes and A the set of arcs, and the graph has associated a
cost matrix C = (cij) for each arc (i, j) ∈ A. The problem is to find the optimal
assignment of cities to the salesmen, such that each salesman starts and ends
its subtour from the depot and the longest subtour of a salesman is minimized.
Initially, all salesmen are located at the depot, considered to be the first city.

The integer linear programming formulation for MinMax multiple-TSP with
n cities and m salesmen, used when solving the model with dedicated software
is the following:

min T (1)

s.t.
n∑

j=2

x1jk = 1, k = 1, ..,m (2)

n∑

j=2

xj1k = 1, k = 1, ..,m (3)

n∑

i=1

m∑

k=1

xijk = 1, j = 2, .., n, i �= j (4)

n∑

j=1

m∑

k=1

xijk = 1, i = 2, .., n, i �= j (5)

n∑

i=1

xijk =
n∑

i=1

xjik, j = 2, .., n, k = 1, ..,m, i �= j (6)

ui − uj + (n − m) ·
m∑

k=1

xijk ≤ n − m − 1, 2 ≤ i �= j ≤ n (7)

∑

(i,j)∈A

cijxijk ≤ T, k = 1, ..,m (8)

xijk ∈ {0, 1}, ∀(i, j) ∈ A, k = 1, ..,m. (9)

where xijk is a binary variable that is equal to 1 if the arc (i, j) is used in the
optimal solution by the salesman k and 0 otherwise. ui denotes the number of

Balancing the Subtours for Multiple TSP Approached with ACS 213

nodes visited on that salesman’s path from the origin to node i, for any salesman,
i.e. the position of node i in a subtour.

Constraints (2) and (3) ensure that each salesman leaves, and respectively
returns to the depot city. Constraint (4) denotes that in each city, except the
depot, we enter only once, whilst constraint (5) denotes that from each city,
except the depot, we exit only once. Constraint (6) indicates that in order to
form subtours, the salesman that enters the city j, must exit from it, for each
j. Constraint (7) corresponds to the subtour elimination constraint, whilst con-
straint (8) reflects that variable T to be higher than any subtour. Thus T repre-
sents the longest subtour, that should be minimized according to the objective
function from (1).

3 The Ant Colony System

The Ant Colony Optimization metaheuristic belongs to the class of swarm intel-
ligence methods and draws its inspiration from the way real ants succeed in
finding the paths between their nest and food sources. This is achieved by ants
laying down pheromone trails throughout their path, used as a form of indi-
rect communication. The variation in the amount of pheromone deposited in
the paths is an indicator of the quality of the route selected to reach the food.
Although initially designed to solve shortest-path problems in graphs, the appli-
cation of ant colony algorithms is not restricted to this class of problems; they
have been applied successfully to other various combinatorial optimization prob-
lems as well. The proposed algorithms described in the next section are based
on the Ant Colony System (ACS) [12], initially designed for solving the TSP.

In ACS, several ants are placed in the nodes of the graph representing the
TSP instance. At each iteration, each ant builds a tour in the graph; on each edge
it traverses, the ant lays a constant quantity of pheromone. At the end of each
iteration, after all ants built their tours, the best solution recorded so far, called
global solution, is updated (if necessary). Then, the edges on the path given
by the global solution receive an extra quantity of pheromone which is inverse
proportional with the cost of the global solution. Three important phases are
thus involved in this optimization process: node selection at route construction,
local pheromone update performed each time an ant traverses an edge and global
pheromone update that highlights the route with the minimum cost identified
so far.

4 Algorithms Investigated for Multiple-TSP

4.1 Problem Decomposition with K-Means Followed by ACS for
TSP (kM-ACS)

A first algorithm that resorts to clustering for solving the multiple-TSP is
kM − ACS and it was introduced in a previous work of the authors [13]. The
main idea behind this approach is to first divide the initial problem into several

214 R. Necula et al.

groups of cities by using K-Means clustering algorithm, then solve each formed
subgroup as an individual TSP problem with the Ant Colony System. In this
way the original multiple-TSP instance is transformed into several smaller sub-
problems, that represent disjoint subset of cities to be visited in a certain order
by the m salesmen. The two coordinates in the cartesian plan that each city
has, serves as two numerical attributes to be used when performing the cluster
analysis. The K-Means algorithm was chosen due to the fact that it is one of
the most known clustering algorithms and it generates groups of equal volumes.
This characteristic is desirable since we aim to obtain subtours of approximately
equal cost. The final solution to the initial multiple-TSP instance is obtained by
aggregating the solutions found during the m independently runs of the ACS,
which will represent subtours to be assigned to the m salesmen.

