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Preface

This volume contains the papers presented at ISC 2017: the 20th Information Security
Conference held during November 22–24, 2017, in Ho Chi Minh City, Vietnam.

The Information Security Conference is an annual international conference covering
research in theory and applications of information security. ISC aims to attract
high-quality papers in all technical aspects of information security. ISC 2017 was
hosted by the Vietnamese German University (VGU).

There were 97 submissions to ISC 2017. Each submission was reviewed by three
Program Committee members on average, and the reviewing process was double-blind.
After careful reviews and intensive discussions, 25 papers were selected for presen-
tation at the conference. In addition to the contributed talks, there were two invited
talks given by Thai Duong (Google, USA) and Adi Shamir (Weizmann Institute,
Israel), whom we heartily thank for accepting our invitation despite a very busy
schedule. Adi Shamir talked about “Towards Quantitative Analysis of Cyber Security”,
and Thai Duong talked about “Security at Scale: Shipping Secure Software at Google.”

We would like to thank the Program Committee members and the external reviewers
for all the hard work they put in evaluating the papers. We thank Easy Chair for
providing a good platform on paper submission and review. We also thank Springer for
supporting the conference and publishing the conference proceedings in the LNCS
series. We are very grateful to all the people whose work ensured a smooth organi-
zation process: the ISC Steering Committee, and Masahiro Mambo in particular, for
their advice; the local organizing team led by General Chairs Martin Kappes and
Dinh-Thuc Nguyen, and Local Chairs Thuc-Vien Ha and Van-Song Pham. Last but not
least, our thanks go to all the authors who submitted papers and all the attendees.

September 2017 Phong Q. Nguyen
Jianying Zhou
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Rate-One AE with Security Under RUP

Shoichi Hirose1(B), Yu Sasaki2(B), and Kan Yasuda2(B)

1 University of Fukui, Fukui, Japan
hrs shch@u-fukui.ac.jp

2 NTT Secure Platform Laboratories, Tokyo, Japan
{sasaki.yu,yasuda.kan}@lab.ntt.co.jp

Abstract. This paper investigates what sort of security can be
retained by the most efficient (namely, rate-one) AE schemes like OCB
under the release of unverified plaintext (RUP). At CT-RSA 2016,
Chakraborti et al. have presented an impossibility result, which says
that any rate-one AE scheme cannot ensure INT-RUP, a strong integrity
requirement under RUP. In this paper we show that any rate-one AE
scheme cannot satisfy PA2 (plaintext awareness 2) either, a strong pri-
vacy requirement under RUP introduced by Andreeva et al. at Asi-
acrypt 2014. Given these impossibility results, we relax the security
requirements and identify new notions of tag-PA and tag-INT. The new
notions are strictly weaker than PA2 and INT-RUP yet have consider-
able significance in the practical sense. In particular, tag-PA is strictly
stronger than PA1 defined by Andreeva et al. at Asiacrypt 2014. Unfor-
tunately, OCB is neither tag-PA nor tag-INT. We present a new rate-one
AE scheme which is both tag-PA and tag-INT. The new scheme is essen-
tially as efficient as OCB, consuming just one extra call to a block cipher.

Keywords: AE · Decryption misuse · RUP · Rate-one · Tag feedback ·
OCB

1 Introduction

Authenticated encryption (AE) provides authenticity and privacy in one scheme.
Several AE schemes are internationally standardized and used in daily life,
e.g. GCM [9] in IPsec and CCM [16] in TLS. In addition, the CAESAR com-
petition [4] is currently conducted to determine the portfolio of the AE schemes
having several advantages over AES-GCM. In general, efficiency and security are
two important aspects of the AE design.

With respect to efficiency, OCB [8,11,13] shows outstanding performance.
OCB has several attractive features e.g. fully parallelizable, rate-one (only
requires 1 block cipher call per message block without universal hash function),
fast tag computation. OCB is a nonce-based AE. The assumption that protocols
never repeat the same nonce enables such an efficient construction.

With respect to security, AE schemes are designed to be secure when they
are properly used. Meanwhile, cryptographers should not rule out the potential
c© Springer International Publishing AG 2017
P.Q. Nguyen and J. Zhou (Eds.): ISC 2017, LNCS 10599, pp. 3–20, 2017.
https://doi.org/10.1007/978-3-319-69659-1_1



4 S. Hirose et al.

misuses of the cryptographic schemes especially because those schemes are often
implemented by non-expert of cryptography.

Among several misuses, our focus is decryption misuse. In many AE schemes,
the decrypted results can be released only if verification succeeds, while the users
may release them from implementation reasons, e.g. insufficient buffer, which
is formalized as releasing unverified plaintext (RUP) [3]. Then, the plaintext
information will be leaked.

It is a big challenge to design an AE scheme that ensures a certain robust-
ness against misuses but simultaneously satisfies good implementation properties
such as rate-one and parallelizability as OCB does. The difficulty is that misuse
resistant AE schemes are often heavy or lose functionalities.

• The scheme may require two block cipher calls per message block (rate-2),
e.g. SIV mode [14], robust AE [7], RIV mode [1], etc.

• The scheme may require to send additional information, e.g. additional nonce
in nonce-decoy [3], which consumes communication bandwidth.

• The scheme may require to introduce dependency between ciphertext C and
values to be misused, thus generation of C may become expensive or com-
plicated. For example, SIV makes C dependent on the tag T , thus requires
to process message M twice. APE [2] makes M dependent on T during the
decryption, thus requires unusual backward decryption.

Related Work. Nonce decoy [3] offers some robustness against decryption mis-
use, in which the users generate dummy nonce IV ′ by encrypting original nonce
IV, and then run the encryption/decryption with IV ′. When the attacker mod-
ifies IV ′ to something unknown during decryption, the computational result
becomes random, thus receives no damage even if it is released (IV ′-robust
decryption). However, such RUP security is limited to the case that the attacker
modifies IV ′. No RUP security is provided when A, C, or T are modified. More-
over, nonce decoy needs to send both of IV and IV ′ to the receiver, which con-
sumes bandwidth. A permutation based AE, APE [2], has a unique decryption
algorithm, namely “decrypting” tag and then proceeds to decrypting cipher-
text. Because of this feature, APE has the property, which we call “T -robust
decryption.” APE is single pass, but cannot be parallelizable.

Our Contributions. This paper presents an efficient AE scheme which
provides a certain level of robustness against decryption misuse. Consider-
ing the efficiency of OCB, our goal is designing AE with rate-one and full
parallelizability.

As mentioned above, aiming the perfect security for decryption misuse is
costly. Thus we take an opposite approach. Namely, by starting an efficient
construction (OCB), we slightly modify it, possibly with a few more primitive
calls, to enhance its security as much as possible. Regarding efficiency, we avoid
communicating additional information to avoid consuming bandwidth.

The main contribution of this paper is the conversion method named tag
feedback, which turns conventional nonce-based AE to satisfy the above goals.
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Fig. 1. Tag feedback (TF). Left and right diagrams show encryption and decryp-
tion/verification algorithms, respectively. ENCK is a nonce-based encryption, DECK

is a corresponding decryption, FK is a (keyed) hash function and ẼK is a TBC.

In short, our scheme takes as input nonce IV, associated data A and message M ,
and then computes ciphertext C and tag T . Our core idea is then converting IV
to finalization vector FV by applying tweakable block cipher (TBC) that takes
T and hash of A as tweak. The sender does not need to transmit IV, because the
receiver can recover it from FV, T and A. The construction is shown in Fig. 1.

Our construction provides a certain level of robustness against decryption
misuse which we call (FV, T, A)-robust decryption defined as follows.

Definition 1 ((FV, T, A)-Robust Decryption). An AEAD scheme should
not leak any information about plaintext to an adversary that has access to the
decrypt-anyway oracle DECK(·, ·, ·, ·), except if the adversary makes a query
(FV, T, A,C) to its DECK-oracle where (FV, T, A) is a legitimate triplet gener-
ated by the encryption algorithm ENCK .

From the viewpoint of mode of operation, the two-pass, offline construction seems
essential for realizing ciphertext-robustness. Thus (FV, T, A)-robust decryp-
tion achieves maximal level of robustness with rate-one and parallelizable AE.
Because no additional data is communicated, our construction achieves higher
security with lower communication cost than nonce-decoy.

We then propose a concrete construction called ΘCBt by applying tag feed-
back to ΘCB mode, which is a tweakable block cipher level of OCB. We also
prove privacy and authenticity of ΘCBt against (FV, T, A)-respective adversary
and privacy against (FV, T, A)-repeat adversary.

Table 1 summarizes our results. We first show that achieving PA2 [3], a
strongest form of privacy under RUP, is impossible with rate-one AE schemes.
Together with the previous result [6] for INT-RUP [3], a strongest form of authen-
ticity under RUP, our result implies that any rate-one AE scheme cannot ensure
privacy or authenticity in their strongest forms under RUP. This motivates us to
define new security notions under RUP that are slightly weaker than PA2 and
INT-RUP. We call these tag-PA and tag-INT. We propose a new scheme ΘCBt,
which satisfies both tag-PA and tag-INT. ΘCBt maintains the efficiency of the
original ΘCB, which is neither tag-PA nor tag-INT.
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Table 1. Summary of our results; the impossibility result for INT-RUP is due to
Chakraborti et al. [6]

Scheme Privacy Authenticity

PA2 tag-PA PA1 INT-RUP tag-INT For new tags

Any rate-one ✗ ✗

Our OCB-based scheme ✗ ✓ ✓ ✗ ✓ ✓

OCB ✗ ✗ ✗ ✗ ✗ ✓

Finally, our schemes can protect the confidentiality of IV, because IV is
transformed to FV using TBC. This feature fits the use of secret message number
(SMN) discussed in CAESAR [4], which is useful for protocols in practice.

2 An Impossibility Result for PA2

In this section, we show that any rate-one AE scheme does not satisfy PA2. We
first define rate-one AE schemes by generalizing OCB2 mode of operation.

2.1 Rate-One AE Schemes

Put B := {0, 1}n. We have a message M = (M1,M2, . . . ,M�) ∈ B
�. We can

regard B as GF(2n), the field of 2n elements, by mapping B to GF(2)[x]/f(x)
with some irreducible polynomial f(x), where GF(2)[x] denotes the polynomial
ring in variable x with coefficients in the binary field GF(2) = {0, 1}.

Description of OCB2. We can summarize OCB2 mode of operation as follows.
Given a nonce N ∈ B and an �-block message M = (M1, . . . ,M�) ∈ B

�, the OCB2
algorithm outputs ciphertext C := (C1, . . . , C�) ∈ B and a tag T ∈ B. The secret
mask L is computed from the nonce N as L := EK(N). Then intermediate inputs
are computed as Xi := Mi ⊕ 2iL and intermediate outputs as Yi := EK(Xi).
The ciphertext C is defined as Ci := Yi ⊕2iL. Similarly for computing the tag T ,
we have X := M1 ⊕ · · · ⊕ M� and Y := EK(X ⊕ 3 · 2�L). The tag is simply set
as T := Y . Hence, there exists a (2� + 2)-by-(2� + 2) binary matrix E such that

E ·

⎛
⎜⎜⎝

L
M
Y
Y

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
E11 E12 E13 E14

E21 E22 E23 E24

E31 E32 E33 E34

E41 E42 E43 E44

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

L
M
Y
Y

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

X
X
C
T

⎞
⎟⎟⎠ (1)

where X := (X1, . . . , X�) and Y := (Y1, . . . , Y�). We note that E13 and E24 are
strictly lower triangular and we must have E14 = E34 = 0.

Similarly for decryption, OCB2 mode of operation computes intermedi-
ate inputs as Ui := Ci ⊕ 2iL and intermediate outputs as Vi := E−1

K (Ui).
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The plaintext M is recovered as Mi := Vi ⊕ 2iL. Therefore, there exists a 2�-by-
(2� + 1) binary matrix D such that

D ·

⎛
⎝

L
C
V

⎞
⎠ =

(
D11 D12 D13

D21 D22 D23

)
·

⎛
⎝

L
C
V

⎞
⎠ =

(
U
M

)
(2)

where U := (U1, . . . , U�) and V := (V1, . . . , V�) are re-ordering of Y and X,
respectively.

Rate-One AE Schemes. We can define rate-one AE scheme via generalizing
the OCB mode of operation. Namely, we say that an AE scheme is rate-one if
its encryption and decryption can be written with binary matrices E and D in
the form (1) and (2), respectively.

2.2 Any Rate-One AE Scheme Is Not PA2

Now given the above definition of rate-one AE schemes, we show that a rate-one
AE scheme cannot be PA2. PA2 means that the output of the decrypt-anyway
oracle (i.e. plaintext candidates) for invalid ciphertext cannot be distinguished
from uniform random strings. We make use of the following result:

Lemma 1 (Chakraborti et al. [6]). For the rate-one AE scheme to preserve
privacy, the submatrix D23 must be invertible.

Now recall that X = E11L+E12M+E13Y where E13 is strictly lower triangular.
Hence for two different queries (N,C, T ) and (N,C ′, T ) we must have ΔX =
E12ΔM +E13ΔY , where the symbol Δ means for example ΔX := X ⊕X ′. Also
recall that we have M = D21L + D22C + D23V . We have ΔM = D22ΔC +
D23ΔV , where the submatrix D23 is invertible. Since ΔV is a re-ordering of ΔX,
one can easily distinguish the outputs of decrypt-anyway oracle from random
strings by for example setting V1 = V ′

1 (hence ΔV1 = 0) and checking these
conditions.

3 Basic Idea and Formulation

3.1 Tag Feedback TF in a Nutshell

In this section we explain how one could use our tag feedback TF for the purpose
of secure and efficient authenticated encryption. We refer back to Fig. 1.

Encryption. The encryption algorithm of TF takes as its input an initializa-
tion vector IV that is a nonce, a message M , associated data A and outputs
ciphertext C, a tag T and a finalization vector FV whose length is equal to that
of IV. Then the quadruplet (FV, T, A,C) gets sent in a channel or put in storage,
depending on the application in use. Here it is important that the value of IV
does not need to be communicated between the parties or saved along with the
encrypted data.
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Decryption. Now the decryption algorithm of TF, upon receiving (FV, T, A,C),
first recovers the initialization vector IV from the finalization vector FV using the
associated data A and the tag T . Then, using this IV, the decryption algorithm
of TF proceeds to verification and decryption of T and C. At the end, it outputs
either the decrypted message M or a reject symbol ⊥. In case of decryption
misuse, the decrypted “message” M gets always released instead of ⊥.

3.2 Generalized AEAD Formulation by Shrimpton and Terashima

In order to formally capture the idea of tag feedback, we need slightly generalized
formulation of AEAD, which has been given by Shrimpton and Terashima [15].
In this section we review this formulation and recast it to our syntax of tag
feedback.

The formulation by Shrimpton and Terashima is a natural generalization of
the classical nonce-based AEAD. Let IV denote the initialization vector, which is
a nonce. In the classical AEAD framework [12], the same, synchronized IV must
be used both by the sender for encryption and by the receiver for decryption. On
the other hand, in the generalized AEAD, only the sender, who encrypts, uses IV.
Shrimpton and Terashima introduces the idea of reconstruction information [15]
whose specific form corresponds to the finalization vector FV in the current
work. The value of FV is calculated in the encryption process and sent along
with the encrypted data. The receiver, who decrypts, uses FV instead of IV.
Obviously, in the special case where FV = IV, this formulation simply reduces
to the classical AEAD framework.

Syntax. We split encryption and authentication (tag generation) functionali-
ties. Syntactically a combined approach would also work, but there are a few
reasons why we adopt the disjointed syntax. First, in the setting of online ciphers,
ciphertext and tag play fundamentally different roles, and indeed many existing
online AE algorithms (e.g. CCM [16], GCM [9] and OCB [13]) have two clearly-
separated algorithmic parts to produce ciphertext and tag. Second, in the setting
of release of unverified plaintext (RUP) [3], we have independent notions of pri-
vacy and integrity, and as a result we need disjointed oracles in order to define
the security notions.

An AEAD scheme Π = (EK ,GK ,VK ,DK) is a set of four algorithms, where
K is a key in some space K. The first two, encryption EK and generation GK ,
are used by the sender. The last two, verification VK and decryption DK , are
used by the receiver. We set N := {0, 1}n where n denotes a block length (e.g.
n = 64, 128). Let A, M, C ⊂ {0, 1}∗ denote the associated data space, message
space and ciphertext space, respectively. Let L be the set of valid tag lengths.
For example, L = {32, 64, 96, 128}. The parameter τ ∈ L denotes the tag length.
We set T :=

⋃
τ∈L{0, 1}τ , which is nothing but the tag space.

1. Message encryption. The encryption algorithm EK takes as its input an
initialization vector IV ∈ N, associated data A ∈ A, a message M ∈ M, and
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outputs ciphertext C ∈ C as EK(IV, A,M) → C. For simplicity we assume
that the equality |C| = |M | always holds.

2. Tag generation. The generation algorithm GK takes as its input a tag length
τ ∈ L, an initialization vector IV ∈ N, associated data A ∈ A, a message
M ∈ M, and outputs a finalization vector FV ∈ N and an authentication
tag T ∈ {0, 1}τ , as GK(τ ; IV, A,M) → (FV, T ).

So one receives a quadruple (FV, T, A,C). Note the major difference from the
classical nonce-based AEAD framework that the plain IV does not get commu-
nicated, and hence the receiver in general does not know the value of IV upon
decryption.

3. Tag verification. The verification algorithm VK takes as its input a final-
ization vector FV ∈ N, a tag T ∈ T, associated data A ∈ A, cipher-
text C ∈ C, and outputs a symbol, either � or ⊥. Succinctly, we have
VK(FV, T, A,C) = � or ⊥. Here note that the tag length τ is not explic-
itly input to VK , but rather it should become clear from the input value T .

4. Ciphertext decryption. This is so called “decrypt-anyway” algorithm [3]. The
decryption algorithm DK takes as its input a finalization vector FV ∈ N, a
tag T ∈ T, associated data A ∈ A, ciphertext C ∈ C, and outputs a message
M ∈ M. Succinctly written, DK(FV, T, A,C) → M . Note that this algorithm
invariably outputs “something” in M regardless of the authenticity of input.
For simplicity we assume that the equality |M | = |C| always holds.

IV Recovery (Optional). Sometimes a receiver may want to recover the value
of original IV. Such a demand occurs when IV contains some useful information
(e.g. managed counter, secret message number [4,5], and plaintext via nonce
stealing [10]).

Such a functionality is not required by the generalized AEAD formulation,
and it will not appear in our security analysis, either. This is optional and not
mandatory. However, our tag feedback TF provides this useful functionality, so
for the sake of completeness we describe the algorithmic syntax here.

5. IV Recovery. The recovery algorithm RK takes as its input a finalization
vector FV ∈ N, a tag T ∈ T, associated data A ∈ A, ciphertext C ∈ C, and
outputs an initialization vector IV ∈ N, as RK(FV, T, A,C) → IV. Note that
the recovery algorithm RK outputs a value in N regardless of the authenticity
of input, just like the decryption algorithm DK .

FV Synchronization. In the classical nonce-based AEAD framework, it is out-
side its scope how to synchronize IV between parties [12]. The most common
way is to directly communicate the current value of IV. Another way is possi-
ble when the parties are both stateful and decide to use predictable IV, like a
counter. In such a case, theoretically, they may be able to agree on the same IV
without directly communicating its value. However, in practice, the communi-
cation channel is often unreliable, and hence the synchronization of IV is not so
easy. Indeed, most protocols such as IPSec and SSL/TLS adopt the solution of
sending (part of) IV along with ciphertext, tag and associated data.
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In the generalized AEAD formulation, the synchronization (or “coupling”) of
IV and FV is a priori explicitly specified, because the value of FV is computed
in the encryption process and sent to the receiver together with ciphertext, tag
and associated data. It should be noted that the generalized formulation excludes
the above (though rather hypothetical) case of synchronizing IV without direct
communication.

4 ΘCBt Construction

In this section, we present an OCB-based AEAD scheme that we call ΘCBt,
following the conversion TF. We describe our scheme using an ideal tweakable
block cipher, so we should rather say that our scheme is based on ΘCB, the
OCB mode having an ideal tweakable block cipher as its underlying primitive
(hence our name ΘCBt). Of course one could use an ordinary block cipher via
XEX and XE (and realizes “OCBt”). The construction is given by Algorithm 1.
It is also depicted in Fig. 2. Among the different versions of OCB, our scheme is
most similar to OCB2 [11].

In Algorithm 1, π : T × {0, 1}n → {0, 1}n is the encryption function of
the ideal tweakable block cipher, where T is the tweak space. The encryption
function with tweak Tw ∈ T is denoted by πTw(·). It is assumed that T =
{0, 1, 2} × (N ∪ N × T) × {1, . . . , η} × {0, 1, 2}, where η = maxX∈M∪A	|X|/n
.

The function partition takes X ∈ {0, 1}∗ as input and divides it into blocks
X1,X2, . . . , Xx such that x = max{	|X|/n
, 1} and X = X1‖X2‖ · · · ‖Xx, where
|Xi| = n for 1 ≤ i ≤ x − 1, and 0 ≤ |Xx| ≤ n. For Y ∈ {0, 1}∗ such that
|Y | < n, Y ‖0∗ means that the minimum number of 0’s are appended so that
|Y ‖0∗| = n. Y ‖10∗ means that the minimum number of 0’s are appended so that
|Y ‖10∗| = n. The function �(Z) returns the �-bit prefix of Z, where Z ∈ {0, 1}n

and 0 ≤ � ≤ n. The function len(Y ) returns the n-bit binary representation
of |Y |.

M[4]

len

C[4]

Σ

T

IV

FV

M[3]M[2]M[1]

C[3]C[2]C[1]

π̄(IV,1,0)

τ

A

U

PMAC

π̄(IV,2,0) π̄(IV,3,0) π̄(IV,4,0) π̄(IV,4,2) π̃(U T,1,0)

Fig. 2. The ΘCBt construction. π(0,·,·,·) and π(2,·,·,·) in Algorithm 1 are denoted by
π̄(·,·,·) and π̃(·,·,·), respectively.
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Algorithm 1. OCB-based construction ΘCBt

100: function Θt.E(IV, A, M)
101: T, C ← Θ.E(IV, M)
102: return C
103: end function

200: function Θt.G(τ ; IV, A, M)
201: T, C ← Θ.E(IV, M)
202: U ← PMAC(A)
203: FV ← π(2,U‖T,1,0)(IV)
204: return FV, T
205: end function

300: function Θ.E(IV, M)
301: M [1], . . . , M [m] ← partition(M)
302: Σ ← 0n

303: for i = 1 to m − 1 do
304: C[i] ← π(0,IV,i,0)(M [i])
305: Σ ← Σ ⊕ M [i]
306: end for
307: pad ← π(0,IV,m,1)(len(M [m]))
308: C[m] ← M [m] ⊕|M [m]| (pad)
309: Σ ← Σ ⊕ (C[m]‖0∗) ⊕ pad
310: T ←τ (π(0,IV,m,2)(Σ))
311: C ← C[1]‖C[2]‖ · · · ‖C[m]
312: return T, C
313: end function

400: function PMAC(A)
401: A[1], A[2], . . . , A[a] ← partition(A)
402: ς ← 0n

403: for i = 1 to a − 1 do
404: ς ← ς ⊕ π(1,0n,i,0)(A[i])
405: end for
406: if |A[a]| = n then
407: U ← π(1,0n,a,1)(ς ⊕ A[a])
408: else
409: A′[a] ← A[a]‖10∗

410: U ← π(1,0n,a,2)(ς ⊕ A′[a])
411: end if
412: return U
413: end function

500: function Θt.D(FV, T, A, C)
501: M, d ← Θt.VD(FV, T, A, C)
502: return M
503: end function

600: function Θt.V(FV, T, A, C)
601: M, d ← Θt.VD(FV, T, A, C)
602: return d
603: end function

700: function Θt.VD(FV, T, A, C)
701: U ← PMAC(A)
702: IV ← (π(2,U‖T,1,0))−1(FV)
703: C[1], . . . , C[m] ← partition(C)
704: Σ ← 0n

705: for i = 1 to m − 1 do
706: M [i] ← (π(0,IV,i,0))−1(C[i])
707: Σ ← Σ ⊕ M [i]
708: end for
709: pad ← π(0,IV,m,1)(len(C[m]))
710: M [m] ← C[m] ⊕|C[m]| (pad)
711: Σ ← Σ ⊕ (C[m]‖0∗) ⊕ pad
712: T ′ ←τ (π(0,IV,m,2)(Σ))
713: M ← M [1]‖M [2]‖ · · · ‖M [m]
714: d ← ⊥
715: if T = T ′ then
716: d ← �
717: end if
718: return M, d
719: end function

5 Security Definitions

We define security notions for an AEAD scheme Π =
(
EK ,GK ,VK ,DK

)
in this

section. Our security goals are privacy and authenticity under decryption misuse
(i.e. release of unverified plaintext). We start with describing the adversarial
model.
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5.1 Adversarial Model

An adversary A is an oracle machine. The adversary A is given access to oracles
EK(· · · ), GK(· · · ), VK(· · · ) and DK(· · · ). We write AO to denote an experiment
of running A interacting with its oracle O.

Sometimes adversary A outputs a value at the end of its execution. With
abuse of notation we also write AO to indicate this value. Therefore, the notation
Pr

[
AO = 1

]
stands for the probability that A returns 1 after interacting with its

oracle O. All probabilities are taken over random coins used in the experiment,
i.e. keys and other random variables chosen by the oracles and random tapes
used by the adversary, if any.

For simplicity we only consider computationally unbounded adversaries, and
in our analysis only the query complexity is bounded. This is possible because
we assume that the underlying block cipher is ideal. It is straightforward to
translate our results into the standard model, where the underlying primitive is
replaced with an actual block cipher like AES, with an additional term in the
security bound arising to the security of the block cipher itself.

Nonce-IV -Respecting. We require that the adversary A never makes queries
of different messages M = M ′ having the same IV , to E-oracle or G-oracle. Each
IV corresponds to at most one message M .

Note that the adversary is allowed to repeat the same pair (IV,M) with
different values of A and τ . In some AEAD schemes (e.g. ciphertext transla-
tion [10]), most part of ciphertext would not be affected by A, and hence the
two outputs EK(IV,A,M) and EK(IV,A′,M) may be almost identical. Also, in
many AEAD schemes, the generated tags GK(τ ; IV,A,M) and GK(τ ′; IV,A,M)
for different tag lengths τ = τ ′ may look much related (e.g. tag truncation).

We treat these distinguishability not as violating the confidentiality of M (or
authenticity by T ) but rather as providing us with engineering benefits, because
our definitions still require security in a strong sense. This leads to a privacy
notion similar to deterministic AE [14]; that is, the adversary is able to tell
that the exact same message M must have been encrypted for these multiple
instances (either with changing A or with changing τ), but that is all what the
adversary is able to tell about the message M .

Nonce-(FV,T,A)-Respecting. We require that adversary A never makes
queries with an “old” triplet (FV, T, A) to its D-oracle. Here we say that a
triplet (FV, T, A) is old if there has been already a query to G-oracle such that
GK(τ ; IV, A,M) → (FV, T ).

We also require that adversary A never repeats the same triplet (FV, T, A) to
its D-oracle. On the other hand, our scheme ΘCBt still ensures some confiden-
tiality (a form of plaintext awareness [3]) even against such (FV, T, A)-repeating
adversaries. We refer to Sect. 7 for details.
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Algorithm 2. Ideal objects to define privacy

function Initialization
K

$←− K

S ← ∅

end function

function E$
K(IV, A, M)

if S[IV, M ] undefined then

S[IV, M ]
$←− {0, 1}|M|

end if
S ← S[IV, M ]
C ← EK(IV, A, S)
return C

end function

function G$
K(τ ; IV, A, M)

if S[IV, M ] undefined then

S[IV, M ]
$←− {0, 1}|M|

end if
S ← S[IV, M ]
(FV, T ) ← GK(τ ; IV, A, S)
return (FV, T )

end function

function D$
K(FV, T, A, C)

S
$←− {0, 1}|C|

return S
end function

5.2 Security Notions

Privacy: tag-PA. The privacy notion is defined in a form of indistinguishabil-
ity. The adversary A is given access to E-, G- and D-oracles. The corresponding
ideal objects E$

K , G$
K , D$

K are defined in Algorithm 2. The first two, E$
K and G$

K ,
are essentially the same as the real objects, except that they use a random mes-
sage S ∈ {0, 1}|M | instead of M . This is due to the fact that the tags do not need
to “look random” for different tag lengths. Indeed, it can be just truncation. The
last object D$

K simply returns a random string S
$←− {0, 1}|C|.

Now we define the privacy as

Advpriv
Π (A) := Pr

[
AEK ,GK ,DK = 1

]
− Pr

[
AE$

K ,G$
K ,D$

K = 1
]
,

where the probabilities are taken over all random coins used in each experiment.
Note the presence of the decryption algorithm. This notion guarantees robustness
against decryption misuse under nonce-IV, nonce-(FV, T, A)-respecting.

Authenticity: tag-INT. The authenticity notion is defined in a form of
unforgeability. The adversary A is given access to all four oracles EK , GK , VK

and DK . We define

Advauth,τ
Π (A) := Pr

[
AEK ,GK ,VK ,DK forges a τ -bit tag

]
,

where “forges a τ -bit tag” means that adversary A makes a non-trivial V-query
(FV, T, A,C) with |T | = τ so that V-oracle returns �. A V-query is trivial if
both the queries EK(IV, A,M) → C and GK(τ ; IV, A,M) → (FV, T ) have been
already made. Previous G-queries with τ ′ = τ do not count.

Note that the parameter τ is explicit in this definition. This is because we
want to ensure τ -bit security for τ -bit tags, which we demand even under tag
truncation. We want to avoid such a situation as 296 trials would be sufficient
to guess a 128-bit tag after seeing its truncated 32-bit part.
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6 Security of ΘCBt

The security of OCB-based construction ΘCBt is discussed on the assumption
that the underlying tweakable block cipher is ideal. To simplify the proof, PMAC
is replaced with a function ρ : A → {0, 1}n chosen uniformly at random. It is
justified since the tweaks of π used in PMAC and those of π used in Θ.E are
disjoint [11, Theorem 15].

Without loss of generality it is assumed that, for any E-query (IV, A,M),
adversary A makes a G-query (τ ; IV, A,M) right after the E-query. Values for the
i-th query made by A are represented with subscript i. For example, if the i-th
query is a G-query, then it is denoted by (τi; IVi, Ai,Mi) and the corresponding
reply is denoted by (FVi, Ti). For a query made by A, a value or a tuple of
values in the query or the corresponding reply are said to be fresh if they do not
appear before the query.

Let Colρ be an event that there exist some distinct i and j such that Ai = Aj

and ρ(Ai) = ρ(Aj).
Let ColIV,1 be an event that there exists some D-query (FVi, Ti, Ai, Ci) such

that IVi = IVj for some j such that 1 ≤ j < i and (FVi, Ti, Ai) = (FVj , Tj , Aj).
Let ColIV,2 be an event that there exists some E-query (IVi, Ai,Mi) with fresh
IVi such that IVi = IVj for some D-query (FVj , Tj , Aj , Cj) such that 1 ≤ j < i
and (FVi, Ti, Ai) = (FVj , Tj , Aj).

Theorem 1 (Privacy). Let A be any adversary against privacy of ΘCBt.
Suppose that A makes at most qe, qg and qd queries to Θt.E, Θt.G and Θt.D,
respectively. Let q = qe + qg + qd. Then,

Advpriv
ΘCBt(A) ≤ q2

2n
+

2q qd

2n − q
.

Proof. Notice that A does not repeat the same (FV, T, A) to the D-oracle.
In addition, A does not ask old (FV, T, A) to the D-oracle. Thus, as long as
ColIV,1 ∪ ColIV,2 does not occur, (Θt.E ,Θt.G,Θt.D) and (Θt.E$,Θt.G$,Θt.D$)
look identical to each other. Both (Θt.E ,Θt.G) and (Θt.E$,Θt.G$) evaluate π on
a single point for each tweak to produce C’s and T ’s. Thus,

Pr
[
AΘt.E,Θt.G,Θt.D = 1

]
− Pr

[
AΘt.E$,Θt.G$,Θt.D$

= 1
]

≤ Pr[ColIV,1 ∪ ColIV,2] ,

where Pr[ColIV,1 ∪ ColIV,2] ≤ Pr[Colρ] + Pr[ColIV,1 |Colρ ] + Pr[ColIV,2 |Colρ ].
Since ρ is a uniform random function, Pr[Colρ] ≤ q2/2n.
Suppose that Colρ does not occur. For D-query (FVi, Ti, Ai, Ci), if (Ti, Ai)

is fresh, then IVi is chosen uniformly at random from 2n elements, and the
probability that IVi is not fresh is at most (i − 1)/2n. On the other hand, if
(Ti, Ai) is not fresh, then FVi = FVj for every (FVj , Tj , Aj) such that (Ti, Ai) =
(Tj , Aj) and 1 ≤ j < i. Thus, IVi is chosen uniformly at random from at least
2n − (qg + qd) elements, and the probability that IVi is not fresh is at most
(i − 1)/(2n − (qg + qd)). Thus, Pr[ColIV,1 |Colρ ] ≤ q qd/(2n − q).
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For D-query (FVi, Ti, Ai, Ci), the corresponding IVi is not disclosed and
chosen uniformly at random from at least 2n − (qg +qd) elements. It implies that
Pr[ColIV,2 |Colρ ] ≤ qeqd/(2n − q). ��

Theorem 2 (Authenticity). Let A be any adversary against authenticity of
ΘCBt. Suppose that A makes at most qe, qg, qv and qd queries to Θt.E, Θt.G,
Θt.V and Θt.D, respectively. Let q = qe + qg + qv + qd. Then,

Advauth,τ
ΘCBt (A) ≤ q2

2n
+

2q qd

2n − q
+

qv

2τ (1 − (qv + 1)2−n)
.

Proof. Let ColIV = ColIV,1 ∪ ColIV,2. Let Suc be the event that A is success-
ful in forgery of a τ -bit tag. Then, Pr[Suc] ≤ Pr[ColIV ∪ Suc] ≤ Pr[ColIV] +
Pr[Suc |ColIV ].

Similarly to the proof of Theorem 1, Pr[ColIV] ≤ q2/2n + 2q qd/(2n − q).
Notice that A does not make queries with old (FV, T, A) to its D-oracle.

Thus, as long as ColIV does not occur, D-queries gives A no information on
encryption with tweaks using IV ’s in E- or G-queries.

A can ask (FV, T, A) obtained by a G-query in the V-queries. A can also
repeat the same (FV, T, A) in the V-queries. Then, similar to the proof of
Theorem 4 in [11], the probability that a V-query is successful is at most
2n−τ/(2n − qv − 1). Thus, Pr[Suc |ColIV ] ≤ qv/(2τ (1 − (qv + 1)2−n)). ��

7 Privacy Against (FV, T,A)-Repeating Adversaries

In this section, we show that some sort of privacy still remains even against
(FV, T,A)-repeating adversaries. What we prove here is a type of plaintext
awareness [3] against (FV, T,A)-repeating adversaries under RUP. It is quite
general and immediately implies the privacy theorem proven in Sect. 6 against
(FV, T,A)-respecting adversaries under RUP.

The pa1-advantage of adversary A is defined as

Advpa1
Π (A) = Pr

[
AEK ,GK ,DK = 1

]
− Pr

[
AEK ,GK ,D = 1

]
,

where D is an extractor. The extractor D is a probabilistic but stateless algorithm
that takes as its input a query (FV, T, A,C) and its associated history string
α[FV, T, A] and tries to mimic the output of the “real” oracle. The history string
α[FV, T, A] contains the record of previous adversarial activities (i.e. queries to
and replies from the oracles) associated with the triplet (FV, T, A).

Theorem 3. Let A be any adversary against plaintext awareness of ΘCBt. Sup-
pose that A makes at most qe, qg and qd queries to Θt.E, Θt.G and Θt.D, respec-
tively. Let q = qe + qg + qd. Then,

Advpa1
ΘCBt(A) ≤ q2

2n
+

2qqd

2n − q
.
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Proof. A is allowed to make a D-query (FV, T, A,C) such that (FV, T ) is pro-
duced as a reply to some previous G-query (τ ; IV, A,M), where (IV, A,M) is
an E-query prior to the G-query. For D-query (FV, T, A,C), the extractor Θt.D
works as follows:

1. Suppose that (FV, T, A) is fresh. Namely, it does not appear prior to the
D-query. Then, return M chosen uniformly at random from {0, 1}|C|.

2. Suppose that (FV, T, A) is not fresh. Then, return M computed as follows.
Let C be the set of C ′ such that (FV, T, A,C ′) is produced by some pre-
vious E-query and G-query, or it is a previous D-query. Let partition(C) =
(C[1], C[2], . . . , C[m]).
(a) For 1 ≤ i ≤ m − 1, if there exists some C ′ ∈ C such that C[i] = C ′[i]

and C ′[i] is not the last block of C ′, then M [i] ← M ′[i], where M ′ is
a message of C ′. Otherwise, M [i] is chosen uniformly at random from
{0, 1}n \ {M ′[i] |C ′ ∈ C and C ′[i] is not the last block of C ′}.

(b) For the last block, if there exists some C ′ ∈ C such that |C ′| = |C|, then
M [m] ← M ′[m]⊕C ′[m]⊕C[m]. Otherwise, M [m] is chosen uniformly at
random from {0, 1}|C[m]|.

(Θt.E ,Θt.G,Θt.D) and (Θt.E ,Θt.G,Θt.D) look identical to each other as long
as ColIV,1 ∪ ColIV,2 does not occur. Thus,

Pr
[
AΘt.E,Θt.G,Θt.D = 1

]
− Pr

[
AΘt.E,Θt.G,Θt.D = 1

]
≤ Pr[ColIV,1 ∪ ColIV,2] .

Similarly to Theorem 1, we can prove Pr[ColIV,1∪ColIV,2] ≤ q2/2n+2qqd/(2n−q).
��

8 Discussion

8.1 Implementation Choices

In general, computation resources of encrypting and decrypting devices are
unbalanced. In some network, end-devices with restricted resource collect sen-
sitive data which is then encrypted and sent to the server. While in other net-
work, the server generates sensitive orders and transfers to the end devices. In
the former case, encryption must be as light as possible while decryption will be
done in a resource-rich environment. The situation is opposite in the latter case.
ΘCBt can be implemented in several ways depending on which of encryption
and decryption implementors want to optimize as summarized in Table 2.

Implementation 1: Optimizing Encryption. The natural implementation
of ΘCBt is optimized for encryption. The plaintext is encrypted block by block
from the beginning, and the ciphertext is sent to the decryption player online.

On the other hand, tag generation requires the checksum of all message
blocks. Decryption only can start after FV is sent, thus decryption may not
be able to start immediately after receiving the first ciphertext blocks. How-
ever, considering that taking checksum of all message blocks is much faster than
computing EK for all blocks, delay of receiving FV is small.
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Implementation 2: Optimizing Decryption. We can choose to minimize the
cost of decryption by allowing the encryption to be two-passes. The idea is first
generating and sending FV to the decryption player. After FV is sent, encryption
starts from the first block. Because FV has already been sent, decryption can
immediately start after receiving each ciphertext block.

Encryption can be implemented in two ways. To optimize latency, both
encryption and FV generation are simultaneously computed by storing the
ciphertext in a large buffer. After FV is sent, the ciphertext in the buffer is
released. To optimize throughput without using buffer, the encryption player
first computes FV. After FV is sent, the encryption starts.

Table 2. Implementation choices

Rate Pass On-the-fly

Implementation 1 Enc 1 1 �
Dec 1 2 −

Implementation 2 Enc 1 2 −
Dec 1 2 �

8.2 Supporting Secret Message Number (SMN)

SMN defined in CAESAR [4] is a type of IV having two features; confidentiality
of SMN is ensured, and SMN is recovered during decryption.

IV Confidentiality. Bernstein [5] listed importance of IV confidentiality.

• Suppose that IV is set to some unique data from earlier in the protocol,
e.g. the number of message packets processed so far. Such sensitive informa-
tion should not be exposed.

• Suppose that IV is set to user’s CPU dependent data, e.g. a high-resolution
monotonic clock. Actual CPU clocks are not exactly real time. If it is leaked,
the difference may reveal some sensitive CPU information, e.g. CPU’s load.

In our scheme, only FV is communicated, which efficiently supports SMN .

Security Against Replay Attacks. SMN is useful to prevent replay attacks,
in which the attacker first eavesdrops correct (FV , T, A,C), and later sends the
same quadruplet to the verifier. Because the quadruplet is correct, authentication
can succeed. To prevent replay attacks, protocols need to be stateful. A popular
countermeasure is embedding the counter of the number of messages processed
before in the message, which raises several concerns [5]:

• Real world users can wrongly implement countermeasures.
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• Replays should be detected immediately. Spending long to detect replays
consumes bandwidth and decreases performance. It also increases the risk of
denial of service.

A simple implementation of the countermeasure which detects replays efficiently
possibly without embedding the counter in the message, is important. Our
scheme allows implementors to simply set the counter in IV . Decryption first
recovers IV , thus replays can be detected at the very beginning of the decryption.

Appendix

A Rational of Associated Data Computation in ΘCBt

In Sect. 4, we presented ΘCBt as an instantiation of the tag-feedback, where A
is processed with PMAC and the result is used as a part of tweak. We stress
that identifying the best construction for incorporating A is non-trivial. Here,
we explain the rational behind ΘCBt especially about the incorporation of A.

A.1 Synthetic Approach

We incorporate associated data A into the tag feedback. One can immediately
notice that associated data A cannot be just input to the underlying ΘCB, even
if it accepts associated data. This is because we need to make FV dependent
directly on A, not via tag T , to achieve (FV, T, A)-robust decryption.

So we use a keyed function FK to “hash” associated data A ∈ A. By following
the design of OCB2, we use PMAC as FK . Write U ← PMACK(A). Write W
the tag output of the underlying ΘCB. Then we make the tweak input, tw, and
the final tag, T , by using or combining U and W . There are four possibilities:
U , W , U ⊕ W and U ‖ W , and thus 16 combinations as shown in Fig. 3.

Fig. 3. Synthetic approach for
tw and T

Fig. 4. Sixteen choices for tw and T

The analysis for those sixteen cases is summarized in Table 2.
In Fig. 4, ‘−’ represents that the construction is not suitable with respect to

efficiency or security, and superscript numbers indicate the reasons as follows.
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−1: The new tag size |T | increases from the original |W |.
−2: By using U as new tag T , only A is authorized. Integrity can be violated.
−3: Recovering IV from FV during decryption is not dependent on T , thus

correct M for invalid T is leaked by querying invalid T (violating confiden-
tiality). This clearly illustrates the fact that the tag feedback is essential for
(FV, T, A)-robust decryption.

−4: U is not used anywhere, which is obviously insecure.
−5: T is directly used as tweak, thus recovering IV from FV during decryption

is not dependent on U , which is insufficient for (FV, T, A)-robust decryption.

In the end, we have four secure constructions. Among them TF is more advan-
tageous on the simplicity of the security proof. To simply describe the concept
of our construction, we chose TF to build ΘCBt.

B Authenticity against Adversaries Asking Old Triplets

In this section, we show that some sort of authenticity still remains even against
adversaries asking old triplets (FV, T,A). For an old triplet (FV, T,A), if adver-
sary A makes a D-query (FV, T, A,C), then we call the triplet corrupted. We
want that all uncorrupted triplets (FV, A, T ) remain secure. This motivates us
to define the ¨auth-advantage of A as

Adv
¨auth,τ

Π (A) := Pr
[
AEK ,GK ,VK ,DK forges a τ -bit tag with uncorrupted

]
,

where by “forges with uncorrupted” we mean A being able to make the V-oracle
return � for a query (FV, T, A,C) such that (FV, T, A) is uncorrupted.

Theorem 4. Let A be any adversary against authenticity of ΘCBt. Suppose
that A makes at most qe, qg, qv and qd queries to Θt.E, Θt.G, Θt.V and Θt.D,
respectively. Let q = qe + qg + qv + qd. Then,

Adv
¨auth,τ

ΘCBt (A) ≤ q2

2n
+

2qqd

2n − q
+

qv

2τ (1 − (qv + 1)2−n)
.

The proof is omitted due to the page limit.
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Abstract. In this paper, we propose an algorithm for constructing
guess-and-determine attacks on keystream generators and apply it to
the cryptanalysis of the alternating step generator (ASG) and two its
modifications (MASG and MASG0). In a guess-and-determine attack,
we first “guess” some part of an initial state and then apply some proce-
dure to determine, if the guess was correct and we can use the guessed
information to solve the problem, thus performing an exhaustive search
over all possible assignments of bits forming a chosen part of an initial
state. We propose to use in the “determine” part the algorithms for solv-
ing Boolean satisfiability problem (SAT). It allows us to consider sets of
bits with nontrivial structure. For each such set it is possible to esti-
mate the runtime of a corresponding guess-and-determine attack via the
Monte-Carlo method, so we can search for a set of bits yielding the best
attack via a black-box optimization algorithm augmented with several
SAT-specific features. We constructed and implemented such attacks on
ASG, MASG, and MASG0 to prove that the constructed runtime esti-
mations are reliable. We show, that the constructed attacks are better
than the trivial ones, which imply exhaustive search over all possible
states of the control register, and present the results of experiments on
cryptanalysis of ASG and MASG/MASG0 with total registers length of
72 and 96, which have not been previously published in the literature.

Keywords: Keystream generator · Alternating step generator · Crypt-
analysis · Guess-and-determine attack · SAT · Monte Carlo

1 Introduction

The alternating step generator (ASG) was proposed in [16]. It consists of two
stop/go clocked binary Linear Feedback Shift Registers (LFSRs), LFSRX and
LFSRY, and a regularly clocked binary LFSR, LFSRC. The clock-control bit
defines which of the two stop/go LFSRs is clocked, and the keystream bit is
obtained as the bitwise sum of stop/go LFSRs’ output bits. There exist many
attacks on ASG. The majority of them (e.g., [14,15,19,20]) follow the divide-and-
conquer approach, where a correlation attack is performed on stop/go LFSRs.

c© Springer International Publishing AG 2017
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22 O. Zaikin and S. Kochemazov

There is a number of ASG modifications. In [32] two of its modifications
(MASG and MASG0) were proposed. They are based on replacing stop/go
LFSRs by Nonlinear Feedback Shift Registers (NLFSRs). Because of the non-
linearity of the controlled registers, it is unlikely that most attacks on ASG can
be easily extended to them.

In the present paper we develop the guess-and-determine approach to ASG,
MASG and MASG0 cryptanalysis. The most simple variant of a guess-and-
determine attack on ASG looks as follows. First, we “guess” the initial state
of the control register (e.g., see [16,34]). By guessing we mean assigning val-
ues to corresponding bits. After this we write a system of equations over bits
corresponding to states of controlled LFSRs and “determine” using appropriate
methods if the system is consistent and has a solution. It is clear that to find a
correct “guess” we need to perform an exhaustive search over all possible states
of the control register. An interesting question is whether there exist less trivial
sets of bits than that comprising the control register, and if they do, how can
one solve the systems of (in a general case) nonlinear equations produced by
assigning values to the corresponding bits? In the present paper we positively
answer the former question thanks to applying algorithms for solving Boolean
satisfiability problem (SAT) [4] to the latter.

SAT is formulated as follows: for a given propositional formula to either find
its satisfying assignment (the assignment of all its variables that makes formula
True), or to prove that it is unsatisfiable. Because SAT is an NP-hard problem, it
means that even if our simplified system of equations contains nonlinear entries,
we can still reduce it to SAT and solve it in such form. It is important to notice,
that while state-of-the-art SAT solving algorithms (usually referred to as SAT
solvers) show remarkable performance on a huge variety of test samples, it is
impossible to know in advance how long will it take to solve each particular
SAT instance. Nevertheless, following a number of papers [10,30] we show that
it is possible to construct a runtime estimation of cryptanalysis of a keystream
generator for each chosen set of bits to guess, SAT solver and keystream fragment
size. This runtime estimation is constructed computationally via the Monte Carlo
method [12] and can not be expressed by formula.

Thus, we can construct a guess-and-determine attack for an arbitrary subset
of a set of bits, corresponding to an initial state of a keystream generator and
estimate its runtime. It means, that using black-box optimization algorithms we
can in fact organize an automatic procedure for finding good subsets of bits that
yield better attacks. It was done before in application to several generators [10,
28–30], but the previous papers did not take into account a number of important
SAT-related issues, thus the approach presented in our paper simply works better
in one or the other aspect.

Let us present a brief outline of the paper. In Sect. 2 we briefly describe
ASG and its modifications studied in the paper, and focus on particular con-
figurations of ASG, MASG and MASG0 (as well as their SAT encodings). In
Sect. 3 we suggest a new Monte-Carlo based algorithm, which for a given gen-
erator allows to construct a SAT-based guess-and-determine attack with a good
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runtime estimation and discuss why the runtime estimations constructed can be
believed to be reliable. In Sect. 4 we construct such attacks on ASG (with 72-
bit, 96-bit, and 192-bit initial states), MASG and MASG0 (both of them with
72-bit initial states). For each considered generator configuration (except the
192-bit ASG version) we prove that our runtime estimations are correct by solv-
ing 20 cryptanalysis instances. We also show that the constructed SAT-based
guess-and-determine attacks are better than the trivial SAT-based guess-and-
determine attacks in all cases. In the rest of the paper we observe the related
work and draw conclusions.

2 Considered Cryptanalysis Problems

As it was outlined above, unlike most cryptanalytic attacks our approach does
not make it possible to construct a general formula that would express its com-
plexity. Rather, we can construct runtime estimation for each particular crypt-
analysis problem. As such, hereinafter we consider cryptanalysis problems for
three configurations of ASG – with total length of registers equal to 72, 96 and
192 (further we will refer to them as ASG-72, ASG-96 and ASG-192). Below we
show the primitive polynomials used in each version.

ASG-72:

– LFSRC (23 bits): X23 ⊕ X22 ⊕ X20 ⊕ X18 ⊕ 1;
– LFSRX (24 bits): X24 ⊕ X23 ⊕ X22 ⊕ X17 ⊕ 1;
– LFSRY (25 bits): X25 ⊕ X24 ⊕ X23 ⊕ X22 ⊕ 1.

ASG-96:

– LFSRC (31 bits): X31 ⊕ X7 ⊕ 1;
– LFSRX (32 bits): X32 ⊕ X7 ⊕ X5 ⊕ X3 ⊕ X2 ⊕ X ⊕ 1;
– LFSRY (33 bits): X33 ⊕ X16 ⊕ X4 ⊕ X ⊕ 1.

ASG-192:

– LFSRC (61 bits): X61 ⊕ X60 ⊕ X46 ⊕ X45 ⊕ 1;
– LFSRX (64 bits): X64 ⊕ X63 ⊕ X61 ⊕ X60 ⊕ 1;
– LFSRY (67 bits): X67 ⊕ X66 ⊕ X58 ⊕ X57 ⊕ 1.

We also consider cryptanalysis problems for MASG and MASG0, which were
proposed in [32]. In these modifications LFSRX and LFSRY are replaced by NLF-
SRs, to which we refer below as NLFSRX and NLFSRY. In MASG a keystream
bit is produced similarly to the original ASG: as a bitwise sum of output bits
of NLFSRX and NLFSRY. In MASG0 a keystream bit is produced as a bitwise
sum of outputs of all three registers (LFSRC, NLFSRX and NLFSRY). For both
MASG and MASG0 the following feedback polynomials were used:

– LFSRC (23 bits): X23 ⊕ X22 ⊕ X20 ⊕ X18 ⊕ 1;
– NLFSRX (24 bits): X19 · X8 ⊕ X16 ⊕ X10 ⊕ X9 ⊕ X2 ⊕ X;
– NLFSRY (25 bits): X24 · X22 · X2 ⊕ X17 ⊕ X5 ⊕ X.
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It should be noted, that here we used the same LFSRC, as in ASG-72. The
polynomials for NLFSRs were taken from [7,25]. So, we consider MASG and
MASG0 configurations with total length of registers equal to 72 (further we will
refer to them as MASG-72 and MASG0-72).

The transition from an original problem to SAT is usually quite nontrivial
(see survey [27]). There exist several openly available automatic tools that make
it possible to reduce cryptanalysis problems to SAT [11,18,26,31]. These tools
produce relatively similar encodings, thus we applied the Transalg tool [26]
to construct the SAT encodings for considered configurations of generators. In
particular, for each considered configuration we obtained a Conjunctive Normal
Form (CNF). In Table 1 we present the size, number of clauses, number of vari-
ables and keystream fragment size for the constructed CNFs. In Sect. 4 we will
describe, why exactly these keystream fragment sizes were used.

Table 1. Characteristics of CNFs encoding the considered keystream generators.

Generator Size, Mb Variables Clauses Keystream fragment size

ASG-72 0.3 3 426 15 382 76

MASG-72 0.5 3 426 20 454 76

MASG0-72 0.5 3 426 20 758 76

ASG-96 0.7 6 658 32 166 112

ASG-192 1.9 22 705 95 326 200

3 Algorithm for Constructing SAT-based
Guess-and-Determine Attacks

Let C be a CNF encoding a cryptanalysis problem for some keystream generator.
Assume that Xin is a set of Boolean variables corresponding to an initial state of
generator registers. In the case of ASG-96 (see Sect. 2), |Xin| = 96 (while there
are 6658 Boolean variables in the corresponding CNF in total). We can choose
some subset X∗ ⊂ Xin and consider all possible assignments of variables from
X∗. Below let us refer to X∗ as to set of partitioning variables and to a family
of subproblems, formed by adding information about a particular assignment
of variables from X∗ to an original CNF for a considered problem, as to a
partitioning [17].

It is easy to see, that on the one hand any subproblem from a partitioning
should most likely be much easier to solve compared to an original problem
(since we “know” a sizable chunk of information we need), and on the other
hand by processing all such subproblems we will be able to obtain a solution
of a considered hard problem. Of course, there exists some trade-off between
the size and contents of X∗ and the difficulty rate of constructed subproblems.
It is not always possible to evaluate this trade-off analytically, so in a number
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of papers [5,10,29,30] there were studied several ways how it can be achieved
automatically or at least semi-automatically. Basically it all boils down to the
problem of how to choose the best X∗.

It is clear, that any X∗ corresponds to some guess-and-determine attack on
a considered keystream generator. The nontrivial fact consists in the fact that
for a given X∗ it is possible to estimate a runtime of a corresponding attack.
Essentially, the estimation can be done by means of the Monte Carlo method [12]:
we choose relatively small random sample of subproblems from our partitioning,
solve them, compute the average time required to solve one subproblem and scale
it to the number of subproblems. However, in reality, there are many important
nuances.

Let us describe the basic Monte-Carlo-based procedure, which is usually used
to obtain the runtime estimation for a set of partitioning variables. The proce-
dure takes as an input a CNF C, a known keystream fragment F , a set of
partitioning variables X∗, and the number N , representing the size of a random
sample. The procedure works as follows.

1. Construct a random sample S by choosing N binary words from {0, 1}|X∗|

according to the uniform distribution.
2. Launch Conflict-Driven Clause Learning (CDCL, [21]) solver on N SAT

instances formed by appending information from F and si ∈ S to C and
record the runtime of the solver on this instance to ti.

3. Compute the runtime estimation by averaging ti over S and multiplying the
constructed value by the size of a partitioning: R = 2|X∗| ×

∑N
i=1 si
N .

The described procedure defines an objective function – using some opti-
mization algorithm one can try to find a set of partitioning variables with min-
imal value of this function. For this purpose it is natural to first construct a
search space of all possible sets of partitioning variables (i.e. all possible sub-
sets of a set of Boolean variables corresponding to an initial state of a consid-
ered keystream generator). Each point in this search space corresponds to some
guess-and-determine attack. For every point we can calculate a runtime estima-
tion using the objective function defined above. By traversing a search space via
some optimization algorithm we can find a set of partitioning variables with a
good runtime estimation. In our experiments in the role of such algorithm we
use a simple tabu-based local search algorithm. As its starting point we always
choose a set Xin. The optimization algorithm stops after reaching a given time
limit. The output of this algorithm is a best found attack (compared to that,
processed by the algorithm during its work).

We implemented the procedure described above and applied it to construct
guess-and-determine attacks on several ASG configurations. However, it turned
out that it could only find sets of partitioning variables for which the runtime
estimations were very inaccurate: sometimes the solving time was several times
larger (and sometimes lower) than runtime estimation. Also, in most experiments
the found guess-and-determine attacks were worse than the trivial attack that
implies guessing the bits corresponding to the initial state of the control register.
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When we studied, why the described procedure gives very inaccurate esti-
mations for the considered problems, we found out that it often gives overly
optimistic or overly pessimistic estimations for a given set of partitioning vari-
ables because of the way the random sample is constructed. For cryptographic
instances it is a common situation when for some set of partitioning variables the
percentage of very simple subproblems in a partitioning is very large. By simple
problems we mean here the ones that can be solved effectively – by means of Unit
Propagation algorithm [6]. Meanwhile, the rest of the subproblems (not solved
by Unit Propagation) can be exceptionally hard, such that one hard subproblem
is solved many times longer than a whole random sample of simple subproblems.
In other words, if we generate a random sample in the most simple way possible
without additional consideration, it is often the case that a constructed sample
does not adequately represent a partitioning, and even increasing its size has
little to no effect.

Thus, the problem with the outlined scheme lies mainly in the first step of
the procedure — how a random sample is constructed. So we decided to modify
the procedure in such a way that it works well on the considered problems.
Basically, on the one hand, we want the new procedure to construct random
samples which contain subproblems that are not all solved by Unit Propagation.
For this purpose we need to introduce some filtering procedure that determines
if a problem can be solved by unit propagation or not. This procedure can be
constructed by stripping a SAT solver down. On the other hand, we do not want
to just neglect unit propagation stage at all – it can provide a sizable chunk of
runtime.

New procedure takes as an input several parameters: X∗ – the set of parti-
tioning variables, D – a number of diapasons to be processed, s – a diapason
size, K – a number of problems that have to be constructed within the diapason
and not be solved by unit propagation. It works as follows.

1. Construct D binary words chosen randomly according to the uniform distri-
bution from {0, 1}|X∗|. These D points serve as diapason starting values.

2. Process each constructed diapason beginning from a starting value. Attempt
to construct K problems that are not solved by unit propagation, by sequen-
tially applying the filtering procedure to each next word taken from a diapason
in a lexicographic order.

3. If K such words were constructed, while not exceeding the diapason size, then
the corresponding K words are returned as a result, along with the number
of words P that did not pass filtering.

4. Solve K corresponding subproblems by a CDCL solver (without any limita-
tions) in the incremental mode [9] (this mode prevents runtime estimation
from being too pessimistic).

5. Calculate an average runtime for each diapason, taking into account both run-
time on subproblems solved by unit propagation and that on the subproblems
solved by a CDCL solver in the incremental-based loop.

6. Compute the runtime estimation for X∗ by averaging ti over D and multi-
plying the constructed value by the size of a partitioning.
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The suggested procedure, augmented by the aforementioned black-box opti-
mization algorithm, was implemented in the form of a parallel program, which
is based on Message Passing Interface (MPI) [13]. To solve subproblems we
employ the ROKK CDCL-solver, which is a slightly modified version of MiniSat
2.2 [8]. According to our experience [26], it shows good results in cryptanalysis
of keystream generators.

One thread of our program is a control thread, while the others are computing
threads. Each computing thread receives tasks from the control thread, performs
the corresponding calculations and sends obtained results. This program works
in two modes – the estimating mode and the solving mode. In the estimating
mode, in order to calculate a runtime estimation for a particular X∗, the control
thread first randomly generates D binary words of size |X∗| and forms D com-
puting tasks containing X∗ and one of D words. Then every computing thread
works with one task per process at a time. After performing the processing of a
corresponding diapason according to the procedure outlined above, a computed
average runtime for a diapason is sent to the control thread, which then takes
all D such values and based on them computes a runtime estimation for X∗.

In the solving mode, our program takes as an input a set of partitioning vari-
ables. This set can be found in the estimating mode, or it can be constructed
manually. For example, one can use the set of variables, which encode the ini-
tial state of a clock control register of a generator. Given a set of partitioning
variables, the program solves all subproblems from a corresponding partitioning.

4 Computational Experiments

Using the algorithm, described in Sect. 3, we constructed guess-and-determine
attacks on ASG-72, ASG-96, ASG-192, MASG-72 and MASG0-72. For each
of them (excluding ASG-192) 20 cryptanalysis instances were constructed by
randomly generating 20 initial states values. For each configuration the size of
the corresponding keystream fragment is discussed below.

Hereinafter by total solving time we mean the time required to solve all
subproblems from a partitioning. Of course, for the majority of satisfiable SAT
instances we find a satisfying assignment faster. In particular, each considered
SAT instance has exactly 1 satisfying assignment, so on average it usually takes
twice less time. However, we compare our estimations with total solving time for
all subproblems, because in fact it is this runtime that we estimate.

It should be noted, that we applied our program to construct a set of par-
titioning variables only for 1 instance out of 20 in every case (in particular,
for the first one from a series). After this the constructed guess-and-determine
attack was performed on all 20 instances from a series (including the one,
which was used to find a set of partitioning variables). Our empirical evalua-
tions and the results of computational experiments show that the SAT-based
guess-and-determine attack for a particular cryptanalysis instance with fixed
keystream fragment can be extended to cryptanalysis instances that have dif-
ferent keystream fragments. This fact allows us to say, that by finding a set
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of partitioning variables for a considered generator configuration, we construct
a guess-and-determine attack not only on this particular instance, but on the
generator itself.

All calculations were performed on the HPC-cluster “Academician V.M.
Matrosov” [23]. Each computing node of this cluster is equipped with two
18-core CPUs Intel Xeon E5-2695 (36 CPU cores in total) and 128 gigabytes
of RAM. In order to automatically construct guess-and-determine attacks, we
used the following values of parameters for the procedure described in Sect. 3:
D = 1000, s = 1000000,K = 1000.

For each generator configuration we compared the automatically constructed
guess-and-determine attack with the trivial one, based on guessing the bits of
the control register. We also compared it with two multithreaded CDCL solvers:
plingeling and treengeling [3]. In the SAT competition 2016 they won the
first two prizes in the parallel category [1]. We chose these standard solvers in
order to check, if the high-ranked CDCL-based parallel SAT solvers can effi-
ciently solve the considered problems directly, without constructing a guess-
and-determine attack. It should be noted, that in the solving mode we employed
exactly 1 computing node of the cluster in all cases, because the mentioned
multithreaded solvers can work only within 1 workstation (i.e. they can not
be launched on a HPC cluster using MPI). In the following subsection we will
present the results of computational experiments for the considered generators
configurations.

4.1 Additional Optimization: Choosing the Right Keystream
Fragment Size

In the case of ASG-72, we first considered cryptanalysis problem for the
keystream fragment length of 100 bits (this value is four times greater, than
the length of the largest employed LFSR). We constructed 1 CNF encoding ran-
domly formed cryptanalysis problem, and on this CNF we launched our parallel
program (see Sect. 3) in the estimating mode for 2 h to find a set of partitioning
variables (as a subset of a set of 72 variables corresponding to the initial state).
In this case (as well as in all other launches in estimating mode) our program
used 10 computing nodes (360 CPU cores in total). As a result, for ASG-72 we
found the set, consisting of 21 variables with runtime estimation equal to 32 s
(if running on the same workstation). This set contains the following variables:
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 (LFSRX); 45 (LFSRX); 69 70 71
(LFSRY). Here we use end-to-end numbering – variables of the control register
LFSRC have numbers from 1 to 23, for the controlled register LFSRX – from 24
to 47, for the controlled register LFSRY – from 48 to 72. In Table 2 the set is
depicted – here “+” denotes that the corresponding variable belongs to the set.

In [20] it was stated, that the average number of ASG preimages for any
keystream fragment with length m is about 23L−m,m ≤ 3L, where L is the
length of the controlled stop/go register. In [20] an ASG with the controlled
registers of equal lengths was considered. In our case (with controlled registers
of different lengths) as L we used a length of the largest controlled register.
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Table 2. The set of partitioning variables, found for ASG-72.

LFSRC −−−− + + + + + + + + + + + + + + + + + −−
LFSRX −−−−−−−−−−−−−−−−−−−−− + −−
LFSRY −−−−−−−−−−−−−−−−−−−−− + + + −

So, for ASG-72 L = 25, and about 75 bits of a given keystream fragment should
be enough to get only 1 preimage. We decided to find the length of a keystream
fragment, which yields the best runtime estimation for the considered crypt-
analysis problem when the set of partitioning variables is fixed. We randomly
constructed 7 more cryptanalysis instances for ASG-72 – with keystream frag-
ment lengths from 72 to 96 with the step of 4. We then solved each of them
using the constructed guess-and-determine attack. In order to compare the total
solving time (in seconds), all subproblems from each partitioning were solved. It
turned out, that on 72-bit fragment two preimages were found, on the other vari-
ants there was only 1 preimage. The obtained results are presented in Table 3.
Along with the total solving time, for each variant we show the runtime esti-
mation (calculated for the set of 21 variables, found on the 100-bit variant). We
can conclude, that the total solving time agrees well with the estimation – the
difference is about 18%. As it was mentioned before, in the estimating mode our
program uses 10 computing nodes, while in the solving mode it uses 1 node. So,
further all runtime estimations are given for 1 computing node.

Table 3. The comparison of ASG-72 total solving time (in seconds) with different sizes
of keystream fragment

Keystream length 72 76 80 84 88 92 96 100

Estimation 31 31 32 31 32 32 32 32

Total solving time 35 35 35 36 37 37 41 38

Preimage number 2 1 1 1 1 1 1 1

According to the table, the fragments of sizes 72, 76, 80 and 84 bits provide
the best efficiency. We chose the least value, for which only 1 preimage was found.
So we used a fragment of size 76 in all our further experiments for ASG-72 (as
well, as for MASG-72 and MASG0-72).

We did the similar calculations for ASG-96. We first considered the crypt-
analysis problem for the keystream fragment length of size 132 (this value is four
times greater than the length of the largest employed LFSR). We constructed
1 CNF encoding randomly formed cryptanalysis problem, and on this CNF we
launched our parallel program (see Sect. 3) in the estimating mode for 12 h to
find a set of partitioning variables (as a subset of a set of 96 variables corre-
sponding to the initial state). As a result, we found the set, consisting of 30
variables with runtime estimation equal to 29 497 s (8 h and 12 min). The found
set consists of the following 30 variables: 2 3 4 5 6 12 13 14 15 17 19 20 22 23
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Table 4. The set of partitioning variables, found for ASG-96.

LFSRC − + + + + + −−−−− + + + + − + − + + − + + − + + + − + + −
LFSRX −−−−−−−−−−−−−−−−−−−−−−−− + + + + + − +−
LFSRY −−−−−−−−−−−−−−−−−−−−−−−−− + − + + + + −−

25 26 27 29 30 (LFSRC); 56 57 58 59 60 62 (LFSRX); 89 91 92 93 94 (LFSRY).
This set is depicted in Table 4.

We then randomly constructed 8 more cryptanalysis instances for ASG-96 –
with keystream fragment lengths from 100 to 128 with the step of 4. We solved
each of 9 SAT instances using the constructed guess-and-determine attack. As
in the case of ASG-72, all subproblems of each partitioning were solved. As
a result for a 100-bit fragment 2 preimages were found, on the other variants
there was only 1 preimage. The obtained results are presented in Table 5. We
can conclude, that the total solving time agrees well with the estimation – the
difference is about 7%.

Table 5. The comparison of ASG-96 total solving time with different keystream frag-
ment lengths

Keystream length 100 104 108 112 116 120 124 128 132

Total solving time 30 905 32 195 30 608 30 292 31 132 32 627 31 311 31 558 31 566

Estimation 31 671 33 137 31 571 30 946 31 931 33 763 32 427 31 971 29 497

Preimage number 2 1 1 1 1 1 1 1 1

According to the table, the fragment length of 112 bits provides the best
efficiency. So we used the fragment of size 112 bits in our further experiments
for ASG-96.

4.2 ASG-72

We used the found set of 21 variables (Table 2) to solve 20 cryptanalysis instances
for ASG-72 (in each instance 76 bits of a keystream were known). The average
time required to solve them turned out to be 16 s (we stopped processing of
each partitioning when a correct initial state value was found). We can con-
clude, that this average solving time agrees well with the constructed estimation
(remind that it is equal to 31 s). We also tried to solve all these instances by
plingeling, treengeling, and by our program using the trivial set – formed
by 23 variables corresponding to the initial state of the control register. The
results of the comparison are depicted in Fig. 1. Here GDA is an abbreviation
for “guess-and-determine attack”. The runtime was limited by 5000 s for every
launch. On the figure we used the so-called cactus plots. On such plot the values
are sorted in the ascending order. From these figures it follows, that plingeling
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Fig. 1. Comparison of the considered SAT-based attacks on ASG-72

and treengeling work much worse, than other two variants. It also follows, that
the constructed guess-and-determine attack is better, than the trivial one.

In Table 6 for each program the number of solved instances and the aver-
age time (in seconds) on solved instances are shown. Our improved guess-and-
determine attack turned out to be about 4.7 times better, than the trivial one.
We would like to emphasize, that in these experiments an estimation is consid-
ered as accurate, if it is about 2 times greater, than the average solving time.
As it was said above, on average one needs to process half of a partitioning to
find a solution.

Table 6. The comparison of different SAT-based attacks on ASG-72.

Attack Solved Avg. time on solved Estimation

plingeling 16 1 795 -

treengeling 20 1 997 -

Trivial GDA 20 75 121

Improved GDA 20 16 31

4.3 ASG-96

We used the found set of 30 variables (it was described above) to solve 20 ran-
domly constructed cryptanalysis instances for ASG-96 (in each instance 112
bits of keystream were known). The results of the comparison are depicted in
Fig. 2. The runtime was limited by 12 h (43 200 s) for every launch. As a result,
plingeling and treengeling could not solve any instance in time, while both
guess-and-determine attacks solved all of them. Here in the trivial attack the set
of 31 variables, corresponding to the control register, was used. From the figure
it follows, that the constructed guess-and-determine attack is better, than the
trivial one.
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Fig. 2. Comparison of the trivial and the improved guess-and-determine attacks on
ASG-96

In Table 7 for each SAT-based attack the number of solved instances and the
average time (in seconds) on solved instances are shown. Our improved guess-
and-determine attack turned out to be about 38% better, than the trivial one.

Table 7. The comparison of different SAT-based attacks on ASG-96.

Attack Solved Avg. time on solved Estimation

plingeling 0 - -

treengeling 0 - -

Trivial GDA 20 18 211 40 357

Improved GDA 20 13 181 30 946

4.4 MASG-72 and MASG0-72

In the cases of MASG-72 and MASG0-72 the keystream length of 76 was used
(similar to ASG-72). For both generators our program was launched in the esti-
mating mode for 2 h on the cluster.

As a result for MASG-72 we found the set of partitioning variables consisting
of 22 variables with runtime estimation equal to 71 s. The set consists of the
following variables: 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 (LFSRC); 40 41
42 45 (LFSRX); 64 67 68 (LFSRY). This set is also presented in Table 8.

Table 8. The set of partitioning variables, found for MASG-72.

LFSRC −−−−−− + + + + + + + + + + + + + + + −−
LFSRX −−−−−−−−−−−−−−−− + + + −− + −−
LFSRY −−−−−−−−−−−−−−−− + −− + + −−−−

We used this set to solve 20 randomly generated cryptanalysis instances for
MASG-72. We also launched plingeling, treengeling and trivial guess-and-
determine attack on them. In Table 9 for each SAT-based attack the number of
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solved instances and the average time (in seconds) on solved instances are shown.
Our improved guess-and-determine attack turned out to be about 29% better,
than the trivial one. The results of experiments are also presented in Fig. 3.

Table 9. The comparison of different SAT-based attacks on MASG-72.

Attack Solved Avg. time on solved Estimation

plingeling 10 1 935 -

treengeling 14 2 418 -

Trivial GDA 20 58 89

Improved GDA 20 45 71
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Fig. 3. Comparison of the considered SAT-based attacks on MASG-72

For MASG0-72 in the same conditions we found the set of 22 variables with
runtime estimation of 74 s. The set consists of the following variables: 3 7 8 9
10 11 12 13 14 15 16 17 18 20 21 22 (LFSRC); 41 42 46 (LFSRX); 65 67 68
(LFSRY). This set is also presented in Table 10.

Table 10. The set of partitioning variables, found for MASG0-72.

LFSRC −− + −−− + + + + + + + + + + + + − + ++
LFSRX −−−−−−−−−−−−−−−−− + + −−− +−
LFSRY −−−−−−−−−−−−−−−−− + − + + −−−−

In Table 11 for each SAT-based attack the number of solved instances and the
average time (in seconds) on solved instances are shown. Our improved guess-
and-determine attack turned out to be about 20% better, than the trivial one.
The results of experiments are also presented in Fig. 4.
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Table 11. The comparison of different SAT-based attacks on MASG0-72.

Attack Solved Avg. time on solved Estimation

plingeling 9 1 746 -

treengeling 13 1 667 -

Trivial GDA 20 55 92

Improved GDA 20 46 74

Fig. 4. Comparison of the considered SAT-based attacks on MASG0-72

4.5 ASG-192

We launched our program for 24 h in order to construct a guess-and-determine
attack on ASG-192. As a result we found the set of 63 variables with the runtime
estimation of 7.55e+13 s. This set is presented in Table 12. The set consists of
the following variables: 6 7 8 9 11 13 14 15 16 17 18 19 20 21 22 25 29 30 31 33
34 37 38 39 40 42 43 44 45 46 47 48 50 51 52 55 57 60 (LFSRC); 94 97 100 101
105 106 113 114 115 116 117 118 119 121 124 (LFSRX); 160 161 162 166 167 168
172 174 175 186 (LFSRY).

We also used our program to estimate the trivial set (61 variables, corre-
sponding to the control register). The corresponding estimation turned out to
be 3.60e+14 s, i.e. our attack is about 4.77 times better (by estimation). Accord-
ing to the obtained estimations, we decided not to perform the constructed
improved attack in practice. This example shows, that using our approach for
a given guess-and-determine attack, one can determine, if this attack can be
performed in reasonable time in practice.

5 Related Work

The cryptographic resistance of the alternating step generator was analyzed in
a number of papers [14–16,20,34]. The majority of these attacks implement
different variants of correlation attacks on one or both controlled LFSRs [14,15,
20]. A good overview of these attacks can be found in [20]. Hereinafter, assume



Improved SAT-Based Guess-and-Determine Attack on the ASG 35

Table 12. The set of partitioning variables, found for ASG-192.

LFSRC −−−−− + + + + − + − + + + + + + + + + + −− + −−− + + + − ++
−− + + + + − + + + + + + + − + + + −− + − + −− + −

LFSRX −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− +−
− + −− + + −−− + + −−−−−− + + + + + + + − + −− +−

LFSRY −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
+ + + −−− + + + −−− + − + + −−−−−−−−−− + −−−−−−

that l is the length of the control LFSR, and m and n are the lengths of two
controlled stop/go LFSRs. The attack with lowest time complexity was proposed
in [19]: O(m2 × 22m/3), but it requires a lot of keystream (O(22m/3)) and has
a number of specific requirements regarding the keystream fragment. The same
can be said about the attack from [20].

Since our attack does not have such requirements and uses a fragment of
keystream of relatively small size, we compare it with the best attacks with
similar properties. From this point of view the best attack among previously
published results is the divide-and-conquer attack from [16], because in all con-
figurations considered in our paper the control register is the smallest.

The attack from [16] has the time complexity of O(min(m,n)×2l), however,
since we can not express the complexity of our attack analytically, it is necessary
to get into details. In the attack from [16] we perform an exhaustive search over
all possible variants of the initial value of control register (it corresponds to 2l

component in O(·)). Intuitively, after guessing the value we derive a system of
linear equations over bits corresponding to initial values of controlled registers
and apply to it the so-called Linear Consistency Test (LCT) [33]. Essentially,
LCT consists in solving the constructed system by means of Gaussian elimina-
tion or more state-of-the-art algorithm [2] and simultaneously checking if it is
consistent. If the system yields a solution then with overwhelming probability it
is the solution of our cryptanalysis problem. Now, for ASG-72 (for which l = 23,
m = 24 and n = 25) the average runtime of our attack is 16 s on 36 cores, so
about 576 s on one core of Intel Xeon E5 2695v4. It means, that in order for
attack from [16] to be equally fast as our attack, it would need to be able to
process about 223/576 = 14563.5 states of control register per second on the
same processor core. For ASG-96 the corresponding number of states per second
is 231/(13181×36) = 4525. It is very hard to say what will be the performance of
this attack if implemented properly without actually implementing it. We could
not find ready implementations and implementing attack ourselves is out of the
scope of the present research. Our guess is that if programmed properly it would
be in the general vicinity of our approach. The important consideration here is
that we present the results of a practical attack – it involves a lot of auxiliary
work, such as actual decomposition of the problem into partitioning, sending
commands to computing processes, processing the results, etc. Meanwhile the
attack in [16] has only general outline.
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We are not aware of any SAT-based and/or guess-and-determine attacks on
ASG. Meanwhile, the corresponding approach works quite well in other areas of
cryptanalysis. The overview of possible applications of SAT in algebraic crypt-
analysis can be found in [2]. In [22] a SAT-based attack on a reduced variant of
DES was proposed. In [24] there were studied several applications of SAT solvers
to finding collisions of cryptographic hash functions.

In [10,29,30] using a relatively similar way to our approach, the Monte Carlo
algorithms were applied to construct SAT-based guess-and-determine attacks on
several keystream generators. However, we suggest a Monte Carlo-based algo-
rithm with the new significantly improved functionality that takes into account
several previously ignored issues, that greatly improve its accuracy.

Another relatively similar approach to cryptanalysis of ASG and other gen-
erators was proposed in [34]. In that paper it was suggested to use a straightfor-
ward backtracking algorithm to determine if a system of equations, specifying
the cryptanalysis instance, can be solved. In a way, our work can be considered
as a development in this direction, however we replace simple backtracking algo-
rithm by the accumulated experience and methods from the area of SAT solving
in the form of state-of-the-art CDCL algorithms.

As for MASG/MASG0, we have not found any papers considering the crypt-
analysis of these generator modifications. Since we replace controlled LFSRs by
NLFSRs, it means that the vast majority of correlation attacks or their variants,
that work well for ASG, can not be applied to MASG/MASG0. The same can
be said about the attack from [16]. Theoretically, the attack employing back-
tracking scheme proposed in [34], can be extended to considered modifications,
but evaluating its complexity is a nontrivial task.

Overall, from our point of view, the method for constructing guess-and-
determine attacks presented in our paper is interesting because despite rely-
ing on black-box optimization algorithms and algorithms for solving Boolean
satisfiability problem (which is NP-hard) it shows competitive results on crypt-
analysis of ASG/MASG/MASG0, and makes it possible to extend the paradigm
of guess-and-determine attacks by considering non-trivial sets of bits to guess.

6 Conclusions

In the present paper, we proposed a new algorithm for constructing a SAT-
based guess-and-determine attack on ASG and two its modifications (MASG and
MASG0). Using this algorithm we obtained new guess-and-determine attacks
that are better than the trivial ones (where we guess an initial state of the
control clock register). The constructed attacks were used to perform in practice
the cryptanalysis of the considered generators (with the initial states of size up to
96 bits).
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Abstract. Masking is a widely-used technique to protect block ciphers
and other symmetric cryptosystems against Differential Power Analysis
(DPA) attacks. Applying masking to a cipher that involves both arith-
metic and Boolean operations requires a conversion between arithmetic
and Boolean masks. An alternative approach is to perform the required
arithmetic operations (e.g. modular addition or subtraction) directly on
Boolean shares. At FSE 2015, Coron et al. proposed a logarithmic-time
algorithm for modular addition on Boolean shares based on the Kogge-
Stone carry-lookahead adder. We revisit their addition algorithm in this
paper and present a fast implementation for ARM processors. Then, we
introduce a new technique for direct modular addition/subtraction on
Boolean shares using a simple Carry-Save Adder (CSA) in an iterative
fashion. We show that the average complexity of CSA-based addition on
Boolean shares grows logarithmically with the operand size, similar to
the Kogge-Stone carry-lookahead addition, but consists of only a single
AND, an XOR, and a left-shift per iteration. A 32-bit CSA addition on
Boolean shares has an average execution time of 162 clock cycles on an
ARM Cortex-M3 processor, which is approximately 43% faster than the
Kogge-Stone adder. The performance gain increases to over 55% when
comparing the average subtraction times. We integrated both addition
techniques into a masked implementation of the block cipher Speck and
found that the CSA-based variant clearly outperforms its Kogge-Stone
counterpart by a factor of 1.70 for encryption and 2.30 for decryption.

1 Introduction

The concrete security of a cryptographic system depends not only on the crypt-
analytic complexity of the underlying algorithm, but also on the quality of its
implementation. This became apparent some 20 years ago with the emergence
of Side-Channel Analysis (SCA) [13], a special form of cryptanalysis that aims
to exploit measurable physical phenomena (e.g. variations in the response time
or power consumption) of a device executing a cryptographic algorithm so as to
reveal information about the secret key. The most advanced variant of SCA is
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Differential Power Analysis (DPA) [14], which involves two phases, namely an
acquisition phase and an analysis phase. In the former phase, the attacker cap-
tures power consumption traces from the target device for different plaintexts
or ciphertexts under the same secret key. Thereafter, in the analysis phase, she
adopts sophisticated statistical techniques to determine the correlation between
the power consumption and certain intermediate values that depend solely on
the plaintext/ciphertext and (parts of) the secret key. Numerous case studies
reported in the literature confirm that DPA attacks pose a real-world threat to
the security of unprotected (or insufficiently protected) cryptosystems and can
be mounted in relatively short time with relatively cheap equipment.

From a high-level point of view, countermeasures to thwart DPA attacks on
symmetric cryptosystems can be broadly divided into two main categories; one
is hiding (i.e. eliminating the data-dependency of the power consumption) and
the second is masking (i.e. randomizing the intermediate values that are com-
puted) [16]. Common approaches for hiding countermeasures aim to make the
device’s power consumption profile either constant for all possible values of the
secret key or fully random (i.e. statistically independent from the key). Hiding
can be implemented in hardware (e.g. by using a so-called DPA-resistant logic
style) and software (e.g. by randomly shuffling the order in which the sensitive
operations are executed or through the insertion of dummy operations) [16]. In
both cases, the intention is to break (or, at least, to obscure) the link between
the sensitive intermediate values that are computed during the execution of an
algorithm and the power consumption traces. Masking, on the other hand, aims
to conceal every key-dependent variable with a random value, called “mask,” in
order to break the link between the intermediate values that are computed on
the device and the (unmasked) intermediate values of the algorithm. The basic
principle is related to the idea of secret sharing since every sensitive variable is
split into n ≥ 2 “shares,” so that any combination of up to d = n − 1 shares is
statistically independent of any secret value. These n shares must be processed
separately during the execution of the algorithm and then re-combined in the
end to yield the correct result. When implemented properly, masking forces an
attacker to combine n leakages originating from the n shares in order to obtain
the secret information.

Depending on the actual operation to be protected against DPA, a mask-
ing scheme can be Boolean (using logical XOR), arithmetic (using modular
addition or modular subtraction) or multiplicative (using modular multiplica-
tion). When a cryptographic algorithm involves arithmetic and Boolean oper-
ations, which is generally the case for all ARX-based block ciphers, then the
masks have to be converted from one form to the other without introducing
any kind of leakage [21]. Goubin was the first to describe secure algorithms for
conversion between arithmetic and Boolean masks in [9]. While his method is
very efficient for the Boolean-to-arithmetic conversion, it introduces a high over-
head for conversions in the other direction. Coron and Tchulkine [5], as well as
Debraize [6], came up with improved variants of Goubin’s algorithm for switching
from arithmetic to Boolean masking. At FSE 2015, Coron et al. [4] introduced
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a novel conversion technique with logarithmic complexity based on a special
“parallel-prefix” form of a carry-lookahead adder, known as Kogge-Stone Adder
(KSA) [15]. Besides mask conversion, there exists a second principal approach
for efficient masking of ARX-based ciphers, namely to perform the necessary
arithmetic operations (e.g. modular addition/subtraction) directly on Boolean
shares. This idea was originally proposed for hardware implementation [1], but
can also be applied to protect software implementations of ARX-based block
ciphers against DPA as demonstrated in [12]. The latency of the implementa-
tions in [1] and [12] grows linearly with the bit-length of the two operands.
However, Coron et al. showed in [4] that the KSA allows not only logarithmic-
time mask conversion, but also logarithmic-time modular addition on Boolean
shares.

The KSA for modular addition on Boolean shares introduced in [4] comes
with a formal security proof embedded into the framework of Isai, Sahai, and
Wagner [11]. Furthermore, the authors of [4] present a software implementation
of their addition technique written in ANSI C and analyzed its execution time
on a 32-bit processor. They also report the execution time of first-order secure
implementations of HMAC-SHA1 and the Speck cipher [2]. Unfortunately, an
implementation written in C is not suitable for performance evaluations since
optimizations introduced by the compiler may break the security of a masking
scheme, even if the source code looks perfectly sound. On the other hand, when
preventing a compiler from performing sophisticated optimizations, the results
are not meaningful. Therefore, it is still unclear how fast a modular addition
on Boolean shares can be in the real world and how its execution time impacts
the performance of an ARX-based cipher. Another important question arising
from [4] is whether there exists an alternative addition technique that could
lead to better execution times than the KSA. Based on the work described
in the present paper, we can answer this question positively. We propose a new
technique for performing modular additions and subtractions directly on Boolean
shares that uses a basic Carry-Save Adder (CSA) [17] in an iterative fashion,
which is not only faster but also smaller (in terms of code size) than the KSA.

A masking scheme that uses the proposed CSA-based addition on Boolean
shares is a lightweight countermeasure with relatively low impact on execution
time and binary code size. The design of DPA countermeasures always involves
a trade-off between security (i.e. the achieved “degree” of DPA resistance) and
performance/resource requirements (RAM footprint, code size). Such trade-offs
yield a wide spectrum of countermeasures along an axis between security and
efficiency, whereby most existing proposals (including the KSA-based masking
from [4]) are at the far end towards security. These countermeasures were typi-
cally developed for smart card applications where the secret key is fixed and an
attacker can measure an arbitrary number of traces. Such applications require
advanced DPA countermeasures, which usually introduce massive overheads in
execution time [16]. However, applications outside the smart card domain can
have different threat models, different assumptions about the number of traces
the attacker can measure, and different security requirements. For example, in
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Table 1. The cost (in number of elementary operations) of different secure operations.

Secure operation Cost

SecNot 1

SecXor 2

SecShift 4

SecShiftFill 5

SecAnd 8

SecOr 11

the Internet of Things (IoT), the secret key used to encrypt the communication
between two devices is often provisioned dynamically (e.g. through ephemeral
ECDH key exchange) and the amount of transmitted data is, in general, small
(e.g. up to a few kB), which means that at most a few hundred data blocks are
encrypted with one and the same key. In this case, an attacker can just capture
a few hundred power or EM traces. The proposed masking using CSA addition
on Boolean shares is a (relatively) inexpensive DPA countermeasure that can
meet certain relaxed security requirements at significantly lower cost than the
sophisticated countermeasures used for smart cards.

2 Preliminaries

A first step towards masked implementations of ARX-based ciphers is to define
“secure” (i.e. masked) variants of the used arithmetic/logical operations: mod-
ular addition and subtraction, rotations, and bitwise exclusive OR. All bitwise
logical operations and shifts (including rotations) are relatively easy to perform
directly on Boolean shares, whereas the non-linear addition/subtraction require
more complex algorithms. Coron et al. [4] presented a provably-secure method
to perform a modular addition on Boolean shares using only secure algorithms
for AND, XOR and bit shifts.

