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Abstract In this chapter, we attempt to compile information published in the most

recent reviews and regular publications highlighting the use of bioinformatics in the

field of veterinary proteomics. We present a summary of the data resources and

popular end user-oriented computational tools that do not require advanced infor-

matics skills.

1 Introduction

The application of proteomics in veterinary science is lagging behind in comparison

to studies that have explored the potential of advanced proteomic technologies in

human research. The situation is particularly acute in clinical medicine (Ceciliani

et al. 2014). This slow start may turn out an advantage, as the recent boost in

veterinary proteomics is contemporary with technological development

(e.g. targeted proteomics or data-independent acquisition) and improvement of

method accuracy and coverage. This progress is in turn challenging the design of

automation procedures necessary to cope with ever-increasing amounts of data,

thereby justifying a dedicated chapter on bioinformatics in this book.

Several generic reviews summarise the advent of shotgun proteomics

(Aebersold 2003; Nesvizhskii 2010) that provides the original context for software

development. The corresponding methodology mainly focused on protein identifi-

cation based on sequence database search engines is now mature with its recognised

shortcomings such as a strong bias towards abundant proteins, and the present

chapter is centred on more recent efforts applicable to veterinary science.
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One of the remarkable paradigm shifts from shotgun proteomics with data-

dependent acquisition (DDA) is data-independent acquisition (DIA). It introduces

the systematic fragmentation of precursor ions as opposed to a limited selection

based on high-intensity peaks. Within successive and overlapping sliding windows

along the m/z dimension, all precursor ions are fragmented resulting in a very

populated tandem MS collection of redundant data (Chapman et al. 2014; Bilbao

et al. 2015a). The sheer amount of mass spectra requires smart and accurate

software for data analysis (Bilbao et al. 2015a). DIA is now well established for

its ability to monitor detectable peptides with high sensitivity and reproducibility

across multiple samples. Specifically, since DIA fragmentation of all detectable

ions within a wide m/z range is systematically carried out regardless of intensity,

then extracted ion chromatograms (XICs) can be generated at the fragment ion

level. It is therefore particularly suitable to perform more consistent and accurate

quantification. A direct consequence of using DIA methods is the expanding use of

spectral libraries in particular as an alternative approach to sequence database

search. Matching experimental to reference spectra is considerably faster and less

error-prone than checking all possible theoretical spectra of the tryptic digest of

proteins. Corresponding software tools for spectral library searching are reviewed

in Griss (2016). However, the lack of a standardised file format and the possible

incomplete coverage of spectral libraries are still limiting expansion. At present,

library search is recognised as a helpful complementing approach to database

search.

The second major development in recent proteomics is quantification and in

particular targeted proteomics (Picotti and Aebersold 2012). Selecting the appro-

priate peptides, optimising fragment prediction and integrating these steps in a

pipeline are the main bioinformatics challenges as summarised in Reker and

Malmstr€om (2012). These are definitely usable across the board, irrespective of

the application.

Finally, a crucial point remains that of data and processing quality. Indeed, data

should be appropriately processed with robust software ensuring reproducible and

accurate results. Even with robust software and optimised settings, low-quality data

yield poor and questionable results. Reproducible and high confidence results

strongly rely on software usability and the ability to choose the most appropriate

parameters, since different parameters could lead to different results and wrong

interpretations or conclusions. Within all the steps in the proteomics workflow,

from sample collection to data processing, “Mount Bioinformatics” remains the last

and the highest peak to climb (Aebersold 2009). The challenges of bioinformatics

in software for quantitative proteomics have been previously described (Cappadona

et al. 2012). Important issues that directly impact the effectiveness of proteomic

quantitation and common tasks in computational solutions to correct for the occur-

rence of these factors are well depicted. This chapter surveys the different resources

and software tools that are currently in use for data reference and analysis in the

field of proteomics and tackles veterinary proteomics issues in this context either

referring to published work or to prospective solutions.
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2 Data Resources

As presented by Perez-Riverol et al. (2015), the information generated in proteo-

mics experiments is organised in three levels:

(1) Raw MS data

(2) Processed experimental data

(3) Interpreted biological results

Level (1) corresponds to MS data collection through the ProteomeXchange

protocol (Vizcaɩno et al. 2014; Deutsch et al. 2017). In the past few years, this

international initiative has allowed channelling all reported/published experimental

data into three main repositories through standardised submission and dissemina-

tion pipelines.

Level (2) encompasses a significant number of databases storing peptide/protein

identification and quantification whenever available.

Level (3) is associated with the concept of “knowledgebase” in which protein

information is curated and recorded and can be searched, compared or mined.

2.1 Generic Proteomics Databases in a Nutshell

Several recent reviews comprehensively cover the topic of proteomics databases

(Martens 2010; Perez-Riverol et al. 2015). Suffice to say that the collection of

identified proteins is steadily growing and this broadens the extent of comparative

or integrative approaches of data analysis. This is made possible through the

generalised use of shared data formats and standards acknowledged by the Prote-

omics Standard Initiative (PSI; http://psidev.info). Table 1 summarises the range of

formats in use in the current proteomics databases.

Martens and Vizcaɩno (2017) very recently praised the “golden age” of proteo-

mic data sharing precisely based on the availability and broad usage of standards.

2.1.1 Mass Spectrometry Data

File formats commonly used in MS-based proteomics are reviewed by Deutsch

(2012). Mass spectra are stored in multiple repositories: PeptideAtlas (Farrah et al.