4.2 Fuzzy C-Means Combined with ACS with Global-Solution
Pheromone Update (fuzzy g-ACS)

Another clustering based algorithm uses a global-solution pheromone update
and it incorporates the fuzzy C-Means algorithm. Like the previous algorithm,
it employs the similar idea of using clustering for the grouping of cities.

Fuzzy C-Means clustering algorithm does not compute disjoint partitions
of data points - as in the case of k-means algorithm - but rather a degree of
flexibility is introduced, by allowing an observation to belong to more than one
group with a certain probability. The output of the fuzzy C-Means is a matrix of
membership levels (i.e. probabilities), giving for each data point the probability
of belonging to every cluster. In the case of our studied problem, the number
of clusters is equal to the number of salesmen from the multiple-TSP instance.
Given the cost matrix encoding the distances between each pair of cities from
the multiple-TSP instance, each city can be seen as an item in the data set,
having two numerical attributes corresponding to its two coordinates.

Since the depot city need to be included in the subtour of each salesman,
the Fuzzy C-Means algorithm need to be adapted so as to take into account the
position of the depot city. To this end, a change was done when computing the
position of the centroid for each partition, such that all the centroids will be
biased towards the location of the depot city.

The corresponding nearest neighbour subtours, needed in order to compute
the value for the initial pheromone level, are constructed by using the crisp
partitions obtained after running Fuzzy C-Means. To get these crisp partitions
each element is assigned to the cluster for which it has the highest member-
ship level, so that each element will belong to only one partition. Therefore,
each subtour is constructed within the cities belonging to the same partition
and by always choosing next the closest unvisited city. For each ant, initially
all the salesmen are positioned in the depot city. Then for each possible parti-
tion corresponding to a salesman, a probability is computed according to the
crisp clusters obtained at a precedent step. For the k salesman, this probabil-
ity is calculated as the division between the number of cities assigned to the
k crisp cluster and the total number of cities from the multiple-TSP instance.

Balancing the Subtours for Multiple TSP Approached with ACS 215

This probability will be used when deciding which salesman should perform the
next move, such that each salesman will be chosen in a probabilistic way by some
type of roulette wheel selection. The rationale behind this selection mechanism is
to reflect for each salesman the number of expected cities that it should visit. In
this way, a salesman with a greater number of assigned cities will have a higher
probability of being chosen. Subsequently, when the selected salesman decides
which node to traverse next based on its current position, to the standard ACS
transition rule it is added the membership level obtained after running Fuzzy
C-Means algorithm. More exactly, in the subtour construction process, the next
node to be visited according to the pseudo-random-proportional rule is given by
the following equation:

s =
{

arg maxs∈C τ(r, s) · ηβ(r, s) · memβ(s, k), if rand(0, 1) < q0
S, otherwise

where q0 is a parameter and s ∈ C denotes that node s is from the candidate set
C, that consists of nodes not visited yet. mem(s, k) expresses the membership
level of the city s to the k cluster corresponding to the subtour of the k salesman
which is under construction, and S is a random variable with the probability
distribution given by equation:

p(r, s) =
τ(r, s) · ηβ(r, s) · memβ(s, k)∑

u∈C τ(r, u) · ηβ(r, u) · memβ(u, k)
(10)

The pheromone level on the traversed connections is updated regardless of the
salesman which visited the edge. The construction process of the subtours ends
when the candidate set of nodes is empty, meaning there are no left unvisited
cities to be chosen in the route selection step. The global best ant, for which the
global pheromone update will be applied, is chosen as the one with the minimum
value for the total cost of its m subtours. Then the edges (r, s) belonging to the
subtours of the globally best ant receives an additional amount of pheromone
like in the standard ACS:

τ(r, s) = (1 − ρ) · τ(r, s) + ρ · Δτ(r, s) (11)

where

Δτ(r, s) =
{

(Lgb)−1, if (r, s) ∈ subtours of globally best ant
0, otherwise

with ρ being the pheromone evaporation rate and Lgb being the total cost of the
global solution. In the experimental section this algorithm is denoted as fuzzy
g − ACS.

4.3 Fuzzy C-Means Combined with MinMax ACS with
Global-Solution Pheromone Update (fuzzy g-MinMaxACS)

This ACS based algorithm, denoted as fuzzy g −MinMaxACS, is similar with
the prior described one, using as well Fuzzy C-Means clustering, but differs in

216 R. Necula et al.

the criterion used for deciding the best ant. More exactly, the ant with the
smallest cost for its longest subtour, which corresponds to the MinMax crite-
rion, is considered as the global best ant when performing the global pheromone
update. Therefore, during the global pheromone update, all the edges visited
by the global best ant will receive the same deposit of pheromone, equal to the
length of the longest subtour from the global best solution.