We specify in Table 1 all secure operations required to mask an ARX design
and their cost expressed in the number of “elementary” operations, which can
normally be executed via a single instruction. SecAnd, SecShift, and SecXor are
described in detail in [4, Sect. 4]. Besides these, we need provably-secure algo-
rithms for two further operations: SecOr and SecShiftFill. The former computes
an OR on Boolean shares, while SecShiftFill shifts a sensitive value represented
by Boolean shares n bit-positions to the left and fills the n least significant bits
with 1 (see [7] for a more detailed treatment). We divide the secure operations
on Boolean shares into three classes according to their computational cost. The
first class includes all secure operations with a cost of at most six instructions
(e.g. SecXor, SecShift). Then, the second class contains operations that can be
masked using up to a dozen instructions (e.g. SecAnd, SecOr). Finally, the third
class is represented by operations that need more than 12 instructions. Secure
algorithms for modular addition/subtraction on Boolean shares belong to this
latter class since they rely on secure operations from the first two classes.
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Algorithm 1. Kogge-Stone Addition
Input: Operands a, b ∈ {0, 1}k

Output: Result r = a + b mod 2k

1: p ← a ⊕ b
2: g ← a ∧ b
3: for i from 1 to max

(�log2(k − 1)�, 1) do
4: g ← (p ∧ (g � 2i−1)

)⊕ g
5: p ← p ∧ (p � 2i−1)
6: end for
7: g ← (p ∧ (g � 2n−1)

)⊕ g
8: r ← a ⊕ b ⊕ (g � 1)
9: return r

The Kogge-Stone Adder (KSA) [15] belongs to the family of parallel-prefix
carry-lookahead adders, which parallelize the computation of the carry signal in
order to reduce the carry propagation delay. The structure of a parallel-prefix
adder can be represented through prefix graphs that generate at each stage two
signals: a propagate signal p and a generate signal g. The KSA is very fast due
to its minimal depth (which grows logarithmically with respect to the size of the
operands) and minimal fan-out, but has a high node count and, thus, it suffers
from wiring congestion when implemented in hardware.

The structure of the KSA can be easily parallelized in software as specified
in Algorithm 1. If the adder does not get an input carry signal along with the
two operands a and b, then the bitwise ORs can be replaced by bitwise XORs
as in Algorithm 1. The addition on Boolean shares benefits tremendously from
this optimization because the secure SecXor operation is much faster than the
secure SecOr operation. Unfortunately, this optimization can not be applied to
the subtraction (i.e. two’s complement addition) because the input carry signal
has to be set to 1 and distributed to all stages of the adder. Hence, a software
implementation of KSA subtraction needs to fill the least significant bits of the
generate word g with the value of the input carry after each left-shift. This leads
to less efficient software implementations of subtraction versus addition.

3 Carry-Save Addition

The design of algorithms and respective hardware architectures for the addition
of integers is one of the central research topics in computer arithmetic and has
a history stretching back more than 50 years [18]. The efficiency of the various
techniques proposed in the literature depends to a large extent on how the two
operands to be added are represented. In the most basic case, i.e. the standard
binary system, one uses a number representation radix of r = 2 and the digit
set D = {0, 1}, which means a k-bit integer a is given as
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a =
k−1∑

i=0

ai 2i with ai ∈ {0, 1} (1)

Throughout this paper, we shall use indexed lowercase letters to denote the
individual bits of an integer (a0 is the least significant bit of a and ak−1 is
its most significant bit). The most basic way of adding up two k-bit integers
is to apply a so-called Ripple-Carry Adder (RCA) consisting of k Full Adders
(FAs) [18]. Each FA gets besides the two operand bits ai and bi also a carry bit
cin as input and produces a sum bit si and an outgoing carry bit cout as follows.

si = ai ⊕ bi ⊕ cin , cout = (ai ∧ bi) ∨ (ai ∧ cin) ∨ (bi ∧ cin) (2)

The carry output cout of each FA is connected to the carry input cin of the
next-higher FA. When analyzing the latency of an RCA, one needs to take into
account the maximum possible length of a carry chain. As defined in [18], the
length of a carry chain is the number of bit positions from where the carry is
generated up to (and including) where it is finally absorbed or annihilated. The
longest possible carry chain of a k-bit RCA covers all k FAs since, in the worst
case, a carry generated at the least significant position ripples all the way up to
the most significant position. As a consequence, the latency of an RCA grows
linearly with the operand size. However, a single carry chain of length k occurs
only for very few combinations of operands as we will discuss further below. In
the case of random inputs, one can normally (i.e. on average) expect to have
several, but much shorter, carry chains. It was already shown in 1946 that, on
average, the carry chains in a k-bit addition are log2(k) bits long [3].

Although RCAs are easy to implement in hardware, they are rarely used
in high-speed arithmetic circuits. The maximum frequency with which an RCA
is capable to process operands is determined by the worst-case signal propaga-
tion path, which, in turn, is determined by the maximum length of the carry
chains (i.e. k) and not their average length (i.e. log2(k)) [18]. This has moti-
vated the development of advanced adder circuits having a worst-case latency
that grows logarithmically with the operand length. A good example for such
an advanced adder is the KSA described in the preceding section. A logarith-
mic worst-case behavior is the optimum that one can achieve with the binary
number system [18]. However, when using a redundant number system (i.e. a
number system with a digit set D containing more than r elements), it is even
possible to add two integers in constant time, independent of their length.

A very important redundant number system is the Carry-Save (CS) system
[17], which uses a radix-2 representation with the digit set D = {0, 1, 2}. Since
any digit ai can take three possible values (namely 0, 1, and 2), it needs to be
encoded using two bits, a sum bit as

i and a carry bit ac
i , as shown below.

0 ↔ (0, 0) 1 ↔ (0, 1) or (1, 0) 2 ↔ (1, 1) (3)

The actual value of a k-digit number a given in CS form is

a =
k−1∑

i=0

ai · 2i =
k−1∑

i=0

(as
i + ac

i ) · 2i with as
i , a

c
i ∈ {0, 1} (4)
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A k-digit CS integer a is always composed of a sum-word as and a carry-word
ac, each of which consists of k bits. Thus, we can write as = (as

k−1, . . . , a
s
1, a

s
0)

and ac = (ac
k−1, . . . , a

c
1, a

c
0). The redundancy in the digit set D, which enables

two encodings for the digit 1, means that the CS representation of an integer is
not unique [18]. An integer a given in CS representation can be converted into
conventional binary form by simply adding up its sum-word as and carry-word
ac using e.g. an RCA or KSA, i.e. the redundant-to-binary conversion involves
always a propagation of carries. In some way, the sum-word as and carry-word
ac can be interpreted as two arithmetic shares of the integer a since their sum
as + ac is exactly a. In practice, the CS representation is typically used for the
implementation of complex arithmetic operations that require a multi-operand
addition; a typical example is the addition of partial products performed in an
integer multiplication [18]. The CS representation is attractive for this purpose
because it allows partial products to be added up in constant time, irrespective
of k, yielding a result in CS form. Only at the end of a multiplication, a single
carry-propagating addition is needed for the redundant-to-binary conversion.

Let a be a k-digit integer in CS form and b a binary integer of k bits. The
result r = a + b of a CS addition can be computed in parallel for all digits and
consists of a sum-word rs and a carry-word rc, obtained as follows.

rsi = as
i ⊕ ac

i ⊕ bi for 0 ≤ i ≤ k − 1 (5)
rci = (as

i−1 ∧ ac
i−1) ∨ (as

i−1 ∧ bi−1) ∨ (ac
i−1 ∧ bi−1) for 1 ≤ i ≤ k (6)

A Carry-Save Adder (CSA) can be easily implemented in hardware through an
array of k FAs, similar to the RCA [18]. However, the carry-propagation in the
CSA is limited to a single position, which becomes immediately evident from
Eq. (6) because rci depends solely on bits with index i − 1. A carry generated
by an FA just goes to the next-higher FA, but can not ripple up further. The
overall latency of a k-digit CSA is, therefore, determined by the latency of an
FA and does not depend on k anymore. The least significant bit of the result’s
carry-word, i.e. rc0, must be set to 0 when performing an addition, and to 1 in
the case of a subtraction, as we will explain further below.

3.1 Using a CSA for Single-Operand Addition

Traditionally, CSAs are employed for multi-operand addition, i.e. in situations
where many operands (e.g. partial products of an integer multiplication) are to
be summed up. However, in the present paper we use a CSA to perform single-
operand additions to add two k-bit integers, a and b, in standard binary form
with the goal of obtaining a binary result. Computing the sum r = a + b in CS
form is easy and requires just a logical AND and a logical XOR operation:

rsi = ai ⊕ bi for 0 ≤ i ≤ k − 1 (7)
rci = ai−1 ∧ bi−1 for 1 ≤ i ≤ k (8)

An arithmetic circuit computing rsi and rci according to the equations above
is commonly referred to as a Half-Adder (HA). Similar as before, i.e. Eqs. (5)
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Algorithm 2. Carry-Save Addition
Input: Operands a, b ∈ {0, 1}k

Output: Result r = a + b mod 2k

1: t ← a ∧ b
2: rs ← a ⊕ b
3: rc ← t � 1
4: while rc 	= 0 do
5: t ← rs ∧ rc

6: rs ← rs ⊕ rc

7: rc ← t � 1
8: end while
9: return rs

and (6), the sum bits rsi are kept “in place,” whereas all the carry bits rci move
one position to the left. Since, in this paper, additions and subtractions are
always done modulo 2k, we can simply discard the most significant carry bit
rck. When implemented in software, a HA consists of an AND instruction, an
XOR, and a 1-bit left shift, which is a lot more efficient than the sequence of
instructions carried out by the KSA (Algorithm 1). Another advantage of the
CSA over the KSA is that a subtraction is only slightly more complex than an
addition. The most common way to perform a subtraction r = a − b is to add
the two’s complement of b to a. To generate the two’s complement of b, we have
to first form the one’s complement (through an inversion of all bits of b) and
then add 1 to it [18]. Fortunately, this addition of 1 can be simply realized by
just setting the least significant carry bit rc0 to 1. Adding 1 in this way is always
possible when using a CSA1, but not with a KSA. Hence, a CS subtraction is
essentially the same as a CS addition with inverted addend bits.

While the benefit of the CSA for multi-operand addition (multiplication) is
clear, it may seem counterintuitive to use a CSA for a single addition since the
result is obtained in CS form and still needs to be converted into the standard
binary representation, which requires a propagation of carries. This raises the
question of why one does not simply use a KSA or some similar kind of carry-
propagating adder in the first place. The answer lies in the rather little-known
fact that a CSA can not only be employed to perform a CS addition, but also
for the redundant-to-binary conversion of the result. Namely, when we feed the
sum-word rs and carry-word rc obtained through Eqs. (7) and (8) as input into
a CSA, we get again a result in CS representation, but with fewer 1 bits in the
carry-word rc (i.e. lower Hamming weight) or no 1 bits at all. When repeating
this procedure, all bits of the carry-word rc will eventually become 0, and the
latest sum-word rs represents the result in binary form. In each iteration, the
Hamming weight of rc is reduced by (at least) 1 since the lowest carry bit rc0 is
set to 0. Algorithm 2 specifies this addition technique in a formal fashion. The
first three lines do the actual CS addition of the operands a and b according to

1 As mentioned before, rc0 is normally set to 0 when performing an addition.
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Eqs. (7) and (8), yielding a sum in CS form consisting of rs and rc. Then, the
sum is converted into standard binary representation using the while-loop.

The overall execution time of Algorithm 2 depends on the number of loop-
iterations needed for the redundant-to-binary conversion of the result r, i.e. the
number of iterations that have to be executed until the carry-word rc becomes
0. Intuitively, one expects the number of iterations to be closely related to the
average length of the carry chains that occur when a is added to b, which, as
explained earlier in this section, is approximately log2(k) for k-bit operands. In
[10], Hendrickson experimentally assessed the accuracy of the log2(k) approxi-
mation and concluded that log2(5k/4) makes a better estimate for the average
length of the carry chains. This suggests an average of around 4.3 bit positions
for the carry-chain length when 16-bit operands are added, and about 5.3 bits
in the case of k = 32. However, these results are not immediately applicable to
the estimation of the number of loop iterations of Algorithm 2 since the carries
are generated outside the loop (namely in the actual CS addition of a and b in
line 1–3). Therefore, the number of iterations is one less than the length of the
carry chains, i.e. based on Hendrickson’s formula we can estimate the average
number of iterations to be about log2(5k/4) − 1. In this way, we finally obtain
log2(20) − 1 ≈ 3.3 iterations if k = 16 and log2(40) − 1 ≈ 4.3 iterations for the
redundant-to-binary conversion when k = 32. Thus, the average execution time
of the CSA addition specified in Algorithm 2 increases logarithmically with the
operand length k, similar to the execution time of the KSA.

3.2 Security Aspects

Even though both the CSA and KSA have logarithmic time complexity, there
exists a significant difference, namely that the execution time of the former is
not constant for a given operand length. Based on above analysis, the average
number of iterations of the while-loop for redundant-to-binary conversion can
be approximated as log2(5k/4) − 1. In the best case, however, the while-loop is
not iterated at all, which happens when (a ∧ b) 
 1 is 0. On the other hand, in
the worst case, a total of k − 1 iterations need to be performed until all k bits
of the carry-word rc become 0. The k − 1 iterations are the absolute maximum
since, in each iteration, the least significant carry bit rc0 is set to 0. When the
operands are short, e.g. when k = 16, it is feasible to (exhaustively) determine
the exact number of iterations for all 22k combinations of input words. Figure 1
shows the probabilities of all possible iteration counts for k = 16, which ranges
from 0 to 15. Out of the total of 232 possible operand combinations, only some
1.34% (or 57,395,628 combinations to be precise) directly yield a final result in
binary form (i.e. rc = 0) such that the loop is not iterated at all. An iteration
count of three has the highest probability; it occurs for roughly 27.72% of the
input combinations, closely followed by two iterations with a probability in the
area of 27.01%. The maximum possible 15 iterations happen only with 65,536
input combinations, i.e. the probability of the worst case for k = 16 amounts to
only 2−16, or roughly 0.0015%. The average over all 232 possible combinations
of pairs of 16-bit input words is approximately 3.25 iterations, which confirms
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Fig. 1. Probability of each possible number of iterations of the loop for redundant-to-
binary conversion when k = 16.

that the estimated iteration-count of log2(5k/4) − 1 ≈ 3.3 was pretty accurate
and the same also holds for k = 8 as we experimentally verified.

An attacker may be able to count the number of iterations executed in the
redundant-to-binary conversion, which raises the question of what information
the iterations reveal about the operands or the result. Let us first consider the
scenario that the loop is not iterated at all, which can only happen if after the
left-shift operation (line 3 of Algorithm 2), the carry-word rc is 0. This means
an attacker learns that a ∧ b is either 0 or 2k−1 because only in these two cases
rc can become 0. Answering the question of what information the attacker can
learn about the obtained result r (i.e. the sum-word rs) in this scenario is less
obvious and boils down to the question of whether r can take all 2k possible
values between 0 and 2k − 1 or not. Due to our experiments with k = 16 from
above, we know already that there are 57,395,628 different input combinations
for which the loop is not executed at all. A further analysis reveals that these
combinations cover all 216 possible values for the resulting sum, i.e. r can have
any value between 0 and 216 − 1. However, this does not hold any longer when
the redundant-to-binary conversion consists of exactly one loop iteration since
now only 216 − 2 = 65,534 different values for the sum can be obtained. In the
most extreme case, i.e. when the maximum number of k − 1 = 15 iterations is
performed, the resulting sum can only be either 0 or 215, which means that an
attacker has a 50% chance to simply guess the value of the sum. However, the
probability of 15 iterations is extremely small, namely 2−16 ≈ 0.0015%.

The above analysis of the iteration counts is based on an exhaustive testing
of all possible pairs of input words, which is feasible for k = 16, but not when
k = 32 anymore since the number of combinations of 32-bit words amounts
to 264. However, one can expect that for k = 32, the distribution of probabilities
for iteration counts will be similar to Fig. 1, meaning the highest probabilities
are centered around four iterations and the probability of k − 1 = 31 iterations
is extremely small, namely 2−32. Concretely, an attacker would have to observe
on average some 4.29 · 109 CS additions to reduce the guessing entropy for the
result to 1. However, the attacker can “trade” the number of guesses she has
to make for the number of traces she has to acquire to mount a DPA attack.
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Fig. 2. The number of traces necessary to reduce the guessing entropy of a 128-bit key
for different number of iterations of four 32-bit CS additions protected against DPA.
(Color figure online)

The relation between the guessing entropy and the number of iterations, as well
as the probability of each of the 32 iteration counts, is graphically represented in
Fig. 2. We generated the information shown in this figure through experiments
with 246 pairs of 32-bit words since exhaustively testing all 264 combinations is
not feasible. Concretely, in these experiments, we added a 128-bit secret key to
a 128-bit state consisting of four 32-bit words.

Due to our experiments, we can confirm that an iteration count of four has
the highest probability among the 32 possible counts and occurs in about 25%
of the 32-bit CS additions. In a real DPA attack on a 128-bit key addition, one
can therefore expect approximately one out of 16 power consumption traces to
contain four additions with four iterations each. As indicated by the yellow line
in Fig. 2, an exponentially increasing number of power traces must be captured
as the number of iterations gets larger. For example, an attacker would need to
measure (at least) 106 power traces before she can expect to encounter a trace
with more than 20 iterations. The blue line in Fig. 2 shows that the larger the
number of iterations gets, the more information about the sum is “leaked.” As
analyzed before for k = 16, the number of distinct values that the result of an
addition can take decreases with the number of loop iterations executed in the
redundant-to-binary conversion. In the most extreme case of k − 1 iterations
(which happens with a very small probability of 2−32 for k = 32), the result can
only take two distinct values, namely 0 and 2k−1. Fortunately, the restriction
of the value space for the result is much lower for the iteration counts with the
highest probabilities, which are centered around four iterations. Nonetheless,
it is possible to exploit the number of iterations in our experiments to reduce
the guessing entropy for the 128-bit key. For example, our results show that
if an attacker is able to observe some 600,000 additions, the guessing entropy
would be reduced from 128 to 64 bits. Similarly, the ability to measure power
traces of roughly 62,000 additions would reduce the guessing entropy to 80 bits.
However, the assumption that an attacker is capable to measure power traces
from several 10,000 or even 100,000 encryptions with one and the same key may
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Fig. 3. The evolution of the guessing entropy for a Correlation Power Analysis (CPA)
attack against four unprotected 32-bit modular additions.

be reasonable for smart cards, but is extremely unrealistic in many other contexts
(we discussed in Sect. 1 secure communication in the IoT as an example where
secret keys are ephemeral and only used to encrypt small amounts of data).

The best attack against a protected (i.e. masked) version of the CSA takes
the number of loop-iterations performed in the redundant-to-binary conversion
into account to reduce the guessing entropy of the key. This raises the question
of how much harder a protected CSA implementation is to attack in relation to
an unprotected 32-bit modular addition. To answer this question, we mounted
a Correlation Power Analysis (CPA) attack against an unprotected implemen-
tation of modular addition executed on an ARM Cortex-M3 processor clocked
at 33 MHz. The result, depicted in Fig. 3, shows that four 32-bit additions can
be attacked with some 6,800 power traces on average. On the other hand, when
using a similar amount of traces (namely 7,467), to attack a protected imple-
mentation of the CSA, the guessing entropy of a single 32-bit addition can be
reduced by only 5.18 bits. Therefore, the protected CSA considerably increases
the attacker’s effort compared to an unprotected modular addition.

The leakage caused by the operand-dependent number of loop-iterations in
the redundant-to-binary conversion reduces the guessing entropy of the secret
key and, hence, the effective security level, depending on the number of traces
an attacker is able to capture. However, for an effective security level of e.g. 96
bits, a masked implementation of 128-bit Speck (i.e. Speck-64/128) based on
the protected CSA is still much faster (namely about 17.5% for encryption and
roughly 42.4% for decryption) than a masked implementation of 96-bit Speck
(i.e. Speck-64/96) using the protected KSA, as we will see in Subsect. 4.2.

Although the protected CSA could be applied to operands of any size, the
trade-off between the number of traces and the guessing entropy must be taken
into account. This trade-off must be particularly carefully analyzed for operand
lengths below 32 bits. As a general guideline, we only recommend the protected
CSA for operands with a bitlength of k ≥ 32 as otherwise the security margin
might become too tight. Yet, even with this restriction, the protected CSA can
be used to efficiently mask numerous cryptographic primitives that are used in
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practice, including a diverse range of ARX-based lightweight symmetric ciphers
(like Chaskey, Speck, RECTANGLE, LEA, etc.) and the keyed-hash message
authentication code based on SHA-256 (HMAC-SHA-256).

4 Implementation Details and Evaluation

We implemented secure addition/subtraction on Boolean shares using both the
KSA and CSA algorithm in Assembly language for a 32-bit ARM Cortex-M3
processor. Then, we applied the mentioned addition techniques to protect two
variants of the block cipher Speck [2] against first-order DPA attacks.

4.1 Secure Addition on Boolean Shares

The implementation results for secure addition/subtraction on Boolean shares
are shown in Table 2. Before discussing the results in detail, we briefly describe
the implementations. Like other 32-bit ARM processors, the Cortex-M3 has 13
general-purpose registers, which we allocate as follows: Four registers hold the
shares of the two masked inputs. Either two or three registers (depending on the
algorithm) store the randomly generated 32-bit values needed for the execution
of the secure Boolean functions like SecureAnd and SecureShift. Each algorithm
also occupies a certain number of registers for intermediate results: three in the
case of the CSA and four for the KSA. A special property of ARM processors is
their ability to execute a shift operation together with most arithmetic/logical
instructions within a single clock cycle. We exploited this feature to reduce the
execution time of both the CSA-based and KSA-based addition technique.

The secure KSA performs additions in constant time and can be implemented
with either “rolled” or unrolled loops. The entirely unrolled version of the KSA
is between 28% (addition) and 21% (subtraction) faster than a standard imple-
mentation with rolled loops, but this gain in speed comes at the expense of
almost doubling the binary code size. In both cases, the KSA subtraction is sig-
nificantly slower than the addition because the SecureXor operation has to be
replaced by the less efficient SecurOr and the left-shifts by n bits performed on
the shares of the generate word require the insertion of n bits set to 1 (i.e. the

Table 2. Execution time and code size of secure addition on Boolean shares using the
secure Kogge-Stone Adder (KSA) and the secure Carry-Save Adder (CSA). Since the
execution time of the CSA is not constant, we specify the average number of cycles
over 100,000 executions with random inputs.

Adder Time (cycles) Code size (bytes)

Addition Subtraction Addition Subtraction

KSA rolled 282 369 292 408

KSA unrolled 202 291 544 808

CSA (average) 161.75 165 136 148
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SecShift must be replaced by SecShiftFill). However, in the unrolled version, the
execution time of SecShiftFill can be sightly reduced by using immediate values
instead of registers (see [7] for further implementation details).

The secure CSA is very efficient thanks to its simple structure that involves
only SecXor, SecAnd, and SecShift operations. Unlike the “rolled” version of the
KSA, it does not need a separate register to hold a loop counter. However, the
main advantage of the CSA over the KSA is that a subtraction is only slightly
slower than an addition since it requires just two extra operations, namely an
inversion and the insertion of a 1 at the LSB-position of the carry-word.

A direct comparison of the results of the rolled version of the KSA and the
CSA allows us to conclude that the carry-save approach is not only faster, but
also notably smaller than the Kogge-Stone technique. While the CSA addition
is, on average, about 43% faster than the KSA addition (162 vs. 282 cycles as
per Table 2), the difference increases to some 55% for subtraction (165 vs. 369
cycles). The benefit of the CSA over the KSA is even more significant in terms
of code size since the difference amounts to a factor of about 2.14 for addition
and 2.75 for subtraction. However, as we mentioned before, the execution time
of the KSA can be improved by full loop unrolling, but the resultant code-size
penalty may be undesirable for certain highly constrained environments where
every single byte matters. In summary, using the proposed carry-save technique
to directly perform a modular addition or subtraction on Boolean shares shows
clear speed and size advantages over the KSA.

4.2 Masked Implementation of Speck

Speck is a family of lightweight block ciphers designed by cryptographers from
the U.S. National Security Agency [2]. Speck-64/128 uses a two-branch Feistel
network to encrypt 64-bit plaintexts with a 128-bit master key. Its round func-
tion is iterated 26 times and consists of simple operations on 32-bit words: two
rotations, a modular addition, and two XORs. In the case of a straightforward
(i.e. unprotected) implementation, the cipher’s state fits into two registers, and
a third register is needed for the round key. The remaining eleven registers are
available for other purposes, e.g. the implementation of a masking technique to
protect the cipher against DPA attacks.

The implementation results presented in Table 3 show that the unprotected
version of Speck-64/128 is quite efficient compared to the secure addition on
Boolean shares (Table 2). Concretely, the encryption time is just a little worse
than the execution time of the slowest addition on Boolean shares (i.e. rolled
KSA), while the code size is at least six times smaller than the code size of the
KSA. The code size of the unprotected implementation of Speck is also more
than three times smaller than the size of the CSA, which is the adder with the
smallest footprint. This high-level comparison clearly illustrates the enormous
cost of masking just a single nonlinear operation, the modular addition. It can
therefore be expected that the integration of masking will entail a massive per-
formance degradation and also inflate the code size. Hence, any effort spent on
optimizing masking is well spent. Even a modest improvement by a few cycles
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Table 3. Execution time, code size and performance penalty factor of different imple-
mentations of Speck-64/96 and Speck-64/128. Since the execution time of the CSA
is not constant, we specify the average number of cycles over 100,000 executions with
random inputs.

Implementation Time (cycles) Code size (B) Penalty factor

Enc Dec Enc Dec Enc Dec

Unprotected Speck-64/96 306 510 44 52 1 1

Speck-64/96 (KSA rolled) 6639 9525 340 480 21.69 18.67

Speck-64/96 (KSA unrolled) 4921 7447 592 876 16.08 14.60

Speck-64/96 (CSA average) 3902.9 4071.8 180 204 12.75 7.98

Unprotected Speck-64/128 318 530 44 52 1 1

Speck-64/128 (KSA rolled) 6892 9889 340 480 21.67 18.65

Speck-64/128 (KSA unrolled) 5108 7731 592 876 16.06 14.58

Speck-64/128 (CSA, average) 4061.3 4290.8 180 204 12.77 8.09

when performing a masked addition has the potential to yield a non-negligible
overall performance gain.

A masked implementation of Speck occupies four registers to store the two
shares of the 64-bit state. Depending on the implementation methodology, one or
two registers have to be used to manipulate the shares of the round key. An ARM
Cortex-M3 processor does not provide enough general-purpose registers to hold
all operands needed during the execution of a masked implementation of Speck-
64/128 using the secure KSA algorithm. Thus, at the beginning of an addition
(or subtraction), two registers have to be spilled to RAM so that the necessary
number of registers becomes available for the KSA. The original content of these
registers is recovered at the end of the operation. However, for the fully unrolled
implementation, it suffices to save only a single register onto the stack. These
stack instructions (i.e. push and pop) add quite some overhead to each execution
of the secure KSA-based modular addition/subtraction. On the other hand, the
protected implementations of Speck-64/128 using the secure CSA are able to
execute all operations directly on registers (i.e. no push/pop is required) since
the underlying algorithm operates on fewer variables.

We compare in Table 3 the execution time and code size of an unprotected
implementation of Speck-64/96 and Speck-64/128 with three DPA-protected
versions2. All implementations have received a similar amount of optimization
and perform a single iteration of the round function in a loop, i.e. we refrained
from full loop unrolling to keep the code size small. The penalty factor on the
execution time of Speck-64/128 introduced by the different masking schemes
varies between 8.09 and 21.67. As expected, the efficiency of the three variants
reflects the performance of the underlying method for addition or subtraction
on Boolean shares. When comparing the masked implementation based on the

2 The results exclude the generation of (pseudo-)random numbers for masking.
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Fig. 4. T-statistic (absolute values) of the CSA under a HW leakage model.

CSA with the two KSA versions, it turns out that the encryption time of the
former is more than 20% better than that of the unrolled KSA and 3.28 times
smaller in size. The performance gain even doubles to 41% (which corresponds
to a considerable speed-up factor of 1.70) when we compare the CSA with the
rolled-loop KSA version. Furthermore, the CSA-based Speck implementation
clearly outperforms its two KSA-based Speck counterparts in decryption; it is
1.80 times faster than the unrolled KSA variant (4291 vs. 7731 cycles) and 2.30
times faster than the KSA with a “rolled” loop (9889 cycles).

4.3 Leakage Assessment

We evaluated the DPA-protected implementation of CSA addition on Boolean
shares as well as the masked implementation of Speck based on the CSA using
Welch’s t-test [8] on simulated power traces. Doing the test on simulated traces
facilitates experiments with a large number (e.g. millions) of traces and reduces
time and memory complexity in relation to real measurements. Our evaluation
framework is inspired by the tool described in [19], but applies a “fixed versus
random” leakage detection methodology. We eliminated the leakage related to
the number of loop iterations performed in the redundant-to-binary conversion
by simply executing the maximum number of iterations (i.e. 31) for all possible
combinations of 32-bit input words. Then, we judiciously applied the t-test to
avoid any wrong outcome [20]. Yet, we did not observe any significant leakage
above the ±4.5 threshold (which corresponds to a high statistical significance
level of α = 0.001) in our evaluation.

The maximum absolute value of the t-statistic of the secure implementa-
tion of the CSA addition is graphically represented in Fig. 4 for different num-
bers of simulated traces under a Hamming Weight (HW) leakage model. The t
value is always well below the threshold of 4.5 in all our experiments and only
shows small variations when increasing the number of traces from 103 to 106.
To give a concrete example, the result of the t-test applied to 106 power traces
of the secure CSA addition is depicted in Fig. 5. Again, we can observe that the
value of the t-statistic is inside the ±4.5 interval for each point in time, which
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Fig. 5. The result of the t-test applied to the CSA under a HW leakage model.

implies that the null hypothesis holds. In other words, the masking scheme is
effective against first-order DPA attacks because it passes the t-test evaluation.
All these results strongly indicate that the implementation will also not leak
when more than 106 traces are used for the t-test. Therefore, the described
implementation of CSA addition can be deemed secure against first-order DPA
attacks.

We obtained similar results when we applied the t-test to the secure imple-
mentation of KSA addition on Boolean shares and the masked implementation
of the Speck cipher based on the KSA. This suggests that our implementation
of the KSA can be considered secure against first-order DPA attacks.

5 Conclusions

The implementation of lightweight symmetric cryptosystems requires a careful
balance between efficiency and security, including a certain degree of resistance
against DPA attacks. In this context, we introduced a new masking technique
for block ciphers that involve both arithmetic and Boolean operations, which is
the case for Speck and many other ARX designs. Our main contribution is an
algorithm for performing CSA-based modular addition/subtraction directly on
Boolean shares, which makes expensive mask conversions obsolete. The CSA is
much simpler and, hence, faster than the KSA presented at FSE 2015, but has
operand-dependent execution time. Concretely, a CSA-based 32-bit addition on
Boolean shares requires 162 clock cycles when executed on an ARM Cortex-M3
processor, which is between 20% and 41% faster than the KSA, depending on
whether the loops are unrolled or not. We integrated both addition techniques
into a masked implementation of Speck and found the CSA to outperform the
“looped” KSA by a factor of 1.70 for encryption and 2.30 for decryption. The
main drawback of the CSA is its operand-dependent execution time, which can
be exploited to reduce the guessing entropy of the secret key. Nonetheless, the
CSA is a practical and useful alternative to the KSA, especially for applications
that encrypt only small amounts of data with one and the same key.
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vol. 2779, pp. 89–97. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45238-6 8

6. Debraize, B.: Efficient and provably secure methods for switching from arithmetic
to Boolean masking. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 107–121. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8 7

7. Dinu, D.: Efficient and secure implementations of lightweight symmetric crypto-
graphic primitives. Ph.D. thesis, University of Luxembourg (2017)

8. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel
resistance validation. In: Proceedings of the NIST Non-invasive Attack Testing
Workshop (NIAT 2011), pp. 158–172, September 2011

9. Goubin, L.: A sound method for switching between Boolean and arithmetic mask-
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Abstract. The security of modern block ciphers against related-key
attacks, especially the automatic search algorithm for the related-key
differential characteristics, attaches a lot of academic attention in recent
years. Many search algorithms have been proposed, including depth-first
algorithm, breadth-first algorithm and mixed-integer linear programming
algorithm. However, the algorithm with reasonable time and memory is
still very ad hoc. In this paper, we propose a heuristic algorithm for
automatic search for related-key truncated differential characteristics.
The goal of our tool is to output a good characteristic within reason-
able time and memory, so that it can be used to evaluate the resistance
against related-key differential attacks. Our tool combines the precom-
putation phase of breadth-first algorithm and the depth-first algorithm.
To demonstrate the usefulness of our approach, we apply our tool to
AES, Deoxys, Joltik and Midori. For AES, we for the first time get a
searching result of the best related-key differential characteristic on 10-
round AES-128 using the truncated differential form directly. For Deoxys
and Joltik, we get more results than the designers under the related-key
related-tweak setting. For Midori, we get a two-round related-key cyclic
characteristic with weight two, which means that Midori is weak under
the related-key setting. We also give a way to calculate the complexity
of depth-first algorithm, breadth-first algorithm and our heuristic algo-
rithm, and this is meaningful for us to choose the proper parameters of
the algorithm to make the search feasible.

Keywords: Automatic search tool · Related-key differential character-
istics · Heuristic algorithm · AES · Deoxys · Joltik · Midori

1 Introduction

Differential cryptanalysis [3] is one of the most well-known attacks on block
ciphers, based on which many cryptanalytic techniques have been developed,
such as truncated differential attack [15], impossible differential attack [4] and
boomerang attack [21]. Evaluation of the security against differential attack
c© Springer International Publishing AG 2017
P.Q. Nguyen and J. Zhou (Eds.): ISC 2017, LNCS 10599, pp. 58–76, 2017.
https://doi.org/10.1007/978-3-319-69659-1_4
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becomes a basic requirement for the design of block ciphers. Methodologies for
constructing block ciphers provably resistant to differential attacks are read-
ily available under the single-key setting. However, things get worse under the
related-key setting [2]. In this kind of attacks, the attacker knows or chooses the
relation between several keys and is given access to encryption/decryption func-
tions with all these keys. The goal of the attacker is to find the actual keys. The
relation between the secret keys is a function chosen by the attacker with some
extra care taken to avoid trivial attacks, and quite often it is just an xor with
a chosen constant. While less relevant in practice than the classical single-key
model, related-key attacks are also very important when the block cipher is used
as inner primitive of a hash function, and in that setting one can even consider
the known-key [16] or chosen-key models [6] to exhibit some non-ideal properties
of the primitive. AES [8] is the most significant standard for block ciphers. The
result on full-round AES is still an open problem. A breakthrough in analysis
of full-round AES has been presented under the related-key setting. In [6], a
related-key attack on 14 rounds of AES-256 was presented. In [5], related-key
boomerang attacks on full-round AES-192 and AES-256 were shown.

Automatic search for best differential characteristics under the single-key set-
ting was first performed by Matsui [20] for DES. The automatic search tool for
related-key truncated differential characteristic was first proposed by Biryukov
et al. at EUROCRYPT 2010 [7]. Their strategy to find the best n-round trun-
cated characteristic first starts by computing the best ones on 1 to n−1 rounds.
This algorithm works by recursive and can be seen as a tree traversal in a depth-
first manner. The advantages of this algorithm are that it can be implemented
in parallel and it can output the best characteristics at the end of the algo-
rithm. The disadvantages are that the time complexity increases exponentially
with the number of rounds and there are few limits in the middle rounds. At
CRYPTO 2013, Fouque et al. proposed a breadth-first algorithm to search the
best related-key truncated differential characteristic [11]. This algorithm is made
up of two phase, i.e., precomputation phase and online phase. In the precompu-
tation phase, a graph G that contains all the possible one-round transitions is
built. In the online phase, all the best r-round related-key truncated differential
characteristics corresponding to all the shortest paths in the (r + 1)-equipartite
directed acyclic graph Gr are built by concatenating r copies of G. The advan-
tage of this algorithm is that its time complexity of online phase is linear in the
number of rounds. The disadvantages are that the precomputation phase needs
to store a graph containing all the possible one-round transitions which may
be too large to store, and the online phase isn’t feasible to be implemented in
parallel.

Our contributions. In this paper, we describe a heuristic tool for searching
related-key truncated differential characteristics. The goal of our tool is to output
a good characteristic within a reasonable time and a reasonable memory, so that
it can be used to evaluate the resistance against related-key differential attacks.
This algorithm is also made up of a precomputation phase and an online phase.
In the precomputation phase, we also need to build a graph G that contains
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some one-round transitions as in the precomputation phase of the breadth-first
algorithm. The difference is that we introduce a number W 2round which is the
upper-bound for two-round characteristics. In the online phase, we use the depth-
first algorithm under the restrain of W 2round. For the AES-like block ciphers, we
can get an improved algorithm which can use the early-abort technique between
columns, and the time and memory complexities of precomputation phase can
be ignored.

To demonstrate the usefulness of our approach, we apply our tool to AES,
Deoxys, Joltik and Midori. For AES, we get the searching result of the best
related-key differential characteristic on 10-round AES-128 under the truncated
differential form. Although the authors of [11] also get a 10-round best charac-
teristic, they use the semi-compression form to compress the entropy and get
the characteristic under semi-compression form. Then they convert the semi-
compression form to truncated differential form, and get the best truncated
differential characteristic. To the best of our knowledge, this is the first time one
can get the 10-round best characteristic using the truncated differential form
directly and the running time is short. For Deoxys [12] and Joltik [13], since
they use the tweakey framework [14], the authors use the number of active S-
boxes to evaluate the ciphers against related-key related-tweak attacks. However,
they can only get the best 6-round related-key related-tweak differential charac-
teristics using the depth-first algorithm. For seven and more rounds, they can
only give a lower bound using the extended split approach. With the help of our
tool, we get the characteristics up to 9 rounds for Deoxys-128-128/Joltik-64-64
and characteristics up to 11 rounds for Deoxys-256-128/Joltik-128-64, which are
enough to reach the security goal. For Midori, we find more than one 2-round
related-key cyclic characteristics with weight two, suggesting that Midori is weak
under the related-key setting.

Finally, we give the ways to calculate the time and memory complexities of
depth-first, breadth-first and our heuristic algorithms. Although Fouque et al.
gave the way to calculate the memory complexity of the precomputation phase
of the breadth-first algorithm in [11], we find that their results are too ideal
and the real memory complexity is much greater. Meanwhile, they ignored the
time complexity of the precomputation phase, which is much greater than the
memory complexity. Since our calculation is quite general, it is meaningful for
us to choose the proper parameters (e.g., W 2round) of the algorithm to make the
search feasible.
The source code of our tool is available at http://alturl.com/pocz7.

Organization of this paper. The rest of this paper is organized as follows.
Section 2 gives some notations, definitions and a brief recall of the depth-first and
breadth-first algorithms. Section 3 gives our automatic search tool. Sections 4, 5
and 6 give our results on AES, Deoxys/Joltik and Midori, respectively. Section 7
gives our calculation processes for depth-first, breadth-first and our heuristic
algorithms. Finally, Sect. 8 concludes this paper.

http://alturl.com/pocz7
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2 Preliminaries

In this section, we first give some notations and definitions, then recall the depth-
first algorithm and breadth-first algorithm proposed respectively in [7] and [11].

2.1 Notations and Definitions

In this paper, W (x) or Wx means the number of active S-boxes of one state x,
and sometimes we call it the weight of x. Since our tool works for word-oriented
block ciphers, one state of these ciphers can be represented by one Nr × Nc

matrix, where Nr is the number of rows and Nc is the number of columns. Let
(s, k) or (S,K) denote one state/key pair, and let S[i] and K[i] denote the ith

column of S and K, respectively. The branch number of MixColumn operation
is denoted as Nbr.

In this paper, we consider truncated differential attacks [15]. That is, for a
state of differences, we only consider the presence of differences in every word,
regardless of their actual values. We call the former truncated differences and the
latter actual differences, and a trail of truncated differences is called truncated
differential characteristic.

Definition 1 (Truncated differences). Let S0 = [Si,j
0 ] and S1 = [Si,j

1 ] be two
states. We denote their truncated differences by Δ = [Δi,j ] with Δi,j = 1 if and
only if Si,j

0 �= Si,j
1 (active), and Δi,j = 0 otherwise (inactive).

2.2 Depth-First Algorithm for Related-Key Characteristics

At EUROCRYPT 2010, Biryukov et al. gave a depth-first algorithm for find-
ing truncated differential characteristics both in the state and in the key [7].
They introduced three variants of the algorithm for different scenarios, and we
recall the first variant here. This algorithm is based on the automatic search
algorithm for best differential characteristics and linear approximations under
the single-key setting which is proposed by Matsui for DES [20]. This algorithm
works by induction: to find the best n-round characteristic, first it finds the best
1, 2, · · · , (n − 1)-round characteristics. Let W1,W2, · · · ,Wn−1 be the weights of
the 1, 2, · · · , (n − 1)-round characteristics found previously with the algorithm
and let Wn be the weight of some (not necessarily optimal) n-round character-
istics. Firstly, the algorithm builds all possible one round characteristics with
a weight at most Wn − Wn−1. This is for the reason that if the weight of the
first round is more than Wn −Wn−1, then it can not be extended to an n-round
characteristic because the weight of n − 1 rounds is at least Wn−1, so in total
it will have a weight more than Wn. The upper-bound for the search of the ith

round is Wn − Wn−(i−1) − ∑i−1
j=1 ωj , where ωj is the weight of state/key pair

of the jth round. Then n-round characteristic can be formed. Let ΔX → ΔY
be one round differential transition, where ΔX is the input difference in both
the state and the subkey, and ΔY is the output difference. The pseudo-code is
described in Algorithm 1.
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Algorithm 1. Pseudo-Code for Depth-First Algorithm
1: for all {ΔX W (ΔX) + Wn−1 ≤ Wn} do
2: Call NEXTROUND(ΔX, W (ΔX),2)
3: end for
4:
5: function NextRound(ΔX, W , r)
6: for all {ΔY ΔX → ΔY and W (ΔY ) + W + Wn−r ≤ Wn} do
7: if r = n then
8: Update the best characteristic
9: Wn ← W + W (ΔY )

10: else
11: Call NEXTROUND(ΔY , W + W (ΔY ), r + 1)
12: end if
13: end for
14: end function

The advantages of this algorithm are that it can be implemented in parallel
and it can output the characteristics of the best weight at the end of the algo-
rithm. The disadvantages are that the time complexity increases exponentially
with the number of rounds and there are few limits of weights in the middle
rounds. We propose an algorithm to calculate the time complexity of the depth-
first algorithm in Sect. 7.2.

2.3 Breadth-First Algorithm for Related-Key Characteristics

At CRYPTO 2013, Fouque et al. presented a breadth-first algorithm for the best
related-key truncated differential characteristics [11]. This algorithm is made up
of two phases, i.e., precomputation phase and online phase. In the precompu-
tation phase, a graph G which contains all the possible one-round transitions
need to be built. G can actually be described as a special product of two smaller
graphs GBC and GKS , such that an edge (si, kj) → (si′ , kj′) exists in G if and
only if kj → kj′ exists in GKS and (si, kj′) → si′ exists in GBC . In the online
phase, all the best r-round related-key truncated differential characteristics cor-
responding to all the shortest paths in the (r + 1)-equipartite directed acyclic
graph Gr are built by concatenating r copies of G. To achieve the goal for an
i-round cipher, the function to be minimized for each state/key pair ΔX is:

W (ΔX) + min
ΔY ∈{x x→ΔX}

C(ΔY ),

where C(ΔY ) represents the minimum weight to get ΔY through i − 1 rounds.
This can be done by creating a list containing all the ΔY sorted increasingly
according to the cost of their shortest path C(ΔY ). Then, starting from the
cheapest ΔY and ending to the most expensive one, we set the minimum weight
of all the successors ΔX of ΔY to W (ΔX) + C(ΔY ) if and only if ΔX is not
reached yet. The pseudo-code of round-i is shown in Algorithm 2.

The advantage of this algorithm is that its time complexity of online phase is
linear in the number of rounds. The disadvantages are that: First of all, it needs
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Algorithm 2. Pseudo-Code for Breadth-First Algorithm
1: function Searchi(all ΔY with C(ΔY ))
2: Sort ΔY by C(ΔY )
3: for all ΔY , by increasing C(ΔY ) do
4: for all ΔX ∈ {x ΔY → x} do
5: α ← C(ΔY ) + W (ΔX)
6: if ΔX was not reached yet then
7: C(ΔX) ← α
8: Record this transition
9: else if C(ΔX) = α then

10: Record this transition
11: end if
12: end for
13: end for
14: end function

to store a graph containing all the possible one-round transitions which may be
too large to store; Secondly, the online phase isn’t feasible to be implemented
in parallel; After that, although the time complexity is linear in the number of
rounds, we still need to run through all the possible edges of one-round transi-
tions, which makes the time complexity to be still very large; Finally, we need
to store a table in the online phase to retrieve the best characteristics which
sometimes is even larger than the precomputation table.

Although the authors give the best related-key truncated differential char-
acteristics on 10-round AES-128. They use the semi-compressed form instead of
the truncated form to compressed the entropy and make the search available.
Then they convert the semi-compression form to truncated differential form, and
get the best truncated differential characteristic. However, for many other block
ciphers, they don’t have such a good structure as AES to compress the entropy.
Therefore, we give the first searching result of AES using truncated differential
form directly in Sect. 4.2.

In [11], the authors gave a way to calculate the memory complexity of GBC .
However, their results are too ideal and they ignore the time complexity of the
precomputation phase which is even larger. We give a general way to calculate
the time and memory complexities of both online phase and precomputation
phase in Sect. 7.1.

3 Improved Tool for Search of Related-Key Differential
Characteristics

The designers of word-oriented block ciphers often use the number of active S-
boxes to evaluate the resistance against related-key differential attacks. However,
the fast diffusion of encryptions and key schedules, large block and key size and
small S-boxes (e.g. use 4-bit S-boxes in the 128-bit block cipher) make the search
of the best characteristics almost impossible.
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In this section, we describe a heuristic tool for searching related-key truncated
differential characteristics. The goal of our tool is to output a good character-
istic within a reasonable time and a reasonable memory, so that it can be used
to evaluate the resistance against related-key differential attacks. To fulfill this
goal, the algorithm must be implemented in parallel to make full use of the com-
putational resources and we can get the characteristics to test the correctness.
If we choose the depth-first algorithm as Sect. 2.2, the time complexity increases
exponentially with the number of rounds and there are few limits of weights in
the middle rounds. If we choose the breadth-first algorithm as Sect. 2.3, since the
online phase cannot be implemented in parallel and a large maybe unreasonable
memory space is needed both in the precomputation phase and online phase. To
overcome the disadvantages of each algorithm, we propose a heuristic algorithm
in the following section.

3.1 Tool for Related-Key Differential Characteristics

The idea of this tool comes from the observation of the propagation of related-
key differential characteristics. For one cipher with good diffusion layer, the
differential characteristic may include some rounds which have a lot of active
S-boxes under the single-key setting (e.g., the best differential characteristic of
5-round AES which satisfies 1 → 4 → 16 → 4 → 1). However, under the related-
key setting, an AddRoundKey layer follows the diffusion layer, and the number
of active words for a “bad” state after an AddRoundKey layer may decrease.
Let t denote the number of active S-boxes of a two-round characteristic in an
n-round “good” related-key differential characteristic and T denote the total
number of active S-boxes in these two rounds, t is always small compared to T
(e.g., for the 10-round best related-key differential characteristic of AES-128 in
[11], the maximum number of t is 10 and T = 40).

Therefore, we combine the precomputation phase of breadth-first algorithm
and the depth-first algorithm together to form a heuristic algorithm for the
related-key differential characteristics, i.e., this algorithm is also made up of a
precomputation phase and an online phase.

In the precomputation phase, we also need to build a graph G which con-
tains some one-round transitions. The difference is that we introduce a num-
ber W 2round, which is the upper-bound for two-round characteristics, i.e.,
(si′ , kj′) ∈ G if and only if W (si, kj) + W (si′ , kj′) ≤ W 2round. G can still be
described as a special product of two smaller graphs GBC and GKS . Since
an edge (si, kj) → (si′ , kj′) exists in G if and only if kj → kj′ exists in
GKS and (si, kj′) → si′ exists in GBC , an edges (si, kj′) → si′ is in GBC if
W (si, kj′) + W (si′) + min{W (x) x → kj′} ≤ W 2round.

In the online phase, we use the depth-first algorithm as Sect. 2.2. However,
instead of running through all {ΔY ΔX → ΔY and W (ΔY ) + W + Wn−r ≤
Wn}, we only run through the members in GBC×GKS with W (ΔX)+W (ΔY ) ≤
W 2round. The pseudo-code for this breadth-depth heuristic algorithm is shown
in Algorithm 3.
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For the reasonable value of W 2round, since our goal is to construct an algo-
rithm within reasonable time and memory, we give a relation function between
W 2round and the time/memory complexity in Sect. 7. We can choose a proper
value of W 2round to make the search feasible.

For the state of block cipher which can be divided into some small parts (e.g.,
AES-like ciphers which can be divided into columns), instead of storing GBC for
the whole state, we only need to store a small table for column. So we can get
an improved algorithm whose memory complexity can be ignored and we can
also get an improved algorithm which can use the early-abort technique between
columns. The detailed description of this algorithm is given in Sect. 4.2.

Algorithm 3. Pseudo-Code for Breadth-Depth Algorithm
1: for all {(s0, k0) W (s0, k0) + Wn−1 ≤ Wn} do
2: Call NEXTROUND((s1, k1), W (s1, k1), 2)
3: end for
4:
5: function NextRound((sr−1, kr−1), W , r)
6: for all {kr (kr−1 → kr) ∈ GKS , W (kr) + W + Wn−r ≤ Wn and

W (sr−1, kr−1) + W (kr) ≤ W 2round} do
7: for all {sr ((sr−1, kr) → sr) ∈ GBC , W (sr, kr) + W + Wn−r ≤ Wn

and W (sr−1, kr−1) + W (sr, kr) ≤ W 2round} do
8: if r = n then
9: Update the best characteristic

10: Wn ← W + W (sn, kn)
11: else
12: Call NEXTROUND((sr, kr), W + W (sr, kr), r + 1)
13: end if
14: end for
15: end for
16: end function

Next, we will give some tips for the search:

1. We sort the sets of successors in both GBC and GKS , so that we can perform
an early-abort manner. This means that if the ith successor of one state is
pruned, we don’t need to go on since the following successors must be pruned.

2. For the loop of (s0, k0) in Algorithm 3, we should loop it from weight low to
high.

3. Both the online phase and precomputation phase of this algorithm can be
implemented in parallel. Suppose we have Np processors and the number of
pairs (s1, k1) with weight ω is NW (ω), we should divide NW (ω) into Np parts
and run the algorithm. After that, we can deal with weight ω + 1.

4. For the value of Wn, we can let the best (n − 1)-round characteristic go
forward/backward one more round, and let Wn be the best weight so far.
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4 Applications to AES

4.1 Former Results of AES

In [7], Biryukov et al. gave the best related-key truncated differential charac-
teristics on 11-round AES-192 and 14-round AES-256, but they cannot find
best related-key truncated differential characteristics on 9-round and 10-round
AES-128 since the complexity is too high. We calculate the complexity of the
depth-first algorithm in Sect. 7.2. In [11], Fouque et al. gave the best related-key
truncated differential characteristics on 10-round AES-128. They use the semi-
compressed state, i.e., store the weight of one column except for the columns
with weight one, instead of truncated state to compress the entropy of states
and make the search feasible. If they use the truncated differential characteris-
tics directly, the complexity will make the search infeasible. In [11], the authors
also calculated the memory complexity of the precomputation phase for trun-
cated differences. However, their calculation is too ideal, the precomputation
table is much larger than their result, and the time complexity ignored by the
authors is even larger. We show the counting process of the time complexity
and memory complexity of both the online phase and precomputation phase in
Sect. 7.1.

4.2 Improved Applications to AES-like Ciphers

In [20], Matsui described level of recursion over the 8 S-boxes of DES (i.e.,
Round − 2 − j), with which the probability of a partial trail is computed up to
round r − 1 and up to S-box j at round r, where 1 ≤ j ≤ 8. Thanks to his
original proposal, we can give an improved search tool for AES-like ciphers [11].

For AES-like ciphers, the states can be divided into some small parts, called
columns. The linear layer of these ciphers consists of an operation inside one
column, called MixColumn (MC), and a simple permutation between columns.
After that, the round-key is xored into the state. We can give recursion over
columns just as Matsui.

For one column of state S[i] and one column of key K[i], let RS(S[i],K[i])
be the set of outputs of MC(S[i])⊕K[i], and the members in this set are sorted
by their weights. Suppose W limit is the upper-bound of weight of this round, we
have the following situations:

– For column-0, if it takes the jth
0 member of RS(S[0],K[0]), the search can go

on if and only if W (RS(S[0],K[0])[j0]) +
∑Nc−1

t=1 W (RS(S[t],K[t])[0]) is at
least as good as W limit. Otherwise, we stop the search and go back to the
previous round. This is for the reason that RS(S[i],K[i]) is sorted by the
weight.

– For column-k, if the ith column takes the jth
i member of RS(S[i],K[i]) for i =

0, · · · , k, the algorithm can go on if and only if
∑k

i=0 W (RS(S[i],K[i])[ji]) +
∑Nc−1

i=k+1 W (RS(S[t],K[t])[0]) is at least as good as W limit. Otherwise, we stop
the search and go back to the previous column.
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– For column-(Nc − 1), the algorithm can go on if and only if
∑Nc−1

i=0 W (RS
(S[i],K[i])[ji]) is at least as good as W limit. Otherwise, we stop the search
and go back to the previous column.

Therefore, for AES-like ciphers, instead of sorting all the possible one round
transitions with weight less than W limit, we only need to store a small table for
columns, and the time and memory complexity of precomputation phase of our
tool can be ignored.

Let W 2round = 11, the searching results of AES-128 are shown in Table 1. The
numbers in this table are in hexadecimal, each hexadecimal number represents
one column.

Table 1. Results of the related-key characteristics on AES-128.

Round Wn Best weight Time Trail

8 23 21 12 min (a000, 033f) → (0c00, fcf0) → (0000, ff00) →
(f000, f000) → (0005, ffff) → (0060, f0f0) →
(0400, ff00) → (0000, f000)

9 25 23 1 min (1000, 0ff0) → (0b00, 0f00) → (0005, 0fff) → (0060, f0f0)
→ (0000, ff00) → (ff00, ff00) → (0006, ffff) →
(0040, 0ff0) → (0000, 0f00)

10 27 25 1 min (0800, 0ff0) → (0b00, 0f00) → (0005, 0fff) →
(0060, f0f0) → (0000, ff00) → (f000, f000) →
(0005, ffff) → (0060, f0f0) → (0400, ff00) → (0000, f000)

�: W 2round = 11. (a, b) means that the state is a and the key is b.

5 Applications to Deoxys and Joltik

5.1 Descriptions of Deoxys and Joltik

Deoxys [12] and Joltik [13] are two families of authenticated encryption algo-
rithms with state sizes of 128-bit and 64-bit designed by Jean et al. and are two of
the 29 submissions which are chosen as the second-round candidates of CAESAR
competition. The design of Deoxys and Joltik follows the TWEAKEY framework
proposed by the same authors at ASIACRYPT 2014 [14]. The tweakable block
cipher used in these two submissions can be represented as EK(T, P ) = C, where
P is the plaintext, K is the key and T is the tweak. The AES-based tweakable
schedule (p = 2) that Deoxys-128-128 and Joltik-64-64 based on is shown in
Fig. 1. For the description of Deoxys-256-128 and Joltik-128-64 (p = 3), we refer
to their papers. One round of Deoxys/Joltik, similar to one round of AES, has
four transformations: AddRoundTweakey, SubWords, ShiftRows and MixCol-
umn. The biggest difference between them is the AddRoundTweakey operation,
which xor the round key and tweak which are produced by the tweakey schedule
to the state.

The tweakey schedule can be seen in Fig. 1, where h is a permutation between
words, 2© means a multiplication with 2 and RCi are the round constants.
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Fig. 1. Instantiation of the TWEAKEY framework for Deoxys and Joltik (p = 2).

5.2 Applications to Deoxys-128-128 and Joltik-64-64

In [12,13], the authors use the number of active S-boxes to evaluate the resistance
against related-key related-tweak attacks. However, they can only get the best 6-
round related-key related-tweak differential characteristics using the depth-first
algorithm. For seven and more rounds, they can only give a lower bound using
the extended split approach [10]. Also, they don’t give the strategy to search this
kind of characteristics since this attack scenario is quite new and the searching
strategy is quite complicated.

For Deoxys-128-128 or Joltik-64-64, since the state, key and tweak are all
made up of 16 words, it’s impossible to run through all possible triples and
get the best trail. Meanwhile, the tweakey-schedule includes a multiplication
with 2, which means that for one word wK of key and one word wT of tweak,
wK ⊕ wT = 0 can only appear once during the tweakey-schedule. Suppose there
are i positions where the key and tweak are both active1, the total number of
possibilities of the tweakey-schedule is 1 +

(
i
1

)
R + · · · +

(
i
i

)
Ri = (1 + R)i for an

(R+1)-round cipher. This number is quite large for i = 0, · · · , 15, and we should
also limit the value since large values of i unlikely give a good characteristic.

We let W 2round = 8, the searching results are shown in Table 2, and the
characteristic of 8-round Deoxys-128-128/Joltik-64-64 is shown in Fig. 2. The
characteristic in the tweakey structure is the xor of the key and tweak.
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Fig. 2. Truncated differential characteristic of 8-round Deoxys-128-128/Joltik-64-64.

1 For the case that the key (or the tweak) is active, it is included in the case that the
key and tweak are both active.
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Table 2. Results of the related-key related-tweak characteristics on Deoxys-128-
128/Joltik-64-64.

Round Weight Time Trail

7 16 20 min (0180, 0a55) → (4228, 4298) → (0000, f005) →
(8228, 8228)
→ (2004, 500a) → (1882, 1862) → (0, 05f0)

8 20 53 min (0001, 5050) → (5000, a000) → (0a0a, 0505) →
(0105, 0a0a) → (a020, 5050) → (5050, a0a0) →
(0208, 0505) → (0001, 000a)

9 23 10 min (0004, 5050) → (0050, 00a0) → (0a0a, 0505) →
(0105, 0a0a) → (a0a0, 5050) → (1010, a0a0) →
(0a0a, 0505) → (0104, 0a0a) → (4020, 4050)

�: W 2round = 8. The second number in one pair is the xor of key and tweak.

5.3 Applications to Deoxys-256-128 and Joltik-128-64

For Deoxys-256-128 and Joltik-128-64, there are three branches in the tweakey-
schedule with one multiplying 2 and one multiplying 4, which means that for
one word wj of the three branch, w0 ⊕ w1 ⊕ w2 = 0 can appear twice during the
tweakey-schedule. The total number of possibilities is (1 + R +

(
R
2

)
)i.2

We also let W 2round = 8, the searching results are shown in Table 3. The
characteristic in the tweakey structure is the xor of the key and tweak. The
number of active S-boxes for 11-round Deoxys-256-128/Joltik-128-64 is greater
than 23, which is enough to reach the security goal.

6 Applications to Midori

Midori is a lightweight block cipher designed by Banik et al. at ASIACRYPT 2015
[1] and is based on the Substitution-Permutation Network (SPN). One version
of Midori uses a 64-bit state, another uses a 128-bit state and we denote these
versions Midori-64 and Midori-128. Each of these versions uses a 128-bit key. In
this paper, we focus on the related-key truncated differential characteristic of
Midori-128 (the related-key truncated differential characteristic of Midori-128 is
obviously the related-key truncated differential characteristic of Midori-64). One
round of Midori-128 consists of a SubByte, a ShuffleByte, a MixColumn and an
AddRoundKey operations. We refer to [1] the detailed description of Midori.

For Midori-128, we find more than one 2-round related-key cyclic character-
istics with weight 2, and we show one example in Fig. 3. Therefore, Midori is
weak under the related-key setting.

2 (1) All active: 1; (2) One inactive word: R; (3) Two inactive words:
(

R
2

)
.



70 L. Lin et al.

Table 3. Results of the related-key related-tweak characteristics on Deoxys-256-
128/Joltik-128-64.

Round Weight Time Trail

7 12 2 h (2000, 1c43) → (0000, 00f0) → (4411, 4411) →
(1002, a005)
→ (4418, 4318) → (0000, f00a) → (1000, 1000)

8 15 8 h (8000, 70d8) → (5000, b000) → (0822, 072d) →
(a000, 5e00) → (2880, d870) → (0a00, 00b0) →
(0208, 0d07) → (0000, 000e)

9 18 10 h (8080, 5e0a) → (2880, d870) → (0a00, 05b0) →
(2208, 2d07) → (00a0, 005e) → (8020, 70d0) →
(5000, b000) → (0802, 070d) → (0000, 0e00)

10 21 12 h (0100, 1c43) → (0000, 00f0) → (4411, 4411) →
(1002, a005) → (4418, 4318)
→ (0000, f00a) → (1144, 1144) → (0840, 05a0) →
(1142, 1c42) → (0000, 0af0)

�: W 2round = 8. The second number in one pair is the xor of key and tweak.
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AK

Fig. 3. Two-round related-key cyclic characteristic of Midori-128.

7 Evaluating the Complexity

In [11], Fouque et al. gave a way to evaluate the average branch number of
nodes/edges of GBC and GKS . In this section, we generalize their model and
evaluate the time complexity of breadth-first, depth-first and our breadth-depth
algorithms. We use the number of edges the algorithm goes through to evaluate
the time complexity. We take the SPN block cipher, i.e., the cipher consists with
an S-box substitute layer, a permutation layer and an AddRoundKey layer, of
size Nr ×Nc as an example. The permutation layer is made up of a permutation
between words and Nc MixColumn operations on each column using a finite-
field multiplication as S[i] ← M · S[i], where M means a Nr × Nc matrix. Since
the permutation (e.g., ShiftRow of AES) doesn’t change the number of active
S-boxes, we start with a state after this operation. The branch number of M is
Nbr. The size of the intermediate state and the size of the key are the same. The
source code of this section is also available at http://alturl.com/pocz7.

http://alturl.com/pocz7
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7.1 Evaluating the Complexity for Breadth-First Algorithm

We evaluate the time complexity3 and memory complexity of this algorithm here.
Since we consider all keys and intermediate states, we can ignore the permutation
operation.

Theorem 1. For one column difference ci with Wci = W (ci), the time com-
plexity for all key differences xor ci is fxor(Wci) = 2Nr−Wci × 3Wci .

Proof. Let p0, · · · , pWci
denote the bit positions of ci which are active. Let

2Nr−Wci keys which are equal in positions p0, · · · , pWci
and take all different

values in the other positions be a cluster. The number of clusters which have
i active bits among p0, · · · , pWci

is
(Wci

i

)
, where i ≤ Wci . Let k be one key in

a cluster which has i active bits among p0, · · · , pWci
, number of output states

after k ⊕ ci is 2i.
Therefore, the time complexity for all keys xor ci is 2Nr−Wci × ∑Wci

i=0

(Wci
i

) ·
2i = 2Nr−Wci · (1 + 2)Wci = 2Nr−Wci · 3Wci . 	

Theorem 2. The time complexity of the precomputation phase of breadth-first
algorithm is

∑Nr

i1=0 · · · ∑Nr

iNc=0

∏Nc

j=1

(
Nr

ij

)
fmc/xor(ij) and the memory complexity

of GBC is
∑Nr

i1=0

∑Nr

i2=0 · · · ∑Nr

i2∗Nc=0

∏Nc

j=1

(
Nr

i2∗j

)(
Nr

i2∗j−1

)
Moff (i2∗j , i2∗j−1), where

fmc/xor(Wci) =

{∑Nr
i=Nbr−Wci

(
Nr
i

)
fxor(i), if Wci < Nbr − 1

∑Nr
i=1

(
Nr
i

)
fxor(i), if Wci ≥ Nbr − 1

and

Moff (Wcs , Wck) =

⎧
⎪⎨

⎪⎩

1, if Wcs = 0

Nbr − Wcs , if Wck = 0

2Wck +
∑Nr−(Nbr−Wcs )

i=1

(Nr−Wck
i

)
if Wcs �= 0

Proof. For the time complexity, if the weight of one column ci is Wci and the
branch number of MixColumn operation is Nbr, the number of states after Mix-
Column and AddRoundKey layer is:

fmc/xor(Wci) =

{∑Nr
i=Nbr−Wci

(
Nr
i

)
fxor(i), if Wci < Nbr − 1

∑Nr
i=1

(
Nr
i

)
fxor(i), if Wci ≥ Nbr − 1

Therefore, the time complexity of the precomputation phase of breadth-first
algorithm is

∑2NrNc−1
i=0

∏Nc−1
j=0 fmc/xor(W ((i � (j × Nr))&(2Nr − 1))), i.e.,

∑Nr

i1=0 · · · ∑Nr

iNc=0

∏Nc

j=1

(
Nr

ij

)
fmc/xor(ij).

For the memory complexity, since for one column of state/key pair (cs, ck),
we have the following three situations:

3 In [11], the authors did not give the time complexity of this phase. Since we cannot
know whether the output state already exists in GBC in advance, we cannot ignore
it.
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1. If Wcs = 0, the number of states after MixColumn and AddRoundKey layers
is 1.

2. If Wck = 0, the number of states after MixColumn and AddRoundKey layers
is Nbr − Wcs .

3. Otherwise, since Wcs �= 0, the outputs of MixColumn must include one col-
umn like 11 · · · 1, and the number of 11 · · · 1⊕ck is 2Wck . For other MixColumn
outputs, states after MixColumn and AddRoundKey layers that are not in
11 · · · 1 ⊕ ck are states with 0 in the positions which are 1 in ck, so the extra
number is

∑Nr−(Nbr−Wcs )
i=1

(Nr−Wck
i

)
.

We use Moff (Wcs ,Wck) to denote the above situations, i.e.,

Moff (Wcs , Wck) =

⎧
⎪⎨

⎪⎩

1, if Wcs = 0

Nbr − Wcs , if Wck = 0

2Wck +
∑Nr−(Nbr−Wcs )

i=1

(Nr−Wck
i

)
if Wcs �= 0

Therefore, the memory complexity of the precomputation phase of breadth-
first algorithm is

∑2NrNc

i=0

∑2NrNc

j=0

∏Nc−1
k=0 Moff (W ((i � (k × Nr))&(2Nr − 1)),

W ((j � (k × Nr))&(2Nr − 1))), i.e.,

Nr∑

i1=0

Nr∑

i2=0

· · ·
Nr∑

i2∗Nc=0

Nc∏

j=1

(
Nr

i2∗j

)(
Nr

i2∗j−1

)

Moff (i2∗j , i2∗j−1). (1)

	

For AES-128, the time complexity of the precomputation phase is 248.9, the

memory complexity is 242.8, which is much larger than [11].

Theorem 3. The time complexity of the online phase of breadth-first algo-
rithm is O(

∑2NrNc

s=0

∑2NrNc

k=0 Ton(s, k)), where Ton(s, k) =
∑
˜k∈KSk

∏Nc−1
i=0∏Nc−1

j=0 Moff (W ((s � (i × Nr))&(2Nr − 1)),W ((k̃ � (j × Nr))&(2Nr − 1)))
and KSk denotes the set that one key k can get after one key-schedule.

Proof. For one state/key pair (s, k), the number of edges that it needs to go
through is Ton(s, k) =

∑
˜k∈KSk

∏Nc−1
i=0 Moff (W ((s � (i × Nr))&(2Nr − 1)),

W ((k̃ � (i × Nr))&(2Nr − 1))). Therefore, the time complexity of the online
phase is

∑2NrNc−1
s=0

∑2NrNc−1
k=0 Ton(s, k).

For an R-round block cipher, the time complexity is O(
∑2NrNc

s=0

∑2NrNc

k=0

Ton(s, k)). 	

For AES-128, the time complexity of online-phase is O(248.6). Both the time

complexity and memory complexity of AES-128 are quite large, and it’s almost
impossible to implement it in reality.
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7.2 Evaluating the Complexity for Depth-First Algorithm

Suppose we want to find n-round best related-key differential characteristic, since
W1, · · · ,Wn−1 are the weights of the best 1, · · · , (n − 1)-round characteristics
and Wn is the upper-bound of Wn, the upper-bound for the search of the ith

round is Wn − Wn−(i−1) − ∑i−1
j=1 ωj , where ωj is the weight of state/key pair of

the jth round .
For one state/key pair with weight WI , we need to calculate the average num-

ber of states it can propagate to with weight WO. For one column of state/key
pair (cs, ck), let Tcoldepth(cs, ck, t) denote the number of columns MC(cs) ⊕ ck

with weight t. For one state/key pair (s, k) with weight WI , we can get the num-
ber of state/key pairs (s, k) can propagate to with weight WO with the help of
Tcoldepth(cs, ck, t) and KSk. Therefore, we can run through all the state/key pairs
(s, k) with weight WI , and get the number of state/key pairs they can propagate
to with weight WO. We use Tdepth(WI ,WO) to denote the number of state/key
pairs from weight WI to weight WO. For AES-128, we list parts of the results
of Tdepth(WI ,WO) in Table 4. Let NW (t) denote the number of state/key pairs
with weight t, then the average number of output pairs with weight WO for one
input pair with weight WI is Aver(WI ,WO) = Tdepth(WI ,WO)

NW (WI)
.

After getting Tdepth(WI ,WO), we have the following situations:

1. For the first round, the nodes which can reach the second round must satisfy
that their weights cannot be greater than Wn − Wn−1.

2. For the second round, the nodes which can reach the third round must satisfy
that their weights cannot be greater than Wn − Wn−2 − ω1. For one ω1, the
number of output pairs of this round with weight ω2 is Tdepth(ω1, ω2).

3. For round-i with 2 < i < n, the nodes which can reach round-(i + 1) must
satisfy that their weights cannot be greater than Wn − Wn−i − ∑i−1

j=1 ωj .
Suppose the number of pairs with weight ωi−1 for this round is NW (ωi−1),
the number of output pairs of this round with weight ωi is Aver(ωi−1, ωi) ×
NW (ωi−1) in average.

4. For round-n, suppose the input weight of this round is ωn−1 and the number
is NW (ωn−1), the time complexity of this round is the average number of
nodes these nodes can propagate to, i.e., NW (ωn−1)×∑Wtotal

i=0 Aver(ωn−1, i),
where Wtotal is the maximum weight of one pair.

For an R-round block cipher with R ≥ 4, the time complexity of the depth-
first algorithm is

Wn−Wn−1∑

ω1=0

· · ·
Wn−Wn−i−∑i−1

j=1 ωj∑

ωi=0

· · ·
Wtotal∑

ωn=0

Tdepth(ω1, ω2) · · · Aver(ωi−1, ωi)

· · · Aver(ωn−1, ωn).

(2)

For 10-round AES-128 with W 10 = 25, the time complexity of this algorithm
is more than 239. Since we only calculate the average number in the middle
rounds, this is a lower bound. It’s impossible for us to get the best weight for
10-round AES-128 using the original tool of [7] in reality.
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Table 4. Table of Tdepth(Wi, Wo) with Wi ≤ 10 and Wo ≤ 10.

WI

WO 0 1 2 3 4 5 6 7 8 9 10

0 0.0 3.0 5.0 6.4 7.4 8.3 9.2 9.9 10.4 10.8 11.2
1 3.0 7.0 9.8 11.8 13.1 14.1 15.0 15.9 16.6 17.2 17.8
2 8.3 12.0 14.5 16.3 17.7 18.8 19.8 20.7 21.6 22.5 23.4
3 11.2 15.1 17.8 19.7 21.2 22.5 23.7 24.9 26.2 27.4 28.5
4 13.0 17.1 20.0 22.2 24.0 25.6 27.2 28.9 30.5 31.9 33.1
5 13.7 18.1 21.5 24.2 26.5 28.7 30.8 32.7 34.5 35.9 37.1
6 13.7 19.9 23.9 27.0 29.6 31.9 34.1 36.1 37.9 39.3 40.5
7 19.6 23.9 27.3 30.0 32.5 34.8 37.0 39.0 40.8 42.2 43.3
8 22.4 26.6 29.8 32.4 34.8 37.2 39.4 41.5 43.2 44.6 45.7
9 24.1 28.3 31.4 34.1 36.6 39.1 41.5 43.5 45.2 46.6 47.7
10 24.8 29.0 32.3 35.2 38.1 40.7 43.1 45.1 46.8 48.2 49.2

�: The numbers in this table are after log base 2.

7.3 Time Complexity of Breadth-Depth Algorithm

The method to calculate the time complexity of our breadth-depth Algorithm
is almost the same as the depth-first algorithm in Eq. 2, the only difference is
that for round-i, the upper-bound of the maximum weight is min(Wn −Wn−i −∑i−1

j=1 ωj ,W 2round − ωi−1). We can use this formula to choose the reasonable
value of W 2round. The memory complexity of our tool is almost the same as the
memory complexity of Theorem 2. The only difference is that we should restrain
the values of i1, · · · , i2∗Nc

and Moff to make sure the weight is lower than the
two-round limit.

Since we can use the column-pruning method described in Sect. 4.2, the time
complexity is much less than the equation for AES-128. Choose Wn = 27 and
W 2round = 11, we can get the best trail within one minute using our tool.

8 Conclusions

In this paper, we gave a heuristic tool to search for the related-key truncated
differential characteristics based on the precomputation phase of the breadth-
first algorithm and the depth-first algorithm. The goal of our tool is to output a
good characteristic within a reasonable time complexity and a reasonable mem-
ory complexity. Then, we applied our tool to AES, Deoxys, Joltik and Midori,
and found some results that cannot be got using the original tools. Finally, we
gave a way to calculate the time and memory complexities of the depth-first,
breadth-first and our algorithms, which is meaningful for us to choose the proper
parameters of the algorithm to make the search feasible.
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6. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack
on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 14
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Abstract. Albrecht et al. [1] at Crypto 2016 and Cheon et al. [4] at
ANTS 2016 independently presented a subfield attack on overstretched
NTRU problem. Their idea is to map the public key down to the sub-
field (by norm and trace map respectively) and hence obtain a lattice of
smaller dimension for which a lattice reduction algorithm is efficiently
applicable. At Eurocrypt 2017, Kirchner and Fouque proposed another
variant attack which exploits the presence of orthogonal bases within the
cyclotomic number rings and instead of using the matrix of the public
key in the subfield, they use the multiplication matrix by the public key
in the full field and apply a lattice reduction algorithm to a suitable
projected lattice of smaller dimension. They also showed a tight estima-
tion of the parameters broken by lattice reduction and implementation
results that their attack is better than the subfield attack.

In this paper, we exploit technical results from Kirchner and
Fouque [12] for the relative norm of field elements in the subfield and
we use Hermite factor for estimating the output of a lattice basis reduc-
tion algorithm in order to analyze general choice of parameters for the
subfield attack by Albrecht et al. [1]. As a result, we obtain the estima-
tion for better choices of the subfields for which the attack works with
smaller modulus. Our experiment results show that we can attack over-
stretched NTRU with modulus smaller than that of Albrecht et al. and
of Kirchner and Fouque.

1 Introduction

The NTRU encryption scheme is one of the first cryptosystems based on lat-
tices proposed in 1998 by Hoffstein, Pipher and Silverman [11]. Up to present,
NTRUEncrypt remains secure and is considered as one of the fastest post-quantum
public key encryption schemes. The NTRU assumption is that, given the quo-
tient ring R = Z[x]/(φ(x)) where φ(x) is a polynomial of degree n and q a
positive integer, finding a “short” element in

Λq
h = {(x, y) ∈ R2 | hx = y mod q}

is hard. Here h is the public polynomial in Rq = Zq[x]/(φ(x)) which is of the
form h = gf−1 mod q, where f and g are sampled from R such that they have
c© Springer International Publishing AG 2017
P.Q. Nguyen and J. Zhou (Eds.): ISC 2017, LNCS 10599, pp. 79–91, 2017.
https://doi.org/10.1007/978-3-319-69659-1_5
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small coefficient norms and f is invertible modulo q. In the original proposal [11],
the authors used R to be the convolution ring Z[x]/(xn − 1) and the coefficients
of f and g are normally taken from the set {−1, 0, 1}. Even though there is no
efficient attack against NTRUEncrypt, there is no security reduction to a hard
mathematical problem; see [10] for current updates on the security of classical
NTRUEncrypt. It is later recommended by Lyubashevsky and Micciancio [14] to
replace the polynomial xn − 1 by the cyclotomic polynomial xn + 1 with n a
power of 2, based on which they constructed a hash function proven collision-
resistant under the assumed hardness of worse-case lattice problem over ideal
lattices. Stehlé and Steinfeld used the polynomial xn + 1 and defined a variant
of NTRUEncrypt. They showed that if f and g are sampled from a Gaussian
distribution with wide enough standard deviation, then NTRUEncrypt is proven
to be secure under the hardness of lattice problems in ideal lattices; see [15]
for more details. In this paper, we consider only the cyclotomic number ring
R = Z[x]/(xn + 1) where n is a power of 2.

Coppersmith and Shamir [6] showed that in order to break an NTRU cryp-
tosystem, it suffices to find a short multiple of the secret key (f, g). The goal
of the attack against NTRU problem then is to find a short enough vector in
Λq

h, which is corresponding to an integral lattice of dimension 2n; such a short
vector will be a short multiple of the secret key (f, g) (see Theorem 8).

Albrecht et al. [1] and Cheon et al. [4] independently at Crypto 2016 and
ANTS 2016 proposed a subfield attack on NTRU. Their idea, attributed to
Gentry, Szydlo, Jonsson, Nguyen and Stern [9], is to exploit the presence of a
subfield L in the cyclotomic number field K = Q[x]/(xn + 1). They then map
the public key h down to the subfield L using the relative norm and trace map
respectively. The obtained element h′ in the subfield L gives rise to the NTRU
problem with the associated lattice Λq

h′ of dimension much smaller than Λq
h.

A solution for this NTRU problem in L will later be lift to a solution for the
NTRU problem in the full field K, and hence solves NTRU problem with large
(overstretched) modulus q. At Eurocrypt 2017, Kirchner and Fouque [12] pro-
posed a variant of the attack and claim that their attack is more efficient than
that of Albrecht et al.’s and Cheon et al.’s. Their idea is to exploit the pres-
ence of orthogonal basis within the cyclotomic number ring and hence instead
of mapping the public key down to the subfield, they use the projected lat-
tices to the subring corresponding to the subfield. Their implementation results
show that their attack is applicable with smaller modulus q compared to the
subfield attack by Albrecht et al. The aforementioned attacks [1,4,12] against
overstretched NTRU problem then can break several instances of NTRU-based
cryptosystems, such as multilinear maps GGH13 [8], and fully homomorphic
encryption LTV [13] and YASHE [3].

Our contribution. In this paper, we use tighter bound for norms of elements in
the corresponding subfield from Kirchner and Fouque [12] and use the Hermite
factor for approximating the output of a lattice reduction algorithm (e.g., LLL)
to analyze the subfield attack by Albrecht et al. [1]. As a result, we derive better
choice for the subfield for which the attack is applicable with smaller modulus q.



Choosing Parameters for the Subfield Lattice Attack 81

Our implementation results support our theoretical estimation for the choice of
the subfield (see Table 1):

– For the same n = 211, with the choice of subfield L such that |K : L| = 4
while Albrecht et al. (cf. Table 5 in [1]) chose L such that |K : L| = 8, we can
break the NTRU problem with log(q) = 72 while Albrecht et al. succeeded
with log(q) = 95; it is a tradeoff that we have to work on a higher dimension
lattice. Our succeeded modulus log(q) = 72 for n = 211 is close to log(q) = 70
of Kirchner and Fouque which is the smallest succeeded modulus and both
have the same choice for the subfield to attack.

– For n = 212, with the choice of subfield L such that |K : L| = 8 while Albrecht
et al. (cf. Table 6 in [1]) chose L such that |K : L| = 16 (same as Kirchner and
Fouque), we can break the NTRU problem with log(q) = 135 while Albrecht
et al. succeeded with log(q) = 190. Our succeeded modulus log(q) = 120 for
n = 212 is better than log(q) = 144 of Kirchner and Fouque.

What we notice from experimental results of Kirchner and Fouque is that,
although their method succeeded with small modulus q, it does not guaran-
tee the success of larger modulus, whereas the subfield attack yields the exact
limit of success, like in our and Albrecht et al.’s experiments.

2 Preliminaries

Let n be a 2-power number and m = 2n. Let K = Q[x]/(xn+1) be the cyclotomic
number field. Let L be the subfield of K of degree n′ with n = rn′. Let G be
the Galois group of K over Q and H the subgroup of G fixing L. Let R = OK =
Z[x]/(xn+1) be the ring of integers of K. Define the relative norm NK/L : K → L

by
NK/L(a) =

∏

ψ∈H

ψ(a).

and denote L : L ↪→ K be the canonical inclusion.
The number field K (or L) is viewed as a Euclidean Q-vector space by endow-

ing with the inner product

〈a, b〉 =
∑

e

e(a)ē(b),

where e ranges over all the n (or n′) embeddings e : K → C and ē its complex
conjugate. This defines a Euclidean norm denoted by ‖.‖. Define the operator
norm |.| as

|a| = sup
x∈K∗

‖ax‖
‖x‖ .

It is easy to check that |a| is equal to maxe |e(a)|, the maximal absolute complex
embedding of a, and that ‖L(a)‖2 = r‖a‖2, |L(a)| = |a|. Moreover for any a ∈ K,
one has

|a| ≤ ‖a‖ ≤ √
n · |a|,
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and using the inequality of arithmetic and geometric means yields

|NK/Q(a)| ≤
(‖a‖√

n

)n

. (1)

The discriminant of the number field K is denoted by ΔK. One has that√|ΔK| = Vol(OK) and

Vol(aOK) =
∣∣NK/Q(a)

∣∣ ·
√

|ΔK|.

Lemma 1 ([12, Lemma 1]). Let M ⊆ K
d be a discrete OK-module of rank 1.

Then for any 0 
= v ∈ M , one has

Vol(M) ≤
(‖v‖√

n

)n

·
√

|ΔK|.

Proof. Since the rank of M is 1, one can build a K-linear isometry from R⊗ M
to K ⊗ R. Hence we can assume that d = 1. Let v be a non-zero vector in M ,
then vOK ⊆ M , which implies

Vol(M) ≤ Vol(vOK) = NK/Q(v) ·
√

|ΔK| ≤
(‖v‖√

n

)n

·
√

|ΔK|,

where the last inequality follows from (1). �
Definition 2 (Gaussian Distribution). Given s > 0, the discrete Gaussian
distribution over the lattice L with zero mean is defined as DL,s(x) = ρs(x)/ρs(L)
for any x ∈ L, where ρs(x) = exp(−π‖x‖2/s2), ρs(L) =

∑
x∈L ρs(x).

Lemma 3. For any lattice L, any t ≥ 1, then

Prx←DL,s

[
‖x‖ > st

√
n

2π

]
< exp(−n(t − 1)2/2).

It follows from Lemma 3 (by taking t =
√

2π) that ‖x‖ ≤ s
√

n with high
probability.

Definition 4 (NTRU Problem). Given a ring R = Z[x]/(xn +1) as above, a
modulus q, a distribution D on R, and a target norm B. The NTRU problem is
defined as the following: given h = [gf−1]q where f, g are sampled from D (with
the condition that f is invertible modulo q), find a vector (x, y) ∈ R2 such that
(x, y) 
= (0, 0) mod q and of Euclidean norm less than B in the lattice

Λq
h = {(x, y) ∈ R2 : hx − y = 0 mod q}.

One can express a basis B for Λq
h as follows

B =
(

qIn h
0 In

)
(2)

where In is the identity matrix of degree n and h stands for an n × n matrix
whose i-th column is the coefficient vector of the polynomial xi−1 ·h mod xn +1.
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Remark 5. Coppersmith and Shamir [6] showed that recovering short enough
vectors may be sufficient; the NTRU Problem is essentially to recover the secret
key (f, g). Hence, in order to attack the NTRU problem, we need to find a short
non-zero vector (x, y) of Λq

h. We follow Albrecht et al. [1] to require that the
solution (x, y) to have norm at most q3/4.

Heuristic 6 (Lattice reduction algorithms). There is an algorithm which, given
as input a basis of a d-dimensional integer lattice L, outputs a non-zero vector
v of L such that

‖v‖ ≤ δL · Vol(L)1/d.

Here δL = cd is the Hermite factor of a lattice reduction used for the lattice L.
One has ([7]):

(i) c ∼= 1.0219 for LLL algorithm on average for d ≥ 100.
(ii) c ∼= 1.0128 for BKZ algorithm with block size 20 on average.

Remark 7. Heuristic 6 holds for random lattices (cf. [7]). For NTRU lat-
tices (2), if the modulus q is large, then the NTRU lattices (2) contain vec-
tors shorter than (0, . . . , 0, q, 0, . . . , 0), and hence a lattice reduction algorithm
(e.g. LLL) can recover a multiple of the secret key. Experiments in Tables 2 and
3 show that the root Hermite factor c for which our attack succeeds is much
smaller than the approximation in Heuristic 6.

3 Overview of the Subfield Lattice Attack

Let K = Q[x]/(xn + 1) with n a 2-power. Denote by L = Q[xr]/(xn + 1) a
subfield of K with n = rn′. Let DOK,s be the discrete Gaussian distribution over
OK with standard deviation s, and let q be an integer. We consider the NTRU
problem with f, g withdrawn from DOK,s such that f is invertible modulo q. Set
h = gf−1 mod q and consider the NTRU lattice

Λq
h = {(x, y) ∈ O2

K
| hx = y mod q}.

The subfield attack by Albrecht et al. [1] works in three steps as the following.

– Step 1: Norming down the public vector h to an element h′ in the subfield L

– Step 2: Using a lattice reduction algorithm of the lattice Λq
h′ in the subfield

L which has dimension smaller than the original lattice.
– Step 3: Lifting up the results from Step 2 to the full field K and prove that

they are short vectors in the lattice Λq
h, which are short multiples of secret

key (f, g).
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3.1 Norming down to the Subfield

Let h′ = NK/L(h), g′ = NK/L(g) and f ′ = NK/L(f). Then f ′, g′ ∈ OL and (f ′, g′)
is a vector of the following lattice

Λq
h′ =

{
(x′, y′) ∈ O2

L
| h′x′ = y′ mod q

}

and depending on the parameters, it may be an unusually short one. We now have
reduced our NTRU problem in the full field K (for the lattice Λq

h) to the NTRU
problem in the subfield L (for the lattice Λq

h′). The lattice Λq
h′ has dimension

2n′ and volume q2n′
.

3.2 Lattice Reduction in the Subfield

We now apply a lattice reduction algorithm (cf. Theorem 6) to the lattice Λq
h′

we obtain a non-zero vector (x′, y′) ∈ Λq
h′ of norm

‖(x′, y′)‖ ≤ δL · Vol(Λq
h′)1/2n′

.

where δL = c2n′
is the Hermite factor of the lattice Λq

h′ , and c is a constant
depending on the corresponding lattice algorithm (cf. Theorem 6).

The following shows that if the vector (x′, y′) is short enough then it must
be an OL-multiple of (f ′, g′).

Theorem 8 ([12, Theorem 8]). Let f ′, g′ ∈ OL be such that 〈f ′〉 and 〈g′〉 are
coprime ideals and that h′f ′ = g′ mod qOL for some h′ ∈ OL. If (x′, y′) ∈ Λq

h′

has length satisfying

‖(x′, y′)‖ <
n′q

‖(f ′, g′)‖
then (x′, y′) = v(f ′, g′) for some v ∈ OL.

Proof. We first prove that B = {(f ′, g′), (F ′, G′)} is a basis of the OL-module Λq
h′

for some (F ′, G′) ∈ O2
L
. By coprimity, there exist (F ′, G′) such that f ′G′−g′F ′ =

q ∈ OL. We note that

f ′(F ′, G′) − F ′(f ′, g′) = (0, q);
g′(F ′, G′) − G′(f ′, g′) = (−q, 0);

[f ′−1]q(f ′, g′) = (1, h′) mod q.

Hence the module M generated by B contains qO2
L

and (1, h′), i.e., Λq
h′ ⊆ M .