2013), GPMDB (Craig and Beavis 2004), Massive (https://massive.ucsd.edu) and

PRIDE (Vizcaɩno et al. 2015) to cite the most renowned. The vast majority of these

publicly available datasets are generated for human and the main model organisms

(S. cerevisiae, D. melanogaster, C. elegans, etc.). However, some dedicated

resources have been created for farm animal proteomics as detailed in Sect. 2.2.1.

One of the obvious advantages of such raw data availability is the potential for reuse

and reanalysis. Reanalysis can be done individually, but note that PeptideAtlas and
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GPMDB, for instance, routinely reprocess many datasets with in-house bioinfor-

matics pipelines.

The second remarkable feature of these repositories is the option of defining a

characteristic spectral library. Despite the existence of institutions such as the

National Institute of Standards and Technology (NIST) where reference spectral

libraries are collected, it may be of interest to constitute a specialised library. As

mentioned in the introduction, the current shift from DDA to DIA approaches

emphasises the need for quality spectral libraries.

It is important to stress that minimal quality checks are undertaken so that the

resulting data resources contain uneven quality spectra and subsequent more or less

reliable identifications of peptides and proteins.

2.1.2 Integrated Data

UniProt (www.uniprot.org) and protein data collected at NCBI (https://www.ncbi.

nlm.nih.gov/protein) are the main sequence sources used in database search

engines. UniProt however has a greater level of data integration and contains a

wealth of information beyond sequence features including protein expression and

structure. It is, as such, the most popular resource used for characterising proteins as

finely as possible.

Recently proteogenomics has become a popular approach for merging informa-

tion originating from genomics, transcriptomics and proteomics studies. Indeed,

DNA sequence and RNA expression data accumulation over the past three decades

provides rich sources to be combined with ever-increasing proteomics data.

Proteogenomics currently significantly contributes to the identification of sequence

variants, especially in humans, and the tools developed in this context could easily

benefit farm animal proteomics studies. At the time of writing this chapter, no farm

animal proteogenomics study has been published.

Table 1 Formats in use in the current proteomics databases

Encoding purpose Standard name References

Mass spectra mzXML Pedrioli et al. (2004)

mzML Martens (2010)

Peptide/protein pepXML/protXML Keller et al. (2005)

identifications mzIdentML Jones et al. (2012)

Quantitative analysis mzQuantML Walzer et al. (2013)

SRM transitions TraML Deutsch et al. (2012)
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2.2 Farm Animal Proteomics Dedicated Databases

Farm animal dedicated databases are usually focused on genetic mapping informa-

tion. Though apparently discontinued, ArkDB (http://www.thearkdb.org/arkdb)

still hosts genome mapping data from farmed and other animal species spanning

genetic linkage and QTL (quantitative trait locus). A related website called

ResSpecies (http://www.resspecies.org/resspecies/) gathers tools for displaying or

exporting genotyping and phenotype data as well as population coverage and

markers. Along the same lines, QTLdb [http://www.animalgenome.org/QTLdb,

(Hu et al. 2015)] collects publicly available trait mapping data for a smaller range

of animal and is associated with CorrDB, the animal trait correlation database

(http://www.animalgenome.org/cgi-bin/CorrDB). In order to complete this abun-

dant genetic information, some effort was invested into developing proteomic-

centred resources especially in capturing mass spectrometry data.

2.2.1 Farm Animal Mass Spectrometry Data

As mentioned in Sect. 2.1.1, mass spectrometry data repositories have recently

imposed a paradigm shift in considering published data. PeptideAtlas pioneered in

collecting datasets dedicated to farm animals though admittedly, these are not as

often updated or enriched with new data as the human collection is, as shown in the

homepage where all newly included sets are listed.

The frequent use of mass spectrometry in studying milk and its constituents

naturally led to the first initiative devoted to collecting MS data in bovine milk and

mammary gland (Bislev et al. 2012). Then the Equine PeptideAtlas (Bundgaard

et al. 2014) and the Pig PeptideAtlas were introduced (Hesselager et al. 2016), and

finally the PeptideAtlas for the domestic chicken (McCord et al. 2017) is the most

recent addition to the collection. This data can be queried from the generic interface

(“Queries” tab), and corresponding data can be downloaded.

2.2.2 Farm Animal Integrated Data

The success of proteomic-based investigations largely depends on the availability

of complete and annotated databases containing the gene and protein sequence

information for the animal species of interest (Soares et al. 2012). Nonetheless,

once proteins are identified by matching mass spectrometry data with sequence

data, according to various strategies detailed in Sect. 3, stored and in the best of

cases integrated knowledge of protein properties is very useful to potentially

rationalise the content of the studied sample. There are very few such resources

for FAP, and the following three cover the range:

1. ProteINSIDE specifically supports the annotation of farm animal proteomics

experiments (http://www.proteinside.org; Kaspric et al. 2015). It stores
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information on bovine, sheep and goat. An in-built workflow processes lists of

proteins input by a user to extract information on protein function, subcellular

location (secreted/cytoplasmic) and interacting partners.

2. AgBase is an alternative resource for functional annotation though not

proteomics-oriented (http://www.agbase.msstate.edu; McCarthy et al. 2010). It

covers more farm animal organisms.

3. paxDB stores proteome-wide protein abundance information across organisms

and tissues (http://pax-db.org; Wang et al. 2015b). Pig, bovine, horse and

chicken are included.