4.4 MinMax ACS with Global-Solution Pheromone Update
(g-MinMaxACS)

Another investigated algorithm relying on ACS, uses a global-solution
pheromone update, along with considering the MinMax criterion for achieving
balanced subtours. Initially, for a problem instance with m salesmen, m sales-
men are placed at the depot city. Then at each iteration, several ants construct
solutions for the multiple-TSP instance, by employing a team of m ants. In this
way, the solution built by an ant will be composed of m individual subtours, one
corresponding to each salesman.

Since a city should be included only in the subtour of one salesman, several
salesmen compete towards building its subtour in an iteration of the algorithm.
To this end, at each step, the next salesman that will visit a city is chosen
randomly from the set of m available salesmen. After being chosen, the sales-
man is replaced in the set of possible salesmen so that next time it can get
another chance of being selected (i.e. selection with replacement). The selected
salesman chooses the city to visit in its subtour according to the pseudo-random-
proportional rule from the standard ACS algorithm. The next city is selected
among the nodes from the candidate set, comprising of nodes not visited yet
in any of the m subtours under construction. This process continues until there
are no remaining unvisited nodes, meaning that a complete candidate solution
consisting of m subtours was constructed. During the local pheromone update,
the pheromone level on the visited edges is updated regardless of which salesman
traverses it.

For computing the value of the initial pheromone level, the equivalent near-
est neighbour tour for multiple-TSP is constructed by randomly choosing the
salesman that will perform the next move. Then the city to be visited by the
salesman is selected by a greedy choice of the closest unvisited node, relative
to the current node. After all the ants finish to construct a complete solution,
a global pheromone update takes place, reinforcing with additional pheromone
the connections that belong to the global best ant. The amount of deposited
pheromone is given by the cost of the longest subtour of the global best solu-
tion. Among the ants from the current iteration, the best iteration ant is chosen
as being the one with the smallest cost for its longest subtour. Based on the best
iteration ant, the global best so far ant is updated if necessary.

This version of ACS algorithm will be referred in the experimental section
as g − MinMaxACS.

Balancing the Subtours for Multiple TSP Approached with ACS 217

5 Experiments

5.1 Problem Instances

Since there are no publicly available benchmarks for multiple-TSP, as it is
TSPLIB 1 for TSP, we had to construct our own set of multiple-TSP instances.
The experimental analysis in this paper is conducted on 8 problem instances
which were created based on 2 TSPLIB instances: for each TSPLIB instance
we specified 4 different values for the number of salesmen. The 8 multiple-TSP
instances, were solved with exact methods by using CPLEX.2 The description
of the multiple-TSP instances 3 and the obtained results are publicly available
as multiple-TSPLIB.4

As mentioned in Sect. 2, where we introduced the linear programming for-
mulation for the MinMax variant of multiple-TSP, the objective is to minimize
the cost of the longest subtour. This is different from the formulation of the
standard multiple-TSP, which aims to minimize the total cost of the traveled
subtours. The formulation we considered for the multiple-TSP is necessary such
as to obtain balanced subtours as much as possible. In fact, when no such con-
straint is imposed, the solutions obtained by CPLEX are highly unbalanced:
most of the cities are visited by a salesman, while the rest of the salesmen visit
only a small fraction of cities. This corresponds to an uneven distribution of work
among the salesmen, which is undesirable in real-world scenarios. At the same
time, the MinMax version of multiple-TSP is more difficult to solve by CPLEX
than the standard multiple-TSP. For the eil51-m5 problem instance, in case of
the standard multiple-TSP formulation, CPLEX found an optimal solution in at
most 1 min, while in case of the MinMax multiple-TSP formulation the reported
solution was obtained with CPLEX after 120 hours. In comparison, one run of
any algorithm presented in this paper required on average 10 seconds in a single-
threaded implementation. All the runs were performed on a PC with 8 GB RAM,
processor Intel Core i5-4590S 3.00 GHz using 4 processing units (multi-threaded
implementation of CPLEX). However our purpose is not to compare our inves-
tigated algorithms with the CPLEX solver, since for the execution of the ACS
algorithms we set as limit a maximum number of iterations, whilst in the case of
the CPLEX solver we set a high time limit as stopping criterion. In the experi-
mental section of our paper we report the solutions obtained by CPLEX, just to
have an overview of the quality of solutions found by our proposed approaches.