Moreover, detL(B) = f ′G′ − g′F ′ = q = detL{(1, h′), (0, q)}, we have Vol(M) =
|ΔL|qn′

= Vol(Λq
h′) and therefore M = Λq

h′ .
Denote by Λ = (f ′, g′)OL and by Λ∗ the projection of (F ′, G′)OL orthogonally

to Λ. We have Vol(Λ)Vol(Λ∗) = qn′
ΔL. Let 0 
= u ∈ Λ∗ be a shortest vector in

Λ∗. By Lemma 1, one has

Vol(Λ) ≤
(‖(f ′, g′)‖√

n′

)n′

|ΔL|1/2, and Vol(Λ∗) ≤
( ‖u‖√

n′

)n′

|ΔL|1/2.
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We deduce that λ1(Λ∗) = ‖u‖ ≥ n′q/‖(f ′, g′)‖. The hypothesis implies that
‖(x′, y′)‖ < λ1(Λ∗). Hence (x′, y′) ∈ Λ as desired. �
Remark 9. It is proven in [1, Section 2.2] that with high probability (approxi-
mately 75%), f ′ and g′ are coprime. However, the experiments succeeded even
when they are not coprime.

3.3 Lifting up the Short Vector

Assume that we have found a short non-zero vector (x′, y′) ∈ O2
L

in the lattice
Λq

h′ subject to the condition of Theorem 8, i.e., (x′, y′) is a short multiple of
(f ′, g′). We now lift up (x′, y′) to (x, y) ∈ O2

K
by computing

x = L(x′) and y = L(y′) · h/L(h′) mod q (3)

where L : L ↪→ K is the canonical inclusion map of L ⊂ K.
Obviously (x, y) ∈ Λq

h. It follows from Theorem 8 that x′ = vf ′, y′ = vg′ for
some v ∈ OL. Let f̄ = L(f ′)/f, ḡ = L(g′)/g and h̄ = L(h′)/h. Note also that
f̄ , ḡ and h̄ are integers over K. We write

x = L(x′) = L(v) · f̄ · f mod q

y = L(y′) · h/L(h′) = L(v) · f̄ · g mod q

and hence (x, y) = u · (f, g) is a multiple of (f, g), for u = L(v) · f̄ ∈ OK.

4 Revisiting Albrecht et al.’s Attack [1]

In this section, we analyse the subfield attack proposed by Albrecht et al. [1].
First, we analyse in Sect. 4.1 theoretically the modulus q and yield better choice
of r for which the subfield attack is feasible with smaller modulus q. In Sect. 4.2,
we compare the theoretical estimation and implementation results.

4.1 Theoretical Analysis

Set D = s
√

n to be the upper bound for the norm of a secret polynomial sampling
from the discrete Gaussian distribution DOK,s over OK (see Lemma 3). Hence
for f, g ← DOK,s, one has ‖f‖, ‖g‖ ≤ D. Let L be the subfield of K of degree n′,
i.e., n = rn′, and let

f ′ = NK/L(f), g′ = NK/L(g), h′ = NK/L(h).

Then
‖f ′‖ ≤

√
n′Dr, ‖g′‖ ≤

√
n′Dr,

and hence
‖(f ′, g′)‖ ≤

√
2n′Dr.
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Applying a lattice reduction algorithm to the lattice Λq
h′ , we obtain a non-zero

vector (x′, y′) of norm
‖(x′, y′)‖ ≤ c2n′√

q,

and therefore

‖(x′, y′)‖ · ‖(f ′, g′)‖ ≤ c2n′√
2n′Dr√q.

It follows from Lemma 1 that if

c2n′√
2n′Dr√q < n′q (4)

then (x′, y′) will be a multiple of (f ′, g′). Inequality (4) is equivalent to

4n′ log(c) + 2r log(s) + r log(n) + 1 − log(n′) < log(q). (5)

Notice that

4n′ log(c) + 2r log(s) + r log(n) =
4n log(c)

r
+ r(2 log(s) + log(n))

≥ 2
√

4n log(c)(2 log(s) + log(n))

with equality if and only if

r =

√
4n log(c)

2 log(s) + log(n)
. (6)

Hence the choice of r in (6) optimizes the left-hand side of (5), and hence yields
the estimation of the modulus q that makes NTRU problem vulnerable to the
subfield attack.

Table 1. Comparison of succeeded modulus log(q) for the subfield attacks. We use
LLL algorithm as in Albrecht et al. and Kirchner-Fouque.

log(n) t = log(r) Succeeded log(q) Method Estimated log(q)

9 2 40 Ours 44

10 2 52 Ours 63

11 3 95 Albrecht et al. [1] 109

11 2 70 Kirchner and Fouque [12]

11 2 72 Ours 98

12 4 190 Albrecht et al. [1] 208

12 4 144 Kirchner and Fouque [12]

12 3 120 Ours 148



Choosing Parameters for the Subfield Lattice Attack 87

4.2 Implementation Results

In Table 1, we show our choice of r, which is the index of the subfield L in K, to
which we apply the subfield attack, and compare the actual succeeded values of
log(q) by our, Albrecht et al.’s [1] and Kirchner-Fouque’s experiments. As in pre-
vious works of Albrecht et al. and Kirchner-Fouque, we use LLL algorithm in our
experiments. We take s =

√
2/3, and use constant c = 1.0219 (see Heuristic 6)

for estimating the choice of r. Experimental results for the cases n = 211 and
n = 212 can be seen from Tables 2 and 3 respectively. The requirement for success

Table 2. Implementation results for n = 211 and log(r) = 2. Here we work with lattices
of dimension 2n′ = 1024. The third column rhf stands for root Hermite factor obtained
from our experiments (cf. the constant c in Heuristic 6)

log(q) log(‖(f ′, g′)‖) rhf log(‖(x′, y′)‖) log(‖(x, y)‖) Is ‖(x, y)‖ ≤ q3/4?

95 21.40 0.9925 36.37 36.75 Yes

94 21.19 0.9934 37.30 37.66 Yes

93 21.37 0.9933 36.61 36.90 Yes

92 21.20 0.9936 36.63 36.81 Yes

91 21.28 0.9938 36.44 36.66 Yes

90 21.34 0.9942 36.42 36.60 Yes

89 21.30 0.9944 36.33 36.47 Yes

88 21.27 0.9949 36.49 36.55 Yes

87 21.35 0.9952 36.45 36.57 Yes

86 21.12 0.9959 37.05 37.24 Yes

85 21.17 0.9958 36.35 36.61 Yes

84 21.24 0.9962 36.42 36.78 Yes

83 21.15 0.9966 36.54 36.63 Yes

82 21.27 0.9973 37.11 37.28 Yes

81 21.26 0.9971 36.29 36.53 Yes

80 21.26 0.9979 37.00 37.13 Yes

79 21.18 0.9978 36.31 36.45 Yes

78 21.53 0.9983 36.56 36.75 Yes

77 21.22 0.9989 36.92 37.18 Yes

76 21.30 0.9992 36.87 37.17 Yes

75 21.28 0.9992 36.46 36.66 Yes

74 21.12 0.9996 36.42 36.49 Yes

73 21.45 1.0003 36.97 37.03 Yes

72 21.33 1.0005 36.80 36.92 Yes

71 21.27 1.0223 68.17 74.70 No

70 21.33 1.0225 67.89 73.70 No
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Table 3. Implementation results for n = 212 and log(r) = 3. Here we work with lattices
of dimension 2n′ = 1024

log(q) log(‖(f ′, g′)‖) rhf log(‖(x′, y′)‖) log(‖(x, y)‖) Is ‖(x, y)‖ ≤ q3/4?

150 46.31 0.9898 59.88 60.35 Yes

149 45.71 0.9903 60.12 60.62 Yes

148 46.11 0.9951 59.75 60.25 Yes

147 46.22 0.9910 60.23 60.82 Yes

146 46.91 0.9913 60.13 60.56 Yes

145 45.47 0.9914 59.81 60.48 Yes

144 46.11 0.9918 59.97 60.28 Yes

143 45.79 0.9921 59.84 60.22 Yes

142 45.87 0.9924 59.84 60.22 Yes

141 45.55 0.9929 60.05 60.51 Yes

140 46.20 0.9934 60.31 60.58 Yes

135 46.45 0.9948 59.88 60.28 Yes

130 46.26 0.9965 59.82 60.36 Yes

125 45.90 0.9984 60.14 60.42 Yes

120 45.77 0.9998 59.83 60.17 Yes

115 46.34 1.0225 90.41 119.21 No

100 45.87 1.0224 82.81 104.21 No

of the attack is that the obtained solution (x, y) is a multiple of (f, g) and has
norm at most q3/4 (following Albrecht et al. [1]).

– For n = 211, we choose r = 22 which is the same as Kirchner-Fouque and
different from Albrecht et al. (vs. r = 23). We succeeded with log(q) = 72,
which is much smaller than log(q) = 90 by Albrecht et al. and close to log(q) =
70 by Kirchner-Fouque.

– For n = 212, we choose r = 23 whereas Albrecht et al. and Kirchner-Fouque’s
chose r = 24. We succeeded with log(q) = 120 which is smaller than log(q) =
190 by Albrecht et al. and log(q) = 144 by Kirchner-Fouque.

The last column of Table 1 gives our estimated values of breakable log(q)
in the subfield attack which are larger than the results from experiments. One
reason is that our estimation for the upper bound of the norms of NK/L(f) and
NK/L(g) is not tight; for example, for n = 212, our estimated for log(‖(f ′, g′)‖)
is around 57.75 while it is approximately 46 by experiments.

Table 2 shows our implement results for the subfield attack against NTRU
problem for n = 211 in which we choose the subfield L ≤ K with |K : L| = r and
log(r) = 2 according to (6). Note that for the case log(q) = 70, 71, the attack
is successful, i.e. the obtained results are multiple of the secret key (f, g), but
they are not short enough as required. Table 3 shows our implement results for
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the subfield attack against NTRU problem for n = 212 in which we choose the
subfield L ≤ K with |K : L| = r and log(r) = 3 according to (6). Experimental
results for n = 29 and n = 210 are shown in the Appendix.

5 Conclusion

In this work, we exploit technical results from Kirchner and Fouque [12] to re-
analyze the subfield attack by Albrecht et al. [1] against the overstretched NTRU
problem. We derives better choices of the subfields for which the attack is suc-
cessful with smaller modulus. Our experiments show that our succeeded modulus
is much smaller than that of Albrecht et al. [1]. However, with our choices of
subfields, we have to work with lattices of higher dimensions (as twice as those
of Albrecht et al.) and hence the attack takes longer. Our implementation results
for the case n = 211 (with same choice of subfield) are close to that of Kirchner
and Fouque [12] (log(q) = 72 vs. log(q) = 70), while for the case n = 212 (with
different choice of subfield), we can break the NTRU problem with smaller mod-
ulus (log(q) = 120 vs. log(q) = 144). Whereas Kirchner and Fouque’s method
can break NTRU problem with smaller modulus q in some cases (e.g., n = 211),
it does not guarantee to succeed with bigger q, in contrast to the subfield attack
which gives the exact limit of success. Recently, Cheon et al. [5] proposed an
attack against overstretched NTRU problem which exploits the existence of the
sublattice in the NTRU lattice similar to that of Kirchner and Fouque. Their
attack can apply for NTRU problem with general modulus polynomial φ(x) and
they also give an improved subfield attack. One of our future work is to give a
complete comparison between those attacks against overstretched NTRU prob-
lem.
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Appendix

Tables 4 and 5 show implementation results for the case n = 29 and n = 210

respectively, with the same choice of subfield L such that |K : L| = 4.
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Table 4. Implementation results for n = 29 and log(r) = 2

log(q) log(‖(f ′, g′)‖) rhf log(‖(x′, y′)‖) log(‖(x, y)‖) Is ‖(x, y)‖ ≤ q3/4?

44 17.07 0.9950 20.16 20.39 Yes

43 17.11 0.9960 20.03 20.40 Yes

42 17.19 0.9978 20.22 20.34 Yes

41 17.15 0.9997 20.40 20.63 Yes

40 17.18 0.9996 19.85 20.14 Yes

39 17.12 1.0228 27.83 41.71 No

38 17.21 1.0215 26.87 40.67 No

Table 5. Implementation results for n = 210 and log(r) = 2

log(q) log(‖(f ′, g′)‖) rhf log(‖(x′, y′)‖) log(‖(x, y)‖) Is ‖(x, y)‖ ≤ q3/4?

63 19.31 0.9926 26.07 26.23 Yes

62 19.24 0.9931 25.95 26.09 Yes

61 19.15 0.9942 26.27 26.43 Yes

60 19.14 0.9943 25.85 26.09 Yes

59 19.31 0.9955 26.23 26.58 Yes

58 19.46 0.9964 26.38 26.61 Yes

57 19.21 0.9965 25.95 26.37 Yes

56 19.14 0.9976 26.24 26.50 Yes

55 19.40 0.9982 26.22 26.48 Yes

54 19.19 0.9988 26.16 26.24 Yes

53 19.09 0.9996 26.21 26.49 Yes

52 19.08 1.0000 26.05 26.22 Yes

51 19.22 1.0223 41.83 54.24 No

50 19.43 1.0221 41.15 53.19 No
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Abstract. Passwords are ubiquitous and most commonly used to
authenticate users when logging into online services. Using high entropy
passwords is critical to prevent unauthorized access and password poli-
cies emerged to enforce this requirement on passwords. However, with
current methods of password storage, poor practices and server breaches
have leaked many passwords to the public. To protect one’s sensitive
information in case of such events, passwords should be hidden from
servers. Verifier-based password authenticated key exchange, proposed
by Bellovin and Merrit (IEEE S&P, 1992), allows authenticated secure
channels to be established with a hash of a password (verifier). Unfortu-
nately, this restricts password policies as passwords cannot be checked
from their verifier. To address this issue, Kiefer and Manulis (ESORICS
2014) proposed zero-knowledge password policy check (ZKPPC). A
ZKPPC protocol allows users to prove in zero knowledge that a hash
of the user’s password satisfies the password policy required by the
server. Unfortunately, their proposal is not quantum resistant with the
use of discrete logarithm-based cryptographic tools and there are cur-
rently no other viable alternatives. In this work, we construct the first
post-quantum ZKPPC using lattice-based tools. To this end, we intro-
duce a new randomised password hashing scheme for ASCII-based pass-
words and design an accompanying zero-knowledge protocol for policy
compliance. Interestingly, our proposal does not follow the framework
established by Kiefer and Manulis and offers an alternate construction
without homomorphic commitments. Although our protocol is not ready
to be used in practice, we think it is an important first step towards
a quantum-resistant privacy-preserving password-based authentication
and key exchange system.

1 Introduction

One of the most common methods of user authentication is passwords when
logging in to online services. So, it is very important that passwords in use are
hard to guess for security. Password policies was introduced to guide users into
choosing suitable passwords with high entropy. Ur et al. [51] discovered that
users are more likely to choose easily guessable passwords in the absence of a
password policy. Examining the password policies of over 70 web-sites, Florêncio
c© Springer International Publishing AG 2017
P.Q. Nguyen and J. Zhou (Eds.): ISC 2017, LNCS 10599, pp. 92–113, 2017.
https://doi.org/10.1007/978-3-319-69659-1_6
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and Herley [17] found that most require passwords with characters from at least
one of four sets, digits, symbols, lowercase and uppercase letters and a minimum
password length. Hence, it is reasonable to focus on password policies with a
minimum password length, sets of valid characters and maybe constraints on
the diversity of characters used.

Even with strong passwords and good policies, leaks will occur if servers do
not properly store passwords. Improperly stored passwords can cause serious
problems, as seen by hacks on LinkedIn [19] and Yahoo [47] and the web-site
“Have I Been Pwned?” [25]. Sadly, such poor practices are not uncommon: many
popular web-sites were discovered by Baumann et al. [4] to store password infor-
mation in plaintext.

If servers cannot be trusted, then no password information should be stored
there at all. Thus, protocols that avoid storing secret user information at external
servers become necessary. However, even with secret passwords, password poli-
cies are important to enforce a base level of security against dictionary attacks,
leaving a dilemma: how do users prove compliance of their password without
revealing anything?

Kiefer and Manulis [30] showed how to address this problem with zero knowl-
edge password policy check (ZKPPC). It enables blind registration: users reg-
ister a password with a server and prove password policy conformance without
revealing anything about their passwords, thereby solving the dilemma. With
ZKPPC, some randomised password verification information is stored at the
server and it does not leak information about the password, protecting against
server compromises. Furthermore, ZKPPC allows a user to prove, without reveal-
ing any information, that the password conforms to the server’s policy. Blind reg-
istration can be coupled with a verifier-based password-based authenticated key
exchange (VPAKE) protocol to achieve a complete system for privacy-preserving
password-based registration, authentication and key exchange. Password-based
authenticated key exchange (PAKE) [5,6,8,14,20,27] is a protocol that allows
users to simultaneously authenticate themselves using passwords and perform
key exchange. However, these protocols store passwords on the server and thus,
users have to trust the security of the server’s password storage and may be vul-
nerable to password leakages in the event of server compromise. Verifier-based
PAKE [5,7,11,21] extends PAKE to limit the damage caused by information
leakage by storing a verifier instead. Verifiers are a means to check that users
supplied the correct passwords and are usually hash values of passwords with a
salt, which makes it hard to extract the passwords from verifiers.

A ZKPPC protocol allows users to prove that their password, committed in
the verifier, satisfies some password policy. VPAKE can then be used to securely
authenticate and establish keys whenever communication is required. Together,
the password is never revealed, greatly increasing the user security over current
standards. Passwords are harder to guess and no longer easily compromised by
server breaches.

Kiefer and Manulis [30] proposed a generic construction of ZKPPC using
homomorphic commitments and set membership proofs. In the same work, a
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concrete ZKPPC protocol was constructed using Pedersen commitments [45],
whose security is based on the hardness of the discrete logarithm problem. As
such, it is vulnerable to attacks from quantum adversaries due to Shor’s algo-
rithm [49] which solves the discrete logarithm problem in quantum polynomial
time. With NIST issuing a call for proposals to standardize quantum resistant
cryptography [44], it is clear that we need to prepare cryptographic schemes and
protocols that are quantum resistant, in case a sufficiently powerful quantum
computer is realized. As there is currently no proposal of ZKPPC protocol that
has the potential to be quantum resistant, it is an interesting open problem to
construct one.

Our contributions and techniques. In this work, attracted to the emer-
gence of lattice-based cryptography as a strong quantum resistant candidate,
we aim to construct a ZKPPC protocol from lattices. Our contribution is two-
fold. A randomised password hashing scheme based on the hardness of the Short
Integer Solution (SIS) problem is designed. Then, a SIS-based statistical zero-
knowledge argument of knowledge, allowing the client to convince the server
that his secret password, committed in a given hash value, satisfies the server’s
policy is constructed. This yields the first ZKPPC protocol that resists quantum
adversaries.

Our first technical challenge is to derive a password encoding mechanism
that operates securely and interacts smoothly with available lattice-based cryp-
tographic tools. In the discrete log setting considered in [30], passwords are
mapped to large integers and then encoded as elements in a group of large order.
Unfortunately, this does not translate well to the lattice setting as working with
large-norm objects usually makes the construction less secure and less efficient.
Therefore, an alternative that encodes passwords as small-norm objects, is desir-
able. To this end, we encode passwords consisting of t characters by mapping
them to a binary vector of length 8t. The vector contains t blocks, where each
is the ASCII value of the corresponding password character in binary. Further
increasing its entropy, we shuffle the arrangement of these blocks with a ran-
dom permutation χ, then commit to the permuted vector and a binary encoding
of χ via the SIS-based commitment scheme proposed by Kawachi, Tanaka and
Xagawa [28]. This commitment value is viewed as the randomised hash value of
the password.

The next technical challenge is to prove in zero-knowledge that the com-
mitted password satisfies a policy of the form f =

(
(kD, kU , kL, kS), nmin, nmax

)
,

which demands that the password have length nmin between nmax inclusive, and
contain at least kD digits, kS symbols, kL lower-case and kU upper-case let-
ters. To this end, we will have to prove, for instance, that a committed length-8
block-vector belongs to the set of vectors encoding all 10 digits. We thus need
a lattice-based sub-protocol for proving set membership. In the lattice-based
world, a set membership argument system with logarithmic complexity in the
cardinality of the set was proposed in [35], exploiting Stern-like protocols [50] and
Merkle hash trees. However, the asymptotic efficiency does not come to the front
when the underlying set has small, constant size. Here, we employ a different
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approach, which has linear complexity but is technically simpler and practically
more efficient, based on the extend-then-permute technique for Stern’s protocol,
suggested by Ling et al. [37]. Finally, we use a general framework for Stern-like
protocols, put forward by Libert et al. [33], to combine all of our sub-protocols
for set membership and obtain a ZKPPC protocol.

From a practical point of view, our lattice-based ZKPPC protocol is not yet
ready to be used: for a typical setting of parameters, an execution with soundness
error 2−30 has communication cost around 900 KB. We, however, believe that
there are much room for improvement and view this work as the first step in
designing post-quantum privacy-preserving password-based authentication and
key exchange systems.

Related work. The only construction of ZKPPC was proposed by Kiefer and
Manulis [30] using Pedersen commitments [45] and a randomised password hash-
ing scheme introduced in the same work. It commits each character individually
and uses set membership proofs to prove compliance of the entire password to a
password policy. The password hash is the sum of the committed characters and
thus is linked to the set membership proofs through the homomorphic property
of the commitments used. As mentioned previously, their protocol is vulnerable
to quantum adversaries and greater diversity is desirable.

Improving the efficiency of secure password registration for VPAKE [31] and
two server PAKE [32], Kiefer and Manulis proposed blind password registra-
tion (BPR), a new class of cryptographic protocols that prevent password leakage
from the server. Building on techniques introduced in [30], Kiefer and Manulis
used an efficient shuffling proof from [18] to achieve O(1) number of set mem-
bership proofs instead of O(nmax) in ZKPPC. However, the security model con-
sidered for BPR is aimed at honest but curious participants. Security in ZKPPC
is defined to prevent malicious users from registering bad passwords that violate
the given password policy. Malicious servers also do not gain any information
on passwords from running the ZKPPC protocol. Overall, the security model of
BPR is weaker than the capabilities of ZKPPC and available instantiations are
not resistant to quantum adversaries.

An alternate approach using symmetric key primitives, secure set-based pol-
icy checking (SPC), was proposed in [16]. Policies are represented by monotone
access structures and mapped to linear secret sharing schemes (LSSS). Then,
policy compliance corresponds to the membership of some set in the access
structure, i.e. the set of shares derived from the password can reconstruct the
secret in the LSSS. To obtain a privacy-preserving protocol for SPC, oblivious
bloom intersection (OBI) from [15] is used. The server constructs an LSSS that
only users who fulfil the policy can obtain the right shares from the OBI and
recover the secret. Knowledge of the secret is proved with a hash of the secret
with the transcript of the protocol execution and identities of the two parties,
tying the protocol to the proof of knowledge. In the proposed SPC protocol,
the one-more-RSA assumption is used to guarantee that the password registra-
tion protocol is sound when used by a malicious client. Thus, in the presence of
a quantum adversary, the SPC protocol cannot be considered sound anymore.



96 K. Nguyen et al.

Since the focus is on quantum resistant blind registration of passwords with
malicious participants, the SPC protocol is insufficient.

Zero-knowledge proofs in lattice-based cryptography. Early work
on interactive and non-interactive proof systems [23,43,46] for lattices exploited
the geometric structure of worst-case lattice problems, and are not generally
applicable in lattice-based cryptography. More recent methods of proving rela-
tions appearing in lattice-based cryptosystems belong to the following two main
families.

The first family, introduced by Lyubashevsky [40,41], uses “rejection sam-
pling” techniques, and lead to relatively efficient proofs of knowledge of small
secret vectors [2,9,12,13], and proofs of linear and multiplicative relations among
committed values [3,10] in the ideal lattice setting. However, due to the nature
of “rejection sampling”, there is a tiny probability that even an honest prover
may fail to convince the verifier: i.e., protocols in this family do not have per-
fect completeness. Furthermore, when proving knowledge of vectors with norm
bound β, the knowledge extractor of these protocols is only guaranteed to pro-
duce witnesses of norm bound g · β, for some factor g > 1. This factor, called
“soundness slack” in [2,12], may be undesirable: if an extracted witness has to
be used in the security proof to solve a challenge SIS instance, we need the SISg·β
assumption, which is stronger than the SISβ assumption required by the proto-
col itself. Moreover, in some sophisticated cryptographic constructions such as
the zero-knowledge password policy check protocol considered in this work, the
coordinates of extracted vectors are expected to be in {0, 1} and/or satisfy a
specific pattern. Such issues seem hard to tackle using this family of protocols.

The second family, initiated by Ling et al. [37], use “decomposition-
extension” techniques in lattice-based analogues [28] of Stern’s protocol [50].
These are less efficient than those of the first family because each protocol execu-
tion admits a constant soundness error, and require repeating protocols ω(log n)
times, for a security parameter n, to achieve negligible soundness error. On the
upside, Stern-like protocols have perfect completeness and can handle a wide
range of lattice-based relations [33–36,38,39], especially when witnesses have to
not only be small or binary, but also certain prescribed arrangement of coordi-
nates. Furthermore, unlike protocols of the first family, the extractor of Stern-like
protocols can output witness vectors with the same properties expected of valid
witnesses. This feature is often crucial in the design of advanced protocols involv-
ing ZK proofs. In addition, the “soundness slack” issue is completely avoided, so
the hardness assumptions are kept “in place”.

Organization. In the next section, we define notations used in the paper and
briefly describe the building blocks for our ZKPPC protocol. Following that, in
Sect. 3, we instantiate the building blocks and ZKPPC protocol with lattices-
based primitives. Finally, we summarize and conclude in Sect. 4.
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2 Preliminaries

Notation. We assume all vectors are column vectors. A vector x with coordi-
nates x1, . . . , xm is written as x = (x1, . . . , xm). For simplicity, concatenation of
x ∈ R

k and y ∈ R
m is denoted with (x‖y) ∈ R

k+m. Column-wise concatenation
of matrices A ∈ R

n×k and B ∈ R
n×m is denoted by [A |B] ∈ R

n×(k+m). If S

is a finite set, then x
$←− S means that x is chosen uniformly at random over

S. For a positive integer n, [n] denotes the set {1, . . . , n} and negl(n) denotes a
negligible function in n. The set of all permutations of n elements is denoted by
Sn. All logarithms are of base 2.

2.1 Some Lattice-Based Cryptographic Ingredients

We first recall the average-case problem SIS and its link to worst-case lattice
problems.

Definition 1 (SIS∞
n,m,q,β [1,22]). Given a uniformly random matrix A ∈ Z

n×m
q ,

find a non-zero vector x ∈ Z
m such that ‖x‖∞ ≤ β and A · x = 0 mod q.

The hardness of the SIS is guaranteed by the worst-case to average-case reduction
from lattice problems. If m,β = poly(n), and q > β · Õ(

√
n), then the SIS∞

n,m,q,β

problem is at least as hard as the worst-case lattice problem SIVPγ for some
γ = β · Õ(

√
nm) (see, e.g., [22,42]).

The KTX commitment scheme. In this work, we employ the SIS-based
commitment scheme proposed by Kawachi, Tanaka and Xagawa [28] (KTX).
The scheme, with two flavours, works with lattice parameter n, prime modulus
q = Õ(n), and dimension m = 2n�log q�.

In the variant that commits t bits, for some fixed t = poly(n), the com-

mitment key is (A,B) $←− Z
n×t
q × Z

n×m
q . To commit x ∈ {0, 1}t, one samples

randomness r $←− {0, 1}m, and outputs the commitment c = A · x + B · r mod q.
Then, to open c, one reveals x ∈ {0, 1}t and r ∈ {0, 1}m.

If there exists two valid openings (x1, r1) and (x2, r2) for the same commit-
ment c and x1 	= x2, then one can compute a solution to the SIS∞

n,m+t,q,1 problem

associated with the uniformly random matrix [A | B] ∈ Z
n×(m+t)
q . On the other

hand, by the left-over hash lemma [48], the distribution of a valid commitment
c is statistically close to uniform over Z

n
q which implies that it is statistically

hiding.
Kawachi et al. [28] extended the above t-bit commitment scheme to a string

commitment scheme COM : {0, 1}∗×{0, 1}m → Z
n
q . The extended scheme shares

the same characteristics, statistically hiding from the parameters set and com-
putationally binding under the SIS assumption.

In this work, we use the former variant to commit to passwords, and use
COM as a building block for Stern-like zero-knowledge protocols.
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2.2 Zero-Knowledge Argument Systems and Stern-Like Protocols

We work with statistical zero-knowledge argument systems, interactive proto-
cols where the zero-knowledge property holds against any cheating verifier and
the soundness property holds against computationally bounded cheating provers.
More formally, let the set of statements-witnesses R = {(y, w)} ∈ {0, 1}∗×{0, 1}∗

be an NP relation. A two-party game 〈P,V〉 is called an interactive argument
system for the relation R with soundness error e if two conditions hold:

– Completeness. If (y, w) ∈ R then Pr
[〈P(y, w),V(y)〉 = 1

]
= 1.

– Soundness. If (y, w) 	∈ R, then ∀ PPT P̂: Pr[〈P̂(y, w),V(y)〉 = 1] ≤ e.

Here and henceforth, PPT denotes probabilistic polynomial time. An argument
system is statistical zero-knowledge if for any V̂(y), there exists a PPT simulator
S(y) which produces a simulated transcript that is statistically close to that of
the real interaction between P(y, w) and V̂(y). A related notion is argument
of knowledge, which requires the witness-extended emulation property. For 3
move protocols (i.e., commitment-challenge-response), witness-extended emula-
tion is implied by special soundness [24], which assumes the existence of a PPT
extractor, taking as input a set of valid transcripts with respect to all possible
values of the “challenge” to the same “commitment”, and returning w′ such that
(y, w′) ∈ R.
Stern-like protocols. The statistical zero-knowledge arguments of knowledge
presented in this work are Stern-like [50] protocols. In particular, they are Σ-
protocols as defined in [9,26], where 3 valid transcripts are needed for extraction
instead of just 2. Stern’s protocol was originally proposed for code-based cryptog-
raphy, and adapted to lattices by Kawachi et al. [28]. It was subsequently empow-
ered by Ling et al. [37] to handle the matrix-vector relations associated with the
SIS and inhomogeneous SIS problems and extended to design several lattice-
based schemes: group signatures [33,35,36,38,39], and group encryption [34].

The basic protocol has 3 moves. With COM, the KTX string commitment
scheme [28], we get a statistical zero-knowledge argument of knowledge (ZKAoK)
with perfect completeness, constant soundness error 2/3, and communication
cost O(|w| · log q), where |w| is the total bit-size of the secret vectors.

An abstraction of Stern’s protocol. We recall an abstraction of Stern’s
protocol, proposed in [33]. Let n, �, q be positive integers, where � ≥ n, q ≥ 2,
and VALID be a subset of {0, 1}�. Suppose S is a finite set and every φ ∈
S is associated with a permutation Γφ of � elements, satisfying the following
conditions:

{
w ∈ VALID ⇔ Γφ(w) ∈ VALID,

If w ∈ VALID and φ is uniform in S, then Γφ(w) is uniform in VALID.
(1)

We aim to construct a statistical ZKAoK for the following abstract relation:

Rabstract =
{
(M,v),w ∈ Z

n×�
q × Z

n
q × VALID : M · w = v mod q.

}
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Stern’s original protocol has VALID = {w ∈ {0, 1}� : wt(w) = k}, where
wt(·) denotes the Hamming weight and k < � for some given k, S = S� – the
symmetric group on � elements, and Γφ(w) = φ(w).

The conditions in (1) are key to prove that w ∈ VALID in ZK: The prover

P samples φ
$←− S and the verifier V checks that Γφ(w) ∈ VALID; no additional

information about w is revealed to V due to the randomness of φ. Furthermore,
to prove in ZK that M · w = v mod q holds, P samples rw

$←− Z
�
q to mask w,

and convinces V instead that M · (w + rw) = M · rw + v mod q.
We describe the interaction between P and V in Fig. 1. A statistically hiding

and computationally binding string commitment scheme COM, e.g. the scheme
in Sect. 2.1, is used.

1. Commitment: Prover P samples rw
$←− Z

�
q , φ

$←− S and randomness ρ1, ρ2, ρ3 for COM.
Then, a commitment CMT = C1, C2, C3

)
is sent to the verifier V , where

C1 = COM(φ,M · rw mod q; ρ1), C2 = COM(Γφ(rw); ρ2),

C3 = COM(Γφ(w + rw mod q); ρ3).

2. Challenge: V sends a challenge Ch
$←− {1, 2, 3} to P .

3. Response: Based on Ch, P sends RSP computed as follows:

– Ch = 1: Let tw = Γφ(w), tr = Γφ(rw), and RSP = (tw, tr, ρ2, ρ3).

– Ch = 2: Let φ2 = φ, w2 = w + rw mod q, and RSP = (φ2,w2, ρ1, ρ3).

– Ch = 3: Let φ3 = φ, w3 = rw, and RSP = (φ3,w3, ρ1, ρ2).

Verification: Receiving RSP, V proceeds as follows:

– Ch = 1: Check that tw ∈ VALID, C2 = COM(tr; ρ2), C3 = COM(tw + tr mod q; ρ3).

– Ch = 2: Check that C1 = COM(φ2,M · w2 − v mod q; ρ1), C3 = COM(Γφ2(w2); ρ3).

– Ch = 3: Check that C1 = COM(φ3,M · w3; ρ1), C2 = COM(Γφ3(w3); ρ2).

In each case, V outputs 1 if and only if all the conditions hold.

Fig. 1. Stern-like ZKAoK for the relation Rabstract.

The properties of the protocol are summarized in Theorem 1.

Theorem 1 ([33]). Assuming that COM is a statistically hiding and computa-
tionally binding string commitment scheme, the protocol in Fig. 1 is a statisti-
cal ZKAoK with perfect completeness, soundness error 2/3, and communication
cost O(� log q). In particular:

– There exists a polynomial-time simulator that, on input (M,v), outputs an
accepted transcript statistically close to that produced by the real prover.

– There exists a polynomial-time knowledge extractor that, on input a commit-
ment CMT and 3 valid responses (RSP1,RSP2,RSP3) to all 3 possible values
of the challenge Ch, outputs w′ ∈ VALID such that M · w′ = v mod q.
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The proof of the Theorem 1, which appeared in [33], employs standard simulation
and extraction techniques for Stern-like protocols [28,37]. (In the full version,
we also provide the proof, for the sake of completeness.)

2.3 Password Strings and Password Policies

Next, we present the models of password strings and policies, adapted from [30].

Password Strings. We consider password strings pw over the set of 94 printable
characters Σall in the ASCII alphabet ΣASCII, where Σall = ΣD ∪ΣS ∪ΣL ∪ΣU ⊂
ΣASCII is split into four disjoint subsets:

– The set of 10 digits ΣD = {0, 1, . . . , 9};
– The set of 32 symbols ΣS =

{
!”#$%&’()*+,-./ :;<=>?@ [\]ˆ ‘{|} ˜

}
;

– The set of 26 lower case letters, ΣL = {a, b, . . . , z};
– The set of 26 upper case letters, ΣU = {A,B, . . . , Z}.

We denote by Dict a general dictionary containing all strings that can be formed
from the characters in Σall. A password string pw = (c1, c2, . . . , ck) ∈ Σk

all ⊂ Dict
of length k is an ordered multi-set of characters c1, . . . , ck ∈ Σall.

Password Policies. A password policy f =
(
(kD, kS , kL, kU ), nmin, nmax

)
has

six components, a minimum length nmin, maximum length nmax, and integers
kD, kS , kL and kU that indicate the minimum number of digits, symbols, upper-
case and lower-case letters, respectively, a password string must contain. We say
that f(pw) = true if and only if policy f is satisfied by the password string pw.
For instance,

1. Policy f =
(
(1, 1, 1, 1), 8, 16

)
indicates that password strings must be between

8 and 16 characters and contain at least one digit, one symbol, one lower-case
and one upper-case letters.

2. Policy f =
(
(0, 2, 0, 1), 10, 14

)
demands that password strings must be

between 10 and 14 characters, including at least two symbols and one upper-
case letter.

Remark 1. In practice, password policies typically do not specify nmax but we
can simply fix a number that upper-bounds all reasonable password lengths.

2.4 Randomised Password Hashing and Zero-Knowledge Password
Policy Check

We now recall the notions of randomised password hashing and zero-knowledge
password policy check. Our presentation follows [29,30].
Randomised Password Hashing. This mechanism aims to compute some
password verification information that can be used later in more advanced pro-
tocols (e.g., ZKPPC and VPAKE). In order to prevent off-line dictionary attacks,
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the computation process is randomised via a pre-hash salt and hash salt. More
formally, a randomised password hashing scheme H is a tuple of 5 algorithms
H = (Setup,PreSalt,PreHash,Salt,Hash), defined as follows.

– Setup(λ): On input security parameter λ, generate public parameters pp,
including the descriptions of the salt spaces SP and SH .

– PreSalt(pp): On input pp, output a random pre-hash salt sP ∈ SP .
– PreHash(pp, pw, sP ): On input pp, password pw and pre-hash salt sP , output

a pre-hash value P .
– Salt(pp): On input pp, output a random hash salt sH ∈ SH .
– Hash(pp, P, sP , sH): On input pp, pre-hash value P , pre-hash salt sP and hash

salt sH , output a hash value h.

A secure randomised password hashing scheme H must satisfy 5 require-
ments: pre-image resistance, second pre-image resistance, pre-hash entropy
preservation, entropy preservation and password hiding.

– Pre-image resistance (or tight one-wayness in [11]): Let pp ← Setup(λ) and
Dict be a dictionary of min-entropy β. Let Hash(·) be a function such that
(Hi, sHi

) ← Hash(·), where sHi
← Salt(pp) and Hi ← Hash(pp, Pi, sPi

, sHi
).

Let Pi ← PreHash(pp, pwi, sPi
) with sPi

← PreSalt(pp) and pw i
$←− Dict.

Pi is stored by Hash(·) and there is a function Verify(i, P ) such that
Verify(i, P ) = 1 if P = Pi.
For all PPT adversaries A running in time at most t, there exists a negligible
function ε(·) such that

Pr[(i, P ) ← AHash(·)); Verify(i, P ) = 1] ≤ αt

2βtPreHash
+ ε(λ)

for small α and tPreHash, the running time of PreHash.

– Second pre-image resistance: For all PPT adversaries A, there exists a negli-
gible function ε(·) such that for P ′ ← A(pp, P, sH),

Pr
[(

P ′ 	= P
) ∧ (

Hash(pp, P, sH) = Hash(pp, P ′, sH)
)] ≤ ε(λ),

where pp ← Setup(λ), sP ← PreSalt(pp), sH ← Salt(pp), P ←
Hash(pp, pw , sP ) for any pw ∈ Dict.

– Pre-hash entropy preservation: For all dictionaries Dict that are samplable in
polynomial time with min-entropy β and any PPT adversary A, there exists
a negligible function ε(·) such that for (P, sP ) ← A(pp) with pp ← Setup(λ)

and random password pw $←− Dict,

Pr
[(

sP ∈ SP

) ∧ (
P = PreHash(pp, pw, sP )

)] ≤ 2−β + ε(λ).
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– Entropy preservation: For all min-entropy β polynomial-time samplable dic-
tionaries Dict and any PPT adversary A, there exists a negligible function
ε(·) such that for (H, sP , sH) ← A(pp)

Pr
[(

sP ∈ SP

) ∧ (
sH ∈ SH ∧ H = Hash(pp, pw, sP , sH)

)] ≤ 2−β + ε(λ),

where pp ← Setup(λ) and pw $←− Dict.
– Password hiding: For all PPT adversaries A = (A1,A2), where A1(pp) outputs

two equal length passwords pw0, pw1 for pp ← Setup(λ) and A2(H) outputs
a bit b′ for H ← Hash(pp, P, sP , sH), where sH ← Salt(λ), sP ← PreSalt(λ)

and P ← PreHash(pp, pw b, sP ) for a random bit b
$←− {0, 1}, there exists a

negligible function ε(·) such that
∣
∣Pr[b = b′] − 1

2

∣
∣ ≤ ε(λ).

ZK Password Policy Check. Let H = (Setup,PreSalt,PreHash,Salt,Hash) be
a randomised password hashing scheme. A password policy check (PPC) is an
interactive protocol between a client and server where the password policy of the
server f =

(
(kD, kS , kL, kU ), nmin, nmax

)
and public parameters pp ← Setup(λ)

are used as common inputs. At the end of the execution, the server accepts a
hash value h of any password pw of the client’s choice if and only if f(pw) =
true. A PPC protocol is an argument of knowledge of the password pw and
ssrandomness sP ← PreSalt(pp), sH ← Salt(pp) used for hashing. To prevent
leaking the password to the server, one additionally requires that the protocol
be zero-knowledge.

More formally, a zero-knowledge PPC protocol is an interactive protocol
between a prover (client) and verifier (server), in which, given (pp, f,h) the
former convinces the later in zero-knowledge that the former knows pw and
randomness (sP , sH) such that:

f(pw) = true and Hash(pp, P, sP , sH) = h,

where P ← PreHash(pp, pw, sP ).

3 Our Constructions

To construct randomised password hashing schemes and ZKPPC protocols from
concrete computational assumptions, the first challenge is to derive a password
encoding mechanism that operates securely and interacts smoothly with the
hashing and zero-knowledge layers. In the discrete log setting considered in [30],
passwords are mapped to large integers and then encoded as elements in a group
of large order. Unfortunately, this does not translate well to the lattice setting
as working with large-norm objects usually reduces the security and efficiency
of the construction. Therefore, a different method, which encodes passwords
as small-norm objects, is desirable. In this work, we will therefore use binary
vectors.
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Let bin(·) be the function that maps non-negative integers to their binary
decomposition. For any character c encoded in ASCII, let ASCII(c) ∈ [0, 255] be
its code. Then, we define enc(c) for an ASCII encoded character c and enc(pw)
for some length-t password pw = (c1, . . . , ct) ∈ Σt as

enc(c) = bin(ASCII(c)) ∈ {0, 1}8,
encode(pw) =

(
enc(c1)‖ . . . ‖enc(ct)

) ∈ {0, 1}8t.

3.1 Notations, Sets and Permutations

Let m, n be arbitrary positive integers. We define the following sets and permu-
tations:

� B2
m: the set of all vectors in {0, 1}2m whose Hamming weight is exactly m. Note
that for x ∈ Z

2m and ψ ∈ S2m the following holds:
{

x ∈ B2
m ⇔ ψ(x) ∈ B2

m;

x ∈ B2
m and ψ

$←− S2m, then ψ(x) is uniform over B2
m.

(2)

� Tψ,n, for ψ ∈ Sm: the permutation that, when applied to v = (v1‖v2‖ . . . ‖vm) ∈
Z
nm, consisting of m blocks of size n, re-arranges the blocks of v according to

ψ, as follows,
Tψ,n(v) = (vψ(1)‖vψ(2)‖ . . . ‖vψ(n)).

For convenience, when working with password alphabet Σall = ΣD∪ΣS∪ΣL∪ΣU

and password policy f =
(
(kD, kU , kL, kS), nmin, nmax

)
, we introduce the following

notations and sets:

� ηD = |ΣD| = 10, ηS = |ΣS | = 32, ηL = |ΣL| = 26, ηU = |ΣU | = 26 and
ηall = |Σall| = 94.

� For α ∈ {D,S,L, U, all}: Encα = {enc(w))
∣
∣ w ∈ Σα}.

� SETα for α ∈ {D,S,L, U, all}: the set of all vectors v = (v1‖ . . . ‖vηα
) ∈

{0, 1}8ηα , such that the blocks v1, . . . ,vηα
∈ {0, 1}8 are exactly the binary

encodings of all characters in Σα, i.e.,
{
v1, . . . ,vηα

}
=

{
enc(w)) : w ∈ Σα

}
.

� SETnmax : the set of all vectors v = (v1‖ . . . ‖vnmax) ∈ {0, 1}nmax�log nmax�, such
that the blocks v1, . . . ,vnmax ∈ {0, 1}�log nmax� are exactly the binary decom-
positions of all integers in [nmax], i.e.,

{
v1, . . . ,vnmax

}
=

{
bin(1), . . . , bin(nmax)

}
.

Observe that the following properties hold.



104 K. Nguyen et al.

� For all α ∈ {D,S,L, U, all}, all x ∈ Z
8ηα and all ψ ∈ Sηα

:
{

x ∈ SETα ⇔ Tψ,8(x) ∈ SETα;

x ∈ SETα and ψ
$←− Sηα

, then Tψ,8(x) is uniform over SETα.
(3)

� For all x ∈ Z
nmax�log nmax� and all ψ ∈ Snmax :{

x ∈ SETnmax ⇔ Tψ,�log nmax�(x) ∈ x ∈ SETnmax ;

x ∈ SETnmax and ψ
$←− Snmax , then Tψ,�log nmax�(x) is uniform over SETnmax .

(4)

3.2 Randomised Password Hashing from Lattices

We describe our randomised password hashing scheme L for passwords of length
between two given integers nmin and nmax. At a high level, our scheme maps
characters of the password pw to binary block vectors, re-arranges them with
a random permutation χ, and finally computes the password hash as a KTX
commitment ([28], see also Sect. 2.1) to a vector storing all the information on
pw and χ. The scheme works as follows,

L.Setup(λ). On input security parameter λ, the algorithm performs the following
steps:
1. Choose parameters n = O(λ), prime modulus q = Õ(n), and dimension

m = 2n�log q�.
2. Sample matrices A $←− Z

n×(nmax�log nmax�+8nmax)
q and B $←− Z

n×m
q .

3. Let the pre-hash salt space be SP = Snmax - the set of all permutations of
nmax elements, and hash salt space be SH = {0, 1}m.

4. Output the public parameters pp =
(
n, q,m,SP ,SH ,A,B

)
.

L.PreSalt(pp). Sample χ
$←− Snmax and output sP = χ.

L.PreHash(pp, pw, sP ). Let sP = χ ∈ Snmax and t ∈ [nmin, nmax] be the length of
password pw. The pre-hash value P is computed as follows.
1. Compute encode(pw) ∈ {0, 1}8t, consisting of t blocks of length 8.

2. Insert nmax − t blocks of length 8, each one being enc(g) for some
non-printable ASCII character g ∈ ΣASCII \ Σall, into the block-vector
encode(pw) to get e ∈ {0, 1}8nmax .1

3. Apply Tχ,8 to get e′ = Tχ,8(e) ∈ {0, 1}8nmax .

4. Output the pre-hash value P = e′.

L.Salt(pp). Sample r $←− {0, 1}m and output sH = r.
L.Hash(pp, P, sP , sH). Let P = e′ ∈ {0, 1}8nmax , sP = χ ∈ Snmax and sH = r ∈

{0, 1}m. The hash value h is computed as follows,

1 This hides the actual length t of the password in the ZKPPC protocol in Sect. 3.4.
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1. Express the permutation χ as χ = [χ(1), . . . , χ(nmax)], where for each
i ∈ [nmax], χ(i) ∈ [nmax]. Then, form

e0 =
(
bin(χ(1) − 1)‖ . . . ‖bin(χ(nmax) − 1)

) ∈ {0, 1}nmax�log nmax�.

2. Form x = (e0‖e′) ∈ {0, 1}nmax�log nmax�+8nmax and output h = A ·x+B ·r ∈
Z

n
q .

In the following theorem, we demonstrate that the proposed scheme satisfies
the security requirements defined in Sect. 2.4.

Theorem 2. Under the SIS assumption, the randomised password hashing
scheme, L, described above satisfies 5 requirements: pre-image resistance, sec-
ond pre-image resistance, pre-hash entropy preservation, entropy preservation
and password hiding.

Proof. First, we remark that, by construction, if the pre-hash salt sP = χ is
given, then we can reverse the procedure used to extend the length t password by
simply discarding any non-printable characters after applying the inverse of the
permutation specified by sP . Hence, if sP is hidden, then due to its randomness,
the min-entropy of P is larger than the min-entropy of pw. Thus, the proposed
hashing scheme has the pre-hash entropy preservation and entropy preservation
properties.

Next, note that h = A · x + B · r mod q is a proper KTX commitment of
message x with randomness r. Thus, from the statistical hiding property of the
commitment scheme, the password hiding property holds.

Furthermore, if one can produce distinct pre-hash values P , P ′ that yield the
same hash value h, then one can use these values to break the computational
binding property of the KTX commitment scheme. This implies that second
pre-image resistance property holds under the SIS assumption.

Finally, over the randomness of matrix A, password pw and pre-hash salt
sP , except for a negligible probability (i.e., in the event one accidentally finds a
solution to the SIS problem associated with matrix A), vector A · x accepts at
least 2β values in Z

n
q , where β is the min-entropy of the dictionary Dict from

which pw is chosen. Therefore, even if A · x = h − B · sH mod q is given, to find
P = e′, one has to perform 2β invocations of PreHash which implies that the
scheme satisfies the pre-image resistance property. ��

3.3 Techniques for Proving Set Membership

In our construction of ZKPPC in Sect. 3.4, we will have to prove that a linear
relation of the form

∑

i

(
public matrix Mi

) · (
binary secret vector si

)
= h mod q

holds, where each secret vector si must be an element of a given set of relatively
small cardinality, e.g., EncD,EncS ,EncL,EncU ,Encall. Thus, we need to design
suitable sub-protocols to prove set membership.
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In the lattice-based world, a set membership argument system with loga-
rithmic complexity in the cardinality of the set was proposed in [35], exploiting
Stern-like protocols and Merkle hash trees. Despite its asymptotic efficiency, the
actual efficiency is worse when the underlying set has small, constant size. To
tackle the problems encountered here, we employ a different approach, which
has linear complexity but is technically simpler and practically more efficient.

Suppose we have to prove that an n-dimensional vector si belongs to a set
of m vectors {v1, . . . ,vm}. To this end, we append m − 1 blocks to vector si

to get an nm-dimensional vector s

i whose m blocks are exactly elements of the

set {v1, . . . ,vm}. At the same time, we append n(m− 1) zero-columns to public
matrix Mi to get matrix M


i satisfying M

i ·s


i = Mi ·si, so that we preserve the
linear equation under consideration. In this way, we reduce the set-membership
problem to the problem of proving the well-formedness of s


i . The latter can be
done via random permutations of blocks in the framework of Stern’s protocol.
For instance, to prove that si ∈ EncD, i.e., si is a correct binary encoding of a
digit, we extend it to s
i ∈ SETD, apply a random permutation to the extended
vector, and make use of the properties observed in (3).

3.4 Zero-Knowledge Password Policy Check Protocol

We now present our construction of ZKPPC from lattices. Throughout, we use
notations, sets and permutation techniques specified in Sect. 3.1 to reduce the
statement to be proved to an instance of the relation Rabstract considered in
Sect. 2.2, which in turn can be handled by the Stern-like protocol of Fig. 1.

Our protocol allows a prover P to convince a verifier V in ZK that P knows
a password pw that hashes to a given value with randomness χ, r, and satis-
fies some policy f =

(
(kD, kU , kL, kS), nmin, nmax

)
.2 Recall that V demands pw

must have length between nmin and nmax inclusive, contain at least kD dig-
its, kS symbols, kL lower-case and kU upper-case letters. For simplicity, we let
kall = nmin − (kD + kU + kL + kS).

The common input consists of matrices A ∈ Z
n×(nmax�log nmax�+8nmax)
q ,B ∈

Z
n×m
q , hash value h ∈ Z

n
q and extra information

Δ = (δD,1, . . . , δD,kD
, δS,1, . . . , δS,kS

, δL,1, . . . , δL,kL
, δU,1, . . . , δU,kU

,

δall,1, . . . , δall,kall
) ∈ [nmax]nmin ,

which indicates the positions of the blocks, inside vector P = e′, encoding kD

digits, kS symbols, kL lower-case letters, kU upper-case letters and kall other
printable characters within pw. Revealing Δ to V does not harm P, since the
original positions of those blocks (in vector e) are protected by the secret per-
mutation χ.

The prover’s witness consists of vectors x = (e0‖e′) ∈ {0, 1}nmax�log nmax�+8nmax

and r ∈ {0, 1}m satisfying the following conditions:
2 The construction we present considers the scenario where kD, kS , kL, kU are all pos-

itive. Our scheme can be easily adjusted to handle the case where one or more of
them are 0.
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1. A · x + B · r = h mod q;
2. e0 =

(
bin(χ(1) − 1) ‖ . . . ‖ bin(χ(nmax − 1))

)
;

3. e′ has the form (x1, . . . ,xnmax), where, for all α ∈ {D,S,L, U, all} and all
i ∈ [kα], it holds that xδα,i

∈ Encα.

We first observe that, if we express matrix A as A =
[
A0 | A1 | . . . | Anmax

]
,

where A0 ∈ Z
nmax�log nmax�
q and A1, . . . ,Anmax ∈ Z

n×8
q , then equation A·x+B·r =

h mod q can be equivalently written as

A0 · e0 +
∑

α∈{D,S,L,U,all},i∈[kα]

Aδα,i
· xδα,i

+
∑

j∈[nmax]\Δ

Aj · xj + B · r = h mod q.(5)

Note that, we have e0 ∈ SETnmax . We next transform the witness vectors
x1, . . . ,xnmax , r as follows,

� For all α ∈ {D,S,L, U, all} and all i ∈ [kα], to prove that xδα,i
∈ Encα, we

append ηα − 1 suitable blocks to xδα,i
to get vector x


δα,i
∈ SETα.

� For vectors {xj}j∈[nmax]\Δ, note that it is necessary and sufficient to prove
that they are binary vectors (namely, they are encoding of characters that
may or may not be printable). Similarly, we have to prove that r is a binary
vector. To this end, we let y ∈ {0, 1}8(nmax−nmin) be a concatenation of all
{xj}j∈[nmax]\Δ and z = (y‖r) ∈ {0, 1}8(nmax−nmin)+m. Then, we append suitable
binary entries to z to get z
 ∈ {0, 1}2(8(nmax−nmin)+m) with Hamming weight
exactly 8(nmax − nmin) + m, i.e., z
 ∈ B2

8(nmax−nmin)+m.

Having performed the above transformations, we construct the vector w ∈
{0, 1}�, where

� = nmax�log nmax�+8(kDηD+kSηS+kLηL+kUηU )+8kallηall+2(8(nmax−nmin)+m),

and w has the form:

w =
(
e0 ‖ x


δD,1
‖ . . . ‖ x


δD,kD
‖ x


δS,1
‖ . . . ‖x


δS,kS
‖ x


δL,1
‖ . . . ‖ x


δL,kL

‖ x

δU,1

‖ . . . ‖ x

δU,kU

‖ x

δall,1

‖ . . . ‖ x

δall,kall

‖ z

)
. (6)

When performing extensions over the secret vectors, we also append zero-
columns to the public matrices in equation (5) so that it is preserved. Then, we
concatenate the extended matrices to get M ∈ Z

n×�
q such that (5) becomes, with

v = h ∈ Z
n
q ,

M · w = v mod q. (7)

We have now established the first step towards reducing the given statement
to an instance of the relation Rabstract from Sect. 2.2. Next, we will specify the
set VALID containing the vector w, set S and permutations {Γφ : φ ∈ S} such
that the conditions in (1) hold.

Define VALID as the set of all vectors w ∈ {0, 1}� having the form (6), where
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� e0 ∈ SETnmax ;
� x


δα,i
∈ SETα for all α ∈ {D,S,L, U, all} and all i ∈ [kα];

� z
 ∈ B2
8(nmax−nmin)+m.

It can be seen that the vector w obtained above belongs to this tailored set
VALID. Next, let us define the set of permutations S as follows,

S = Snmax×
(SηD

)kD ×(SηS

)kS ×(SηL

)kL×(SηU

)kU ×(Sηall

)kall×S2(8(nmax−nmin)+m).

Then, for each element

φ =
(
π, τD,1, . . . , τD,kD

, τS,1, . . . , τS,kS
, τL,1, . . . , τL,kL

, τU,1, . . . , τU,kU
,

τall,1, . . . , τall,kall
, θ

) ∈ S,

we define the permutation Γφ that, when applied to w ∈ Z
� of the form

w =
(
e0 ‖ x


δD,1
‖ . . . ‖ x


δD,kD
‖ x


δS,1
‖ . . . ‖x


δS,kS
‖ x


δL,1
‖ . . . ‖ x


δL,kL

‖ x

δU,1

‖ . . . ‖ x

δU,kU

‖ x

δall,1

‖ . . . ‖ x

δall,kall

‖ z

)
.

where e0 ∈ Z
nmax�log nmax�, x


δα,i
∈ Z

8ηα for all α ∈ {D,S,L, U, all} and i ∈ kα,
and z
 ∈ Z

2(8(nmax−nmin)+m), it transforms the blocks of vector w as follows,

� e0 �→ Tπ,�log nmax�(e0).
� For all α ∈ {D,S,L, U, all} and all i ∈ kα: x


δα,i
�→ Tτα,i,8(x



δα,i

).

� z
 �→ θ(z
).

Based on the properties observed in (2), (3), and (4), it can be seen that we
have satisfied the conditions specified in (1), namely,

{
w ∈ VALID ⇔ Γφ(w) ∈ VALID,

If w ∈ VALID and φ is uniform in S, then Γφ(w) is uniform in VALID.

Having reduced the considered statement to an instance of the relation
Rabstract, let us now describe how our protocol is executed. The protocol uses the
KTX string commitment scheme COM, which is statistically hiding and compu-
tationally binding under the SIS assumption. Prior to the interaction, the prover
P and verifier V construct the matrix M and vector v based on the common
inputs (A,B,h,Δ), while P builds the vector w ∈ VALID from vectors x and
r, as discussed above. Then, P and V interact per Fig. 1. We thus obtain the
following result, as a corollary of Theorem 1.

Theorem 3. Under the SIS assumption, the protocol above is a ZKPPC protocol
with respect to the randomised password hashing scheme L from Sect. 3.2 and
policy f =

(
(kD, kU , kL, kS), nmin, nmax

)
. The protocol is a statistical ZKAoK with

perfect completeness, soundness error 2/3 and communication cost O(� log q).
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Proof. Perfect completeness, soundness error 2/3 and communication cost
O(� log q) of the protocol follow from the use of the abstract protocol in Fig. 1.
For simulation, we simply run the simulator of Theorem 1.

As for knowledge extraction, we first run the knowledge extractor of
Theorem 1 to get the vector w′ ∈ VALID such that M · w′ = v mod q.
Then, we “backtrack” the transformations to extract from w′, vectors x′ =
(e′

0‖x′
1‖ . . . ‖x′

nmax
) ∈ {0, 1}nmax�log nmax�+8nmax and r′ ∈ {0, 1}m such that

� A · x′ + B · r′ = h mod q;
� e′

0 ∈ SETnmax ;
� For all α ∈ {D,S,L, U, all} and all i ∈ kα: x′

δα,i
∈ Encα.

Notice that one can recover a permutation of nmax elements from an element
of SETnmax . Let χ′ be the permutation encoded by e′

0. Then, by applying the
inverse permutation T−1

χ′,8 to (x′
1‖ . . . ‖x′

nmax
), we recover e′ ∈ {0, 1}8nmax . Finally,

by removing potential blocks of length 8 that correspond to encodings of non-
printable ASCII characters from e′, we obtain a vector that encodes some pass-
word string pw′ satisfying policy f . ��

Efficiency analysis. By inspection, we see that, without using the big-O nota-
tion, each round of the proposed protocol has communication cost slightly larger
than

� log q =
(
nmax�log nmax� + 8(kDηD + kSηS + kLηL + kUηU )

+ 8kallηall + 2(8(nmax − nmin) + m)
)
log q.

Let us estimate the cost in practice. Note that the KTX commitment scheme
can work with relatively small lattice parameters, e.g., n = 256, log q = 10, m =
5120. For a common password policy f =

(
(1, 1, 1, 1), 8, 16

)
, the communication

cost would be about 17 KB. As each round has a soundness error of 2/3, one
may have to repeat the protocol many times in parallel to achieve a high level of
confidence. For instance, if a soundness error of 2−30 is required, then one can
repeat 52 times for a final cost of around 900 KB. In practical implementations,
one can exploit various optimizations (e.g., instead of sending a random vector,
one can send the PRNG seed used to generate it) to reduce the communication
complexity.

4 Conclusion and Open Questions

Through the use of the KTX commitment scheme [28] and a Stern-like zero-
knowledge argument of set membership, we designed a lattice-based zero-
knowledge protocol for proving that a committed/hashed password sent to the
server satisfies the required password policy. All together, we obtain the first
ZKPPC that is based on the hardness of the SIS problem which to date remains
quantum resistant. Unfortunately, there are no viable VPAKE protocols from
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lattices that can be coupled with our ZKPPC protocol to construct a complete
privacy-preserving password-based authentication and key exchange system.

Our proposed ZKPPC protocol can be employed to securely register chosen
passwords at remote servers with the following security guarantees: (1) Reg-
istered passwords are not disclosed to the server until used; (2) Each regis-
tered password provably conforms to the specified password policy. Although
not being ready to be deployed in practice, we view this work as the first step in
designing post-quantum privacy-preserving password-based authentication and
key exchange systems.

We leave several open questions as potential future work: (1) to construct a
more practical lattice-based ZKPPC; (2) to develop a lattice-based VPAKE; and
(3) to extend lattice-based ZKPPC to other PAKE protocols, such as two-server
PAKE, where the passwords are secretly shared between two servers, of which
we assume at most one to be compromisable. The third question is similar to
the one asked by Kiefer and Manulis [30] and as they noted, it is a challenge
even in the classical discrete logarithm setting.
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for helpful comments. The research is supported by Singapore Ministry of Educa-
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Abstract. We present a generic, yet simple and efficient transforma-
tion to obtain a forward secure authenticated key exchange protocol
from a two-move passively secure unauthenticated key agreement scheme
(such as standard Diffie–Hellman or Frodo or NewHope). Our construc-
tion requires only an IND-CCA public key encryption scheme (such as
RSA-OAEP or a method based on ring-LWE), and a message authenti-
cation code. Particularly relevant in the context of the state-of-the-art
of postquantum secure primitives, we avoid the use of digital signature
schemes: practical candidate post-quantum signature schemes are less
accepted (and require more bandwidth) than candidate post-quantum
public key encryption schemes. An additional feature of our proposal is
that it helps avoid the bad practice of using long term keys certified for
encryption to produce digital signatures. We prove the security of our
transformation in the random oracle model.

1 Introduction

Forward secrecy and authentication are the standard security requirements for
authenticated key agreement protocols (AKA). They require that parties authen-
ticate one another, and that the key derived remains secret to anyone but to
the two parties involved at the time of the execution. Modern realizations rely
on the Diffie–Hellman protocol which is unauthenticated and guarantees key
secrecy only against passive adversaries. The stronger property is obtained via
additional mechanisms which authenticate the two parties and ensure integrity
of the conversation between them, even against active adversaries.

Numerous generic transformations in the literature show how to achieve full
AKA active security from protocols with weaker guarantees [3,9,18,22,24,28]
using simple mechanisms such as signatures, encryption, and MACs.

Such generic techniques are particularly appealing; on the one hand they
enable a modular approach where the base protocol and the details of the trans-
formation are designed and analyzed independently – in particular, if needed,
the underlying protocol can be easily swapped out and replaced with a different
mechanism. On the other it provide conceptual clarity for choices that are made,
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e.g. which part of the protocol provides say, key-secrecy, and which deals with
integrity/entity authentication.

In this paper we contribute to this research direction. We provide a sim-
ple generic transformation which, when applied to a certain class of passively
secure key-exchange protocols, yields the most round-efficient authenticated key-
agreement protocols against active adversaries to date. Besides optimal round
complexity, our proposal has two interesting implications which serve as further
motivation for this work. The first concerns the practicalities of existing RSA
certified public keys; the second concerns security of key-agreement protocols in
the post-quantum world.

Consider the instantiation of the “signed Diffie-Hellman” construction which
appears, for example, in the popular TLS 1.0-1.2 ciphersuite

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,

using RSA signatures and elliptic curve based Diffie–Hellman. This usage is a bit
of a kludge: RSA certificates in existence were issued for dual-use of RSA in both
signature and encryption mode (which was needed for the earlier TLS mechanism
of RSA key- transport which is still prevalent). Deploying protocols where the
same keys are used for both signature and encryption would encourage a usage
which is not supported by rigorous mathematical guarantees. Short of issuing
new RSA keys, this type of misuse could be avoided by ensuring that existing
keys are only used for encryption. We note that this is not just a theoretical
concern. Attacks against deployed cryptography that reuse keys in unintended
ways have been previously reported [19,20,27].

We now discuss the design of key-exchange protocols secure in the post-
quantum setting. Here, a natural strategy is to consider existing designs and
replace the different components with post-quantum secure versions. The under-
lying Diffie-Hellman constructions can be replaced by (Ring-)LWE-based variant
such as NewHope [7] or Frodo [1]. For other primitives, the situation seems to
be more delicate. Both for historical and technical reasons, there seems to be
less confidence in proposals for post-quantum signatures th an for post-quantum
encryption. Whilst lattice based encryption schemes have a strong track record,
see NTRU [16] for a historic scheme or Ring-LWE [25,26] for more modern ones,
the use of lattice based signature schemes is less stable. Many early schemes,
such as GGH [13] and NTRUSign [15,17], were eventually broken due to issues
with the distribution of the signatures [12,29]; however recently more promising
lattice based candidates have been proposed such as [10]. Post-quantum signa-
ture schemes based on Merkle hash trees have also had issues related to the need
to maintain a large state; again recently this issue has been overcome with the
introduction of state-less hash tree based [5].

Questionable dual use of RSA keys, and the relatively slow progress of post-
quantum secure signature schemes, raises the question of whether one can design
a passively (forward) secure unauthenticated protocol together with authen-
tication mechanisms that rely solely on post-quantum public key encryption
schemes.
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Our results. We answer this question in the positive. We propose a generic trans-
formation which bootstraps a forward secure AKA protocol out of a two-pass
passively secure unauthenticated key agreement (KA) scheme which satisfies
some mild additional conditions. The transformation uses an arbitrary IND-
CCA public key encryption scheme and a strongly unforgeable MAC. Below
we provide a sketch of our transformation, motivate its design and discuss the
additional requirements on the underlying protocol.

Consider an arbitrary such protocol Π, whose execution between parties U
and V is described in Fig. 1 using the general syntax introduced by Bellare
and Rogaway [4]. For example, Diffie–Hellman is an instantiation where U ’s
ephemeral key is eA and m1 is geA , V ’s ephemeral key is eB (which can be
deleted as soon as it is used to derive m2 = geB and kB = meB

1 ), finally the
computation of kA is done by U using the equation kA = meA

2 . To obtain forward
secrecy, the ephemeral key data is assumed to be deleted as soon as the session
keys are locally computed.

VU

(eA, m1, ∗) ← Π(init, −, −; $1)

m1

(−, m2, kB) ← Π(resp , m1, −; $2)

m2

(−, �, kA) ← Π(init, m1‖m2, eA, $3)

return kA return kB

Fig. 1. An arbitrary two-round unauthenticated key agreement protocol Π.

We bootstrap this two round KA protocol into a fully authenticated one
(which inherits the forward secrecy property). Our construction, presented in
Fig. 2, requires a public key encryption scheme secure under chosen ciphertext
attacks, a strongly unforgeable message authentication code, and two key deriva-
tion functions H1 and H2 which we model as random oracles.

The protocol works by wrapping the message flows, m1 and m2, of the KA
protocol in encryptions under the long term keys of the two parties. Interestingly,
the main role played by encryption here is to authenticate the parties and ensure
integrity of the messages they exchange. Indeed, one can think of the first two
messages of the protocol as a challenge-response exchange where U attempts to
authenticate V by sending an encryption of m1 under the public key of V and
expecting to receive the same m1 in the next flow. Similarly, the second and
third flow can be interpreted as a challenge-response where V sends m2 to U
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U (pkU , skU ) V (pkV , skV )

(eU , m1, ∗) ← Π(init, −, −; $1)

m1 ← EncpkV (U‖m1) m1 U‖m1 = DecskV (m1)

(−, m2, κV ) ← Π(resp , m1, −; $2)

m′
1‖m2 = DecskU (m2) m2 m2 ← EncpkU (m1‖m2)

if m′
1 �= m1 then

reject

(−, �, κU ) ← Π(init, m1‖m2, eU ; $3)

kU,1 ← H1(κU )

m3 ← Mac kU,1(U‖V ) m3 kV,1 ← H1(κV )

if VrfykV,1
(U‖V,m3) = 0 then

reject

kU,2 ← H2(κU‖U‖V ) kV,2 ← H2(κV ‖U‖V )

return kU,2 return kV,2

Fig. 2. The new AKA protocol construction.

and expects to receive a message that depends on m2. In addition, the MAC
send as the last message also ties the identities of the parties involved with this
particular execution of the protocol run. The final application key is derived
from the same key from Π, but in a way that decouples it from the MAC key
and also incorporates the identities of the participants.

The last message flow and key derivation methodology also thwart an ana-
logue of the (in)famous attack against the Needham-Schroeder protocol. A mali-
cious V could reencrypt the first message for a third party W who would reply
with its own encrypted m2 for U ; V could simply forward this message so U .
Parties U and W would thus derive the same key for the underlying passively
secure protocol. However, W will no longer accept the MAC as it will be on
the wrong message (U‖V as opposed to U‖W ), thus thwarting the attack. In
addition, since it depends on the participants’ identities, the derived session key
will also be different for U and W .

The essence of our transformation is that it attempts to ensure that an active
adversary cannot interfere with the execution of the underlying protocol, i.e. that
when a party accepts, it must have engaged in an execution with another honest
party. Put otherwise, even an active adversary cannot force a session to accept
other than by forwarding honest messages.
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Using non-malleable encryption to protect the integrity of messages goes
someway towards implementing this intuition. Ensuring that parties authenti-
cate each other successfully is however not obvious, and in fact require additional
properties on the underlying protocol Π. As explained above, one should think
of the first two messages as a challenge-response protocol to authenticate V .
Notice that for security of authentication, this requires that message m1 of the
Π has sufficient entropy; otherwise, an adversary who guesses m1 can reply with
an appropriately message which encrypts m1 and some m2 and get U to accept.

Similarly, one should think of the second and third messages as a challenge-
response protocol that authenticates U : the last message should only be com-
putable by some party which received m2 and derived the MAC key from it.
This intuition is valid only if m2 actually helps determine the MAC key, which
is not necessarily the case. Consider a two message protocol where, if the first
message of U for V is some fixed message bad, then V sets the local key to,
say, 0n. Such a protocol may still be secure against a passive adversary as an
honest execution U would never send bad. Yet, the protocol obtained by apply-
ing our transformation is not actively secure since the adversary can send the
encryption of bad to V . More generally, a close look shows that the problem is
that the adversary can send an appropriately crafted message m1 which coerces
the key into one which can be easily guessed (even if V behaves honestly).

The above discussion shows that we need two additional properties for our
transformation to work: (i) that the first message of Π is unpredictable and
(ii) that even if the first message is an arbitrary message sent by the adversary
then the key derived by V is still unpredictable.

Naturally, one can ask if further subtle attacks are possible. We show that
this is not the case and provide rigorous guarantees for the above intuition. We
show that if the starting protocol is an arbitrary passively secure two-message
protocol and satisfies the two additional security properties informally described
above, then the transformation that we propose yields a full fledged forward
secure key exchange protocol with mutual authentication (in the random oracle
model), under standard assumptions on the encryption and MAC scheme used
in the transformation.
Related work. The first generic compilers for authenticated key exchange were by
Bellare, Canetti, and Krawczyk [3] later refined by Canetti and Krawczyk [9].
These works consider adversaries of different strength, but share an interest-
ing idea of protocol design. First construct a protocol secure in a model where
links between parties are authenticated (i.e. secure against passive adversaries),
and then compile it into a stronger version, secure in a world with unauthen-
ticated links, by using special-purpose authenticators which authenticate the
sender of each message and ensure their integrity. In particular, BCK present an
authenticator that uses IND-CCA2 secure encryption and MAC schemes. How-
ever, the use of authenticator replaces every message flow of the base protocols
with three flows, so starting from a two-message flow protocols one obtains a
stronger protocol that requires five rounds. Unfortunately the general setting
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of MT-authenticators of BCK works does not immediately allows for further
optimisation which reduces the number of rounds.

Katz and Young [22] consider the problem of boosting passive security to
active security for group key exchange by first exchanging nonces between par-
ties and then authenticating each message through signatures that involve these
nonces. For the case of two parties this result in a protocol with four message
flows. For this type of protocols, a less efficient compiler is the one studied by
Morrissey, Smart and Warinschi [28]. They show that TLScan be regarded as
TLS as the successive applications of two generic transformations which boot-
strap passive security to active security.

A second line of work which is related to ours is based on the observation
that key encapsulation mechanisms naturally give rise to passively secure key-
exchange protocols (where one party sends the parameters of a KEM scheme,
and the second party sends a KEM). There are by now several constructions
of key-exchange protocols (in settings which are sometimes different from ours)
which start from KEMs. For example, Boyd et al. [8] construct authenticated
key exchange from KEMs, meeting the eCK stronger security requirement, and
Gunther et al [14] show how to add forward security to KEMs to obtain forward
security when these are used as a full-key exchange protocol that enables forward
secure 0-RTT. Both transformations work in the ID-based setting, use pairings
and therefore are not generic.

Perhaps the closest work with ours is that of Li et al. [24] who present two
transformations that bootstrap AKA protocols out of passively secure ones, one
based on signatures and another based on encryption. Both transformations
first execute a passively secure KA protocol and then use three additional flows
to perform entity authentication (and ensure the integrity of the conversation
between the two parties). Just like our proposal, the encryption-based construc-
tion of [24] can serve to avoid the two issues which we have outlined above but
at an increased round-complexity cost. In essence, we avoid additional commu-
nication rounds by showing how to piggy-back entity authentication on top of
the passively secure protocol.

One observations which is warranted at this point is that our transformation
does not achieve key-confirmation [11] (while derived keys are secret and parties
authenticate each other, one party may accept without the other party actually
having derived the key), whereas some other transformations do. This was not
an explicit goal, afterall the notion has only recently been formalized [11].

2 Preliminaries

We first recall some standard definitions of primitives and their A comprehensive
overview of this material can be found in [21] and in the full version of this paper.
We then recall basic notions of security for passive key agreement protocols and
introduce two new formal definitions. Throughout this paper, we denote the
security parameter by λ, represented in unary notation as 1λ, and the empty
string by −.
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2.1 Standard Definitions

We recall briefly the informal descriptions of actively secure public-key encryp-
tion schemes (with the addition of multi-user security), strongly unforgeable
message authentication codes as well as key derivation functions and the ran-
dom oracle model.
Public-key encryption schemes. In this paper, we denote a public-key
encryption scheme by a tuple E = (Setup,KGen,Enc,Dec) of poly(λ)-time algo-
rithms. We assume that such schemes correctly decrypt honestly encrypted
ciphertexts with overwhelming probability.

The standard (single-user) active security notion for such schemes is that
of indistinguishability under chosen ciphertext attack, denoted IND-CCA. The
experiment, also called game, for this setting gives an arbitrary adversary a
randomly sampled public-key and, upon query of a left-right oracle, denoted L-

R, with two messages of identical lengths, returns the encryption of one of the
two. Given access to a decryption oracle, the adversary’s goal is to guess which
of the two messages the oracle encrypts. The adversary may query either oracle
several times, with the only restriction that it may not query the decryption
oracle on any ciphertext output by the left-right oracle.

In the proof of security of our protocol, we make use of the multi-user security
notion described in [2]. For n participants, the n-IND-CCA security experiment
is very similar to the single-user setting. The difference is that the adversary is
provided with n different public keys and may query the left-right oracle on any
one of these keys. Whether it is the right or left message which is encrypted is
still selected at random, but this choice remains consistent between all queries
of the L-R oracle.
Unforgeable message authentication codes. Message authentication codes
(MACs) are symmetric key primitives that allow parties sharing a secret key k to
authenticate and verify messages, thus detecting eventual modification of their
content. A MAC is a triple of poly(λ)-time algorithms M = (KGen,Mac,Vrfy)
such that, given a message and a key, Mac produces a tag, and such that, given
a message, a tag and a key, Vrfy verifies that the tag corresponds to the message.

The security experiment for strong unforgeability, denoted MAC-sFORGE, gen-
erates a random key and gives the adversary access to a Mac oracle whilst record-
ing pairs of queried messages and the tag that was returned for each. The goal of
the adversary is to output a message and a tag such that the verify algorithms
accepts this tag and such that this tag was never produced by the Mac oracle
for this message.
Key derivation functions and the random oracle model. In crypto-
graphic schemes such as key agreement protocols, the secret information that
is exchanged often cannot be used “out of the box” to achieve other goals such
as encryption or authentication. Instead, we must use a method to transfer the
high entropy of the key agreement session key into a format that is more suit-
able. This is achieved by making use of key derivation functions (KDFs) which
are functions with high min-entropy, i.e. an adversary has a negligible chance of



Generic Forward-Secure Key Agreement Without Signatures 121

correctly guessing the output computed from a given input. While in practice
great care must be given to the instantiation of such a KDF, we will make use
here of the random oracle model and assume that the KDFs we use sample their
output uniformly at random from a given space. We will use two independent
random oracles which we will denote by H1 and H2.

2.2 Passively Secure Unauthenticated Key Agreement Protocol

First, we formalise what we mean by a (simple) unauthenticated key agreement
protocol and what it means for such a protocol to be passively secure. Informally
we consider a protocol passively secure if an adversary cannot determine the
session key from seeing a transcript. We make no usage of long term keys at this
stage, as we are focusing on unauthenticated protocols. In a later section we will
discuss the model for fully actively secure, and authenticated, key agreement.

Informally, a key agreement protocol is a set of instructions, executed by two
parties involved in a conversation, which leads to both of them computing iden-
tical session keys. These keys are then usually used to authenticate or encrypt
further communication. The most basic security notion expected of such a pro-
tocol is that an adversary who has access to the transcript of a conversation
is incapable of obtaining any information regarding the final session key. Our
formalisation below is inspired by the original definition of such protocols by
Bellare and Rogaway [4].

Definition 1 (Unauthenticated Key Agreement Protocol). An unau-
thenticated key agreement protocol is a pair of probabilistic poly(λ)-time algo-
rithms (Setup,Π) such that:

1. The setup algorithm Setup takes as input the security parameter 1λ and out-
puts a tuple of public parameters, params, required by the key agreement pro-
tocol. Amongst other information params specifies a message space M and a
key space K. We assume for convenience that λ is implicit in params.

2. The protocol function Π is a function that dictates which messages the partic-
ipating entities should compute and send to one another. Its input and output
are of the form (ε′,m, δ, κ) ← Π(params, ρ, τ, ε; $) where the inputs are defined
by:
– params are the system parameters.
– ρ ∈ {init, resp} is the role of the entity running the function.
– τ ∈ {0, 1}∗ is a transcript of the conversation so far.
– ε ∈ {0, 1}∗ ∪{⊥} is ephemeral state information which needs to be passed

from one party’s invocation of Π to the next.
– $ is some randomness.

And the outputs of Π are given by
– ε′ ∈ {0, 1}∗ ∪ {⊥} is updated state ephemeral information, if any.
– m ∈ M∪{⊥,�} is the next message to be sent in the conversation, where

� signifies that no further message needs to be sent.
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– δ ∈ {accept, reject, ∗} indicates U ’s decision in the current conversation.
The symbol ∗ signifies a decision has not yet been made. If δ = reject is
returned then ε′ and m are set to ⊥ and κ must be equal to ∗.

– κ ∈ K ∪ {∗} is the secret session key computed, where ∗ denotes that it
has not been computed yet.

We often abuse notation and use the symbol Π to denote both the protocol
function and the entire protocol (Setup,Π) and we assume that params is made
implicit in the use of Π. See Fig. 1 for a two round example; which will be the
focus of this paper.

An unauthenticated key agreement protocol is said to be correct if when the
messages are relayed faithfully, i.e. unmodified and in the correct order, between
two participants, then they both accept and compute identical session keys,
except with negligible probability over the randomness used in the algorithms.

In practice one defines a specific key agreement protocol by defining how
each new input message is responded to, given the current player state ε. We
implicitly assume that if the input state is ⊥, then the output state and message
are also ⊥ and δ will be reject.

For such unauthenticated key agreement protocol the best security guarantee
we can obtain is that of passive security. Such a protocol is said to be passively
secure if a single session of the protocol does not leak any information regarding
the computed session key to an arbitrary poly(λ)-time adversary A that only
eavesdrops on the conversation. For an unauthenticated key agreement protocol
Π and an adversary A, this is formalised in the EAV-KA experiment described
in Fig. 3. We denote A’s advantage in the EAV-KA game as AdvEAV-KA

A,Π (λ) =
∣
∣
∣
1
2 − Pr

[

ExpEAV-KA
A,Π (λ) = 1

]∣
∣
∣.

1. Two parties holding 1λ execute protocol Π with one another. This results in a transcript tran
of the entire conversation, and a key κ output by each of the parties.

2. A uniform bit b ∈ {0, 1} is chosen. If b = 0, set κ̂ := κ, and if b = 1 then sample κ̂ ←$ K
uniformly at random.

3. A is given tran and κ̂, and outputs a guess bit b′.
4. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

Fig. 3. The EAV-KA security experiment ExpEAV-KA
A,Π (λ).

Definition 2 (Passive KA Security). A key agreement protocol Π is pas-
sively secure in the presence of an eavesdropper if for all probabilistic poly(λ)-
time adversaries A, the following conditions hold.

1. If messages are relayed faithfully by a benign adversary between two partici-
pant oracles, then both oracles accept holding identical session keys, and each
participant’s key is distributed uniformly at random over K.

2. There exists a negligible function negl(λ) such that AdvEAV-KAA,Π (λ) ≤ negl(λ).



Generic Forward-Secure Key Agreement Without Signatures 123

It is an easy exercise to see that our syntax captures the syntax of Diffie–
Hellman, Frodo and NewHope. In addition it is another easy exercise to show
that the standard unauthenticated Diffie–Hellman protocol meets our Passive
KA Security definition, assuming the Decision Diffie–Hellman problem is hard.
In addition it is relatively easy to check that the proofs of security of the Frodo
and NewHope key agreement schemes, given in [1,7], also imply security for our
Passive KA definition.

Minor Active Security Properties. We also introduce two simple active
security notions relevant to KA protocols. Most well designed passive KA
schemes are implicitly understood to satisfy these two notions, but we choose to
make them explicit (with the definition of two new security experiments) as we
shall require them later on.

The first of these formalises the notion of the first protocol message being
sufficiently “unpredictable”; i.e. the adversary is not able to guess what the
first message m1 of the transcript tran is going to be. We define the M1-GUESS
experiment in Fig. 4 and denote an arbitrary adversary A’s advantage in that
game as

AdvM1-GUESS
A,Π (λ) = Pr

[

ExpM1-GUESS
A,Π (λ) = 1

]

.

1. One party holding 1λ computes (ε′, m1, ∗, ∗) ← Π(params, init, ∅, ⊥; $).
2. A is given 1λ and params and outputs a guess message m′

1.
3. The output of the experiment is defined to be 1 if m′

1 = m1, and 0 otherwise.

Fig. 4. The M1-GUESS security experiment ExpM1-GUESS
A,Π (λ).

The second security notion models the property that an adversary should not
be able to obtain information about the final key κ even if it may choose the first
protocol message. This definition applies only to two-messages KA protocols.
To this intent, we define the experiment KEY-FORCE in Fig. 5 and denote an
arbitrary adversary A’s advantage as

AdvKEY-FORCE
A,Π (λ) = Pr

[

ExpKEY-FORCE
A,Π (λ) = 1

]

3 Forward-Secure Authenticated Key Agreement
Protocols and Security Model

In this section, we focus on the formal definition of Authenticated Key Agree-
ment (AKA) protocols and the security model which we will use. For our pur-
poses, we reformulate slightly Kudla’s BJM and mBJM models [23] which were
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1. The challenger sets 1λ and runs Setup to obain params.
2. A is given 1λ and params and ouputs a first message m1.
3. Ifm1 M∈� the experiment outputs 0. Otherwise, the challenger computes (⊥, m2, δ, κ0) ←

Π(params, resp, {m1}, ⊥; $), together with sampling κ1 ←$ K, from the KE key space.
4. A bit b ←$ {0, 1} is chosen uniformly at random.
5. A is given κb and returns a guess b̃.
6. The experiment outputs 1 if and only if b̃ = b, and 0 otherwise.

Fig. 5. The KEY-FORCE security experiment ExpKEY-FORCE
A,Π (λ).

themselves an elaboration of Bellare and Rogaway’s original model [4] and of
Blake-Wilson et al.’s formulation for the public-key setting [6]. In particular, we
add the appropriate elements so that forward secrecy is captured by our model.

First we present the definition of a general authenticated key agreement
protocol. Then we describe the execution environment of our security model
which is the first step in capturing forward secrecy. Next we present the security
experiment and definition for mutual authentication. Finally, we present the
security experiment and definition for a secure authenticated key agreement
protocol which combines both mutual authentication and secrecy of session keys.
We also include a discussion regarding the security notions, including forward
secrecy, that this definition of security guarantees.

3.1 AKA Protocol Definition

The key difference, between the AKA protocol we will discuss in this section and
the definition of a simpler key agreement protocol from Sect. 2.2, lies in the fact
that AKA protocols hope to achieve entity authentication. That is, the parties
seek to confirm each other’s identities as well as establish a secret session key. To
do so, we require the introduction of long-term keying material that belongs to
specific entities which we then use in the computation of the protocol messages.
We therefore modify Definition 1 as follows.

Definition 3 (AKA Protocol). An authenticated key agreement (AKA) pro-
tocol is a triple of probabilistic poly(λ)-time algorithms (Setup,KGen,Π) such
that:

1. The setup algorithm Setup functions similarly to the eponymous algorithm of
a key agreement protocol.

2. The key-generation algorithm KGen takes as input the public parameters
params and an entity identifier U and outputs an entity-specific public/ private
key pair (pkU , skU ).

3. The protocol function Π functions similarly to the function of a key agree-
ment protocol with the following differences. It is of the form (ε′,m, δ, κ) ←
Π(params, (U, pkU , skU ), ρ, (V, pkV ), τ, ε; $) where:
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– U is the identifier of a participating entity and is the sender of a message.
We write (pkU , skU ) for the public/private key pair of entity U .

– V is the identifier of a participating entity and is the intended recipient
of U ’s message. We write pkV for the public key of V .

– All other elements are as in Definition 1.

Again correctness requires that whenever messages are relayed faithfully between
two participants, then they both accept and compute identical session keys
(except with negligible probability over the randomness used in the algorithms).

Similarly to key agreement protocols, we will usually present protocols by
giving the flows of a single run. A description of the function Π can be easily
inferred. Also, we will use abuse notation and write Π (or sometimes Σ) both
for the protocol function and the entire protocol which includes key generation,
i.e. for (Setup,KGen,Π) (or sometimes (Setup,KGen, Σ)).

3.2 Execution Environment

In the BJM model, the challenger simulates to the adversary an execution envi-
ronment which constitutes of several participants. We wish to obtain “active”
security, and so we allow the adversary to be active in the running of the proto-
col between the different entities In particular communication between protocol
participants, modelled as oracles, which are controlled by the adversary, i.e. it
can choose to invoke oracles to send legitimate messages or to insert is own, as
well as modify, redirect, delay or erase messages. Each oracle, at the command
of the adversary, may engage in several concurrent sessions of the protocol, with
the same partner or not.

Oracle Participants: As mentioned above, we model protocol participants
as oracles which we assume run as probabilistic poly(λ)-time algorithms. More
precisely, all participating entities are grouped in a set U of identifiers (IDs),
and each session (or “run”) of the protocol is modelled by an oracle Πs

U,V . This
represents a participant U ∈ U believing it is engaging in a protocol session with
V ∈ U for the s-th time; we say that V is U ’s intended partner. Each participant
U ∈ U possesses a public and private key pair (pkU , skU ), generated by KGen,
and which we assume is authenticated by some public-key infrastructure (PKI).
Each oracle instance of U has access to both keys, and every oracle in the model
has access to every other user’s public key.

Each individual oracle Πs
U,V maintains a public transcript T s

U,V which it
updates as follows. When it receives a message m, it records it on T s

U,V and then
invokes the protocol function on the corresponding input. When the function
produces an output, this is also recorded on T s

U,V before being returned to the
adversary. Each oracle Πs

U,V also maintains an internal decision state δs
U,V . This

decision may take one of four values:
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– ∗: the initial state of the oracle which indicates it has not yet reached a
decision.

– accept: the oracle has successfully terminated this run of the protocol after
having computed some session key ks

U,V .
– reject: the oracle has terminated without computing a session key.
– revealed: the oracle had previously accepted and has since been revealed by

the adversary, as is described below.