3 Data Analysis Software

The use of two-dimensional gel electrophoresis (2DE) approaches combined with

MS already allowed the characterisation of several distinct proteomes in different

fields of animal science (Soares et al. 2012). However, the complexity of most

proteomic samples challenges the separation power of such traditional techniques.

More importantly, even with the current improvements in 2DE, it is still a manual

and time-demanding process. In proteomics studies, liquid chromatography

(LC) has been increasingly used as a replacement technique for gel electrophoresis,

since it can be employed to analyse large numbers of samples in a faster, automated

and more repeatable fashion. This trend can be observed in Fig. 1.

As one of the core technologies routinely used in advanced proteomics research,

we focus this section on software and computational methods for analysing LC-MS

data. We particularly describe the data and associated algorithms from a
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Fig. 1 Estimated number of MS-based proteomics publications per year: gel electrophoresis (GE,

red) vs. liquid chromatography (LC, blue). PubMed queries: “proteomics gel electrophoresis mass

spectrometry” and “proteomics liquid chromatography mass spectrometry”
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perspective of the acquisition methods by which it is generated, because under-

standing the process of data generation may turn out to be critical for successful

data analysis and result interpretation.

Prior to LC separation, complex protein samples are digested into peptides.

Since the chemistry of peptides is more uniform than the chemistry of proteins,

tandem MS methods to sequence peptides are nowadays robust and mature (Yates

III 2015). The most popular enzyme used for protein digestion is trypsin, which

leads to peptides with C-terminally protonated amino acids, providing an advantage

in subsequent MS-based peptide sequencing (Aebersold 2003). As peptides elute

from the LC column, they are ionised by electrospray ionisation (ESI), and resulting

ions are analysed by the mass spectrometer.

The MS analysis can be performed with different instruments and different

operation modes. Broadly speaking, they can be classified as targeted and shotgun

methods. The characteristics of the spectra and informatics approaches for these

methods are discussed in the following subsections.

As illustrated in Fig. 2, we emphasise examples of chromatogram-based MS

quantification workflows using the Skyline software tool (MacLean et al. 2010),

developed and maintained by the MacCoss lab. Skyline is a Windows client,

versatile and robust platform that can be used to analyse the different types of

MS data here described. A key feature of Skyline is the extraction of MS data

directly from many instrument vendor formats, that is, a conversion to open file

formats is usually not required. Skyline is freely available and open source, with an

interactive and rather intuitive graphical user interface (GUI) for visualisation, and

several tutorials describing the usage are available. Results can be exported as text

reports that researchers can further process using other tools.

Moreover, several tools are available as plug-in modules within Skyline. A

framework called “external tools” allows researchers to integrate their tools into

Skyline without modifying the Skyline codebase (Broudy et al. 2014). With a

uniform interface for installation into Skyline, the external tools can be easily

accessed by all users for downstream statistical analyses.

3.1 Targeted MS Methods

Selected reaction monitoring (SRM)—also referred to as multiple reaction moni-

toring (MRM)—is a targeted MS technique whereby a predefined series of transi-

tions (precursor/fragment ion pairs) are selected by the two mass filters of a triple

quadrupole instrument and monitored over chromatographic elution for precise

quantification (Lange et al. 2008; Picotti and Aebersold 2012).

Since SRM strictly targets a predetermined set of peptides, it is particularly

useful when only a handful of proteins from a complex background, such as those

constituting a cellular network or a set of candidate biomarkers, need to be

measured across multiple samples in a consistent, reproducible and quantitatively

precise manner.
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A useful discussion of the best practices for targeted MS measurements in

biology and medicine, also applicable in animal science, can be found in Carr

et al. (2014). The authors discussed the analytical goals and the experimental

evidence needed to properly describe developed assays according to the required

Fig. 2 Chromatogram-based MS quantification workflows in proteomics. RawMS data generated

by LC-MS analysis have different complexities depending on the purpose of the study. Targeted

MS methods such as SRM require more effort prior to the actual LC-MS analysis, but the data

contains single chromatogram traces for each targeted peptide transition and therefore requires less

complex data processing. Shotgun MS methods acquire a full mass spectrum within each cycle.

For DDA, MS1 data is used for quantification and MS2 data for identification. For DIA, the MS1

data is optional, and quantification is usually performed with the MS2 data, since the systematic

fragmentation acquires continuous data for all fragments across the complete elution profile. The

m/z range is typically divided in several precursor isolation windows, and thus DIA spectra contain

several fragment ion maps. The spectral library provides information such as m/z and expected

retention time used by Skyline as seeds for chromatogram extraction. The spectral library is not

required for processing SRM data, but it might be used for designing the acquisition method, e.g.,

for selecting the best peptides and fragment ions. For DDA, the spectral library is used to extract

the MS1 chromatograms for each identified peptide. For DIA, the spectral library is used to extract

the MS2 chromatograms for the fragment ions of each identified peptide, from the spectra

corresponding to the precursor isolation window. Statistical analysis to find differentially

expressed proteins can be performed using MSstat, either as one of the external tools available

within the Skyline GUI or independently using the exported results for the input of the R MSstat

package. Further downstream analysis can be performed with tools such as Cytoscape and DAVID
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levels of performance, as well as the computational and statistical tools useful for

the analysis of targeted MS.