5.2 Parameters Settings

For the parameters of the ACS algorithm we used the recommended values for
the standard ACS [12], more specifically we used q0 = 0.9, α = 0.1, ρ = 0.1,
β = 2.0 in all the algorithms presented in Sect. 4. For the kM−ACS, the number
1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
2 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.
3 www.infoiasi.ro/∼mtsplib.
4 www.infoiasi.ro/∼mtsplib/MinMaxMTSP.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
www.infoiasi.ro/~mtsplib
www.infoiasi.ro/~mtsplib/MinMaxMTSP

218 R. Necula et al.

of used ants was 10, for each of the m TSP subproblems being solved, leading
to a total of 10 · m ants employed for solving the initial multiple-TSP instance.
For all the other algorithms we used the same number of 10 · m ants as follows:
10 groups of ants of size m build independently in a single run of the algorithm
complete solutions to the multiple-TSP.

As a stopping criterion for the ACS based algorithms we set a maximum
number of iterations. More exactly, each algorithm was run for 1400 iterations
in case of eil51 and 1800 iterations for eil76 problem instances. For the conducted
experiments we performed 50 runs for each investigated algorithm.

K-Means is an iterative method, which aims to minimize the within-cluster
variance and the obtained clusters are highly dependent on the initialization step.
Thus, we performed 30 runs of K-Means on the same multiple-TSP instance
to split the n cities into m groups and selected the solution which provided
the lowest sum of the within-cluster variances. However, in the case of fuzzy
clustering algorithms, we didn’t impose a certain grouping of cities to be used
in all the runs, but instead different membership probabilities were used in the
conducted runs, such that to exploit the random nature of Fuzzy C-Means.

5.3 Results

For assessing the performance of the investigated algorithms, we report their
obtained values for the total cost of the traveled subtours and for the cost of
the longest subtour. Though we report the obtained results for both objectives,
the main focus is on the MinMax criterion. We specify the values for the classic
objective (i.e. total cost) only for a better comparison. As a measure for the
balancing degree of the subtours, we used amplitude, computed as the difference
between the cost of the longest subtour and the cost of the shortest subtour of
the solution.

Comparing Fuzzy g-ACS and Fuzzy g-MinMaxACS. Although both
fuzzy g − ACS and fuzzy g − MinMaxACS algorithms resort to clustering,
they exhibit different behaviour according to the multiple-TSP objectives: total
cost and the balancing of subtours. For Fig. 1, we post-processed the 50 solutions
obtained by the two fuzzy clustering based algorithms and extracted only the
Pareto non-dominated solutions according to the two objectives. For the consid-
ered multiple-TSP instances we illustrate the values for the two objectives: the
values on the horizontal axis corresponds to the total cost of the traveled sub-
tours, whilst the values on the vertical axis corresponds to the amplitude of the
traveled subtours. It can be noticed that for both eil51 and eil76 instances, fuzzy
g −ACS obtains lower values for the total cost, but that are highly unbalanced,
whereas, on the other hand, fuzzy g − MinMaxACS obtains good balanced
solutions but of higher total costs. This observation actually indicate the fact
that these two objectives, of minimizing the total cost of the traveled subtours
and of minimizing the cost of the longest subtour are conflicting ones: improving
one objective, degrades the obtained values for the other objective. This leads to

Balancing the Subtours for Multiple TSP Approached with ACS 219

multiple-TSP being an inherently bi-criteria problem. As a matter of fact, our
future studies will be focused on tackling the multiple-TSP from a bi-criteria
perspective. Since fuzzy g−ACS obtained worse results regarding the MinMax
criterion, in the following we will only refer to fuzzy g − MinMaxACS as a
fuzzy clustering based algorithm.

Fig. 1. A comparison between the fuzzy ACS global and fuzzy MinMax ACS algorithms
for eil51-m7 and eil76-m5 instances

From our experiments it resulted that in most of the multiple-TSP instances,
fuzzy g −ACS obtains better values for the total cost of the traveled subtours,
whilst fuzzy g−MinMaxACS succeeds in attaining good values for the ampli-
tude of the subtours, achieving balanced subtours. This fact can be explained by
their different mechanism of selecting the best ant and enforcing the global best
so far solution. While in fuzzy g−ACS the best ant is selected to be the one with
the minimum total cost of the traveled subtours, in fuzzy g − MinMaxACS
the global best solution and the additional pheromone deposit take into account
the cost of the longest subtour.