As indicated above, each oracle Πs
U,V maintains a variable ks

U,V which holds
the value ∗ until the protocol returns a computed session key. Finally, each
oracle is also associated a role ρs

U,V ∈ {init, resp} depending on its function in the
protocol session. Within this model, the adversary A is represented as a poly(λ)-
time algorithm that interacts with the oracles via specific queries; in addition, it
also has access to the public key of each participant together with the transcript
of each oracle.

Oracle Queries: During a security experiment for AKA security, run by a
challenger C simulating protocol participants as oracles to an adversary A, the
adversary can make various queries of the oracles, to which the challenger sim-
ulates the responses.

At the beginning of the experiment, C generates protocol-specific parame-
ters params by running Setup(1λ), C is also responsible for generating a set of
participant IDs U , where |U| = nP and nP = poly(λ). For each participant
U ∈ U , C then runs KGen(params) in order to generate a key pair (pkU , skU ).
The challenger C also imposes the constraint that a given participant U ∈ U
can engage in at most nS sessions with another given participant V ∈ U , where
nS = poly(λ). Therefore, the model composes of the following set of oracles
{

Πs
U,V | U, V ∈ U , s ∈ [nS ]

}

. Finally, C initialises an empty list Γ ← ∅ which he
will use to keep track of which participant oracles have been corrupted by the
adversary as is explained below. The adversary A is then given params, U and
{pkU}U∈U , and proceeds by making the following queries:

– Send(Πs
U,V ,m): The requests C to send the message m to Πs

U,V . The message
is recorded on T s

U,V and C responds to the message according to the protocol,
simulating user U interacting with V for the s-th time. If m = �, then Πs

U,V

initiates a new protocol run, and its role is set as ρs
U,V ← init. If an oracle’s

first received message is any message other than �, then it sets ρs
U,V ← resp.

Once the response to m is computed according to the protocol, it is added to
T s

U,V before being returned to the adversary. If this response is �, this is also
recorded on the transcript.

– Reveal(Πs
U,V ): This query is used by A to request the session key computed

by Πs
U,V . If δs

U,V = accept, and hence ks
U,V exists, then this is output and

returned to A. Otherwise, this query returns ⊥. If the query is successful,
δs
U,V ← revealed and we say that this session has been revealed.

– Corrupt(U, pk′
U , sk′

U ): This allows A to request the long-term secret key
of participant U and is able to replace U ’s key pair with one of its choice.
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The challenger C returns skU to A and replaces (pkU , skU ) with (pk′
U , sk′

U ).
All oracles in the simulation are updated with the new public key, and secret
key for the oracles representing U . Such a participant U is called corrupted
and C updates the set Γ ← Γ ∪ {U}.

3.3 Secure Mutual Authentication

Now that we have described the execution environment, we are able to define
the first goal of an authenticated key exchange protocol, namely mutual authen-
tication. This notion was first defined in the original BR model [4] using the
concept of matching conversations. The concept of matching conversations is
used to determine whether or not two oracles have engaged in a protocol session
together (by means of the adversary relaying messages from one to the other).

Definition 4 (Matching conversation). Suppose we are given the tran-
scripts T s

U,U ′ = {�, r1,m2, r2, . . . , mj , rj} and T s′
V,V ′ = {m′

1, r
′
1,m

′
2, r

′
2, . . . ,

mk, rk} such that

– m′
i = ri for i ≥ 1,

– mi = r′
i−1 for i ≥ 2,

– for j even: rj = � and k = j − 1,
– for j odd: rk = � and k = j,
– U = V ′ and U ′ = V ,

then we say that the oracles Πs
U,U ′ and Πs′

V,V ′ have engaged in a matching con-
versation. We also sometimes say that Πs

U,U ′ and Πs′
V,V ′ are matching (oracles).

Entity authentication is captured in the BR model using the No-Matching
event which is triggered if an adversary manages to make an oracle accept with-
out a matching oracle. Here we reformulate this as a security experiment to be
consistent with the more modern way of defining security.

For an AKA protocol Π and an arbitrary poly(λ)-time adversary A, the
AKA-AUTH experiment is defined in Fig. 6. The intuition behind this experiment
is the same as the one behind the No-Matching event; the aim of A is to make
an oracle accept without having perfectly relayed the messages to and from its
intended partner, and to do so without corrupting either parties. We denote A’s
advantage in the AKA-AUTH security game as

AdvAKA-AUTH
A,Π (λ) = Pr

[

ExpAKA-AUTH
A,Π (λ) = 1

]

.

Definition 5 (Secure Mutual Authentication). We say that an AKA pro-
tocol Π = (Setup,KGen,Π) is a secure mutual authentication protocol if, for any
poly(λ)-time adversary A, the following hold.

– (Matching Conversations ⇒ Acceptance.) If two oracles Πs
U,V and Πs′

U ′,V ′ have
matching conversation, then both oracles accept.

– (Acceptance ⇒ Matching Conversations.) For all probabilistic poly(λ)-
time adversaries A, there exists a negligible function negl(λ) such that
AdvAKA-AUTHA,Π (λ) ≤ negl(λ).
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1. Setup (1λ) is run to obtain params.
2. The challenger C generates U and runs KGen(params, U) for every U ∈ U to obtain key

pairs (pkU , skU ).
3. A is given params and {pkU}U∈U and access to the participant oracles via the Send,Reveal

and Corrupt queries. Eventually, A outputs a chosen session Πs
U,V .

4. The output of the experiment is defined to be 1 if δs
U,V = accept, U, V �∈ Γ and there does

not exists another oracle Πs′
U′,V ′ which has had a matching converstation with Πs

U,V .

Fig. 6. The AKA-AUTH security experiment ExpAKA-AUTH
A,Π (λ).

3.4 Session Key Secrecy and Forward Secrecy

Given a definition for mutual authentication, we now need to provide a secu-
rity definition for the main purpose of key agreement; namely agreeing a private
key. The secrecy game we present in Fig. 7 can be seen as an extension of the
AKA-AUTH experiment used to define mutual authentication. This is a natural
progression as intuitively, it makes sense for an AKA protocol to first authenti-
cate the entity it is conversing with before establishing a shared secret session
key. The game is played between a challenger simulating the AKA protocol Π
and an arbitrary poly(λ)-time adversary A.

Before we formally define the secrecy game, we will describe it briefly here
so that the following definition may be placed into some context. As explained
above, the simulator C first sets up the participants and then allows A to interact
with them using some of the three queries. At some point in the simulation, A
then has to select a session on which it wishes to be tested. At that point, the
simulator flips a coin and either returns to the adversary that session’s true key
or a newly randomly sampled one. The adversary then continues the game, with
further access to the oracles as before. Eventually the adversary has to guess
which key the simulator returned; the real one or a random one. If it guesses
correctly, it wins the security game.

We allow the adversary to reveal keys of completed sessions as well as corrupt
participants and therefore we must make sure that it does not ask to be tested on
a session for which it could have trivially obtained the key. Sessions on which we
allow the adversary to request a test are those which are called fresh as defined
below.

Definition 6 (Fresh Session). A protocol session, represented by an oracle
Πs

U,V is called fresh if the following conditions hold:

– Πs
U,V has accepted, and therefore holds a computed session key, but has not

been revealed; i.e. δs
U,V = accept and ks

U,V �= ∗.
– Neither U nor his intended partner V has been corrupted by A; i.e. U, V �∈ Γ .
– There does not exist an oracle Πs′

U ′,V ′ which matches Πs
U,V and has been

revealed.
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1. Setup (1λ) is run to obtain params.
2. The challenger C generates U and runs KGen(params, U) for every U ∈ U to obtain key

pairs (pkU , skU ).
3. A is given params and {pkU}U∈U and access to the participant oracles via the Send,Reveal

and Corrupt queries. Eventually, A outputs a chosen session Πs
U,V .

4. If Πs
U,V is not fresh, it is rejected and A must submit a new one. If it is, C selects a bit

b ∈ {0, 1} at random. If b = 0, set ̂k = ks
U,V , and if b = 1, then sample ̂k ←$ K uniformly

at random.
5. A is given ̂k, as well the same information as before, and it may continue to interact via the

Send, Reveal and Corrupt queries with the exception that it may not reveal the session on
which it chose to be tested, nor any session with a matching conversation. It may however
corrupt either of the participants that took part in that session. Eventually, A outputs a guess
bit b′.

6. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

Fig. 7. The AKA-SEC security experiment ExpAKA-SEC
A,Π (λ).

Note that this definition does not require Πs
U,V to have a matching partner.

The session is still considered to be fresh even if the adversary has managed
to make Πs

U,V accept by generating and sending its own message. In addition
an oracle only needs to be fresh at the point of it being tested; after testing
the adversary can corrupt the parties in a test session; thus capturing forward
secrecy. The only restriction on future operations is that it may not pass a reveal
query to a test session (or an oracle with a matching conversation).

The Secrecy Experiment: Security for AKA protocols in the BJM model is
defined in terms of the experiment shown in Fig. 7, run with an AKA protocol
Π and an arbitrary poly(λ)-time adversary A. We denote A’s advantage in the
AKA-SEC security game as

AdvAKA-SEC
A,Π (λ) =

∣
∣
∣
∣

1
2

− Pr
[

ExpAKA-SEC
A,Π (λ) = 1

]
∣
∣
∣
∣

3.5 Full Security Definition

We finally combine both the notions of mutual authentication and session key
secrecy into a single security definition. As mentioned briefly above, the most
notable characteristic of our security definition for AKA protocols is that it
captures the property known as forward secrecy. This property requires that the
compromise of long-term secret keying information of entities does not allow
an adversary to obtain any information regarding past session keys that these
entities might have established.

This is captured in our model since the adversary is allowed, before it makes
its final guess, to submit a Corrupt query on the entities that took part in the
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test session. With that possibility in mind, we still require that its advantage in
the AKA-SEC experiment remains negligible. Thus, proving that an AKA protocol
satisfies our definition of security also proves that it possesses forward secrecy,
in which case we say it is a forward secure AKA protocol. Additionally, our
definition also captures the usual security properties of AKA protocol such as
session-key reveal secrecy and third-party compromise security.

Definition 7 (Active AKA Security). An authenticated key agreement pro-
tocol Π is actively secure if for all probabilistic poly(λ)-time adversaries A, the
following conditions hold.

1. If messages are relayed faithfully (by a benign or an active adversary) between
two participant oracles, then both oracles accept holding identical session keys,
and each participant’s key is distributed uniformly at random over K.

2. Π is a secure mutual authentication protocol.
3. There exists a negligible function negl(λ) such that AdvAKA-SECA,Π (λ) ≤ negl(λ).

4 A New AKA Protocol Construction

We now present in more detail our new construction of a secure AKA proto-
col. We also state the theorems that establish secrecy for keys and the level of
authentication that our protocol offers. The detailed proofs are in the full version
of the paper.
The construction: Let E = (SetupE ,KGenE ,Enc,Dec) be a public-key encryp-
tion scheme. Let M = (KGenM ,Mac,Vrfy) be a message authentication code
such that its key space is KM = {0, 1}l(λ) for some polynomial function l,
and its KGenM algorithm simply selects a key from KM uniformly at random.
Let Π = (SetupΠ ,Π) be a two-round key agreement protocol and finally, let
H1 : {0, 1}∗ → {0, 1}l(λ) and H2 : {0, 1}∗ → {0, 1}h(λ), where h is a polynomial
function, be two key derivation functions. Using these elements, we construct
the AKA protocol Σ = (SetupΣ ,KGenΣ , Σ) where:

1. SetupΣ takes as input the security parameter 1λ and outputs public para-
meters paramsΣ which contain the parameters of the encryption scheme E
output by SetupE(1λ) and the parameters of the KA protocol Π output by
SetupΠ(1λ).

2. KGenΣ takes as input paramsΣ and an identifier U . It then outputs a pub-
lic/private key pair for U by setting (pkU , skU ) ← KGenE(paramsE), i.e. a
normal public-key encryption scheme key pair.

3. Σ functions as specified by the protocol run described in Fig. 2. The protocol
works by first wrapping the message flows, m1 and m2, of the unauthenticated
key agreement in encryptions to each party and then sending a MAC tag on
the identities under a key derived from the key agreement session key using
the KDF H1. The final AKA session key is derived from the underlying agreed
key and the party identities, using a different KDF H2.
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Security of our scheme: Authentication of Bob to Alice is obtained by Bob
prefixing the plaintext m1 to his response m2 in the second message flow m2. In
this way Alice can verify that the message m′

1 that she receives is identical to the
one she sent out, i.e. m1, and therefore Bob must have decrypted it; since only
Bob has Bob’s decryption key. Authentication of Alice to Bob is obtained by
Alice sending a valid MAC on the identities under a key derived from the under-
lying unauthenticated key agreement scheme. Since only Alice can decrypt Bob’s
message m2, only Alice could compute the underlying key agreement session key
and therefore the associated MAC key. Notice that the these forms of authen-
tication also imply liveness of the parties. The above intuition is formalized by
the following theorem.

Theorem 1. If Π is M1-GUESS-secure and KEY-FORCE-secure, E is 2-IND-CCA-
secure and M is MAC-sFORGE-secure, then Σ is a secure mutual authentication
protocol.

Finally, we show that our construction yields a protocol that guarantee key
secrecy.

Theorem 2. If Π is EAV-KA-secure, M1-GUESS-secure and KEY-FORCE-secure, E
is 2-IND-CCA-secure and M is MAC-sFORGE-secure, then Σ is AKA-SEC- secure.
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Abstract. We present a signature scheme with the tightest security-
reduction among known constant-size signature schemes secure under
the computational Diffie-Hellman (CDH) assumption. It is important
to reduce the security-reduction loss of a cryptosystem, which enables
choosing of a smaller security parameter without compromising security;
hence, enabling constant-size signatures for cryptosystems and faster
computation. The tightest security reduction thus far from the CDH
assumption is O(q), presented by Hofheinz et al., where q is the number
of signing queries. They also proved that the security loss of O(q) is opti-
mal if signature schemes are “re-randomizable”. In this paper, we revisit
the non-re-randomizable signature scheme proposed by Böhl et al. Their
signature scheme is the first that is fully secure under the CDH assump-
tion and has a compact public key. However, they constructed the scheme
with polynomial-order security-reduction loss. We first constructed a new
existentially unforgeable against extended random-message attack (EUF-
XRMA) secure scheme based on Böhl et al.’s scheme, which has tighter
security reduction of O(q/d) to the CDH assumption, where d is the
number of group elements in a verification key. We then transformed
the EUF-XRMA secure signature scheme into an existentially unforge-
able against adaptively chosen-message attack (EUF-CMA) secure one
using Abe et al.’s technique. In this construction, no pseudorandom func-
tion, which results in increase of reduction loss, is used, and the above
reduction loss can be achieved. Moreover, a tag can be generated more
efficiently than Böhl et al.’s signature scheme, which results in smaller
computation. Consequently, our EUF-CMA secure scheme has tighter
security reduction to the CDH assumption than any previous schemes.

Keywords: Digital signatures · CDH assumption · Trapdoor commit-
ment · Tight security reduction

1 Introduction

1.1 Background

Digital signatures are the most elemental cryptographic primitives that guar-
antee authenticity of electronic documents and are analogous to pen-and-ink
c© Springer International Publishing AG 2017
P.Q. Nguyen and J. Zhou (Eds.): ISC 2017, LNCS 10599, pp. 137–154, 2017.
https://doi.org/10.1007/978-3-319-69659-1_8
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signatures on physical documents. In digital signatures, each signer has a pair
of secret (signing) and public (verification) keys. A signer signs documents by
using one secret key, and authenticity of a signature is publicly verifiable with
the public key. Digital signatures are widely used in the real world. For example,
it is used in transport layer security and e-commerce.

The performance of cryptographic primitives is evaluated by reduction loss
to a certain difficult problem. The (security) reduction is a particular way of
using a mathematical proof to ensure that a cryptographic primitive is secure. It
shows that breaking the primitive is at least as difficult as breaking the difficult
problem. Reduction loss is the gap in difficulty between breaking the primitive
and breaking the difficult problem. When the security-reduction loss is small, it
is called tight. It is important to reduce the security-reduction loss of a cryp-
tosystem, which enables the choosing of as small a security parameter without
compromising security as possible; hence, enabling small security parameters
for cryptosytems, i.e., signatures and verification keys, and fast computations of
signature generation and verification, etc.

1.2 Related Works

There are many digital signature schemes. Digital signatures can only be proven
in the random oracle model [11] first. Then, digital signatures in the standard
model are developed. With these schemes, there are two major problems used for
security proof, decisional problem, i.e. the decisional Diffie-Hellman (DDH) prob-
lem, and search problem, i.e., the computational Diffie-Hellman (CDH) problem.
Generically, search problems are harder than decisional problems. For example,
breaking the CDH problem is harder than breaking the DDH problem. On the
other hand, it is important to consider the security reduction to the hard prob-
lem. The digital signatures with security reduction to decisional problems has
been extensively studied, and in constant-size signatures, its reduction loss to
the DDH problem is achieved O(l), where l is the bit length of a message [8,12].
There are a few digital signatures secure under the hardness of search prob-
lems. Waters proposed a scheme [17] that is efficient and provably secure under
the CDH assumption. Some digital signatures under CDH assumption based on
Waters’ signature scheme have been developed [4,5,13,15,16].

However, their reduction losses to the CDH problem are not so tight. The
loss of security reductions on Waters’ signature scheme is O(8(l + 1)q), where
q is the number of adversarial signature queries. The technique called program-
mable hash functions (PHFs) [14] improves the tightness of security reduction to
O(

√
lq). To the best of our knowledge, the tightest security reduction to the CDH

problem from a constant-size signature scheme is O(q), presented by Hofheinz
et al. [13]. They proposed a re-randomizable signature scheme by applying an
error-correcting code to Waters’ signature scheme. They also proved that reduc-
tion loss of O(q) is optimal if signature schemes are re-randomizable. At the
present time there is a tightly secure signature scheme from search problems [6].
But the signature scheme has large signature size. Concretely the signature size
needs O(κ) group elements, where κ is the security parameter.
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1.3 Our Contribution

We present a signature scheme with tighter security reduction than known
constant-size (in the sense that the signature contains constant number of group
elements or vectors) signature schemes under the CDH assumption. In this paper,
we revisit the non-re-randomizable signature scheme proposed by Böhl et al. [5].
Their scheme has compact public keys at the price of loose security-reduction
loss. We address that there is a trade-off between public key size and security-
reduction loss in their scheme. Moreover, by removing the use of a pseudo-
random generator and adopting a generic transformation from the scheme with
extended random-message-attack security to that with chosen-message-attack
security [1], we can obtain a signature scheme with reduction loss of O(q/d),
where d is the number of group elements in a verification key.

2 Preliminaries

For n ∈ N, [n] denotes the set {1, . . . , n}. We let negl(κ) denote an unspecified
function f(κ) such that f(κ) = κ−ω(1), saying that such a function is negligible
in κ. For a probabilistic polynomial-time (PPT) algorithm A, we write y ← A(x)
to denote the experiment of running A for given x, selecting inner coins r uni-
formly from an appropriate domain, and assigning the result of this experiment
to the variable y, i.e., y = A(x; r). Let X = {Xκ}κ∈N and Y = {Yκ}κ∈N be
probability ensembles such that each Xκ and Yκ are random variables ranging
over {0, 1}κ. The (statistical) distance between Xκ and Yκ is Dist(Xκ, Yκ) �
1
2 · |Prs∈{0,1}κ [X = s] − Prs∈{0,1}κ [Y = s]|. We say that two probability ensem-

bles, X and Y , are statistically indistinguishable in κ, denoted as X
s≈ Y , if

Dist(Xκ, Yκ) = negl(κ). Let A and B be PPT algorithms that both take as
input x ∈ {0, 1}∗. We write {A(x)}κ∈N, x∈{0,1}κ

s≈ {B(x)}κ∈N, x∈{0,1}κ to denote

{A(xκ)}κ∈N

s≈ {B(xκ)}κ∈N for every sequence {xκ}κ∈N such that |xκ| = κ.

2.1 Digital Signatures

We use the standard definition of digital signature schemes [10]. A digital sig-
nature scheme is given by a triple, SIG = (KGen,Sign,Vrfy), of PPT Turing
machines, where for every (sufficiently large) κ ∈ N, KGen, the key-generation
algorithm, takes as input security parameter 1κ and outputs a pair of verification
and signing keys, (vk, sk). The signing algorithm Sign, takes as input (vk, sk)
and m and produces σ. The verification algorithm Vrfy, takes as input vk, m,
and σ, and outputs a bit (i.e., verification result). For completeness, it is required
that for any (vk, sk) pair generated with KGen(1κ) and for any m ∈ {0, 1}∗, it
holds Vrfy(vk,m,Sign(sk,m)) = 1.

Tag-Based Signatures. A tag-based signature scheme SIGt = (KGent,Signt,
Vrfyt) with message space Mλ and tag space Tλ consists of three PPT algorithms.
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Key-generation (vk, sk) ← KGent(1λ) takes as input a security parameter 1λ and
outputs a pair of verification and signing keys (vk, sk). The signing algorithm
σ ← Signt(sk,m, t) computes σ on input sk, m, and tag t. The verification
algorithm Vrfyt(vk,m, σ, t) ∈ {0, 1} takes vk, m, σ, and t, and outputs a bit (i.e.,
verification result). For correctness, we require that for any λ ∈ N, all (vk, sk) ←
KGent(1λ), m ∈ Mλ, t ∈ Tλ, and σ ← Signt(sk,m, t), Vrfyt(vk,m, σ, t) = 1.

Re-Randomizable Signatures. Intuitively, re-randomizable signatures [13]
have a property that, given vk, m, and valid σ, one can efficiently generate a
new σ′ that is distributed uniformly over the set of all possible signatures for m
under vk.

Formally, let SIG = (KGen,Sign,Vrfy) be a signature scheme. Let us denote
the set of σ for m that can be verified correctly under vk by

Σ(vk,m) = {σ |Vrfy(vk,m, σ) = 1}.

We say that SIG is re-randomizable if there is a PPT algorithm Rerand such
that for all (vk,m, σ) with Vrfy(vk,m, σ) = 1, the output distribution of
Rerand(vk,m, σ) is identical to uniform distribution over Σ(vk,m).

2.2 Trapdoor Commitments

We now define a trapdoor commitment scheme [9]. Let TCOM =
(Gentc,Comtc,TComtc,TColtc) be a tuple of the following four algorithms. The
Gentc algorithm is a PPT algorithm that takes as input security parameter κ
and outputs a pair of public and trapdoor keys (pk, tk). The Comtc algorithm is
a PPT algorithm that takes as input pk and m, selects a random r ← COINcom,
where COINcom represents the internal random number 0 or 1, and outputs a
ψ = Comtc

pk(m; r). The TComtc algorithm is a PPT algorithm that takes as
input tk and outputs (ψ, χ) ← TComtc

tk(1κ). The TColtc algorithm is a deter-
ministic polynomial-time (DPT) algorithm that takes (tk, ψ, χ, m̂) and outputs
r̂ ∈ {0, 1} such that ψ = Comtc

pk(m̂; r̂).
We call TCOM a trapdoor commitment scheme if the following two conditions

hold.

Condition 1 Trapdoor Collision. For the pk generated with Gentc(1κ), and
all m ∈ {0, 1}λm(κ), the following ensembles are statistically indistinguishable
in κ: {

(ψ,m, r) | r ← COINcom;ψ = Comtc
pk(m; r)

}

s≈
{

(ψ,m, r) | (ψ, χ) ← TComtc
tk(1κ); r = TColtctk(ψ, χ,m)

}
.

Condition 2 Computational Binding. For any PPT adversary A,

εcomp-bind = Pr
[

pk ← Gentc(1κ); (m1,m2, r1, r2) ← A(pk) :
Comtc

pk(m1; r1) = Comtc
pk(m2; r2) ∧ (m1 �= m2)

]
= negl(κ).
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2.3 Security Class of Digital Signatures

EUF-CMA. A digital signature scheme SIG is said to be existentially unforge-
able against adaptively chosen-message attack (EUF-CMA) [11], if for any A,
AdvEUF-CMA

SIG,A (κ) := Pr[ExptEUF-CMA
SIG,A (κ) = 1] = negl(κ), where ExptEUF-CMA

SIG,A (κ) is
defined in Fig. 1.

ExptEUF-CMA
SIG,A (κ):

(vk, sk) ← KGen(1κ); (m∗, σ∗) ← ASignsk(·)(vk)
If m∗ ∈ Qm, then return 0
Return Vrfy(vk, m∗, σ∗).

Fig. 1. Experiment with EUF-CMA. Signsk(·) is a signing oracle with respect to sk
that takes m and returns σ ← Signsk(m) and records m to Qm, which is initially an
empty list.

EUF-XRMA. A SIG is said to be existentially unforgeable against extended
random-message attack (EUF-XRMA) [1] with respects to the message gener-
ator MsgGen, a PPT algorithm that takes as input a message-generation key
gk and outputs m, if for any A and any positive integer n bounded by a poly-
nomial in κ, AdvEUF-XRMA

SIG,A (κ) := Pr[ExptEUF-XRMA
SIG,A (κ) = 1] = negl(κ), where

ExptEUF-XRMA
SIG,A (κ) is defined in Fig. 2, and Qm = {m1, . . . , mn}.

ExptEUF-XRMA
SIG,A (κ):

(vk, sk) ← KGen(1κ); gk ← Setup(1κ)
For ∀i ∈ [n],

(mi, wi) ← MsgGen(gk); σi ← Signsk(mi)
(m∗, σ∗) ← A(vk, {mi, σi, wi}n

i=1)
If m∗ ∈ Qm, then return 0
Return Vrfy(vk, m∗, σ∗).

Fig. 2. Experiment with EUF-XRMA. The Setup algorithm is a PPT algorithm that
takes as input a security parameter 1κ and outputs gk.

EUF-dnaCMA. A SIG is said to be existentially unforgeable against
distinct-message non-adaptively chosen-message attack (EUF-dnaCMA) [4,5],
if for any A,AdvEUF-dnaCMA

SIG,A (κ) := Pr[ExptEUF-dnaCMA
SIG,A (κ) = 1] = negl(κ).

ExptEUF-dnaCMA
SIG,A (κ) is the experiment with EUF-dnaCMA and refer to [5].

EUF-dnaCMA∗
d. A tag-based signature scheme SIGt is said be EUF-dnaCMA

with d-fold tag-collisions (EUF-dnaCMA∗
d) [4,5], if for any

A,Adv
EUF-dnaCMA∗

d
SIGt,A (κ) := Pr[ExptEUF-dnaCMA∗

d
SIGt,A (κ) = 1] = negl(κ), where

Expt
EUF-dnaCMA∗

d
SIGt,A (κ) is the experiment with EUF-dnaCMA∗

d and refer to [5].
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Note that we call d a tag-collision parameter; it affects key and signature sizes,
and the security reduction. The d-fold tag-collisions means that the same tag ti
is chosen for d different signed messages.

2.4 Bilinear Groups

Let G be a PPT algorithm that, on input of a security parameter 1κ, outputs a
description of bilinear groups (G,GT , e, q, g) [7] such that G and GT are cyclic
groups of prime order q, g is a generator of G, and a map e : G × G → GT

satisfies the following properties:

– (Bilinear:) for any g, h ∈ G and any a, b ∈ Zq, e(ga, hb) = e(g, h)ab,
– (Non-degenerate:) e(g, g) has order q in GT , and
– (Efficiently computable:) e(·, ·) is efficiently computable.

2.5 Computational Diffie-Hellman Assumption

Let g be a group generator of G. We say that the CDH assumption [16] holds if
for any PPT algorithm A the following advantage

AdvCDH
A (κ)

:= Pr
[
A(q,G, g, gα, gβ) → gαβ |α, β

$←− Zq, g
$←− G

]

= εCDH

is negligible function in the security parameter κ.

2.6 Pseudorandom Functions

For any set S a pseudorandom function (PRF) [3] with a range S is an efficiently
computable function PRFS : {0, 1}κ × {0, 1}∗ → S. We may write PRFS

κ (x) for
PRFS(κ, x) with key κ ∈ {0, 1}∗. Additionally we require that

Advprf
PRFS ,A(κ) :=

∣∣∣Pr
[
APRF

κ (·) = 1 for κ ← {0, 1}∗] − Pr[AU
S (·) = 1

]∣∣∣ = εPRF

is negligible in κ where U is a truly uniform function to S. We often write PRF,
which is omitted from S.

2.7 Scheme of Böhl et al.

We now revisit the signature scheme [5] proposed by Böhl et al. They present
a new paradigm for the construction of efficient signature schemes secure under
standard computational assumptions. First, they define a mild security for sig-
nature schemes that is much easier to achieve than full security. We consider
EUF-CMA security as full security. They present efficient mildly secure schemes
under the CDH assumption in pairing-friendly groups. Concretely, they con-
struct an EUF-dnaCMA secure signature scheme by using a SIGt, which is
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EUF-dnaCMA∗
d secure, and a PRF, which is a PRF. Moreover, they applied

trapdoor commitment and modified the EUF-dnaCMA secure signature scheme
and achieved an EUF-CMA secure signature scheme under the CDH assump-
tion. Therefore, they constructed a full secure signature scheme generically from
a mildly secure signature one. They constructed the signature scheme that is
secure against non-adaptive attack by using PRFs. Pseudorandom functions
affect security-reduction loss. In their security proof, they use the confined guess-
ing technique. They choose an appropriately sized tag set, where their signature
simulation is done.

Theorem 1. If PRF is a PRF and a SIGt is EUF-dnaCMA∗
d secure, then

there is an EUF-dnaCMA∗
d secure SIG. Concretely, let A be a PPT adver-

sary against a SIG with at most q signature queries and having advantage
ε := AdvEUF-dnaCMA

SIGt,A (κ). Then there exists an EUF-dnaCMA∗
d adversary A′

against the SIGt that makes q′(κ) ≤ 2 · {2·qd+1

ε(κ) }c/d + l · q signature queries and

has advantage ε′ := Adv
EUF-dnaCMA∗

d
SIGt,A′ (κ) and PRF distinguisher with advantage

εPRF such that

ε′ ≥ ε/2 − εPRF − p′(κ)
|Mk|

for infinitely large κ, where p′(κ) is a suitable polynomial and Mk denotes the
message space.

Lemma 1. Let T be a tag set with |T | = n. Let t1, . . . , tq be q independent
random variables taken uniformly random from T . Then, the probability that
there exist d + 1 pairwise distinct indices i1, . . . , id+1 such that ti1 = · · · = tid+1

is upper bounded by qd+1

nd .

Theorem 2. The SIGt is EUF-dnaCMA∗
d secure if the CDH assumption holds

in G. Let A be a PPT adversary on SIGt with advantage ε := Adv
EUF-dnaCMA∗

d
SIG,A (κ)

with at most q random messages along with signatures. Then, it can be used to
solve the CDH problem with probability of at least ε/q′, where q′ denotes the
number of distinct tags queried by A.

Theorem 3. If the CDH assumption holds in G, then the signature scheme with
trapdoor commitments SIGB

t is EUF-CMA secure. Let A be a PPT adversary on
SIGB

t with advantage ε := Adv
EUF-dnaCMA∗

d
SIG,A (κ) querying for q random messages

along with signatures. Then, it can be used to solve the CDH problem with proba-
bility of at least 22+

c
d ·qc+ c

d

εcd+1−2εcd(εPRF+εcomp-bind)
, where εPRF and εcomp-bind correspond

to the advantages for breaking the PRF and computational binding, respectively,
and c > 1 denotes a granularity parameter in which the size of tag spaces is
defined by T i = 2�ci�.

There are some changes of notation between our signature scheme and Böhl
et al.’s signature scheme. We omit these proofs. Please visit [5] for details of
these proofs.
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3 Proposal: Modified Mildly Secure Signature Scheme

We modify Böhl et al.’s signature scheme and reduced it to the CDH assump-
tion more efficiently. We first construct an EUF-XRMA secure signature scheme
under the CDH assumption based on Böhl et al.’s signature scheme [5].

– Böhl et al. transformed EUF-dnaCMA∗
d secure signature schemes to

EUF-CMA secure ones. We first construct a EUF-XRMA secure signature
scheme based on theirs. Then we transform it to an EUF-CMA secure sig-
nature scheme with trapdoor commitments using Abe et al.’s technique [1].
In this way, we construct a new non-re-randomizable signature scheme since
re-randomizable signature scheme has a property that bounds of security-
reduction loss to CDH problem is O(q).

– We construct this signature scheme without a PRF. In an experiment with
EUF-XRMA security, messages are generated by a message generatorMsgGen
instead of the PRF. The PRF affects security-reduction loss, but the MsgGen
does not. Consequently, the security-reduction loss of our scheme improves
when PRF disappears.

– In Böhl et al.’s signature scheme, the tag space is divided into |Tj | = 2�cj�.
While in our construction, we make the tag space stepwise |Tj | = 2j and set
a tag by using modulo operation t(j) = m mod 2j , where m is generated by
the MsgGen. We can choose the size of the tag set Tj adequately and prepare
Tj to be as small as possible so that any q signatures can be produced from
q messages.

– We evaluate the condition under which an m interlaps tag t in the signature
simulation more strictly. In Böhl et al.’s Lemma 1, the probability of condition
Pr[(d + 1)-fold] is negligible. Since we change the parameter size of tag sets
and the number of tag collisions d, we evaluate the lemma again with the
parameter d, which results in exponential small Pr[(d + 1)-fold].

3.1 Construction

SIG0 is an EUF-XRMA secure signature scheme under CDH assumption and
described in Fig. 3. Tag sets are generated along with the following tag-making
rule. Each Tj is set as {0, 1}j (1 ≤ j ≤ l), and each tag in Tj is determined
as t

(j)
i = mi mod 2j for 1 ≤ i ≤ q by using an m. This scheme does not

require a PRF, unlike that by Böhl et al. [5]. In the EUF-XRMA experiment,
messages {mi}n

i=1 are generated by MsgGen uniformly. Thus, tag t(j) is also
distributed uniformly. We assume that G and GT are groups of prime orders
and e : G × G → GT is an efficiently computable non-degenerate bilinear map.
We let l = ω(log κ) and d = O(κ) for public parameters.

3.2 Security Analysis

We first show the following lemma used in the security proof of SIG0 then prove
that SIG0 is secure under the CDH assumption.
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KGen(1κ) Sign(sk, m) Vrfy(vk, m, σ)
set G s.t. |G| = p r ← Z/pZ For j := 1 to do

α ← Zp u(m) = d
i=0 umi

i t(j) = m mod 2j .

(g, h, {ui}d
i=0, {zj}l

j=1) ← G T (j) = {0, 1}j If e(σ0, g)

sk = α t(j) = m mod 2j = e(u(m), gα)e(z(m)h, σ1)

vk = (g, gα, h, {ui}d
i=0, {zj}l

j=1) z(m) = l
j=1 zt(j)

j return 0

return (vk, sk) σ0 = u(m)α(z(m)h)r else
σ1 = gr return 1
return σ = (σ0, σ1)

Fig. 3. SIG0: EUF-XRMA-secure signature scheme under CDH assumption

Lemma 2. Let T be a set with |T | = n. Let t1, . . . , tq be q independent random
variables, taken uniformly random from T . Then, let q = O(poly(κ)), d = O(κ).
For n > e·q

d+1 ,
Pr[∃i1, . . . , id+1 ∈ [q] | ti1 = · · · = tid+1 ]

is exponentially small in κ, where e is the base of the natural logarithm.

Proof.

Pr[∃i1, . . . , id+1 ∈ [q] | ti1 = · · · = tid+1 ]

= qCd+1

(
1
n

)d

=
q!

(q − (d + 1))!(d + 1)!

(
1
n

)d

=
q · (q − 1) · · · (q − d)

(d + 1)!

(
1
n

)d

≤ qd+1

(d + 1)!

(
1
n

)d

· · · (∗)

≤ qd+1

√
2π(d + 1)

(
e

d + 1

)d+1 (
1
n

)d

· · · (∗∗)

=
e · q√

2π(d + 1)(d + 1)

(
e · q

n(d + 1)

)d

where Inequation ∗∗ holds by Stirling’s approximation

√
2πx

(x

e

)x

≤ x! ≤ e
√

x
(x

e

)x

.

Now, we set n > eq
d+1 then e·q

n(d+1) < 1 and e·q√
2π(d+1)(d+1)

is polynomial in κ.

Hence, Pr[∃i1, . . . , id+1 ∈ [q] | ti1 = · · · = tid+1 ] is exponentially small in κ. ��
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Böhl et al. assumed that d is constant and showed that the probability
Pr[∃i1, . . . , id+1 ∈ [q] | ti1 = · · · = tid+1 ] is bounded by qd+1

nd . However, d is
not necessarily constant. When assuming d = O(κ), (d + 1)! in Inequation ∗,
which is also in the proof of Lemma 1, cannot be ignored. Lemma 2 shows that
the (d + 1)-fold probability is exponentially small when q tags {t

(j)
i }q

i=1 are cho-
sen from Tj . Böhl et al. [5] bound this probability by qd+1/nd. This is a key
lemma since this probability affects reduction loss. This modification makes our
security reduction tighter than that of Böhl et al.’s scheme and helps reduce the
vk size.

Theorem 4. If the CDH assumption holds in G, then SIG0 is EUF-XRMA
secure. Concretely, let A be a PPT adversary against SIG0 with advantage
εEUF-XRMA := AdvEUF-XRMA

SIG,A (κ) and let A have at most q random messages
and their corresponding signatures. Then, another adversary B, which can solve
the CDH problem with probability of at least O(d

q ), can be constructed using A.

Proof. Suppose that there exists an A that has at most q random messages and
corresponding signatures, and outputs a valid forged signature with probability
εEUF-XRMA. We show that we can construct another adversary B that uses A as
an internal sub-algorithm to solve the CDH problem.

Let εEUF-XRMA be B’s advantage in the EUF-XRMA experiment.

Setup. Adversary B receives a CDH challenge (g, gα, gβ) ∈ G
3 as an instance

of the CDH problem. It then generates q random messages mi ← MsgGen(gk);
gk ← Setup(1κ) for 1 ≤ i ≤ q, defines tag sets T (j) = {0, 1}j , and generates tags
t
(j)
i ∈ T (j) from message mi,

t
(j)
i = mi mod 2j for 1 ≤ i ≤ q, 1 ≤ j ≤ l.

Note that t
(j)
i is not ti to the j-th power, and l = ω(log2 κ). B chooses the

challenge instance j∗ such that the probability of a (d + 1)-tag collision Pr[(d +
1)-fold] is exponentially small, i.e.,

Pr[{∃i1, . . . , id+1} ⊆ [q] : t
(j∗)
i1

= · · · = t
(j∗)
id+1

| ∀i ∈ [q] : t
(j∗)
i ← T (j∗)]

is exponentially small such that |T (j∗)| is polynomial in κ. Thus, j∗ :=
�log( e·q

d+1 )� + 1 for |T (j∗)| = �(e · q/(d + 1)� + 1 is an index that fulfills these
conditions (see Lemma 2).

Adversary B chooses t̃ ∈ T (j∗) randomly and mi1 , . . . , mid
such that t

(j∗)
i1

=

· · · = t
(j∗)
id

= t̃. It can choose at most d messages mi1 , . . . , mid
which have the

same tag t̃ with probability 1, except exponentially small probability according
to Lemma 2. It then constructs a polynomial:

f(X) =
d∏

i=1

(X − mi) =
d∑

i=0

μiX
i ∈ Zp[X] ,
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where coefficients (μ0, . . . , μd) in Zp and f(X) = 1 for d = 0. Note
that f(X) = 0 for mi, . . . , mid

. Adversary B chooses random exponents
(r0, . . . , rd, xz1 , . . . , xzl

, xh) ∈ Zp, where the index z1, . . . , zl ⊆ [l], and defines

r(X) =
d∑

i=0

riX
i,

u(X) = (gβ)f(X)gr(X),

z(X) = (gβ)t̃g
∑l

j=1 xt(j)
zj | t(j) = X mod 2j ,

using the instance of the CDH problem.
Adversary B then generates a vk. Concretely, B chooses ť ∈ T (j∗) such that

t̃ �= ť and generates coefficients μi and h as follows:

ui = (gβ)μigri (i = 0, . . . , d),

h = (gβ)−ťgxh .

Moreover, B chooses gα from the CDH instance and generates a vk = (g, gα,
{ui}d

i=0, {zj}l
j=1, h).

Adversary B then creates q signatures σ1, . . . , σq for q messages m1, . . . , mq.
Let t̂ be a tag for a message m̂. For m̂ ∈ {m1, . . . , mq}, let t̂ = m̂ mod 2j∗

. If
t̃ �= t̂, then f(m̂) �= 0 since f(X) does not have mi1 , . . . , mid

as a root, which
maps to t̃. There are two cases according to the value of t̃; t̃ = t̂ or t̃ �= t̂.

When t̂ = t̃, then B chooses a random r ← Zp and computes a signature
σ̂ = (σ̂0, σ̂1) as follows:

σ̂0 = (gα)r(m̂)(z(m̂)h)r,

σ̂1 = gr.

From the definition of SIG0, σ̂0 = u(m̂)α(z(m̂)h)r, gr). In fact,

σ̂0 = (u(m̂)α(z(m̂)h)r, gr)

=
(
(gβ)f(m̂)gr(m̂)

)α

(z(m̂)h)r
.

In case that t̂ = t̃, f(m̂) = 0. Then

σ̂0 = (gα)r(m̂)(z(m̂)h)r.

When t̃ �= t̂, then B chooses a random r ← Zp and computes a signature
σ̂ = (σ̂0, σ̂1) as follows:

Let S = g
∑l

j=1 xt(j)
zj

+xh , r̂ = −αf(m̂)

t̃−ť
mod p, r′ ← Zp, and r = r̂ + r′ mod p.
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σ̂0 = (gα)r(m̂)(gβ)r′(t̃−ť)Sr

σ̂1 = gr.

Note that r ∈ Zp is uniformly distributed since r′ is chosen at random.
From the definition of SIG0, σ̂0 = u(m̂)α(z(m̂)h)r, gr). In fact,

σ̂0 = u(m̂)α(z(m̂)h)r

= (gβf(m̂)+r(m̂))α{(gβ)t̃g
∑l

j=1 xt(j)
zj (gβ)−ťgxh}r

= (gβf(m̂)+r(m̂))α{g
∑l

j=1 xt(j)
zj (gβ)(t̃−ť)gxh}r

= (gα)r(m̂)(gr)
∑l

j=1 xt(j)
zj

+xh(gαβ)f(m̂)(gβ)(r
′− αf(m̂)

t̃−t∗ )(t̃−ť)

= (gα)r(m̂)(gr)
∑l

j=1 xt(j)
zj

+xh(gαβ)f(m̂)(gβ)r′(t̃−t∗)(gαβ)−f(m̂)

= (gα)r(m̂)(gr)
∑l

j=1 xt(j)
zj

+xh(gβ)r′(t̃−t∗)

= (gα)r(m̂)(gβ)r′(t̃−t∗)Sr.

B then sends (vk, {mi, σi}q
i=1) to A.

Forgery. Adversary A receives q message and signature pairs (m1, σ1), . . . ,
(mq, σq) from B. After that, A generates a forged signature σ∗ = (σ∗

0 , σ
∗
1) on

m∗ and returns (m∗, σ∗) to B.
Solution of CDH problem. Adversary B derives the solution of the CDH
problem using (m∗, σ∗).

When A succeeds in the forgery, m∗ /∈ {m1, . . . , mq}; hence f(m∗) �= 0.
Adversary B then calculates a tag t∗ of m∗. If t∗ �= t̃, then it aborts; otherwise,
it outputs the solution of the CDH problem gαβ as follows:

(
σ∗
0

(gα)r(m∗)(σ∗
1)

(
∑l

j=1 xzj
t(j)+xh)

)−f(m∗)

= gαβ .

The simulation of B is perfect, and A is given the same environment as a real
attack.

Claim. The q signature and message pairs (mi, σi) sent to A are valid.
Proof of Claim. Let (m1, σ1), . . . , (mq, σq) be the message and signature
pairs that A received. Adversary A verifies these signatures using vk =
(g, gα, {ui}d

i=0, {zj}l
j=1, h).

The pairs that A received are classified into two groups according to the tag
of message t̂ = m̂ mod 2j∗

. One group is t̂ = t̃ and the other is t̂ �= t̃.



A Constant-Size Signature Scheme 149

Regarding the group that has t̂ = t̃, σ̂ = (σ̂0, σ̂1) = ((gα)r(m̂)(z(m̂)h)r, gr).
The signature σ̂ is verified as follows:

e(σ̂0, g) = e
(
(gα)r(m̂)(z(m̂)h)r, g

)

= e
(
(gα)r(m̂), g

)
e ((z(m̂)h)r, g)

= e
(
(gα)r(m̂)+βf(m̂), g

)
e ((z(m̂)h)r, g)

= e
(
gr(m̂)+βf(m̂), g

)α

e ((z(m̂)h), g)r

= e
(
gr(m̂)+βf(m̂), gα

)
e ((z(m̂)h), gr)

= e (u(m̂), gα)e(z(m̂)h, σ̂1) .

Regarding the group that has t̂ �= t̃, σ̂ = (σ̂0, σ̂1) = ((gα)r(m̂)

(gβ)r′(t̃−ť)Sr, gr). The signature σ̂ is verified as follows:

e(σ̂0, g) = e
(
(gα)r(m̂)(gβ)r′(t̃−t∗)Sr, g

)

= e

(
(gα)r(m̂)(gβ)(r+

αf(m̂)
(t̃−t∗)

(t̃−t∗)(gr)
∑l

j=1 xt(j)
zj

+xh , g

)

= e

(
(gα)r(m̂)+βf(m̂)(gr)β(t̃−t∗)+

∑l
j=1 xt(j)

zj
+xh , g

)

= e
(
(gα)r(m̂)+βf(m̂), g

)
e

(
(gr)β(t̃−t∗)+

∑l
j=1 xt(j)

zj
+xh , g

)

= e
(
gr(m̂)+βf(m̂), g

)α

e

(
g

β(t̃−t∗)+
∑l

j=1 xt(j)
zj

+xh , g

)r

= e
(
gr(m̂)+βf(m̂), gα

)
e

(
(gβ)t̃+

∑l
j=1 xt(j)

zj (gβ)−t∗+xh , gr

)

= e(u(m̂), gα)e(z(m̂)h, σ̂1).

Both groups satisfy the equation

e(σ̂0, g) = e (u(m̂), gα)e(z(m̂)h, σ̂1) .

��
Analysis. Let success be the event that B outputs a CDH solution gαβ . In
this simulation, B can extract gαβ from the forgery if t̃ = t∗. This probability
Pr[t̃ = t∗] is

Pr[t̃ = t∗] =
1

|T (j∗)| =
1

� e·q
d+1� + 1

.

However, if no tag t
(j∗)
i ∈ T (j∗) has at most d-fold collisions, B can not extract

gαβ from the forgery since f(m∗) �= 0. Moreover, there is a gap in tag distribution
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1/2O(κ) between mod 2j computation and uniform distribution, where j ≤ d ≤
O(κ). Hence,

Pr[success] =
1

� e·q
d+1� + 1

εEUF-XRMA − Pr[d + 1-fold] − 1
2O(κ)

= O
(

d

q

)
εEUF-XRMA.

��

4 EUF-CMA Full Security Scheme

In this section, we discuss the construction of a fully EUF-CMA secure scheme
from SIG0 by applying trapdoor commitment TCOM.

4.1 Construction

We describe SIG in Fig. 4.

KGen(1κ) Sign(sk, m) Vrfy(vk, m, σ, r)
set G s.t. |G| = p r ← COINcom, s ← Z/pZ ψ = Comtc

pk(m; r)
α ← Zp ψ = Comtc

pk(m; r) For i := 1 to do

(g, h, {ui}d
i=0, {zj}l

j=1) ← G u(ψ) = d
i=0 uψi

i t(j) = ψ mod 2j

sk = α For j := 1 to do If e(σ̃0, g)

vk = (g, h, gα, {ui}d
i=0, {zj}l

j=1) t(j) = ψ mod 2j = e(u(ψ), gα)e(z(ψ)h, σ̃1)

(tk, pk) ← Gentc(1κ) z(ψ) = l
j=1 zt(j)

j return 0

return (vk, sk, tk, pk) σ̃0 = u(ψ)α(z(ψ)h)s else
σ̃1 = gs return 1
return (σ = (σ̃0, σ̃1), r)

Fig. 4. SIG: EUF-CMA-secure signature scheme with TCOM under CDH assumption

Remark 1. One can construct TCOM such that ψ can be seen in an element in
Z/pZ (except for one element). In addition, ψ ← Comtc

pk(m) is (almost) uniformly
distributed over Z/pZ for any m. The latter condition is needed to transform
an EUF-XRMA secure signature scheme to an EUF-CMA secure one. Let G be
the group defined over the super-singular elliptic curve y2 = x3 + b on Fp, where
p = 2 (mod 3). Then, there is the one-to-one encoding, called map-to-point,
from G

×(= G\{O}) to Z/pZ [2].

Lemma 3. The signature scheme SIG (Fig. 4) is non-re-randomizable.

Proof. Let vk = (g, gα, {ui}d
i=0, {zj}l

j=1, h) be a given vk, and let m and (σ =
(σ̃0, σ̃1), r) be valid messages for signatures, i.e., σ satisfies

e(σ̃0, g) = e(u(ψ), gα)e(h
l∏

j=1

zt(j)

j , σ̃1). (1)
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The set of all σs satisfying (1) is therefore identical to the set

Σ(vk,m) = {(u(ψ))α(z(ψ)h)s, gs; s ∈ Zp, r ← COINcom}.

Consider an algorithm Rerand taking as input vk, σ, and message m. We assume
that Rerand samples s′ ← Zp and returns σ′ = (σ′

0, σ
′
1) distributed uniformly

over Σ(sk,m). However, since Rerand cannot generate ψ = Comtc
pk(x; r); r ←

COINcom, there is no Rerand that returns the new signature σ′ distributed
uniformly over the set of all possible signatures for m. Hence, SIG is non-re-
randomizable. ��

4.2 Security Analysis

Theorem 5. Let TCOM = (Gentc,Comtc,TComtc,TColtc) be a trapdoor com-
mitment and SIG0 be EUF-XRMA secure. Therefore, SIG is EUF-CMA
secure. Concretely, let εEUF-XRMA

SIG0
= AdvEUF-XRMA

SIG0,A (κ) be an advantage of an
EUF-XRMA adversary for SIG0, εEUF-CMA

SIG = AdvEUF-CMA
SIG,A (κ) be an advantage of

anEUF-CMA adversary for SIG, and εcomp-bind be an advantage of
a computational binding adversary. Then, εEUF-CMA

SIG can be bounded by
εEUF-XRMA
SIG0

+ εcomp-bind.

Proof. We construct adversaries AEUF-XRMA
SIG0

against SIG0 and Acomp-bind against
computational binding using an adversary against SIG and compare their advan-
tages εEUF-XRMA

SIG0
and εcomp-bind with εEUF-CMA

SIG .
Suppose that there exists a PPT adversary AEUF-CMA

SIG that breaks SIG in
the EUF-CMA game. In the game, AEUF-CMA

SIG receives public parameters vk, pk
in the setup phase. It then uses a signing oracle q times and obtains q triples
{(mi, σi, ri)}q

i=1 of (message, signature, random), where σi = (σ̃i0 , σ̃i1). It finally
forges a signature and random pair (σ∗, r∗) for a message m∗, where m∗ /∈
{m1, . . . , mq}.

Setup. Let B have the role of transmitting some data from AEUF-CMA
SIG to

Acomp-bind and AEUF-XRMA
SIG0

. Adversary B receives vk, pk, {(mi, σi, ri)}q
i=1, and

{(m∗, σ∗, r∗)} from AEUF-CMA
SIG . Adversary B computes ψi = Comtc

pk(mi; ri) for
i = 1, . . . , q and ψ∗ = Comtc

pk(m∗; r∗). Adversary B transmits pk, and q triples
{(mi, ri, ψi)}q

i=1 and a triple (m∗, r∗, ψ∗) to .Acomp-bind, and transmits vk, q
pairs {(ψi, σi)}q

i=1 and a pair (ψ∗, σ∗) to AEUF-XRMA
SIG0

.

Breaking computational binding. Adversary Acomp-bind receives pk and q
triples {(mi, ri, ψi)}q

i=1 and a triple (m∗, r∗, ψ∗) from B.
In the case that ψ∗ ∈ {ψ1, . . . , ψq}, Acomp-bind can break the computa-

tional bindings. That is, let ψ∗ = ψj for j ∈ {1, . . . , q}, then Comtc
pk(m∗; r∗) =

Comtc
pk(mj ; rj) for m∗ �= mj . When Acomp-bind is given a pk in the com-

putational bindings game, Acomp-bind returns (m∗, r∗,mj , rj). This means,
Acomp-bind succeeds in breaking computational bindings, since Comtc

pk(m∗; r∗) =
Comtc

pk(mj ; rj).
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Let p be the probability that ψ∗ ∈ {ψ1, . . . , ψq}. Then, the success probability
of Acomp-bind is at least p · εEUF-CMA

SIG . That is,

εcomp-bind ≥ p · εEUF-CMA
SIG .

Breaking XRMA security of SIG0. Adversary AEUF-XRMA
SIG0

receives a vk, q
pairs {(ψi, σi)}q

i=1 and a pair (ψ∗, σ∗) from B.
In the case that ψ∗ /∈ {ψ1, . . . , ψq}, AEUF-XRMA

SIG0
can break the EUF-XRMA

security of SIG0. That is, σi for i ∈ {1, . . . , q} is a valid signature for ψi, and σ∗

is a valid signature for ψ∗.
When AEUF-XRMA

SIG0
is given a vk and {(ψi, σi)}q

i=1 in the EUF-XRMA game,
AEUF-XRMA

SIG0
returns (ψ∗, σ∗). Note that AEUF-XRMA

SIG0
generates valid randoms

r∗ = TColtctk(ψ,w,m) by using a trapdoor key tk and random r as an auxiliary
information w. Then AEUF-XRMA

SIG0
can make a connection with commitments

and messages. This means AEUF-XRMA
SIG0

succeeds in the EUF-XRMA game, since
ψ∗ /∈ {ψ1, . . . , ψq} and σ∗ is a valid signature for ψ∗.

The success probability of AEUF-XRMA
SIG0

is at least (1−p) ·εEUF-CMA
SIG , since the

probability ψ∗ /∈ {ψ1, . . . , ψq} is 1 − p. That is,

εEUF-XRMA
SIG0

≥ (1 − p) · εEUF-CMA
SIG .

Analysis. The inequalities εcomp-bind ≥ p · εEUF-CMA
SIG and εEUF-XRMA

SIG0
≥ (1 − p) ·

εEUF-CMA
SIG hold from the above. Hence,

εcomp-bind + εEUF-XRMA
SIG0

≥ p · εEUF-CMA
SIG + (1 − p) · εEUF-CMA

SIG

≥ εEUF-CMA
SIG .

��

5 Discussion

The reduction loss of Böhl et al.’s signature scheme is

εCDH ≥ | 1
T (j∗) |

(
εEUF-CMA − εPRF − Pr[d + 1-fold]

)
,

where |T (j∗)| is the size of tag sets. In our scheme, T (j∗) = O( q
d ) since its tag

space is |T (j∗)| := �(d + 1)/e · q�+1. The advantage regarding PRF εPRF is 1
2O(κ) ,

which is the gap between the case in which tags are chosen uniformly and that
in which tags are generated as tj = m mod 2j . In Böhl et al.’s scheme, the key
lemma is as follows:

Pr[d + 1-fold] = Pr[∃i1, . . . , id+1 ∈ [q] | ti1 = · · · = tid+1 ] ≤ qd+1

nd
.
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Since they assumed that the size of d is constant, the evaluation was sufficient.
However, we assume d = O(κ); thus, we evaluate the probability more strictly.
According to Theorems 4 and 5,

εCDH ≥ | 1
T (j∗) |

(
εEUF-XRMA − 1

2O(κ)
− Pr[d + 1-fold]

)
(2)

≥ O
(

d

q

)
· εEUF-XRMA

≥ O
(

d

q

)
·
(
εEUF-CMA − εcomp-binding

)

Hence,
εEUF-CMA ≤ O

( q

d

)
· εCDH + εcomp-binding. (3)

Computational binding is reduced to the discrete logarithm problem. The
whole security-reduction loss to the CDH problem, a search problem, is O(q/d).

The tag set of Böhl et al.’s scheme is chosen from a sparse tag set whose size is
2�cj�, where c is constant. Our tag set size is 2j , which is appropriate to choose a
small T j∗

such that |T j∗ | > e·q
d+1 . On the other hand, d is constant in Böhl et al.’s

scheme, while d = O(κ) in our scheme. The size of the vk increases according to
the size of d. Hence, the vk size of our scheme is larger than that of Böhl et al.’s
scheme. That is, although the vk size is larger than that of Böhl et al.’s scheme,
our scheme achieves a constant-size signature with tighter reduction.

6 Conclusion

The optimal security-reduction loss to CDH problem from a constant-size sig-
nature scheme is O(q) if signature schemes are re-randomizable. We proposed
a constant-size non-re-randomizable signature scheme that is secure under the
CDH assumption with tighter security-reduction than ever constant-size signa-
ture schemes. Particularly, its security reduction, O(q/d) is the tightest thus
far.
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Abstract. Attribute-Based Encryption (ABE) allows to target the
recipients of a message according to a policy expressed as a predicate
among some attributes. Ciphertext-policy ABE schemes can choose the
policy at the encryption time, contrarily to key-policy ABE schemes that
specify the policy at the key generation time, for each user.

In this paper, we define a new property for ABE, on top of a ciphertext-
policy ABE scheme: homomorphic-policy. A combiner is able to (publicly)
combine ciphertexts under different policies into a ciphertext under a
combined policy (AND or OR). This allows to specify even much later
the policy for a specific ciphertext: the sender encrypts, and the com-
biner specifies the policy, without knowing the plaintext.

More precisely, using linear secret sharing schemes (LSSS), we design
Attribute-Based Key Encapsulation Mechanisms (ABKEM) with our new
Homomorphic-Policy property. Technically, by exploiting a specific prop-
erty in the structure of LSSS matrix, we can show that, given several
encapsulations of the same keys under various policies, anyone can derive
an encapsulation of the same key under any combination of the policies.
As a consequence, from encapsulations under many single attributes, one
can build an encapsulation under a complex policy over the attributes.

Similarly to the case of encryption with homomorphic properties,
where malleability weakens confidentiality, homomorphic-policy ABE
also weakens the security of an ABE when the combiner colludes with
legitimate users. On the other hand, homomorphic-policy provides addi-
tional flexibility and nice features when one targets some practical appli-
cation: in Pay-TV, this allows to separate the content providers that
can generate the encapsulations of a session key under every attributes,
this key being used to encrypt the payload, and the service providers
that build the decryption policies according to the subscriptions. The
advantage is that the aggregation of the encapsulations by the service
providers does not contain any secret information.

1 Introduction

Attribute-Based Encryption (ABE), introduced by Sahai and Waters [16],
is a generalization of some advanced primitives such as identity-based
c© Springer International Publishing AG 2017
P.Q. Nguyen and J. Zhou (Eds.): ISC 2017, LNCS 10599, pp. 155–172, 2017.
https://doi.org/10.1007/978-3-319-69659-1_9
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encryption [2,17] and broadcast encryption [6]. It gives a flexible way to define
the target group of people who can receive the message: encryption and decryp-
tion can be based on the user’s attributes. This primitive was further devel-
oped by Goyal et al. [9] who introduced two categories of ABE: ciphertext-policy
attribute-based encryption (CP-ABE) and key-policy attribute-based encryption
(KP-ABE). In a CP-ABE scheme, the secret key is associated with a set of
attributes and the ciphertext is associated with an access policy over the uni-
verse of attributes: a user can decrypt a given ciphertext if he holds the attributes
that satisfy the access policy underlying the ciphertext. KP-ABE is the dual to
CP-ABE in the sense that an access policy is encoded into the users secret key,
and a ciphertext is computed with respect to a set of attributes: the ciphertext
is decryptable by a user only if the attributes in the ciphertext satisfy the user’s
access policy.

CP-ABE and KP-ABE consider different scenarios. In KP-ABE, the encryptor
has no control over who has access to the data he encrypts. This is the key-
issuer who generates and controls the appropriate keys to grant or deny access
to the users. In contrast, in CP-ABE, the encryptor is able to decide who should or
should not have access to the data that he encrypts. In the applications we target
such as Pay-TV, this would mean that the access control is either dynamically
managed by the encryptor (with a ciphertext-policy ABE) or statically managed
by the key-issuer (with a key-policy ABE), while in real-life a third-party could
be in charge of a dynamic policy.

Fine-Grained Access Control. Over the last few years, there has been a lot of
progress in constructing secure and efficient ABE schemes from different assump-
tions and for different settings [1,3,4,7–10,13–16,18], to name a few. The Sahai-
Waters’ scheme [16] produces ciphertexts decryptable when at least k attributes
overlapped between a ciphertext and a private key. While they showed that
this primitive is useful for error-tolerant encryption with biometrics, the lack of
expressibility limits its applicability when more general policy are required. Fine-
grained access control systems [9] facilitate granting differential access rights to
a set of users and allow flexibility in specifying the access rights of individual
users. Several techniques are known for implementing fine-grained access con-
trol. In our work, we focus on fine-grained access control which are expressed by
logic formulas and we rely on the standard Linear Secret Sharing Scheme (LSSS)
access structures, first considered in the context of ABE by Goyal et al. [9].

1.1 Homomorphic-Policy Attribute-Based Key Encapsulation
Mechanisms

In KP-ABE, the access policy is controlled at the key generation phase, while in
CP-ABE, the access policy is controlled at the message encryption phase. We go
a step further in this consideration by postponing the management of the access
policy to a later phase and show how one can manage the access policies without
knowing any secret nor the content of message.
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Previous works on CP-ABE consider classical encryption: the encryptor, tak-
ing as input an access policy and a message, produces a corresponding ciphertext.
The encryptor thus manages both the access policy and the encryption of the
original message. This scenario is unavoidable when limiting the access policy
as a single atomic attribute characterizing a user’s identity (e.g., identity-based
encryption) or a target group of users (e.g., identity-based broadcast encryp-
tion) because the encryptor needs to know the message to encrypt with the sin-
gle attribute. However, in the general case, where the access policy is composed
from sub-policies via AND and OR operators, the encryption of a message for
the whole access policy can be computed from the ciphertexts of the sub-policies,
without the knowledge of the original message.

Aiming to this scenario, where a combiner should manage the access policy
without knowing to the original message, we need an additional property in ABE:
the homomorphic-policy. This property weakens the security of an ABE when the
combiner colludes with legitimate users. However, in our practical application
(described below), there is no incentive for the combiner to break the scheme.
The combiner is indeed involved in the protocol to improve on the flexibility of
the access control, and even if it is corrupted, there is no harm for the system,
comparing to the scenario where there is no combiner and everything is managed
by a unique authority.

Considering Pay-TV, we can now separate the roles of the content provider
and of the manager of the access policies (see Fig. 1, the left part): the content
provider (C) encapsulates the same session key K under each attribute, encrypts
the content under this session key K, and provides the encapsulation together
with the encrypted content to the manager of the access policies (A). The latter
broadcasts the encrypted content, but according to the access policy, it com-
bines the appropriate encapsulations to produce a unique encapsulation, to be
broadcast to the users (the recipients (R)). Each authorized user can decrypt
this encapsulation (by owning attributes satisfying the access policy) and get
the session key to decrypt the content.

C A R C A P

Fig. 1. Separation of the roles: content provider (C) – access policy manager (A).

We can also envisage another case where the entities C and A are totally
independent. To illustrate this, let us assume the manager (A) is a service of
video conferencing (see Fig. 1, the right part), and the content provider (C) is a
client that asks A to organize a meeting with the participants (P). The authorized
participants are identified by several attributes. At the moment of the meeting,
C secretly gives A the encapsulations of the session key K, under the various
attributes, so that it can publicly distribute it according to the appropriate policy
to the participants. Only the authorized participants get access to the session K
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and can participate to the meeting. The manager A does not learn any secret
information, and cannot eavesdrop the meeting.

As explained in the above context, the homomorphic-policy property is com-
patible for key encapsulation rather than for encryption. Technically, we thus
need to define Attribute-Based Key Encapsulation Mechanisms (ABKEM) which
encapsulate a session key for an access policy. Then, the combination of two
encapsulations of the same session key under two sub-policies into an encapsu-
lation for the composed access policy is completed via the homomorphic-policy
property: if we have encapsulations of a session key K under two policies p1 and
p2, we will be able to produce an encapsulation of the same session key K for the
policies p1 ∨p2 and p1 ∧p2. The achievement of an homomorphic-policy ABKEM
is the main contribution of this paper. But of course, this is important to keep
all the initial properties of an ABE scheme, and namely the collusion-resistance
of the final encapsulation.

1.2 Contribution

As explained above, our main contribution is the definition and construction
of Homomorphic-Policy Attribute-Based Key Encapsulation Mechanisms (HP-
ABKEM). To this aim

– we focus on homomorphic policy and define attribute-based key encapsulation
mechanisms (ABKEM).

– we propose homomorphic-policy methods to combine ciphertexts for AND
and OR operations on policies.

– Our construction of ABKEM relies on the Lewko-Waters ABE scheme [11],
which security holds in the random-oracle model. ABKEM is very convenient
to be used with a Data Encapsulation Method (DEM) for practical appli-
cations which encrypt large contents or streams of data, such as the case
of Pay-TV. We exploit special properties of LSSS for AND and OR opera-
tions and transforms them in an efficient way of combining the corresponding
encapsulations.

– we then propose an efficient randomization method for making any ciphertext
(possibly obtained from the above combinations) statistically indistinguish-
able from a fresh ciphertext targeting the same policy. This is important for
the security of the system.

Putting altogether, our final result gives an HP-ABKEM which is as efficient as
the Lewko-Waters ABE system. It is interesting that we get the homomorphic-
policy property without paying an extra cost. Actually, the final encapsulation
after several combinations turns out to be the same as the one the Lewko-
Waters sender would have produced, hence the same security level, and namely
the collusion-resistance (in the random-oracle model).
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1.3 Our Technique

While the homomorphic property for two group laws over the encrypted mes-
sages (usually called fully homomorphic property) is quite difficult to achieve.
Fortunately, achieving homomorphic policy seems much easier and more efficient.

Our technique exploits specific structures of the LSSS-matrix and carries
them on the combination of encapsulations. The OR operation is relatively easy
to get, because it essentially corresponds to a concatenation of the encapsula-
tions. However, the AND operation does require a particular property on the
LSSS-matrix, that we explain below.

Let us first briefly summarize the general method of constructing an LSSS-
based ABE, adapted to an ABKEM. For any policy p, expressed as a logic formula,
an LSSS-matrix A ∈ K

m×n is generated such that each line x ∈ {1, . . . , m}
corresponds to an attribute, and from a set of attributes that satisfies the policy
p, one can do a linear combination on the corresponding lines of the matrix
A to reconstruct the vector (1, 0, . . . , 0). One then sets �v ← (s, $, . . . , $)t and
the share-vector �ν ← A · �v for the secret s, where the vector �v is completed
with random components. A linear combination that reconstructs the vector
(1, 0, . . . , 0) leads to the same linear combination on the share-vector �ν = A · �v
that reconstructs the secret s. One can thus encapsulate each element of the
vector �ν so that a legitimate user can reconstruct the session key e(g, g)s in a
pairing-friendly setting, thanks to the additive property of the exponents.

Now, from an encapsulation for the policy p1 of the session key e(g, g)s1 and
an encapsulation for the policy p2 of the session key e(g, g)s2 , our objective is to
produce an encapsulation for the policy p1∧p2 of the session key e(g, g)s1+s2 . We
first observe a property on the LSSS-matrix: with the LSSS-matrix A1 ∈ K

m×n

associated to the policy p1 and the LSSS-matrix A2 ∈ K
m×n associated to the

policy p2, the LSSS-matrix of A associated to a policy p1 ∧ p2 is of the following
form:

A∧ =
[
A1

1 A1
1 A∗

1 0
0 −A1

2 0 −A∗
2

]

where for any A, we denote A1 the first column and A∗ the matrix A without
the first column (i.e., A =

[
A1 A∗]).

Looking at the first and the second column of the matrix A∧, the vector A1
1 is

repeated twice in the upper part, and in the bottom part, the corresponding block
is

[
0 −A1

2

]
. Therefore, if we put s1 + s2 and −s2 as the two first components of

the vector �v, when combining the resulting share-vector according to the known
attributes, the upper part will first lead to the secret s1 + s2 − s2 = s1 and the
bottom part will lead to the secret −s2. Consequently, in order to produce the
encapsulation of s1 + s2 under A∧, we only need to combine the encapsulation
of s1 in A1 and the encapsulation of s2 in A2. The resulting share-vector is
A · (s1 +s2,−s2, $, . . . , $)t. However, as one could recover individually the secret
s1 + s2 and −s2 with the appropriate attributes in each sub-policies, but not
necessarily for the same user, a collusion attack is possible. We thus need a final
randomization step to glue everything together.
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1.4 Organization of the Paper

In the next section, we provide a few definitions about linear secrete shar-
ing schemes and attribute-based encryption or key encapsulation. In Sect. 3,
we describe our main contribution, with the notion of homomorphic policy. In
Sect. 4, we give a concrete instantiation of homomorphic-policy attribute-based
key encapsulation mechanism. It also details the security analysis.

2 Definitions

2.1 Access Structure

For any application with limited access, one needs to define the access structure,
which precises which combinations of conditions grant access to the data or to
the system.

Definition 1 (Access Structure). Let P = {P1, P2, . . . , Pm} be a set of par-
ties (human players or attributes). An access structure in P is a collection
A ⊆ 2P\{∅}. The sets in A are called the authorized sets, while the others
are called unauthorized sets.

When some minimal sets of parties are required to access the system (but any
superset is good too), only monotone access structures make sense, since one can
always ignore any supplementary party.

Definition 2 (Monotone Access Structure). Let P = {P1, P2, . . . , Pm} be
a set of parties and A an access structure in P. A is said monotone if, for any
subsets B,C ⊆ P, if B ⊆ C, when B ∈ A then C ∈ A.

2.2 Linear Secret Sharing Scheme

In order to control access rights according to a monotone access structure, the
use of a secret sharing scheme that spreads the secret key among several players
is a classical technique. One must use a secret sharing scheme that just allows
authorized sets to reconstruct the secret key. This is even better if the secret
key is never fully reconstructed, but just in a virtual way to run the restricted
process (such as signature or decryption).

Definition 3 (Secret Sharing Scheme). A secret sharing scheme over a set
of parties P, for an access structure A over P, allows to share a secret s among
the players, with shares ν1, . . . , νm such that:

– any set of parties in A can efficiently reconstruct the secret s from their shares;
– any set of parties not in A has no information about the secret s from their

shares.

A linear secret sharing scheme is quite appropriate to share a secret key in order
to run the restricted process in a distributed way, since many cryptographic
primitives have such linear properties.
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Definition 4 (LSSS). A Linear Secret Sharing Scheme over a field K and a set
of parties P is defined by a share-generating matrix A ∈ K

m×n and a labeling
map ρ : {1, . . . , m} → P according to the access policy A: for any I ⊂ {1, . . . , m},
anyone can efficiently find a vector �c ∈ K

m with support I such that �ct · A =
(1, 0, . . . , 0) if and only if ρ(I) ∈ A.

In order to share s ∈ K, one chooses v2, . . . , vn
$← K and sets �v ← (s, v2, . . . , vn)t,

then the share-vector is �ν ← A · �v. One would like to be able to reconstruct s
from a few coordinates of this share-vector is �ν. Being able to find such a vector �c
with support I is equivalent to reconstruct s for the players satisfying ρ(I) only:∑

i∈I ci · νi =
∑m

i=1 ci · νi = �ct · �ν = �ct · A · �v = (1, 0, . . . , 0) · �v = s. To give an
example, we can refer to the LSSS proposed by Lewko-Waters [11]. It generates
the matrix A and the map ρ from any monotone policy p that is encoded as
a boolean tree, with binary AND and OR gates. One does not need to handle
NOT gates, since one only considers monotone policies. It is recalled in the full
version [5]. We describe it with matrices in Sect. 4.3, with the proof in the full
version [5].

2.3 Attribute-Based Key Encapsulation Mechanism

In this paper, we extend ABE to Attribute-Based Key Encapsulation Mechanism
(ABKEM), where the ciphertext encapsulates a session key, later used to encrypt
the payload, in a symmetric way.

Definition 5 (ABKEM). An attribute-based key encapsulation mechanism over
an attribute space A is defined by four algorithms:

– Setup(λ): Takes as input the security parameter, and outputs the master secret
key msk and the public key pk;

– KeyGen(msk, id, a): Takes as input the master secret key msk, the identity id
of a player, and an attribute a ∈ A, to output the private decryption key dkaid
for this attribute a;

– Encaps(pk, p): Takes as input the public key pk and a policy p, to output a key
K and an encapsulation E of this key;

– Decaps(dk, E): Takes as input a decryption key and an encapsulation E, to
output the encapsulated key K or ⊥.

A decryption key will indifferently mean a key dkaid for a specific user id and a
specific attribute a, or a set dkAid of keys specific to a user id, but for many
attributes a ∈ A ⊂ A. The correctness property is: for any (msk, pk) ←
Setup(λ), dkid = {dkaid ← KeyGen(msk, id, a)}a∈A, and (K,E) ← Encaps(pk, p),
Decaps(dkid, E) = K if A satisfies the policy p. The main security property is
the usual indistinguishability (IND), which should prevent collusions of adap-
tively chosen players, that can also get decryption keys for adaptively chosen
attributes:

Definition 6 (IND for ABKEM). Let us consider an ABKEM over an attribute
space A. No adversary A should be able to break the following security game
against a challenger:
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– Initialization: the challenger runs the setup algorithm (msk, pk) ← Setup(λ),
and provides pk to the adversary A;

– Key Queries: the adversary A can ask KeyGen-queries, for any id and any
attribute a of its choice to get dkaid;

– Challenge: the adversary A provides a policy p to the challenger that runs
(K,E) ← Encaps(pk, p), and sets Kb ← K and K1−b as a random key, for a
random bit b. It provides (E,K0,K1) to the adversary;

– Key Queries: the adversary A can again ask KeyGen-queries of its choice;
– Finalize: the adversary A outputs its guess b′ on the bit b.

We also define the event Cheat, which means that a user (with some identity
id) owns a set of attributes A (the set of all the attributes a asked to a Key
Query for id) that satisfies p: in such a case, the adversary can trivially guess
b. Hence, we only allow adversaries such that Pr[Cheat] = 0. We then define
Advind(A) = |2 × Pr[b′ = b] − 1|, and say that an ABKEM is (t, ε)-adaptively
secure if no adversary A running within time t can get Advind(A) ≥ ε.

We stress that everything is adaptive in this definition: the identities and the
attributes asked to the key queries, and the policy asked for the challenge query.
However, we are in the chosen-plaintext scenario, without access to any decryp-
tion/decapsulation oracle.

3 Homomorphic-Policy

3.1 Definition

While CP-ABE allows to specify the policy at the encryption time, which is also
the case for our definition of ABKEM, the sender may not be aware of the policy
yet. We thus suggest to exploit an homomorphic property on the policy: we
would like to allow the derivation of an encapsulation of K under a combination
p = p1 ∧ p2 or p = p1 ∨ p2 from the encapsulations of K under the policies p1
and p2 on the attributes in A, without knowing K (which has already been used
to encrypt the payload).

With such an homomorphism on the policies, from the encapsulations of
a common key K under all the attributes a ∈ A, one could publicly generate
an encapsulation of K under any policy on A: as illustrated on Fig. 2, from
the encapsulations {Ei}i of K for the attributes A = {ai}, one can derive the
encapsulation Ep of K under any policy p, encoded as a binary tree with AND
(∧) and OR (∨) gates. Again, we only consider monotone policies, hence the
absence of NOT gates. On attributes, if one wants to consider the negation (or
absence) of some attribute a, one has to define a second attribute a′ that is
exclusive with a, so that, if p = (a), then ¬p = (a′).

To achieve this goal, we just need to be able to combine two encapsulations of
K under p1 and p2 in order to derive the encapsulation of K under p∨ = p1 ∨ p2
and under p∧ = p1 ∧ p2. The global encapsulation under a more general policy
can then be recursively built.
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∨ (→ Ep)

∧ ∨

∨ ∧ ∧ Ea8

E1 E2 E3 E4 ∨ E7

E5 E6

Fig. 2. Derivation of Ep from {Ei}, for p = ((a1 ∨a2)∧ (a3 ∧a4))∨ (((a5 ∨a6)∧a7)∨a8)

Definition 7 (HP-ABKEM). An homomorphic-policy attribute-based key-
encapsulation mechanism over an attribute space A is an ABKEM (see Defin-
ition 5), with a more specific encapsulation algorithm and two additional algo-
rithms for the homomorphism:

– Encaps(pk, P ): Takes as input the public key pk, a list of policies P = (pi)i,
to output a key K and the encapsulations Ei of this key under the policies
pi’s;

– Combine(pk, gate, E1, E2): Takes as input the public key pk as well as two
encapsulations E1 and E2, and a gate gate ∈ {∧,∨}, to output an encapsula-
tion under the combination of the initial policies for E1 and E2;

– Rand(pk, E) Takes as input the public key pk as well as an encapsulation, to
output a new encapsulation (of the same key under the same policy).

The intuition behind the new Encaps algorithm is that we want to be able to
encapsulate the same key K under various policies. We thus opt for an encapsu-
lation algorithm that takes as input all the policies that will be combined later.
The correctness properties are:

– if (Ei)i ← Encaps(pk, (pi)i) are common encapsulations of a key K under the
pi’s, then for any i, j, E ← Combine(pk, gate, Ei, Ej) is an encapsulation of
the same key K, but under the policy p = pi gate pj ;

– for any encapsulation E of some key K under a policy p, E′ ← Rand(pk, E)
follows the same distribution as a fresh encapsulation of K under the policy p.

Note that we do not expect the combination to hide the structure of the ini-
tial encapsulations. The randomization will do this work, but there is no need
to do it at each step, hence the separation of the two processes: one will iter-
atively combine the encapsulations in order to obtain the encapsulation under
the appropriate policy, and then the randomization will finalize the process.
Figure 3 illustrates this fact: combining and randomizing at each step leads to
exactly the same distribution of the root encapsulation as combining at each
step and randomizing at the last step only.
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∨
∧ ∨

∨ ∧ ∧ a8

a1 a2 a3 a4 ∨ a7

a5 a6

∨
∧ ∨

∨ ∧ ∧ a8

a1 a2 a3 a4 ∨ a7

a5 a6

⇐⇒

Combination + Randomization

Fig. 3. Randomization process in combination

3.2 Security

As explained in the Pay-TV scenario in the introduction, we have three players:
the content provider (or the sender), the manager of the access policy (or the
combiner) and the receiver. We thus expect the sender to encapsulate a key K
under each attribute, and to encrypt the payload under K; the combiner then
generates the encapsulation of K under the appropriate policy; so that only the
legitimate receivers can decapsulate and decrypt the payload.

When the adversary plays the role of the receivers, the required security
notion is exactly the previous indistinguishability: given several keys for various
attributes, and even several identities (to model collusions), an adversary should
not be able to get any information about a key encapsulated under a policy
that is not satisfies by any of the users under its control. We stress that this
indistinguishability game (IND) models the resistance against the collusion of
receivers. But both the sender and the combiner are considered honest.

On the other hand, the sender may not totally trust the combiner and may
want to limit the risk in case the combiner would be corrupted: while the former
sends K encapsulated under many attributes (or more generally many policies),
the latter should not be able to distinguish K from a random key, in order to
guarantee to privacy of the content encrypted under K. Hence the new indis-
tinguishability game with multiple encapsulations (m − IND), but without being
able to get any decryption key, hence the no-key attack (NKA). Since the adver-
sary does not have access to any decryption key, this security scenario does not
allow the combiner to collude with anybody, and namely not with any receiver.

Definition 8 (m − IND−NKA for ABKEM). Let us consider an ABKEM over
an attribute space A. No adversary A should be able to break the following security
game against a challenger:

– Initialization: the challenger runs the setup algorithm (msk, pk) ← Setup(λ),
and provides pk to the adversary A;

– Challenge: the challenger runs (K, (Ei)i) ← Encaps(pk,A), and sets Kb ← K
and K1−b as a random key, for a random bit b. It provides ((Ei)i,K0,K1) to
the adversary;

– Finalize: the adversary A outputs its guess b′ on the bit b.
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We then define Advm−ind−nka(A) = |2 × Pr[b′ = b] − 1|, and say that an
ABKEM is (t, ε)-m − IND if no adversary A running within time t can get
Advm−ind−nka(A) ≥ ε.

We stress that now, nothing is adaptive, since the adversary cannot get decryp-
tion keys, but gets the encapsulations of the same key K under all the individual
attributes. We also remain in the chosen-plaintext scenario, without access to any
decryption/decapsulation oracle. In addition, since the adversary is the combiner
that receives the key K encapsulated under every attribute, we do not allow any
collusion with a user: any attribute would be enough to get K and break the
security game.

On can note that in the real-life, such a combiner would not be a critical party
since it does not know any long-term secret. Of course, it will learn ephemeral
encapsulations that would allow any receiver (with attributes that satisfy the
final policy or not) to decapsulate the session key and to decrypt the content.
But a short-term corruption will just leak the content during a short period, and
not for ever.

4 Construction

4.1 Modified Lewko-Waters Scheme

We present here a revised version of the ABE scheme from [11]. First, for the
sake of simplicity, we do not exploit the decentralized version and so all the
attributes are managed by the same entity (but we could keep the decentralized
version). Second, for the homomorphic property, we consider a Key Encapsula-
tion Mechanism (KEM) instead of an encryption scheme, which just encaps a
session key. However, we still use an LSSS to realize the access policy and pair-
ing techniques to ensure collusion resistance. More precisely, we use a symmetric
pairing e : G×G −→ GT , where the groups G and GT will be of composite order
N = q1q2q3, with three large prime integers q1, q2, and q3. Let us first describe
our variant of ABKEM.

4.2 Description

– Setup(λ): One first generates a symmetric pairing e : G × G −→ GT for
groups of composite order N = q1q2q3 (of length λ). One also generates
a generator g1 of the subgroup G1 ⊂ G of order q1 and a hash function
H : {0, 1}∗ −→ G. We also denote G = e(g1, g1) ∈ GT . Then, for each
attribute a, the authority specifies the pair of secret/public keys, respectively
ska = (αa, ya) and pka = (Ga = Gαa , ga = gya

1 ). The master secret key msk is
the concatenation of the ska’s, and the public key pk contains N , g1 and H,
together with the concatenation of the pka’s.

– KeyGen(msk, id, a): From msk = {ska}, id and a, the authority outputs dkaid =
gαa
1 H(id)ya .
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– Encaps(pk, P ): From the public key pk and a set P of policies, one first
chooses some random s

$← ZN and sets the symmetric encapsulated key
K ← Gs. Then, for each p ∈ P , we process the following encapsulation:
from the LSSS matrix A ∈ K

m×n and the associated labeling map ρ onto
the attributes describing the access structure defined by the policy p, we set
�v = (s, v2, . . . , vn) and �w = (0, w2, . . . , wn), with vk, wk

$← ZN for k = 2, . . . , n

and �r
$← Z

m
N . We build the share vectors �ν = A ·�v and �ω = A · �w. Eventually,

for each line x ∈ {1, . . . , m} of the matrix A, we construct the encapsulation
using the keys pkρ(x) = (Gρ(x), gρ(x)) associated to the attribute ax = ρ(x)
involved in the policy p:

E1,x = Gνx · Grx

ρ(x) E2,x = grx
1 E3,x = gωx

1 · grx

ρ(x)

The algorithm returns Ep = {(E1,x, E2,x, E3,x)}x for each p ∈ P .
– Decaps(dkid, Ep), where dkid = (dkaid) for the attributes owned by id: First,

the user must find a vector �c ∈ K
m such that �ct · A = (1, 0, . . . , 0) and

the support I of the non-zero components of �c links to a set of attributes
owned by the user. Then, for each x ∈ I, the user computes Fx = E1,x ·
e(H(id), E3,x)/e(dkρ(x)

id , E2,x). He finally gets K by combining with the vector
�c: K ← ∏

x∈I F cx
x .

The latter reconstruction works since

∑
x∈I

cx · νx =
m∑

x=1

cx · νx = �ct · �ν = �ct · A · �v = (1, 0, . . . , 0) · �v = s

∑
x∈I

cx · ωx =
m∑

x=1

cx · ωx = �ct · �ω = �ct · A · �w = (1, 0, . . . , 0) · �w = 0

In addition, for each x ∈ I,

Fx = E1,x · e(H(id), E3,x)/e(dkρ(x)
id , E2,x) = Gνxe(H(id), g1)ωx .

And so, the final combination leads to
∏
x∈I

F cx
x =

∏
x∈I

(Gνxe(H(id), g1)ωx)cx = G�ct·�ν · e(H(id), g1)�c
t·�ω = Gs.

One should note that for this construction to work, the map ρ needs to be an
injection. In practice, this is not a real issue, since one can simply duplicate the
attributes and provide multiple keys to users.

4.3 Construction of the LSSS

In this section, we detail a construction of the LSSS, in an iterative way, from a
boolean tree (with only OR and AND gates).
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First, we have to start from an LSSS for a simple policy p = (ai), for some
i (i.e., a unique attribute): Ai = (1) and ρ(1) = i. Then we explain how to
combine two policies p1 and p2, represented by the LSSS’s (A1, ρ1) and (A2, ρ2)
respectively, into the policies p∧ = p1∧p2 and p∨ = p1∨p2 with LSSS’s (A∧, ρ∧)
and (A∨, ρ∨) respectively.

In the following, for any A, we denote A1 the first column et A∗ the matrix
A without the first column (i.e., A =

[
A1 A∗]).

Proposition 9. Let (A1, ρ1) and (A2, ρ2) be two LSSS’s for the policies p1 and
p2. Then we can build the LSSS’s (A∧, ρ∧) and (A∨, ρ∨) for the policies p∧ =
p1 ∧ p2 and p∨ = p1 ∨ p2 as follows

A∨ =
[
A1

1 A∗
1 0

A1
2 0 A∗

2

]
A∧ =

[
A1

1 A1
1 A∗

1 0
0 −A1

2 0 −A∗
2

]

If we label the rows of the matrices from 1 to m1 +m2, where A1 ∈ K
m1×n1 and

A2 ∈ K
m2×n2 , we have

ρ∧ = ρ∨ : x �→
{

ρ1(x), if x ≤ m1

ρ2(x − m1), if x ≥ m1 + 1

This construction is not really new, since it was described in [12] in a more
generic way. But we need this explicit description for the security analysis of
our ABKEM. The correctness of this LSSS construction is provided in the full
version [5]. Up to a re-ordering of the rows and columns of the matrices, this is
also the same construction obtained from the algorithm presented in [5] from [11].
A comparison of the two methods is indeed proposed in the full version [5].

4.4 Homomorphic Policy

Our main goal is now to show that this iterative construction of the LSSS can be
applied to our ABKEM, starting from encapsulations of the same key K under
every attribute. This will follow from the homomorphic-policy property.

We recall that in the ABKEM, �ν = A · �v is a secret sharing of a random
scalar s, while �ω = A · �w is a secret sharing of 0, the components νx and ωx

being hidden in E1,x and E3,x by Grx

ρ(x) and grx

ρ(x) respectively. Because of the
linear property of the LSSS, by concatenating or by adding the shares, we either
obtain the OR or the AND policies of two encapsulations E(1) and E(2):

Share-Vectors Encapsulations[
�ν1
�ν2

]
←→ E(1) ∪ E(2)

�ν1 + �ν2 ←→ E(1) · E(2)

Of course, the same applies on the shares �ω of 0, but we focus on the shares �ν
of the random s.
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One Secret Under Two Policies. Let us be given two encapsulations E(1) and
E(2) of the same secret value K = Gs under the policies p1 and p2, represented
by the LSSS (A1, ρ1) and (A2, ρ2).

The construction thus used the share-vectors �νi = (νi,1, . . . , νi,mi
) = Ai · �vi,

with �vi = (s, vi,2, . . . , vi,ni
)t, for i = 1, 2. Using

A∨ =
[
A1

1 A∗
1 0

A1
2 0 A∗

2

]
and �v = (s, v1,2, . . . , v1,n1 , v2,2, . . . , v2,n2)

t,

one gets �ν =
[
�ν1
�ν2

]
.

