
Problem Solving as a Predictor of Programming
Performance

Glenda Barlow-Jones1(B) and Duan van der Westhuizen2

1 Department of Applied Information Systems, University of Johannesburg,
Auckland Park, South Africa

glendab@uj.ac.za
2 Department of Science and Technology Education, University of Johannesburg,

Auckland Park, South Africa
duanvdw@uj.ac.za

Abstract. The purpose of this paper is to establish what correlation
exists between students’ problem solving ability and their academic per-
formance in 1st-year programming courses. The students’ achievement in
the programming courses is specified as the dependent variable and four
programming aptitude tests for logical reasoning, non-verbal reasoning,
numerical reasoning and verbal logic are specified as the independent
variables. The study group consists of 379 students. Our findings show a
correlation between students’ logical reasoning, numerical reasoning and
verbal logic and performance in computer programming modules. The
correlation between students’ non-verbal reasoning and performance in
computer programming modules was, however, not significant.

Keywords: Computer programming · Problem solving · Logical rea-
soning · Numerical reasoning · Verbal logic · Non-verbal reasoning

1 Theoretical Background

In this paper, we firstly explore some theoretical constructs around the notion
of ‘problem-solving’. We particularly invoke Bloom’s revised taxonomy and lit-
erature around critical thinking. We then explore the difficulties that students
typically experience in learning how to problem solve. Finally, we report on a
project during which the correlation between the dimensions of problem-solving
and student performance was calculated. It is difficult to determine what knowl-
edge and skills first year programming students possess prior to their program-
ming course. The main objective of computer programming is to implement
programs that solve computational problems. In [3,10] we can find that problem
solving ability is an indicator of programming performance. Critical thinking,
also referred to as problem solving, reasoning or higher order thinking skills,
can be defined as “disciplined, self-directed thinking which exemplifies the per-
fections of thinking appropriate to a particular mode or domain of thought” [18]
and also as “a process of gathering and evaluating data to make decisions and

c© Springer International Publishing AG 2017
J. Liebenberg and S. Gruner (Eds.): SACLA 2017, CCIS 730, pp. 209–216, 2017.
https://doi.org/10.1007/978-3-319-69670-6_14



210 G. Barlow-Jones and D. v.d. Westhuizen

solve problems” [15]. Taxonomies of learning have been implemented worldwide
to describe learning outcomes and assessment standards reflecting what learning
stage a student is at. The original learning taxonomy developed by Bloom and
several of his colleagues in 1956 identifies six levels of thought [2]:

– Knowledge: rote memorization, recognition, or recall of facts;
– Comprehension: understanding what the facts mean;
– Application: correct use of the facts, rules, or ideas;
– Analysis: breaking down information into component parts;
– Synthesis: combination of facts, ideas, or information to make a new whole;
– Evaluation: judging or forming an opinion about the information or situation.

These levels of thought start from the lowest order process to the highest order
process with higher levels building on lower levels [2]. Once a student reaches
the highest level they can be said to have grasped a subject matter. Bloom’s
Taxonomy was revised in 2011 to address the differences between comprehension
and application and to better define the term evaluation. The changes made to
the revised taxonomy are as follows [1]:

– Remember (previously ‘knowledge’);
– Understand (previously ‘comprehension’);
– Apply (previously ‘application’);
– Analyse (previously ‘analysis’);
– Evaluate (previously ‘evaluation’);
– Create (previously ‘synthesis’).

According to [9,12], students learn to write complete computer programs in
their first year of a programming module which falls within the top two levels
of Bloom’s Revised Taxonomy of teaching and learning [1]. These two levels
however, depend on the first four levels before a student is said to be able to
grasp computer programming. For example, in computer programming, ‘learn-
ing syntax’ is the lowest order process [11] and efficiently utilising syntax in
order to ‘produce effective computer programs’ is the highest order process [4].
Accordingly, lecturers expect students to be able to write programs within the
first few weeks of their programming module [6]. These programs may be basic
and get more difficult as the module progresses, however, many students may be
left behind whilst still struggling to find solutions to basic problems. This means
that the difficulty level at which the programming module starts, is already at
too high a level for a novice programmer, which can lead to a lack of moti-
vation and ultimately a student failing the module. Although novice students
may have little experience programming, they do have experience solving prob-
lems in everyday life [19]. Problem solving is a mental process of analysing a
given problem, developing a solution to the problem and presenting the solution
[13]. When students solve problems either independently or in collaboration with
other students they are learning by doing. While learning by doing is synony-
mous with problem solving [13] computer programming as a discipline is also
synonymous with problem solving. However, according to [7], students struggle
to solve problems for the following reasons:



Problem Solving as a Predictor of Programming Performance 211

– Students do not fully understand the problem either because they have not
interpreted the problem statement correctly or they just want to start writing
code.