3.1.1 Design of Targeted Acquisition Methods

In SRM-based proteomics, a significant amount of time is required for the design of

the acquisition method or assay, and several informatics tools are available to assist

this process. For instance, software to select proteotypic peptides, transitions and

best acquisition settings include SRMCollider (R€ost et al. 2012), MRMOptimizer

(Alghanem et al. 2017) and PREGO (Searle et al. 2015).

We highlight the PNNL Biodiversity Plugin as one of the external tools available

in Skyline (Degan et al. 2016). The tool summarises available mass spectrometry

data in a pathway-centric view and facilitates querying it from a biological per-

spective to design quantitative experiments. Selected proteins and their underlying

mass spectra are imported to Skyline for further assay design (transition selection).

The PNNL Biodiversity Library catalogues MS/MS spectra from over 3 million

peptides and 230,000 proteins from 118 distinct organisms across the tree of life all

cross-referenced to KEGG pathways for intuitive biological interpretation.

To maximise the number of peptides that can be monitored in a single LC-MS

analysis, scheduled SRM methods can be designed (Stahl-Zeng et al. 2007). Using

information of the expected peptide elution time in the target list, computer pro-

grams automatically generate SRM acquisition methods where the transitions of a

specific peptide are only targeted during a time window around its elution time. In

this way, the number of peptides measured in a LC-MS run is increased without

compromising the limit of detection or the quantitative accuracy.

3.1.2 Data Processing for SRM Quantification

Unlike in other MS-based proteomic techniques, no full mass spectra are recorded

in SRM analysis. SRM data consist of a set of chromatographic traces with the

retention time and signal intensity for each of the monitored transition. This

non-scanning nature translates into an increased sensitivity by one or two orders

of magnitude compared with conventional “full-scan” techniques. The two levels of

quadrupole mass selection with narrow mass windows result in a high selectivity, as

co-eluting background ions are filtered out very effectively.

Integration of the chromatographic peaks for each transition supports the relative

or, if suitable heavy isotope-labelled reference standards are used, absolute quan-

tification of the targeted peptides, which are used as a surrogate measure of the

proteins of interest. Isotope labelling increases the complexity and costs of an

experiment with the benefit of more precise quantification.

Other targeted methods, in which high-resolution full MS/MS spectra are

acquired for each target peptide, such as parallel reaction monitoring (PRM)

(Peterson et al. 2012), generate data for all detectable fragment ions. The third
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quadrupole of a triple quadrupole is substituted with a high-resolution and accurate

mass analyser.

3.2 Shotgun MS Methods

In contrast to targeted MS methods, the so-called shotgun or bottom-up approach

does not require predefined information about the proteins of interest or analytes in

the sample. TheMS instrument is operated to record the spectra of many peptides as

possible, as they elute from the LC column and are ionised by electrospray.

3.2.1 Data-Dependent Acquisition and MS1 Quantification

Within each DDA cycle, ion signals are recorded in a MS1 or survey scan

(precursor ion signals), and the top-N most abundant ions are then selected and

serially isolated for fragmentation (MS/MS, MS2, or tandem MS) to generate

structural information. Since fragmentation models are well characterised for

amino acid sequences, theoretical spectra can be generated according to factors

including peptide sequence and type of fragmentation, typically collision-induced

dissociation (CID). Typically, most of the MS/MS data is highly pure (each

spectrum contains fragments from mainly one peptide) and can be annotated with

peptide sequences using search tools such as Mascot (Perkins et al. 1999),

SEQUEST (Eng et al. 1994), Andromeda (Cox et al. 2011), X!Tandem (Craig

and Beavis 2004) and MS-GFþ(Kim and Pevzner 2014). A search tool in silico

digests the protein sequences into peptides and generates theoretical spectra to

score the observed tandem mass spectra against the predicted fragmentation

(Nesvizhskii 2010).

While search tools produce a match for almost every input MS/MS spectrum,

only a fraction of those peptide to spectrum matches (PSMs) are true. The most

commonly used and accepted statistical confidence measure is the false discovery

rate (FDR) (Benjamini and Hochberg 1995) adapted in proteomics (Elias and Gygi

2007)—also known as “target-decoy approach” (TDA)—as a summary statistics

for the entire collection of PSMs. A decoy database is generated by reversing or

shuffling the amino acids in the sequences of the reference database and thus

included in the search to estimate the FDR as the expected proportion of incorrect

PSMs among all accepted PSM (Nesvizhskii 2010). FDR analysis is typically

included within the identification software; however, it can also be performed and

refined using other tools such as MAYU (Reiter et al. 2009), Percolator (Käll et al.

2007; The M et al. 2016), iProphet (Shteynberg et al. 2011), PeptideProphet (Keller

et al. 2002; Choi and Nesvizhskii 2007) and ProteinProphet (Nesvizhskii et al.

2003).

Properly estimating and controlling the FDR are essential steps in the computa-

tional pipeline for preventing subtle but profound errors in high-throughput science.
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It is necessary to place less emphasis on the number of identifications achieved and

instead to value the work as a whole (Serang and Käll 2015).

After FRD analysis, confidently identified peptides can be used to build a library,

which can be imported into Skyline to perform label-free relative quantification.

Skyline extracts the precursor ion signals of each peptide from the MS1 raw data

and computes the area under the peak or ion chromatogram from each peptide

elution profile (Schilling et al. 2012).