Algorithms Comparison. Table 1 reports the optimal values for the longest
subtour of minimal cost (MinMax) obtained by CPLEX, along with the val-
ues obtained by our investigated algorithms. For the ACS based algorithms the
MinMax value represents the minimum value obtained for the longest subtour
from the found solutions. When CPLEX was stopped before reaching an optimal
solution, the upper (corresponding to the best known solution) and the lower
bound on the cost of the longest subtour are given. The best value from a row
is highlighted with boldface. From the analysis of these values, among all the
ACS algorithms, g −MinMaxACS achieves the best values for the longest sub-
tour, corresponding to the MinMax criterion. In case of eil76-m5 multiple-TSP
instance it even gets a better value for MinMax than the best known solution
found by CPLEX.

Figures 2, 3, 4 and 5 depicts for eil51 and eil76 multiple-TSP instances the
distribution for the total costs and for the cost of the longest subtour, and

220 R. Necula et al.

Table 1. The performance of the ACS variants for the eil51 and eil76 instances using
MinMax as measure

m CPLEX optimum kM-ACS g-MinMaxACS fuzzy g-MinMaxACS

eil51

2 222.73 254.42 226.54 231.05

3 [150.70, 159.57] 176.16 164.64 167.06

5 [96.91, 123.96] 169.03 127.86 133.12

7 [72.42, 112.46] 129.80 116.05 118.26

eil76

2 280.85 301.74 288.96 290.37

3 [186.34, 197.34] 266.92 214.92 221.05

5 [116.02, 173.18] 176.31 160.49 167.24

7 [88.35, 139.62] 158.03 145.28 150.37

confidence intervals for the mean of the total costs and for the mean of the
longest subtour, for the solutions obtained by each algorithm. On each plot
there are four groups corresponding to the different number of m (2,3,5 and 7).
It can be noticed that with the increase in the number of salesmen, the total cost
increases, whilst the length of longest subtour decreases, reflecting the division
of work among more salesmen. For each of these four groups there are indicated
the obtained values for each of the three considered algorithms (kM − ACS,
g −MinMaxACS and fuzzy g −MinMaxACS) together with the best known
solution, obtained with CPLEX, that serves as lower bound for the ACS-based
algorithms.

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

500

600

700

800

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

600

700

800

900

1000

1100

Fig. 2. Results obtained in 50 runs for the total cost: (a) eil51, (b) eil76; the groups
correspond to different settings for m: 2, 3, 5, 7

Balancing the Subtours for Multiple TSP Approached with ACS 221

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

150

200

250

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

150

200

250

300

Fig. 3. Results obtained in 50 runs for the longest subtour: (a) eil51, (b) eil76; the
groups correspond to different settings for m: 2, 3, 5, 7

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

m=2 m=3 m=5 m=7

60
0

70
0

80
0

90
0

10
00

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

Fig. 4. Results obtained in 50 runs for the (a) eil51, (b) eil76: confidence intervals for
the means computed for total costs; the groups correspond to different settings for m:
2, 3, 5, 7

Analyzing the boxplots, but also also from the size of the confidence intervals,
kM −ACS is the most stable algorithm. However, it does not achieve such good
values as g − MinMaxACS and fuzzy g − MinMaxACS for the length of
the longest subtour. Figure 2 that illustrates the boxplots for the total cost,
indicates the low values obtained for the standard deviation in case of K-Means,
such that the obtained solutions are not so diverse. Figure 5 shows that between
the two clustering algorithms, fuzzy g − MinMaxACS obtains better values
than kM −ACS regarding the cost of the longest subtour. Although both these
algorithms attempts to create groups of cities of equal volumes, it seems that
the flexible nature of Fuzzy C-Means helps in that sense. In contrast to this,
kM−ACS seems to loss diversity when a higher number of clusters is considered,
proven by the overall lower values obtained for the standard deviation of the total
cost.

222 R. Necula et al.

15
0

20
0

25
0

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

m=2 m=3 m=5 m=7

15
0

20
0

25
0

30
0

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

op
t

K
M

−
A

C
S

g−
M

in
M

ax
A

C
S

fu
zz

y
g−

M
in

M
ax

A
C

S

m=2 m=3 m=5 m=7

Fig. 5. Results obtained in 50 runs for the (a) eil51, (b) eil76: confidence intervals
for the means computed for the longest subtour; the groups correspond to different
settings for m: 2, 3, 5, 7

Fig. 6. A comparison between the investigated algorithms for eil51-m5 and eil76-m7
instances

A comparison of the investigated algorithms on eil51-m5 and eil76-m7
instances is illustrated in Fig. 6, that plots, like in Fig. 1, the Pareto non-
dominated solutions according to the two objectives. It can be noticed the
good values obtained by g − MinMaxACS and fuzzy g − MinMaxACS for
the amplitude, taken as a measure for the balancing degree of the subtours.
In contrast to these two algorithms, there are fewer solutions corresponding to
kM−ACS, which are highly unbalanced. On most of the multiple-TSP instances,
g − MinMaxACS achieves better performance both in terms of total cost and
MinMax criterion when compared to fuzzy g − MinMaxACS.