– Students fail to transfer the knowledge that they have already acquired from
past problems over to new problems.

– Students who take too long to find a solution just give up trying and wait for
the solution to be given to them.

– Many students do not have enough mathematical and logical knowledge.
– Students lack specific programming expertise and struggle to detect simple

syntactical and logical programming errors.

According to [3], more attention should be paid to novice programming students’
problem-solving abilities by encouraging them to practice problem solving, as
learning to solve problems algorithmically contributes to learning to program.
Students need to think about the processes they go through in solving everyday
life problems and look at how to use the same processes to develop algorithms,
for example: “they need to identify things that are familiar to them, divide the
problem into smaller problems and use existing solutions” [5] — the very same
things that [7] identifies as what students struggle with. The purpose of this
paper is to establish what correlational relationship exists between students’
problem solving ability and their academic performance in first-year level pro-
gramming courses.

2 Method

The participants of the study were a group of 186 first year students enrolled
for the National Diploma in Business Information Technology (NDBIT) at the
University of Johannesburg (UJ), and 193 first year students enrolled for the
National Diploma in Information Technology (NDIT) at the Tshwane Univer-
sity of Technology (TUT).1 The research process was preceded by a thorough
literature review.

2.1 Instrumentation

Four programming aptitude tests (which measured a student’s ability to prob-
lem solve) were used with permission from the University of Kent Careers and
Employability Service Department. All tests were completed in a test-like set-
ting with hired venues and appointed invigilators.2 Ten items from each test
were used to reduce the load on students and due to time constraints.
1 Explanation for readers from outside South Africa: the ‘National Diploma’ in

South Africa consists of a vocational 2-year curriculum below the level of a Bachelor
of Science degree.

2 Students were required to complete consent forms stipulating what was expected
from them during the research process. Permission to conduct the research was
sought from the Ethics Committee at the Faculty of Education at the UJ and from
the Research Ethics Committee at the TUT. In all cases, data were collected respon-
sibly and recorded as accurately as possible.



212 G. Barlow-Jones and D. v.d. Westhuizen

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Question:
What is the missing letter in this series: c c d ? e f g g h

Answer: e

Fig. 1. Logical reasoning test questions

Fig. 2. Non-verbal reasoning test questions: In the first example question the top row
of four boxes make up a series from left to right. You have to decide which of the 5
boxes underneath, marked A to E, will be the next in the sequence. For example in
the first example, the top four boxes have 1, 2, 3, and 4 dots respectively. Obviously,
the next box in the sequence will have 5 dots, which is box D. Answer 1 = D

Logical Reasoning Test. The first programming aptitude test was the logical
reasoning test which involved letter sequences and tested the students’ ability to
think logically and analytically. The test involved looking at a specific sequence
of letters and working out the next letter of the sequence: see the example in
Fig. 1. The average score for the logical reasoning test was 6.7/10.

Non-verbal Reasoning Test. The second programming aptitude test was
the non-verbal reasoning test which determined a student’s ability to under-
stand and analyse visual information and solve problems using visual reasoning
— for example: identifying relationships, similarities and differences between
shapes and patterns, recognizing visual sequences and relationships between
objects, and remembering these. The non-verbal reasoning test enabled students
to analyse and solve complex problems without relying upon or being limited
by language skills. The test involved looking at a specific sequence and working
out the next member of the sequence from the pictures given: see the example
in Fig. 2. The average score for the non-verbal reasoning test was 4.65/10.



Problem Solving as a Predictor of Programming Performance 213

Question:
A taxi driver works 46 weeks of the year and gets an average of 70 customers per week
averaging 4 kilometers each at 90 cents per kilometer. His expenditure is as follows:

Car service/repair/insurance: R1,250,00 per year
Petrol costs: R0.06 per kilometer
Mortgage costs: R250,00 per month
Other expenditure — food, electricity, etc.: R125 per week

What is the total income in Rands of the taxi driver for the whole year?

Answer:
Average fare = 4 × 90c = R3.60
Income per week = 70 fares at R3.60 each = 70 × 3.60 = R252
Income for 46 weeks work = R252 × 46 = R11 592

Fig. 3. Numerical reasoning test questions

Question:
Simon, Cheryl and Dannii are going by train to Pretoria to watch a singing competition.
Cheryl gets the 2.15 pm train.
Simon’s train journey takes 50% longer than Dannii’s.
Simon catches the 3.00 train.
Dannii leaves 20 minutes after Cheryl and arrives at 3.25 pm.