Another popular method that has been traditionally used for label-free quantifi-

cation in shotgun proteomics is the spectral count, which is based on the number of

MS/MS spectra identified for each peptide sequence (Liu et al. 2004). Despite

providing a rapid and semi-quantitative measure of abundance, spectral count-

based quantification is affected by sample complexity; it has been found to often

give irreproducible results and being unsuitable for quantifying low-abundance

proteins (Cappadona et al. 2012; Ahrné et al. 2013). In contrast, chromatogram-

based MS quantification based on integration of the peptide elution profile provides

a level of accuracy comparable to labelling approaches.

3.2.2 Data-Independent Acquisition and MS2 Quantification

With recent developments in MS instrumentation, application of alternative MS

operation modes such as DIA has become feasible (Chapman et al. 2014; Bilbao

et al. 2015a). In contrast to DDA and by means of systematically parallelising the

fragmentation, DIA avoids the selection of individual peptide ions during LC-MS

analysis, therefore providing several advantages for characterising complex protein

digests.

In a single injection or LC-MS analysis, DIA generates a comprehensive and

permanent digital record of the sample (Liu et al. 2013). Because of the systematic

sampling process, there is no need to reinject the sample for LC-MS analysis, as

opposed to DDA and SRM. Acquired once and mineable forever, DIA spectra can

be used to test for new hypothesis or reprocessed when a better-quality library is

available (e.g. new genome available) or an updated or new processing software

tool is released.

At the same time, in DIA, convoluted or multiplexed MS/MS spectra are

generated without explicit association between each single precursor and its

corresponding fragments. As a result, DDA search engines are not appropriate for

processing DIA spectra, and several informatics tools have been developed recently

to effectively process these complex datasets for identification: DIA-Umpire (Tsou

et al. 2015, 2016), Group-DIA (Li et al. 2015) and MSPLIT-DIA (Wang et al.

2015a).

Here we focus on the targeted data extraction strategy related to the SWATH

methodology (Gillet et al. 2012), where a list of peptide transitions (also called

assay) built from previous DDA/SRM libraries is required. These libraries can be

either collected from public repositories such as PeptideAtlas (www.peptideatlas.

org), SRMAtlas (www.srmatlas.org) and SWATHAtlas (www.swathatlas.org) or
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generated by analysing the studied sample also in DDA mode to generate reference

libraries (for a detailed protocol to generate high-quality reference libraries, see

Schubert et al. (2015a)). A multiplexed variant of the SWATH methodology,

termed MSX (Egertson et al. 2013, 2015), is also implemented within the Skyline

software, supporting both acquisition method design and data processing for

quantification.

As for MS1 quantification, Skyline extracts the ion signals of each peptide, but in

this case fragment ion signals are extracted from the MS2 raw DIA files. Quanti-

fication is therefore performed using the elution profile of the peptide fragments,

like for SRM, with the area under the peak or ion chromatogram as the abundance

measure. Fragment ion abundances are subsequently aggregated into the

corresponding peptides and proteins. A statistical measure of detection confidence

is also computed for each peptide, using a similar version of the

mProphet algorithm (Reiter et al. 2011) implemented within Skyline.

Other software tools for targeted data extraction are also available: Spectronaut

(Bernhardt et al. 2012) (Biognosys proprietary software with free license for

academics) and OpenSWATH (R€ost et al. 2014) (open-source standalone tool or

integrated module into the proteomics software OpenMS) (Sturm et al. 2008; R€ost
et al. 2016), including tools without GUI such as DIANA (Teleman et al. 2014) and

SWATHProphet (Keller et al. 2015).

Recently, the performance of several of these tools was compared (Navarro et al.

2016). The authors observed similar reliable performances after software and

parameter optimisation and concluded that targeted data extraction is a valid

alternative to isotope-labelling-based methods.

Another consideration related to DIA data processing is the fact that the con-

current fragmentation of peptides has the drawback of increasing the likelihood of

interference due to the overlap of fragment ions from different precursors. Several

computational strategies can tackle this issue to further expand the benefits of DIA

(Zhang et al. 2015; Bilbao et al. 2015b, 2016).

3.3 Statistical Analysis of Quantitative Results

Based on the quantification data, the next step is to determine candidate proteins

showing significant differences across several sample types or conditions. The R

statistical package MSstats (Choi et al. 2014) can be used as a standalone or as one

of the external tools available within Skyline. MSstats can be used to interpret

SRM, DDA and DIA quantification results.

The external set of QuaSAR tools (Abbatiello et al. 2010; Mani et al. 2012)

automate and assist quantification of stable isotope dilution experiments. QuaSAR

produces tabulated results for every peptide for essential statistics such as coeffi-

cient of variation, regression slope and intercept (with confidence intervals) and

limits of detection and quantification as well as figures summarising their distribu-

tion and variation.
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3.4 Automated PTM Detection

It is now well established that posttranslational modifications (PTMs) act in isola-

tion or in combination with proteins for modulation and regulation purposes. In

recent years, this field of investigation has led to intense bioinformatics

development.

3.4.1 Main PTM Bioinformatics Resources

Two main databases are considered as references for storing PTM-related informa-

tion. UniMod (http://www.unimod.org) is a comprehensive list of protein modifi-

cations for mass spectrometry applications. dbPTM (http://dbPTM.mbc.nctu.edu.

tw) describes substrate specificity of PTM sites and provides functional annotation

of PTM-related substrates and known interacting proteins. Neither specifically

distinguishes between species as both aim at increasing numbers of their respective

statistical tables. However, with this concern for broad coverage, dbPTM maintains

a comprehensive list of databases and prediction software dedicated to individual or

groups of PTMs. To complement the summary information associated with each

resource, useful and more detailed comments can be found, for instance, in Kamath

et al. (2011).