6 Conclusions

Ant colony algorithms can be easily adapted and applied to shortest path related
problems as multiple-TSP. Unlike exact methods, ACO based approaches can

Balancing the Subtours for Multiple TSP Approached with ACS 223

obtain acceptable solutions, both in matter of time and performance, which
makes them more suited for real-world applications. In this paper, we tackled
the MinMax variant of multiple-TSP, which aims to minimize the cost of the
longest subtour. To this end, we proposed four ACS based algorithms, three of
them employing clustering methods for the division of cities into equal groups,
and the other one following a MinMax approach. Between the two versions of
fuzzy clustering algorithms, the one that takes into account the MinMax cri-
terion achieves better values for the cost of the longest subtour. The approach
involving K-Means is the most stable algorithm, but due to its decomposition
scheme, it imposes rigid boundaries on the candidate solution space and the
obtained solutions are not so balanced. Among all the investigated algorithms,
g − MinMaxACS, which follows a MinMax approach, achieves the best perfor-
mance, succeeding in finding balanced subtours. As future work, our study will
be directed towards applying multi-objective ACO algorithms for the bi-criteria
multiple-TSP and evaluate their relative performance.

References

1. Bektas, T.: The multiple traveling salesman problem: an overview of formulations
and solution procedures. Omega 34(3), 209–219 (2006)

2. Junjie, P., Dingwei, W.: An ant colony optimization algorithm for multiple travel-
ling salesman problem. In: ICICIC 2006, vol. 1, pp. 210–213 (2006)

3. França, P.M., Gendreau, M., Laporte, G., Müller, F.M.: The m-traveling salesman
problem with minmax objective. Transp. Sci. 29(3), 267–275 (1995)

4. Somhom, S., Modares, A., Enkawa, T.: Competition-based neural network for the
multiple travelling salesmen problem with minmax objective. Comput. Oper. Res.
26(4), 395–407 (1999)

5. Vallivaara, I.: A team ant colony optimization algorithm for the multiple travelling
salesmen problem with minmax objective. In: MIC 2008, pp. 387-392 (2008)

6. Carter, A.E., Ragsdale, C.T.: A new approach to solving the multiple traveling
salesperson problem using genetic algorithms. EJOR 175(1), 246–257 (2006)

7. Venkatesh, P., Singh, A.: Two metaheuristic approaches for the multiple traveling
salesperson problem. Appl. Soft Comput. 26, 74–89 (2015)

8. Kivelevitch, E., Cohen, K., Kumar, M.: A market-based solution to the multiple
traveling salesmen problem. JIRS J. 72(1), 21–40 (2013)

9. Liu, W., Li, S., Zhao, F., Zheng, A.: An ant colony optimization algorithm for the
multiple traveling salesmen problem. In: ICIEA 2009, pp. 1533–1537 (2009)

10. Chandran, N., Narendran, T.T., Ganesh, K.: A clustering approach to solve the
multiple travelling salesmen problem. Int. J. Ind. Syst. Eng. 1(3), 372–387 (2006)

11. Sofge, D., Schultz, A., De Jong, K.: Evolutionary computational approaches to
solving the multiple traveling salesman problem using a neighborhood attractor
schema. In: Applications of Evolutionary Computing, pp. 153-162 (2002)

12. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning app-
roach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66
(1997)

13. Necula, R., Breaban, M., Raschip, M., Performance evaluation of ant colony sys-
tems for the single-depot multiple traveling salesman problem. In: HAIS 2015, vol.
9121, pp. 257-268 (2015)

Author Index

A
Adeyemo, Josiah, 179

B
Bäck, Thomas, 146
Basto-Fernandes, Vitor, 37
Benchea, Razvan, 82
Borschbach, Markus, 3
Breaban, Mihaela, 210