From attributes satisfying pi, under the LSSS property, one can efficiently
find a vector �ci = (ci,1, . . . , ci,mi

)t ∈ K
m such that �ct

i · Ai = (1, 0, . . . , 0). By
multiplying this vector on the appropriate half of �ν, one can get s:

(c1,1, . . . , c1,m1 , 0, . . . , 0) · �ν = �ct
1 · �ν1 = s

(0, . . . , 0, c2,1, . . . , c2,m2) · �ν = �ct
2 · �ν2 = s.

It will be used for the disjunction of policies.

Two Secrets Under Different Policies. Let us be given two encapsulations
E(1) and E(2) of two secret values K1 = Gs1 and K2 = Gs2 under the policies
p1 and p2, represented by the LSSS (A1, ρ1) and (A2, ρ2).

The construction thus used the share-vectors �νi = (νi,1, . . . , νi,mi
) = Ai · �vi,

with �vi = (si, vi,2, . . . , vi,ni
)t, for i = 1, 2. Using

A∧ =
[
A1

1 A1
1 A∗

1 0
0 −A1

2 0 −A∗
2

]
and �v = (s1+s2,−s2, v1,2, . . . , v1,n1 , v2,2, . . . , v2,n2)

t,

one gets again �ν =
[
�ν1
�ν2

]
. This combination will be used for the conjunction of

policies, but only with the same secret. Note that the produced encapsulation
must be randomized to perform the new policy, otherwise there is a colluding
attack: with independent keys for each policy, two players can independently get
s1 and s2, and can then combine them to get s1 + s2.

Two Secrets Under the Same Policy. Let us be given two encapsulations
E(1) and E(2) of two secret values K1 = Gs1 and K2 = Gs2 under the same
policy p, represented by the LSSS (A, ρ).

The construction thus used the share-vectors �ν1 and �ν2 of the random scalars
s1 and s2 respectively under the same policy p. Then, one can see �ν = �ν1 +�ν2 as
a share-vector of s = s1 + s2 under the policy p, since �ν = A · (�v1 + �v2). Indeed,
from attributes satisfying p, one can efficiently find a vector �c ∈ K

m such that
�ct · A = (1, 0, . . . , 0):

�ct · �ν = �ct · A · (�v1 + �v2) = (1, 0 . . . , 0) · (�v1 + �v2) = s1 + s2.

This combination will be used for the randomization, with s2 = 0.
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4.5 Security

IND security. In [11], Lewko and Waters proved their ABE scheme to be indis-
tinguishable under several assumptions in the composite-order pairing setting
(we recall them in the full version [5]) and the condition that ρ is injective. This
easily leads to the IND security for the above variant of ABKEM, even for adap-
tive KeyGen-queries. Hence, this ABKEM construction achieves the IND security
level.

m − IND − NKA security. We now show that, the m − IND − NKA security of
the modified ABKEM can also be based on the IND security of Lewko-Waters
scheme.

Theorem 10. The IND security level of Lewko-Waters implies the m − IND −
NKA security of the modified ABKEM.

Proof. As highlighted in the full version [5], the two security games are quite
similar, the main differences appear in the challenge phase, and the lack of
key-queries in the latter. If one looks at the above construction of the LSSS-
matrix, for p = a1 ∨ . . . ∨ ak, then A = (1, . . . , 1)t and �ν = (s, . . . , s)t: from an
encapsulation E of the key K = Gs under the policy p, one can easily extract
the encapsulations Ei of the same K, under the policies pi = (ai) respectively:
indeed, each triple (E1,x, E2,x, E3,x) is a simple encapsulation of K under ax =
ρ(x).

This remark is true for every conjunction pf =
∨

pi where the policies pi’s do
not share any attribute. Note that the triples (E1,x, E2,x, E3,x) involved in the
decryption of a policy pi are those associated to the attributes which appears
in this policy. The choice of these triples is given by the vector c. Consequently,
we can easily convert the challenger’s answer from one game to another by
concatenating/separating the ciphertext(s) by following this policy decomposi-
tion. Because of the lack of key-queries in the m − IND − NKA security game,
we can just build an adversary B for the IND game from an adversary A of
the m − IND − NKA game. More precisely, if an adversary A has an advantage
Advm−ind−nka(A) = ε in the m − IND−NKA game for the policies (pj)j , one can
construct an adversary B with the same advantage Advind(B) = ε in the IND
game for the policy pf =

∨
pi.

As already noted, Lewko and Waters [11] assume a one-use restriction on
attributes throughout the proof: this means that the row-labeling map ρ of
the challenge ciphertext access matrix (A, ρ) must be injective. The reason is
that, if an attribute is used twice in the access matrix, then there will appear an
implicit relation between the randomnesses associated to the corresponding two
lines of the matrix and the proof does not go through anymore. To overcome
this issue, Lewko and Waters suggested to associate k independent attributes to
any attribute a, where k is an upper-bound on the number of repetitions of an
attribute in a policy. Our scheme inherently has the same limitation.
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4.6 Homomorphic Policy

Let us now see how this impacts on the encapsulations, when one wants to do
disjunctions and conjunctions of policies.

Disjunctions. Let us be given two encapsulations E(1) and E(2) of the same
key K = Gs under the policies p1 and p2, represented by the LSSS (A1, ρ1) and
(A2, ρ2). We want to make an encapsulation of K under the policy p1∨p2. Using
the construction of the share-vectors from Sect. 4.4, which applies on both �ν1, �ν2
and �ω1, �ω2, we know that the resulting encapsulation should use

�ν =
[
�ν1
�ν2

]
�ω =

[
�ω1

�ω2

]
.

Therefore, the resulting encapsulation is Ep1∨p2 = {(E(1)
j,x , E

(2)
j,x)j=1,2,3}x∈A.

Conjunctions. Let us be given two encapsulations E(1) and E(2) of the same
key K = Gs under the policies p1 and p2, represented by the LSSS (A1, ρ1) and
(A2, ρ2). We want to make an encapsulation of K under the policy p1∧p2. Using
the construction of the share-vectors from Sect. 4.4, which applies on both �ν1, �ν2
and �ω1, �ω2, we know that the resulting encapsulation should use

�ν =
[
�ν1
�ν2

]
�ω =

[
�ω1

�ω2

]
.

However, this will contain the key K2 = G2s. We thus have to use square-roots:
the resulting encapsulation is Ep1∧p2 = {((E(1)

j,x)1/2, (E(2)
j,x)1/2)j=1,2,3}x∈A.

Note that even if in the Lewko-Waters’ construction there is a modulus N =
q1q2q3 that is hard to factor, this is the order of the group. Hence g1/2 = gα

where α = (N + 1)/2.
As already noted, collusion is possible. But this is even worse in this case

since we are using s = s1 = s2: just satisfying one of the two policies, one
can recover K1/2 = Gs/2, which thereafter easily leads to K. We thus need to
randomize the encapsulation, in order to glue together the policies.

Randomization. If one looks in details the description of the Encaps algorithm,
there are 4 kinds of randomness:

– s, that defined the encapsulated key K = Gs;
– vk, wk

$← ZN for k = 2, . . . , n, to define �v and �w;
– �r

$← Z
m
N .

Let us start from any encapsulation E(1) of K under a policy p, with

E
(1)
1,x = Gν(1)

x · G
r(1)
x

ρ(x) E
(1)
2,x = g

r(1)
x

1 E
(1)
3,x = g

ω(1)
x

1 · g
r(1)
x

ρ(x)
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for each ax = ρ(x) involved in the policy p, where �ν(1) = A · �v(1) and �ω(1) =
A · �w(1). We now define a new fresh encapsulation E(2):

E
(2)
1,x = Gν(2)

x · G
r(2)
x

ρ(x) E
(2)
2,x = g

r(2)
x

1 E
(2)
3,x = g

ω(2)
x

1 · g
r(2)
x

ρ(x)

where �ν(2) = A · �v(2) and �ω(2) = A · �w(2), for �v(2) = (0, v′
2, . . . , v

′
n)t and �w(2) =

(0, w′
2, . . . , w

′
n)t, with v′

k, w′
k

$← ZN for k = 2, . . . , n, and �r(2)
$← Z

m
N . This

is actually a fresh random encapsulation of K(2) = 1GT
under the policy p.

It can be computed from the public key pk that contains N , g1, and the keys
pka = (Ga, ga), for all the attributes, as would be generated a fresh encapsulation
of K = 1GT

.
Eventually, the new encapsulation E = {(E(1)

1,x ·E(2)
1,x, E

(1)
2,x ·E(2)

2,x, E
(1)
3,x ·E(2)

3,x)}x

is a truly random encapsulation of the same K under the policy p, and so looks
like a fresh encapsulation.

5 Conclusion

We proposed a new feature for ABE, with the homomorphic policy. It allows to
separate the roles of the sender and the access right manager. This is a quite
useful property for the Pay-TV context, since the access right manager does not
have access anymore to the content payload. The distribution to the subscribers
can be performed by a weakly trusted party.

Acknowledgments. This work was supported in part by the European Commu-
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Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 579–591.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-70583-3 47

9. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., Vimercati, S.
(eds.), ACM CCS 2006, pp. 89–98. ACM Press, October/Available as Cryptology
ePrint Archive Report 2006/309, November 2006
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Abstract. A watermarking scheme for a public-key cryptographic func-
tionality enables the embedding of a mark in the instance of the secret-
key algorithm such that the functionality of the original scheme is main-
tained, while it is infeasible for an adversary to remove the mark (unre-
movability) or mark a fresh object without the marking key (unforgeabil-
ity). Cohen et al. [STOC’16] has provided constructions for watermark-
ing arbitrary cryptographic functionalities; the resulting schemes rely on
indistinguishability obfuscation (iO) and leave two important open ques-
tions: (i) the realization of both unremovability and unforgeability, and
(ii) schemes the security of which reduces to simpler hardness assump-
tions than iO.

In this paper we provide a new definitional framework that distin-
guishes between watermarking cryptographic functionalities and imple-
mentations (think of ElGamal encryption being an implementation of the
encryption functionality), while at the same time provides a meaningful
relaxation of the watermarking model that enables both unremovability
and unforgeability under minimal hardness assumptions. In this way we
can answer questions regarding the ability to watermark a given imple-
mentation of a cryptographic functionality which is more refined com-
pared to the question of whether a watermarked implementation function-
ality exists. Taking advantage of our new formulation we present the first
constructions for watermarking public key encryption that achieve both
unremovability and unforgeability under minimal hardness assumptions.
Our first construction enables the watermarking of any public-key encryp-
tion implementation assuming only the existence of one-way functions for
private key detection. Our second construction is at the functionality level
and uses a stronger assumption (existence of identity-based encryption
(IBE)) but supports public detection of the watermark.
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1 Introduction

Watermarking digital objects like pictures, video or software is usually achieved
by embedding a special piece of information, the mark, into the object so that it
is difficult for an adversary to remove it without damaging the object itself, or
to introduce a fresh and legible mark. At the same time, the embedding of the
mark should not result to a significantly different object, or an object with dif-
ferent functionality. Watermarking in practice is particularly useful, and widely
applied, in order to protect content creators against illegal use and distribu-
tion of copyrighted digital objects. A plethora of watermarking schemes exists
in the literature [1,13,26,27] (and references therein), most of them focusing on
watermarking “static” objects while lacking a rigorous theoretical analysis and
provable secure constructions.

The first formal security definitions for watermarking objects were given by
Barak et al. [3,4] and by Hopper et al. [16]. Barak et al. [3,4] proposed definitions
for software watermarking and showed impossibility relations between program
obfuscation and watermarking, while Hopper et al. [16] defined watermarking of
perceptual objects without providing any constructions. Nishimaki [22], inspired
by the work of [16], extended their definitions to formalize watermarking of
cryptographic functions/circuits and defined the security properties to be: cor-
rectness, functionality-preserving, unremovability and unforgeability.

Watermarking cryptographic functions has various real-life applications.
Consider for instance the case of VPN clients. An organization might wish to dis-
tribute VPN clients to its employees where every employee has a public/secret-
key pair. Watermarking the VPN client restricts the employees from sharing
their clients since, due to the unremovability and unforgeability property, given
any client one could detect to whom does this client belongs to (assuming the
ID of the user is embedded in the watermark).

Nishimaki [22] provided the first construction of a cryptographic watermark-
ing. While proven secure, the scheme is still vulnerable to a general obfuscation
attack described in [4]; Cohen et al. [10] (merged result of [11,24]) gave a water-
marking scheme for puncturable PRFs [7,8,18] which avoids the impossibility
result of [4] by allowing statistical correctness, i.e. the marked PRF is allowed
to behave differently in a negligible fraction of inputs, comparing to the initial
one. The construction suggested in [10] is based on the assumption that indis-
tinguishability obfuscation (iO) exists, allows for public key detection and it
provably satisfies the unremovability property.

Our results. Our contributions are both in definitional and constructional level.
We start by rethinking the definitional framework for watermarking public-
key cryptographic functionalities. We approach cryptographic watermarking, by
making a relaxation and refinement to the model considered in previous works,
which we argue maintains all the relevant to practice features that the previous
formulations enjoyed, and moreover can be very suitable for some real world
scenarios due to its more refined nature. Previous approaches [10,11,22,24] con-
sidered a watermarking definition where the marking algorithm would take as
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input a specific unmarked program/circuit and would output the marked version
of it, i.e., a program that preserves the functionality of the one given as input
to Mark. The origins of this thinking are in the work of [16], that dealt with the
cryptographic formalization of watermarking in general.

An important observation that motivates our modeling is that limiting the
interaction between the marking system and the recipient of the object in the
above fashion is unnecessarily restrictive. In most, if not all, applications of
public-key cryptography, the actual details of the decryption or signing program
are not relevant to its user, only its functionality is (which encompasses its cor-
rectness and security properties). For instance, in the VPN scenario we described
above, the organization (i.e. the marking system) is often the one to sample a key
KU for its client and provide it along with the VPN client. Thus we argue that
in practice, any interaction between the marking system and the recipient that
results in the sampling of a decryption or signing program would be sufficient
for an application of watermarking. Following the above reasoning, we propose a
new version of watermarking definitions where the Mark algorithm does not take
a specific program as input1 but instead it partitions2 the exponential space
of available secret-key program instances into marked and unmarked (taking
advantage of the marking key) and whenever queried it samples and returns a
program from the marked space. This extends to the case of embedding a water-
mark in the form of a message msg, in which setting, the space is partitioned
further labeled by the different messages that may be embedded.

In our model, we define watermarking for public-key cryptographic function-
alities as well as cryptographic implementations. Distinguishing between the
two is a further refinement of the definitional framework and relevant from a
real world point of view. Specifically, in all previous works the focus was in the
watermarking of a cryptographic functionality, in the sense of constructing a new
scheme (say, public-key encryption or digital signature) for which one can argue
the basic properties of watermarking (unremovability, unforgeability, function-
ality preserving) or watermarking a circuit directly. In other words, the starting
point was the cryptographic functionality and the solution was a specific con-
struction realizing it or the starting point was a fixed program. While this is
sensible as in the first case it permeates the way cryptographic primitives are
proposed and realized in general and in the second it resembles the definition of
obfuscation, for the case of watermarking it appears also important to be able
to watermark a specific cryptographic implementation of a functionality, which
is a probability distribution ensemble of programs (with each sample containing
both code and keys). In plain words, a marking service may want to watermark,

1 In [6] a similar relaxation of the marking algorithm is given, in the sense that the
algorithm does not receive as input a specific circuit to be marked, but instead
samples a key to be marked and returns it together with the marked circuit. However,
their watermarking model is restricted to watermarking PRFs only.

2 This partition of the space to marked and unmarked programs is the reason why the
impossibility result of [4] does not apply in our setting – applying iO to a marked
program in our model would not remove the marking.
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say, ElGamal public-key encryption because this particular implementation of
public-key encryption is the one that is standardized, backwards compatible, or
sufficiently efficient for the context within which the cryptographic system is
used. This of course can be achieved by watermarking a circuit implementing
ElGamal decryption but definitionally this can be relaxed and the objective, can
be seen to lie in between the objectives of designing a watermarked public-key
encryption and watermarking arbitrary circuits.

Following the above we formulate secure watermarking both for the case of
functionalities and implementations, focusing on the public-key setting. We also
validate our model by showing that watermarking a given implementation of a
functionality is a stronger notion than merely watermarking a functionality (i.e.,
producing a watermarked implementation of the functionality). Note that, exist-
ing work in formalizing watermarking is either done for circuit classes [10] or even
more restricted, for pseudorandom functions [20]. Our definition is more general,
encompasses any public-key cryptographic functionality and implementation and
is consistent to existing work. Cohen et al. [10] attempted to provide specific
definitions for watermarking public-key cryptographic primitives, i.e. “Water-
markable Public Key Encryption and “Watermarkable Signature Scheme”. Our
definitional framework is more general and encompasses any public-key crypto-
graphic functionality and implementation and is consistent with theirs for these
functionalities. Thus, any construction that is described in their model for water-
markable encryption and signatures will be syntactically compliant and secure
in our more general model as well.

Once we set our new definitional model we present two constructions. In
Sect. 5 we propose a scheme for watermarking cryptographic implementations,
precisely a watermarking scheme for watermarking any public key encryption
implementation. This construction works for private detection of watermarked
programs. It assumes a shared state of logarithmic size in the security parameter
between the Mark and Detect algorithms while the running time of the detec-
tion algorithm depends on the number of marked programs so far. We stress
that these relaxations to the notion of watermarking do not appear to hurt the
applicability of the scheme in a real world setting, where e.g., an organization
wishes to issue watermarked versions of cryptographic algorithms (embedded
in VPN clients). In such scenarios private detection is the default requirement
and given that detection of malicious clients happens with much lower frequency
compared to marking, a detection process with linear running time to the num-
ber of clients can be reasonable. Countering these downsides, our construction
enjoys security against both unremovability and unforgeability attacks, actually
achieving unconditional unremovability for any public-key encryption implemen-
tation. Moreover, the only assumption needed for unforgeability is the existence
of one-way functions (that we utilize as a facilitator for a PRF function). This
suggests that the security of watermarking comes essentially “for free” since the
security of the underlying public-key encryption would imply the existence of
one-way functions already.
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Our second construction achieves watermarking for the public key encryption
functionality. It is based in identity-based encryption (IBE) [5], also assumes a
shared state of logarithmic size in the security parameter between the Mark
and Detect but, as opposed to our first construction, it allows for public key
detection of the watermark. This is the first construction in the literature for
watermarking a cryptographic functionality with public-key detection when only
based on standard assumptions (i.e. without using iO).

In a high level, both our constructions exploit the notion of a PRF [15], to
create a compact “dictionary” of marked objects that is subsequently scanned
and compared with the adversarial implementation. Our proposed constructions
are simple and use well-known building blocks and are secure under minimal
standard assumptions. Despite their simplicity, our schemes require a very care-
ful analysis in order to comply with the complex security properties of water-
marking. Finally, we would like to note that we view the simplicity of our con-
structions as an advantage, and a testament to the fact that rethinking and
performing small relaxations to the model of watermarking public-key function-
alities can allow for quite substantial improvements, both in terms of efficiency
and security assumptions, that remain relevant to practice.

Related Work and Comparison to Our Model. One of the earliest works
related to software watermarking is due to Naccache et al. [21] that considered
the problem of “copyrighting” public-key encryption schemes in a setting that is
akin to traitor tracing [9]; implementations are fingerprinted and the detection
mechanism should be collusion resilient. Note that this type of fingerprinting an
object is distinct from the one we consider here. Indeed, watermarking is about
establishing the ownership of a certain object whereas fingerprinting is about
controlling its distribution. A number of heuristic methods for software water-
marking were later presented in [12]. Another related notion is leakage-deterring
public key cryptography as defined in [19]. The idea there is that some personal
information is embedded to the public key of a user such that, if she decides to
share her secret key (or a partial working implementation of her decryption func-
tion) the recipient can extract the private information embedded in the public
key. This notion is different from watermarking since it focuses on private infor-
mation embedding in a cryptosystem that remains hidden unless the secret key
is shared. Privacy is not an issue in watermarking thus construction techniques
are technically and conceptually different. Finally, leakage deterring schemes
require the embedded information to be of high entropy while in watermarking
it is meaningful, depending on the application, to embed arbitrary messages or
even not include a message at all.

In [3,4], Barak et al. provide a formal definition for software watermark-
ing and explore its relation with iO. The authors provide an impossibility result
showing that if a marked circuit has exactly the same functionality as the original
one, then under the assumption of indistinguishability obfuscation (iO), water-
marking is impossible. Note that the definition of watermarking is not included
in original version [3] and is only added in the more recent full version [4].
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Nishimaki, [22] (cf. also [23]), inspired by the definitions of watermarking
given in [16] (for static objects), suggests a new model for watermarking crypto-
graphic functions modeling both notions unremovability and unforgeability and
proposes a watermarking scheme for Lossy Trapdoor functions [25]. The con-
struction is vulnerable, in light of the impossibility result of [4], to an obfusca-
tion attack, i.e., the application of iO to a marked circuit which would effectively
remove the mark. It should be noted that [22] circumvents the impossibility result
by considering more restricted adversaries whose outputs in the security games
should preserve the format of the original functions but, naturally, this leaves
open the question of considering general adversaries.

More recently, Cohen et al. [10] motivated by the fact that the iO impos-
sibility result does not hold if a marked circuit is approximately close to the
original unmarked one (they formulate this as statistical correctness), they pro-
pose a watermarking scheme for any puncturable PRF family. This scheme relies
on iO, features public key detection and satisfies unremovability without plac-
ing any restriction to the adversarial strategy. Based on this scheme and the
constructions given by Sahai and Waters [28] for public key encryption and sig-
natures, Cohen et al. [10] describe how to construct “Watermarkable Public-key
Encryption” and “Watermarkable Signatures”. Both constructions rely on iO.
Furthermore, the definitions for these primitives do not consider the notion of
unforgeability, however there are some preliminary results related to this notion
in [11] (but they are not conclusive).

Boneh et al. [6] provide a watermarking construction for a class of PRFs,
called private programmable PRFs, as an application of private constrained
PRFs. Their construction achieves unremovability and unforgeability in the pri-
vate key setting (i.e. private key detection), but relies on iO.

Concurrently to our work, Kim and Wu [20] suggest a watermarking scheme
for a family of PRFs based on standard lattice assumptions. In particular, they
first introduce a new primitive called private translucent PRFs for which they
give a lattice-based construction. Based on that, they provide a construction for
a watermarkable family of PRFs that allows private key detection.

Apart from the differences in our definitional models, we also highlight the
following differences between [10,20] and our work. We achieve watermarking of
both public key encryption implementations and functionalities instead of only
constructing watermarkable instances of public-key cryptographic functionalities
(as done by [10]). Our first construction takes advantage of a small shared state
while at the same time being very efficient during marking; in fact it is as effi-
cient as the underlying public-key cryptographic implementation and does not
require any additional intractability assumptions. Our second construction for
watermarking PKE functionalities is the first to achieve both unforgeability and
unremovability with public detection which is an open problem in the setting of
both [10,20].
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2 Preliminaries

Notation. We first set the notation to be used throughout the paper. By λ ∈ N

we denote the security parameter and by negl(·) a function negligible in some
parameter. The left arrow notation, x ← D, denotes that x is chosen at random
from a distribution D. PPT stands for probabilistic polynomial time. C will
always denote an unmarked algorithm/circuit and ˜C a watermarked one.

Relations between circuits. In this paragraph we define some notions of “close-
ness” between circuits which are crucial in defining properties of a watermarking
scheme like unforgeability and unremovability as we will see later. These notions
are defined with respect to a distribution D over an input space X.

Definition 1 (ρ-closeness). We say that two circuits C1, C2 are ρ-close with
respect to distribution D over a space X if they agree on at least ρ-fraction of
the inputs chosen according to D. Namely,

Pr
x←D

[C1(x) = C2(x)] ≥ ρ.

We denote ρ-closeness by C1 ∼ρ,D C2.

Definition 2 (γ-farness). We say that two circuits C1, C2 are γ-far with
respect to a distribution D over a space X, if they agree on at most (1 − γ)-
fraction of the inputs chosen according to D. Namely,

Pr
x←D

[C1(x) = C2(x)] ≤ 1 − γ.

We denote γ-farness by C1 �γ,D C2.

2.1 Defining Cryptographic Objects

We now define the notions of cryptographic functionalities and implementations.
The goal of the cryptographic functionality definition is to capture cryptographic
objects (such as: an encryption scheme, a pseudorandom function, etc.) in an
abstract ideal way, focusing on the properties it should satisfy (one could think of
this as the ideal functionality of a cryptographic scheme). On the other hand, the
notion of a cryptographic implementation is used to describe a specific implemen-
tation of a cryptographic functionality (i.e. the ElGamal encryption scheme [14]
is an implementation of the encryption functionality).

Definition 3 (Cryptographic functionality). A cryptographic functionality
CF consisting of m algorithms3, (C1, . . . , Cm), is defined by a set of n properties
and their corresponding probabilities (Gpropi

A , πpropi)
n
i=1. Each property G

propi
A is

described in a game fashion: it receives as input m algorithms (that constitute an
instance of a candidate implementation of the functionality) and interacts with
any PPT adversary A that attempts to “break” the desired property.
3 We consider protocols to also be described as a set of algorithms.
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Remark 1. In a more complex definition we could associate each property with
a parameter ti(λ) which would define the running time of the adversary. For
simplicity, in Definition 3, we opt to define all the properties with respect to
PPT adversaries. However, some properties may also hold for super-polynomial
adversaries (e.g. correctness-related properties).

Example. Consider the public key encryption functionality as an example, which
can be defined as a pair of algorithms 〈Enc,Dec〉 that should satisfy the proper-
ties of correctness and IND-CPA security. As we explain in the full version [2],
correctness can be defined as a security game where an adversary is challenged
to provide an encryption of a message M which is decrypted to a message dif-
ferent than M . The IND-CPA security property is defined in the standard way.
Corresponding to our definitions, the games will receive as input the encryp-
tion/decryption algorithms for a specific key pair. Given that the definition of
a cryptographic functionality describes the “ideal” scenario, correctness would
always hold with probability 0 (perfect correctness) while in IND-CPA property
the adversary would have probability of success of exactly 1/2.

Definition 4 (Cryptographic Implementation). Let CF be a cryptographic
functionality with m algorithms and n properties (Gpropi

A , πpropi)
n
i=1. An imple-

mentation of the cryptographic functionality CF consists of an (m + 1)-tuple of
algorithms/protocols (Gen, C1, . . . , Cm) such that, for every security parameter
λ and each property propi for i ∈ {1, . . . , n} and for any corresponding PPT
adversary A, it holds that:

Pr

[

(k1, . . . , km) ← Gen(1λ) :
G

propi
A (C1(k1, ·), . . . , Cm(km, ·)) = 1

]

≤ πpropi + negl(λ).

In Definition 4 we consider single-instance properties. This means that the
input of the property game is a specific instance of the implementation’s algo-
rithms under a fixed key. One could also define multi-instance properties, where
the corresponding game would receive as inputs multiple versions of the algo-
rithms all under different keys.

3 Watermarking Cryptographic Functionalities

We now define the notion of watermarking cryptographic functionalities. The
main idea of our definition follows [4,6,10,20] however notice that: (1) we define
watermarking of a functionality rather than a circuit class, (2) our marking algo-
rithm is not given a specific algorithm/circuit to mark but selects and outputs
only an instance of the functionality being marked (i.e. the tuple of the corre-
sponding algorithms), and last (3) our definition allows for a shared public state
between the Mark and Detect algorithms. In this section we will refer to the
algorithms of a cryptographic functionality as circuits.
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3.1 Syntax of a Watermarking Scheme

Let CF be a cryptographic functionality with m algorithms/circuits and n prop-
erties (Gpropi

A , πpropi)
n
i=1 and let {Mλ}λ∈N denote the message space (of the mes-

sages to be embedded on the watermarked scheme), where λ is a security para-
meter. The entities that are involved in a watermarking scheme are a set of
clients, and a “marking service”, MarkService.

Definition 5 (Watermarking Scheme). A stateful watermarking scheme for
a cryptographic functionality CF , consists of three probabilistic polynomial time
algorithms 〈WGen, Mark,Detect〉 whose input/output behavior has as follows:

– WGen : On input 1λ, it outputs public parameters param and a pair of keys
(mk, dk), where mk is the marking key and dk is the detection key. It also
initializes a public variable state which can be accessed by all the parties.

– Mark : On input mk, param, a message msg ∈ Mλ (which is sent by a
client to the MarkService) and current state, the marking algorithm outputs a
tuple of circuits ( ˜C1, C2, . . . , Cm), an efficiently sampleable and representable
distribution D on the inputs of the circuit ˜C1

4, and the updated state state′.
– Detect : On input dk, param, state and a circuit C ′

1, it outputs a message
msg′ or unmarked.

Despite the fact that the marking service outputs a tuple of circuits (as many
as the algorithms of CF ), only one circuit among them is considered marked. By
convention, this would be the first circuit in a tuple produced by the Mark
algorithm. It is trivial to extend this definition for the case where more than one
circuits are considered marked. The Detect algorithm, as in previous definitions,
will run on input any circuit C ′

1. Also, note that a stateless watermarking scheme
could be described by setting the variable state to be empty string.

Remark 2. Notice that a new feature of our definition of watermarking is that
the Mark algorithm outputs a distribution D on the inputs of marked circuit.
This distribution is relevant to our definitions of closeness and farness between
circuits (cf. Definitions 1 and 2) and essentially defines on which inputs we expect
that circuits are similar or not.

3.2 Security Model

For our security model, we define oracles Challenge, Detect and Corrupt in Fig. 1.
The Challenge oracle calls the Mark algorithm, and returns to the client a tuple
of all output circuits except the one that is considered marked (i.e. the first
one) along with an index i that shows how many times the Mark algorithm is
invoked so far. The Corrupt oracle outputs the whole tuple of circuits generated

4 The marking algorithm, Mark, can output the distribution D in the form of an
algorithm that samples inputs for the circuit ˜C1.
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ChallengeOracle(msg, ·):

1. i ← i + 1;
2. ( ˜Ci

1, C
i
2, . . . , C

i
m), Di, state

′) ←
Mark(param, mk, msg, state);

3. Marked ← Marked ∪
{ i, ( ˜Ci

1, C
i
2, . . . , C

i
m), Di, msg

)};
4. Set state ← state′;
5. Return

(i, (Ci
2, . . . , C

i
m), Di, state);

CorruptOracle(i):

1. Retrieve (i, ( ˜Ci
1, . . . , C

i
m), Di, msgi)

from Marked;
2. Corrupted ← Corrupted ∪

{ i, ( ˜Ci
1, C

i
2, . . . , C

i
m), Di, msgi

)};

3. Return ( ˜Ci
1, . . . , C

i
m), Di

)

;

DetectOracle(C):

1. msg ← Detect(dk, param, C, state);
2. Return msg ;

Fig. 1. The Challenge, and Detect and Corrupt oracles.

by the Mark algorithm for a specific i and works for queries the indices of which
were previously returned the Challenge oracle. The Detect oracle runs the Detect
algorithm with input a given circuit. Finally, given that state is public, we assume
that all oracles have access to it.

Remark. Notice that for marked (but not corrupted tuples) the adversary does
not have access to the marked circuit ˜C1. This might be restrictive for certain
schemes and properties. Consider for instance the case of CCA security for a pub-
lic key encryption scheme. Then, the marked algorithm would be the decryption
one. Although the adversary should not receive Decsk, he should still be able
to query it on ciphertexts of his choice. Thus, we could define one more oracle
name QueryOracle that would take as input an index i and an input x and would
return the output of the i-th watermarked circuit produced by ChallengeOracle.

Comparing our security model with previous work. In the security model of [10],
[20] (note that [20] is specific to PRFs), the adversary has access to both marking
and challenge oracles. Their marking oracle receives as input an unmarked circuit
and returns the corresponding marked one, while the challenge oracle samples a
circuit and returns it marked without revealing the sampled, unmarked one. In
the security model of [6], the marking oracle receives a message as input, and
returns an unmarked PRF key and a marked circuit embedded with this message.
Note that [6,20] give only definitions for PRFs and not circuit classes in general.
Although the security model of [6] seems closer to our model, the existence of
a marking oracle, as this is defined in [10,20] and [6], does not comply with
our model. The Mark algorithm in our case neither takes as input an unmarked
circuit nor returns an unmarked circuit together with the marked one as output.
Another difference with the model of [6,10,20] is that our challenge oracle does
not return the marked circuit of the tuple, i.e. the first one by convention. The
corrupt oracle is the one that returns the marked cicruit for a previously sampled
marked instance of a functionality or implementation. Notice that our challenge
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oracle does not play any important role for functionalities with a single algorithm
like a PRF but it is crucial for multi-algorithm functionalities. For example, in
the public-key encryption functionality if the decryption function, i.e. a secret
key, is the one which is marked, it is reasonable that the adversary should be
given the corresponding public key.

3.3 Security Properties

Next, we define the properties that should be satisfied by a watermarking scheme.
We start by detection correctness which informally states that a valid water-

marked circuit should be detected as such with a non-negligible probability. Our
definition guarantees that any update on the state, after each execution of Mark,
does not affect the detection correctness of previously marked circuits.

Definition 6 (Detection Correctness). We say that a watermarking scheme
satisfies detection correctness if for any PPT advrersary A against the security
game described in Fig. 2, it holds that:

Pr[Gdet−corr(1λ) = 1] ≤ negl(λ).

The next property we define is ρ-unremovability. Informally, an adversary after
querying the Challenge and Corrupt oracles, should not be able to output a cir-
cuit that is ρ-close to any of the queried ones, and at the same time is unmarked
or is marked under a different (than the original) mark. In Fig. 3 we first describe
the unremovability security game and then we provide the definition below.

Gdet−corr
A (1λ):

1. The Challenger runs WGen(1λ) which outputs (param, (mk, dk), state). It
gives param to the adversary A. A has also access to the public variable state.
If detection is public, A also receives dk from the Challenger. The Challenger
initializes the sets Marked and Corrupted as empty and i ← 0.

2. A makes queries to DetectOracle, ChallengeOracle and CorruptOracle.
3. A outputs an index j.
4. Output 1 iff j, ( ˜Cj

1 , ·), Dj , msg
) ∈ Marked and Detect(dk, param, ˜Cj

1 , state) �=
msg.

Fig. 2. The Detection-Correctness game

Definition 7 (ρ-Unremovability). We say that a watermarking scheme sat-
isfies the ρ-unremovability property if for any PPT adversary A against the
security game described in Fig. 3, it holds that

Pr[Gunrmv
A (1λ, ρ) = 1] ≤ negl(λ).
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Fig. 3. The ρ-Unremovability game

Fig. 4. The γ-Unforgeability game

We then define γ-unforgeability which informally states that an adversary, after
receiving marked circuits through oracle queries, should not be able to output a
marked circuit that is γ-far from the received, marked ones. Note that A only
receives marked circuits through the Corrupt oracle, thus if he manages to forge
a circuit that is close to a marked (but not corrupted one) he should still win
the game. The unforgeability security game is described in Fig. 4.

Definition 8 (γ-Unforgeability). We say that a watermarking scheme sat-
isfies γ-unforgeability if for any PPT adversary A against the security game
defined in Fig. 4 it holds that

Pr[Gunforge
A (1λ, γ) = 1] ≤ negl(λ).

Finally, we define the functionality property-preserving notion. Informally,
this notion captures the requirement that a watermarked cryptographic func-
tionality CF should preserve the properties of the original (non-marked) func-
tionality. In other words, the probability that an adversary A breaks a property
propi of a watermarked functionality should be less or equal to the probability
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that an adversary breaks the same property for the non-watermarked function-
ality (plus a negligible factor). We define functionality property-preserving with
the aid of the game in Fig. 5. In that game, the adversary A decides the instance
of the algorithms for which they will play the security property game G

propj
A ,

choosing among the watermarked ones he received by the ChallengeOracle. Note
that A cannot pick an instance that has previously corrupted. If the selected
instance was a corrupted one, then the security property propj could have been
trivially broken by A.

G
wm−propj
A (1λ) :

1. The Challenger runs WGen(1λ) which outputs (param, (mk, dk), state). It
gives param to the adversary A. A has also access to the public variable state.
If detection is public, A also receives dk from the Challenger. The Challenger
initializes the sets Marked and Corrupted as empty and i ← 0.

2. A can make queries to DetectOracle, the ChallengeOracle and the
CorruptOracle.

3. A chooses i such that (i, ( ˜Ci
1, C

i
2, . . . , C

i
m), Di, msg) ∈ Marked \Corrupted and

sends i to the Challenger.
4. Then, the Challenger runs the game G

propj
A with A but on input

(Ci
1, C

i
2, . . . , C

i
m) (notice that only challenger knows Ci

1).

5. The game G
wm−propj (1λ) outputs whatever G

propj outputs.

Fig. 5. The Functionality property-preserving game for a property propj .

Definition 9 (FunctionalityProperty-preserving).Awatermarking scheme
is property-preserving for a cryptographic functionality CF with m algorithms and n
properties (Gpropj

A , πpropj)
n
j=1 if for any PPT adversary A against the security game

defined in Fig. 5, and for any property propj, it holds that

Pr[G
wm−propj
A (1λ) = 1] ≤ πpropj + negl(λ).

Note 1. There may be property games where the adversary is not given all the
circuits Ci

2, . . . , C
i
m but only a subset of them. We could give an alternative

definition capturing such cases, however we omit it for simplicity reasons. We
also described property-preserving for the scenario when A is not given the
marking key mk. One could also consider an alternative, stronger definition,
where A has mk, marks objects by himself and then for a state of his choice,
runs the security game for the particular property using the algorithms returned
by Mark in the chosen state.
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4 Watermarking Cryptographic Implementations

Let (Gen, C1, . . . , Cm) be an implementation of a cryptographic functionality
CF . The syntax of a watermarking scheme for cryptographic implementations
is exactly the same with the syntax for cryptographic functionalities. The rea-
son is that in practice the Mark algorithm of the watermarking scheme acts
as (replaces in a sense) the Gen algorithm of a cryptographic implementation
and outputs an instance of the implementation algorithms under a specific key.
What differentiates these two definitions is only the property-preserving notion.
The rest of the security properties (detection correctness, ρ-unremovability, γ-
unforgeability) remain the same as in Sect. 3.

In order for a watermarked implementation to be property-preserving it needs
to hold that the watermarked implementation preserves the properties of the
non-watermaked one, which in turn preserves the properties of the correspond-
ing cryptographic functionality it implements. Notice that, when we watermark a
cryptographic implementation we naturally want to achieve multi-instance secu-
rity for the properties of the implementation (multi-instance versions of security
definitions are encountered in the literature for various types of cryptographic
functionalities, i.e. [17]). This arises by the fact that the ChallengeOracle is called
multiple times by the adversary, who thus receives multiple instances of imple-
mentations and then chooses for which one he will attempt to break the property
of the implementation. Therefore we first define the multi-instance version of the
security game for a property propi in Fig. 6. The MultiInstanceOracle called in
the game is identical to the ChallengeOracle but instead of calling the Mark algo-
rithm it calls the key generation algorithm Gen of the implementation and stores
all the created instances of generated algorithms to a set Instances. The security
game G

propj
S is defined as in the previous definition.

G
mi−propj
A (1λ) :

1. Set i ← 0.
2. A can make queries to MultiInstanceOracle and the CorruptOracle.
3. A chooses i such that (i, (Ci

1, C
i
2, . . . , C

i
m), Di, msg) ∈ Instances \ Corrupted

and sends i to the Challenger.
4. Then, A runs with the Challenger the game G

propj
A but on input

(Ci
1, C

i
2, . . . , C

i
m).

5. The game G
mi−propj
A (1λ) outputs whatever G

propj
A outputs.

Fig. 6. The multi-instance security game for a property propj .

Definition 10 (Implementation Property-preserving). We say that a
watermarking scheme satisfies implementation property-preserving with error ε
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for a cryptographic implementation (Gen, C1, . . . , Cm) if for any p.p.t. adversary
S there is a PPT adversary A such that

∣

∣Pr[G
wm−propj
S (1λ) = 1] − Pr[G

mi−propj
A (1λ) = 1]

∣

∣ ≤ ε.

Proposition 1. If a watermarking scheme is implementation property-
preserving, it is also functionality property-preserving, i.e. Definition 10 implies
Definition 9, when ε is negligible to the security parameter.

5 A Watermarking Scheme for Implementations of PKE

We describe a construction of an efficient watermarking scheme for a crypto-
graphic implementation of a public key encryption scheme. One could view our
construction as a compiler that takes as input an existing public key encryption
scheme and converts it into a watermarked public key encryption scheme.

Public key detection via linear size state vs secret-key detection via logarithmic
size state. Given that our definition of a watermarking scheme (Definition 5)
allows for a public state one could design a watermarking scheme for an imple-
mentation of a public key encryption scheme by assuming a state with size linear
to the number of markings. Specifically, assume that the shared state is repre-
sented as a public table which can be accessed by both the Marking Service and
any party that runs Detect algorithm. For any marking request, Mark generates
a fresh pair of keys (pk, sk) using the key generation algorithm of the public
key encryption scheme that is being watermarked. Then, it stores the generated
public key pk to the state table and outputs (Encpk,Decsk). Thus, state will hold
all the public keys generated by Mark so far. Now, how does Detect work given
the public state? When Detect receives as input a (decryption) algorithm/circuit
C, it will check for any public key stored in the public table state, whether the
circuit can decrypt correctly a number of ciphertexts which is above a certain
threshold.

Such a construction could be proven to be a secure watermarking scheme
for public key encryption however the use of a state that grows linearly to the
number of markings is not very appealing in practice especially for implemen-
tations where the public keys are large. We overcome this problem by focusing
on private detection watermarking. In Fig. 7, we suggest a watermarking scheme
with logarithmic state and private key detection where the same key is being
used for both marking and detection.

Overview of our construction. Our proposed construction is given in Fig. 7 and
assumes a state of logarithmic size (in the security parameter). We use a PRF
function F with a random key K and set marking and detection keys equal to K
and state to be a counter of the number of markings so far. Whenever, Mark is
run it will compute (pk, sk) by running F (K, state+1), set state = state+1 and
output Encpk,Decsk. In order for the detection algorithm to correctly identify
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– WGen: On input 1λ, it chooses uniformly at random a key K for a pseudo-
random function F : K × {0, 1}n → {0, 1}�. It outputs mk = dk = K and
initializes the public variable state ← 0.

– Mark: On input K, state, marked, compute i = state+1 and run Gen(1λ) with
randomness F (K, i). The output is a public-secret key pair (pki, ski) and the
algorithm returns a pair of circuits (Encpki ,Decski). Set as Di the distribution
of the ciphertexts that correspond to plaintexts chosen uniformly from the
plaintext space. Then, set state ← state + 1.

– Detect: On input K, a circuit C and state, for i = 1 to state:
• Run Gen(1λ) with randomness F (K, i) (as the Mark algorithm does) in

order to obtain (pki, ski).
• Choose k = λ/ρ plaintexts uniformly at random and encrypt them under

pki, i.e. compute the ciphertexts c1, . . . , ck.
• For j = 1 to k check whether C(cj) = mj . If this is true for at least λ/2

ciphertexts, return marked.
Otherwise, return unmarked.

Fig. 7. Watermarked Public Key Encryption Implementation

whether a decryption circuit C is marked or not, it will first re-generate all
possible key pairs by running F (K, i) for every i ≤ state. Then, for each produced
pki it will check whether an encryption of a random plaintext under it, can be
correctly decrypted with C. As it turns out by our security analysis it is not
enough to check for a single plaintext, in fact, it will check the decryptions of
λ/ρ randomly selected plaintexts.

A note about state. Note that the state information in our construction is public
and it should be immutable for the system to work in practice. A potential
solution for storing the state would be by using a public bulletin board or a
blockchain system. For example, every time the state is updated, the marking
service signs it and posts a new transaction in the blockchain with the new
state and the signature. Even though storing information in the blockchain is an
expensive operation, our scheme, with its logarithmic size state, is suitable for a
blockchain deployment. We leave a detailed analysis under a formal blockchain
security model for future work.

Security analysis of our construction. In our analysis we consider key-generation
algorithms which create their random tape by choosing keys uniformly at ran-
dom. This aligns with the key generation algorithms of all the well-known encryp-
tion schemes. We provide below the security theorem for our construction.

Theorem 1. Let 〈Gen,Enc,Dec〉 be an implementation of the Public Key
Encryption functionality that has plaintext space of exponential size (in the
security parameter) and satisfies (multi-instance) perfect correctness5 and
5 Our proofs could also be extended for implementations which have a negligible

decryption error.
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– WGen(1λ): Run IBE.Setup(1λ) which outputs (msk, IBE.param). Set mk =
msk, param = IBE.param, dk = IBE.param, and initialize state ← 0.

– Mark: On input mk, param, compute i = state + 1 and set idi = i. Run
IBE.Extract(msk, f(param, idi)) which outputs a secret key ski for the identity
idi. Return to the Client (Decski ,Encpki). Set as Di the distribution of the
ciphertexts that correspond to plaintexts chosen uniformly from the plaintext
space. Set state ← state + 1.

– Detect: On input dk and a circuit C, for i = 1 to state:
• Compute pki = f(param, idi).
• Choose k = λ/ρ plaintexts uniformly at random from the the plaintext

space and encrypt them under pki. We denote the corresponding cipher-
texts as c1, . . . , ck.

• If for at least λ/2 plaintexts it holds that C(ci) = mi then return marked
Otherwise return unmarked.

Fig. 8. Watermarked Public Key Encryption Functionality from IBE

(multi-instance) IND-CPA security. Let F : K × {0, 1}n ← {0, 1}� be a pseudo-
random function, where K is the key space. Then, the scheme in Fig. 7 is a
watermarking scheme for the implementation 〈Gen,Enc,Dec〉. Namely, it satis-
fies Detection Correctness, Implementation property-preserving with error εprf ,
ρ-Unremovability and (1 − ρ/3)-Unforgeability, where εprf is the security of the
PRF and ρ is a parameter with ρ ≥ 1

poly(λ) .

Due to lack of space, the proof of Theorem 1 is provided in the full version
of the paper [2].

6 Watermarking PKE Funtionality from IBE

Finally, we present a watermarking scheme for the public key encryption func-
tionality. Our construction relies on identity-based encryption (IBE) [5] and will
allow for public detection of the watermark. The state, as before, will be of
logarithmic size to the security parameter.

Assuming an IBE scheme, one can construct a watermarking scheme for
the public-key encryption functionality based on the following idea: The private
marking key equals the master secret key of the IBE scheme. Then, the marking
service (i.e., the Mark algorithm of the watermaking scheme), when invoked, sets
pki = f(param, idi) for some deterministic function f6 and then runs the private
key generator of IBE, IBE.Extract(msk, f(param, idi)), to get the corresponding
ski. The identities, idi, are not given as input to Mark, instead, each identity
is the next value of a counter that keeps the number of keys generated so far

6 In standard IBE the id of the user (i.e. email address or other unique identifier)
serves as pk. Here, since id’s are just a short counter value one might want to extend
them in some deterministic way - else f could also the identity function.
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(which is stored at state). Detection works in a similar way to our construction in
Sect. 5: try every possible public key (since by state you know the number of keys
generated) and check if the given decryption circuit is watermarked by checking
if for any of these public keys it correctly decrypts ciphertexts. We present our
construction in Fig. 8. The security analysis of this construction shares many
insights with that of Sect. 5 and will be further discussed in the full version of
the paper [2].
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Abstract. Contactless access control systems are critical for security
but often vulnerable to relay attacks. In this paper, we define an inte-
grated security and privacy model for access control using distance
bounding (DB) which is the most robust solution to prevent relay attacks.
We show how a secure DB protocol can be converted to a secure contact-
less access control protocol. Regarding privacy (i.e., keeping anonymity
in strong sense to an active adversary), we show that the conversion does
not always preserve privacy but it is possible to study it on a case by
case basis. Finally, we provide two example protocols and prove their
security and privacy according to our new models.

Keywords: Access control · Distance bounding · RFID · NFC · Relay
attack · Mafia fraud · Distance hijacking · Privacy

1 Introduction

Access control (AC) is a mechanism assuring that a system or a place can be
accessed only by authorized users. AC is in the center of our daily lives. We
use it to unlock smartphones, unlock and start cars, enter buildings or data-
bases. Authentication in the AC systems based on two factors: The first one is
a password, PIN code or biometric information such as fingerprints and retinal
scans. The second one is a (contactless) card where authentication is done with-
out contact via this card. With the development of the technology, the usage of
contactless AC is becoming common because it is more convenient than carrying
various keys, using PIN codes or using biometric information. However, the full
security model for contactless AC has not been studied adequately. In this paper,
we focus on contactless AC. So, whenever we use AC, we refer to contactless one.

A report from Smart Card Alliance [1] lists the main components of an access
control system (tags, readers, controllers, database) and their security require-
ments which are however informal. Wongsen et al. [33] proposed an access con-
trol protocol between doors and mobile units (e.g. smartphone), but the protocol
lacks any security proof. Some access control systems such as OPACITY [2] and
PLAIN [14] mutually authenticate and establish a shared key between the ter-
minal and card. The security analysis of PLAIN in [14] is far from being formal.
OPACITY [2] was partly analyzed by Dagdelen et al. [7] where their security
c© Springer International Publishing AG 2017
P.Q. Nguyen and J. Zhou (Eds.): ISC 2017, LNCS 10599, pp. 195–213, 2017.
https://doi.org/10.1007/978-3-319-69659-1_11
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model is based on the key agreement security model of Bellare and Rogaway [4].
Hence, most of the previous works do not have a comprehensive security analysis.
Moreover, none of them consider relay attacks in their security analysis.
Figures 1 and 2 show real world relay attack scenarios. Unfortunately, these type
of attacks are easily implementable [12,13,16,17,24,28], so they violate access
control.

Doctor Adversaries Database

Fig. 1. The adversaries retrieve infor-
mation from a hospital database by
relaying the messages between the
database reader and the doctor’s card.
Here, the doctor is far-away from the
database. Arrows show that receiving
or sending messages.

Adversary
Colleagues of the adversary

Company

Home of adversary

Fig. 2. The adversary who is an
employee of the company accesses to
the door of the company which shows
that he arrived his job although he is
at home. Here, the adversary can use
one of his colleagues who is just next
to the door. Arrows show that receiv-
ing or sending messages.

The other problem in contactless AC is to address privacy. Informally, if an
AC protocol is private then it is hard for an outside observer to identify or
recognize a party who wants to access a system. Some previous works [7,8,14]
touched on privacy. PLAID [14] claims to be private (with an informal definition)
but Degabriele et al. [8] show that it is weaker than what it claims. Dagdelen et
al. [7] give two privacy related definitions: identity hiding and untraceability. The
problem in their privacy model is that it only considers the interaction between
the card and the reader. In reality, this may not be enough because the other
interactions or outputs of the other components (i.e., controller, database) of an
AC system can violate the privacy.

As a result, a formal security model which covers relay attacks has not been
designed for AC. In addition to this, a formal privacy model which considers
whole AC system is missing. In the literature, a powerful solution for relay
attacks is distance bounding (DB) [6]. It relies on the limited celerity of commu-
nication signals. DB is typically an authentication protocol with the condition
that a user who authenticates is close enough to a reader. Privacy has also been
extensively studied in DB [3,15,18,20,23,26,29,34].

By considering these critical issues, we design the first security and privacy
model of an access control system which encompasses the propagation time of
communication. Intuitively, in our definitions, we mix DB and access control
based on a database of privileges. However, mixing both is not so straightfor-
ward when it comes to prove the security in a generic composition. Current AC
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protocols [2,14] do not consider malicious users in their security models while
DB considers malicious users (e.g., as in Fig. 2). Therefore, the natural compo-
sition of them does not necessarily achieve the security level we need for AC
protocols1. In addition, we can show that an AC protocol which is constructed
based on a private DB protocol does not achieve privacy in AC. All these reasons
obviously show the need for complete security and privacy models in AC.

Our Contribution:

– We first define an integrated security model for AC including identifi-
cation, access control, and distance bounding by using the same components
as defined in [1].

– We define a new privacy model for AC which includes the time of the
communication. To the best of our knowledge, the time of the communication
has not been considered for defining a privacy model before. Our new model
covers all the previously defined privacy related definitions for access control
such as identity hiding and untraceability.

– We give a framework that clarifies how to use a secure DB to construct
a secure AC in our new security model. Basically, we show how to transform a
man-in-the-middle (MiM), distance fraud (DF) and distance hijacking (DH)
secure DB protocol into a secure AC scheme with proximity check. We also
formally prove the security of this transformation.

– We show that the same framework can be used to achieve privacy in AC with
restrictions on the database of AC system: The framework achieves privacy if
the database is trivial meaning it is empty, or it includes all possible relations.
We give a counterexample protocol that clearly shows why the framework does
not work for non-trivial databases. This shows that privacy in distance
bounding is not always preserved when transformed into an access
control system which unfolds the need for a new model for AC.

– We construct a specific AC scheme by using a secure and private DB protocol
Eff-pkDB [21] and prove its security and privacy with database.

2 Definitions from Previous Work

In this section, we give some definitions and results about public-key DB which
we integrate into our new security and privacy model for AC. This section is
helpful to understand the DB related notions that we use in the next section.

Definition 1 (Public key DB Protocol [31]). A public key distance bound-
ing protocol is a two-party probabilistic polynomial-time (PPT) protocol and it
consists of a tuple (KP ,KV , V, P,B). Here, (KP ,KV ) are the key generation algo-
rithms of P and V , respectively. The output of KP is a secret/public key pair

1 A malicious user can behave maliciously in an AC protocol and retrieve some infor-
mation which may help him to attack the DB protocol which is composed with this
AC protocol.
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(skP , pkP ) and similarly the output of KV is a secret/public key pair (skV , pkV ).
P is the proving algorithm, V is the verifying algorithm where the inputs of P
and V are from KP and KV . B is the distance bound. P (skP , pkP , pkV ) and
V (skV , pkV ) interact with each other. At the end of the protocol, V (skV , pkV )
outputs a final message OutV and have pkP as a private output. If OutV = 1,
then V accepts. If OutV = 0, then V rejects.

A public-key DB protocol is correct if and only if under honest execution,
whenever the distance between V and P is less than B, then V always outputs
OutV = 1 and pkP .

In symmetric DB, we have one key generation algorithm K and the input of
P and V is a secret key generated by K.

Now, we explain the security games which are designed for the threats of
DB: mafia fraud and distance hijacking from [31]. These games address security
in concurrent settings. So, they consist of multi-party settings which informally
means that the parties run multiple times their algorithms during the games.
An instance of a party is each new execution of its algorithm.

In mafia fraud, a man-in-the-middle (MiM) adversary between a verifier and
a far-away honest prover tries to make the verifier accept. Formally, it is defined
as follows:

Definition 2 (Mafia fraud (MiM security) [31]). The game begins by
running the key setup algorithms KV and KP which output (skV , pkV ) and
(skP , pkP ), respectively. The adversary receives pkV and pkP . The game con-
sists of several verifier instances including a distinguished one V, honest prover’s
instances and adversary’s instances. The adversary wins if V outputs OutV = 1
and pkP when no close prover instance to V exists. A DB protocol is MiM-secure
if, for any such game, the probability of an adversary to win is negligible.

In a nutshell, the adversary interacts or sees multiple new executions of P
and V at any location to make only one of the verifier instances (V) accept when
no instance of P is close.

In distance hijacking (DH), a far-away malicious prover uses some honest and
active provers who are close to the verifier to make the verifier grant privileges to
the far-away prover. The distance hijacking security implies also the distance
fraud (DF) security which provides security against a malicious and far-away
prover who wants to authenticate himself (without using any other close party).

Definition 3 (Distance hijacking [31]). The game consists of several ver-
ifier instances including a distinguished one V, instances of honest prover P′

and instances of malicious prover P. The game begins by running the key setup
algorithms KV ,KP and malicious setup K∗

P (pkV , pkP ′) of P. P lets one of the
instance of P′ run the time critical phase of DB with V. The malicious prover P
wins if V outputs OutV = 1 and pkP when P’s instance is far away from V. A
DB protocol is DH-secure if, for any such game, the probability of an adversary
to win is negligible.
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The above definition is specific to a class of protocols which have a clearly
identified time critical phase. Here, the time critical phase corresponds to a
challenge/response exchange phase where the verifier calculates the round trip
time of sending challenge and receiving response. Essentially, by letting an honest
P ′ run this phase in the game, P tries to succeed to show himself close to the
verifier. Again, we have many instances in this game.

The another security model in DB is for terrorist fraud (TF) [9]. Informally,
TF adversary tries to authenticate himself while he is far-away from the veri-
fier by getting help from his close accomplice. However, a trivial attack of TF-
adversary could consist of giving his secret key to his accomplice who would
execute DB with this key. So, usual definitions for TF [5,10,11,22] exclude this
particular attack explicitly. We do not integrate TF-security in our AC security
model because we think that this exclusion is arbitrary. In practice, we do not
see why this attack would be excluded or how it would be prevented.

In the next definition, we give the privacy model by Hermans et al. [18] which
has been used in many DB protocols [19,21,30,31]. In this model, the adversary
tries to distinguish provers. It can corrupt provers and learn their secret keys.
The model is also called strong private. The details are given below:

Definition 4 (Privacy in DB [18]). The privacy game is the following: Pick
b ∈ {0, 1} and let the adversary A play with the following oracles:

– CreateP(ID) → Pi : It creates a new prover identity of ID and returns its
identifier Pi.

– Launch() → π : It launches a new protocol with the verifier Vj and returns
the session identifier π.

– Corrupt(Pi) : It returns the current state of Pi. Current state means the all
the values in Pi’s current memory. It does not include volatile memory (i.e.,
the short term state in an interactive session).

– DrawP(Pi, Pj) → vtag : It draws either Pi (if b = 0) or draws Pj (if b = 1)
and returns the virtual tag reference vtag. If one of the provers was already
an input of DrawP → vtag′ query and vtag′ has not been released, then it
outputs ∅.

– Free(vtag) : It releases vtag which means vtag can no longer be accessed.
– SendP(vtag,m) → m′ : It sends the message m to the drawn prover and

returns the response m′ of the prover. If vtag was not drawn or was released,
nothing happens.

– SendV(π,m) → m′ : It sends the message m to the verifier in the session π
and returns the response m′ of the verifier. If π was not launched, nothing
happens.

– Result(π) → b′ : It returns a bit that shows if the session π is accepted by
the verifier (i.e. the message OutV ).

In the end of the game, the adversary outputs a bit b′′. If b′′ = b, then A
wins. Otherwise, it loses.

A DB protocol is strong private if for all PPT adversaries, the advantage of
winning the privacy game is negligible.
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3 Security and Privacy Model of AC

We first introduce the components of an access control system (ACS). In our
definitions, for simplicity, we do not consider the user who may give PIN code or
a biometric data to authenticate himself (this would be a parallel protocol). The
components of an access control system are tag, reader, database and controller.
Controller and database are in the secure area of ACS where it is not possible
to tamper or access.

Tags (Access Cards): They hold personalized data which is used for identifica-
tion and authentication. In ACS, each tag T generates a secret/public key pair
(skT , pkT ). They also store the public key of the controllers that are responsible
for the doors2 that T can access.

Reader: A reader is an interface between a tag and a door. We can consider
them as transmitters. They communicate with the tags. Each reader R has a
location locR which is important as the tag can be granted if the tag proves that
it is close enough to the reader.

Database: It contains information about tags and their rights. It stores a list of
(pkT , locR, req) triplets meaning that the tag with pkT is allowed to make the
service request req on a reader at location locR. For instance, a service request
can be the opening of a door. The database is in the secure area.

The database is not necessarily a list of triplets. It can also be a predicate
deciding if a triplet belongs to it or not. A database is trivial if it is empty or
if it contains all possible triplets.

For simplicity, we consider that the content of the database is static in what
follows.

Controller: It controls access authentication. All controllers can be connected
with multiple readers. Depending on the data they receive from its one of readers
and the database, they give the final decision for the authorization.

More generally, the access control is relative to a service (such as opening a
door) in a given location. The tag T of public key pkT requests a service req to
a reader at location locR and its corresponding controller checks if the privilege
(pkT , locR, req) exists in the database. T stores req and it can change req later
on. All controllers stay in the secure area.

Definition 5 (Access Control (AC)). AC consists of a distance bound
B, a database DataB, a controller C, a reader R, and a tag T , the key
generation algorithms: GenC generating (skC , pkC) for a controller C and
GenT generating (skT , pkT ) for a tag T . C,R, and T run the algorithms
C(skC , pkC ,DataB,B),R(locR) and T (skT , pkT , pkC , req), respectively. In the
end of the protocol, C outputs either OutC = 1 and private output POutC =
(pkT , locR, req) if the authentication succeeds or OutC = 0 if it fails. R also
publicly outputs OutR = OutC .
2 Door is a representation of the system or service that a user desires to access.
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Definition 6 (Correctness of AC). An AC is correct, if for all locR, req and
for all sets of keys generated by GenC and GenT , if

– T requests service req to R at location locR,
– T is within a distance at most B from locR and
– (pkT , locR, req) is in DataB,

then
Pr[OutC = 1 ∧ POutC = (pkT , locR, req)] = 1

3.1 Security

In this section, we give the formal security model for an access control system.

Adversarial and Communication Model: Each party (readers, controllers,
tags, adversaries) has polynomially many instances. An instance of a party cor-
responds to a protocol execution with this party at a given location and time.
Each instance of our model is as follows:

– All parties in AC are limited by the speed limit (speed of light) for communi-
cation, which simply says that a message sent at time t by a party X cannot
arrive to a party Y at time t′ which is less than t + d(X,Y ) (d is a metric
which shows the time of flight distance between X and Y ).

– Readers are all honest. They are connected to their corresponding controllers
with a secure and an authenticated channel.

– Controllers are all honest. They are the only components of the ACS which
can access the database.

– Tags are all honest. However, they can receive special signals [32]. There
can be only one activatable instance of each tag at a time. The special signal
Activate(T, req) activates the only activatable instance of T with a specified
input req3. After receiving this signal, further activation signals are ignored
by this instance. An instance can be terminated by one of the following sig-
nals: Terminate(T ) and Move(T, loc′). Terminate(T ) terminates the instance
execution, but it remains “active”. The special signal Move(T, loc′) orders to
terminate and move the tag to loc′. It means that the instance becomes inac-
tive and that only one unused instance of T at location loc′ can be activated.
The terminated instance sends a special signal Go which, when received by
this unused instance at location loc′, will make it activatable (Go signals can-
not be sent by malicious participants; they are here only to enforce that a tag
cannot move faster than a signal propagation). After, it may receive another
Activate(T, req′) as a new instance of the same tag at location loc′. This
models the tags being at a single location and moving (as influ-
enced by the adversary) to run other instances. Besides, it models
that instances of the same tag cannot be run concurrently.

3 This can also correspond to a user who is the owner of T to input whatever requests
he wants into his tag.
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– Adversaries create the database. So, they can generate fake relations
(p̃kT , ., .) where ˜pkT and its corresponding secret key s̃kT are generated by
an adversary. Instances which could hold some s̃kT are called fake tags.
In addition, adversaries can change the destination of messages (except for
special signals) between a tag and a reader. We assume that they have very
special hardware which can intercept a message and change its destination
without any delay. Similarly, they can update a message and send it to the
same destination with this hardware without any delay. So, if a party X sends
a message at time t1, and the adversary reads or updates the message at time
t2 and sends it to a party Y at time t3, then the arrival of the message to Y
is still bounded by t1 + d(X,Y ) because t3 − t2 ≥ 0.
Except for the communication between readers and controllers, the adversary
instances see all communication.

Definition 7 (AC-Security). The game begins by setting up the components
of the ACS. The security game is as follows given the security parameter n:

– Run GenC(1n) → (skC , pkC) for the controller and run GenT → (skTi
, pkTi

)
for each tag Ti and give the public key pkC and pkTi

’s to the adversary.
– The adversary creates instances of Ti at chosen locations. Each instance can

start after activation and run T (skTi
, pkTi

, pkC , req) only once.
– The adversary creates instances of readers at chosen locations locRk

. They run
R(locRk

) once activated by an incoming message. They communicate with an
instance of C over a secure channel4. There is a distinguished instance of a
reader R. We denote by locR its location.

– The adversary sets DataB.
– The adversary creates instances of himself (fake tags). These instances run

independently and communicate.

All messages follow our communication model. The game ends when the distin-
guished instance R (and its corresponding instance C) outputs some value OutR.
An AC protocol is secure, if for any such game, the adversary wins with a neg-
ligible probability. A wins the game if OutR = 1 and POutC = (pkT , locR, req)
for some pkT and req satisfying at least one of the following conditions:

1. (pkT , locR, req) /∈ DataB,
2. pkT ∈ {pkTi

}t
i=1 and no active instance of the honest tag holding pkT is close

to locR during the execution of the AC protocol with C and R,
3. pkT /∈ {pkTi

}t
i=1 and no fake tag is close to locR during the execution with C

and R.

where t is the number of public keys generated by GenT in setup.

4 For simplicity, we assume that the instance C of the controller is at the same location
as Rk but the time of communication between Rk and C should have no influence on
the result. The difference between C and Rk only makes sense for practical reasons.
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Remarks:

– In the third condition, we need that no fake tag is close to locR to prevent
the trivial attacks where a far away fake tag can give its secret key to a close
by fake tag. Without this condition, the adversary would always win. This
would however exclude all TF-attacks as well.

– If pkT /∈ {pkTi
}t

i=1, the security definition includes DH (and also DF).
– If pkT ∈ {pkTi

}t
i=1, then the security definition corresponds to MF. It includes

impersonation attacks, relay attacks and other forms of man-in-the-middle
attacks as well since MF covers all of them.

In practice, the controllers are connected to multiple readers. So, it is not
possible for them to check if a tag is close. Therefore, readers are the components
that can give this decision.

Before proceeding the next part, we show that the natural composition of
access control and distance bounding does not always achieve the security in
Definition 7. Assume that we have a MiM, DF and DH secure symmetric DB pro-
tocol DB = (K, P, V,B). As an AC protocol, we have an AC protocol OPACITY
[2]5. In the natural composition, first the parties run OPACITY with a minor
change and then DB (the reader runs V , the tag runs P with the secret key
K). The change in OPACITY is as follows: the reader sends K at the end of the
OPACITY protocol. Clearly, the modified version of OPACITY is still secure AC
in the security model of Dagdelen et al. [7] since K is completely independent
parameter. Unfortunately, this composition is not secure in Definition 7 since
an adversary can win AC-game with satisfying the second condition. However,
when we look the modified OPACITY and DB separately in their own security
models, they are secure. Therefore, the generic composition of AC and DB is
not straightforward.

3.2 Privacy

Privacy is also important in access control protocols. The definition of privacy
we provide uses the same adversarial and communication model that we use for
security. It also covers the identity hiding and untraceability with the corruption
of tags. Informally, identity hiding means given an execution of protocol the
adversary should not output the public key of the tag and untraceability means
the adversary should not decide if two executions belong to the same tag or not.

Definition 8 (AC-Privacy). The privacy game has the same setting as the
game in Definition 7. We first decide to play the right r or the left � game.
Differently than the security model, each active tag instance can be paired with
an another tag instance by an adversary. The pairing happens with the signal
Draw(Ti, Tj , k) which pairs Ti and Tj by giving an index k, if the conditions below
are satisfied:

5 OPACITY is basically a key agreement protocol where the authentication of a tag
is done with this key.
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– Ti and Tj are at the same location,
– Ti and Tj have the same access privileges,
– neither Ti nor Tj is already paired and
– k is greater than the index of previous Draw signal to both Ti and Tj.

A tag instance can be paired to itself as well. The adversary lets vtag =
(Ti, Tj , k) be a virtual tag. All messages (and special signals) can only have a
virtual tag as a destinator. If we are in game �, then vtag simulates Ti and if
we are in game r, vtag simulates Tj. The signal Free(Ti, Tj , k) breaks the pair if
it exists. The adversary can corrupt a tag Ti (and actually all tags) by receiving
skTi

during the setup.
In the end, the adversary decides if vtag simulates game r or game �. If the

decision of the adversary is correct, then the adversary wins.
If an AC protocol is private, the advantage of a polynomial time adversary

in this game is bounded by a negligible probability.

The most important distinction of our definition is that we consider “com-
munication time which leaks the proximity of a party” in our privacy definition
contrarily previous work related to privacy [18,29]. To the best of our knowledge,
it has not been taken into account before for a privacy model. It is reasonable
to consider the location of a user as a privacy leakage for the protocols where
the communication time influences the output such as DB.

Since Mitrokotsa et al. [25] showed that location privacy is nearly impossible
to achieve, we cannot prevent this leakage. So, our privacy game has the condition
of being at the same location which is necessary to avoid the adversary to trivially
distinguish the left or right game by checking the communication time.

Besides, the condition of having the same access privileges is necessary to
prevent the adversary to determine the left or right game by seeing the accepting
or the rejecting message by a controller.

4 Distance Bounding in Access Control

In this section, instead of designing a new AC protocol, we give a conceivable
framework that converts a DB protocol into an AC protocol. We prove in The-
orem 1 that, after conversion, the AC protocol achieves AC-security (in Defini-
tion 7) assuming that the DB protocol is MiM and DH secure. However, we show
that we cannot always achieve AC-Privacy with this framework, even though the
DB protocol is (strong) private according to Definition 4. Therefore, we prove in
Theorem 2 that the AC protocol which is converted from a private DB achieves
privacy, if DataB is trivial. The details are in the following subsections.

4.1 Secure AC with Secure DB

If we have a public-key DB protocol (KP ,KV , P, V,B), we can construct an AC
protocol with (GenC ,GenT , C, T ,DataB,B) with the framework below:
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C(skV , pkV , DataB,B) R(locR) T (skP , pkP , pkV , req)
req,locR←−−−−−− req←−−−−−−

run V (skV , pkV )
run DB=(KP ,KV ,P,V,B)

←−−−−−−−−−−−−−−−−−−−−−→ run P (skP , pkP , pkV )

output Out and pk
if (pk, locR, req) ∈ DataB

OutC = Out
if Out = 1

POut = (pk, locR, req)
else: OutC = 0

OutC−−−−−−→
OutC−−−−−−→

Fig. 3. The framework to convert a DB protocol to an AC protocol

– We match the key generation algorithms: GenC = KV , GenT = KP . So,
(skC , pkC) = (skV , pkV ) and (skT , pkT ) = (skP , pkP ).

– We create DataB according to the access privileges of tags using the keys.
– T (skP , pkP , pkV , req) uses P (skP , pkP , pkV ) as a subroutine. T outputs req

and then run P (skP , pkP , pkV ).
– Whenever R(locR) is activated with req, it sends req and locR to C.
– C(skV , pkV ,DataB,B) runs V (skV , pkV ) as a subroutine jointly with R(locR).

When V reaches the part where challenge/response is necessary to determine
the distance to locR, R steps in to check if the responses arrive on time and
are correct.
Here, C may give all necessary input(s) to R so that R can check the responses.
Alternatively, C may only give the challenges, and R only determines if the
responses arrive on time. Then, if they arrive on time, R can send the
responses to C so that C can check if the responses are correct. The only
restriction is that R has to decide if the responses arrive on time.

– When V (skV , pkV ) outputs Out and the private output pkP : If
(pkP , locR, req) ∈ DataB and Out = 1, it publicly outputs OutC = 1 and
privately outputs POutC = (pkP , locR, req). Otherwise, it outputs OutC = 0.
In both cases, R outputs OutR = OutC . The framework is in Fig. 3.

An example protocol in Fig. 4 is constructed using this framework. Before,
we prove that the framework achieves AC security if DB is MiM and DH secure.

Theorem 1. Assuming that a DB protocol with (KP ,KV , P, V,B) is MiM-
secure and DH-secure, then an AC protocol with using this DB protocol with
the framework as described in Fig. 3 is secure according to Definition 7.

Proof. Assume that there exists an adversary A which wins the game in Defini-
tion 7 where the output of the game is OutR = 1 and POutC = (pkTi

, locR, req),
then we can construct an adversary which wins MiM-game or DH-game.

Apparently, A can win the AC-game with either second or third condition
because C outputs OutC = 0 if given (pkTi

, locR, req) /∈ DataB (the first winning
condition) which makes impossible to win with the first condition.
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Winning with the second condition: If pkTi
∈ {pkTk

}t
k=1 and no instance of the

tag with pkTi
is close to locR during the execution of the AC protocol with C and

R, then we can construct an adversary B which wins MiM-game (Definition 2)
of DB protocol with (KP ,KV , P, V ).

B receives pkV and pkP from MiM-game. Then, it randomly picks i ∈ {1, ..., t}
where t is the number of (honest) tags needing to be simulated. The public
key pkTi

which will be used to simulate the ith tag Ti is pkP . Here, Ti will
have a role as a prover on MiM-game. For the rest of the tags, B generates
t − 1 secret/public key pairs (skTj

, pkTj
) with using GenT (1n) which are the

secret/public keys of Tj ’s. After, it sends pkV as the controller’s public key and
pkT1

, ..., pkTi−1
,pkP , pkTi+1

, ..., pkTt
as the tags’ public-keys in AC-game to A.

Remark that pkV and pkP are indistinguishable since they are generated with
the same key generation algorithms of controllers and tags, respectively.

At some moment, B receives DataB from A. If (pkP , ., .) /∈ DataB, then
B loses MiM-game since in this case, there will be no chance that A wins the
AC-game with this tag. Otherwise, it locates instances of Ti (which corresponds
to P ’s instances in MiM-game) on the locations that A decides. B simulates the
instances of AC-game as follows:

– Instances of Tj ’s where Tj �= Ti : For the signals Move(Tj , loc) and
Terminate(Tj), B just simulates. When it receives the signal Activate(Tj , req),
it simulates by running the algorithm T (skTj

, pkTj
, pkV , req). Remark since

B knows each skTj
, it can run T .

– Instances of Ti: For the signals Move(Ti, loc) and Terminate(Ti), B moves the
corresponding instance of P in the MiM-game to loc and halts the corre-
sponding instance of P in the MiM-game, respectively. Whenever it receives
the signal Activate(Ti, req), it first outputs req and then runs (activates) the
corresponding instance of P in the MiM-game. Whatever the instance of P
in MiM-game outputs, B outputs the same.

– Instances of controller and reader: Whenever A activates R (via sending req)
so that C, B runs an instance of V .

In the end, if A picks a reader instance R which sees pkTj
= pkP as a

distinguished one, B wins with the success probability below. Otherwise, B loses
MiM-game since V has to output OutV = 1 and pkP in MiM-game.

Pr[B wins] ≥ Pr[A wins ∧ Condition 2] × 1
t

Winning with the third condition: If pkT /∈ {pkTi
}t

i=1 and no instance of the
adversary is close to locR during the execution with R, then we can construct an
adversary B′ which wins DH-game. The reduction is very similar to the previous
one except we replace P with an honest prover P ′.

Pr[B′ wins] ≥ Pr[A wins ∧ Condition 3] × 1
t
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In the end, we have

Pr[B wins] + Pr[B′ wins] ≥ Pr[A wins] × 1
t
.

Since we know that the success probability of B in MiM and B′ in DH game
is negligible, then the success probability of A is negligible as well. �	

Now, we give an example AC protocol (Eff-AC) in our framework by convert-
ing the public-key DB protocol Eff-pkDB [21] which is one of the most efficient
public-key distance bounding protocols.

Eff-AC: We use Eff-pkDB with its variant. Its variant uses a key agreement
protocol Nonce-DH [21] (based on random oracle and Gap Diffie Hellman (GDH)
[27]) to agree on a secret S and a symmetric-key DB OTDB [31] to run with S.
We stress that this is only an example of the generic construction of Eff-pkDB. In
particular, we could replace NonceDH by another key agreement protocol which
is D-AKA secure [21] and possibly eliminate the random oracle assumption.

The public parameters for the key generation algorithms GenC (KV ) and
GenT (KP ) are a group G of prime order q and its generator g. GenC and GenT

pick skC and skT from Zq, and set pkC = gskC and pkT = gskT , respectively.
Eff-AC works as follows:

The tag has the input skT , pkT , pkC , req, the controller C has the input
skC , pkC , B,DataB and the reader R has the input locR. T sends req to R
and R sends it along with locR to C . Then, C,R and T run Eff-pkDB. Here,
T runs the proving algorithm of Eff-pkDB, and C and R run the verifying algo-
rithm of Eff-pkDB, jointly. The details of these algorithms are as follows: First,
T picks a random value N from {0, 1}n and sends N and pkT . After C receives
them, it computes S = H(g, pkT , pkC , pkskCT , N). Meanwhile, T also computes
S = H(g, pkT , pkC , pkskTC , N). After, C gives S and B to R so that R runs the
challenge phase. Until this part corresponds to the Nonce-DH protocol. Then,
OTDB [31] is run by R and T as follows:

R picks a value NR ∈ {0, 1}2n and sends it to T . Then, R and T compute
X = NR ⊕ S before n-round challenge phase begins. In each round i, R picks a
challenge Qi and starts the timer. In response, T sends Wi which is the 2i+Qth

i

bit of X. When R receives it, it stops the timer. After the challenge phase, if all
responses are correct and arrive on time (i.e. with in less than 2B), then R sets
Out = 1. Then, R sends Out to C. This is the end of of Eff-pkDB.

C sets OutC = Out. If Out = 1, C checks if C has the access privilege by
checking if (pkT , locR, req) ∈ DataB. If it is in DataB, it privately outputs
POutC = (pkT , locR, req). Otherwise, it sets OutC = 0. Finally, C sends OutC
to R and R outputs it as OutR.

Since Eff-pkDB is MiM and DH-secure [21], Eff-AC which uses Eff-pkDB
with the framework in Fig. 3 is AC-secure thanks to Theorem 1.

Remark: The security proof of Eff-pkDB [21] is also valid for a variant where
the verifier generates an ephemeral (skC , pkC) pair and sends pkC to the prover.
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Ci(skC , pkC , B,DataB) R(locR) T (skT , pkT , pkC , req)

req,locR⇐======
req←−−−−−− pick N ∈ {0, 1}n

S =
H(g, pkT , pkC , pk

skC
T , N)

pkT ,N
⇐======

pkT ,N
←−−−−−− S =

H(g, pkT , pkC , pk
skT
C , N)

S,B
======⇒ pick NR ∈ {0, 1}2n NR−−−−−−→ X = NR ⊕ S

X = NR ⊕ S
for i = 1 to n

start timeri
Qi−−−−−−→ Wi = X2i+Qi

stop timeri
Wi←−−−−−−

if ∀i timeri ≤ 2B
and Wi = X2i+Qi

Out = 1

if Out = 1
Out⇐======

and
(pk, locR, req) ∈ DataB

POut = (pk, locR, req)
OutC = Out

else: OutC = 0
OutC======⇒

OutC−−−−−−→

Fig. 4. Eff-AC. Double arrow shows that the communication is secure and authenti-
cated while sending the message above it. The gray colored parts are Eff-pkDB.

So, tags do not even need to store pkC in this variant of Eff-pkDB. Therefore,
a variant of Eff-AC with an ephemeral key is secure thanks to Theorem 1. This
variant is very desirable for practical reasons because we can allow many con-
trollers and the tag does not need to store all the corresponding keys.

4.2 Private AC with Private DB

The difficulty in proving privacy in an AC protocol which uses a private DB
protocol comes from the fact that DataB must discriminate tags. This fact
may leak information about identities. In DB, the output of V does not depend
on pkP . Hence, the private output of the verifier (pkP ) plays no role in the
privacy game of Definition 4. We show here a generic privacy preservation result
with our framework, but only for a trivial DataB. Trivial DataB makes POutC
play no role in AC. We cannot prove the same result for an arbitrary database.
Remember, a database is trivial if it is empty or if it contains all possible triplets.

Theorem 2. Assuming that DB protocol with (KP ,KV , P, V,B) is private
according to Definition 4, then an AC protocol with using this DB protocol with
the framework as described in Fig. 3 is private when DataB is trivial based
on Definition 8.

Proof. Assuming that there exists an adversary A breaking the privacy in AC
with a trivial DataB, then we can construct an adversary B that breaks the
privacy of DB.

B simulates the communication model of AC for A, except the subroutines
P and V for honest participants. For each message and signal that B receives
for tags, it works as follows:
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– Receiving a signal Draw(Ti, Tj , k): It checks the necessary conditions to be
paired. If they are satisfied, it calls the Draw oracle in the privacy game of
DB with the inputs Ti, Tj . In respond, the Draw oracle sends vtag. B stores
the information that vtag corresponds to (Ti, Tj , k).

– Receiving a signal Free(Ti, Tj , k): It retrieves the corresponding vtag to
(Ti, Tj , k). If it exists, it calls the oracle Free with the input vtag in the
privacy game of DB.

– Receiving a signal Activate or Move: It simulates them.
– Receiving a message m: It retrieves vtag and calls the oracle SendP in the

privacy game of DB with the input (vtag,m). Then, it receives a respond m′

from the SendP oracle and sends m′ to A.

To simulate a reader receiving m, B behaves as follows:

– If it is the first time and m = req, B calls the Launch oracle to get a session
identifier π. Then, it calls SendV with π and receives an empty message m′.

– Otherwise, it calls the oracle SendV with the input (π,m) and receives m′.

If m′ is not the final message, it sends m′ to A. Otherwise, m′ = OutV . In this
case, B assigns b = 0 if DataB is empty and b = 1 if it is not empty (meaning
that it has all possible relations). In the end, it sends OutC = OutV ∧ b to A.
The simulation is perfect. So, A and B have the same advantage. �	

Why only for trivial DataB: We can show that Theorem 2 does not work
for all DataB with the following counterexample.

Assume that we have a private DB (KP ,KV , P, V,B). From DB, we can
construct another private protocol DB’ (KP ,KV , P ′, V ′, B) where P ′ and V ′

work as defined below:
P ′(skP , pkP , pkV ) :
receive flag
if flag = 1 and pkP is odd

KP → (sk′
P , pk′

P )
(skP , pkP ) ← (sk′

P , pk′
P )

run P (skP , pkP , pkC)

V ′(skV , pkV )
send 0
run V (skV , pkV )

Clearly, DB’ is still private because the only change is to remove the identity
of the prover by replacing the secret and public keys with some random keys.
(We recall that pkP as a private output of V plays no role in Definition 4.)

Now, let’s consider the conversion of DB’ to an AC protocol with the
framework. The adversary can break the privacy of the AC protocol as fol-
lows: He first picks two tags T1 and T2 which have public keys with dif-
ferent parities and moves them at the same location. It also creates a
DataB = {(pkT1

, locR, req), (pkT2
, locR, req)}. Then, it pairs (T1, T2) with the

signal Draw(T1, T2, 0) and activates the pair. It sends a message flag = 1 to
vtag = (T1, T2, 0) (by replacing the message flag = 0 which comes from a
reader R). Then, it lets C,R and vtag execute the protocol. In the end, R out-
puts OutR. Depending on the parity, the adversary can find out the left or right
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game with probability 1 (e.g., if pkT1
is odd and OutR = 1, it means right game

(T2) is simulated).
In addition, even by weakening Definition 8 such that the adversary does not

create a database and it is not allowed to pair tags (instead, the game does), we
achieve no privacy. In this case, the advantage of the adversary with this attack
would be 1

2 : If the paired parities’ public keys have the same parity, then the
attack does not give any more advantage than the privacy game of DB’ gives. If
they have different parity, the adversary wins with probability 1.

Even though we cannot use our framework to achieve privacy with all private
DB protocols, we can still have private AC using our framework with some DB
protocols where one of them is Eff-pkDBp [21]. Now, we describe Eff-ACp which
is converted from Eff-pkDBp.

Eff-ACp (See Fig. 5): It is very similar to Eff-AC. Differently here,
the secret/public key pair of C consists of two parts: (skC , pkC) =
((skC1 , skC2), (pkC1

, pkC2
)) where (skC1 , pkC1

) is used for the encryption and
(skC2 , pkC2) is used for Nonce-DH (key agreement protocol). The only change on
T is that it sends the encryption of (pkT , N) and on C is that it retrieves pkT , N
by decrypting the encryption with skC1 . The rest is the same with Eff-AC.

Ci(skC , pkC , B,DataB) R(locR) T (skT , pkT , pkC , req)

req,locR⇐======== req←−−−−−−−− pick N ∈ {0, 1}n

N, pkT = DecskC1
(e) e⇐======== e←−−−−−−−− e = EncpkC1

(N, pkT )

The same as in Eff-AC←−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 5. Eff-ACp

Theorem 3. Eff-ACp is a private access protocol in the random oracle model
according to Definition 8, assuming that the cryptosystem is IND-CCA secure
and Gap Diffie-Hellman (GDH) problem [27] is hard.

Note that the same result applies to the generic construction of Eff-pkDBp

[21], i.e., not only the one based on GDH and the random oracle. We could
indeed replace Nonce-DH by another key agreement protocol which is D-AKAp

secure [21].

Proof (sketch): We adapt the proof from the privacy proof of Eff-pkDBp [21].
We define games Γ b

i below and the success probability of an adversary is pb
i .

Γ b
0 : It is the same game that we defined in Definition 8 where b = � meaning

we are in the left-game or b = r meaning we are in the right-game.
Γ b
1 : We reduce Γ b

0 to Γ b
1 where we simulate the controller instances without

decrypting the ciphertext that is sent by a vtag. Because of the correctness of
the cryptosystem, pb

1 = pb
0.
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Γ b
2 : We reduce Γ b

1 to Γ b
2 where vtag is simulated by encrypting a random

value instead of (pkT , N). We can easily show pb
2 − pb

1 is negligible by using the
IND-CCA security of the cryptosystem.

We reduce Γ �
2 to Γ r

2 where we replace all secret/public keys (sk�, pk�) which
are the keys of the tag in the left-side in vtag by replacing secret/public keys
(skr, pkr) of its paired tag. Using D-AKAp security of Nonce-DH (Theorem 7 in
[21]), we can show that p�

2 − pr
2 is negligible.

Remark that if pk� and pkr are kept in a plaintext and used by the controller,
the replacing pk� with pkr make the same OutC result due to our assumption
which says the paired tags have the same access privileges.

So, p�
0 − pr

0 is negligible. �	

5 Conclusion

In this paper, we designed a security model for AC which considers the whole
interaction between components. The security model integrates the model of
DB since the distance of the tag is important to detect the relay attacks. In our
model, we preserve the security against adversaries which can be a tag or not.
We also let the adversaries construct the database. We constructed a privacy
model for AC which includes time of communication as well.

We gave a simple framework which securely transforms a DB to an AC. We
proved a similar result for privacy assuming that DataB is trivial. We showed
why the theorem does not work for other types of database. Finally, we con-
structed two AC protocols Eff-AC and Eff-ACp which are adapted from existing
public-key distance bounding protocols Eff-pkDB and Eff-pkDBp [21], respec-
tively. We proved their security and privacy in our security and privacy models.

References

1. Alliance, S.C.: Using smart cards for secure physical access. Smart Card Alliance
Report, 54 (2003)

2. Alliance, S.C.: Industry technical contributions: OPACITY (2013)
3. Avoine, G., Dysli, E., Oechslin, P.: Reducing time complexity in RFID systems. In:

Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 291–306. Springer,
Heidelberg (2006). doi:10.1007/11693383 20

4. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). doi:10.1007/3-540-48329-2 21

5. Boureanu, I., Vaudenay, S.: Optimal proximity proofs. In: Lin, D., Yung, M., Zhou,
J. (eds.) Inscrypt 2014. LNCS, vol. 8957, pp. 170–190. Springer, Cham (2015).
doi:10.1007/978-3-319-16745-9 10

6. Brands, S., Chaum, D.: Distance-bounding protocols. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994). doi:10.
1007/3-540-48285-7 30

http://dx.doi.org/10.1007/11693383_20
http://dx.doi.org/10.1007/3-540-48329-2_21
http://dx.doi.org/10.1007/978-3-319-16745-9_10
http://dx.doi.org/10.1007/3-540-48285-7_30
http://dx.doi.org/10.1007/3-540-48285-7_30
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Abstract. Gait has been considered as an efficient biometric trait for
user authentication. Although there are some studies that address the
task of securing gait templates/models in gait-based authentication sys-
tems, they do not take into account the low discriminability and high
variation of gait data which significantly affects the security and practi-
cality of the proposed systems. In this paper, we focus on addressing the
aforementioned deficiencies in inertial-sensor based gait cryptosystem.
Specifically, we leverage Linear Discrimination Analysis to enhance the
discrimination of gait templates, and Gray code quantization to extract
high discriminative and stable binary template. The experimental results
on 38 different users showed that our proposed method significantly
improve the performance and security of the gait cryptosystem. In par-
ticular, we achieved the False Acceptant Rate of 6 × 10−5% (i.e., 1 fail
in 16983 trials) and False Rejection Rate of 9.2% with 148-bit security.