Over the past decades, the accumulation of sequence data led to implementation

of PTM site prediction software based on amino acid patterns in aligned sequences.

Each method was usually designed to identify individual PTMs. Many of these

methods were developed with web interfaces and are hosted on the ExPASy (www.

expasy.org/proteomics/post-translational_modification) and the CBS (www.cbs.

dtu.dk/databases/PTMpredictions) servers whose creators pioneered in this field.

More recently, the accumulation of mass spectrometry data to support PTM detec-

tion contributed to refining the reliability of prediction based on more comprehen-

sive experimental data. This is, for instance, the case of phosphorylation sites

through the use of resources such as PhosphoSite (http://www.phosphosite.org)

that collects published mass spectrometry data for site annotation. In fact, under-

standing PTM occurrence goes along with studying the corresponding modifying

enzyme(s). In many cases, these enzymes are not known, or their target is not

precisely defined. For phosphorylation, KinBase (http://kinase.com/kinbase/) is the

kinome reference, and the combined use of MS-validated sites and kinase specific-

ity helps in refining site prediction as further explained in Sect. 3.4.2.

Although not fully considered as a PTM, protein cleavage should nonetheless be

part of the modification landscape, and proteases have long been collected and

classified in the MEROPS database (http://merops.sanger.ac.uk). The connection

between proteolysis and PTMs is brought out in TOPFind, the N-/C-terminal

modification database (http://clipserve.clip.ubc.ca/topfind). With a strong focus

on human and mouse data, TOPFind also attempts to merge protein cleavage
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information with protein-protein interactions with the PathFinder tool (Fortelny

et al. 2014) through mapping and modelling a protease interaction network.

Nonetheless, at present, besides published articles, UniProt remains the main

source compiling information on alternative effectors of PTMs. In fact, examples of

protein-protein interaction networks integrating PTM knowledge (occurrence þ
specific effector) are rare. They tend to be devoted to mapping data collected in

eukaryotes such the yeast methylome (Erce et al. 2012) or the phospho-tyrosine

interaction network in human (Grossmann et al. 2015).

3.4.2 Predicting PTM and Their Associated Enzymes

The association between a phosphorylated site and the kinase that actually

performed the attachment on a serine, threonine or tyrosine residue is far from

being obvious to predict, despite the clear need for getting a fuller picture of

phosphorylation. So far, the most known tool that combines several sources of

data to suggest site-enzyme associations for phosphorylation is networKIN (http://

networkin.info). The method first uses a predictor to label a given phosphosite

sequence with a kinase or kinase family. This predictor is trained with experimental

data to ascertain the relationship between a site and a kinase. For instance, Scansite

(http://scansite3.mit.edu) mostly relies on peptide library screening, phage display

and mass spectrometry experiments to get enough examples of labelled sites and

identify characteristic sequence patterns for a site in definite association with a

known kinase. Nonetheless a high level of ambiguity persists and as a second step in

order to narrow down the options, networKIN includes contextual information by

extracting knowledge of protein-protein interactions centred on the kinases of

interest from a database of interactions. By calculating the proximity of the

substrate to all kinases in a network of functional relationships, networKIN infers

the most likely candidate kinase for each site.

The knowledge of phosphorylation is by far more advanced than that of other

common PTMs such as glycosylation. Despite the possible mapping between a

glycan structure and the set of enzymes that are required for its synthesis, the

characterisation of intact glycopeptides remains a definite challenge. As it is, most

glycan structures have been solved after being cleaved off their natural support,

while protein glycosylation sites are identified after removing the attached glycans.

In the end, key information on the glycoconjugate is lost. The correlation between

glycan structures and glycoproteins can be restored manually through literature

searches that are both labour- and time-consuming. This is, for example, the

purpose of UniCarbKB (www.unicarbkb.org). In this context, the design of predic-

tion tools linking a glycosite with the appropriate glycosyltransferases may happen

in a not too distant future. Information on these enzymes has accumulated in the

CAZy database (www.cazy.org) over the past two decades.
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3.4.3 PTM Discovery

Mass spectrometry is the method of choice for detecting PTMs. Since the early days

of software development for analysing mass spectra, the concern for identifying

possible mass shifts corresponding to the addition or removal of chemical groups of

known masses has been shared by bioinformaticians. Then it appeared that, con-

versely, the occurrence of regular and identical mass shifts of unknown origin in

MS2 data could be a source of new knowledge, and a range of tools was then

developed to perform the so-called open modification search, that is, PTM search

with no a priori (Ahrné et al. 2010). This approach was scaled to process high-

throughput proteome data with the prospect of discovering unexpected modifica-

tions (Na et al. 2011; Horlacher et al. 2015). However, data interpretation remains a

challenge, and findings require experimental validation. Nonetheless, large-scale

processing supports scientists in investigating and discovering new leads.

It is worth noting that the top-down proteomic approach is very promising for

generating mass information on PTMs (Smith et al. 2013). The ProSight software

that is commonly run to analyse this particular type of data is adapted to the

identification of a broad range of PTMs (Fellers et al. 2015).