C
Cabău, George, 94

D
Deutz, André H., 18, 163
Drugan, Madalina M., 131
Dumitrescu, Dan, 107, 118

E
Emmerich, Michael T.M., 18, 37, 50, 146, 163
Engel, Thomas, 67

F
Fdez-Riverola, Florentino, 37
Freisleben, Bernd, 3

G
Gaskó, Noémi, 118
Gavrilut, Dragos, 82

K
Kantor, Miroslaw, 67

L
Lemnaru, Camelia, 194
Luchian, Henri, 82
Lung, Rodica-Ioana, 118

M
Maulana, Asep, 163
Méndez, José Ramón, 37
Mihoc, Tudor-Dan, 118

N
Nagy, Réka, 107
Necula, Raluca, 210
Nezhinsky, Alexander, 50

O
Oprişa, Ciprian, 94
Oyebode, Oluwaseun, 179

P
Potolea, Rodica, 194

R
Raschip, Madalina, 210
Rosenthal, Susanne, 3
Ruano-Ordás, David, 37

S
Schultes, Erik, 163
Sebestyen Pal, Gheorghe, 94
Stretch, Derek, 179

© Springer International Publishing AG 2018
A.-A. Tantar et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation VI, Advances in Intelligent Systems and Computing 674,
https://doi.org/10.1007/978-3-319-69710-9

225

Suciu, Mihai Alexandru, 118
Suciu, Mihai, 107

T
Tantar, Alexandru-Adrian, 67
Tantar, Emilia, 67

V
Verhoef, Wilco, 18

W
Wang, Hao, 146

Y
Yevseyeva, Iryna, 37

Z
Zhao, Jiaqi, 37

226 Author Index

	Preface
	Organization
	Executive Committee
	General Chair
	Local Chair
	Proceedings Chair
	Program Chairs
	Financial Chair
	Tutorial Chair
	Advisory Board
	Special Sessions Chairs
	Program Committee
	Series Chairs
	Referees
	Invited Speakers
	Invited Tutorials
	Sponsoring Institutions and Partners

	Contents
	Multicriteria and Set-Oriented Optimization
	Aggregate Selection in Multi-objective Biochemical Optimization via the Average Cuboid Volume Indicator
	1 Introduction
	2 Related Work
	3 The Average Cuboid Volume Indicator
	4 Selection Strategies for NGSA-II
	4.1 Aggregate Selection
	4.2 ACV-Based Selection
	4.3 Computational Complexity

	5 Other Components of NSGA-II
	5.1 Individual Encoding and Search Space
	5.2 Variation Operators
	5.3 Fitness Functions

	6 Experimental Results
	6.1 Experimental Setting
	6.2 Evaluation

	7 Conclusion
	References

	On Gradient-Based and Swarm-Based Algorithms for Set-Oriented Bicriteria Optimization
	1 Introduction
	2 Background
	2.1 Definitions and Notation
	2.2 Problem Definition
	2.3 Related Work

	3 Optimization Algorithms
	3.1 Multi-objective Particle Swarm Optimization Algorithm
	3.2 Adaptive Mutation
	3.3 Multi-objective Gradient Based Optimization Algorithm

	4 Evaluation
	4.1 Test Problems
	4.2 Experiments Setup
	4.3 Description of Results
	4.4 Discussion of Results

	5 Conclusion
	A Appendices
	A.1 Manual of the Application

	References

	Quadcriteria Optimization of Binary Classifiers: Error Rates, Coverage, and Complexity
	1 Introduction
	2 Multiobjective Problem Formulation
	3 Quadcriteria Optimization Methods
	4 Experimental Setup
	5 Results Analysis
	6 Conclusions and Future Work
	References

	Parameter Identification of Stochastic Gene Regulation Models by Indicator-Based Evolutionary Level Set Approximation
	1 Evolutionary Level Set Approximation
	1.1 Augmented Diversity Indicators
	1.2 Theoretical Discussion

	2 Stochastic Simulation of Gene Regulatory Networks
	2.1 Simulation of Gene Regulatory Network by Gillespie Algorithm

	3 Problem Definitions
	3.1 Monomer Problem by Ribeiro et al.
	3.2 Objective Function

	4 Experimental Setup
	4.1 Monomer Problem
	4.2 Gene Expression Problem

	5 Level Set Approximation Results
	5.1 CMA-ES Evaluation
	5.2 ELSA Evaluation

	6 Conclusions and Outlook
	References

	Evolution in ICT Security
	On Using Cognition for Anomaly Detection in SDN
	1 Introduction
	2 Prototyping Cognitive Behavioral Security: Anomaly Detection
	2.1 A Road to Cognition: Gaussian Processes Modeling
	2.2 Learning and Building Profiles