Keywords: Gait authentication · Biometric cryptosystem · Biometric
template protection · Fuzzy commitment scheme

1 Introduction

Gait has been considered as an efficient modality for recognizing individual via
human motion [2]. The growth of microelectromechanical technology has opened
a new approach for implementing gait authentication systems (e.g., [3,7,8,11–13,
25,31,33,34,36]), in which the gait signals are collected by inertial-sensors. This
technique permits implicit user authentication and therefore, offers significant
usability advantages compared with password or other biometric systems [13]
which require the user to perform explicit gesture to be authenticated. Several
inertial-sensors based gait authentication schemes have been proposed in the
literature (e.g., [3,7,13,25,31,33]). Despite their merits, all these studies rely on
traditional pattern recognition approaches, where the extracted gait templates
c© Springer International Publishing AG 2017
P.Q. Nguyen and J. Zhou (Eds.): ISC 2017, LNCS 10599, pp. 214–229, 2017.
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or models are stored locally without confidentiality protection, which might pose
security and privacy issues to the user once such raw data are compromised by
the attacker (e.g., via malware) [19].

To address the privacy concern of biometric data, several studies leveraging
Biometric Cryptosystem (BCS) [28] have been proposed [11,14,15,21,23,27].
One of the most common techniques that has been recently used to protect
biometrics templates is Fuzzy Commitment Scheme (FCS) [18], where a binary
string is extracted from the biometric templates and then, binded with a crypto-
graphic key encoded by Error Correcting Code (ECC) [22] before being written
to the storage (e.g., [11,14,15,27]). Despite the fact that such schemes offer an
elegant strategy to protect the privacy of biometric templates, they did not take
into account the characteristic of behavioral biometric modalities such as gait,
which is well-known to be low discriminative and highly unstable. As described
in [20], these issues can significantly degrade the security and performance of the
FCS-based system (e.g., key length, False Acceptant Rate (FAR), False Rejection
Rate (FRR)), where a low discriminative extracted binary string might result in
a high FAR while an unstable one can lead to high FRR and low security. Thus,
it is vital to develop a method that can extract high discriminative and stable
strings from the gait templates to improve the security and performance of gait
cryptosystem.

In this paper, we propose methods to address the aforementioned deficiencies
to improve the security and performance of inertial-sensor based gait cryptosys-
tem as follows:

– First, we handle the problem of low discriminability and high variation of gait
data by adopting Linear Discriminant Analysis (LDA) [32]. As the traditional
LDA is incompatible with FCS (see Sect. 3.3), we propose a modification of
LDA to (i) improve the discriminability of gait data from different users, (ii)
reduce the variation of gait data from the same user, (iii) maintain the high
feature dimension of gait data to extract a long enough binary string to be
used in FCS (Sect. 3.3).

– Second, we propose Gray code [9] quantization scheme, which can offer strong
capability of error toleration, to quantize the gait templates after LDA pro-
jection to binary template (Sect. 3.4).

– Third, we design a method that can determine the reliability of each compo-
nents in the extracted binary template (Sect. 3.5). Highly reliable components
will be selected to form the final binary string input for FCS.

– Last, we conduct a comprehensive experiment to analyze the efficiency of the
proposed techniques and perform security analysis in details to evaluate the
security of our system against different attacks. We achieved 6× 10−5% FAR
(i.e., 1 fail in 16983 trials), 9.2% FRR at 148-bit security. This experimental
result indicated that the proposed methods significantly improve not only
the security but also the performance of the gait cryptosystem compared
with other state-of-the-art works (Sect. 4).
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2 Preliminaries

2.1 Notations

Given a matrix M, M[i, j] denotes accessing the cell indexing at row i and
column j. |M| denotes the determinant of matrix M. Given two matrices A
and B having the same number of rows, C = [A B] denotes that matrix C is

formed by concatenating A and B horizontally. C =
[
A
B

]
means C is formed

by vertically concatenating two matrices A and B having the same number
of columns. Given an m × n matrix M, we denote the mean vector of M as
m = (m1, . . . ,mj , . . . ,mn) where mj = 1

m

∑m
i=1 M[i, j]. Given an n-dimensional

vector x = (x1, . . . , xj , . . . , xn), we denote the mean of x as x̄ = 1
n

∑n
j=1 xj . �·�

is the ceiling operator. |x| means the absolute value of variable x. We denote
⊕ as the bitwise XOR operator and || as binary string concatenation operator.
α � t means logical right shifting α by t bits. H : {0, 1}∗ → {0, 1}n is a secure
cryptographic hash function, where n is the length of hash value.

2.2 The Fuzzy Commitment Scheme

Fuzzy Commitment Scheme (FCS) is a generic BCS framework proposed by
Juels and Wattenberg [18], which leverages Error Correcting Code (ECC) [22]
to handle the variation of biometric data. The key idea of FCS is to express an
n-bit witness ω (i.e., biometric template) in term of a codeword c ∈ C of length
n and an offset δ ∈ {0, 1}n such that ω = c ⊕ δ where C is an error correcting
codebook. FCS operates in two phases as sketched in Fig. 1.

Fig. 1. The Fuzzy Commitment Scheme [18].

1. Enrollment phase: A codeword c ∈ C is selected randomly and its hash
value H(c) is calculated (step 1.1). Meanwhile, c is sealed to δ by the biometric
template ω (step 1.2). The hash value H(c) and δ are stored as helper data
for authentication while c and ω are discarded.

2. Authentication phase: Given a biometric template ω′, the estimated code-
word c′ is retrieved using the helper data δ (step 2.1). Then, its hash value
H(c′) is calculated (step 2.2). Finally, H(c′) is matched with H(c) to give the
final verification decision (step 2.3).
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As discussed in [18], each codeword c in C has two parts as information part
of length k (k < n) and redundancy part of length (n − k). The ratio between
the amount of two parts in c is a trade-off between security strength and the
resilience. The system is more secure when the information part is extended. In
contrast, the system provides higher capability of resilience when the redundancy
part is lengthened.

2.3 Fisher’s Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a data dimensional reduction technique
that reserves as much as possible the discrimination information between dif-
ferent classes. Assuming that a training dataset X includes D classes Li, each
having Ni templates. LDA finds W to transform X to Y as Y = WTX so that
the intra-class variation is minimized and inter-class discrimination is maximized
in Y.

Let x̄ be the mean vector of X and x̄i be the mean vector of templates of
class Li. The within-class scatter matrix Sw and between-class scatter matrix
Sb are calculated by:

Sw =
D∑

i=1

Ni∑
j=1

(xij − x̄i)(xij − x̄i)�, (1)

Sb =
D∑

i=1

Ni(x̄i − x̄)(x̄i − x̄)�, (2)

where xij is the template j of class Li. The projection matrix W is the result
of the maximization problem using the Fisher’s criterion [6] as:

J (W) =

∣∣W�SbW
∣∣

|W�SwW| . (3)

The optimization task of (3) is equivalent to the following generalized
eigenvalue problem described in [32] as: Sbwi = λiSwwi, where wi and λi

(1 ≤ i ≤ D − 1) respectively are the eigenvector and eigenvalue of S−1
w Sb. When

Sw is nonsingular, the optimal W is the one whose columns are the eigenvectors
corresponding to at most (D − 1) largest eigenvalues of S−1

w Sb.

3 The Proposed Gait Cryptosystem

In this section, we first present the general architecture of our proposed inertial-
sensor-based gait authentication cryptosystem. We introduce overall steps of
data (pre)processing to extract gait templates collected from the inertial sensor
data. Finally, we present the main techniques which adopt LDA and Gray code
quantization along with a reliability extraction method to enhance the security
and performance of the gait cryptosystem.
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Fig. 2. The architecture of the inertial-sensor based gait cryptosystem.

3.1 Overall of System Architecture

We present in Fig. 2 the specification of our proposed inertial-sensor based
gait authentication system which follows the Fuzzy Commitment Scheme as
follows.

1. Enrollment: First, we collect the training gait data (step 1.1) from inertial
sensor, and perform data (pre)processing to extract gait templates (step 1.2).
We then apply LDA training (step 1.3a) to the extracted gait templates,
followed by a Gray code-based quantization (step 1.4a) and reliable string
extraction (step 1.5a) to obtain a discriminative and stable binary string.
Concurrently, we generate a key m randomly (step 1.3b) and then encode it
into a BCH codeword (step 1.4b). Meanwhile, we calculate the hash value of
m (denoted as H(m)) (step 1.5b). Finally, we bind the binary string with the
codeword to get the secure δ (step 1.6). We store the hash value H(m) and δ
along with some auxiliary data in steps 1.3a–1.5a as helper data for using in
authentication phase.

2. Authentication: Given gait data to be verified, we extract a stable binary
string by using the stored helper data (steps 2.1–2.5). We retrieve an esti-
mated BCH codeword by binding the new extracted binary string with the
stored secure δ (step 2.6). We then decode the estimated codeword to get the
secret key m′ (step 2.7), and calculate its hash code H(m′) (step 2.8). Finally,
we match H(m′) with H(m) to verify the authenticating user (step 2.9).

Notice that our general framework is inspired and extended from [11]. In this
paper, we mainly focus on improving the security and performance of the gait
cryptosystem, wherein we introduce two additional steps including LDA and
Gray code quantization to enhance the discriminability of gait data. Hence, we
present in following sections how to implement such vital steps in details, and
refer the readers to [11] for detailed presentations of other (pre)processing steps.
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3.2 Data Preprocessing and Feature Extraction

We leverage the methods proposed in [12] for gait data preprocessing. Specifi-
cally, we address the disorientation problem using the data additionally collected
from orientation sensor, and mitigate the noise in gait signals by adopting
the Daubechies orthogonal wavelet with level 2. We represent each sampling
of gait signals as a = (aX , aY , aZ), where aX , aY , aZ are acceleration values
captured in X, Y , Z dimensions, respectively. Subsequently, we divide the
gait data into consecutive of gait-cycle-based segments where each gait cycle
is defined as a time period between two times of ground contacting of a same
foot while walking. Hence, each gait cycle Ci contains t acceleration samples as
Ci = [ai1 . . . aij . . . ait]. We then form the gait pattern by concatenating 4 con-
secutive gait cycles in a way that two consecutive gait patterns overlap with each
other by 2 gait cycles as Pi = [C2i−1...C2(i+1)]. For each Pi, we extract features
in both time and frequency domain as described in [12] to form a gait template
xi = (xi1, . . . , xij , . . . , xiM ) ∈ IRM , where xij denotes the feature j extracted
from pattern Pi, and M is the total number of features being extracted.

3.3 Improving the Discriminability of Gait Data

We observe that gait is more noisy and less discriminative than other biometric
traits. Hence, instead of directly using the gait templates for further processing,
we adopt LDA to enhance the inter-class discriminability and reduce the intra-
class variation.

LDA Training: In the enrollment phase, we form a data matrix G including
N gait templates xi of the genuine user as G =

[
x1 . . . xi . . . xN

]� ∈ IRN×M ,
and the data matrix I including N ′ gait templates x′

i of all other users I =[
x′
1 . . . x′

i . . . x′
N ′

]� ∈ IRN ′×M . We form the dataset M =
[
G
I

]
∈ IR(N+N ′)×M .

We label the templates in M with two classes including genuine and impostor. We
use M as the data for LDA training to find the projection matrix for transforming
gait templates.

However, the traditional LDA has a dimensional limitation as described in
[32] which makes it incompatible to the gait cryptosystem. Specifically, with
D as the number of classes, there are (D − 1) eigenvectors wi of S−1

w Sb that
have the corresponding eigenvalues λi satisfying λi > 0, where Sw and Sb are
calculated by (1) and (2), respectively. Then, LDA will form a projection matrix
W by using at most (D − 1) eigenvectors. Thus, the data dimension after LDA
projection will be at most (D−1). In current system, with D = 2, the dimension
of data after LDA projection is 1 which is insufficient for extracting to a reliable
string because the it is required to have the same length with BCH codeword for
binding (Fig. 2, step 1.6). Therefore, we modify the process of LDA as follows.

First, instead of using M for LDA training, we separate M into S submatrices
Mi (1 ≤ i ≤ S), each having K columns, and apply LDA to each Mi indepen-
dently to get a projection matrix Wi. Specifically, we calculate the within-class
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scatter matrix S(i)
w and between-class scatter matrix S(i)

b of each dataset Mi.
Then, we factorize the matrix (S(i)

w )−1S(i)
b to a set of K eigenvectors w(i)

l and
corresponding eigenvalues λ

(i)
l (1 ≤ l ≤ K). Second, instead of using at most

(D − 1) eigenvectors w(i)
l corresponding to (D − 1) largest eigenvalues λ

(i)
l to

form Wi as described in Sect. 2.3, we use all eigenvectors w(i)
l as

Wi = [w(i)
1 . . . w(i)

l . . . w(i)
K

]. (4)

Wi is used to transform gait data in sub-space i in both enrollment and authen-
tication phase. We store all projection matrices Wi as helper data.

LDA Projection: Given S projection matrices Wi, we determine the LDA
projection G′ of G by (i) determining Gi ∈ IRN×K for each sub-space 1 ≤ i ≤ S;
(ii) calculating the projection of Gi as G′

i = W�
i Gi for each Gi; (iii) forming

G′ as:
G′ = [G′

1 . . . G′
i . . . G′

S ] ∈ IRN×M . (5)

We also transform matrix I to I′ using Wi similar to transforming G as above.
Then, we use G′ and I′ for quantization and reliable binay string extraction as
will be described in the following sections.

3.4 Gray Code Quantization

In order to reduce the natural variation of gait data, we use N templates in
matrix G′ (5) for quantization to construct a binary gait template. We determine
ḡ′ ∈ IRM as the mean vector of matrix G′ and use ḡ′ to generate a binary gait
template as follows.

First, we normalize each component g′
j in ḡ′ such that g′

j ∈ [0, 1], for
1 ≤ j ≤ M . Note that all the min, max values (represented as min, max vectors)
extracted in the normalization process will be stored as the helper data. Let Ψ be
a system parameter that specifies the number of bits representing one real-valued
component in quantization. Then, we divide the range value [0,1] to 2Ψ contin-
uous subranges which are called as quanta. Hence, the range of each quantum
is φ = 1

2Ψ . Consequently, we map each quantum to a unique Ψ -bit string. The
normalized value of g′

j may variate in two continuous quanta at different times
of sampling. So the mapping between the set of quanta and set of Ψ -bit strings
should be well-arranged so that any two binary strings corresponding to two con-
tinuous quanta differ to each other in one bit. Gray code [9] is a good candidate
for this requirement as it is a technique for designing a binary numeral system
in which two successive strings have only one different bit. Given a normalized
value of g′

j , the quantum index ij is defined such that ijφ < g′
j ≤ (ij + 1)φ.

Then we calculate the corresponding Ψ -bit string ωj following Gray code system
as [5]:

ωj = B(Ψ, ij) ⊕ (B(Ψ, ij) � 1), (6)

where B(Ψ, ij) is the representation of ij in Ψ -bit string.
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Finally, from all ωj , we form the binary gait template ω which is the quan-
tized template of ḡ′ as:

ω = (ω1, . . . , ωj , . . . , ωM ). (7)

3.5 Reliable Binary String Extraction

In this section, we propose a method to extract highly reliable components in
the binary gait template. By reliability, we mean the one having low variation in
enrolled users’ templates and high discriminability between templates of enrolled
user and other users.

Given a binary gait template ω, we select R reliable components ωj to form
the reliable string ω ∈ {0, 1}n which will be used to bind with codeword c. The
value of R is determined based on two other predefined parameters including
the codeword length n and the number of Gray code quantization bits Ψ as
R = � n

Ψ �.
We use I′ and G′ in (5) for estimating the reliability of each component. We

propose a formula to calculate the reliability ϕj of each component ωj of as:

ϕj =
1
2

⎛
⎝1 + erf

⎛
⎝ 1

N ′
∑N ′

i=1

∣∣I′[i, j] − ḡ′
j

∣∣√
2σ2

j

⎞
⎠

⎞
⎠ , (8)

where erf denotes the Gaussian Error Function [1], ḡ′
j is the component j of

mean vector ḡ′ in Sect. 3.4, and the variance σ2
j of component j is calculated as:

σ2
j =

1
N − 1

N∑
i=1

(
G′[i, j] − ḡ′

j

)2
. (9)

In (8), the numerator of expression inside the erf function measures the
discriminability of component j between enrolled user and other users. The
denominator measures the variation of component j of enrolled user. Let
p = (p1, . . . , pj , . . . , pM ) ∈ INM be the vector containing the index of com-
ponents that follows the descending order of reliability, ϕpj

≥ ϕpj+1 . We use
first R components of p to extract the reliable components in ω to form the
final reliable string ω as:

ω = ωp1 ||ωp2 || . . . ||ωpR
. (10)

Note that we store the first R components in p as helper data to extract reliable
components in the authentication phase.

4 Experiments

4.1 Configurations and Results

We used the dataset in [12] for the experimental analysis of the proposed system.
The dataset contains gait signals of 38 users. We extracted the gait signals to
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10224 gait templates using the process in Sect. 3.2. For the empirical analysis, we
built an authentication models for each user. In each model, we considered one
user as the genuine and the others are impostors. In the enrollment phase for each
user, we formed the matrix G containing N = 100 gait templates of the genuine
user and I containing N ′ = 100 · 37 = 3700 templates of the impostors; and
the remaining data is used in authentication phase to verify the built model (12
templates for each time of attempting). In the LDA training step, we divided
the original data space into S = 15 sub-spaces as explained in Sect. 3.3. We
selected BCH codeword lengths of 255 and 511 bits. We analyzed the system
with different values of quantization bit Ψ and key length k to understand the
impact of such parameters. We used False Acceptant Error Rate (FAR) and False
Rejection Error Rate (FRR) as the standard metrics to evaluate the performance
of our proposed system. Finally, we analyzed the security of our system against
various attacks.
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Fig. 3. The FRR and FAR at different key length of codeword 255, 511 and 4-bit Gray
code quantization.

With 4-bit Gray code quantization, we have the optimal result. Figure 3
displays the FAR and FRR with different key lengths and BCH codewords.
At 255-bit codeword and 87-bit key, the system achieves 0% FAR and 9.8%
FRR. With the 511-bit codeword and 148-bit key, the FRR is 9.2% and FAR is
6×10−5% (i.e., 1 fail in 16983 trials). Under different attacks, the security of the
system is 87 and 148 bits according to 255-bit and 511-bit codeword, respectively
(analyzed in Sect. 4.4).

4.2 The Impact of LDA Projection

We used Normalized Euclidean distance [35] to analyze the impact of LDA
projection on the discriminability of gait template. Figure 4a displays the Nor-
malized Euclidean distance distribution of gait template before LDA projecting.
We can see that the overlapping area of the intra-class and inter-class is sub-
stantial which reflects the naturally low discrimination of gait data. After apply-
ing the modified LDA, the overlapping area reduces significantly as shown in
Fig. 4b. This contrast illustrates the effectiveness of the modified LDA presented
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Fig. 4. The normalized Euclidean distance distribution of gait templates before and
after LDA projection.

in Sect. 3.3. The LDA projection step plays an important role since it enhances
the data discriminability, and therefore, significantly improves the system per-
formance.

4.3 The Impact of Gray Code Quantization

We used the Normalized Hamming distance [35] to analyze the impact of Gray
code quantization. As gait signals are unstable, a specific component of gait
template can have different values at each time of sampling. However, if these
values still belong to the same quantum, the system will result in the same
binary string. The use of Gray code quantization can minimize the error bits
when these values fall into different quanta. So, adopting Gray code provides
higher capability of error tolerance to enhance the performance.
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Fig. 5. The Hamming distance distribution when using different values of Ψ for Gray
code quantization.
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The number of quantization bits Ψ is a trade-off between the FAR and FRR
values of the system. The quantum range φ decreases as Ψ increases and vice
versa. Given that Ψ is small, (thus φ is large), it is likely that the same binary
string can be extracted from two different gait templates. As a result, the inter-
class and intra-class Hamming distance are decreased as illustrated in Fig. 5.
This results in the increase of the FAR, and the decrease of the FRR. Figure 6
displays the comparison of Hamming distance distribution between the cases
of using 4-bit natural binary code and 4-bit Gray Code quantization. When
using Gray code (Figs. 6c and d), the intra-class Hamming distance is much
smaller compared with using natural binary code (Figs. 6a and b). Table 1 gives
a comparison of 3-bit and 4-bit Gray code quantizations in terms of FRR, FAR
at the same codeword length and key length. We can see that when Ψ = 3, the
FRR is lower while FAR is higher than that of Ψ = 4, respectively.
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Fig. 6. The Hamming distance distribution of 255-, 511-bit reliable strings when using
natural binary code and Gray code with 4-bit quantization.
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Table 1. The system performance pertaining to codeword length n, key length k and
number of quantization bits Ψ

Ψ = 3 Ψ = 4

n (bits) k (bits) FAR (%) FRR (%) n (bits) k (bits) FAR (%) FRR (%)

255 79 0.4 1.9 255 79 6 × 10−5 8.1

87 0.3 2.3 87 0 9.8

91 0.3 2.8 91 0 12.0

511 139 0.65 0.93 511 139 11 × 10−5 8.3

148 0.56 1.17 148 6 × 10−5 9.2

157 0.38 1.4 157 6 × 10−5 11.5

4.4 Security Analysis

In this section, we analyze the system security against several statistical attacks.
The typical attack is brute force the random key. As the proposed key lengths
are 87 and 148 bits for 255-bit and 511-bit codewords, the security strength
against key brute force attack are 87 and 148 bits, respectively.

We analyze whether an attacker can exploit information from the helper data
including projection matrices Wi, the min, max vectors for normalization, the
reliable components index p, secured δ and hash code H(m). The min, max vec-
tors contain statistical information from the whole dataset, and therefore, is not
user-specific. Thus, the min, max vectors do not reveal information about gen-
uine user. The reliable component index vector p only contains the information
about the discriminability and stability of gait templates. Such indexes does not
reveal information about biometric template, thus it cannot be used to revert to
biometric template. With the hash code H(m), the attacker cannot revert to m
with a non-negligible probability, given that the cryptographic hash function H
is secure.

LDA projection matrices are not user-specific since they only reflect the
information about the dataset population. Additionally, the projection matrix is
formed by eigenvectors λ of S−1

w Sb. From λ, we cannot revert to S−1
w Sb without

knowing the corresponding eigenvalues, which are immediately discarded after
the LDA training phase. Thus, from the stored eigenvectors, we cannot revert
to S−1

w Sb and obtain original biometric templates of the enrolled user.
Using the secure δ, in order to get the key m, the attacker can guess a string

ω′ that is close enough to ω hidden in δ. The distance strictly depends on the
error correcting capability of BCH code and the uncertainty of ω which depends
on the quantization method. We use entropy to measure the uncertainty of ω.
We calculate the entropy of each bit in ω by the formula in [29] as:

H(ωi) = −pi log2(pi) + (1 − pi) log2(1 − pi), (11)

where pi = Pr(ωi = 1) is the probability of bit i getting value 1 due to quantiza-
tion. The entropy E of reliable string ω is calculated by summarizing entropy of



226 L. Tran et al.

all components as E =
∑n

i=1 H(ωi). According to the Gray code quantization,
the probability of a bit i receiving value 1 is pi = 0.5. Then, the system achieves
the entropy E of 250 and 500 for codeword 255 and 511, respectively. The
strength of system security against this attack is measured by Sphere-packing
bound according to [10] as:

CSB ≥ 2E

∑t
i=0

(
E
i

) 
 2E(
E
t

) , (12)

where t is the error correcting capability. For two proposed key lengths of 255-bit
and 511-bit codewords, the error correcting capability t is 26 and 53 bits as in
[22], respectively, so the system achieves CSB as 2133 and 2269.

Further more, we analyzed the system under statistical attack that is per-
formed based on the distribution of inter-class Hamming distance of extracted
reliable string. Specifically, the adversary can extract the reliable string ω′ from
his own gait signal. Then, with the inter-class Hamming distance as h, he knows
that he can guess the string ω of enrolled user by searching for all ω satisfying
dH(ω′,ω) = h. Additionally, by utilizing the error correcting capability of BCH
code as t, he only needs to search for all ω such that dH(ω′,ω) = h − t in order
to retrieve key m from secure δ. Let d = h − t, then the cost of this attack is

CST (h) =
(

n
d

)
=

n!
d!(n − d)!

. (13)

We assume that h follows the Gaussian distribution. We estimate the mean μh

and variance σh of h in Fig. 6. Then, we analyze CST (h) with h at (μh − 2σh)
and (μh + 2σh) using (13). With 4-bit quantization, the security strength are
108 and 235 bits corresponding to codeword 255 and 511 bits, respectively.

In summary, as the attack on error correcting capability and Hamming dis-
tance are more costly than doing brute force on key, the system security is 87
and 148 bits according to 255-bit and 511-bit codewords, respectively.

5 Related Work

Biometric Cryptosystems (BCS) are techniques for securing biometric templates,
and also provide approaches to integrate biometrics and existing security solu-
tions (i.e., symmetric cryptography, password-based authentication) by releas-
ing biometric-dependent key [28]. BCS techniques are classified into two main
approaches, namely key binding and key generation. In the key binding app-
roach, biometric templates are used to hide/retrieve a pre-specified secret key
which can be selected by the user or randomly generated. Fuzzy Commitment
[18] and Fuzzy Vault [17] are cryptographic primitives that offer key binding
function. On the other hand, the key generation approach directly generates
secret key from biometric templates. The cryptographic primitive supporting
this approach is Fuzzy Extractor - Secure Sketch [4].
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As the concerns of security and privacy have increased tremendously recently,
the BCS techniques were widely applied to various biometric traits such as face
[21], iris [27], fingerprint [14,23], speech [15], gait [11] and achieved promising
results. Most of studies followed the key binding scheme [11,14,15,27]. For exam-
ple, the authors in [27] proposed an Adaptive FCS to secure the iris-code and
achieved 0% FAR and FRR of 4.92% with 128 bits security. Having to note
that, as the great variation of biometric templates in nature, the task of directly
generating stable and high-entropy secret key from biometric template is chal-
lenging [16,24]. Several studies on key generation on biometric samples have
been proposed [21,30].

A number of studies also proposed methods to protect gait templates (e.g.,
[11,26,34]). In [11], the authors applied FCS to secure inertial sensors based
gait signals. In [26], the authors proposed a two-factor authentication scheme
named Gait-hashing. They used hash code generated from camera-based gait
data and random vectors stored in token for authenticating user, and achieved
EER of 10.8%. The authors in study [34] proposed Key-gait which was a scheme
for generating shared secret key between two legitimate devices using gait sig-
nal captured from wearable sensors, and can generate 128-bit key with 98.3%
probability.

6 Conclusion

In this paper, we addressed the problems of inter-class’s low discrimination and
intra-class’s high variance of nature gait data, which have not been received much
attention in the privacy-preserving gait authentication community. We proposed
a method that applied LDA to increase the discrimination of gait data, and
adopted the Gray code quantization to extract a highly stable binary template.
Finally, we proposed a strategy to extract a reliable binary string from the stable
binary template, which is used as an efficient input for FCS. The achieved results
showed that our proposed system enhances not only the security but also the
performance of the system, compared with other state-of-the-art works.
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Abstract. As with every financially oriented protocol, there has been
a great interest in studying, verifying, attacking, identifying problems,
and proposing solutions for Bitcoin. Within that scope, it is highly rec-
ommended that the keys of user accounts are stored offline. To that end,
companies provide solutions that range from paper wallets to tamper-
resistant smart-cards, offering different level of security. While incorpo-
rating expensive hardware for the wallet purposes is though to bring
guarantees, it is often that the low-level implementations introduce
exploitable back-doors. This paper aims to bring to attention how the
overlooked low-level protocols that implement the hardware wallets can
be exploited to mount Bitcoin attacks. To demonstrate that, we analyse
the general protocol behind Ledger Wallets, the only EAL5+ certified
against side channel analysis attacks hardware. In this work we conduct a
throughout analysis on the Ledger Wallet communication protocol and
show how to successfully attack it in practice. We address the lack of
well-defined security properties that Bitcoin wallets should conform by
articulating a minimal threat model against which any hardware wallet
should defend. We further use that threat model to propose a lightweight
fix that can be adopted by different technologies.

1 Introduction

Bitcoin is currently considered to be the most successful cryptocurrency, with
an estimated average daily transaction value of US$200K. As it is becoming the
most widely adopted digital currency, there is substantial resource and research
investment into the security of the Bitcoin protocol and its transactions. Bitcoin
is based on public key cryptography, which requires users to digitally sign their
payments to prove ownership. Therefore, a salient aspect of Bitcoin is the wallet
key management: loss of the private keys effectively means loss of funds; exposure
of the public keys conveys privacy loss.

Online wallets are popular with Bitcoin users, as they are offered as a service
that is faster and safer than running the Bitcoin client locally. User accounts
are hosted on remote servers and accessed through third-party Web services;
wallets either store the keys also in remote servers, or locally in the user’s web
client (typically a web browser). The user accesses his wallet through web-based
authentication mechanisms and all cryptographic operations take place server-
side, typically in the Cloud. Although this approach is popular among Bitcoin
c© Springer International Publishing AG 2017
P.Q. Nguyen and J. Zhou (Eds.): ISC 2017, LNCS 10599, pp. 233–253, 2017.
https://doi.org/10.1007/978-3-319-69659-1_13
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users, certain security issues arise as the user’s private keys can be exploited
by the host. For instance, in 2013 the StrongCoin web-hosted wallet transferred
without user consent bitcoins from their servers to a different service, OzCoin,
as it was claimed to be stolen [7]. Online wallets are also common targets for
Distributed Denial of Service (DDoS) attacks, e.g., BitGo and blockchain.info
in June 2016. Such examples raised concerns about the reliability of such wallets
and created the trend for cold storage and cryptographic tokens, with most major
companies having integrated their software wallets with hardware devices.

Table 1. Bitcoin Hardware Wallets Characteristics

Wallet Secure element HID Encrypted
channel

Ledger HW.1 Smart card × ×
Ledger Nano Smart card × ×
Ledger Nano S Smart card ×
Trezor Microcontroller ×
KeepKey Microcontroller ×
Digital BitBox Microcontroller

Hardware wallets aim to
offer a secure environment
for key management and
transaction signing. When a
user requests a payment, the
wallet’s API creates the cor-
responding Bitcoin transac-
tion and sends it to the
hardware to be signed. The
hardware signs the transac-
tion and returns the signa-
ture together with the corre-
sponding public key to the API, which is then pushed it to the network. In that
way the sensitive signing keys do not ever leave the secure environment of the
hardware wallet. The Bitcoin wallets currently in the market incorporate either
microcontrollers or smart-cards. As of April 2017, the hardware wallet options
suggested by bitcoin.org are the three Ledger wallets, which are based on
smart-cards; or Trezor, Digital Bitbox and Keepkey, which are based on micro-
controllers. All wallets offer two versions: (a) a plain USB dongle, or (b) a USB
Human Interface Device (HID) with an embedded screen for the user to verify
and confirm the transaction. The main differences between current hardware
wallets are shown in Table 1. Currently, apart from Digital BitBox, none of the
wallets uses a secure communication channel. Offering a tamper resilient cryp-
tographic memory is not enough on its own to guarantee against transaction
attacks. Unauthorised access to the signing oracle of the wallet is not much dif-
ferent from plain access to the keys themselves, as both allow the funds to be
stolen. Processing a Bitcoin request involves the communication between the
hardware wallet and third-party systems. The lack of a general threat model for
the Bitcoin wallets and well-defined specifications of that communication leads
to proprietary implementations. As previous studies on different protocols have
shown (e.g., [8,10,13]), such practice often results in insecure low-level imple-
mentations that are prone to Man-in-the-Middle (MitM) attacks.

All hardware wallets implement a payment protocol similar to the following.
The API broadcasts to the device the input funds and the payment details and
requests the transaction signature If the device supports a second factor veri-
fication mechanism for the payment, it will sign the transaction only after the
user’s approval. If the device does not support such mechanism, it will sign it
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immediately. Although most Bitcoin wallets claim to secure the transactions by
enforcing the user’s validation of the payment data, the success rate of transac-
tion attacks is analogous to the user error rate. The validation/comparison of
hashes by the user, is a common technique e.g., device pairing, self-signed cer-
tificates with HTTPS etc.. The usability aspects of hash comparison in security
protocols and the effects of human errors have been studied before. For exam-
ple, in [30] the authors conclude that the compare-and-confirm method (the user
has to confirm a checksum presented on the device’s screen) for a 4-digit string
has 20% failure rate, whereas the work in [17] concludes that comparison of
the Base321 hashes has an average 14% failure rate. Such studies focus on low
entropy hashes and suggest that raising the entropy would result in bigger error
rates. They conclude such techniques cannot provide strong security guarantees.
Thus, a transaction attack on an HID wallet depends on the user’s ability to
identify the tampered data.

In this paper we stress the importance of securing the low-level communi-
cation of Bitcoin hardware wallets. We show that by taking advantage of that
communication layer it is possible to propagate the attacks directly to the under-
lying Bitcoin transactions. The attacks we address are general and target any
low-level communication with hardware wallets. Applying them in practice is a
matter of adapting them to the corresponding hardware implementation. The
security of microcontrollers has been extensively examined, and a number of
fault and side-channel attacks have been found, e.g., [4,12,20,21]. Therefore, we
focus on smart-card based wallets, which provide guarantees against physical
and interdiction attacks and have traditionally been used for key management
and cryptographic operations. As of April 2017, Ledger is the only company
offering smart-card solutions. The Ledger wallets are EAL5+ certified and are
advertised as the most secure, tamper-proof and trustworthy devices for man-
aging Bitcoin transactions.2

We consider client-side security and not security in the Bitcoin network,
although a single wallet attack may escalate. Attacking Bitcoin at the network
level is immensely expensive as it requires great computational resources. Gen-
eral attacks on Bitcoin wallets that could be applied to several users simulta-
neously are a much cheaper, easier and efficient way to gain access to multiple
accounts. The Ledger API is available on the Chrome Web Store, making it
the ideal target for massively attacking users.

Our Contributions and Roadmap. To the best of our knowledge our work is
the first to: (i) stress the importance of securing Bitcoin transactions and preserv-
ing the account’s privacy at the wallet level, (ii) consider a minimal threat model
for hardware Bitcoin wallets, and (iii) address the security issues originating in
low-level communication of Bitcoin devices, by showcasing practical attacks. We
provide a thorough analysis of the Ledger wallets by extracting their proto-
cols, analysing them and showing practical attacks. We propose a lightweight and

1 Base32 hashes are a total of 25 bit entropy and consist of five characters with 32
possible character mappings. A Bitcoin address has 160 bit entropy.

2 See http://goo.gl/KhtWXc, http://goo.gl/sbYXzh, http://goo.gl/hOU5jB.

http://goo.gl/KhtWXc
http://goo.gl/sbYXzh
http://goo.gl/hOU5jB


236 A. Gkaniatsou et al.

user-friendly fix which is general enough to be adapted to all wallets regardless
the hardware technology. As, the Ledger protocols are not publicly available, we
reverse-engineered the communication protocol and abstracted its implementa-
tions. In Sect. 3 we present and analyse the protocols that we extracted. In Sect. 4
we articulate a general purpose threat model for Bitcoin wallets and show how
we have successfully mounted the identified attacks on Ledger wallets. To that
end, in Sect. 4 we propose a lightweight and easily adaptable fix that requires
minimal changes.

2 Background

Bitcoin is a Peer-to-Peer (P2P) payment system that utilises public-key cryp-
tography and consists of addresses and transactions. A transaction may have
multiple inputs and outputs and is formed by digitally signing the hash of the
transaction from which specific funds are transferred. The signature and the cor-
responding public key are sent to the network for verification. Upon successful
validation, the funds are transferred to the stated addresses. Assuming a user u
with a private/public key pair (sku, pku), let xu be the recipient address, gen-
erated by hashing pku; let yu be the hash of transaction tu that transferred the
funds to xu. The transaction that further transfers b funds to some address zp is
the signature Sigu of yu, b and zp using private key sku: Sigsku

(yu, b, zp). Once a
transaction is formed, it is broadcast to the network to be validated for: (a) out-
puts not exceeding inputs, (b) the user’s ownership of the funds by verification
of the signature with the corresponding pku.

Table 2. The transaction block.

v: version 4 bytes

Inputs ic: input count 1 byte

txidi: previous transaction id
(hash)

variable length

pc: previous output index 4 bytes

sigL: script signature length 1 byte

scriptSig: script signature variable length

s: sequence 4 bytes

Outputs oc: output count 1 byte

amountt: value 8 bytes

l: script length 1 byte

addrp: scriptPubKey variable length

bt: block lock time 4 bytes

Transactions in Bitcoin
are expressed in a script-
ing language known as
the Bitcoin raw proto-
col, which defines the
conditions on the inputs
and the outputs. Accord-
ing to [6], a transac-
tion is defined in blocks
of bytes. Table 2 presents
the specific structure of a
transaction block and the
abbreviations that we will
use in the next Sections:
v is a fixed constant that
defines the block format
version; ic is a counter for

the inputs; txidi is the reference to the previous transaction whose outputs will
fund the current transaction; pc is a reference to the outputs of txidi that will be
used; sigL is the length of the signature; scriptSig is the signature of the cur-
rent transaction with the private key that correspond to the previous transaction
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outputs; s is a fixed constant that defines the end of the inputs declaration; oc
is a counter for the outputs of the current transaction; amountt corresponds to
the amount to be spent and l to the length of the destination public key; addrp
is the recipient public key for amountt.

Upon payment, the wallet must access the previous transactions and the
available funds. Memory limitations and absence of access to the network, make
it difficult for hardware wallets to track previous transactions. Segregated Wit-
nesses (SegWit) solve that problem by including the value of the inputs in the
signature of the transaction: hardware wallets then hash the inputs and sign
that hash.

Key Management of Hardware Wallets. Currently all hardware wallets
implement a Hierarchical Deterministic (HD) wallet of BIP32, which generates
a new key-pair for each address request [32]. HD wallets derive fresh private
keys from a common master key pair {skm, pkm}. For the creation of a new
wallet a 128- to 512-bit seed s, a sequence of random numbers, is generated.
The master private key skm is generated by a function skm = hash(s) where
hash(s) is the SHA256 hash of s. Then, given the master key pair (skm, pkm),
the wallet generates and maintains a sequence of children private sk1, sk2, ... and
public pk1, pk2, .. keys from the master private key skm. A key ski is derived by
the function ski = skm + hash(i, pkm) (mod n), pki = pkm + hash(i, pkm)N or
equally skiN with i denoting the index of the key, and hash being the HMAC-
SHA512 function. Children public keys pki can be derived only by knowing the
master public key pkm and the index i.

Related Work. Previous work on attacking Bitcoin has exposed malleabil-
ity attacks, where the adversary forces the victims to generate a transaction
to an address controlled by her. When a victim broadcasts the transaction to
the network, the adversary obtains a copy of that transaction that she modifies
by tampering the signature without invalidating it. That modification results
in a different transaction identifier (hash). The adversary then broadcasts the
tampered transaction to the network, resulting in the same transaction being
in the network under two different hashes. As a single transaction can only be
confirmed once, only one of these two transactions will be included in a block
and the other will be ignored. The attack is successful if the attacker’s mod-
ified version is accepted. Although this attack is not new, it was given great
attention after the malleability attack on MtGox [11], the first and one of the
largest Bitcoin exchanges, in 2014. Since then different malleability attacks and
solutions have been proposed, e.g., [11,31]. Double spending is another class of
attacks on Bitcoin transactions, where the user spends the same coin twice. The
feasibility of double spending attacks by using hashrate-based attack models was
studied in [24,26]. It was shown that the attack is successful whenever the num-
ber of confirmations of a dishonest transaction is greater than the number of
confirmations of the honest one. In [19] the authors exploit non-confirmed trans-
actions to implement double spending attacks on fast payments, and [26] shows
how such attacks coupled with high computational resources can have a higher
success rate. Apart from the attacks that target transactions, privacy has also
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been targeted. Though privacy is a concern of the original specification [24] the
public nature of Bitcoin renders strong privacy difficult to achieve. For instance,
by tracing the flow of coins it is possible to identify their owner [15]. Likewise,
[1] studied how transaction behaviour can be linked with a single account.

All the aforementioned attacks do not tackle the wallet layer. They all assume
the wallet implementation to be secure. As many malware attacks have gained
publicity e.g., [5,18,25] or the malware attack on the Bitstamp wallet that costed
US$5M [16], the importance of protecting Bitcoin wallets has been repeatedly
stressed out [28]. [3] proposes a super-wallet as a solution to malware, in which
the funds are split across multiple devices using cryptographic threshold tech-
niques. The importance of ensuring wallet security is also presented in [29] where
the authors formally analyse the authentication properties of the Electrum wal-
let. The authors of [2,22] argue that Bitcoin wallets be tamper-resistant and
propose cryptographic tokens as a countermeasure to malware attacks. Our work
exploits Bitcoin transactions at the wallet level. Instead of attacking the Bitcoin
raw protocol directly, we show the importance of the protocols connected to the
Bitcoin implementations. Attacking such protocols overrides any security restric-
tions that expensive hardware additions may add, and can be equally harmful
to attacking the Bitcoin raw protocol itself.

3 Ledger Wallet Implementation

The low-level communication layer of Ledger wallets, defined by the APDU
layer, is crafted to implement the Bitcoin raw protocol. The communication
consists of a series of raw hexadecimal command-response pairs between the API
and the hardware: the API retrieves data or requests the hardware to execute a
specific operation via APDU commands; whereas the hardware responds to that
request via APDU responses. For example, in the following sequence:

command e04800001f058000002c8000000080000000000000000000000c040406060

20000000001

response 3044022033128d0d576487e2e0c5892c0915564a6a5f119e698c033262d660

527943a16d022009caa037703d9a3dbf7eec4cecca08bf33b3b9a18ef929a

810f8faf6ab0f1c7a01

command retrieves the signature (response) over some transaction data. The
Ledger protocols are closed-source and there does not exist any information on
how the Bitcoin specifications are translated into the APDU layer. A large part
of our work has been to reverse-engineer the APDU layer and extract the imple-
mented protocol. This was achieved by creating a man-in-the-middle sniffer3

sitting on top of the Ledger API, capable of recording and interfering with the
communication during any active sessions with the dongle. To abstract the pro-
tocol from the actual implementation and to infer the dongle’s operations we ran
3 Due to the sensitivity of the application we have not made our code publicly avail-

able. However, it can be made available to reviewers upon request.
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a series of sessions on three different Nano dongles and one Nano S4, compared
the APDU command-response pairs, analysed the exchanged data and mapped
it to the Bitcoin raw protocol (see Appendix A.1 for an example session). We
concluded that during an active session four protocols may be executed:

(a) Dongle Alive: the initial communication when the dongle is plugged-in.
(b) Setup: wallet configuration and generation of the master keypair {skm,pkm}.
(c) Login: user authentication to the dongle, and vice versa.
(d) Payment : processing of a payment transaction.

The Dongle Alive and Login protocols run once each time the dongle is connected
to an active API. The Payment protocol repeats each time the user requests a
payment. To proceed to a payment the user is not required to re-authenticate.
The Setup protocol is executed once for initialising the wallet and each time an
account restore is required; user authentication is its prerequisite. The dongle
communicates with the API only when one of the four protocols are executed or
when a firmware update is requested.

Commands Used During the Communication. Wallet communication con-
sists of raw messages between the API and the dongle. To make the analysis read-
able we present the command-response messages in the form of c(p1, p2, . . . , pn)
→ r1,2 , . . . , rm, which denotes that the API sends command c with para-
meters p1, p2, . . . , pn, n > 0 to the dongle; and the dongle responds with
r1, r2, . . . , rm,m ≥ 0. If m = 0 the dongle either replies with OK (success) or
error (failure). Table 3 lists the communication primitives used to describe the
protocols.

Keys that Appear During the Communication. We conclude that Ledger
wallets manage the following key types:

(i) {skatt, pkatt}: predefined attestation keys, used for the dongle’s firmware
authentication and for setting up third-party hardware,

(ii) {skm, pkm}: the master keypair from which all keys are derived,
(iii) {ski, pki} pairs: transaction related keys, i.e., keys{skr, pkr} for receiving

funds and {skc, pkc} for transferring the change of a transaction. All keys,
besides pkr, are generated and stored dongle-side.

(iv) pkkp: a symmetric key for the encryption/decryption of the wallet’s key-
pool. As most Bitcoin wallets do, Ledger software maintains a key-pool
of 100 randomly generated addresses: each time the wallet requires a new
address it picks one from the key-pool which is then refilled. Based on the
original Bitcoin client (i.e., the Satoshi client) the key-pool gets encrypted
(AES-256-CBC) with an entirely random master key [27]. This master key
is encrypted with AES-256-CBC with another key derived from a SHA-512-
hashed passphrase. In the original implementation, the user provides that
passphrase when generating that key and each time he wishes to proceed
to a transaction. Ledger wallets use pkkp as a passphrase to generate that
encryption key.

4 The protocol of Nano S is very similar to that of Nano, thus it was not necessary to
test it in a different dongle.
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Table 3. API commands and their meaning.

(v) {skauth, pkauth}: signature/verification keypair for the dongle-API authen-
tication.

Ledger dongles do not follow the common smart-card file structure: instead
of supporting dedicated and elementary files, the keys are stored in a tree-
like structure starting from the master key-pair and are referenced according
to the corresponding BIP32 derivation parameters: (1) the number of deriva-
tions bipDer, (2) the first derivation index findex and (3) the last derivation
index, lindex.

Dongle Alive Protocol. Ledger Nano: The protocol consists of four message
requests with which the API checks the integrity of the dongle’s firmware through
an attestation check: the API requests the dongle to sign a random blob concate-
nated with the firmware version frmwV er under a manufacturer key skatt. The
exact steps are: (a) The API retrieves the dongle’s firmware version frmwV er.
(b) The API retrieves pkatt. (c) The API sends blob to the dongle and retrieves
the signature Sigatt of the blob concatenated to the firmware version frmwV er,



Low-Level Attacks in Bitcoin Wallets 241

seed,skatt,pinuser

Dongle

pkatt ,pkm

API

get firmware version()

RES �→ frmwVer
RES

get wallet public key(bipDeratt1, findexatt1, lindexatt1)

IF (bipDerpkatt1 ,findexpkatt1 , lindexpkatt1 )
RES �→ pkatt1

RES

new blob
get device attestation(blob)

Sigatt �→ sign((blob, frmwVer),skatt)
RES �→ {Sigatt ,attId,attDer
frmwVer,modes,currentMode}

RES

get firmware version()

RES �→ frmwVer
RES

verify(Sigatt, pkatt)
check( firmwVer)

Fig. 1. The Nano alive protocol.

key

seed,skatt,pinuser

Dongle

pkatt ,pkm,pin

API

verify(pin)

IF pinuser = pin RES �→ OK
RES

set operation mode(secFac, opMode)

IF secFac = 00 enable �→ False
else enable �→ True
IF opMode = 01 currentMode �→ standard
else currentmode �→ relaxed
RES �→ OK

RES

new m
sign(bipDerauth, findexauth,lindexauth, m)

IF(bipDerskauth ,findexskauth ,lindexskauth )
RES �→ OK

RES

sign(pin)

IF pinuser = pin
Sigauth �→ sign(m,skauth)
RES �→ Sigauth

RES

get wallet public (bipDerauth, findexauth,lindexauth)

IF (bipDerpkauth , findexpkauth , lindexpkauth )
RES �→ pkauth

RES

verify(Sigauth, pkauth)

get wallet public key(bipDerkp, findexkp,lindexkp)

IF (bipDerpkkp , findexpkkp , lindexpkkp )
RES �→ pku

RES

Fig. 2. The Nano login protocol.

the id of the attestation key attId, frmwV er and the operation modes and
currentMode. (d) The API retrieves again frmwV er and verifies Sigatt. The
state transition diagram of the protocol can be found in Fig. 1.

Ledger Nano S: The API retrieves pkatt, the dongle’s firmware version frmwV er
in plaintext, sets the currency and retrieves the keys pkauth, pkkp. The Nano S
protocol does not include the attestation authentication.

Login Protocol. Ledger Nano: The Login Protocol (Fig. 2) establishes an
authenticated session by which the user gains access to the dongle and, con-
sequently, to the wallet. In contrary to Nano S in which no communication is
involved (the user authenticates directly from the device’s surface), the pro-
tocol consists of six messages, with the main operations being: (a) user pin
verification, (b) dongle authenticity verification via a signature check, and (c)
retrieval of wallet-related keys. The API also enables or disables second-factor
authentication for payments and configures the wallet’s operation modes. The
supported modes are: (i) standard, the default, which allows standard Bitcoin
scripts (addresses staring with 1) or P2PSH scripts (addresses staring with 3)
and a single change address. At the beginning of the transaction the user is shown
the amount to pay, the change, and any fees. (ii) relaxed, which allows arbitrary
outputs to be authorised. At the beginning of a transaction the user is shown
the amount to pay. (iii) server, allowing arbitrary outputs to be authorised but
the transactions are controlled by a number of parameters.e.g., maximum total
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of transactions. (iv) developer, allowing arbitrary data to be signed. The steps of
the protocol are: (a) The API sends the user’s pin to the dongle. (b) Upon pin
verification the API sets the second factor authentication (SecFac) and wallet
operation (opMode) modes. (c) The API requests the dongle to sign a random
message m with key skauth and retrieves Sigauth by sending pin. (d) The API
retrieves pkauth and verifies Sigauth. (e) The API retrieves pkkp.

skatt

Dongle

pkatt

API

new seed, pin
setup(pin, seed, genKey)

pinuser �→ pin
IF genKey
skm �→ g(h(seed))
RES �→ OK

RES

set operation mode(secFac, opMode)

IF secFac = 00 enable �→ False
else enable �→ True
IF opMode = 01 currentMode �→ standard
else currentMode �→ relaxed
RES �→ OK RES

. . .

get wallet public key(bipDer1, findex1,lindex1)

IF (bipDerpk1 ,findexpk1 , lindexpk1 )
RES �→ pk1c

RES

alive protocol

login protocol

get wallet public key(bipDerm, findexm,lindexm)

IF (bipDerpkm ,findexpkm , lindexpkm )
RES �→ pkm

RES

get wallet public key(bipDeru, findexu, lindexu)

IF (bipDerpku ,findexpku , lindexpku )
RES �→ pku

RES

Fig. 3. The nano setup protocol.

seed,skatt,pinuser

Dongle

pkatt ,pkm,pin

API

get trusted input(v, ic)

T1 �→ {v, ic}
RES �→ OK

RES

. . .

get trusted input(bt)

T5 �→ (T4 ∪bt)
Sigt �→ sign(T5,skt)
RES {→� Sigt ,oc,amountt}

RES

get wallet public key(bipDert , findext ,lindext)

IF (bipDerpkt , findexpkt ,lindexpkt )
RES �→ pkt

RES

untrusted hash transaction input start(v, ic)

P1 �→ (v, ic)
RES �→ OK

RES

. . .

untrusted hash transaction input finalize(
addrp, amountp,feesp, bibDerc, findexc, lindexc)

P4 �→ (P3 ∪{addrp,amountp , feesp})
c �→ amountt – (amountp + feesp)
IF (bibDerpkc ,findexpkc , lindexpkc )
new secFC
RES {→� c,addrp,amountp, feesp,
pkc,secFC}

RES

new secFR

untrusted hash sign(bibDert , findext , lindext , secFR)

IF (bibDerskt ,findexskt , lindexskt )
IF a(addrp,secFC) = secFR
Sigp �→ sign(hash(P4),skt)
RES �→ Sigp

RES

Fig. 4. The nano payment protocol.

Setup Protocol. Ledger Nano: The setup process begins API-side. After select-
ing a PIN, the user is given a 24-word passphrase which corresponds to the
wallet’s seed. After the user has confirmed the correct passphrase by providing
the words that the API has requested, API-side initialisation is done. Then, the
dongle-side setup begins. The main operations of the Setup protocol (due to
space limitation Fig. 3 presents only the exchanged messages that are exploited
by our attacks), are: user pin and seed initialisation, and the keyboard and
operations mode setup. During initialisation, the API also retrieves the master
public key pkm, and the first derived public key pk1. The message flow is the
following: (a) The API sets up a new pin and seed and requests the generation
of {skm, pkm}. (b) The API requests from the dongle to sign frmwV er con-
catenated to a random blob using the key skatt. (c) The API verifies the pin.
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(d) The API retrieves pk1. (e) The Dongle Alive Protocol takes place. (f) The
Login Protocol takes place. (g) The API retrieves pkm and some extra unidenti-
fied key ku.

Ledger Nano S: Initialisation is performed dongle-side. The user is shown the 24-
word mnemonic and the first time the dongle connects to the API, it sends pkm.

Payment Protocol. Both Ledger Nano and Nano S use a second factor authen-
tication mechanism to ensure that transactions are not tampered, with both
implementations requiring the user’s confirmation of the payment address. In
Ledger Nano the second factor authentication is of the form of a challenge-
response, based on a 58-character-pairs security card the user is provided with.
Each time the dongle is requested to process a payment, it presents the user
with a challenge secFC consisting of four indexes of the payment address. The
user responds to that challenge with the corresponding characters from the secu-
rity card, secFR. Only if secFR is correct, will the dongle continue processing
the transaction. Nano S also requires user interaction to process a transaction:
before signing the transaction it displays part of the payment address, the pay-
ment amount and the fees on its screen. Only if the user confirms the transaction
data by pressing the OK button, the dongle will sign the signature.

Ledger implements a proprietary Segregated Witness by enforcing the API
to send a detailed description of the inputs before the payment processing: the
API forms a pseudo transaction block which has only the inputs, and sends it to
the dongle, through a set of trusted input commands. The dongle parses the
block (bytewise concatenation) and returns its signature Sigi. When the API
creates the actual transaction, it will use Sigi to define the corresponding input.

Ledger Nano: The protocol, shown in Fig. 4, is as follows: (a) The API sends to
the dongle the available funds through sets of get trusted input commands.
The inputs are sent in the form of pseudo transactions (following the specifica-
tion in Table 2): one for each input. The number of get trusted input com-
mand sets is equal to the addresses (ti, i ≥ 1) with available funds. When
the dongle has successfully received block t for a given input, it signs it and
returns the signature Sigt, the output index and the amount. (b) The API
retrieves pkt for input t. (c) The API creates the actual transaction block
(Table 2), requested by the user, by sending the inputs Sigt through sets of
untrusted hash transaction input start commands, each set corresponding
to a single input. Then, outputs, i.e., the payment address addrp, the payment
amount amountp, the fees feesp and the change key pkc parameters (bipDerc,
findexc, lindexc), are sent via a untrusted hash transaction input finalize
command. (d) The dongle calculates the remaining balance c, selects the authenti-
cation bytes secFC sends back to the API a confirmation of the payment details, c,
pkc and secFC. (e) The API requests from the dongle to sign the transaction with
skt by sending the user’s validation code, secFR. (f) The dongle checks secFR
against secFC and addrp and, if it is correct, it computes and returns the trans-
action signature Sigt.
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Ledger Nano S: The Payment proceeds as presented in Fig. 4 with a few differ-
ences: (a) The API starts the transaction by retrieving the balance address, pkc,
via a get wallet public key command. (b) The API sends pkc back to the don-
gle via the untrusted hash transaction input finalize command. (c) There
is no second factor authentication asked by the dongle, or sent by the API.

4 Attacks

A Bitcoin wallet should provide high levels of security and privacy for the user,
while also being easy to use. We therefore consider a wallet to be secure when it
provides: (a) guarantees against tampering, (b) a secure environment for trans-
action processing, and (c) account privacy.

Table 4. Attack categories

a. Direct wallet attacks
a.1 access to the master

private key skm ;
a.2 access to the key pool

encryption key;
a.3 unauthorised access to

the wallet;
a.4 alter the wallet

security properties.

b. Transaction attacks
b.1 tamper the payment

amount;
b.2 tamper the payment

address;
b.3 denial of service.

c. Account privacy attacks
c.1 account traceability.

Our threat model assumes
perfect cryptography and con-
siders an adversary who has
complete control over the
communication layer: he can
eavesdrop and manipulate the
communication by deleting,
inserting and altering the
messages. We define the cat-
egories of possible threats to
any Bitcoin wallets shown in
Table 4.

4.1 Attacks in Practice

We show how we were able to perform attacks from the APDU layer, by bypass-
ing the restrictions of the API. Some attacks are passive, i.e., they only require
observing the communication channel; while others are active i.e., involve relay-
ing and altering the exchanged messages. Some example traces of the attacks
can be found in Appendix.

a.1: Access to Master Private Key skm. Access to the wallet’s seed s is
synonymous to having access to skm. During the Setup protocol execution we
were able to sniff s which was sent in plaintext from the API to the dongle.
By using the BIP32 derivation function we regenerated skm and all children
keys. The API having access to s and transmission of s in plaintext defeats the
purpose of cold storage. The attacker may gain access to the Setup protocol, and
consequently to s, by forcing the dongle’s reinitialisation. Mounting Attack a.1:
Given a valid pin p, a replay of the session {verify(p′) → error, verify(p′) →
error, verify(p’) → error} in which p′ �= p results into the dongle entering a
lock state and forcing re-initialisation. The attacker has now access to the Setup
protocol and can either acquire s or inject his own seed sa.

a.2: Access to Key-Pool Encryption Key. Unauthorized access to key-pool
implies loss of privacy and account traceability as the adversary gains insight
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on the addresses that the account uses/has used. During a Login session the
passphrase that is used to create the key-pool key, which is the key pkkp, is
transmitted in plaintext after a get wallet public key command.

a.3: Unauthorised Access to the Wallet. A general requirement in Bitcoin
wallets is to be used only by users that have the credentials, e.g., the pin. Our
analysis showed that at each Login protocol execution the pin is sent in plaintext,
(though only in the Ledger Nano case), via a verify command, making the
pin vulnerable to eavesdropping.

a.4: Alter the Wallet Security Properties. A second factor authentica-
tion mechanism secures each transaction: the user has to verify random charac-
ters of the payment address. The following attack changes the security parame-
ters of the dongle and disables that mechanism. Mounting Attack a.4: Perform
the following steps: (a) Replay a legit Setup session, {setup(p, s) → OK, . . . ,
set operation mode(enable, standard) → OK, . . . } (Fig. 3), and apply the sub-
stitutions (�→):

set operation mode(enable �→ disable, standard �→ relaxed). (b) In
each Login session, (Fig. 2), replay the communication by applying the substitu-
tions (�→):

set operation(enable �→ disable, standard �→ relaxed). (c) In each
Payment session, (Fig. 4), replay the communication and apply the substitu-
tions (�→): (i) in untrusted transaction input hash finalize: response(c,
addrp, amountp, pkc, no �→ secFC) where no is the card’s response that no
second authentication is required, and secFC are four random characters of the
payment address addrp. (ii) untrusted has sign(sk params, secFR �→ no)
where secFR is the user’s input to secFC and no declares that no secondary
authentication took place.

a.4: Learning the Security Card. If the second factor authentication mecha-
nism is enabled, each transaction requires the user’s input according to a security
card. The dongle requests four characters of the payment address to be verified
by providing their mappings of the security card (58 hexadecimal characters that
encode the letters A–W, a–w and the numbers 0–9). Each Payment session can
reveal four new mappings. For this, 1. the adversary alters secFC �→ secFC ′

in favour of the character mappings he does not yet know but that will allow
him to correctly compute the response to the challenge, 2. the adversary returns
to the dongle the correct secFR according to the original challenge secFC. In
this way the adversary will learn four new characters in each Payment protocol
execution. And so, after 15 legitimate user initiated payments, the attacker will
have learned all characters of the security card.

b.1–b.2: Transaction Attacks. Given a Payment session an adversary can (a)
redirect the payment destination: addrp and (b) tamper the payment amount:
amountp by altering the exchanged messages. Mounting attack b.1–b.2: (a)
to redirect the payment destination apply the following substitutions (�→):
untrusted transaction input hash finalize(addrp �→ addr′

p, amountp,
feesp, pkc parameters)→response(c, addra �→ addrp, amountp, pkc, secFC).
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In the command data the original payment address addrp is substituted by the
attacker’s add′

p. The response is also relayed so that it contains the original
address.

(b) to tamper the payment amount one should apply the following substitu-
tions (�→): untrusted transaction input hash finalize(addrp, amountp �→
amount′p, feesp, pkc parameters) → response(c′ �→ c, addrp, amount′p �→
amountp, pkc, secFC). In the command data the original payment amount
amountp is substituted by the attacker’s amount′p whereas in the response data
amount′p is changed back to amountp and the remaining funds c′ is changed to
the amount that would result after the original payment amount. This attack
combined with either of the two a.4-type attacks allows an attacker to have any
transaction signed by the dongle, even without knowledge of the PIN or the
master secret key.

b.3: Denial of Service. DoS attacks that target specific Bitcoin Wallet users
have become viral, e.g., the DoS attacks on the BitGo wallets that left many
users unable to use their funds. Such attacks target the wallet’s server and consist
of sending a huge amount of requests. Though out of our scope, in the Ledger
wallet side of things, DDoS attacks could also be mounted from the APDU
layer by tampering the transaction data in a way that either the dongle cannot
interpret, or that the transaction cannot be verified.

c.1: Account Traceability. Bitcoin is associated with anonymity and is often
used by users who want their actions to be unlinkable. Each transaction results
to the generation of a new key to avoid reusability of old addresses. In HD
wallets, like Ledger, all public keys are derived from the master public key
pkm with the formula pki = f(pkm + hash(i, pkm)) where i is the child key
index and f the generator function. As such, access to pkm equals to access to
all pki keys and thereby the account becomes traceable. pkm can be obtained
by eavesdropping a Setup session (which can be enforced with Attack 4.1) as
in both Nano and Nano S is transmitted in plaintext. However, the account’s
activities are also traceable by just eavesdropping the Payment sessions: at least
one pkr (an address with available funds) and probably one change address pkc
(if their available change) are revealed.

Generality of the Attacks. The purpose of our work is to show that it is
possible to attack Bitcoin hardware wallets via the low-level communication.
The threat model we present is hardware/software independent and applicable
to all available Bitcoin wallets. The attacks on the Ledger wallets aim to prove
that Bitcoin transactions are vulnerable, even if tamper-resistant hardware such
as smart-cards are incorporated. Our work showcases how the API restrictions
can be bypassed by relaying the hardware communication. The same attacks,
adapted to meet the criteria of each hardware, can be applied to every wallet
that does not use a secure communication channel i.e., Trezor and Keepkey.
All hardware wallets follow the same abstraction of the Payment protocol; any
plaintext communication is prone to attacks b.1-b.2. Although they incorporate
a second factor authentication mechanism by enforcing the user’s verification of
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the payment data, previous studies have shown that a significant average of 15%
of such verification is usually erroneous.

The privacy issues we address for the Ledger wallets is an aspect that
reflects to all BIP32 wallets, especially to those that do not communicate in a
secure way. Currently, all hardware wallets5 transmit the public keys (including
the master public key) in the clear: eavesdropping a single session reveals at
least two public keys: the address with available funds and the address that the
remaining balance will be sent to. Also, whenever the hardware connects to a
fresh API, the master public key pkm is sent in the clear. Access to that key
implies access to all children public keys, which makes eavesdropping that single
session sufficient to track the account’s transactions. In any case, whether the
adversary has access to pkm or to its children pki the flow of the funds of the
given account is linkable.

5 A Lightweight Fix of the Protocols

The Ledger wallets, as all other hardware wallets not using a secure communi-
cation channel, fail to prevent MitM attacks. All transaction data is sent in the
clear, making the wallet vulnerable to attacks and account linkability. Encrypt-
ing the entire communication would be an obvious solution to that. However,
such strategy requires computational power, and possible changes to the security
architecture of the current wallets. Additional delays to the transaction process-
ing would be another trade-off. Instead we propose the symmetric encryption
of specific communication parts: those that are prone to attacks with respect to
our threat model. Table 5 summarises what Ledger wallet data need to be pro-
tected to defend against which attacks. Our fix consists of three components: 1.
the secure pre-setup phase, 2. the authentication and session key establishment
protocol, 3. encryption of sensitive parts.

Table 5. Ledger data and the corresponding attacks.

Data a.1 a.2 a.3 a.4 b.1 b.2 b.3 c.1

s

pin × × × × × × ×
secFC, secFR × × × × ×
opMode × × × × ×
addrp, amountp,feesp,c,pkc × × × ×
pk {m,m+ 1..,m+ n} × × × × × ×

Secure Environment
for the PIN Ex-
change. The PIN needs
to be entered in the
hardware before the
initialisation of the wal-
let as the PIN is then
used to derive the cryp-
tographic keys to pro-
tect the interactions

between the dongle and the API. This process must proceed in a secure offline
environment. This can be achieved either by entering the PIN directly on the
trusted user interface of the device (if it is an HID wallet); or by setting up the
PIN on an air-gapped machine, e.g. using a live OS on a USB stick which will
ensure that the OS has and will never be connected to the Internet.

5 Apart from Digital BitBox whose specifications are not available publicly.
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Authentication and session key establishment. This protocol gets executed
every time the API establishes a new session with the dongle. It is responsible for
the API/hardware authentication and the establishment of a fresh session key.
A new session is established whenever the hardware connects to an active API.
For the key establishment we propose Password Authenticated Key Exchange by
Juggling protocol (j-PAKE) [14] which allows bootstrapping high entropy keys
from the low-entropy user’s PIN. In that way, we avoid storing secret data API
side, ensure that fresh keys are used in each session and guarantee the user’s
presence at that session. In addition, the j-PAKE protocol allows zero knowl-
edge proof of the PIN which satisfies the authentication prerequisites of the ses-
sion. Finally j-PAKE provides guarantees against off-line and on-line dictionary
attacks and it satisfies the forward secrecy and known-key security requirements.
J-PAKE, like the Diffie-Hellman key exchange, uses ephemeral values but pro-
ceeds in an additional round in which combines them with the user’s PIN and
makes certain randomisation vectors vanish.

Encryption of sensitive data. Once the session key is established slightly
modified versions of the four Ledger protocols (Alive, Login, Setup, and Pay-
ment) can be executed. The four new protocols are derived from the original
Ledger protocols as follows. First a session identifier is established for each
execution of each of these protocols. This will be generated dongle side, and
transmitted to the API in plaintext. The session identifier does not need to
be confidential, but will need to be fresh and generated by the dongle to avoid
replay attacks. Then dongle and API execute the original protocol but encrypting
under the current session key the sensitive data identified previously (Table 5).
The computed ciphertexts will all include the established session identifier. A
Message Authentication Code (MAC) is further computed and concatenated to
the chiphertext. The other party will then be able to decrypt and verify the
encrypted parts.

6 Discussion

Although the security of financial related hardware in other areas has always
attracted a lot of attention, eg., the Chip and PIN systems [23], Bitcoin-related
hardware has not been extensively studied before (apart from [9]). Relying on the
high levels of security that the Bitcoin protocol offers is not enough to guarantee
safe transactions. Lack of a standard that defines the properties of the Bitcoin
wallets leads to security misconceptions and ad-hoc implementations that hide
vulnerabilities. Our work, to the best of our knowledge, is the first effort to
address security aspects of Bitcoin wallets and stress the importance of securing
the implementations of low-level communications. We chose to analyse smart-
card based wallets as they are perceived to be the most secure and tamper
resilient means for key management. However, the core idea of the attacks is
general and applies to other hardware wallets of different technology.

In this paper we extract and analyse the protocols that are hidden behind
the Ledger wallets, the only available smart-card based solutions. Our work
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includes the analysis of both standard and HID dongles. We identify and cate-
gorise all possible vulnerabilities for Bitcoin wallets and we introduce a general
threat model. We then use that model to analyse the Ledger protocols. Our
work concluded that the Ledger implementations are vulnerable to a set of
attacks that target the wallet itself as well as the Bitcoin transactions. Finally,
we propose a lightweight fix, based on the j-PAKE protocol, which can easily
be adapted by any wallet and efficiently prevents any active or passive attack.
Attacking the Ledger wallets is just an example, whereas the same methodology
can be easily adopted in other technologies. Our work does not aim at proving
the specific wallets insecure, but rather to showcase the importance of ensuring
a secure low-level implementation even if the higher levels provide guarantees.

A Appendix

A.1 Example Communication Trace

As an example, we provide the trace that was generated for the following trans-
action:

Transaction Id 92d30a91b45d6ab528af12f3a9c0701e01f67348a257ed50362439a2ee8274e7

Input addresses 1 113biVTVQk73Eem1UYYn9YcrPVrxp6xeVc

2 15DpocdQpwXeUp9Ccf2Nz9AQ9jKp9U5VdZ

Payment address 1GocNQ4Q8BtzacpHQiGLWk9vNppoq6Lh8W

Payment amount 0.00813844

Change address 1PmXm9UcAgDBp5i3SvqD3SfdKChfWthH4W

We only provide the traces of the commands of Fig. 4 so as not to overwhelm.

1. get trusted input: e042000009000000010100000001
2. response: 9000
3. get trusted input: e04280000400000000
4. response: 32008ed5f038879105a5778cdacee02ca43f21bcbbd66cd647add

3db69dd3222b9c3968d0000000078710d00000000009132801b579e659b
5. get wallet public key: e040000015058000002c800000008000000000000

0000000000c
6. response: 410441ec4b255d40010284f117d8105456a268cd9536ca5ca3d30

16bf6d21902e5dc4bf9b224b5cb2379b5c2b4a47044862d42c6e5b14daf229
39fec8023c83ac519223131336269565456516b373345656d315559596e39
59637250567278703678655663da55cec9398694400832d6af2426c057addc
73438efa016f6f9232735ee6b1a8

7. get wallet public key: e040000015058000002c800000008000000000000
00100000012
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8. response: 41043f07a649a72651f10d5728b7f848ee879fb3b263ddd653b51
b563a051f138fa3e35f5f6d794a2621fbf0493d6af5c2b300734086fa0ebbe
411f11017b1989bdd22313544706f63645170775865557039436366324e7a
394151396a4b7039553556645a9bf32153ef7f646d1d1991382932bc915d67
1ddc3640ef8da3eb54877191e559

9. untrusted hash transaction input start: e0440000050100000002
10. response: 9000
11. untrusted hash transaction input finalize: e0460200482231476f634

e5134513842747a616370485169474c576b39764e70706f71364c683857000
000000000d6d80000000000004508058000002c80000000800000000000000
100000013

12. response: 4502d8d60000000000001976a914ad5a8ba5325b4b836c49b097
97cbb83744a7a2f588ac146b0c00000000001976a914f9bebf6735e688877
e409cd494ad820b344dd76e88ac03040405121e47646f813e5dfd4fbc72e66
98cc40a67a980bccbe7881c2e40ac6fec4fbcda20d980ec3a67445e48dad87
0ee58d006745fdf953138be5fb0570e679f512c36ed

13. untrusted hash sign: e04800001f058000002c80000000800000000000000
00000000c04040606020000000001

14. response: 3044022033128d0d576487e2e0c5892c0915564a6a5f119e698c
033262d660527943a16d022009caa037703d9a3dbf7eec4cecca08bf33b3b9
a18ef929a810f8faf6ab0f1c7a01

A.2 Active Attacks

a.4: Alter the Wallet Security Properties. The attack requires sending the
wrong pin p′ three consecutive times and then tampering the set operation
command. A sample trace with the breakdown of the steps and their corre-
sponding commands is given in Table 6; we underline the important pieces of
the exchange.

Table 6. Attack a.4: Trace of disabling the second factor authentication during Setup

b.1–b.2: Transaction Attacks. The structure of untrusted hash
transaction input finalize is: and the structure of the response data that
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command e046020048

length of payment address 22

payment address addrp 314e3371757233596565334b664e74

436a4677756e346f366f4c32447868

6747796f

payment amount amountp 0000000000005305

fees feesp 0000000000001d60

change address BIP32 parameters 058000002c80000000800000000000

0001000000

second authentication status (true/false) 02

payment amount amountp 03b1000000000000

hash160 of addrp f1253f0463e5877c5e8bb3f34e7abfb335023ee1

change c 0553000000000000

hash160 change address addrc e6e44d66125327341d6abb71e0702a4ea0537437

we are interested in is:
Depending on the attack we want to perform the corresponding data part

needs to be altered. For example, to change the payment address from 163WPEe
THjvFsUfx1UbDPXK92eRmqXQrGA to 113biVTVQk73Eem1UYYn9YcrPVrxp6xeVc,
we tamper the original command:
e046020048223136335750456554486a7646735566783155624450584b3932655
26d71585172474100000000000027100000000000001a9a058000002c80000000
800000000000000100000000 to the command:
e046020048223131336269565456516b373345656d315559596e395963725056
727870367865566300000000000027100000000000001a9a058000002c80000000
800000000000000100000000
where we underline the relevant parts; similarly for the response.

Learning the Security Card. The attacker gains access to the keycard
mappings, secFR, via the untrusted hash sign command, e.g., e04800001f
058000002c80000000800000000000000000000001040f090a020000000001.
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Abstract. Recent many password guessing algorithms based on the
Probabilistic Context-Free Grammars (PCFGs) model brought signif-
icant improvements in password cracking. These algorithms analyzed
common semantic patterns (letter semantic patterns, date patterns,
keyboard patterns etc.) from passwords and modeled the construction
process of passwords by using PCFGs. However, there still left a large
fraction of integral segments in passwords which seem no semantics. Can
those segments be deeply analyzed and help to make further improve-
ments on password cracking? Motivated by this challenge, this paper
employs Byte Pair Encoding (BPE) algorithm for password segmen-
tation, extracting those non-semantical patterns which are frequently
used in passwords subconsciously by people. Based on the segmenta-
tion, we propose a BPE-PCFGs model to generate password guesses.
Furthermore, we also utilize the existing common semantic patterns and
BPE patterns to construct a new Rich-BPE-PCFGs password generator.
Experimental results on large-scale password sets show that our Rich-
BPE-PCFGs model can obtain a 2.36%–37.56% improvement over the
original PCFGs model, which is a good complement to existing password
guessing algorithms.

Keywords: Password guessing · Byte pair encoding · PCFGs

1 Introduction

Password authentication is still the most widely used authentication method
among online websites. And Text-based passwords still occupy an important
position in the foreseeable future [1], because of their simplicity for remembering
and implementing. However, there exists the “security and usability” dilemma
on text-based passwords. For example, many users tend to choose very simple
passwords such as “123456”, “helloworld”, but these passwords are vulnerable
to be guessed. Additionally, based on recent researches, the Zipf’s law perfectly
exists in user-generated passwords. That is to say, a small faction of common
c© Springer International Publishing AG 2017
P.Q. Nguyen and J. Zhou (Eds.): ISC 2017, LNCS 10599, pp. 254–268, 2017.
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strings, such as “123”, “asd”, appear frequently in user-generated passwords.
This fact makes passwords predictable by employing some state-of-the-art tech-
niques. So the analysis of patterns in user-generated passwords helps researchers
design more efficient password guessing algorithms, which can be used to improve
the success rate of password cracking or measure the strength of passwords.

Security of user-generated passwords has attracted the researchers’ attention
for a long time. Many password guessing algorithms have been developed and
used in practice. At first, brute-force algorithms [2] and other algorithms based
on a big dictionary with a few mingling rules [3,4] are designed to crack pass-
words. These algorithms limit the guessing ability and reduce the guessing suc-
cess rate. In recent years, the Probabilistic Context-Free Grammars (PCFGs)
model proposed by Weir et al. [5] is widely used in password guessing. They
divided passwords into three kinds of patterns, namely, L-pattern, D-pattern
and S-pattern, which stand for letter strings, digital strings and strings composed
of special characters. Then based on these patterns, they provided a password
generation algorithm, which significantly improved the efficiency of password
guessing. Following Weir’s work, several deeper analytical methods about the
pattern of passwords have been proposed. Veras et al. [6] utilized Natural Lan-
guage Processing (NLP) techniques to segment, classify, and generate semantic
patterns from passwords. Additionally, the date pattern [7] in D-pattern, the
keyboard pattern [8,9] and even the personal information pattern [10,11] are
analyzed successively. The password guessing algorithms based on above pat-
terns have improved the success rate of password guessing greatly.

Still, the above patterns in passwords depend on people’s priori knowledge
and experience. For example, we know that the date will exist in a few common
styles, such as “YYYYMMDD”, “MMDD”, “MMDDYYYY”, so we can extract
the date pattern from passwords by using regex matching. We can extract the
letter-semantics pattern from passwords based on vocabulary. The keyboard
pattern is also done with the similar idea. However, due to the wish to make
passwords secret, there are still many integral segments frequently used to create
passwords that could not be classified by above semantic patterns. Those integral
segments seem no semantics. Can we analyze those segments deeply and help to
make further improvements on password cracking?

Motivated by this problem, this paper mainly studies those integral seg-
ments statistically. As Byte Pair Encoding (BPE) [12] can find strings fre-
quently appearing in a text, we employ the BPE algorithm [13] to extract non-
semantical patterns which are frequently used in passwords. And then we provide
the PCFGs model based on BPE-patterns and construct the responding pass-
word generator. Furthermore, we combine our BPE-patterns with the proposed
semantic patterns, such as date patterns and letter patterns, to implement a
new method called Rich-BPE-PCFGs to model the creation process of pass-
words. The Rich-BPE-PCFGs algorithm under 50,000 BPE merge operations is
able to guess 2.36%–37.56% more passwords than original PCFGs within 100
million guesses on Chinese password sets and English password sets.
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In summary, the contributions we make in this paper are as follows:

• We employ the Byte Pair Encoding algorithm to password segmentation,
extracting frequently used segments in password.

• In order to explore the impact of the BPE segmentation on password struc-
tures, we utilize some new password patterns based on BPE segmentation
and generate password guesses using these patterns.

• We propose a new model, called Rich-BPE-PCFGs, by incorporating new
L-patterns and D-patterns into the grammars of PCFGs. A large number of
experimental results show that our algorithm can guess 2.36%–37.56% more
passwords than the original PCFGs method.

This paper is organized as follows: In Sect. 2, we discuss related work.
Section 3 presents how to apply the BPE algorithm to extract password pat-
terns and subsequently proposes a new Rich-BPE-PCFGs model. The details of
comparative experiments and analysis of experimental results are presented in
Sect. 4. Section 5 concludes with respected to this work and discusses our future
work.

2 Related Work

Byte pair encoding (BPE) is a simple form of data compression, in which the
most common pair of consecutive bytes of data is replaced with a byte that
does not occur within that data. A table of the replacements is required to
rebuild the original data. The algorithm was first proposed by Gage et al. [12].
The following researches about BPE are almost focus on applying the method
in different fields, such as the compressed pattern matching and the machine
translation. Potential advantages of BPE from a view point of the compressed
pattern matching have been shown in Shibata et al. [14]. Senrich et al. [13] have
applied the BPE algorithm in the field of Neural Machine Translation. They used
BPE as a kind of word segmentation techniques, which can find out the subword
units in words. However, In the field of security, there is almost no application
of BPE.

Using the grammar theory to model symbol strings originating from word
in computational linguistics is of great help to understand the structure of nat-
ural languages. The Probabilistic Context-Free Grammars (PCFGs) method has
been used in many areas, such as RNA structure prediction, protein sequence
analysis and security. In security field, Weir et al. [5] are the first to apply PCFGs
in password cracking, which is considered to be the state-of-the-art technique to
password cracking [15,16]. They derived grammars from training real world pass-
word sets and then generated guesses in probability order. After Weir’s work, the
following researches about the PCFGs in password cracking are almost focus on
how to making better password segmentation based on certain patterns. Bonneau
et al. [17] explored the distribution characteristics of passwords and introduced a
new pattern of adjacent keys, which occupy 11% of passwords in CSDN. Chou et
al. [18] developed a platform to identify frequently used password patterns and
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proposed a model to generate passwords in decreasing order of probability based
on a variation of Weir’s algorithm [5,19]. Veras et al. [6] utilized Natural Lan-
guage Processing techniques for segmentation based on a source corpus, semantic
classification using WordNet and generalization of semantic patterns from pass-
words. Li et al. [9] presented the first large-scale empirical study on Chinese
web passwords and developed new patterns like keyboard, Chinese pinyins and
dates based on PCFGs. Houshmand et al. [8] incorporated keyboard patterns
and multiword patterns into PCFGs and achieved a 55% improvement over the
original PCFGs. Li et al. [10] introduced a new kind of patterns about personal
information, which is significant to targeted guessing. Regrettably, there is still
no research about statistical method, for example, BPE, applied on the pass-
word segmentation. So our work is the first to introduce BPE as a password
segmentation method in security area.

3 Password Guessing on PCFGs with BPE

In this section, we show how to apply the BPE algorithm [13] to the PCFGs
model for improving the effect of password guessing. Firstly, we describe the BPE
scheme and propose a password segmentation method based on BPE. Secondly,
we present a new password guessing model, called BPE-PCFGs, on the basis
of the BPE password segmentation. Finally, we discuss a new concept of Rich-
PCFGs, and combining it with the BPE password segmentation, we propose the
other new password guessing model, which is called Rich-BPE-PCFGs model.

3.1 Password Segmentation Method Based on BPE

Byte Pair Encoding (BPE) is a simple dictionary encoding compression method,
which utilizes a single byte that does not appear in the data to replace the most
frequent adjacent bytes iteratively [12]. For example, given a data

T0 = bcabebcfbca,

the pair “bc” occurs 3 times, which is most frequent, so we replace it with “X”
and obtain the new data

T1 = XabeXfXa.

Then the most frequent pair is “Xa”, so we substitute “Y” for “Xa” and the
data becomes

T2 = Y beXfY.

Apparently, this data could not be compressed by BPE as there is no pair of bytes
which appear more than once. So, using BPE algorithm, we can compress the
data “bcabebcfbca” with “YbeXfY” and obtain the corresponding Replacement
table

X = bc,

Y = Xa.
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Note that using BPE, we can find the frequent segments, for example, “bca”
in the data “bcabebcfbca”. So we consider applying the BPE algorithm to pass-
word analysis for finding out the frequently used password segments. Firstly, as
the algorithm (i.e. Learn BPE operations) in [13] does not consider pairs cross-
ing word boundaries, we adapt this algorithm to count the most frequent pair in
the password set iteratively. Then we apply the BPE pairs back to the dataset
and finally obtain the segmentation of each password. Figure 1 shows a simple
example of BPE segmentation operations. We first split every password into a
sequence of characters, then find frequent pairs iteratively through merge opera-
tions, shown in Fig. 1(a). Figure 1(b) shows the result of password segmentation
according to the pairs from the previous step.

3 4 
2 34
1 234
b c
a bc
5 6
1234 56

34 
234
1234
bc
abc
56
123456

1 2 3 4 5 6

1 2 3 4 5 6 7 8

a b c d 1 2 3 4

w o a i a b c !

(a) BPE merge operations

123456

123456## 7## 8

abc## d## 1234

w## o## a## i## abc## !

(b) BPE segmentation

Fig. 1. The BPE segmentation from the password set {“123456”, “12345678”,
“abcd1234”, “woaiabc!”} (“##” is the separator unused in the dataset.)

3.2 BPE-PCFGs Password Guessing Model

3.2.1 Probabilistic Context-Free Grammars
Context-Free Grammars arise in Natural Language Processing where they are
used to characterize the structure of sentences according to grammar rules. The
generation of a sentence can be described as a set of productions from the start
symbol. And Probabilistic Context-Free Grammars (PCFGs) simply assign a
probability distribution to the productions.

A Probabilistic Context-Free Grammar in passwords is defined as G =
(V,Σ, S,R, P ), where

(1) V is a set of variables. Each element vi ∈ V is a non-terminal or a variable.
Non-terminals represent the semantical patterns in passwords.

(2) Σ is the set of terminals, disjoint from V . Each element wi ∈ Σ denotes a
segment of grammar G. A password is made up of some wi.

(3) S is the start variable and S ∈ V .
(4) R is a set of production rules from V to (V ∪ Σ)∗, where the asterisk repre-

sents the Kleene star which means “zero or more”. For each ri ∈ R, it has
the form:

vi → η1η2 . . . ηn,

where vi ∈ V and ηj ∈ V ∪ Σ for i = 1 . . . n.
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(5) P is the set of conditional probability of every rule. For any vi ∈ V , P
satisfies the constraint

∀i,
∑

vi→ηj∈R P (vi → ηj) = 1.

In the guesses generation phase, we substantially improve the PCFGs model
and generate password guesses in non-increasing probability order. The method
is to declare a priority queue, which is similar to the one in “NEXT” FUNCTION
detailed in [5] that can generate a next guess in non-increasing order, for each
base structure. The method selects the one with the max probability from all
queues until the guess number meets our experimental needs.

3.2.2 The BPE-PCFGs Model
The original PCFGs model is based on 3 password segmentation patterns. They
are the letter-only pattern (L-pattern), the digit-only pattern (D-pattern) and
the symbol-only pattern (S-pattern). For example, the password “abclove123”
would define the structure L7D3, but in real world, the “abclove” may be two fre-
quently used segments, “abc” and “love”, which is what Weir’s approach cannot
find. In order to deal with this situation, we use the result of BPE segmenta-
tion to support detection of relevant patterns and generate guesses using the
PCFGs model. During training, we define and learn the following four patterns
of passwords. The information of our patterns is shown in Table 1.

Table 1. BPE patterns

Pattern Description Example

L Bn Letter pattern from letter-only
segments of BPE segmentation

chen

D Bn Digital pattern from digit-only
segments of BPE segmentation

163

S Bn Special pattern from symbol-only
segments of BPE segmentation

@

M Bn Patterns not in above all patterns .com

The BPE-structure is the composition of several BPE-patterns. In our
training phrase, we automatically derive BPE-Structures from the password
set segmented by BPE segmentation operations. Figure 2 gives an example
about the generation of a BPE-structure from a password after segmented.
As we can see, assuming the password “chen@163.com” becomes “chen##
@## 163## .com” after BPE segmentation, it would define the BPE-structure
L B4S B1D B3M B4, where the subscript number is the length of the observed
substring.

The probability of a BPE structure S is computed as:

P (S) =
count(S)

N
,
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Chen## @## 163## .com

L_B4S_B1D_B3M_B4

Fig. 2. The generation of BPE-Structures

Where count(S) denotes the number of occurrences of the structure S, and N is
the number of passwords in the dataset.

In the training phase, we also learn all terminals of different BPE patterns
from the training set and calculate their probability distributions. For example,
the probability is assigned to the terminal “163” is

P (“163”|D B3) =
count(“163”)
count(D B3)

.

We need to store the probability distributions of all BPE-Structures and
all terminals of each pattern, preparing for the next password guessing phrase.
Based on the probability distributions, we model them using the PCFGs model
and generate guesses.

3.3 Rich-BPE-PCFGs Password Guessing Model

3.3.1 The Rich-PCFGs Model
In practice, we can employ a dictionary to segment passwords when analyzing
the semantic characteristic of passwords. Also we can use some dictionaries to
classify these segments, such as Chinese Pinyins, English words or names. These
categories (we call them patterns) can enrich the semantic analysis of passwords,
so we call this kind of PCFGs as Rich-PCFGs model.

Li et al. [9] showed that digit-only and letter-only passwords occupy 53.36%,
10.79% among Chinese users, and instead account for 15.80%, 43.91% respec-
tively among English users on average. So in this paper, we use dictionaries and
regular expressions to extend the categories of L-patterns and D-patterns.

In Weir’s work, the L-pattern is simply replaced by dictionary words (also
called alpha dictionary) of that length. This does not take the distribution of
letter-only strings and language circumstances in passwords into account. Con-
sidering Chinese Pinyins, English words and names, we develop an algorithm
taking a compilation of some dictionaries and using reverse maximum match-
ing as the primary criterion for searching candidate segmentations. To improve
the searching efficiency, we use Trie (also called prefix tree) to identify whether
Chinese Pinyins, English words and names are included in passwords. In our
method, we construct some Tries, which are based on different dictionaries,
including Chinese names (downloaded from special Pinyin names library [20] of
the Sogou Pinyin input method), English names (from the U.S. Social Security
Administration [21]), Chinese Pinyins (containing 413 Pinyin syllables), English
words and phrases (bigrams and trigrams of COCA introduced in Rafael et al. [6]
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and the Merriam-Websters Collegiate Dictionary as the unigrams). The different
categories of L-structures are described in Table 2.