Recently, the potential of label-free by PRM was demonstrated for targeted

phosphoproteome analysis (Lawrence et al. 2016). The authors also created a

web-based assay development application that queries the database for optimal

peptide selection and retention time scheduling (phosphopedia.gs.washington.edu).

3.4.4 PTM Combination

The next challenge is to identify the constraints that rule PTM cooperative and/or

antagonist effects as pointed in Venne et al. (2014). Indeed, PTMs can be mutually

exclusive such as the phosphorylation and the O-GlcNAcylation of serine and

threonine of signalling proteins presented very early on as the “yin-yang hypothe-

sis” (Hart et al. 1995), but they can also be cooperative as in the well-studied case of

histones (Schwammle et al. 2014). Data has accumulated on a few other proteins

such as tubulins (Verhey and Gaertig 2007), the FoxO regulator (Calnan and Brunet

2008) or chaperones (Cloutier and Coulombe 2013). However, a critical mass of

experimental data is still missing to design appropriate bioinformatics tools

supporting the discovery of PTM co-occurrence rules that could potentially explain

corresponding effects on protein function. In the meantime, simple co-occurrence is

collected, for instance, in the PTMCode database (Minguez et al. 2014) that shows

potential trends. This field is likely to blossom in the years to come.
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3.5 Interactomics and Data Interpretation

A list of identified proteins is not sufficient for characterising a sample. The

challenge is to understand why some proteins are co- or differentially expressed

and what are the underlying processes explaining cooperative or concurrent

activity.

Detailed information about how MS-based proteomics has been applied to

network biology, to detect and quantify perturbation-induced network changes

and to correlate network dynamics with cellular phenotypes can be found in

Bensimon et al. (2012).

The most common approach is to extract protein information from the gene

ontology (GO) that assigns relevant terms from controlled vocabularies to specify

the protein subcellular location, its function and its contribution to one or more

processes (see www.geneontology.org). Then, when proteins share terms

characterising a location or a function or a process, this type of similarity helps in

shaping a hypothesis. Alternatively, the knowledge of protein-protein interactions

stored in databases such as IntAct (http://www.ebi.ac.uk/intact/) or BioGrid (http://

www.biogrid.org) can be used to build an interaction network. Note that readily

available interaction networks can be visualised and queried in STRING (http://

string-db.org). In all cases, integrated tools in the cited data resources provide

support for protein data interpretation. One of the most popular open-source

software for integration, visualisation and analysis of biological networks is

Cytoscape (Shannon et al. 2003). This popularity has been driven by the ability

of extending Cytoscape functionality through plugins (Saito et al. 2012), yielding a

powerful and heterogeneous set of tools and enabling a broad community of

scientists to contribute. This part is illustrated further in the following section

with concrete examples.

4 Applications

There are roughly three types of applications where high-throughput proteomics

methods are used and therefore bioinformatics is necessary. In most instances

detailed below, resources tailored for the study of model organisms spanning

mainly humans, mouse, drosophila and yeast show some limitation in supporting

the interpretation of experimental results.

4.1 Animal Health

In much the same way as in medical studies, one of the goals of using proteomics is

to identify reliable disease biomarkers for diagnosis or prognosis. For example,
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serum protein profiles have been used to detect infectious disease in pigs (Koene

et al. 2012). However, the prevalence of genomics approaches remains as illustrated

in a recent comprehensive review on bioinformatics tools available to study para-

sites of veterinary significance (Cantacessi et al. 2012). Omics data integration is

still a prospect at this point in time.

As highlighted in Sect. 3.5, interactomics provides the most attractive ground for

the interpretation of proteomics data. The identification of protein complexes in a

sample is a first step in rationalising and understanding protein co-expression. For

example, cellular proteins of the host-forming complexes with specific proteins of

the porcine reproductive and respiratory syndrome virus (PRRSV) essential in virus

replication were identified by pull-down experiments in Dong et al. (2016). Binding

partners of viral proteins were then systematically mapped on known pathways with

a piece of software (https://www.qiagenbioinformatics.com/products/ingenuity-

pathway-analysis/) to shortlist those that involve the mostly expressed partners.

This study along with further experimental work led to identify and validate the role

of the HSP70 chaperone as key to transcription and replication of PRRSV. More

generally, the investigation of host-pathogen interactions is obviously suited to

proteomics-based approaches, and the wealth of information stored in bioinformat-

ics databases provides useful support. Proteomics is increasingly introduced in

veterinary medicine (Ceciliani et al. 2014), and data accumulation will soon

popularise the use of bioinformatics to allow for information-rich comparative

studies.

Furthermore, Bundgaard et al. (2016) applied SRM to investigated levels of

eight inflammatory acute phase proteins in interstitial fluid from wounds in horses.

Selection of protein-specific peptides was performed using the equine PeptideAtlas

website.

Packialakshmi et al. investigated proteomics differences in the plasma of healthy

and femoral head necrosis-affected chickens using shotgun MS methods

(Packialakshmi et al. 2016). MS/MS data was converted from proprietary format

to mzXML files using the instrument vendor software and submitted to global

proteome machine (GPM; http://www.thegpm.org) for identification with X!

Tandem.

Proteins with at least one unique peptide and 5% FDR were considered true for

protein identifications. The results were downloaded as *.xml files for Skyline

software. After MS1 signal extraction, label-free quantitation was performed

using MSstats as one of the external tools directly available in Skyline. Group

comparison function was used for the label-free quantitation and to generate the

volcano plot that shows the differentially expressed proteins.