	3 Learn2Defend: Cognitive Security in SDN Preliminary Prototype
	3.1 Testbed Description

	4 Conclusion
	References

	Feature Creation Using Genetic Algorithms for Zero False Positive Malware Classification
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Motivation
	3.2 Feature Creation Using Genetic Algorithms
	3.3 Problems and Solutions

	4 Conclusions and Future Work
	References

	Multi-centroid Cluster Analysis in Malware Research
	1 Introduction
	2 Related Work
	3 Clustering and Verdicts
	4 Multi-centroid Selection Algorithm
	5 Experimental Results
	6 Conclusions and Future Work
	References

	Computational Game Theory
	Cooperation in Multicriteria Repeated Games
	1 Introduction
	2 Multicriteria Games - Games with Vector Payoffs
	3 Modeling Identity in a Multicriteria Game Theory Framework
	3.1 Multicriteria IPD

	4 Numerical Experiments
	4.1 Discussion

	5 Summary and Conclusions
	References

	Evolving Game Strategies in a Dynamic Cournot Oligopoly Setting
	1 Introduction
	2 Some Basic Notions
	3 Discrete-Time Dynamic Cournot Oligopoly
	4 Dynamic Nash Extremal Optimization
	5 Numerical Experiments
	6 Conclusions and Further Work
	References

	Theory on Evolutionary Computation
	Efficient Real-Parameter Single Objective Optimizer Using Hierarchical CMA-ES Solvers
	1 Introduction
	2 Preliminaries
	3 Real-Parameter Tree Structure
	4 Real-Parameter MCTS Algorithms
	4.1 Baseline Real-Parameter MCTS
	4.2 Top-Down Node Real-Parameter MCTS
	4.3 Exploration/Exploitation Trade-Off

	5 Hierarchical CMA-ES Solvers
	6 Experimental Section
	7 Conclusions
	References

	Multi-point Efficient Global Optimization Using Niching Evolution Strategy
	1 Introduction
	2 Background and Related Work
	2.1 Efficient Global Optimization
	2.2 Multipoint EGO: Constant Liar Strategy
	2.3 Niching Evolution Strategies

	3 Combining EGO with Niching
	4 Experiment
	4.1 Test Functions
	4.2 Global Convergence Results
	4.3 q-EI of Search Points

	5 Conclusion and Further Works
	References

	Community Detection in NK Landscapes - An Empirical Study of Complexity Transitions in Interactive Networks
	1 Introduction
	2 Community Detection
	3 Approach
	4 Results
	5 Summary and Outlook
	References

	Applications of Evolutionary Algorithms
	River Flow Forecasting Using an Improved Artificial Neural Network
	1 Introduction
	2 Methodology
	2.1 Artificial Neural Networks (ANNs)
	2.2 Study Area and Datasets
	2.3 Selection of Input Variables

	3 Model Development
	3.1 Case Study 1
	3.2 Case Study 2

	4 Results and Discussions
	4.1 Case Study 1
	4.2 Case Study 2

	5 Conclusions
	References

	Evolutionary Cost-Sensitive Balancing: A Generic Method for Imbalanced Classification Problems
	1 Introduction
	2 Learning in Imbalanced Scenarios
	2.1 Measuring Performance in Imbalanced Domains
	2.2 Existing Approaches for Dealing with Imbalance
	2.3 Limitations of Traditional Techniques

	3 Evolutionary Cost-Sensitive Balancing (ECSB)
	3.1 The Cost-Sensitive Component
	3.2 The Genetic Component

	4 Experimental Work
	4.1 Experimental Setup
	4.2 General Validation on Large IR, Small IAR Data Sets
	4.3 Comparative Analysis with Evolutionary Under-Sampling

	5 Conclusions and Future Work
	References

	Balancing the Subtours for Multiple TSP Approached with ACS: Clustering-Based Approaches Vs. MinMax Formulation
	1 Introduction
	2 The Single-Depot Multiple Traveling Salesman Problem
	3 The Ant Colony System
	4 Algorithms Investigated for Multiple-TSP
	4.1 Problem Decomposition with K-Means Followed by ACS for TSP (kM-ACS)
	4.2 Fuzzy C-Means Combined with ACS with Global-Solution Pheromone Update (fuzzy g-ACS)
	4.3 Fuzzy C-Means Combined with MinMax ACS with Global-Solution Pheromone Update (fuzzy g-MinMaxACS)
	4.4 MinMax ACS with Global-Solution Pheromone Update (g-MinMaxACS)

	5 Experiments
	5.1 Problem Instances
	5.2 Parameters Settings
	5.3 Results

	6 Conclusions
	References

	Author Index