Table 2. Categories of L-patterns

Category Description Example

L-CN-NAME Pinyin of Chinese name zhaozhiwei

L-CN-NAME-AB Pinyin abbr. of Chinese name zzw

L-CN-NAME-F Pinyin of first name zhiwei

L-CN-NAME-S Pinyin of second name zhao

L-CN-PINYIN Other Pinyins cuo

L-EN-NAME English name lency

L-EN-PHRASE English phrase ihearyou

L-EN-WORD English word certainly

L Other L-patterns aht

Li et al. [9] discussed the usage of dates in passwords but only six date
formats were considered. We define and use 30 regular expressions to identify
dates which are in the range from 1900 to 2016 in different formats. For instance,
19830126 may be interpreted as January 26, 1983 and thus would be identified
as D-YYYYMMDD. In addition, we also define and implement several other
patterns of digital segments in passwords, shown in Table 3.

Table 3. Categories of D-patterns

Category Description Example

D-CONTINUOUS Continuous digits of at least 3 numbers 123456

D-LEAP Fixed interval between adjacent digits 2468

D-REPEAT0 Repeating one digit 111

D-REPEAT1 Repeating two or more digits 123123

D-DATE D-YYYYMMDD etc. 19830126

D Other D-patterns 437091

3.3.2 The Rich-BPE-PCFGs Model
We add the BPE word segments as a dictionary to the training phase of PCFGs.
The specific steps are as follows:

• Based on L-patterns we define, we add a new pattern called L-BPE. We
extract the pure letter segments in BPE segmentation as an input dictionary.
Then we construct a Trie to identify whether a letter segment meets the
L-BPE pattern.
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• Based on D-patterns we propose, we add a new pattern called D-BPE. We
extract the pure digital segments in BPE segmentation as an input dictionary.
Then we construct a Trie to identify whether a digital segment meets the D-
BPE pattern.

• We assign the L-BPE pattern and D-BPE pattern a minimum priority in
their respective patterns (L-pattern and D-pattern). In detail, for a password
segment, we firstly identify whether it conforms the L-patterns (except L)
shown in Table 2 or D-patterns (except D) shown in Table 3. If not, we deter-
mine whether it meets the L-BPE pattern or D-BPE pattern. Certainly, if not
satisfying any pattern, the segment would belong to L pattern or D pattern.

• We construct Probabilistic Context-Free Grammars using all patterns, includ-
ing L-BPE, D-BPE and patterns in Tables 2 and 3. Finally, we generate
password guesses in non-increasing probability order and plot guess-number
graphs to compare different approaches.

4 Experimental Evaluation

In this section, we describe our experimental setups, including the datasets we
use and choices of training sets and test sets. Then we present the experimen-
tal result under different BPE merge operations and comparatively evaluate our
three models (i.e., BPE-PCFGs, Rich-PCFGs and Rich-BPE-PCFGs) with the
original PCFGs model. Finally, we make quantitative analysis on our experi-
mental results.

4.1 Introduction of Our Datasets

We use eight different leaked password sets, including four from Chinese sites and
four from English sites, which are downloaded from public websites. The four
Chinese datasets are from CSDN, dodonew, 178 and 7k7k. The CSDN is the
largest IT community and service platform in China, and has leaked 6.4 million
account information in 2011. The dodonew, as an entertainment website, leaked
about 16 million passwords in 2011. The 178 and 7k7k are two gaming websites.
The 178 dataset includes 9 million accounts, and the 7k7k includes 8.2 million.
The four English datasets are from 000webhost, rockyou, xato and gmail. The
000webhost is a virtual hosts manufacturer, and has leaked more than 15 million
accounts information in 2015. The rockyou, a popular social website in America,
leaked 32 million passwords in 2009. The xato is a synthesised security website,
leaking about 10 million accounts. The gmail, a free webmail service provider,
leaked 5 million account information. These 8 datasets have more than 100
million passwords totally. The basic information about these datasets is shown
in Table 4.

Taking the language and size of the dataset into account, we choose the
CSDN, dodonew and 178 as our training sets, 7k7k as a test dataset. Similarly,
we choose the 000webhost, rockyou and xato as training sets and gmail as a test
set. Table 5 lists the 6 scenarios used in this paper.
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Table 4. Information of our password sets

Service type Language Amount

CSDN IT community Chinese 6413607

dodonew entertainment Chinese 15996857

178 game Chinese 9049201

7k7k game Chinese 8201663

000webhost web hosting English 15232337

rockyou social site English 32585010

gmail email English 4909866

xato security English 9997946

Table 5. Training and test set for each experimental scenario

Experimental scenario Training set Test set

#1: CSDN→7k7k CSDN 7k7k

#2: dodonew→7k7k dodonew 7k7k

#3: 178→7k7k 178 7k7k

#4: 000webhost→gmail 000webhost gmail

#5: rockyou→gmail rockyou gmail

#6: xato→gmail xato gmail

4.2 Experimental Results

To explore the influence of the number of BPE merge operations on password
guessing, we conduct two groups of experiments under different number of BPE
merge operations, one for the BPE-PCFGs model and the other for Rich-BPE-
PCFGs model. We choose 10,000, 50,000 and 100,000 merge operations as the
comparison parameter for our experiments. Figure 3 shows that with the increase
of number of BPE merge operations, our BPE-PCFGs model can guess more
passwords, especially when guessing passwords from English websites. The model
under 50,000 BPE merge operations can gain a improvement of 60.83%, 19.08%
and 21.09% compared with 10,000 merge operations when attacking gmail. When
the number of merge operations is 100,000, comparing with 50,000, there are less
than 14% improvement when attacking gmail. The improvement is quite modest
(less than 3%) when cracking 7k7k, with the increase of the number of BPE
merge operations.

The observations made above similarly apply to the Rich-BPE-PCFGs
model, shown in Fig. 4. And the proportion of improvements among different
number of BPE merge operations is much limited. So, Considering above exper-
imental results and the time consumption of BPE segmentation, we choose 50,000
BPE merge operations for our further experiments.
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(a) CSDN→7k7k (b) dodonew→7k7k (c) 178→7k7k

(d) 000webhost→gmail (e) rockyou→gmail (f) xato→gmail

Fig. 3. BPE-PCFGs for different number of BPE merge operations (α = 10,000,
β = 50,000, γ = 100,000)

(a) CSDN→7k7k (b) dodonew→7k7k (c) 178→7k7k

(d) 000webhost→gmail (e) rockyou→gmail (f) xato→gmail

Fig. 4. Rich-BPE-PCFGs for different number of BPE merge operations (α = 10,000,
β = 50,000, γ = 100,000)
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The segmentation after 50,000 BPE merge operations is adapted in our exper-
iments to discuss the impact of BPE patterns to the PCFGs on password guess-
ing. Experimental results are shown in Fig. 5.

Figures 5(a)–(c) show guessing results within 100 million guesses when
attacking 7k7k, a Chinese website. We can see that the BPE-PCFGs model
clearly outperforms PCFGs. The average improvements of BPE-PCFGs over
PCFGs are 9.10% for CSDN, 14.01% for dodonew and 33.24% for 178. We also
compare the Rich-BPE-PCFGs model with Rich-PCFGs model. Figure 5(a)–(c)
demonstrate that the Rich-BPE-PCFGs model can obtain a higher success rate
of 5.42% for CSDN, 4.57% for dodonew, 4.20% for 178 on average.

Figures 5(d)–(f) show guessing results when attacking gmail, a English web-
site. We can see that the Rich-BPE-PCFGs model still performs better than
Rich-PCFGs. The proportion of improvements is 8.03% for 000webhost, 6.19%
for rockyou, 5.93% for xato on average. But the BPE-PCFGs model performs
worse than PCFGs, which may be due to the small guess number. In order
to prove when guessing number is large enough, the BPE-PCFGs model can
perform better than PCFGs. We make another group of experiments using
probability-threshold graphs. The experimental results are shown in Fig. 6.

(a) CSDN→7k7k (b) dodonew→7k7k (c) 178→7k7k

(d) 000webhost→gmail (e) rockyou→gmail (f) xato→gmail

Fig. 5. Experiment results for our models under 50,000 BPE merge operations

In Fig. 6, we can see that when the guessing number is large enough, the BPE-
PCFGs model can achieve almost 100% guessing coverage, but the PCFGs model
only achieves less than 70% guessing coverage. The results are similar when
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(a) 000webhost→gmail (b) rockyou→gmail (c) xato→gmail

Fig. 6. Prob. threshold graph for comparing BPE-PCFGs model with PCFGs; A point
(x, y) on a curve means that y percent of passwords in the dataset have probability at
least 1

2x
.

attacking gmail in our experiments. We can obtain these experimental results
because the BPE-PCFGs model is able to make L-patterns and D-patterns into
smaller units. And this group of experiments can prove the BPE-PCFGs model
performs better than PCFGs when the guessing number is fully large.

Results of the Rich-BPE-PCFGs model compared with BPE-PCFGs under
10,000 and 100,000 BPE merge operations are similar to above, shown in Table 6.

Table 6. The improvement percentage of the Rich-BPE-PCFGs model among different
number of BPE merge operations compared with BPE-PCFGs

#1 #2 #3 #4 #5 #6

10,000 3.94% 3.18% 3.25% 3.40% 3.57% 3.45%

100,000 6.08% 4.64% 4.32% 10.68% 7.66% 7.18%

Based on above statistical analysis, we can see that our Rich-BPE-PCFGs
model under 50,000 BPE merge operations is able to crack 2.36%–37.56% more
passwords than the original PCFGs model within 100 million guesses. The result
is better among Chinese websites.

5 Conclusion and Future Work

In this paper, we take advantage of the BPE algorithm to find segments fre-
quently used in passwords and propose two new password guessing models, i.e.
the BPE-PCFGs and Rich-BPE-PCFGs. The BPE-PCFGs model is based on the
BPE password segmentation patterns, and the Rich-BPE-PCFGs model is based
on dictionaries composed of BPE segments and other vocabularies. Experimen-
tal results show that our approach, the BPE-PCFGs model, under 50,000 BPE
merge operations, outperforms the PCFGs model that has been considered to
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be the state-of-the-art model by 15.95%–39.71% among Chinese websites within
100 million guesses. Compared with the Rich-PCFGs model, the Rich-BPE-
PCFGs model can also obtain a higher success rate of 5.42% for CSDN, 4.57%
for dodonew, 4.20% for 178 on average, and similar results when attacking the
English website, gmail.

We believe that the Rich-BPE-PCFGs model is very useful but also par-
tially limiting. The model only adds the pure letter and digital segments based
on original patterns, not considering more other possible segments in the BPE
segmentation and the deeper association between the BPE segmentation and
password semantics. Our Future work is to explore the semantics hidden in the
BPE segmentation of passwords and try to combine the BPE segmentation with
new patterns, for example, the personal information.
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Abstract. Android permission mechanism cannot resist permission
abuse, the key of malware detection is to expose its malicious behavior.
Although plentiful transformation attacks are used to bypass malware
detection, the latest information-flow analysis based defenses claim that
they can identify malicious flows with high accuracy. Nevertheless, in this
paper, we expose a new attack surface known as Behavior-Mask attack
in Android Runtime (ART), which can bypass most known information-
flow analysis based defenses in practice. Our attack techniques can be
utilized to hide Android applications’ actual behavior by only executing
some irrelevant Java code in the normal way. We corrupt few runtime
data through a small piece of JNI code to hijack the control flow and data
flow of Java code dynamically in ART environment. Further, we imple-
ment an automatic development framework to demonstrate the viability
of Behavior-Mask attack. We analyze the existing defenses on Android
and traditional desktop operating systems, and put forward some new
ideas for the design and implementation of future defenses against the
proposed attack.

Keywords: Android · ART · Confusion · Java · Transformation · Code
reuse

1 Introduction

Android is the most popular mobile operating system with a market share of
86.8% in 2016Q3 [17]. The popularity of Android incurs endless attacks for col-
lecting privacy data or gaining economic benefits [7]. Although Android designs
its permission mechanism to reduce privacy and security risks [9], malwares can
still abuse their legal permissions in an unreasonable way without users’ under-
standing to execute malicious operations [38]. In fact, previous research has
c© Springer International Publishing AG 2017
P.Q. Nguyen and J. Zhou (Eds.): ISC 2017, LNCS 10599, pp. 269–287, 2017.
https://doi.org/10.1007/978-3-319-69659-1_15
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shown that more than 70% of the permission usages of Android apps are not per-
ceived by users [38]. In order to reduce the threats of malware, abundant malware
detection techniques are proposed to discover and prevent malicious behavior.

To defeat detection, code obfuscation plays an important role in malicious
software development. Traditional obfuscation techniques [28] adopted by attack-
ers are obfuscating code to conceal attackers’ purposes or attackers’ logic, such
as call indirections and code reordering. However, these obfuscation can be easily
detected by traditional static analysis techniques [29]. Some attackers complicate
obfuscation by splitting malicious flows into components [14,37], Java Native
Interfaces (JNIs) [1], or framework callbacks [4]. In order to resist these three
types of complicated obfuscation techniques, detectors reconstruct the appli-
cation behavior more precisely by considering those implicit information-flow
transitions. Dynamically loading/decrypting data/code or reflection is another
useful way to conceal attackers’ purposes [25,28]. Static analysis can only detect
the existence of these attacks, but cannot expose the purposes of malware [25].
Consequently, dynamic analysis techniques such as dynamic taint analysis is an
effective way to detect the potential information-flow hidden by this kind of
attack [31].

Our work focuses on code-reuse-based obfuscation on android application
[34], which completes attackers’ expected behavior by misusing existing code
chunks in binary-level. However, the complicated attack process may cause
system exceptions in the end and attackers’ expected behavior is completed
in JNI. Certainly, this type of obfuscation can be prevented by the similar
defense techniques on traditional desktop systems such as Address Space Layout
Randomization (ASLR) [30]. As a result, researchers claim that they can iden-
tify malicious flows with an accuracy about 94% [3]; most common mobile anti-
malwares with information-flow analysis [20,21] has reported a large number of
mobile malwares every year.

The attack technique in this paper performs in ART [13], the newly intro-
duced managed runtime (Android version above 4.4). One of the most significant
differences between ART and Dalvik is that ART executes binary code directly
while Dalvik interpretively executes DEX (Dalvik EXecutable) byte-code. How-
ever, the single binary code only includes low-level semantics (e.g., loading or
jumping), and runtime ensures the high-level Java semantics (e.g., sending SMS
message by calling sendTextMessage) by maintaining plenty of data structures
as the identity information of Java objects and methods. Dalvik verifies current
method’s access permissions when it interprets any INVOKE opcode. Unfortu-
nately, in ART, above verifications have not been implemented into all method
calls. These vulnerabilities increase the flexibility of attackers and increase the
difficulty of detection.

In this paper, we present a new transformation attack technique known
as Behavior-Mask, which can bypass existent information-flow analysis based
defenses. Behavior-Mask attack exploits above vulnerabilities to misuse the
high-level semantics of existing code in new ART environment. Behavior-Mask
attack can hijack control-flow of any standard Java code via one JNI method
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including additional a minimum of 11 lines of assembly code. This attack code
locates and corrupts little critical runtime data, which describes the objects and
methods used in hijacked Java code.

Furthermore, we implement a development framework to generate necessary
code for attacks. We implement several prototypes of Behavior-Mask attack for
several kinds of program behavior by hand or by the framework, and evaluate
their effectiveness and performance overhead. The evaluation results show that
apps using our attack techniques achieve an improving imperceptibility than that
with known transformation techniques. This demonstrates that Behavior-Mask
attack can bypass most android information-flow analyses and only incurs the
negligible overhead in Application Package (APK) file size, installation time,
CPU, and memory usage. In addition, the evaluation results show that the
source-code-based-only defenses, which do not consider the divided semantics
precisely to be prone to attacks, should be reassessed. We discuss the limita-
tions of Behavior-Mask attack and how to resist this attack with attack code
detection, program behavior detection, and reinforce of execution environment.

In summary, our main contributions can be summarized as follows:

– We discover a new attack surface in ART runtime, separating the high-level
semantics of Java code without enough security review. This attack surface
facilitates the construction of malicious high-level payloads and opens the
door for various transformation attacks.

– We present Behavior-Mask attack, an efficient transformation attack tech-
nique against Android applications running in ART environment. With
Behavior-Mask attack technique, we demonstrate the limitations of a range
of information-flow analysis based defenses from the state of the art.

– We implement an attack development framework, performing binary analysis
and generating the basic necessary code automatically. The framework has
proved the high-efficiency and wide applicability of our attack.

– We show the necessity for information-flow analysis to consider program
semantics carefully and precisely, such as the whole flow analysis with JNI and
runtime in binary level. In addition, we provide some new ideas for resisting
Behavior-Mask attack to inspire subsequent researchers.

The rest of this paper is organized as follows. Section 2 introduces the pre-
liminaries of Java semantics’s infrastructure provided by ART environment. In
Sect. 3, we present the design and working principle of Behavior-Mask attack.
In Sect. 4, we show an automation implementation and some implementation
details of Behavior-Mask attack. In Sect. 5, we evaluate the effectiveness and
performance overhead of Behavior-Mask attack. In Sect. 6, we discuss the lim-
itation of our attack, and possible defensive schemes. The related work and
conclusion are presented in Sects. 7 and 8.

2 Technical Background

In this section, we briefly introduce the new Android runtime (ART runtime) and
the necessary background for a better understanding of Behavior-Mask attack.
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2.1 Android ART Runtime

Android 4.4 KitKat introduced Android Runtime (ART) as a new runtime envi-
ronment, which entirely compiles application’s byte-code into binary code. Since
Android 5.0, ART became the only runtime option to replace Dalvik, a process
virtual machine with trace-based just-in-time (JIT) compilation to run DEX
byte-code. To maintain backward compatibility, ART uses DEX byte-code which
is the same input as Dalvik. DEX byte-code is supplied by standard .dex files as
part of APK files. Meanwhile, ART’s new compiler dex2oat generates .oat file
rather than .odex file which is used by Dalvik.

Oat file format is a customized ELF file format with two core sections: oat
data section and oat exec section. Oat data section comprises complete original
dex files and data that describes all these dex files, classes and methods. Oat
exec section comprises native code of all the methods.

As the new compiler is designed from scratch, there exist considerable dif-
ferences between versions regarding ART’s on-device compiler dex2oat and its
generated native code. In the following sections, we use ARM32 device with
Android 6.0(Marshmallow) as the default subject to explain our work, and we
illustrate the differences between versions when necessary.

2.2 ART Addressing Modes

Two primary addressing modes used to invoke a Java method in the ART gen-
erated native code are named multilevel indirect vtable addressing mode and
multilevel indirect list addressing mode in this paper. Since ART use C++
class art::mirror::ArtMethod to describe Java method, the last step of those
two addressing modes is locating the native code of method from the field
entry point from quick compiled code of class ArtMethod. Naturally, the differ-
ence between these two addressing modes are the paths locating the ArtMethod
reference of callee method.

As shown in the left of Fig. 1, in multilevel indirect vtable addressing
mode, there is a virtual method table behind each Java class instance and the
callee method’s class instance can be resolved by the field declaring class of
art::mirror::Object. As shown in the right of Fig. 1, in multilevel indirect list
addressing mode, there is a resolved method reference list maintained by the
thread and the list is resolved by the field dex cache resolved methods of Art-
Method.

In the third step of those two addressing modes, there is one critical offset
of callee method reference to class instance’s beginning or resolved method list’s
beginning. This offset value in the two modes is the tag of method and is written
in the native code used to invoke the method. Hence, the tag of each method is
determined when the application is installed.

However, ART realizes method call by the two addressing modes without
enough security reviews such as the necessary DEX byte-code verification for
method signature and argument type.
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Fig. 1. Two primary addressing modes used for calling a Java method

3 Behavior-Mask Attack

In this section, we present Behavior-Mask attack, a transformation attack that
misuses the actual high-level semantics of fixed code. With Behavior-Mask attack
technique, an application could exhibit different behavior by executing the same
Java code with the same initial values. In other words, both legitimate and
malicious behavior could be realized by the same code.

3.1 Motivating Example

In the example shown in Fig. 2, an attacker’s target is to steal a user’s location
information. To this end, attacker inserts target code to a benign app such as
a pedometer app, which requires access to the user’s location information and
network for legitimate reasons. However, direct abuses of these privileges to send
the user’s location over the network, target behavior implemented by target code,
can be easily detected by common information-flow analysis systems.

In Behavior-Mask attack, instead of malicious target code, an attacker could
insert mask code which implements seemingly benign data operation into the
pedometer app. The execution of mask code could complete mask behavior with-
out attack or could complete target behavior after attack code was executed. The
new malware’s source code doesn’t comprise the feasible information-flow which
might result in location information leakage, moreover, it doesn’t contain any
API which could be exploited for completing target behavior.

In the following content of this section, a simple example which is constituted
by the first line of mask and target code of the real-world example is used to
illustrate our attack. The necessary variable definitions and method prototype
are shown in Fig. 4(a). And the assembly code of mask code which is shown in
Fig. 4(b) includes the following functions: preparing arguments, invoking callee
method, and transmitting return value.
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Fig. 2. A real-world example of Behavior-Mask attack. (Mask behavior: Obtaining data
from jsonObject and Operating m6a.jsonArray ; Target behavior: Obtaining personal
location information from myLocationManager and sending it into distanceName)

3.2 Attack Design

As shown in Fig. 3, the target code is replaced by the mask code which is crafted
by attackers. Little critical runtime data is corrupted to redirect the accesses of
objects and methods used in mask code to the corresponding ones used in target
code. As introduced in Sect. 2, the high-level semantics is dependent on various
data structures that are maintained to describe Java objects and methods by
ART runtime, and binary code only comprises the low-level semantics without
understanding of Java object and method. Thus, although the high-level seman-
tics of mask code and target code might be completely unrelated, mask code
comprises the necessary low-level semantics of target code.

Fig. 3. A brief work flow of Behavior-Mask attack

The primary challenges for Behavior-Mask attack are (1) The suitable run-
time data that is effective in controlling the high-level program semantics need
to be identified. (2) The corruption of runtime data is stealthy to runtime and
will not cause any system exception. (3) The attack should locate all needed
runtime data efficiently and does not require additional input information.

Behavior-Mask attack misuses app’s high-level semantics via implementing
covert data transformation and control-flow hijack. Covert data transformation
between arbitrary object fields is realized by redirecting their memory space.
Two object fields could share the same memory to transfer data or exchange
their memory in order to restore in the future. Control-flow hijack for any Java
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code including call instruction is realized by rebinding the method call. The
method call of mask method could be bound to target method’s instance and
code. The attack code used for implementing the two goals could be placed in
any normal non-static JNI method without any extra parameter.

Fig. 4. The simple example which is constituted by the first line of mask and target
code of the real-world example

3.3 Covert Data Transformation via Object Fields Redirecting

As shown in Fig. 4(b), MainActivity.Main prepares callee method’s arguments
by locating the variables jsonObject and str1 on the heap and storing them in
the top of stack. It also transmits the return value of callee method to m1.object.
Those processes provide the following semantics:

R1 ⇐ [SP + 0x14] ⇐ [this + 0x114] // pass jsonObject

R2 ⇐ [SP + 0x20] ⇐ [this + 0x134] // pass str1

R0 ⇒ [SP + 0x1C] ⇒ [[this + 0x11C] + 0x8] // return to m1.object

Behavior-Mask attack allows data to flow between object fields regardless
of compiler settings or calling conventions. As a result, the execution of the
code used to locate mask method’s arguments could obtain target method’s
arguments. Behavior-Mask attack realizes this goal by redirecting the memory
of different object fields. For the simple example, a intuitional attack can be
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described as follows:

[this + 0x114] ⇐ [this + 0x118] // redirect jsonObject to locationManager

[this + 0x134] ⇐ [this + 0x130] // redirect str1 to provider

[this + 0x11C] ⇐ [this + 0x138] // redirect m1 to t1

In order to realize the aforesaid redirections, this object and the above fields’s
offsets should be resolved. Hijacking this object is the start of every Behavior-
Mask attack. 4 indirect reference tables such as the local indirect reference table
are used by ART to maintain the state of Java objects. The reference of this
can be located in those indirect reference tables by the two default arguments
of any non-static JNI method. Even if there is a complicated path between
attacker concerned field and this pointer, the field also can be located stepwise
by understanding the memory layout rules of Java object.

Memory Layout of Java Object. Java data types are divided into eight
basic value types and reference types. All reference types are inherited from
Java.Lang.Object whose size is 8 bytes. For any reference the class member fields
are arranged starting from the 9th byte and according to the following rules.

Ordering rules of member fields can be divided into three layers:
Top: Reference fields are ahead of value fields. Value fields are ordered by

their size such as 64-bit, 32-bit, 16-bit, and 8-bit.
Middle: Value fields with the same size arranged as an inherent order: refer-

ence, boolean, byte, char, short, int, long, float, double, void.
Bottom: The fields with the same type are sorted by their DEX field indexes.
The memory layout of object this is shown in the left of Fig. 5.

Fig. 5. Layouts of attack exploited memory in the simple example. The critical data
exploited for mask code is marked with shaded stripe and critical data used for target
code is marked with shadow.
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3.4 Hijacking Control-Flow via Method Call Rebinding

As shown in Fig. 4(b), MainActivity.Main invokes callee method by locating
JSONObject::opt and branching into its code. ART generated binary code locates
a Java method by the two primary addressing modes, multilevel indirect vtable
addressing mode and multilevel indirect list addressing mode. In our simple
example, callee method JSONObject::opt is located by multilevel indirect vtable
addressing mode and its method tag is 0x1FC. The assembly code used for
locating callee method’s code provides the following semantics:

LR ⇐ [[[jsonObject] + 0x1FC] + 0x24]

Behavior-Mask attack allows a method call would be rebound to another
irrelevant method. As a result, the execution of the code used to locate mask
method could obtain target method. In our example, after the fields jsonObject
has been redirected to the memory of locationManager as we introduced in
Sect. 3.3, the attacker corrupts class LocationManager ’s virtual method reference
table and rebinds the method reference of the above method to target method
getLastKnownLocation. The semantics of the rebinding process is shown below:

[[locationManager] + 0x1FC] ⇐ [[locationManager]
+(getLastKnownLocation′s tag)]

Accordingly, when the tag of target method is equal to the tag of mask
method, the process of hijacking control-flow will be completed without any addi-
tional attack code. We summarize the usage rules of the two primary addressing
modes in order to design method call for attack.

Usage Scenarios of Two Primary Addressing Mode. The usage scenarios
of the two addressing modes can be differentiated by whether dynamic binding is
needed. We design the following three conditions for a Java method call. ART
uses multilevel indirect list addressing mode to address the method if this method
matches one of the three conditions or uses multilevel indirect vtable addressing
mode otherwise.

(1) The method is a direct method. Direct methods comprise static, private,
and 〈init〉 methods.

(2) Class of the method is not a derived class and cannot be inherited. The class
does not extend from any class and not implement any interface. The class
or the method has the keyword Final.

(3) Dynamic binding is no longer needed in the optimization of method call.
If the caller object reference is a local variable, the callee method can be
determined at compile time.

4 An Automatic Development Framework
of Behavior-Mask Attack

The flow that developing a covert malware by Behavior-Mask attack techniques
comprises six steps that are shown in Fig. 6. (1) Syntax analysis. (2) Hunting
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usable mask method. (3) Designing object mask. (4) Designing method mask.
(5) Generating attack code. (6) Redeploying application.

Fig. 6. The work flow of developing Behavior-Mask attack

Since implementation of an actual behavior always includes many lines of
code and Behavior-Mask attack is based on binary-level analysis, Behavior-Mask
attack is cumbersome and hard to perform by hand. Hence, we build a framework
for the automation of first five steps to generate all necessary code of Behavior-
Mask attack. The sixth step is not automated since attackers are allowed to
arrange attack code and triggering conditions freely.

This framework can work in two modes: simulation mode and general mode.
In simulation mode, we use some additional Android ART environments for
accurate analysis of binary code and runtime information. In general mode, we
need to perform the similar analysis in the exporting attack code.

4.1 Syntax Analyzing Target Code and Hunting Usable Mask
Method

Firstly, framework divides target code into a series of snippets and tidies the
method information and variable information for each snippet of target code.

For each target method, framework hunts a usable mask method from three
sources: developer’s input, Android official API reference documentation [12] or
a new self-define. To identify useful mask method, framework applies two filters
on all potential mask method: (1) The size of return value and the total size
of parameters of mask method can’t be less than the one of target method. (2)
If target method’s return value is a reference, the return value of mask method
must be a reference whose type is inheritable from the type of target’s return
value such as the universal type java.lang.Object.

In some early system versions of Android, a handful of methods are addressed
in immediate addressing mode by ART such as Android framework method
MediaCodec.queueInputBuffer in Android 5.0.0. This kind of method is noneffec-
tive when they are appointed as mask methods. In simulation mode, our frame-
work prepares an “analyzer” application which will be installed into Android
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devices to output enough addressing information. In general mode, we can’t
discover this kind of method without ART environment.

4.2 Design of Data Container Class and Implementation of Covert
Data Transformation

We design a public class (DataContainer) that comprises two fields: a type
TargetDataContainer field and a type MaskDataContainer field. The two fields
contain all target variables and mask variables in a specific form to ensure the
correct corresponding relationships of memory layouts. We use some auxiliary
data transformation code to clone data between the original variables and the
temporary variables in the front and the behind of mask code.

4.3 Design of Method Container and Implementation of Hijacking
Control-Flow

In the final malware, one line of code invoking a container method replaces a
series lines of target code. The container method comprises all mask code that
uses the variables of type MaskDataContainer field. In simulation mode, method
rebinding can be performed by the sufficient addressing information that we have
analyzed aforehand. In general mode, the corresponding analysis work should be
performed in attack code.

5 Evaluation

In this section we evaluate the effectiveness of Behavior-Mask attack by usual
anti-malware applications and some excellent information-flow analysis systems.
We also evaluate our attack’s performance overhead for APK’s size, installation
time, CPU usage and memory usage.

In our experiment, we use a SAMSUNG Galaxy Nexus mobile phone to test
our experimental apps. Our test phone runs the Google official Android firmware,
Marshmallow 6.0.1 with the kernel version 3.0.101. Our backend detection server
has 32 eight-core 2.00 GHz CPUs and 144 GB memory. The experimental apps
are created by Android Studio 2.3.1 with Gradle 2.2.3 and Android 6.0.1 SDK.

5.1 Effectiveness

We extract the 5 kinds of common malicious behavior shown in Table 1 from
some business reports [11] and research work [33]. We build a sample set for each
common malicious behavior from the 5560 samples in Drebin [3] dataset. For each
common malicious behavior, we design three experimental sample groups.

Group-A: 10 malware samples randomly selected from the sample set. Group-
B: one malware produced with our framework. Group-C: one blank app that only
introduces the necessary permissions of malicious behavior.
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Table 1. 5 kinds of common malicious behavior

Label Description

SENDSMS Send SMS messages to premium-rate numbers

STEALSMS Steal personal information from SMS

STEALCONTACT Steal the contact information

TRACKLOCATION Send user’s location information continuously

STEALPHONEINFO Steal phone information

Table 2. Evaluation results

(a) Result of SENDSMS

Analysis Tools Group-A Group-B Group-C

Anti-Malwares 8+28 8+0 8
FlowDroid 1 0 0
DroidSafe 1 0 0
DroidChain 1 0 0
Amandroid 1 0 0
PRIMO 1 0 0

(b) Result of average

Analysis Tools Group-A Group-B Group-C

Anti-Malwares x+22.3 x+0 x
FlowDroid 0.9 0 0
DroidSafe 0.96 0 0
DroidChain 0.86 0 0
Amandroid 0.92 0 0
PRIMO 0.94 0 0

Anti-Malware Application Test. Anti-malware analysis is a very common
way used by smartphone users to detect malware. Most anti-malware applica-
tions are declared to use various information-flow analysis techniques [20,21].
VirusTotal [35] is a free online service that enables the identification of kinds of
malicious content by antivirus engines and website scanners. We perform anti-
malware detection for our samples by VirusTotal, which supports 58 Android
anti-malware engines until April 2017.

Information-Flow Analysis Systems Test. We also perform our evaluation
with 5 publicly available information-flow analysis systems from academia. Some
well-known systems haven’t been used, because they do not support ART such
as TaintDroid [10] or are unavailable such as TaintART [31].

Most Android information-flow analysis systems focused on Android Inter-
Component Communication (ICC) mechanism [16]. FlowDroid [4] is such a static
taint analysis tool that considers data branches between Android components,
such as Lifecycle-aware and static fields. DroidSafe [14] is also a good platform
for information-flow analysis, but it requests more system resources to be per-
formed for some larger Android apps. DroidChain [36] exposes program behav-
ior by API call chain. Amandroid [37] focuses on inter-component control flow.
PRIMO [22] combines static analysis with probabilistic models.

Results. Due to space constraints, we show the statistical results of one common
behavior and an average of 5 kinds of common malicious behavior in Table 2. The
element value means the detection ratio for malwares. For row Anti-Malwares,
we show the sum of all anti-malwares’ detection ratio.
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Table 2(a) illustrates that SENDSMS as a kind of simple behavior is detected
with a very high probability. Table 2(b) illustrates the average detection accuracy
of those chosen detection tools achieves 92.4%. Particularly, more than 27 anti-
malwares identify all the samples in Group-A. Nevertheless, none of the detection
tools can distinguish between the malware developed by Behavior-Mask attack
techniques and the corresponding blank app. In summary, Behavior-Mask attack
can evade those known Android information-flow analysis.

5.2 Performance

As the benchmark, Group-D for each kind of common malicious behavior is
an application with one activity and necessary permissions. The malicious code
used to implement the malicious behavior is appended in the activity’s method:
onCreate. For the malicious code, we implement Behavior-Mask attack manu-
ally and automatically to build two new malware in Group-E and Group-F.

APK’s Size and Installation Time. Table 3 illustrates the APK’s size for
each group. In fact, a large proportion of the cost depends on the additional JNI
libraries, rather than the additional Java mask code and JNI attack code. The
overhead for APK’s size introduced by Behavior-Mask attack is less than 0.8%
in the aspect of APK’s size, which is negligible for developers.

Figure 7 illustrates the installation time for each group. We install experimen-
tal apps by ADB tool. We record the time (t0) of a system log message (Calling
main entry com.android.commands.pm.Pm), and the time (t1) of another sys-
tem log message (Finishing install immediately). t1-t0 represents the installation
time. The average of all experiment results shows that Behavior-Mask attack
incurs at most 0.93% overhead for installation time, which is unnoticeable by
normal users. Moreover, the overhead is difficult to be separated from environ-
mental error.

CPU and Memory Usage Overhead. We perform the CPU usage over-
head evaluation by monitoring the growth rate of CPU used time in user-mode
and kernel-mode, which is comprised in /proc/[pid]/stat and /proc/stat.
In order to improve the accuracy of detection, target behavior is carried out 50
times at 20 ms interval. We acquire the CPU used time every 100 ms and calcu-
late the increment with the last acquired. Figure 8 illustrates that the results of
TRACKLOCATION ’s samples. The results demonstrate the indistinguishability
of different sample groups and Behavior-Mask attack introduces negligible CPU
usage overhead. The evaluation for other kinds of common malicious behavior
don’t change our evaluation conclusion of Behavior-Mask attack’s CPU usage
overhead.

We perform the memory usage overhead evaluation by monitoring the maxi-
mum value of virtual memory resident set size (VmRSS), which is comprised in
/proc/[pid]/status, at runtime for each experimental application. VmRSS rep-
resents the memory occupied by application. Figure 9 illustrates that the VmRSS
values of Behavior-Mask attack implemented by handwork and framework are
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nearly the same at run time, and they introduce at most 0.26% overhead about
68 kB.

Table 3. Comparison of APK’s
size
Label D E F E-OH F-OH

SENDSMS 1463 1471 1474 0.52% 0.73%

STEALSMS 1466 1473 1477 0.47% 0.75%

STEALCONTACT 1466 1474 1477 0.55% 0.75%

TRACKLOCATION 1465 1473 1476 0.54% 0.75%

STEALPHONEINFO 1465 1472 1475 0.48% 0.68%

Fig. 7. Comparison of installation time

Fig. 8. Comparison of CPU usage Fig. 9. Comparison of memory usage

6 Discussion

6.1 Limitation

ART implements byte-code verification for runtime type safety when every
method returns. Hence, if Behavior-Mask attack refers to a return value with a
reference type, the type of target return value must be derived from the type of
mask return value such as the common base type Java.Lang.Object. Neverthe-
less, this limitation does not affect the caller object and the arguments of every
method.

Since the floating-point operation involves some special content such as addi-
tional registers, the whole Behavior-Mask attack can’t be carried out between
a floating-point field and a non-floating-point field. In the real-world example
shown in Fig. 2, we applied this principle.
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6.2 Preventing Behavior-Mask Attack

In this section, we discuss different defense concepts to prevent Behavior-
Mask attack. Sources of those concepts are not only the existing
mature Android defense solutions, but also the defense techniques on the
traditional operating systems.

Based on our presentation for Behavior-Mask attack, we could fight against
attack in three aspects: (1) Detecting attack code; (2) Detecting unexpected
behavior; (3) Reinforcing the execution environment. A single defense technique
could not fight against all Behavior-Mask attacks effectively, but a solution that
combines a variety of defense techniques could find some traces of the attack in
a great probability.

(1) Detecting attack code
A crafted attack module includes only 11 assembly instructions, so it is
hard to reveal the patterns of attack code. A perfect information-flow
analysis approach, which considers JNI and ART environment in binary-
level as the defenses in C++ [26], is considered to reveal attack effectively.
However implementing such information-flow analysis scheme is still a
hard work.

(2) Detecting unexpected behavior
(a) Dynamic monitoring on server side: All service requests based on ICC
will be intercepted by this kind of defense, and malware can’t recognize
that it is monitored [32]. While this kind of defense needs root privilege,
and it has a non-ignorable performance cost. Above all it can’t reveal the
whole complex behavior.
(b) DEX byte-code verification based on binary code instrumentation: As
the existed DEX byte-code verification in Android such as the type verifi-
cation of return value, more verifications such as method’s signature and
parameter types are proposed to be implemented. This kind of defense
should be provided by the ART compiler. Nevertheless it still exists the
possibility of Behavior-Mask attack if the verification code is indirectly
invoked, or the inline verification code will result in the bloated system
and program.
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(3) Reinforcing the execution environment
(a) Constant addressing mode: Behavior-Mask attack corrupts the data
used in multilevel indirect addressing modes. Hence, a straightforward
approach to prevent Behavior-Mask attack is to use immediate addressing
mode and relative addressing mode for invoking methods only. However,
those constant addressing modes can only be used for the invocations that
don’t need dynamic binding.
(b) CFI: CFI (Control Flow Integrity) is one kind of well-developed
defense technique used against code reuse attack in traditional desktop
operating systems. The basic idea of CFI [2] is to limit the indirect call
or return to some specific addresses. Some C++ aware CFI approaches
restrict and identify the allowed vcall sites and vtables such as VTint [39].
According to this idea, in ART all the content of resolved method list and
vtable for each class could be kept in the read-only memory. We also ver-
ify the beginning of resolved method list in each Java object and the
beginning of vtable in each Java class. Nevertheless, this approach can’t
use lazy load mode and can’t prevent the crafted Behavior-Mask attack
that only needs once covert data transformation. Of course, precise source
code semantics based CFI may prevent Behavior-Mask attack.
(c) Randomization of code and data structure: Randomizing method ref-
erence and Java object layouts, such as inserting randomly sized padding
in resolved method list, and Java object’s instance, are effective to destroy
the understanding of the layouts that Behavior-Mask attack try to resolve
in advance. However, Behavior-Mask attack could choose to analyze the
layouts in attack code when attack is performed. In this case, it still
reduces the difficulty of exhibiting patterns of the bloated attack code.

7 Related Work

In this section, we discuss the previous work related to Android transformation
techniques and malicious behavior detection.

Christodorescu et al. [8] firstly gave a formal definition for obfuscation
and presented some sample obfuscation transformations. [19,28] summarized
lots of Android transformation attack techniques, such as reflection, function
outlining, and inlining. Further, researchers reveal more Android malware eva-
sion techniques based on Android system characteristics. As a complement, [25]
introduced four kinds of dynamic code loading techniques and corresponding
analysis techniques.

Petsas et al. [24] proposed three heuristics to discover if malware is running
on an emulated or an actual device, thereby deciding whether to perform mali-
cious behavior or not. Boxify [5] also pointed out that a malware could simply
refrain from activating any malicious behavior to fool many dynamic analyzing
approaches if malware recognized that it is being analyzed or sandboxed.

Permission abuse is a common behavior in Android malware. H. Peng et al.
[23] proposed a permission-based probabilistic generative model for ranking risks
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for Android apps. Juxtapp [15] performed feature hashing on the opcode sequence
to detect malicious code reuse. DroidAPIMiner [1] extracted Android malware
features at the API level. Drebin [3] took a hybrid approach and considered
both Android permissions and sensitive APIs as feature. Mu Zhang et al. [40]
used contextual API dependency as feature to reflect essential behavior. Com-
mon Android application behavior analysis techniques usually extract feature
sets from both manifest file and byte-code file. AutoCog [27] analyzed the consis-
tency of the description in app market and application’s permissions, AUTOREB
[18] tried to understand application’s behavior by application’s reviews in app
market. PRIMO [22] combined static analysis with probabilistic models. ARTist
[6] and TaintART [31] are committed to build dynamic analysis by compiler
instrumentation in ART. In our work, we proposed a new transformation tech-
nique in new Android ART environment. It makes semantic analysis based on
byte-code-level hard to take effect.

8 Conclusion

In this paper, we introduce Behavior-Mask attack, a novel transformation
attack technique based on ART, which can bypass almost all existing Android
information-flow analysis based defenses. We discuss the technical details of
Behavior-Mask attack and implement a development framework for generating
necessary code for attack automatically. We believe that our work is contribute
to the ongoing research on designing practical and secure defenses which can
resist new Android malwares in ART and precisely abstract Android applica-
tion’s behavior. We think that Java-level semantics need to be taken into account
in binary-level as a valuable guide for the design and implementation of future
Android defenses in ART environment.
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Abstract. The increasingly high demand for smartphone charging in
people’s daily lives has apparently encouraged much more public charg-
ing stations to be deployed in various places (e.g., shopping malls, air-
ports). However, these public charging facilities may open a hole for
cyber-criminals to infer private information and data from smartphone
users. Juice filming charging (JFC) attack is a particular type of charg-
ing attacks, which is capable of stealing users’ sensitive information from
both Android OS and iOS devices, through automatically monitoring
and recording phone screen during the whole charging period. The ratio-
nale is that phone screen can be leaked through a standard micro USB
connector, which adopts the Mobile High-Definition Link (MHL) stan-
dard. In practice, we identify that how to efficiently extract information
from the captured videos remains a challenge for current JFC attack.
To further investigate its practical influence, in this work, we focus on
enhancing its performance in the aspects of extracting texts from images
and correlating information, and then conducting a user study in a prac-
tical scenario. The obtained results demonstrate that our enhanced JFC
attack can outperform the original one in collecting users’ information at
large and extracting sensitive data with a higher accuracy. Our work aims
to complement existing results and stimulate more efforts in defending
smartphones against charging threats.

Keywords: Mobile privacy and security · Android and iOS · Charging
threat · OCR technology · Juice filming charging attack

1 Introduction

With the rapid development, smartphones have become one of the most com-
monly adopted devices for millions of people. International Data Corporation
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(IDC) reported that shipments grew 5.3% from 344.7 million in the second quar-
ter of 2016, and that vendors shipped a total of 362.9 million smartphones world-
wide in the third quarter of 2016 [9]. The number of phone users is predicted
to increase from 1.5 billion in 2014 to around 2.5 billion in 2019. Nowadays, the
majority of smartphones can act as a personal assistant, i.e., allowing to run var-
ious applications that help users view Office documents, access an address book
or use GPS. Due to these capabilities, people are likely to store their personal
and private data on the phones, and are often using smartphones in their daily
lives (e.g., video-chatting with friends), which greatly increase the demand of
recharging their mobile devices.

To meet this requirement, more and more public charging stations are being
deployed for smartphone users. As an example, Singapore Power (SP) had
planned to deploy up to 200 free mobile charging stations in various busy loca-
tions including hospitals, tertiary institutions, libraries and supermarkets [30].
Each charging station is expected to be equipped with 10 individual slots, includ-
ing multiple charging connectors like mini or micro USBs, which can fit most
mobile phones and tablets. Generally, these public charging facilitates can greatly
benefit smartphone users in their daily lives; however, public stations may also
expose a big threat on smartphone privacy and security, since we are not sure
that these charging facilities are not maliciously controlled by cyber-criminals
(e.g., station developers, Government agencies). As a result, there is a great need
to pay more attention to charging threats [10,24].

In literature, Lau et al. [11] presented a malicious charging station named
Mactans, which could harm a phone through injecting any malicious applications
to collect users’ secrets on iOS6 devices. Spolaor et al. [29] then designed a proof-
of-concept application called PowerSnitch, and showed how an adversary could
leverage a maliciously controlled charging station to exfiltrate data from Android
smartphones via a USB charging cable by using power consumption in the form
of power bursts. These two attacks are only effective on either iOS or Android
devices. Meng et al. [20,21] developed a more scalable charging attack, called
juice filming charging (JFC) attack, which can steal users’ private information
from both Android OS and iOS devices, through automatically recording phone
screen (including users’ inputs) during the charging period. All the interactions
and screen information can be captured in the back-end as long as people keep
charging their phones to the JFC charger. It is worth noting that JFC attack
does not need to install any piece of applications or require any permission from
users; thus, it may cause a large number of victims in practice.

Motivations and Contributions. JFC attack can work in an intelligent way
by integrating Optical Character Recognition (OCR) technology in processing
the recorded videos [21]. However, we perform a study and identify that how to
efficiently extract information from the captured videos remains a challenge for
current JFC attack. When a large amount of videos are recorded, it is very time-
consuming and expensive for manual analysis. Therefore, it is very important for
JFC attack to extract users’ private information in an intelligent and accurate
way. Motivated by this, in this work, we focus on JFC attack and attempt to
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enhance its performance in the aspects of extracting texts from images and
correlating information. We further enable JFC chargers to upload recorded
videos to a cloud environment and extract information from the captured videos
in a centralized server. In the evaluation, we conduct a user study in a practical
environment to investigate the practical influence of the improved attack. The
contributions of our work can be summarized as below.

– We conduct a study to explore the practical performance of JFC attack and
identify its limitation in accurately extracting users’ private information from
the collected videos. We then describe a technical way of improving the accu-
racy of information extraction from videos.

– In addition, our study identifies that information correlation is also a challenge
for current JFC attack. To mitigate this issue, we present a compact but
efficient approach for correlating information in terms of user credentials (e.g.,
unlock pattern, social networking account), as well as introduce how to launch
JFC attack with a cloud environment.

– To investigate the practical influence of JFC attack on smartphone users’ pri-
vacy, we further conduct a user study in a practical scenario. Experimental
results demonstrate that the enhanced JFC attack can outperform the orig-
inal one in both extracting and correlating users’ private information. Our
effort demonstrates the potential damage of charging attack and attempts to
stimulate more research in this area.

Organization of the paper. Section 2 introduces the background of JFC
attack including its features and setup details. Section 3 identifies the limitations
of current JFC attack and describes how to enhance its performance in the
aspects of information extraction and correlation. In Sect. 4, we collaborate with
an IT center and perform a user study in a real scenario. We further discuss how
to defend JFC attack in Sect. 5 and review related research studies in Sect. 6.
Finally, we conclude this work in Sect. 7.

2 Background of JFC Attack

JFC attack was developed to steal users’ private data through automatically
video-capturing smartphone screen when the phone is awake or users are inter-
acting with their phones during the whole charging period [20]. This attack does
not require to install any part of applications or ask for any permissions from
smartphone users. By integrating with OCR technology [21], JFC attack can
provide various features as below:

– It is easy to implement but quite efficient. After installing the driver, JFC
attack can be launched by any computing devices even some small devices
like RaspberryPi.

– It does not need to install any additional applications or components on
phones. This attack does not require to install any pieces of applications
on phone’s side.
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– It does not need any permissions. This attack does not need to request any
permissions from smartphone users.

– With less user awareness. It is a kind of passive attacks, which causes less
user attention in real scenarios.

– It cannot be detected or notified by any current anti-malware software. Exist-
ing anti-malware software are not aware of JFC attack; thus, they cannot
detect or notify users about this threat.

– It can be scalable and effective in both Android OS and iOS devices. As com-
pared to malicious applications (malware), JFC attack is more effective as it
can work in both Android phones and iPhones.

– It can automatically process collected videos and extract secrets using OCR
technology. After collecting the videos, JFC chargers can automatically
extract text from the videos and store data into files.

Threat model. We adopt the basic assumptions that phone charging is a com-
mon requirement from smartphone users, and that most users would not treat
public chargers as highly sensitive or dangerous. These assumptions have been
approved in relevant studies (e.g., [21]) that most smartphone users would charge
their phones in public places such as airports, subways, shopping malls and so
on. Charging attacks can be classified as public and private. The former is mainly
related to public charging facilities like the charging stations provided in an air-
port, while the latter is mostly relevant to private charging facilities like a private
charger from friends.

VGA/USB Conversion

Interface

JFC Charger

Charge Record

Storage

Processing

Front End Back End
Phones

Fig. 1. The high-level implementation of JFC attack.

Basic idea. The original idea of JFC attack is from the observation that no
permission would be asked when plugging phones to a projector, while the
projector can display the phone screen. In addition, there are no compelling
notifications on the screen when the device is being plugged, or the indica-
tors are very small. Based on these observations, JFC attack is developed to
automatically video-record phone screen by using a VGA/USB interface during
the charging period. This attack reveals that the display of phone screen can
be leaked through a standard micro USB connector, which adopts the Mobile
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High-Definition Link (MHL) standard. For iPhones, the lighting connector is
used. For Android phones, this is usually done through the micro-USB port.
The micro-USB (available on most Android devices) can also involve connectors
with MHL connectivity.

Real setup. The high-level implementation of JFC attack is depicted in Fig. 1.
When users charge their phones to the JFC charger, their phone screens could
be video-captured by the charger in the back-end and stored for later use, i.e.,
extracting private data from the recorded videos. To implement JFC attack, it
is important to choose an appropriate VGA/USB interface, but actually there
are many alternatives online. In the previous studies (e.g., [20,21]), a hardware
interface named VGA2USB was adopted to implement JFC attack.1 It is par-
ticularly a full-featured VGA/RGB frame grabber, which can send a digitized
video signal from VGA to USB.

Figure 2 shows two examples of setting up JFC attack in practice, where
Fig. 2(a) shows how to launch JFC attack on an Android phone and Fig. 2(b)
describes the implementation of JFC attack on an iPhone. It is found that the
connected iPhone screen can be displayed in the computer end. It is not hard to
imagine that all screen information would be captured by JFC charger, including
users’ inputs such as typed passwords, PIN code, chatting history, etc.

Victim

Victim

Charger

Backend

Backend

(a)

(b)

Fig. 2. Two examples of real setup for JFC attack using VGA2USB: (a) an Android
phone, and (b) an iPhone.

Collected private information. The recorded videos contain the phone screen
or the inputs from smartphone users; thus, various information can be extracted.
1 http://www.epiphan.com/products/vga2usb/.

http://www.epiphan.com/products/vga2usb/
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(a) (b) (c)

Fig. 3. Three examples of captured screen information: (a) Facebook account, (b) Bank
account login, and (c) LINE and Outlook messages.

Figure 3 gives three examples of captured screen information via JFC attack, in
which each of them is relevant to sensitive and private information of smartphone
users. In particular, Fig. 3(a) shows the captured inputs for Facebook including
the accounts and input passwords, Fig. 3(b) presents the captured screen for
bank login including account name and input passwords, and Fig. 3(c) shows
the captured messages from LINE chat and Outlook message. These examples
demonstrate that JFC attack has a potential to become a big threat for smart-
phone privacy and security.

OCR technology. By integrating with OCR technology, JFC attack can process
the collected videos automatically, e.g., video analysis and information extrac-
tion. There are two major phases [21]: device checking and OCR processing. The
source code for Phase1 and Phase2 are presented in Fig. 4.

(a) (b)

Fig. 4. The code for (a) Phase1 and (b) Phase2.

– Phase1 - Device Checking. This phase allows the JFC charger to decide
when to start the recording process. The Ephiphan frame grabber enables a
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VGA device to send input through the USB. On Linux, Ephiphan devices
expose the Video4Linux (V4L) API, hence the V4L API can provide a real
time stream of the display of the device whenever a device is connected to
the machine. The machine can periodically check the presence of a new V4L
capable USB connected device. If such a device is found, the stream is piped
into a file. After 15 s of device detection, the machine can automatically pause
to evaluate whether the device is still connected. If connected, it continues
streaming the screen contents into a file. Otherwise, it would go back into
waiting mode. It is worth noting that the time of device detection can be
tuned according to specific requirements.

– Phase2 - Optical Character Recognition (OCR). This phase allows
the JFC charger to process the collected videos using OCR technology, i.e.,
extracting texts from the collected videos. Since OCR may take a while, it is
not done synchronously with the first phase. While the machine is running at
Phase1, the OCR code can simultaneously process the video frames and check
for new frames. Then all the text files extracted from the same video can be
merged into one (i.e., removing duplicate words and sorting the remaining
words in alphabetical order).

3 Enhanced JFC Attack

3.1 Accuracy of Information Extraction

The current JFC attack utilizes tessract project2 to construct an OCR engine,
which can extract text from the images. However, it is found that direct process-
ing of the image did not yield accurate results. For example, a wide variety of
colours that the text is simply not recognizable by the OCR engine.

Fig. 5. Information extraction by current JFC attack: converting an image to greyscale.

To mitigate this issue, Meng et al. [21] employed an approach of converting
the images to greyscale before running it through the OCR engine, which yield a
2 https://code.google.com/p/tesseract-ocr/.

https://code.google.com/p/tesseract-ocr/
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better OCR output. An example is shown in Fig. 5. However, we identify that the
resulting accuracy by this approach is still not high enough in practical usage. For
example, the accuracy of OCR in Fig. 5 is about 89%, whereas some words cannot
be recognized properly, i.e., “This email is confidential and may be privileged.
If you are not the intended recipient, please delete it or notify us immediately”
may be recognized as “This email is con..demm and may be privileged. fynu are
no! me mended recipient, please derete u and nomy us mmedialely”.

To investigate this issue, we conduct a study by validating the existing OCR
technology using 10 videos collected from [21]. Each video is around 200 M and
contains 700 - 900 frames. Figure 6 shows the extraction accuracy and the specific
number of frames. It is found that the average accuracy is generally below 90%
and would be not high enough in practice.
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Fig. 6. The average accuracy and the number of frames.

3.2 Improvement for Information Extraction

Based on the results above, it is found how to accurately extract information
from the collected videos remains a challenge for current JFC attack. To improve
the attack effectiveness and the accuracy of information extraction, we adopt an
engineering approach with three steps from image processing3, including image
revision, image conversion and image clearance.

– Step1 - Image revision. The main purpose of this step is to resize the image
with variable height and width.

3 https://github.com/tesseract-ocr/tesseract/wiki/ImproveQuality.

https://github.com/tesseract-ocr/tesseract/wiki/ImproveQuality
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– Step2 - Image conversion. This step is similar to current JFC attack, which
converts the image to grayscale format (black and white) before running it
through the OCR engine.

– Step3 - Image clearance. This step aims to make an image clearer by removing
the noise pixels.

Image Revision.

Input bitmap;

double nWidthFactor = (double) temp.Width / (double)newWidth; 

double nHeightFactor = (double) temp.Height / (double)newHeight;

for (int x = 0; x < bmap.Width; ++x)

for (int y = 0; y < bmap.Height; ++y)

do                    // Blue

bp1 = (byte)(nx * color1.B + fx * color2.B);

bp2 = (byte)(nx * color3.B + fx * color4.B);

nBlue = (byte)(ny * (double)(bp1) + fy * (double)(bp2));

// Green

bp1 = (byte)(nx * color1.G + fx * color2.G);

bp2 = (byte)(nx * color3.G + fx * color4.G);

nGreen = (byte)(ny * (double)(bp1) + fy * (double)(bp2));

// Red

bp1 = (byte)(nx * color1.R + fx * color2.R);

bp2 = (byte)(nx * color3.R + fx * color4.R);

nRed = (byte)(ny * (double)(bp1) + fy * (double)(bp2));

Image Clearance.

for (var x = 0; x < bmap.Width; x++)

for (var y = 0; y < bmap.Height; y++)

do

var pixel = bmap.GetPixel(x, y);

if (pixel.R < 162 && pixel.G < 162 && pixel.B < 162)

bmap.SetPixel(x, y, Color.Black);

else if (pixel.R > 162 && pixel.G > 162 && pixel.B > 162)

bmap.SetPixel(x, y, Color.White);

Fig. 7. The code for image revision and clearance.
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Fig. 8. The accuracy of extracting information using enhanced JFC attack.

The final goal of these steps is to better recognize textual information from
an image. The code for image revision and image clearance can be referred to
Fig. 7, while the code for image conversion is the same as exiting JFC attack (see
details in [21]). To validate the performance, we process the same videos above
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by means of the three-step approach, and the results are depicted in Fig. 8. The
experimental results show that the average accuracy can increase to above 90%
(close to 95%) as compared to the results shown in Fig. 6, demonstrating that
the three-step approach is effective to enhance JFC attack in extracting users’
private information.

3.3 Information Correlation

The current JFC attack can merge all the text files from the same video into one
text file by removing duplicate words and sorting the remaining words in alpha-
betical order, whereas there is no information correlation process to link data
from different videos. In such case, information could be burst when collecting
videos after a period of time. In practice, JFC chargers can be deployed with a
cloud as shown in Fig. 9, where a centralized server can help collect the videos
recorded by each charger and extracts the information from videos. Under this
architecture, JFC attack has a potential to collect a large amount of private
information from smartphone users.

…

…

Server

Database

Cloud

Charger Charger

Charger

Charger

Charger

Charger

Fig. 9. Enhanced JFC attack with a cloud and centralized server.
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Fig. 10. An example of information correlation.
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With the increasing number of videos, there is a need to correlate information
from different videos and enhance the attack performance. To achieve this goal,
we adopt a compact but efficient approach of indexing and linking information
according to user’s credentials, e.g., account names. An example is given in
Fig. 10: if two identical account names are detected, then the corresponding
information can be correlated (e.g., chatting history). The process of information
correlation can be conducted in the back-end or in a cloud environment.

4 User Study

There are not many studies exploring the practical influence of JFC attacks in
literature. In this work, we collaborated with an IT center (with over 250 per-
sonnel) in South China, and perform a user study to investigate the effectiveness
of our advanced JFC attack in a practical environment.

Deployment. Before the study, we seek approval from the IT center to deploy
up to 10 JFC chargers in one main dining & lobby room, where the JFC charg-
ers can keep uploading the recorded videos to a cloud in the back-end. After
uploading the videos, the chargers can delete the relevant videos to save disk
space for new recorded videos and activate the attack for a long time. The cen-
tralized server has a maximum storage capacity of 100 T, where one-minute video
usually requires 30 M space.

Table 1. Extracted user private information in the deployed environment.

User information User information User information

Android unlock pattern PIN for iPhones Gmail account and content

Other email account (e.g.,
126, 163)

Other email content Social networking account
(e.g., Wechat, QQ)

Bank account Social networking chat
history (e.g., Wechat, QQ)

Visited website content

Email passwords
(web-login)

Personal photos Phone number list

Installed mobile
applications

Settings Bank message

Data Collection and Results. To protect users’ privacy, we also seek users’
approval and all data were handled by the IT center (we only collected statistics
from the data). At least one IT administrator helped monitor the whole process
and ensured all steps to comply with the relevant policies.

The JFC charger was implemented for two weeks excluding weekends (i.e.,
from Monday to Friday). The opening hours of the center are from 7am to
10pm; thus, we mainly recorded the information from 7am to 10pm. Figure 11
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depicts the average number of recorded videos: the JFC chargers can collect
more than 350 videos each day where the highest number of videos would be
captured during the period of 12-17pm. This is because most people had their
meals at that time and have the need to charge their phones in the room. From
these collected videos, we can extract a large amount of private information
about users, as summarized in Table 1, such as Android unlock pattern, PIN
for iPhones, Email Account and content, social networking chat history, visited
website, personal photos and so on.

Intuitively, each video has a different length and size, where a longer-time-
frame video has a potential to leak more private information about a smartphone
user. Figure 12 depicts the average size of collected videos for each environment.
Generally, JFC chargers could collect around 22.5 G data each day. The accuracy
of information extraction between the original and the advanced JFC attack
is depicted in Fig. 13. It is found that the advanced attack could achieve an
accuracy of 93% as compared to an accuracy of 82% achieved by the original
attack setup. Overall, the advanced attack could provide a minimum accuracy
over 88% while the original one could only reach a minimum accuracy of 75%.

In the study, we employ hit rate and error rate to measure the performance
of JFC attack, which can be defined as below.

Hit rate =
The number of correct correlation
The total number of correlation

(1)

Error rate =
The number of incorrect correlation

The total number of correlation
(2)

It is revealed that the advanced JFC attack could achieve an average hit rate
of 92% and an error rate of 3.3%. These errors are mainly caused by unclear texts
due to inaccurate extraction. On the whole, our study validates that JFC attack
can make a large impact on smartphone privacy and security. A large amount
of private information could be identified through further enhancing JFC attack
in the aspects of information extraction and correlation.
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Fig. 13. The accuracy between the original and the advanced JFC attack.

5 Further Discussion

This work presents an advanced JFC attack by improving its performance in
accurately extracting and correlating users’ private information. In the study,
we show that the JFC attack can capture phone screen in the back-end and
threaten smartphone privacy. After launching JFC attack after a period of time,
a large amount of data can be recorded to dig out users’ private information.
Our user study in a practical environment demonstrates that JFC attack has a
potential to cause a large number of victims. It is worth noting that this attack
can be further enhanced by integrating more advanced techniques in the aspects
of both extracting and correlating secrets from videos.

Defence. The root cause of JFC attack is that Android OS and iOS devices
allow screen mirroring without granting explicit permissions. To defend against
this kind of attacks, there is a need to deploy additional security mechanisms
and increase user awareness.

– Disabling automate screening. This is the most direct and easiest way to
defend against JFC attack, by disabling automatic screening function. For
example, the phones can disable automatically outputting screen information,
and ask users to choose such function when they have the need. However,
disabling screen output by default is effective, but may decrease usability,
i.e., when there is a need to display phone screen for many times, users have
to click the display button again and again. In this case, an alternative is
to make notifications and ask for permission. Recall that when connecting
iPhones to a computer, the phone will prompt a notification asking whether
the user trusts the computer or not. The smartphone could do the same
action to warn users before the display of phone screen. This strategy can
increase user awareness especially for novice, but can provide much flexibility
for advanced users.



304 W. Meng et al.

– Securing Charger. To protect data leakage against JFC attack, one potential
solution is to use a safe charger such as USB Condom [31]. This USB is able
to prevent accidental data exchange when the device is plugged into another
device with a USB cable, through cutting off the data pins in the USB cable
and only allowing the power pins to connect in practice. However, this solution
does not work for particular charging attacks like PowerSnitch [29], which can
leak information via analyzing power consumption.

– Employing biometrics. It is feasible to reduce the impact of JFC attack by
integrating biometrics, since JFC attack is unable to capture these secrets
without a screen-input. For example, behavioral biometrics can be added
to the process of inputting PIN code and unlock patterns (i.e., building a
fingerprint-based unlocking mechanism). Several behavioral-based authenti-
cation methods can be referred to [5–7,12,16,17,19,27].

– Educating users. Until particular patches or control policies are updated by
vendors, JFC attacks are difficult to defend by current security mechanisms
(e.g., [18]). Therefore, similar to other area like spam detection [13], user
education is a necessary action to raise users awareness and attention.

6 Related Work

As smartphones have become a major target for cyber-criminals, privacy leakage
is a big concern for smartphone users. There is a line of research and practical
studies on how to infer mobile users’ private information and data through mal-
ware, side channels and physical access attacks.

Smartphone malware. Malicious applications are a big threat on smartphones
[4]. Lin et al. [14] found that the ADB capability could be exposed to any party
with the INTERNET permission on the same device. They then built Screen-
milker, an application that can monitor the screen and pick up a user’s password
when the user is typing in real-time. Xing et al. [32] evaluated the Android updat-
ing mechanism and found Pileup flaws, through which a malicious application
could strategically declare a set of privileges and attributes on a low-version
operating system, and wait until it is able to escalate its privileges on the new
system. By exploiting the Pileup vulnerabilities, their application can not only
acquire a set of newly added system and signature permissions, but also deter-
mine their settings. Andriesse and Bos [1] introduced a code hiding approach for
trigger-based malware, which can conceal malicious code inside spurious code
fragments. A summary of malware research can be referred to a survey [25].

Accelerometer side channel. Most popular malware utilized side channel to
steal information on mobile devices. Cai and Chen [3] presented a side channel
on touchscreen smartphones with only soft keyboards. They identified that when
users clicked on the soft keyboard, especially when he/she holds the phone by
hand rather than placing it on a fixed surface, the phone vibration on touch-
screens are highly correlated to the keys being typed. They conducted a study
and showed that they were able to infer correctly more than 70% of the keys
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typed on a number-only soft keyboard on a phone. Marquardt et al. [15] also
demonstrated that an application with access to accelerometer readings on a
modern mobile phone can use side channel to recover text entered on a nearby
keyboard. They showed that by characterizing consecutive pairs of keypress
events, up to 80% of typed content can be recovered. Schlegel et al. [28] designed
Soundcomber, a stealthy Trojan with innocuous permissions that can sense the
context of its audible surroundings to automatically extract a small amount of
targeted private information such as credit card and PIN numbers from both
tone- and speech-based interaction with phone menu systems.

Han et al. [8] presented that accelerometer readings can be used to infer
the trajectory and starting point of an individual who is driving, and pointed
out that current smartphone operating systems allow any application to observe
accelerometer readings without requiring special privileges. Thus, accelerome-
ters can be used to locate a device owner within a 200 m radius of the true
location. Owusu et al. [23] described how a background application can use the
accelerometer as a side channel to spy on keystroke information during sensi-
tive operations, e.g., account login. They could successfully break 59 out of 99
passwords by using only accelerometer measurements logged during text entry.
Miluzzo et al. [22] presented TapPrints, a framework for inferring the location of
taps on touchscreens using motion sensor data with up to 90% and 80% accuracy.

Physical side channel. These attacks are mainly based on physical objects,
like oily residues left on the touchscreen or the screen reflection from nearby
objects. Aviv et al. [2] first explored the feasibility of smudge attacks on touch-
screens with different lighting angles and light sources. They indicated that the
pattern could be partially identifiable in 92% and fully in 68% of the tested light-
ing and camera setups. Zhang et al. [33] presented a fingerprint attack against
tapped passwords via a keypad, which could reveal more than 50% of the pass-
words. For the screen reflection, Raguram et al. [26] showed that automatic
reconstruction of text typed on a mobile device’s virtual keyboard is feasible via
compromising reflections, i.e., those of the phone in the user’s sunglasses. By
means of the footage captured in realistic environments (e.g., on a bus), their
approach could reconstruct fluent translations of recorded data in almost all of
the test cases.

Charging attacks. To our knowledge, Lau et al. [11] designed an early charg-
ing attack named Mactans. They particularly deployed a malicious charger using
BeagleBoard to conduct malware injection on smartphones during the charging
period. However, their attacks require users to unlock the phone screen and
install developer licenses in advance. Spolaor et al. [29] described how an adver-
sary could leverage a malicious charging station to exfiltrate smartphone data
via a USB charging cable using power consumption. They designed PowerSnitch,
an application that could send out bits of data in the form of power bursts by
manipulating the power consumption of the device’s CPU. One limitation of this
attack is that users have to pre-install a small application on their phones.

Meng et al. [20,21] developed JFC attacks, which can record screen informa-
tion during the whole charing period, without the need to ask for any permission
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or phone unlock action. It is worth noting that any current anti-malware soft-
ware is not aware of such threat. To launch this attack, an additional hardware
of VGA/USB interface is needed, which is not hard to obtain online. Thus,
charging attacks are highly deployable in real scenarios.

7 Conclusion

As compared with malicious applications (malware), charging threats are often
ignored by the literature. With the increasing adoption of public charging sta-
tions, we argue that charging attacks may become a big concern for users’ pri-
vacy. Juice filming charging (JFC) attack is one specific kind of charging attacks,
which can steal users’ private data from both Android OS and iOS devices,
through automatically monitoring and recording screen information during the
charging period.

In real-world deployment, we identify that information extraction and cor-
relation are still challenges for current JFC attack. To investigate the practical
influence of this attack, in this work, we focus on JFC attack and try to enhance
its performance in the aspects of extracting and correlating textual information
from the captured videos. In the evaluation, we conduct a user study with an IT
center. The results demonstrate that the enhanced JFC attack can collect users’
information at large and extract private data with a higher accuracy (i.e., over
90%) than the original one. Our work validates that JFC attack may cause a
large number of victims, which should be given more attention.
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Abstract. Encrypting data with a semantically secure cryptosystem
guarantees that nothing is learned about the plaintext from the cipher-
text. However, querying a database about individuals or requesting for
summary statistics can leak information. Differential privacy (DP) offers
a formal framework to bound the amount of information that an adver-
sary can discover from a database with private data, when statistical
findings of the stored data are communicated to an untrusted party.
Although both encryption schemes and differential private mechanisms
can provide important privacy guarantees, when employed in isolation
they do not guarantee full privacy-preservation.

This paper investigates how to efficiently combine DP and an encryp-
tion scheme to prevent leakage of information. More precisely, we intro-
duce and instantiate differentially private encryption schemes that pro-
vide both DP and confidentiality. Our contributions are five-fold, we:
(i) define an encryption scheme that is not correct with some probability
αm1,m2 i.e., an αm1,m2 -correct encryption scheme and we prove that it
satisfies the DP definition; (ii) prove that combining DP and encryption,
is equivalent to using an αm1,m2 -correct encryption scheme and provide
a construction to build one from the other; (iii) prove that an encryption
scheme that belongs in the DP-then-Encrypt class is at least as compu-
tationally secure as the original base encryption scheme; (iv) provide
an αm1,m2 -correct encryption scheme that achieves both requirements
(i.e., DP and confidentiality) and relies on Dijk et al.’s homomorphic
encryption scheme (EUROCRYPT 2010); and (v) perform some statisti-
cal experiments on our encryption scheme in order to empirically check
the correctness of the theoretical results.

Keywords: Differential privacy · Encryption · Homomorphic
encryption

1 Introduction

The Internet has evolved into a powerful platform interconnecting billions of
users and has changed the way we do business, communicate with our friends,
and perform our financial transactions. In this new communication paradigm,
we leave our digital fingerprints everywhere: medical records, financial records,
web search histories, and social network data. There is no doubt that the privacy
c© Springer International Publishing AG 2017
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implications of this increased connectivity can lead to oppressive electronic data
surveillance.

Let us consider a real-world scenario: a company sells electricity to differ-
ent customers in large geographical areas. The company owns and distributes
a smart-metering grid [6] in order to offer the lowest price possible for its cus-
tomers. Alice, that wants to pay as less as possible for her electrical consumption,
signs a contract with the company by providing her personal information and
accepts to install in her home different sensors that will measure the electrical
consumption during the day and transmit this data to the electricity company.
The company collects data from all its customers in an entire geographical region
and, by performing statistical analysis on the collected data, is able to optimize
the electrical supply distribution. Alice worries that her data may be used in a
malicious way and wants to get guarantees that her privacy will be respected.
She is aware that by analysing the data of her power consumption, someone may
deduce private information such as when she is at home and what habits she
may have. She wants her personal information to be confidential (encrypted)
when they are used by a third party but she accepts that the company may use
her data for statistical analysis in order to optimise the supply distribution.

This particular problem might raise different privacy concerns that we cate-
gorize into two classes, as represented in Fig. 1:

– An individual privacy breach can be described as the act of deducing private
information for an individual from some public information.
In this case, the electricity company can deduce Alice’s habits just by observ-
ing her power consumption measurements.

– A group privacy breach can be defined as the act of deducing a single indi-
vidual private information from public statistical information of groups of
people.
Let us suppose that the electricity company offers an open-source interface
where everyone can query and obtain statistical information about the com-
pany’s customers. The only limitation is that the statistics are not computed
if the sample of customers is lower than five people.
Eve wants to find out Alice’s habits for malicious reasons. To achieve that she
checks on every social network and finds out that Alice is a student and she
lives in a one-room apartment. Eve starts querying the company’s database
by asking for the “average daily power consumption of a student that lives in
an one-room apartment” and does not obtain any information because the
sample is too small. Then, Eve asks for the “average daily consumption of peo-
ple that live in an one-room apartment” and the “average daily consumption
of people that live in an one-room apartment that are not students”. Thus,
Eve can deduce some approximation of Alice’s habits by computing the dif-
ference between the two values and obtain the “average daily consumption of
a student that lives in an one-room apartment” in which Alice is contained.

In this paper, we do not deal with the problem of inferring some private
information about an individual (such as habits) from other private data, such
as consumption, from a trusted third party (e.g., a company). However, we care
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Fig. 1. Individual and group privacy breaches.

about inferring private information from publicly available data published by a
third party (e.g., the billing information). To protect against either of the two
types of privacy breaches, different notions of privacy and methodologies that
preserve privacy have been defined in the literature such as t-closeness [11],
k-anonymity [5], �-diversity [8]. However, these notions of privacy have been
proven to be weak, since even when they are employed information leakage and
de-anomyization attacks can still be performed.

Differential privacy (DP) introduced by Dwork et al. [3], addresses the prob-
lem of learning as little as possible about an individual, while learning useful
information about a population. It offers a formal framework that can be used
to bound the amount of info that an adversary can discover from a database that
contains private data, when statistical findings of the stored data are communi-
cated to an untrusted party. More precisely, DP assumes the existence of a data
aggregator, who is publishing statistics about a population. In other words, DP is
a formalism that allows statistical analysis of private datasets while minimizing
a group privacy breach. Informally, by employing a DP-mechanism to respond to
a query, we are publishing noisy statistics about a dataset. The amount of noise
should depend on the sensitivity of the queried statistic to the input, i.e., “how
much the query result would change if one single entry is changed or removed?”.
This means that if the query result will change a lot, we have to introduce more
noise in order to “hide” the influence of the changed/removed entry in the query
result. Otherwise, a drop in the query result will reveal partial information on
the modified entry.

Complementary, a semantically secure encryption scheme guarantees the con-
fidentiality of the encrypted information i.e., no-one can decrypt and obtain the
original message of a ciphertext. As a plus, an homomorphic encryption scheme
[9,12] allows the computation of particular functions on the encrypted data.
Informally, we can encrypt our messages and then compute a particular func-
tion on the ciphertext and obtain a new ciphertext that will be decrypted to the
function computed on the original plaintext messages.
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The solution required to avoid any possible information leakage should guar-
antee privacy breach resistance (provided by the DP framework) and confi-
dentiality of the encrypted data (provided by a semantically secure encryption
scheme). Each of these frameworks, if employed alone, does not provide full pri-
vacy guarantees. In this paper, we investigate for the first time, how we may
achieve both differential privacy and confidentiality and introduce the concept
of a differentially private encryption scheme.

Related Work: Privacy-preservation has received a lot of attention in the lit-
erature and multiple semantically secure crypto systems as well as differential
private mechanisms have been proposed. However, existing work on encrypted
computation and differential privacy has proceeded mainly in isolation. In order
to avoid all possible information leakage, while guaranteeing both confidentiality
and differential privacy, the most common solution is to process the plaintext
data in a DP-mechanism and then encrypt the result using a secure homomor-
phic encryption scheme. The ciphertext will guarantee confidentiality until the
decryption phase, while the plaintext message will satisfy the DP definition.
In the literature, it is possible to find different solutions [1,7,10] that use this
paradigm: a DP-mechanism and an encryption scheme; used sequentially. We
will define these solutions that combine a DP-framework and an Encryption-
framework as an element in the DP-then-Encrypt class (formally defined in Def-
inition 5). Our solution has as a starting point Dwork et al.’s definition of an
α-correct encryption scheme [4] i.e., an encryption scheme that can wrongly
decrypt (or encrypt) a message with some probability bounded by α. Dwork
et al. [4] defined an algorithm that takes an α-correct encryption scheme and
returns a new encryption scheme, built using the α-correct one, that is cor-
rect (or almost-correct). We provide a more detailed definition of α-correctness,
where we are interested in the precise probability of encrypting a message m1

and obtaining a message m2. Our definition is the first result that provides the
sufficient conditions for an α-correct encryption scheme in order to achieve ε-DP.
In order to build a concrete instantiation of a differentially private encryption
scheme, we rely on Dijk et al.’s [2] homomorphic public-key encryption scheme
over the integers.

Our Contributions: Our main idea is defining the class Encrypt+DP that con-
tains all the encryption schemes that are differential private and achieve privacy
and confidentiality atomically, as represented in Fig. 2. As a starting point, we
define an αm1,m2-correct encryption scheme (Definition 4) that will permit an
encryption scheme to be not correct, i.e., the decryption of the encryption of
a specific message m1 can be a different message m2 with probability αm1,m2 .
From this definition, we prove that an αm1,m2-correct 1-bit encryption scheme
satisfies the Dwork’s DP definition [3] with ε(αm1,m2)-DP, i.e., the DP parameter
ε will be strongly related to the probabilities αm1,m2 of the encryption scheme.
Then, we prove in Proposition 2 that the more general N -element encryption
scheme achieves ε(αm1,m2)-DP.

Furthermore, we formally define the DP-then-Encrypt and Encrypt+DP
classes. As our main result, we prove in Proposition 4 that the two classes are
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mi
Generating
DP-noise

ri Encryption ci = Enc(mi + ri)

Encrypted
and
Differential Private
Data

mi
α-correct
Encryption

ci = Enc′(mi)

Fig. 2. The difference between the DP-then-Encrypt (on the top) and our solution (at
the bottom).

equivalent and provide a construction to switch between them. This means that
our solution of an αm1,m2-correct encryption scheme can be re-written with a
DP-then-Encrypt encryption scheme.

As the second main contribution, in Lemma1, we reduce the security of a DP-
then-Encrypt encryption scheme to the security of the correct encryption scheme
framework. The considered security-computational model is built around a non-
interactive adversary that has access only to the public key and a particular
ciphertext and it guesses the original plaintext. This security model is a necessary
condition in order to satisfy more complex security models like IND−CPA,
IND −CCA, etc.

The last contribution is a concrete αm,m-correct encryption scheme inside
Encrypt+DP. We modify the Dijk et al. [2] integer homomorphic encryption
scheme and we show how to compute the probability αm,m. As a final point,
we exploit the structure of the scheme and obtain the correspondent DP-then-
Encrypt encryption scheme that relies on Dijk et al.’s homomorphic encryption
scheme.

Paper Organisation: The paper is organised as follows. In Sect. 2, we describe
the notation used throughout the paper and the definitions we are based on. In
Sect. 3, we give our definition of αm1,m2-correct encryption schemes and prove
that it has ε(αm1,m2)-DP. In Sect. 4, we show the equality between our frame-
work, Encrypt+DP, and the DP-then-Encrypt. The proof will sketch an algorithm
that transforms a correct encryption scheme into an αm1,m2-correct encryption
scheme. We define the security-hardness model and prove the security-hardness
of a DP-then-Encrypt encryption scheme with respect to the corresponding base
(correct) encryption scheme. In Sect. 5, we provide an instantiation of an αm,m-
correct encryption scheme starting from Dijk et al.’s [2] encryption scheme and
we prove its security.

2 Preliminaries

In this section, we will define the notation used in the paper and the basic
definitions of the notions we employ in the rest of the paper.
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2.1 Notation

We always denote with M the message-space. We denote with K = Ksk ×Kpk the
key-space where Ksk is the secret-key-space and Kpk is the public key-space and
with C the ciphertext-space. N is the set of natural numbers (i.e., integers z ≥ 0).
Then we define intervals with [a, b] = {a, a + 1, · · · , b} and (a, b) = [a, b] \ {a, b}.
We denote with 1A the identity function on the set A. We define with the
symbol �, a probabilistic equality between functions, i.e., f(x) � g(x) means
P(f(x) = g(x)) = p for some p ∈ [0, 1]. We denote with negl(n) a negligible
function. We denote with a(mod n) the modulo n of a in the interval

(−n
2 , n

2

]
.

We denote with UA the uniform distribution over the set A. We denote M times
the cartesian product of a set A as AM and the range of a function f with
domain X as Rg(f) := {f(x) : x ∈ X}. For a set X, we define with P(X) the
power-set of X, i.e., the set of all the subset of X.

2.2 Basic Definitions

In order to define differential privacy, we will define a data-set:

Definition 1 (Dataset). A dataset D is defined on an alphabet A so that either
D ∈ An for a fixed dataset size n, or D ∈ A∗ with A∗ =

⋃∞
i=0 Ai being the union

of all product sets of A.

Definition 2 (ε-differential privacy [3]). A randomized function Q is ε-
differentially private if for all data-sets D1 and D2 differing on at most one
element, i.e., the �0-distance between D1 and D2 is at most 1, and all S ⊆ Rg(Q),
it holds

P(Q(D1) ∈ S) ≤ exp(ε) · P(Q(D2) ∈ S)

Remark 1. For finite ε, we must have that the distribution of a DP-mechanism
has always the same range, i.e., for every D0,D1 ⊂ M it holds Rg(Q(D0)) =
Rg(Q(D1)).

In our construction, we will use messages as databases and we will always
use the �0-distance; for two different messages m,m′, the distance is always 1.

Below we provide Dwork et al.’s [4] definition of an α-correct (public-key)
encryption scheme:

Definition 3 (Dwork et al.’s α-correct public-key encryption scheme
[4]). Let (G,E,D) be any public-key encryption scheme and α : N → [0, 1] an
arbitrary function.

(a) (G,E,D) is all-keys α-correct if for every pair (sk,pk) generated by G on
input 1λ, it holds that P(Dsk(Epk(m)) 	= m) ≤ 1−α(λ), where the probability
is taken over the choice of m ∈ Un, and over the random coins of E and D.

(b) (G,E,D) is almost-all-keys α-correct if with probability 1 − negl(λ) over
the random coins of G used to generate (sk,pk) on input 1λ, it holds that
P(Dsk(Epk(m)) 	= m) ≤ 1 − α(λ) where the probability is taken over the
choice of m ∈ Un and over the random coins of E and D.
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(c) (G,E,D) is almost-all-keys perfectly correct if with probability 1 − negl(λ)
over the random coins of G used to generate (sk,pk) on input 1λ, it holds
that P(Dsk(Epk(m) 	= m) = 0, where the probability is taken over the choice
of m ∈ Un and over the random coins of E and D.

3 Our Definition of αm1,m2-Correct Encryption Scheme

In this section, we define an αm1,m2-correct encryption scheme and compare
it to the Dwork et al.’s Definition 3. Then, we prove that an αm1,m2-correct
encryption scheme satisfies the definition of differential privacy with respect
to the function Q := D ◦ E � 1M. We start by presenting and describing the
main constructions and properties for the case of a 1-bit encryption scheme,
as the simplest example possible, and after that we generalize the result to an
N -element encryption scheme.

3.1 Definition

Our goal is to formally define the possibility that an encryption scheme can
wrongly decrypt a message with some well defined probability.

Definition 4 (αm1,m2-correctness encryption scheme). Let (G,E,D) be an
encryption scheme defined over (M,K, C) as

– Generation algorithm: let λ ∈ N be a security parameter. G is defined as a
probabilistic algorithm that given a security parameter 1λ, returns a key-pair
(sk,pk) ∈ K.

– Encryption algorithm: let m ∈ M, pk ∈ Kpk and c ∈ C. E is defined as an
algorithm that takes as input a public key pk and a message m, and returns
a ciphertext c.

– Decryption algorithm: let m ∈ M, sk ∈ Ksk and c ∈ C. D is defined as an
algorithm that given a secret key sk and a ciphertext c, returns a plaintext m.

(G,E,D) is said to be an αm1,m2-correct encryption scheme if, for all
m1,m2 ∈ M, a fixed λ ∈ N and a fixed key-pair (sk,pk) ←� G(1λ), it holds

αm1,m2((sk,pk)) := P(D(sk, E(pk,m1)) = m2)

If for all m ∈ M it holds αm,m = 1, then (G,E,D) is said to be a correct
encryption scheme.

In simple words, in an αm1,m2-correct encryption scheme, the probability of
encrypting m1 and decrypting into m2 using the key-pair (sk,pk) is equal to
αm1,m2 .

Remark 2. From the definition above, it is easy to see that every encryption
scheme is an αm1,m2 encryption scheme.
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Remark 3. The αm1,m2((sk,pk)) values are strongly connected with the choice
of (sk,pk). We will abuse notation and drop the key-pair since in our arguments,
we will always fix some key-pair (sk,pk).

Remark 4. Our αm1,m2-correctness (Definition 4) and Dwork et al.’s definition
(Definition 3) describe the same encryption schemes.

Proof. – Our definition ⇒ Dwork et al.’s definition:
Let (G,E,D) be any αm1,m2-correct public-key encryption scheme. Let us
consider

α = max
m∈M,(sk,pk)∈K

αm,m((sk,pk))

Let (sk,pk) ∈ K be any possible random key and m ∈ M any possible random
message.

1 − P(Dsk(Epk(m)) 	= m) = P(Dsk(Epk(m)) = m) = αm,m((sk,pk)) ≤ α

And so, we have that (G,E,D) is an α-correct encryption scheme in Dwork
et al.’s Definition 3.

– Our definition ⇐ Dwork et al.’s definition: Follows directly from Remark 2
��

Dwork et al.’s definition describes a global upper bound on the correctness
probability of an encryption scheme, while our definition defines the precise
values of αm1,m2 of the encryption scheme.

3.2 Construction of an αm1,m2-Correct 1-bit Encryption Scheme

Fix M = {0, 1}. Let (G,E,D) be an αm1,m2-correct encryption scheme defined
over (M,K, C). Let us fix a key pair (sk,pk) ←� G(1λ) and let Q(m) =
D(sk, E(pk,m)). It holds:

Rg(Q) = {0, 1} D0 ={0},D1 = {1}
S ∈ P(Rg(Q)) = {∅, {0} = S0, {1} = S1, {0, 1} = M}

Q(m) = D(sk, E(pk,m)) � m ∀m1,m2∈M P(Q(m1) = m2) = αm1,m2

Proposition 1. An αm1,m2-correct 1-bit encryption scheme such that for all
m1,m2 ∈ M it holds that P(D(sk, E(pk,m1)) = m2) = αm1,m2 , achieves
ε(αm1,m2)-differential privacy where

ε(αm1,m2) := inf

⎧
⎨

⎩
ε :

eε ≥ α0,0
α1,0

, eε ≥ α0,1
α1,1

eε ≥ α1,0
α0,0

, eε ≥ α1,1
α0,1

⎫
⎬

⎭

Proof. Let us prove that any αm1,m2-correct encryption scheme satisfies the ε-DP
definition.

From the Definition 2, we can state that P(Q(Di) ∈ Sj) means that we
encrypt the bit i and we decrypt it into the bit j. We can impose the DP definition
in all possible cases in order to study the differential privacy coefficient ε:
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– If S = ∅, all the probabilities are 0, and so the ε-DP definition holds for every
ε ∈ R since 0 ≤ 0

– If S = {0, 1} = M, all the probabilities are 1, and so the ε-DP definition
holds since 1 ≤ eε and ε ≥ 0

– If S = {0} = S0:
• P(Q(D0) ∈ S0) ≤ eε P(Q(D1) ∈ S0) becomes α0,0 ≤ eεα1,0 =⇒ eε ≥ α0,0

α1,0

• P(Q(D1) ∈ S0) ≤ eε P(Q(D0) ∈ S0) becomes α1,0 ≤ eεα0,0 =⇒ eε ≥ α1,0
α0,0

– If S = {1} = S1:
• P(Q(D1) ∈ S1) ≤ eε P(Q(D0) ∈ S1) becomes α1,1 ≤ eεα0,1 =⇒ eε ≥ α1,1

α0,1

• P(Q(D0) ∈ S1) ≤ eε P(Q(D1) ∈ S1) becomes α0,1 ≤ eεα1,1 =⇒ eε ≥ α0,1
α1,1

We can conclude that for every αm1,m2 ∈ [0, 1], we achieve ε-DP where ε has
to be in the convex solution set E(αm1,m2) defined as:

for αm1,m2 ∈ [0, 1] E(αm1,m2) :=

⎧
⎨

⎩
ε :

eε ≥ α0,0
α1,0

eε ≥ α0,1
α1,1

eε ≥ α1,0
α0,0

eε ≥ α1,1
α0,1

⎫
⎬

⎭

from which we can define the curve

ε(αm1,m2) = inf E(αm1,m2)

that defines the minimum ε such that the ε-DP definition holds for the encryption
scheme. ��

Proposition 1 is a special case of Proposition 2.