The list of proteins was mapped to the corresponding ensemble gene IDs using

Biomart and analysed for relative enrichment, clustering and GO annotations using

DAVID (Huang et al. 2009a, b).
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4.2 Adipose Tissue and Muscle Studies

The lack of farm animal dedicated resources in proteomics motivated the develop-

ment of the ProteINSIDE database cited in Sect. 2.2.2. It was used in a study of

bovine adipogenesis and myogenesis as well as the balance between these two

processes (Kaspric et al. 2015). Previously analysed mass spectrometry data of

adipose (Taga et al. 2012) and muscle (Chaze et al. 2009) foetal bovine tissues led

to identify proteins, which were poorly annotated. Data and tool integration of

ProteINSIDE supported the interpretation of protein lists. In particular protein-

protein interactions, as collected from various sources as cited in Sect. 3.5, were

used as the main piece of information for identifying clusters of functionally

interconnected proteins. In the muscle they were associated with four processes,

muscle development, cell proliferation, energetic complex and respiratory chain,

and in the adipose tissue with seven, cell proliferation, proteasome complex,

complexes I and III of the respiratory chain, redox activity and differentiation and

metabolism of adipose tissue. The overlap between the two tissue types led to

suggest possible crosstalk mechanisms.

Other authors have used bioinformatics sequence analysis tools to identify

proteotypic peptides in an attempt to define biomarkers of meat authenticity

following a targeted proteomics approach (Orduna et al. 2015). In the same vein,

Stella and co-workers used SRM to quantify 12 potential protein markers of skeletal

muscle and detect anabolic treatments with dexamethasone (Stella et al. 2016). The

listed proteins were markers identified in a previous study applying a

two-dimensional difference gel electrophoresis proteomics approach. A scheduled

SRM method was developed using Skyline software to monitor 24 signature pep-

tides from the 12 considered protein markers (two peptides per protein). For each

peptide, 3 precursor-to-product ion transitions were targeted. Peptide quantification

was achieved using a spike-in dedicated internal standard for each target. To this

end, 13C/15N isotopically labelled peptides sharing the same sequence but with a

defined mass shift were used. Peptide quantification was achieved using Skyline

software integrating the area of the chromatographic peak of each peptide and the

corresponding labelled internal standard.

Using R, protein abundances were graphically described using box plots, and

potential differences of protein concentration values among different animal groups

were explored performing one-way analysis of variance (ANOVA) on the two

animal sets.

4.3 Milk Proteome and Glycoproteome

As mentioned in Sect. 2.2.1, the analysis of protein content in farm animal milk has

long been the focus of veterinary and biological science. It is not surprising that

several groups already undertook global studies such as a more detailed pathway
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mapping of 106 human milk proteins (D’Alessandro et al. 2010). In this in silico

study, pathway analysis software based on knowledge of metabolism is used to

identify cell proliferation and differentiation pathways on top of the usual nutrition

and immune functions known to characterise milk proteins. This provides evidence

of tissue growth and organ development capacities of milk proteins based on

collecting public data and using pathway analysis tools.

To account for quantitative aspects, mass spectrometry and bioinformatics tools

were used in two recent studies (Tacoma et al. 2016; Zhang et al. 2016). While the

former reference conventionally relies on gene ontology to track functional features

of differentially expressed proteins in two dairy cow breeds, the latter brings the

comparison of the human and bovine milk proteomes over lactation further. In this

study, MS data was first differentially quantified using the MaxQuant software, and

interactions between the most co-expressed proteins were then derived from

STRING (see Sect. 3.5). Results reveal the interconnected roles of milk proteins

in nutrition and protection to the neonate.

Finally, the importance of glycosylation in milk needs to be acknowledged, and

quantitative studies are also undertaken in a systematic way. For example, Huang

et al. (2016) used SRM to quantitate seven human milk proteins and their

glycoforms.

5 Conclusion

The application of proteomics in veterinary studies has been moving from the initial

qualitative description towards the quantification stage, where experiments to

identify and quantify protein changes in different samples of particular tissues or

fluids become more common (Ceciliani et al. 2014). Application of untargeted

label-free quantification methods is rapidly increasing in the proteomics field in

general, fuelled by the advantages of DIA methods and development of software

tools and innovative algorithms, which already have been shown implementations

to estimate absolute cellular protein concentrations (Schubert et al. 2015b). In this

context, further improvements and developments of new computational strategies

for quantification are expected.

Numerous studies have been published to date in domestic and farm animal

proteomics; among several challenges and limitations, we highlight the lack of

detailed information of MS-based proteome informatics tools in the context of farm

animal reviews/resources. Only general notions are described but not specific tools

and very few references.

The previously described difficulty to use MS proteomics software (Cappadona

et al. 2012), associated with the lack of appropriate documentation or with a poor

graphical user interface, is still an issue. Fortunately, this is changing with tools like

Skyline. Skyline is an active project and continues expanding, for instance, it

currently supports chromatogram extraction from MS1 and MS2 spectra with the

additional ion mobility separation recently available in commercial instruments
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(Baker et al. 2015). An increasing number of available tools within open-source and

collaborative projects can be expected, and we encourage development of more

robust MS tools that can be used by researchers nonspecialised in mass spectrom-

etry or informatics.
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