When will Simon arrive?

Answer:
Dannii leaves at 2.35, arrives 3.25, therefore 50m journey.
Simon’s journey takes 75m, therefore arrives at 4.15

Fig. 4. Verbal logic test questions

Numerical Reasoning Test. The third programming aptitude test was the
numerical reasoning test which included mathematical questions: see the example
in Fig. 3. The average score for the numerical reasoning test was 3.24/10.

Verbal Logic Test. The fourth programming aptitude test was the verbal
logic test which included verbal logic puzzles, some of which had a numerical
element. This test, tested the students’ ability to think logically, analytically
and numerically, and also to extract meaning from complex information: see the
example in Fig. 4. The average score for the verbal logic test was 2.79/10.

Programming Examination Results. Data were also collected from the
examination results of the students programming module, Development Soft-
ware 1: UJ — Development Software 1A (DSW01A1) and Development Soft-
ware 1B (DSW01B1) and; TUT — Development Software 1A (DS0171AT) and
Development Software 1B (DS0171BT). Student numbers were used as the key
field to link the data sets. The Development Software 1 (DS1) results were used
as the dependent variable throughout the study.



214 G. Barlow-Jones and D. v.d. Westhuizen

3 Data Analysis

The four programming aptitude tests for logical reasoning, non-verbal reasoning,
numerical reasoning and verbal logic were correlated with the DS1 final mark of
the students. The results of the computation are presented in Table 1.

Table 1. Correlation of programming aptitude tests and DS1 mark

Test type Correlations DS1 mark

Logical reasoning test mark Pearson correlation .199

Sig. (2-tailed) .000

N 341

Non-verbal reasoning test mark Pearson correlation .095

Sig. (2-tailed) .078

N 347

Numerical reasoning test mark Pearson correlation .257

Sig. (2-tailed) .000

N 348

Verbal logic test mark Pearson correlation .143

Sig. (2-tailed) .008

N 341

3.1 Logical Reasoning

A Pearson product-moment correlation coefficient was computed to assess the
relationship between the logical reasoning test mark variable and the students’
performance in DS1 variable. Logical reasoning refers to a student’s ability to
think logically and analytically. There was a small, positive correlation between
the two variables, r = .199, n = 341, p = .000. Overall, there was a small, positive
correlation between the non-verbal reasoning test mark and performance in DS1.

3.2 Non-verbal Reasoning Test Mark

A Pearson product-moment correlation coefficient was computed to assess the
relationship between the non-verbal reasoning test mark variable and the stu-
dents’ performance in DS1 variable. Non-verbal reasoning refers to a student’s
ability to understand and analyse visual information and solve problems using
visual reasoning. There was no correlation between the two variables, r = .095,
n = 347, p = .078. The results for this group show an insignificant correlation
between students’ non-verbal reasoning ability and performance in DS1.



Problem Solving as a Predictor of Programming Performance 215

3.3 Numerical Reasoning Test Mark

A Pearson product-moment correlation coefficient was computed to assess the
relationship between the numerical reasoning test mark variable and the stu-
dents’ performance in DS1 variable. The numerical reasoning test included math-
ematical questions. There was a small, positive correlation between the two vari-
ables, r = .257, n = 348, p = .000. Overall, there was a small, positive correlation
between the non-verbal reasoning test mark and performance in DS1.

3.4 Verbal Logic Test Mark

A Pearson product-moment correlation coefficient was computed to assess the
relationship between the verbal logic test mark variable and the students’ per-
formance in DS1 variable. The verbal logic test included logical, analytical and
numerical questions. There was a small, positive correlation between the two
variables, r = .143, n = 341, p = .008. Overall, there was a small, positive
correlation between the verbal logic test mark and performance in DS1.

4 Conclusion

The University of Kent’s Careers and Employability Service Department assesses
student’s computer programming aptitude with tests measuring competencies
such as numerical reasoning, logical reasoning, verbal reasoning and non-verbal
reasoning which are required in computer programming jobs. These tests were
adapted for this study. The findings show that there is a correlation between a
student’s logical reasoning (r = .199, p = .000), numerical reasoning (r = .257,
p = .000) and verbal logic (r = .143, p = .008) and performance in computer
programming modules. This supports findings of earlier studies [8,14,16] telling
us that problem solving ability is a major predictor of performance in program-
ming courses. The correlation between students’ non-verbal reasoning and per-
formance in computer programming modules was, however, not significant. This
could be because the ability to use pictures in thinking is to a large degree a
matter of practice, not aptitude [17]. A similar finding was reported in [14]; in
this study Computer Science 1 (CS1) students were identified as having expe-
rienced difficulties with: decomposing problems, developing sufficient solutions,
and re-using previously seen solutions (even for elementary problems). To this
end they introduced the course Development of Algorithmic Problem-Solving
Skills (DAPSS) to be taken in parallel to studying CS1. The main focus of
DAPSS was to set aside the details of the programming language and concen-
trate on reflective processes, awareness to problem-solving behaviour and devel-
opment of cognitive skills. Results showed that the DAPSS course had a positive
effect on students’ problem-solving skills which in turn improved their program-
ming skills [14]. It is thus recommended that the teaching of problem-solving
skills at the University of Johannesburg (UJ) and the Tshwane University of
Technology (TUT) be introduced as part of the programming module, to pro-
vide opportunities to enhance students’ programming performance and thinking
processes.



216 G. Barlow-Jones and D. v.d. Westhuizen

References

1. Anderson, L.W., Krathwohl, D.R., Bloom, B.S.: A Taxonomy for Learning, Teach-
ing, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives.
Allyn & Bacon, Boston (2001)

2. Bloom, B.S., Engelhart, M.D., Furst, E.J., Hill, W.H., Krathwohl, D.R.: Taxonomy
of Educational Objectives, Handbook. 1: Cognitive Domain. Longman, London
(1956)

3. Chao, P.: Exploring students’ computational practice, design and performance of
problem-solving through a visual programming environment. Comput. Educ. 95,
202–215 (2016)

4. Cooper, S., Dann, W., Pausch, R.: Alice: a 3-D tool for introductory programming
concepts. Comput. Sci. Coll. 15(5), 107–116 (2000)

5. Dale, N., McMillan, M., Weems, C., Headington, M.: Programming and Problem
Solving with Visual Basic.NET. Jones & Bartlett Learning, Burlington (2003)

6. Gomes, A., Mendes, A.J.: Bloom’s taxonomy based approach to learn basic pro-
gramming. In: World Conference on Educational Multimedia, Hypermedia and
Telecommunications, Association for the Advancement of Computing in Educa-
tion (2009)

7. Gomes, A., Mendes, A.J.: Learning to program – difficulties and solutions. In:
Proceedings International Conference on Engineering Education (2007)

8. Kimmel, S.J., Kimmel, H.S., Deek, F.P.: The common skills of problem solving:
from program development to engineering design. Int. J. Eng. Ed. 19(6), 810–817
(2003)

9. Lister, R.: On blooming first year programming, and its blooming assessment. In:
Proceedings Australasian Conference on Computing Education (2000)

10. Liu, C., Cheng, Y., Huang, C.: The effect of simulation games on the learning of
computational problem solving. Comput. Educ. 57(3), 1907–1918 (2011)

11. Mayer, R.E.: Teaching and Learning Computer Programming: Multiple Research
Perspectives. Routledge, Abingdon (2013)

12. Meerbaum-Salant, O., Armoni, M., Ben-Ari, M.: Learning computer science con-
cepts with scratch. Comput. Sci. Educ. 23(3), 239–264 (2013)

13. Muller, O.: Pattern oriented instruction and the enhancement of analogical rea-
soning. In: 1st Proceedings of the International Computing Education Research
Workshop, pp. 57–67 (2005)

14. Muller, O., Haberman, B.: A Course Dedicated to Developing Algorithmic
Problem-Solving Skills – Design and Experiment. PPIG, Limerick (2009)

15. Paul, R.W.: Critical thinking: what every person needs to survive in a rapidly
changing world. Technical report. Center for Critical Thinking and Moral Critique,
Sonama State University (1990)

16. Reed, D., Miller, C., Braught, G.: Empirical investigation throughout the CS cur-
riculum. In: Proceedings 31st SIGCSE Technical Symposium on Computer Science
Education, pp. 202–216 (2000)

17. Reynolds, C.: Intelligence Testing (2009)
18. Smith, C.J.: Processing thoughts: critical thinking. In: Ethical Behaviour in the

E-Classroom: What the Online Student needs to know, pp. 31–43. Elsevier (2012)
19. University of Kent: Programming Aptitude Tests (2013)


	Problem Solving as a Predictor of Programming Performance
	1 Theoretical Background
	2 Method
	2.1 Instrumentation

	3 Data Analysis
	3.1 Logical Reasoning
	3.2 Non-verbal Reasoning Test Mark
	3.3 Numerical Reasoning Test Mark
	3.4 Verbal Logic Test Mark

	4 Conclusion
	References