3.3 Construction of an αm1,m2-Correct N-Elements Encryption
Scheme

Let # M = N be the message space with uniform distribution of being trans-
mitted, i.e., for all m ∈ M, P(M ∈ {m}) = 1

#M . Fix a key-pair (sk,pk) and
then for all m1,m2 ∈ M it holds

αm1,m2 = P(D(sk, E(pk,m1)) = m2 | m1)

Proposition 2. An N -element αm1,m2-correct encryption scheme such that for
all m1,m2 ∈ M it holds that P(D(sk, E(pk,m1)) = m2) = αm1,m2 . Then, the
encryption scheme achieves ε(αm1,m2)-differential privacy where

ε(αm1,m2) := inf

{

ε

∣
∣
∣
∣
∣
∀D0,D1 ∈ M, S ⊆ M.

∑
m2∈S αD0,m2∑
m2∈S αD1,m2

≤ eε

}

Proof. Let Q = D◦E and S ⊆ M as before. Then, P(Q(D0) ∈ S) =∑
m2∈S αD0,m2 .
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Imposing the DP definition, we have that for all D0,D1 ∈ M such that the
two elements are different and for every S ⊆ M it holds:

P(Q(D0) ∈ S) ≤ eε P(Q(D1) ∈ S) =⇒
∑

m2∈S

αD0,m2 ≤ eε

(
∑

m2∈S

αD1,m2

)

We can manipulate the equation and obtain
∑

m2∈S αD0,m2∑
m2∈S αD1,m2

≤ eε

We define the convex set

E(αm1,m2) :=

{

ε

∣
∣
∣
∣
∣
∀D0,D1 ∈ M, S ⊆ M.

∑
m2∈S αD0,m2∑
m2∈S αD1,m2

≤ eε

}

The value ε(αm1,m2) = inf E(αm1,m2) will satisfy the DP-definition. ��

3.4 Fix ε, Find αm1,m2

The parameters ε and αm1,m2 are dependent one from the other since for all
D0,D1 ∈ M and for all S ⊆ M, it holds

∑
m2∈S αD0,m2∑
m2∈S αD1,m2

≤ eε (1)

The goal of finding the best αm1,m2 that achieves a fixed ε-DP depends on
practical requirements and conditions that we want to impose on the probabili-
ties αm1,m2 , i.e., “maximizing the difference between two different messages” or
“having a specific probability distribution”.

For completeness, we will provide a simple solution in a particular case.

Proposition 3. Let αm1,m2 be the probabilities of an N -element encryption
scheme, where for all m ∈ M, it holds αm,m = α and for all m′ ∈ M with
m′ 	= m, it holds αm,m′ = β < α. If α ≥ (N − 1)β, then the scheme achieves

log
(

α
β

)
-DP.

Proof. In order to prove the thesis, we have to find the D0,D1, S that maximize
the left side of Eq. (1). We can consider the polynomials fα(x) = α + xβ and
fβ(x) = β + xβ. From the hypothesis, we have that fα(x) ≥ fβ(x) for all x ∈ R
and x ≥ 0. In particular, this is true for the integer values between 0 and N − 1.
Since fα(x)

fβ(x)
is a decreasing function for all x ∈ R and x ≥ 0, we can conclude

that for i ∈ [0, N − 1] integers, it holds:

α

β
=

fα(0)
fβ(0)

≥ fα(i)
fβ(i)

≥ fα(i + 1)
fβ(i + 1)

≥ · · · ≥ fα(N − 1)
fβ(N − 1)

β

α
=

fβ(0)
fα(0)

≤ fβ(i)
fα(i)

≤ fβ(i + 1)
fα(i + 1)

≤ · · · ≤ fβ(N − 1)
fα(N − 1)

=
(N − 1)β

(N − 2)β + α
(2)
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From Eq. (2) and since α
β ≥ β

α from the hypothesis, we have

(N − 1)β
(N − 2)β + α

≤ α

(N − 2)β + α
≤ α

β

and, in Eq. (1)
∑

m2∈S αD0,m2∑
m2∈S αD1,m2

≤ α

β
≤ eε (3)

We can so conclude that the minimal ε for which the equation holds is log
(

α
β

)

and so the N -element encryption scheme will achieve log
(

α
β

)
-DP. ��

4 Equality Between DP-then-Encrypt and Encrypt+DP

In this section, we define the two main methods of combining an encryption
scheme with a differential private mechanism: (i) the DP-then-Encrypt and (ii)
the Encrypt+DP. We then prove a proposition on the equivalence between the
DP-then-Encrypt and the Encrypt+DP classes. After this, we prove that combin-
ing a differential privacy framework with a correct encryption scheme is at least
as computationally secure as the relying encryption scheme.

Definition 5. Define the DP-then-Encrypt class as the set of all the encryption
schemes (G′, E′,D′) such that

G′(1λ) := G(1λ) E′(pk,m) :=E(pk,Q(m)) D′(sk, c) :=D(sk, c)

for some (G,E,D) correct encryption scheme on (M,K, C) and Q � 1M a
DP-mechanism.

It is trivial that D′(sk, E′(pk,m)) = Q(m).

Definition 6. Define the Encrypt+DP class as the set of all the αm1,m2-correct
encryption schemes (Ĝ, Ê, D̂) on (M,K, C). From the Proposition 2, we have
that (Ĝ, Ê, D̂) is ε(αm1,m2)-DP and it holds D̂(sk, Ê(pk,m)) � 1M(m).

In a nutshell, the DP-then-Encrypt class contains all the different combina-
tions of the identity map as a DP-mechanism and a correct encryption scheme.
On the other hand, the Encrypt-then-DP achieves the identity map as a DP-
mechanism directly in the αm1,m2-correct encryption scheme used.

In order to prove the equality between the two classes, we define a probability
“permutation” as:

Definition 7. Let m1,m2 ∈ M. Let us denote a probability “permutation” π
as the random variable on M with measure probability of the event “permute
the message m1 into the message m2” defined as P(π(m1) = m2) = αm1,m2 .
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Remark 5. Let π be a probability permutation. Then, π is a DP-mechanism.
This means it is a ε(αm1,m2)-DP mechanism (or it achieves ∞-DP).

Proposition 4. The DP-then-Encrypt class is equivalent to the Encrypt+DP
class.

Proof.

– DP-then-Encrypt ⊆ Encrypt+DP
Let (G′, E′,D′) be a DP-then-Encrypt encryption scheme. Let us fix a key pair
(sk,pk) ←� G′(1λ). Trivially using Remark 2, there exists an αm1,m2 ∈ [0, 1]
such that for all m1,m2 ∈ M it holds:

P((D′(sk, E′(pk,m1)) = m2) = P(Q(m1) = m2) = αm1,m2

From the Definition 4, (G′, E′,D′) is an αm1,m2-correct encryption scheme
and so from Proposition 2, we have that (G′, E′,D′) is contained in the class
Encrypt+DP of Definition 6.

– DP-then-Encrypt ⊇ Encrypt+DP
Let (Ĝ, Ê, D̂) be an αm1,m2-correct encryption scheme such that
D̂(sk, Ê(pk,m)) � 1M(m). For every m1,m2 ∈ M, we define the random
variable π : M → M as

P(π(m1) = m2) := P(D̂(sk, Ê(pk,m1)) = m2) = αm1,m2

π is a probability permutation as in Definition 7 and for Remark 5, we have
that π is a DP-mechanism.
Let us define (Ĝ, E,D) a correct encryption scheme such that:

• Ĝ is the same key generator as the αm1,m2-correct encryption scheme
• E : K ×M → C is an encryption algorithm
• D : K ×C → M is a decryption algorithm

and for all (sk,pk) ←� Ĝ(1λ), it holds that for all m ∈ M
P(D(sk, E(pk,m)) = m) = 1

We can claim that E,D always exist and we can consider any injective func-
tion φ : M → C with left inverse φ−1. Let us define:

E(pk,m) := φ(m) D(sk, c) := φ−1(c)

For (Ĝ, E,D), we have

P(D(sk, E(pk,m)) = m) = P(φ−1(φ(m)) = m) = P(m = m) = 1

In order to conclude, we need to prove that (Ĝ, E,D) with π as in Defin-
ition 5, acts like an encryption scheme (G′, E′,D′) that is contained in the
Encrypt+DP class of Definition 6. Fix a key pair (sk,pk) ←� Ĝ(1λ):

P(D̂(sk, Ê(pk,m1)) = m2) = αm1,m2

= P(π(m1) = m2)

= P(φ−1(φ(π(m1))) = m2)
= P(D(sk, E(pk, π(m1))) = m2)
= P(D′(sk, E′(pk,m1)) = m2) ��
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We will now define a concept of security-hardness with respect to an adver-
sary without specifying the computational model used.

Definition 8. The adversary A for an encryption scheme (G,E,D) is an algo-
rithm that takes the public key1 and a ciphertext and it outputs a guess m′ for
the message m.

A : Kpk ×C → M A(pk, E(pk,m)) �→ m′

An encryption scheme (G,E,D) is said to be security-hard with respect to the
adversary A (in some computational model) if

P(A(pk, E(pk,m)) = m) ≤ 1
#M + negl

Informally, we defined the simplest adversary possible whose goal is to guess
the correct decryption of a ciphertext given all the public information possible.
In order to obtain a general result, we do not impose any complexity-hardness
assumption. The security-hardness adversary is a weaker adversary with respect
to the ones from IND −CPA, IND −CCA (and so on). On the other hand, for
an encryption scheme, being security-hard is a necessary condition in order to
achieve any security requirement: the security-hardness adversary can be used
as a distinguisher in a more structured security model.

Lemma 1. Let (G,E,D) be a correct encryption scheme which is security-hard.
Let Q � 1M DP-mechanism. Then the combination of Q with (G,E,D), which
is in the DP-then-Encrypt class, is security-hard. In other word, the security-
hardness of the combination Q with (G,E,D) is at least computationally hard
as the security-hardness of (G,E,D).

Proof. We have to show and prove:

1. Reduce every instance of a (G,E,D) correct encryption scheme to an instance
in the DP-then-Encrypt class.

2. We prove the lemma by contradiction and Reductio ad absurdum: If there
exists an adversary A with non-negligible advantage for the DP-then-Encrypt
instance, there will exist an adversary B with non-negligible advantage for
the (G,E,D) correct encryption scheme. Let us suppose that there exists A
with non-negligible advantage, and let us suppose that all B have negligible
advantage. Then we prove that it is a contradiction, and so we conclude.

The reduction is trivial: we can just consider as the instance in the DP-then-
Encrypt class, (G,E,D) encryption scheme with the deterministic identity map
as the DP-mechanism.

For a fixed key (sk,pk) ←� G(1λ), suppose there exists an adversary A for
the DP-then-Encrypt scheme, it means A(m) := A(pk, E(pk,Q(m))) will output
1 It is possible to give a pure symmetric key encryption scheme definition but we do

not need it.
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the guess m′ and the guess will be correct with probability 1
#M + δ with δ > 0

non-negligible. Formally P(A(pk, E(pk,Q(m))) = m) = 1
#M + δ

Let us suppose that for all the adversaries B of the original scheme such that
B(m) := B(pk, E(pk,m)), we have P(B(pk, E(pk,m)) = m) = 1

#M + ε where
ε > 0 is negligible.

From the probability independence between the DP-mechanism Q and the
encryption scheme (G,E,D) we have

1
#M + δ = P(A(m) = m) = P(B(m) = m | Q(m) = m)

= P(B(m) = m)P(Q(m) = m)

≤ P(B(m) = m) =
1

#M + ε

Absurd. So there exists an adversary B with non-negligible advantage.2 ��

5 Example of an αm1,m2-Correct Homomorphic
Encryption Scheme

In this section, we introduce a variation of the Dijk’s et al. public key integer
homomorphic encryption scheme [2] by only introducing a new parameter ξ that
will be used to increase the noisy randomness of the encryption scheme. Then, we
show how to compute the probabilities αm1,m2 that will prove that the scheme
is αm1,m2-correct. At the end, we show the connection between the original and
the modified scheme and prove the security-hardness of the modified one.

Definition 9 (Variation of the Dijk et al. public key homomorphic
encryption scheme). Let M = {0, 1} and let γ, η, ρ, τ be the four parame-
ters defined in the original scheme such that all the security constraints hold.
Let ξ be an additional parameter required for the variation.

Let (G,E,D) be defined as:

– G(1λ) : randomly pick p ∈ [2η−1, 2η) and p odd.
For the public key, for all i ∈ 0..τ sample

xi ∈ Dγ,ρ(p) =
{

pq + r : q ∈ U

(
Z ∩

[
0,

2γ

p

))
, r ∈ U(Z ∩ (−2ρ, 2ρ))

}

and relabel so that x0 is the greatest. Restart until x0 is odd and (x0(mod p)) ∈(−p
2 , p

2

]
is even.

Define pk := {x0, . . . , xτ} as the public key and sk := p as the secret key.
– E(pk,m): choose at random S ⊆ [1, τ ] and a random integer r ∈

(−2ρ′+ξ, 2ρ′+ξ). The difference with respect to the original scheme is that
ξ is present in the interval-bounds exponents. Output the ciphertext c =(
m + 2r + 2

∑
i∈S xi

)
(mod x0)

2 Take for example adversary A.
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– D(p, c): output (c(mod p))(mod 2)

In order to prove that the scheme achieves some α-correctness with α 	= 1,
fix a random S and observe that

m + 2r + 2
∑

i∈S

xi = m + 2r + 2
∑

i∈S

pqi + ri

= m + 2

(

r +
∑

i∈S

ri

)

+ p · 2
∑

i∈S

qi = m + 2R + pQ

where Q ∈ Z and R will be contained in a subset of the integers

AS :=
(
−(#S · 2ρ + 2ρ′+ξ), (#S · 2ρ + 2ρ′+ξ)

)
⊆ Z

For this reason, for a fixed S, we can reduce the computation of αm,m as a
combinatorial problem:

α :=
#

{
r : r ∈

(
−2ρ′+ξ, 2ρ′+ξ

)
| |2 (

r +
∑

i∈S ri

) | < p
2

}

#S · 2ρ+1 + 2ρ′+ξ+1

For the right parameter ξ, we can obtain that the encryption scheme is an
αm,m-correct encryption scheme.

Remark 6. It is important to notice that using a different S will change the
probability αm,m. You can think of it as using a different public key for the
encryption algorithm.

Consider a fixed S and the function �x� = closest integer to x. We can com-
pute Δ = 2 · ∑

i∈S ri and if we consider ξ̃ as the bound for the noise r, we can
define the function

F (ξ̃, Δ) =

∫ ξ̃+Δ

−ξ̃+Δ

⌊x

p

⌉
(mod 2) dx

2 · ξ̃
∈ [0, 1]

that represents the correctness probability. We have the trivial properties

F (ξ̃, 0) =
1
2

lim
ξ̃→∞

F (ξ̃, Δ) =
1
2

(4)

In order to prove that our modified scheme is secure, we reduce the security-
hardness of our scheme to the security of the original Dijk et al.’s encryption
scheme. From the Proposition 4 on the class equality between Encrypt+DP and
DP-then-Encrypt we will transform our modified scheme into the Dijk et al.’s
encryption scheme in the DP-then-Encrypt class.
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Remark 7. We can observe that r is randomly picked from
(
−2ρ′+ξ, 2ρ′+ξ

)
. We

will now consider a random r′ ∈ (−2ρ′
, 2ρ′

) and rewrite r = r′ + r̂ for some
r̂ ∈ Z. At this point, we can rewrite the general encrypted message as

m + 2r + 2
∑

i∈S

xi = m + 2(r′ + r̂) + 2
∑

i∈S

xi = (m + 2r̂) + 2r′ + 2
∑

i∈S

xi (5)

where r′ and xi are regular values from the original encryption scheme. During
the decryption phase, we will obtain:

(

m + 2r + 2
∑

i∈S

xi

)

(mod p)(mod 2) =

Eq. (5) =

(

(m + 2r̂) +

(

2r′ + 2
∑

i∈S

xi

))

(mod p)(mod 2)

Original scheme’s values = (m + 2r̂)(mod p)(mod 2)
= m ⊕ (2r̂(mod p)(mod 2))

From this equality, the message m can be decrypted in a different message
m̂ just by looking at the value r̂.

This is exactly a DP-then-Encrypt scheme, where we can define a probability
permutation π as in Definition 7 with P(π(m1) = m2) = αm1,m2 and the original
Dijk’s encryption scheme.

Remark 8. As in the Remark 6, changing S will change the probability permu-
tation π since the probability α will change. For this reason, the random subset
S, the probability permutation π, the probability α and the new parameter ξ
are dependent one from the others.

Proposition 5. Given an αm,m-correct public key modified Dijk et al.’s encryp-
tion scheme with fixed parameters (ρ, ρ′, η, γ, τ, ξ).
Any adversary A with non-negligible advantage ε on the αm,m-correct encryption
scheme can be converted into an adversary B with non-negligible advantage ε on
the original Dijk et al.’s encryption scheme with parameter (ρ, ρ′, η, γ, τ).

Proof. Follows from Lemma1. ��

5.1 Implementation and Statistics

In order to empirically study the dependency between the parameters ξ, α and ε,
we implemented the modified Dijk et al.’s encryption scheme of Sect. 5 in Sage.
Considering λ = 10 as a general security parameter, we started from the scheme
with parameters:

ρ = λ ρ′ = 2 · λ η = λ2 γ = λ5 τ = λ ξ = 0
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and then we consider the k-th variation where we add a factor of ξ̃k = k·p
10 to

the noise interval 2ρ′
+ ξ̃k. In Fig. 3a and b, we have the measured value for

α and ε with respect to k. For every k ∈ [1, 30], we tested λ different choice
of S, we executed N = 100 experiments and retrieved an empirical value for
α. In order to obtain the ε, we just took the ε = sup

{
α

1−α , 1−α
α

}
. We tested

different random keys S and the empirical difference between the plots is barely
visible, but it can easily be described as a “really small translation of the plot
to the left or right”. In the chosen key used for the test, if we want to have a
α = 0.8 correctness probability, we have to use ξ̃4 = 2·p

5 and the scheme will
have ε = 1.38 -DP.

(a) Different α with respect to ξ̃k (b) Different ε with respect to ξ̃k

Fig. 3. Empirical measurements of α and ε from the implementation.

6 Conclusions and Future Work

This paper bridges concepts in cryptography and differential privacy and we pro-
pose the first differentially private encryption scheme. More precisely, we show
how to constructively combine differential privacy with an encryption framework
in a single scheme, contained in the Encrypt+DP class, and vice versa. This con-
struction is not limited to homomorphic encryption schemes and can be used
in order to define an encryption scheme that can guarantee both privacy and
confidentiality.

So far we have only examined this link in an abstract way. An open question
is the trade-off between αm1,m2-correctness and ε(αm1,m2)-DP for specific homo-
morphic operations, with a particular attention to the bootstrap procedure. This
might lead to interesting practical applications, such as faster, α-correct homo-
morphic encryption schemes with differential privacy guarantees.
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Abstract. Smartphones are becoming ubiquitous and we use them for
different types of tasks. One problem of using the same device for multiple
tasks is that each task requires a different security model. To address this
problem, we introduce Droid Mood Swing (DMS), an operating system
component that applies different security policies to detected security
modes automatically. DMS uses a context manager that tracks the con-
text of the phone from the available sensors. DMS then determines the
security mode from the contexts and can impose a number of security
measures, namely fine-grained permissions, an intent firewall, a context-
aware SD card filesystem, and a permission verification system. The per-
mission verification system uses machine learning techniques to detect
suspicious apps and anomalous permission requests. DMS also provides
an API that enables third-party developers to make their apps behave
differently in different modes. DMS is designed especially for end users
and does not compromise the usability of the phone. Device vendors will
be able to control configurations (a switching logic and security policies)
of the modes through DMS. We implement DMS using the Android Open
Source Project (AOSP) and evaluate it in terms of portability, function-
ality, security, and operational overheads. The evaluation results show
that DMS offers a more secure smartphone operating system without
incurring any noticeable overhead.

Keywords: Context-dependent security · Smartphone security and pri-
vacy · Android security · Mobile malware

1 Introduction

Smartphones are already an integral part of our daily life. People use their smart-
phones for tasks that require different levels of security, e.g., writing emails,
surfing the web, listening to music, watching videos, playing games, perform-
ing financial transactions, and creating reports. Companies now allow BYOD
(Bring Your Own Device) policy, which lets the employees bring and use their
own smartphones for accessing confidential business resources. As a result, com-
panies want the security of their resources and the ability to manage their
devices remotely. To address the problem, researchers proposed isolated environ-
ments [24,39] (e.g., using virtualization techniques) on the device with different
c© Springer International Publishing AG 2017
P.Q. Nguyen and J. Zhou (Eds.): ISC 2017, LNCS 10599, pp. 329–347, 2017.
https://doi.org/10.1007/978-3-319-69659-1_18
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controllable security properties. However, we observe a lack of research propos-
ing similar solutions for end users. Users also have their own set of apps for
personal use and they do not want to compromise their privacy due to malware
or apps provided by their workplaces. Moreover, with the advent of the internet
of things (IoT), people are expected to use their smartphones to control other
devices (smart TVs, smart fridges, etc.) and new smartphone payment services
(e.g., Google Wallet and Apple Pay) require extra security measures.

Despite all the threats, the security model of smartphone operating systems
distributed to the normal users is changing at a slow pace. Since a single device is
being used by mostly security unaware users, we strongly believe that automatic
detection of the device context and switching to different security modes to
protect user resources are now a necessity.

In this paper, we propose Droid Mood Swing (DMS), a system that applies
fine-grained access control to the detected security mode. To detect the security
mode, DMS uses Flamingo [23] that maintains a cache of security contexts and
parameters to be used by operating system components and third-party appli-
cations. For example, if the user is using the camera app inside his or her home,
the phone will switch to a mode where captured resources will be saved securely.
It is designed in a way so that device vendors can manage the modes and their
configurations. We define a number of security modes that cover almost all the
necessary tasks of a regular user. A language is also developed to automate the
process of configuring different modes. Each mode will have a configuration file
which describes the access control policies of the mode.

DMS can apply fine-grained access control which consists of the Zone-
Droid [22] tool and a number of security measures (called “restrictions” in this
paper). ZoneDroid realizes the concept of application zones to sandbox a group
of applications. Each zone has policies to control the behavior of the apps. How-
ever, in ZoneDroid, users have to customize zones and policies by themselves
and there was no concept of security contexts. In this paper, we automate the
process of configuring each mode to reduce user involvement, thus improving
usability.

In particular, this paper makes the following contributions:

– We propose DMS that can switch to multiple security modes based on the
detected context and applies fine-grained access control to satisfy the security
requirements of each mode.

– We develop several restrictions to facilitate access control, namely an intent
firewall (IPC restriction), a context-aware SD card filesystem (file access
restriction), and a permission verification system (permission restriction).

– We develop a configuration language to automate the process of configuring
ZoneDroid and restrictions without requiring any input from users.

– We provide an API for app developers so that apps can be programmed to
behave correctly in different security modes and honor the security policies
of each mode.

To implement DMS, we use the open source Android operating system.
However, the concept of DMS is not restricted to any particular smartphone
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operating system. All operations of DMS are completely transparent to users.
We also evaluate DMS in terms of performance and storage overhead and show
that they are negligible.

In today’s highly connected environment, a system like DMS can consider-
ably improve the security of a regular user. Device vendors (Samsung, Google,
OnePlus, Asus, Sony, etc.) can use DMS to manage security modes and ensure
the safety of device resources.

The remainder of the paper is organized as follows. Section 2 provides the
necessary technical background on Android permission model. We illustrate the
design and operation of DMS in Sect. 3. We evaluate DMS in Sect. 4 and describe
the related work in Sect. 5. Finally, we conclude in Sect. 6 with a little discussion
on the limitations and future work.

2 Background

Security in the smartphone ecosystem begins from the application market so that
malware cannot enter the device through markets. Most markets review submit-
ted applications and provide a mechanism to sign them. Smartphone operating
systems also provide a layered approach towards protection. Normally, they con-
sist of a lower level kernel and a middleware. For example, Apple iOS uses the
darwin kernel and a middleware written in C.

2.1 Android Security

Android is a Linux-based open source operating system and consists of the Linux
kernel (with over 250 patches for Android [1]), a Java middleware (called the
Android framework), and stock applications (phone, contacts, etc.). Android
security is mainly built upon a permission-based mechanism which restricts
accesses to device resources. In this subsection, we provide a description of the
permission model of Android Marshmallow which introduced a new enforcing
technique.
Permissions in Android. Android uses permissions to protect system compo-
nents, APIs, and resources. A permission is simply a unique text string. There
are more than hundred permissions [2] defined in the Android operating sys-
tem. In addition to the Android defined permissions, application developers can
declare customized permissions to protect their resources.

A permission can be associated with one of the following four protec-
tion levels [3]: normal, dangerous, signature, signature-Or-System. According
to developer.android.com, normal permissions are low-risk permissions and
dangerous permissions are for sensitive resources. Normal permissions are given
at install time and cannot be revoked by the user. However, for dangerous per-
missions, users are notified at runtime. An application can continue only when
the user allows the requested permission. More importantly, now users can revoke
dangerous permissions later.
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In Android, each application is assigned a unique user id (UID). Based on
the UID, the kernel provides the application sandboxing. In addition, Android
permission mechanism enforces access control in two levels. In one level, the
system server process (in Android framework) ensures that the calling compo-
nent has the necessary permission. In another level, a number of permissions are
enforced by the underlined Linux’s discretionary access control (DAC). We call
these permissions “granted permissions”.

When an application process is created by the activity manager, it maps the
granted permissions to the corresponding groups. The group IDs are then passed
to the zygote process which forks itself and sets appropriate group IDs. Zygote is
a daemon which is started by the system init and responsible for the creation
of new processes. These permissions are given to the virtual machine process
and dynamic permission checks will not occur for some of these permissions.
As an example, the INTERNET permission in Android is mapped to the Linux
inet user group and consequently, internet access is controlled by the underlying
Linux kernel.

3 DMS Architecture and Operation

This section describes the architecture and operation details of DMS. One of
the goals of DMS is to make the smartphone operating system security-aware.
DMS does this without creating multiple personas or compartments. In many of
the related research, creating separate compartments for abstracting data and
apps is common. However, in our opinion, those approaches require far more user
involvement. DMS switches to different security modes based on the detected
context. Once a mode is activated, DMS can restrict certain app behaviors to
protect resources. Here, data and apps are not isolated. Rather, we modify the
filesystem and other OS components to deny access intelligently. The overhead
of doing so is much less in comparison to other compartmentalization techniques.
DMS does not require any input from users. A description of different compo-
nents of DMS along with its architecture is given in the following subsections.

3.1 DMS Architecture

The architecture of DMS is presented in Fig. 1. DMS Manager is the controller
of DMS and connects with vendors to get configuration files. To switch modes,
it uses context information from the Flamingo context manager [23]. Flamingo
defines a smartphone’s security context as the degree of threat to the device’s
resources. It uses different phone sensors to determine the context and a number
of security parameters. Flamingo exports these parameters and manages a cache
to reduce power consumption (by avoiding redundant recalculation).

Based on the configuration, the DMS Manager uses the ZoneDroid Manager
to modify zones and policies. All changes are written to an SQLite database
named DMS.db. To implement features of DMS, we modify a number of oper-
ating system components. The components call the DMS Manager before per-
forming their intended tasks. DMS also has a native service which communicates
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with other native components (e.g., the SD card filesystem) and performs actions
that require root privileges (e.g., issues iptables command).

Zone Policy 
Enforcer

Zone and Policy 
Service

Android 
Application Framework

High Privilege App 
ZoneApp 2

New App Zone

App 1

DMS.db

Flamingo Context 
Manager

ZoneDroid ManagerDMS Manager

Protected area of 
the framework

Framework Hooks

Smartphone Vendors

DMS Native 
Service

Fig. 1. The architecture of DMS.

3.2 DMS Security Modes

Each security mode is a unique combination of zones, policies, rules, and restric-
tions. Restrictions are components (that can be activated or deactivated) to
restrict certain phone features. Below, we define these terms.

Definition 1 (Security Mode). A mode m = (Lm, Z, T, s) is defined by a
label Lm, a set of zones Z, a set of Restrictions T , and a security level s. A
configuration function fmc(m, s) : M → C maps the mode and the security level
to a unique configuration, where M is the set of modes and C is the set of
configurations.

Definition 2 (Zone). A zone z = (Lz, P,A) is defined by a label Lz, a set
of policies P , and a set of Applications A. An application in the device can be
assigned to only one zone at any given time. The zone policy enforcer function
fzpe defines the complete set of conditions under which an application in zone z
is allowed to call another component or system API.

Definition 3 (Policy). A policy p is a set of rules R that defines the conditions
under which an application is granted a number of permissions. A policy checker
function fpc(o) is defined as r1 ∧ r2 ∧ r3 ∧ · · · ∧ rn → {permit, deny}, where o is
a permission and n is the number of rules in the policy. In the case of a conflict,
the rule with the deny will prevail.
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Definition 4 (Rule). A rule r takes the form (o, V , e), where for a permission
o, we can denote a set of attributes and values and an action e. Here, V is a set
of 2-tuples of the form < attribute, value >.

For example, the rule (SEND SMS, {<TIME, 8AM TO 5PM>,
<PHONENO, N>}, DENY) restricts apps in a zone to send SMSs to the number
N from 8AM to 5PM.
Default security modes. Default security modes of DMS are based on secu-
rity contexts detected by Flamingo. Flamingo detects the following contexts:
home, office, and outdoor. Moreover, in the home context, the phone can be in
two subcontexts (context within another context), namely casual and private.
In the office context, the phone detects whether the user is in a meeting. In
addition, Flamingo identifies another two subcontexts (side-loaded, financial)
and a number of security parameters. The parameters are Location, Place-type,
Type-of-user-activity, Is-moving, In-use, Is-locked, Type-of-active-app, Is-side-
loaded, Network-type, Is-network-encrypted, Is-camera-on, Is-mic-on, Is-storage-
encrypted, and Number-of-trusted-devices. Based on the context, subcontexts,
and parameters, DMS provides the following security modes:
Home-casual. In this mode, the smartphone is located in user’s home. DMS
blocks all dangerous permissions for office apps (camera, mic, etc.).
Home-private. DMS switches to this mode whenever a user turns on the camera
or the mic inside his or her home. Files saved in this mode will be denied access
from any other mode.
Home-financial. DMS activates this mode when the user opens a financial app.
DMS restricts unencrypted network and inter-process communication in this
mode.
Office-casual. DMS activates this mode when the location of the phone is office.
All dangerous permissions are blocked for personal apps.
Office-private. DMS switches to this mode if the In-meeting security parameter
is true. All background sensor accesses are blocked in this mode.
Office-financial. Similar to the Home-financial mode.
Outdoor-casual. If the smartphone is not in office or home, DMS activates the
outdoor-casual mode.
Outdoor-financial. Similar to the Home-financial mode. In addition, if the Place-
type is a place with a point of sale (POS) terminal (grocery stores, malls, restau-
rants, etc.) and an NFC payment app is active, DMS blocks all network accesses
(internet, NFC, Bluetooth) to other apps. Inter-process communication is also
restricted.

3.3 Fine-Grained Permissions

DMS uses ZoneDroid [22] that provides an efficient solution to control a group of
applications easily. Each zone provides a certain level of privileges. By default,
DMS creates the following zones: New, Trusted, Untrusted, High privilege,
Office, and Restricted (for malware). The separation of application zones is anal-
ogous to the separation of industrial and residential areas in a smart city [21]
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where each area has their own security policies and a person has to adhere to
the policies based on his or her location. It is worth mentioning that all system
apps go to the Trusted app zone and all newly installed apps go to the New
app zone. Users have to move them to either the Trusted zone or the Untrusted
zone. Users should also keep in mind that default policies are liberal for apps in
the Trusted and High Privilege zone (e.g., antiviruses).

DMS can deny permissions based on the following three attributes: time,
phone number, and folder location. Attributes and their values become members
of the set V . The set V and a decision to allow or deny make a permission fine-
grained. Each fine-grained permission forms a rule r and a number of rules
(R) constitute a policy p as described in the previous Subsection. We list a
sample policy with four rules in Listing 3.1. The policy denies access to location,
contacts, and all folders other than FOLDER1 from 10PM to 8AM. It also
restricts sending SMSs to phone number N.
DMS zone operations. Using ZoneDroid, DMS can create/edit/delete zones,
policies, and rules. For example, DMS can create a new zone, rename a zone, or
move apps from one zone to another. It can create a new policy with multiple
rules, or edit/add/delete rules in an existing policy. DMS can also disable a zone.
Disabling a zone will block all the apps that belong to the zone from executing.

{ACCESS FINE LOCATION,{<TIME,10PM 8AM>} ,DENY}
{READCONTACTS,{<TIME,10PM 8AM>} ,DENY}
{SEND SMS,{<TIME,ALWAYS>,<PHONENO,N>} ,DENY}
{WRITE EXTERNAL STORAGE,{<TIME,10PM 8AM>,<FLOC,FOLDER1>} ,ALLOW}

Listing 3.1. A policy with four rules.

3.4 Context-Aware Filesystem

We modify the Android SD card filesystem (written in C) to make it context-
aware. Android uses FUSE [5] to emulate FAT on SD card. The modified filesys-
tem connects with the DMS native service using an abstract Unix domain socket
to get the value of the current mode. It then writes the information in the
extended attribute of the underlying ext4 filesystem. If file access restriction is
enabled, the SD card will deny access to files that are not created in the current
mode.

3.5 Inter-process Communication (IPC) Firewall

A technique is developed to allow blocking of all inter-process communications
to and from a zone and to and from any particular app. In Android, all intents
pass through an intent firewall to allow custom rules for IPC to be applied. We
modify the file and now the intent firewall consults with DMS before allowing any
intent if IPC restriction is enabled. This restriction can be useful in a scenario
where a benign app has vulnerabilities that other malicious apps can exploit via
IPC.
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3.6 Restrict Network

DMS can block communications to and from the internet per application, per
zone or per mode. For example, if the current network is detected as insecure
by Flamingo, a mode can block part of the system from communicating with
the internet. DMS native service implements the network blocking mechanism
by issuing iptables rules.

3.7 Permission Verification

The permission verification system allows DMS to block anomalous permissions.
The steps of the permission verification are as follows:

1. DMS collects information from Google Play and the VirusTotal [34] web-
site and applies machine learning classification to detect suspicious (probably
malicious) apps and anomalous permission requests. VirusTotal is a website
that analyzes applications by more than 60 well-known antiviruses and gives
a score that tells how many antiviruses have recognized the app as malicious.

2. DMS separates the collected information based on app categories. For exam-
ple, in Google Play, there are more than 50 categories. Some examples are
Education, Personalization, Lifestyle, Entertainment, Music & Audio, and
Travel & Local.

3. DMS trains a classifier for each category that predicts the suspiciousness of
new apps. Here, DMS considers an app suspicious if its VirusTotal score is
more than 0.

4. DMS also determines the permissions that are not in the set of top 30 most
used permissions of the non-suspicious apps. These are the anomalous per-
mission requests.

Features. DMS uses permissions and review scores as features for the classifiers.
Permission usage is a good way to cluster well-behaved applications and used
in the existing literature [20]. The feature review score is calculated from the
actual review score from the app market (which is an average) and the number
of reviews as a low review count may bias the classifier. To normalize this impact,
we use the following formula [12] to calculate the score:

review score = Ps + 5(1 − P )(1 − e
−q
Q )

Here, s is the review score and q is the number of reviews. After some exper-
iments, we use P = 0.7 and Q = 5, 000 as these values give a satisfactory feature
importance for the review score.
Classifiers. DMS can use most of the common classifiers for supervised learning.
In this work, we investigate the following classifiers: Naive Bayes, Support Vector
Machine (SVM) with Radial Basis Function (RBF) kernel, Decision Tree, K-
Nearest Neighbors, and Random Forest [13]. To compare the effectiveness of the
classifiers, we report the precision, recall, and F1 score.
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1 CHECK SWITCHING -CONDITION:
2 IF SECURITY -PARAM IS TRUE/FALSE
3 MESSAGE USER"SWITCHING TO MODE MODE -NAME NOT POSSIBLE , SECURITY -

PARAM IS TRUE/FALSE"
4
5 SCOPE MODE -NAME:
6 RESTORE ORIGINAL
7 UPDATE
8 CREATE ZONE: ZONE -NAME
9 DELETE ZONE: ZONE -NAME

10 DISABLE ZONE: ZONE -NAME
11 MOVE APPS: FROM ZONE -NAME1 TO ZONE -NAME2: ALL
12 MOVE APPS: FROM ZONE -NAME1 TO ZONE -NAME2: ALL EXCEPT CURRENT
13 APPLY POLICY:
14 ZONE ZONE -NAME1:
15 {READ_CONTACTS ,{<TIME_ALWAYS >,DENY}
16 {GET_ACCOUNTS ,{<TIME_ALWAYS >,DENY}
17 ZONE ZONE -NAME2:
18 POLICY: POLICY -NAME1
19 RESTRICT IPC ZONE -NAME3
20 RESTRICT IPC ZONE -NAME4 APP -NAME1 , APP -NAME2
21 RESTRICT FILE -ACCESS
22 RESTRICT NETWORK IF SECURITY -PARAM IS TRUE/FALSE
23 RESTRICT PERMISSION

Listing 3.2. Examples of actions in the DMS configuration language.

3.8 DMS Configuration Language

The configuration language can describe a set of actions to be performed when
switching modes. It supports creating/deleting/disabling zones, moving applica-
tions between zones, and applying a set of policies to any zone. It can describe
which restrictions should be activated on the current mode and the conditions
of switching the mode. We demonstrate some actions in Listing 3.2.

3.9 DMS Developer API

DMS provides an API for the developers. Using the API, app developers can
determine the policies and restrictions of the current mode and make their apps
behave accordingly.

4 Evaluation

In this section, we describe the evaluation results of DMS. First, we evaluate
the classifiers for the permission verification system. Then, we evaluate DMS
in terms of portability, functionality, security, and operational overheads. We
implement DMS by modifying the Android Open Source Project (Marshmal-
low version 6.0.1 r17 MMB29V). We deploy the resulted operating system to
a Google Nexus 5. It has Qualcomm MSM8974 Snapdragon 800 CPU (Quad-
core 2.3 GHz), Adreno 330 GPU with 2 GB memory, and the following sensors:
accelerometer, gyroscope, magnetometer, light, proximity, pressure, and GPS.
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4.1 Evaluation of the Classifiers for the Permission Verification
System

To detect anomalous permission requests and suspicious apps, we need an appro-
priate permission request classifier. The classifier should identify most of the
suspicious apps (maximize the recall) and also needs to be reasonably accurate
(low false positives). To select the best classifier, we calculate the effectiveness
of the classifiers on the ground truth dataset.
Ground truth. We select 14,674 apps from the androzoo [7] Android database.
All the apps belong to the PERSONALIZATION category. PERSONALIZA-
TION is one of the top 10 categories in Google Play and androzoo has the
highest number of suspicious apps in this category. Among 14,674 apps, 10,316
apps are benign (VirusTotal score is 0) and 4,358 apps are suspicious (VirusTotal
score is more than 5).

To build the dataset, we write a node.js script to visit the selected apps in
Google Play. We collect the details and permission list of all the apps. From the
app details, we only consider the application review score and the review count.
We then divide the dataset into two parts: Training and Testing. Some details
on the ground truth dataset are listed in Table 1.

Table 1. Number of mobile apps selected for the ground truth dataset.

Number of Apps Training Testing

Benign 7,000 3,316

Suspicious 3,000 1,358

Total 10,000 4,674

Select the appropriate classifier. From the ground truth dataset, we generate
the features and then use the selected classifiers (described in Subsect. 3.7) to
classify an app as either benign or suspicious. Table 2 shows the comparison of
the precision, recall and F1 score of the various classifiers.

In the ground truth data, RandomForest has the highest average precision
and recall of 0.91 and 0.91. It also has the highest F1 score of 0.91. NaiveBayes
and SVM have poor recall values compared to other classifiers. In conclusion,
we decide to use the Random Forest classifier.
Discussion on machine learning. DMS permission verification system is used
to perform a second-level verification from the user if the sought permission is
from an app which is either classified as suspicious or the permission is in the
anomalous permission list. If turned on, DMS blocks unusual permissions and
notifies the user. If the user wants, he or she can allow the permission and let
the app perform its task. The type of the problem (i.e., providing suggestions
to users) encouraged us to use machine learning techniques and the results of
machine learning algorithms are often much more accurate than human-crafted
rules. It gives us a quick overview on the nature of the apps and anomalous
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Table 2. Performance of different machine learning classifiers. For each classification
algorithm, we report the precision, recall, F1 score, and support.

Algorithm Class Precision Recall F1 Score Support

NaiveBayes 0 0.95 0.04 0.08 3,316

1 0.30 0.99 0.46 1,358

avg/total 0.76 0.32 0.19 4,674

SVM 0 0.86 0.96 0.91 3,316

1 0.86 0.63 0.73 1,358

avg/total 0.86 0.86 0.86 4,674

DecisionTree 0 0.93 0.93 0.93 3,316

1 0.84 0.83 0.83 1,358

avg/total 0.90 0.90 0.90 4,674

15kNN 0 0.93 0.93 0.93 3,316

1 0.83 0.82 0.83 1,358

avg/total 0.90 0.90 0.90 4,674

RandomForest 0 0.94 0.94 0.94 3,316

1 0.85 0.85 0.85 1,358

avg/total 0.91 0.91 0.91 4,674

permissions. Here, the chosen Random Forest classifier correctly classifies 85%
of the suspicious apps.

4.2 Portability

Other than the Google Nexus lines of devices, all manufacturers ship their own
versions of Android. They provide a custom experience of Android which requires
modifications to the AOSP project. The modifications required for implementing
DMS components can be applied to the AOSP project easily. Notably, DMS uses
the modified permission mechanism of Android which was introduced in version
6.0. As a result, DMS can only be implemented in Android version 6.0 and above.
However, this does not impact the execution of apps that are developed for older
versions of Android.

4.3 Functionality

Security mode switching. To test the effectiveness of DMS, we move the
phone to home, office, and outdoor. Also, a banking app is used as a financial
app. DMS successfully detects the eight modes described in Subsection 3.2 and
applies mode configurations. No applications are crashed (including the open
one) during a mode switch. This is because changes in the zone configuration
are applied directly to the DMS.db database and restrictions are enforced in
the framework layer of Android. However, an already allowed permission may
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be rejected in the new mode. Applications that are built for Android version
6.0 and above handle the case gracefully and often ask for the permission again.
Users can decide to click on the “Do not ask again” checkbox to prevent further
permission requests.
Fine-grained permissions and restrictions. We develop a simple applica-
tion performing the following sensitive operations: initiate network connections,
access user’s photos, access the contact list, and access the camera. We install
the app in the Untrusted zone. We observe that when the app opens the phone’s
camera inside the home, the phone switches to the Home-private mode. All the
images taken in this mode are saved securely via the context-aware filesystem.
The app cannot send them over the internet as networks are restricted in this
mode. As soon as the app closes the camera, the phone switches to the Home-
casual mode and the app has no longer access to the images taken. Also, in the
Home-private mode, IPC is restricted for apps inside the Untrusted zone. As a
result, the app cannot share the captured images via IPC to other apps that
can leak the images. When the app tries to access the phone’s contact list, DMS
blocks the request and notifies the user. We then move the phone to an outside
cafe (where the network is open and unencrypted) and try to open the banking
app. DMS gracefully blocks the internet for the app and notifies the user.

4.4 Security Analysis

DMS adds an additional layer of security on top of Android’s middleware. Mod-
ification to the SD card filesystem ensures the security of the external storage.
In this subsection, we discuss some of the attacks on smartphone middleware
and how DMS improves the scenario.
Assumptions.We completely trust the Android kernel and middleware. We
consider a strong adversary whose goal is to access the sensitive user data as
well as to use the device as a victimized attacker.
Over-privileged third-party apps, libraries, and sensory malware. Many
third-party apps ask unnecessary permissions to access device information which
threatens user privacy [6]. Developers also use third-party software development
kits (analytics, social networking, etc.) and ad-libraries without knowing the
details of their code. Unfortunately, Android always grants a full set of permis-
sions to third-party libraries. Unintended accesses to users’ private data by the
complex and often obfuscated libraries make it hard for developers to estimate
their correct behavior [31].

Sensory malware try to use the data collected from the phone’s sensor to infer
different important information (user password, location history, etc.) [16,25,38].

DMS always maintains two zones of newly installed apps and untrusted apps.
Apps in these zones must adhere to the policies of the zones in different security
modes. As a result, asking more permissions will not yield any benefit until the
user moves the applications to the trusted zone. Sensory malware are also deemed
ineffective as DMS rejects their requests to access sensors from the Untrusted
zone.
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Confused deputy and collusion attacks. In confused deputy attacks, mal-
ware leverage unprotected interfaces of benign apps. For example, a malicious
app can use the vulnerable service of a fancy SMS app by a novice developer and
send SMSs through it without having the SMS permission [15,40]. In a collusion
attack, two malicious apps are involved. Individually, their permission sets are
not malicious. However, they collude using covert or overt channels to gain a
permission set which can be used to perform unintended tasks [26,29]. In both
the cases, DMS can be effective if such applications are sent to a zone where
IPC is restricted between apps and zones. However, users’ knowledge about the
apps is necessary in this case.
Being a victimized attacker. Internet users are often victimized by malicious
attackers. Some attackers infect and use innocent users’ devices (by making them
a part of a botnet) to launch large-scale attacks without the users’ knowledge.
Similar to the desktop computers, smart devices (Android phones, TVs, etc.)
can also be a part of such botnets and help launch large-scale low-noise attacks
(e.g., DDoS, click-fraud, spam). They often perform their malicious task when
the device is not busy (in the night). In the existing version of Android, users
can not block internet access (it is a permission with protection level normal).
However, DMS can block internet access to a zone (containing untrusted apps)
when the device is not being used (e.g., from 11PM to 7AM).

4.5 Operational Overheads

In this subsection, we evaluate DMS in terms of performance and storage usage.
We also evaluate the overhead of the SD card filesystem. In each case, we show
that there is a very little to negligible overhead.

Table 3. Individual test scores from the AnTuTu benchmarking app.

Test Group Score

Stock DMS

3D 8,640.8 8,726.2

UX 17,949.8 18,007.6

CPU 16,143.4 16,922.8

RAM 5,249.8 6,823.2

Total 47,983.8 50,479.8

Performance. We quantify performance using the popular AnTuTu bench-
marking app [4] available from Android markets. The app tests CPU and memory
performance, 2D/3D graphics, Disk I/O, Multitasking, etc. It gives a score for
each test which can be used to compare relative performance between devices.

The benchmarking app runs concurrently with the standard set of Android
apps that launched at boot. Based on the official Android source code (6.0.1),
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these apps are launcher, contacts (and its provider process), photo gallery, dialer,
MMS, and settings.

All numbers from the benchmarking app are averaged over 5 runs. Table 3
shows the comparison of scores resulted from the app. The score of the stock
version is slightly lower due to the higher number of Google services running in
it compared to the DMS version. However, the score differences are not really
significant and it is clear that performance is not hampered by activating DMS.

The main runtime overhead results from the zone policy enforcement mecha-
nism. Every time Android checks for a permission, our hook in the checkPermis-
sion function of the package manager will execute the zone policy enforcer
function fzpe. Here, in Fig. 2, we measure the actual running time of the policy
enforcer function. For this experiment, we use a policy denying all the dangerous
permissions as a worst-case scenario. In a total of 456 calls, the average running
time was 7.91ms and the standard deviation was 5.71ms. As we understand,
the occasional spikes in the running time are the result of the high CPU usage
during that time. However, this delay will vary mode to mode as each mode
may have different policies. Overall, an 8ms delay (in the worst-case) in the
checkPermission function will not be noticeable by users.
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Fig. 2. Running time of the DMS policy enforcer function Fzpe in milliseconds.

Storage usage. We modify a few system files in the Android framework. How-
ever, this does not result in a change (in terms of size) in the final operating
system size. Also, the DMS.db database contains only textual information and
nowadays, most devices are equipped with 16 or more gigabytes of storage space.
Hence, DMS’s storage requirement can be fulfilled by modern smartphones.
SD card overhead. The socket communication between the filesystem and the
DMS native service introduces a delay in file operations. Every time an app
creates a file or tries to open a file, the filesystem connects to the native service
to acquire information about the current mode. To measure the overhead, we
execute a shell script that creates, edits, and deletes files.

We run the script a number of times (writing 10, 100, and 1,000 files) and
find that the overhead is negligible up to 100 files. No app will access more than
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Table 4. Overhead of the context-aware SD card filesystem.

# of files SD card fs modified SD card fs

time in seconds

10 0.11 0.18

100 1.27 1.80

1,000 8.9 15.44

a few files in a real-world scenario. Table 4 shows the comparison of time resulted
from running the shell script.

5 Related Work

Researchers proposed different types of extensions to enhance the security of the
smartphone operating systems. Several papers analyzed the Android permis-
sion model [8,19,27,36,37] and identified some of its shortcomings. Their study
highlights that the permission model was coarse-grained and not very user cus-
tomizable. In response, researchers proposed different types of extensions to the
permission mechanism of Android. Most of the solutions proposed in the lit-
erature (e.g., [14,17,18,28,35]) require modification to the Android framework
and/or the underlying Linux kernel. In contrast, a number of solutions [9–11]
proposed an alternative approach that integrates security policy enforcement
into the application layer. DMS belongs to the former category.

Lange et al. [24] implemented a generic operating system framework for
secure smartphones called L4Android. Their framework hosts multiple virtual
machines to separate secure and non-secure applications. Each VM hosts its
own version of Android. L4Android mainly focuses on the security of the sen-
sitive applications (e.g., financial and work-related apps). Moreover, it relies on
the hardware virtualization support, which is not yet practical for smartphones.
In contrast, DMS is designed for end users to provide a more secure phone to
protect their resources (photos taken, location history, etc.).

Conti et al. [17] proposed CRePE that can enforce fine-grained policies based
on the context of the phone. Similarly, Schreckling et al. [30] introduced a real-
time user-defined policy enforcement framework for Android. The main draw-
back of these frameworks is that they require a lot of user control for their
operation. In [33], Vecchiato et al. showed that the majority of the users neglect
important and basic security configurations in Android. In DMS, security modes
will be managed automatically. However, there will be options to modify the con-
figurations for advanced users.

Smalley et al. [32] implemented the mandatory access control (MAC) in
Android. They showed that the mandatory access control is able to thwart some
of the well-known malware attacks reported in the literature. DMS differs sig-
nificantly from MAC as it does not associate access control with the operating
system users (normally apps in Android). DMS changes access control policies
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based on the detected security context and applies policies to a group of apps
(the zones).

Zhauniarovich et al. [39] proposed a system called Moses that supports multi-
ple security profiles on smartphones. Moses is based on the old permission model
of Android and only supports a handful of restrictions and contexts. It creates
a completely different persona for each context. DMS supports a comprehen-
sive power-efficient security context manager and enables automatic switching
to security modes. DMS uses the new permission model of Android that Google
introduced in Android Marshmallow (version 6.0). DMS ensures security and pri-
vacy through smart restrictions without creating multiple personas. As a result,
DMS is more resource efficient and users do not have to maintain separate app
profiles for each persona. Moreover, Moses is designed from a perspective where
corporates can create and manage security profiles. DMS’s security modes are
automatic and designed to protect the resources of end users.

6 Conclusion

In this paper, we present the design and implementation of Droid Mood Swing
(DMS), an automated security mode management system for smartphones. DMS
uses existing Android’s permission model to implement a more secure and usable
operating system. DMS can control application groups (called zones) through
configuration files provided by device vendors. Application zones are a way to
create app containers without any virtualization techniques which are heavy
on hardware. Security modes are activated based on the security context of the
phone to protect device resources in different use cases. DMS also implements an
intent firewall, a context-aware file system, and a permission verification system.
DMS enables users to use a single device for multiple types of tasks securely. All
operations of DMS are completely transparent to users.

Our implementation of DMS on a real device (Nexus 5) showed its effective-
ness and minimal impact on user experience. DMS automatically takes security
actions like restrict network, restrict IPC, restrict file access, and deny sending
SMSs to a phone number. The permission verification system is able to iden-
tify 85% of the suspicious apps and ask users for additional verifications. Our
security analysis proves DMS’s effectiveness against over-privileged third-party
apps and libraries. DMS is also effective against confused deputy and collusion
attacks. In the worst case, DMS’s policy checking incurs an 8 ms delay and the
delay caused by the SD card filesystem is minimal.

One limitation of DMS is that device vendors control modes and security
policies which may be unacceptable by some users (for privacy reasons). In our
opinion, for the general users, it is a good compromise to ensure security. More-
over, all these modes and configurations are editable by advanced users. We
continue to work on the anonymization of the data sent from the device to
maintain user privacy.
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Abstract. Mobile security has become increasingly important in mobile
computing, hence mandatory access control (MAC) systems have been
widely used to protect it. However, malicious code in the mobile system
may have significantly impact to the integrity of these MAC systems by
forcing them to make the wrong access control decision, because they are
running on the same privilege level and memory address space. There-
fore, for a trusted MAC system, it is desired to be isolated from the
malicious mobile system at runtime. In this paper, we propose a trusted
MAC isolation framework called T-MAC to solve this problem. T-Mac
puts the MAC system into the enclave provided by the ARM TrustZone
so as to avert the direct impact of the malicious code on the access deci-
sion process. In the meanwhile, T-MAC provides a MAC supplicant client
which runs in the mobile system kernel to effectively lookup policy deci-
sions made by the back-end MAC service in the enclave and to enforce
these rules on the system with trustworthy behaviors. Moreover, to pro-
tect T-MAC components that are not in the enclave, we not only provide
a protection mechanism that enables TrustZone to protect the specific
memory region from the compromised system, but establish a secure
communication channel between the mobile system and the enclave as
well. The prototype is based on SELinux, which is the widely used MAC
system, and the base of SEAndroid. The experimental results show that
SELinux receives enough protection, and the performance degradation
that ranges between 0.53% to 7.34% compared to the original by employ-
ing T-MAC.

Keywords: Trust · Mandatory access control · Isolation · ARM
TrustZone

1 Introduction

With mobile devices, attack vectors are amplified as they are designed as
open and programmable network devices that can provide a large number of
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information services, including instant messaging, email, financial transaction
and so on. Numerous threats that aim at getting illegal access rights to sen-
sitive data in applications may breach mobile devices for monetary gain have
become a severe security problem in mobile computing. Currently, the manda-
tory access control (MAC) has been employed by the mobile system kernel to
build a stronger protection [3,4,13,19,22]. However, the attacks that compro-
mise the kernel would breach these security services as well, because they run
on the same privilege level and memory address space with the kernel.

The isolation is a feasible option for elimination of this ripple effect. Cur-
rently, either separating the entire MAC system as a distinct system process
with a smaller attack surface (i.e., small Trusted Computing Base) [4] or using
hypervisor-assisted isolation mechanism [13] is used to solve this problem. How-
ever, the former cannot provide enough protection if the kernel is compromised.
While the latter may cause heavy performance overhead and additional security
problems in practice. To solve these problems, we propose a trusted isolation
framework for MAC systems, which is called T-MAC, by using ARM TrustZone.
ARM TrustZone technology [1] is a security extension enables the ARM-based
devices to create an enclave, which is also named “secure world”, to isolate
the sensitive data from the normal world rich execution environment (REE).
T-MAC puts the MAC system into the secure world trusted execution environ-
ment (TEE), which can prevent adversaries from the normal world to change
the policy decision behaviors by modifying the MAC’s execution environment
variables. In the T-MAC architecture, much of the communication between the
kernel and the migrated MAC system is based on the cross-world calling from
a MAC supplicant client, which runs in the normal world as a front-end part
of T-MAC. The main job for the MAC supplicant client is to receive requests
from the kernel, forward them to the secure world and send back the results.
Lowest level of cross-world calling builds on ARM Secure Monitor Call (SMC)
instruction. Whenever an SMC instruction invokes, it will cause a switching to
the monitor mode of the secure world, which can verify whether the call is safe or
not. Thus, T-MAC provides the required capabilities to do effective monitoring
and protection for the policy decision process of the migrated MAC system.

To protect T-MAC front-end components hosted by the REE, in the mean-
while, we create a memory protection mechanism to enable TrustZone to protect
the specific memory regions of the normal world. We prevent unauthorized writes
to the kernel code by replacing operations writing to critical CPU registers, such
as SCTLR, TTBRs, and TTBCR with the SMC instruction. By instrumenting
the mobile system kernel like this, page tables, a.k.a. memory translation tables,
cannot be directly modified by the kernel, but all the page table update opera-
tions are routed through the secure world to check their legitimacy. Furthermore,
T-MAC prevents the physical memory double mapping to avoid bypassing the
memory protection mechanism. Thus, the security of the front-end components
in the kernel code are guaranteed, even though they are on the same privi-
lege level and memory address space as the mobile system. Additionally, due to
the cross-world design, T-MAC needs security guarantee for the communication
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channel by encrypting these transmitted data on the world-shared memory. In
our design, the private key is stored in the secure world permanently making
sure that adversaries cannot acquire it to unseal these data, or create a mali-
cious process with crafted arguments to intrude upon the secure world to grab
its vulnerabilities.

It is also notable that the performance overhead may particularly be of great
concern in the mobile devices that are mostly restricted by severe resource con-
straints. Although the TrustZone hardware-assisted isolation does not cause
significant system-wide performance degradation compared to other software-
based solutions, the processor still needs to perform context switches to the
secure world before accessing the isolated resources, so that frequently access
to the secure world will inevitably impact on the overall performance. Hence,
T-MAC uses an access vector cache (AVC) to minimize the performance impact
caused by the TrustZone-based isolation mechanism. The AVC is a submodule of
the MAC supplicant client, it allows the MAC supplicant client to cache access
decisions made by the back-end isolated MAC service in the secure world in order
to minimize the performance overhead, because the MAC supplicant client does
not usually need to perform additional lookups outside of that cache.

Briefly speaking, we migrate the MAC system to the secure world, and estab-
lish a series of protection mechanisms to protect the rest part in the normal
world. Compared to other feasible solutions, our design not only diminishes the
performance overhead caused by isolation, but also reduces the MAC system’s
attack surface so as to make all specific attacks which are known or unknown
against the MAC system itself invalid. T-MAC does not have to trade off isola-
tion and effectiveness. In summary, our contributions in this paper are:

– We design a feasible trusted framework for MAC systems by using ARM
TrustZone technology. Our method provides the most secure and effective
hardware isolation feature so as to protect the security of the MAC systems.

– We provide a series of techniques that enable TrustZone to protect the por-
tion of T-MAC components hosted by the normal world, and guarantee the
security of the communication channel between the two worlds in TrustZone
by encrypting transmitted data on the world-shared memory. These security
mechanisms enlarge the scope of protection provided by TrustZone.

– To evaluate T-MAC, we implement the prototype based on SELinux, which
is the widely used MAC system, and the base of SEAndroid on the mobile.
The experimental results show that SELinux receives enough protection, and
the system’s performance degradation is no more than 8% at most compared
to the original by employing the T-MAC.

The remainder of this paper is organized as follows. Section 2 introduces
the background knowledge. Section 3 discusses threat model and assumptions.
Section 4 presents T-MAC design in detail. Section 5 describes our implementa-
tion based on SELinux. Section 6 discusses our experimental evaluation. Section 7
summarizes related work. Section 8 concludes this paper.



T-MAC: Protecting Mandatory Access Control System Integrity 351

2 Background

This section describes a summary of the MAC knowledge, and the TrustZone
security extension supported by ARM architecture, both of them are the key
technologies used in the design of T-MAC.

2.1 Mandatory Access Control

Numerous active MAC framework can trace its origin back to a security architec-
ture developed from Flask [16], such as security-enhanced Linux (SELinux) built
by National Security Agency (NSA), TrustedBSD MAC framework and OpenSo-
laris FMAC. The Flask security architecture describes the interactions between
subsystems which enforce security decisions and a subsystem that makes those
decisions, it is a flexible access control security architecture which is designed
to provide a security framework for MAC systems to support dynamic security
policies, for example, role-based access control, multi-level security policies, and
multi-category policies.

MAC is a security mechanism that restricts the level of control that users or
subjects have over the objects that they create. Unlike in a discretionary access
control (DAC), where users have full access control over their own files, direc-
tories, etc., MAC adds additional security contexts to all file system objects.
Users and processes must have the appropriate access right to these categories
before they can interact with these objects. However, adversaries can provoke
unusual modifications to the MAC system behavior by tampering its execution
state variables, such as some critical CPU registers. Moreover, due to the current
monolithic kernel design, a MAC system is hard to guarantee its security thor-
oughly. The malicious code, such as kernel-level rootkits, can embed itself into the
compromised kernel and stealthily inflicts damages with full, and unrestricted
control to the MAC resources, like policies. Therefore, we design T-MAC to solve
this problem in this paper.

2.2 ARM TrustZone Security Extension

ARM TrustZone security extension is a system-wide security approach to enable
the system to operate in both the normal and secure world in a time-sliced
fashion. It is a hardware-assisted security extension that introduces the notion of
privilege separation to build a TEE. Diverse extensions are integrated across the
system to separate the two worlds and ensure the confidentiality and integrity
of the secure world. The secure world has a higher privilege than the normal
world, therefore it can freely access the resources in the normal world such as
CPU registers, memory, and peripherals, but not vice versa. In addition, the
highest privileged mode, called the monitor mode, is added alongside the existing
privileged modes to coordinate and arbitrate between normal world and secure
world. Both two worlds are able to enter the monitor mode by issuing an SMC
instruction.
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The normal and secure worlds have their own CPU modes, ARM TrustZone
uses an NS bit in the secure configuration register (SCR) to control and indicate
whether a CPU is executing in the normal world or the secure world. This bit
is also used by TrustZone components to manage access to resources (i.e., mem-
ory and peripherals) out of the CPUs. TrustZone memory adaptor (TZMA) and
TrustZone Address Space Controller (TZASC) partition the memory address
corresponding to DRAM and SRAM into several memory regions, each of which
is marked as either non-secure or secure. Similarly, the device privilege is con-
figured in the TrustZone Protection Controller (TZPC) that dedicates one bit
to each independent device, in order to enforce a security policy with regard to
peripherals such that the secure world can configure and access peripherals in
an explicit way.

3 Threat Model and Assumptions

This section describes the threat model and assumptions pertaining to the design
and implementation of T-MAC.

3.1 Threat Model

Threat models for mobile devices involve three main vectors. The first vector
includes attacks from rogue users. The second vector involves attacks from rogue
applications. The third vector includes internet-borne attacks. The attacks of
these vectors are able to exploit vulnerabilities existing in the mobile system
so as to compromise the kernel. Hence, adversaries can use attacks that aim to
execute malicious code inside the mobile system to: (1) escalate the privilege
of user space application, (2) inject malicious code into the kernel-space or (3)
modify privileged code binaries in memory. After breaching the system, they
may try to compromise the MAC system in the kernel and tamper with policies
at runtime.

Meanwhile, adversaries may compromise the communication channel by own-
ing the privilege of the system kernel, so that they can access and modify the data
on the world-shared memory. Furthermore, the malicious process may attempt
to subvert the TEE in the secure world by making arbitrary system calls with
crafted arguments, even though the mobile system is not compromised. Because
common authentication framework of the ARM TrustZone can be as simple as
checking the universally unique identifier (UUID) of the requester, adversaries
can easily bypass such an authentication by using the crafted data structure
related to the UUID. With this capability, adversaries may try to access sensi-
tive data and system resources such as memory, cache, and registers belonging
to the secure world.

3.2 Assumptions

We assume the ARM-based architecture supports the TrustZone security exten-
sion, and believe the trusted boot in our design. The secure world provided
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by ARM TrustZone are trusted. We also assume that the components of T-
MAC running in the secure world will not leak its data intentionally. The adver-
saries can launch multi-vector software attacks so that they can freely access
system resources in the normal world. In other words, the mobile system can
be compromised, and the compromised mobile system can be manipulated to
attack any kernel module. However, the adversaries will not be able to access
anything such as memory, cache, and registers in the secure world, which ben-
efits from the ARM TrustZone. In addition, vulnerabilities like CVE-2016-7545
which can bypass the MAC system due to bugs of its code are out of our scope.
We only focus on threats from malicious execution environment in the nor-
mal world, except for attacks that trick the kernel control flow. We also do
not consider memory attacks such as bus monitoring attacks and cold boot
attacks [5,11]. The denial-of-service (DoS) attacks are not in the scope of our
adversary model, either. Naturally, hardware attacks such as JTAG and physical
side-channel attacks are beyond our work as well.

4 Design

In this section, we describe the design of T-MAC. First, we introduce the archi-
tecture overview of T-MAC. Second, we present memory protection mechanism
provided by T-MAC. Third, we describe the secure communication mechanism
used by T-MAC. These three parts make up T-MAC so as to build a compre-
hensive protection framework.

4.1 T-MAC Architecture

Figure 1 provides an overview of our architecture. T-MAC is based on ARM
TrustZone security extensions. Compared to the Baseline, the architecture com-
ponents of T-MAC are across worlds: a back-end MAC service hosted in the
secure world and a front-end MAC supplicant client serving in the normal world.

As we mentioned in Sect. 2.1, most MAC systems are derived from the Flask
security architecture. The core component of the Flask-based MAC system is the
security server (SS) that provides policy decisions based on policies. Therefore,
we migrate the SS to the secure world in order to protect it from vulnerabilities
in the normal world. In our architecture, we use the back-end MAC service to
host the MAC system components. In the simplest implementation, the back-
end MAC service is required to provide security policy decisions, to maintain
the security policy logic and policy-independent data (i.e., security context and
security identifier map), and to manage the AVC of the MAC supplicant client.
The back-end MAC service also provides functionality for loading and changing
policies. Moreover, the SS is also benefit from providing its own caching mech-
anism to hold the results of access computations. This can prove advantageous
because the SS can improve its response time by using cached results. Mean-
while, the security policy is stored in the secure world for security as well. All
the MAC system components hosted by the back-end MAC service are isolate
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from the normal world so that adversaries are unable to directly launch attacks
against them.

Fig. 1. T-MAC architecture.

The MAC supplicant client is responsible to route access control requests
to the back-end MAC service, to cache policy decisions and to enforce security
policy decisions in the normal world. The object manager (OM) in the client is
used to enforce security policy decisions. The MAC supplicant client provides
three primary elements for the OM. First, the architecture provides interfaces
for retrieving policy decisions from the SS in the back-end MAC service. Second,
the architecture provides the OM the ability to register to receive notifications
of changes to the security policy. Third, the architecture provides an AVC mod-
ule that allows the OM to access the policy decisions cached in the AVC to
reduced the performance overhead. Since the MAC supplicant client is not built
in the secure world, T-MAC provides Rich Execution Environment Enhance-
ment (REEE) mechanism for the components running in the normal world to
enhance the security of T-MAC across two worlds. In addition, the communica-
tion channel between the normal world and the secure world is also secured due
to our design is across world. In the Sects. 4.2 and 4.3, we describe the design of
these protection mechanisms in detail.

4.2 Rich Execution Environment Enhancement

To protect the portion in the normal world, T-MAC separates the mobile
system virtual address into 3 distinct ranges: user memory, the kernel code, and
the kernel const map mem. The const map mem is used to describe the physical
memory which is constantly mapped by the kernel. The kernel allocates memory
from the const map mem regions when it needs to create new objects like page
tables. The user space memory regions are mapped as Privileged eXecute Never
(PXN). The kernel code memory regions are mapped as read-only. The kernel
const map mem is mapped as non-executable privileged memory, indicating that
it cannot be accessed by user processes. Meanwhile, REEE records the state of
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every page of the physical memory. Whenever a new virtual address to physical
address mapping is going to be built, the EEE service checks the new access
permission given to the physical page against the saved state to verify that
there is no violation to the memory protection. The physical memory state is
saved in an array named the phystate, each entry of this array corresponds to
a 4KB physical page. The phystate determines physical pages of whom need
to be protected. The phystate marks physical pages which are used by kernel
code or page tables as protected. Any request to build a writable mapping to
the protected physical pages must be rejected by REEE. Similarly, mapping a
physical page which is already mapped writeable to user space will be rejected
either (Fig. 2).

Fig. 2. Normal world virtual memory layout and mapping principle.

Furthermore, we intercept all modifications to the protected page tables
by depriving the kernel from its own capability to modify page tables. We
replace operations writing to critical CPU registers, such as SCTLR, TTBRs,
and TTBCR with the SMC instruction. Then, modifications to protected page
tables are obliged to request appropriate operations from the secure world. This
is achieved by modifying the access permission in the page table entry so that
the memory hosting the modified page tables become read-only region. Such a
process begins when the mobile system performs initialization and is mandatory
during each modify operation to the protected page table. If a page table is
read-only to the kernel, usually, write to a read-only page is ended in a descrip-
tor indicating a lack of permissions. When a page fault occurs, the page fault
handler in the kernel will then generally pass a segmentation fault to the offend-
ing process, indicating that the update was invalid. The code of the page fault
handler is part of the kernel. Its job is to analyze the cause of the fault and to
do something about it. Therefore, we can replace the conventional page fault
handler by SMC instruction so that it is able to make specific page faults trap
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into the secure world. The key point here is that TZASC and other bus periph-
erals can grant access for the secure world to read/write normal world memory.
In addition, important to note that intercepting page table modifications does
not need the kernel in a safe state even though the trap relies on the kernel
to send the request for page table modification from the secure world. Since
the read-only page tables are non-writable to the kernel, it is not possible for a
compromised kernel to skip this mechanism without TrustZone knowledge.

Therefore, T-MAC components such as the MAC supplicant client which is
a module installed in the kernel space and stored in a certain memory region
can be protected based on the mechanism mentioned above, we can guarantee
the security by modifying their const map mem mapping to be read-only.

4.3 Security Cross-World Communication

The Weakness of Communication Channel for TrustZone: When the normal
world requests resources from the secure world, a communication channel is
required for messaging between the two worlds. The channel simply use a block
of world-shared memory area that is not secure as it is used by both normal and
secure world.

To protect the shared data, T-MAC provides a crypto service built in the
secure world. We use public-key cryptography to encrypt the data which will be
transmitted to the secure world. The key pair are generate in the secure world.
The public key is sent to the MAC supplicant client to encrypt the shared data,
and the private key is only saved in the secure world for decryption. Therefore,
adversaries cannot steal the private key, and the data in the shared memory
can be sent to the secure world safely. Additionally, the integrity of the MAC
supplicant client will be checked by the secure world, as long as it builds the
session to the back-end MAC service. If the verification is invalid, the secure
world will reject the further requests of it and reboot the device. Thus, we can
guarantee that adversaries cannot breach the secure world by exploiting the
insecure communication way.

5 Implementation

5.1 Trusted Execution Environment

The secure world is controlled by a thinner, safer software stack that is respon-
sible for providing TEE for hosting security services. In our design, the TEE
consists of TrustZone secure monitor layer and the secure world runtime layer.

The TrustZone secure monitor layer consists of drivers providing the low-level
ARM TrustZone hardware features responsible for interrupt handling, world
switching, and isolation protection. This layer provides three secure isolation
guarantee: CPU isolation, memory isolation, and I/O device isolation. In brief,
the principle of this monitor is to switch resources that are needed in both worlds.
All secure states, including CPU, memory, and I/O device saved by the monitor
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must be saved into a region of memory that belongs to secure world, so that the
normal world cannot tamper with it.

The secure world runtime layer is designed as a small and tight monolithic
kernel that provides secure memory management, thread model and sharing
facilities to manage the service threads, and serve their system resource require-
ments. This layer uses a couple of threads to be able to support running jobs
in parallel. Notice that the secure world runtime layer does not provide any
interface to load dynamic application into the secure world from the outside for
security considerations.

5.2 SELinux and Kernel Instrumentation

SELinux uses the Linux security Module (LSM) in the Linux kernel to achieve
mandatory access control in the REE. The main components of SELinux are the
SELinuxFS, object-managers, access vector cache, security server, and security
policy. We move security server, security policy, and configuration files to the
secure world, and keep the SELinuxFS, object managers, and the access vector
cache staying in the normal world. We build a back-end MAC service trusted
application to host the security server and the security policy in order to make
them work properly in the TEE. The object managers and the access vector cache
are merged into the MAC supplicant process. The SELinuxFS is an extension
module of the filesystem. Both the MAC supplicant process and the SELinuxFS
are stored in the kernel code memory region, hence, we mark their memory
regions as protected so as to secure their integrity even though the REE is
compromised.

The Inter-Process Communication (IPC) is the original way of communica-
tion between the SELinux components. By employing the T-MAC architecture,
the IPC is replaced by the Remote Procedure Call (RPC) which is responsible
to cross-world communication. The MAC supplicant process in the REE can
invoke the back-end service in the TEE. In our prototype, the RPC is based on
GlobalPlatform TEE Client API in the REE and GlobalPlatform TEE Internal
API in the TEE, which are the industry standard.

In the current prototype, we directly modify the source code of the kernel
to place hooks upon modifying page tables and upon writing to critical CPU
registers. The hooks execute an SMC instruction to switch to the secure world.
We use a command ID which is placed in a general purpose register upon the
SMC call to differentiate the SMC instructions called by kernel hooks from those
requesting the back-end MAC service. Whenever the execution switches to the
secure world, the security monitor checks that register value to determine the
call type. In addition to kernel instrumentation, we use a binary analysis tool to
ensure that all critical CPU registers writes are replaced by hooks, which is a
basic requirement for REE execution environment enhancement as discussed in
Sect. 4.2. Additionally, if the kernel code is not available, we also can insert an
SMC instruction in place of the page table exception handler to implement the
hooks. Therefore, every page fault would execute an SMC instruction to switch
the secure world.
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5.3 Secure Booting

Before T-MAC working properly, two booting phases are required on the device.
The first phase stage is the secure world initialization. T-MAC components in
the secure world is loaded into the secure world as long as the TEE boots up
and remains in the secure world memory until the system powers off or restarts.
Figure 3 shows the secure boot sequence. Firstly, after power on, the hardware
platform loads the secure bootloader from the secure ROM to the memory of
the secure world. Then, the secure bootloader initializes the ARM images of
TrustZone Secure Monitor layer and secure world runtime layer in an orderly
manner, and loads images of trusted service from the secure non-volatile storage
into the memory of the secure world. Finally, the secure bootloader switches
the primary CPU state from the secure to the non-secure so as to finish the
first phase. The second phase stage is the normal world initialization. After the
primary processor switching from the secure state to the non-secure state, it
launches the non-secure bootloader to initialize the REE in the normal world.
The last step of secure boot is initializing the T-MAC components in the normal
world. The most important work of the normal world part initialization is to
interact with the back-end MAC service, which is already running in the secure
world, for object labeling. Then the booting finished. Notice that the system will
panic if any step fails. The booting in our implementation is trusted, it prevents
malicious firmware from running on the memory by authenticating all firmware
images up to and including the normal world bootloader.

Fig. 3. The secure boot sequence of the prototype.

6 Evaluation

In this section, we present the evaluation on our prototype. First, we use a micro-
benchmark to measure the execution time required for a full context switching
to and from the secure world. Second, we use a set of benchmarking tools to
evaluate the overhead caused by employing T-MAC. Third, we use some real
world exploits to test the effectiveness of our design, and describe the security
analysis about T-MAC from multiple vectors.
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6.1 Platform

Performance evaluation was performed on the Hikey board. The board is built
around the HiSilicon Kirin 620 SOC whose microarchitecture is the Cortex-
A53 with a 64-bit ARMv8-A instruction set. This board has 8 physical cores
clocked at 1.2 GHz, 2 GB of SDRAM, 8 GB eMMC storage on board, 2.4 GHz
802.11 b/g/n Wi-Fi for network and 4 UART expansion interfaces for program
debugging. There are two reasons that we choose the Hikey board as the target
board. Firstly, the Kirin 620 SOC utilized by the board is designed by Huawei. In
our point of view, this SOC has large amount of successful cases in commercial
use and its datasheets are in more detail than products made by other companies.
Secondly, Google supports Hikey as an Android reference board. This mean that
the basic Android kernel source and board support files for Hikey are sufficient
to provide favorable working conditions for the following evaluation work. In
addition, the mobile system, which runs in the normal world, is Debian based
on Linux kernel 4.4 in our evaluation.

6.2 Overhead of World Switching

Our first experiment is a micro-benchmark to measure the execution time
required for a full context switching to and from the secure world. To enable
a more accurate analysis, we use cycle counters and ARM cycle count reg-
ister (CCNT) to ensure consistency across multiple CPUs in the analysis of
micro-benchmark cases. Instruction barriers were utilized before and after tak-
ing timestamps to avoid out-of-order execution or pipelining from skewing our
measurements.

The SMC-In micro-benchmark is to measure costs of the switch from the nor-
mal world to the secure world by directly issuing the SMC instruction. The SMC-
Out micro-benchmark is for the opposite direction. The experimental results
show that the cost of SMC-In was 2941 cycles and the cost of SMC-Out was
2256 cycles, indicating that the number of cycles of a full round trip of switch
was around 5200 cycles. Exactly what needs to be saved and restored for each
switch depends on the hardware design and the software mechanism used for
inter-world communications. In our experiment design, the full context switch
consists of saving register state to memory and restoring the new context’s state
from memory to registers. The involving registers include all general purpose reg-
isters and any coprocessor registers (e.g. NEON and VFP). Although the cost
of a full context switch is very expensive, we noticed that a full context switch
is not necessary upon every occasion. Because an SMC driven world switch can
carry a message payload in some of the processor registers, for instance, partial
general purpose registers are not saved and restored during switching since those
are used to pass parameters. Therefore, switch time varies between hundreds to
thousands cycles.
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6.3 Performance Impact on Mainstream Benchmarking

Our second measurement is to use popular benchmarks to evaluate the perfor-
mance overhead of TEE-perf implementation. We measured the performance
with widely used mobile benchmark tools: AnTuTu, BaseMark and Geekbench.
In the meanwhile, we also utilized other synthetic workload benchmark tools:
CF-bench, IOZone, GFXBench and LMbench.

Fig. 4. Mainstream benchmarking results.

To investigate the performance impact on the system, we tested the two cases:
Baseline and T-MAC on. Note that the performance of Baseline represents the
performance of applications when SELinux is running in the REE, while the
performance of T-MAC on represents the performance of applications when T-
MAC is employed by SELinux.

Figure 4 provides the experimental results. In the figure, 1 represents the
performance of the Baseline, and higher values indicate lower latency or higher
throughput. When the T-MAC is employed, overall performance is degraded
slightly. As shown in the experimental results, T-MAC shows a low overhead
that ranges between 0.53% to 7.34%. The results are expected because these
benchmarks involves a comprehensive evaluation of the overall system perfor-
mance, which includes CPU, memory, and I/O. T-MAC adds overhead to a
small portion of these operations.

6.4 Latency of Application Loading Time

User application loading time is an important aspect of the performance of
mobile devices since it impacts user experience. Therefore, the second measure-
ment is to measure the impact of loading Linux user space applications.

To simulate the real feelings, the process of loading time measurement was
done by using a Canon EOS 5D Mark III to record a video for displaying the
open process, and the exact time spent in loading an app to display on the screen
was extracted from the video by playing it back. Twice measurements were done
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Table 1. APP loading time (in seconds)

by us for one application. The first measurement was for creating a fresh process,
including making the policy decision, loading the binary code from the storage
device to memory and displaying for the first time. The second measurement
was made when the first measurement was finished and the target application
was closed.

The results of the measurement are listed in Table 1, the extra cost indicates
the overhead added by T-MAC. It is observed that there exists an obvious dif-
ference between two measurements. The overhead in the first loading is higher
than that of the second loading. For further investigation, we found that the
high overhead in the first measurement is because there is no corresponding pol-
icy decisions cached in the AVC. While most of latency caused in the second
measurement is due to kernel just executes the application process and displays
it on the screen.

6.5 Security Analysis

T-MAC passed through rigorous testing and evaluation that validate the effec-
tiveness of its protection. We tested T-MAC using the real world exploits, includ-
ing CVE-2007-5495, CVE-2007-5496, CVE-2015-1815, and an attack called
“troubleshooter” published in Github. We also wrote our own attack code that
writes to the physical memory using the /dev/mem interface. Exploiting this
vulnerability allows a user space process to trick the kernel into maliciously
modifying its own memory hosting T-MAC front-end components. We use these
exploits to trick the kernel to write the protected memory region, page tables
and parts of its data. All of these attacks failed because the protected memory
region is mapped read-only. We also failed to modify the page tables to change
the protected kernel memory’s read-only access permission.

In the end, we analyze the security of T-MAC by discussing how it defeats
security threats. We summarize these threats by the attack surface they target.

Attacks Against TrustZone: T-MAC is based on the ARM TrustZone tech-
nology, therefore all its security properties are contingent on the security of
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TrustZone. Recent reports [18,21] showed that any user space application is
able to execute shellcode in the secure world. These attacks require two basic
conditions: (1) the normal world TrustZone driver accepts malformed ioctl com-
mand will allow installed application the execute arbitrary code in the kernel. (2)
the secure world runtime layer has the mistake in input structure bound check
may lead to an arbitrary code execution vulnerability in the secure world. As
we mentioned in Sect. 5.1, the secure world runtime layer does not provide the
public interface for the applications running in the normal world to load any exe-
cutable code into the secure world. All applications running in the secure world
are loaded by the secure bootloader and launched by the secure world runtime
layer. There is no application dynamic loading feature in our TEE design. There-
fore, we can guarantee that the basic conditions of attacks against TrustZone do
not exist in our system.

Attacks Against the Sensitive Data in the Secure World: Since the policy
decisions are made in the secure world, the malicious code in the normal world
has no privileges to access or modify any resources of the security server directly
at runtime. The access policy set used in the security server are stored on the
secure non-volatile storage. They are loaded into the secure world memory region
by the secure bootloader when the system starts up. Therefore, the adversaries
is unable to access the secure world part of T-MAC from either the non-volatile
storage or the secure memory except for the hardware attacks. In addition, the
adversaries may try to tamper with the control flow of security server. But,
due to the code of security server runs in the secure world, the attacks cannot
modify its code. Moreover, since all the secure interrupts are triggered in the
secure world, the adversaries cannot intercept the workflow of the secure world
part through interrupts. Although a world-shared memory region that can be
modified by the mobile system, T-MAC provides the cryptography method to
protect the security of communication channel between two worlds. Therefore,
we can guarantee that the information to and from the secure world is safe.

Attacks Against Protected Data in the Normal World: In the normal
world, the components of T-MAC is loaded in to the protected memory region.
As mentioned in Sect. 4.2, the protected memory region is also protected by the
secure world that prevents the protected memory region from being modified by
the REE. Another threat to the normal world is control flow attacks. Since T-
MAC does not aim to protect the entire kernel data, some kinds of kernel attacks
can intercept the kernel control flow. The control flow attacks, such as return-
oriented programming [12] and a kernel integer overflow can lead to malicious
behavior without the change of the kernel. A lot of recent researches [10,25] show
that these attacks are difficult to prevent unless we use orthogonal techniques
[6–8,27]. Therefore, the control flow attacks against the kernel are considered
out of the scope of the paper. Nevertheless, T-MAC guarantees that the control
flow attacks cannot damage its protected region in the normal world or subvert
the secure world.
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7 Related Work

There are two main research directions that target isolation mechanism:
hypervisor-based and hardware-based methods.

Hypervisor-assisted isolation methods are widely researched and applied.
They use virtualization technology to provide high privilege and isolation for
protecting security services. Nevertheless, hypervisors have security challenges
of their own. They are expected to do more tasks for system resource manage-
ment and distribution. Their source codes are too big to ensure safety. Therefore,
a number of vulnerabilities in hypervisors increase the risks of attacks on isolated
security services. It is difficult to ensure the absence of exploitable vulnerabilities
in hypervisors that could be utilized to disable security checks and access sensi-
tive data. Hence, they become subject to many vulnerabilities. The proposition
of dedicating the entire virtualization layer to hosting security services will help
decrease the risks by reducing the complexity of the code, but it is an unpractical
solution because virtualization methods incur performance overhead on mobile
devices which are already suffering from resource restrictions.

Hardware-based methods use a different type of hardware protection. Real-
izing the security threats to hypervisors, current hardware platforms introduce
a novel secure and isolated execution environment, which is called the “secure
world”. Examples of the secure world include Intel TXT, AMD SVM and ARM
TrustZone. In mobile computing, ARM is the most widely used instruction
set architecture in terms of quantity produced, with over a hundred billion
ARM processors produced as of 2017. Therefore, There are many researches
[2,9,14,15,17,20,23,24,26,28,29] have managed to use TrustZone to protect
their sensitive code and data of applications in an isolated execution environ-
ment against a potentially compromised mobile system. Most of them focus on
building a thinner, more secure environment dedicated to process sensitive data,
such as cryptography and authentication. In this paper, we provide an isolation
mechanism to the MAC system by migrating it to the TrustZone secure world.
In addition, we present techniques that focus on data integrity outside the secure
world and on performance optimization to make T-MAC a real world solution.

8 Conclusion

We introduced T-MAC, a framework that provides MAC system real-time pro-
tection based on the ARM TrustZone security extension. T-MAC puts the MAC
system into the secure world, and provides a supplicant client in the normal world
to link the migrated MAC system in the secure world. T-MACuses memory
protection mechanism to prevent attacks that aim at modifying the supplicant
service in the normal world and uses secure communication channel to guarantee
the security of transmitted data. Hence, it is safe from attacks that compromise
the normal world operating system. Moreover, T-MAC does not have to trade
off isolation and effectiveness due to our performance optimization.
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Abstract. Android is an operating system with Linux kernel running
on smartphone. Part of system resources are provided in the form of
APIs offered by system service. Access permission to these resources for
application is controlled in Android middleware according to app’s UID.
Since any application can run native code such like C/C++ and bypass
the permission check in framework layer, Linux kernel uses UGO (user/-
group/others) access control to protect resource in Android. However,
UGO enforces control through group instead of UID, system is unable to
authorize a specific app to access resources according to its UID. Thus,
some weaknesses remain, such as malicious code may have the privilege
to access privacy data and operate the important system peripherals by
native code. In this paper, we present an ACL (Access Control List)
based access control mechanism to Android system, which can provide
fine-grained access control according to the UID of application in file sys-
tem of Android. This ACL based access control mechanism enables the
fine-grained policy may be enforced reliably and prevents some attacks
that access resources by native code directly, such as transplantation
attack. We make a customized system at both the kernel layer and the
framework layer. We develop an entire prototype and verify the compat-
ibility, effectiveness and performance overhead of our system. The result
shows it can effectively prevent the abnormal access through C/C++
code. The customized system has a negligible impact on performance
overhead and also offers a stable operating environment for applications.

Keywords: Android permission mechanism · Access Control List ·
Transplantation attack · Fine-grained

1 Introduction

Android introduces UID-based permission mechanism [2] to protect the resources
in system. Each application is allocated a unique UID when it is installed.
c© Springer International Publishing AG 2017
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System services provide APIs with a permission check for applications about
accessing part of related resources. A request with the string of requested per-
mission and caller’s UID will be examined whether the app is granted to the
resource. Since any application can run native code [6] and bypass the permis-
sion check in framework layer, system files and device files like socket can be
accessed directly, Android enforce a discretionary access control (DAC) to pro-
tect resources.

Linux kernel uses UGO which is based on group instead of UID to enforce
DAC. Hence, system is unable to authorize a specific app to access resources
according to its UID. Different from mechanism in middleware, the user in
resource group has the same permission to object and this coarse-grained per-
mission mechanism remains some weaknesses. For example, malware can take
a photo secretly by using native code to call camera driver directly. According
the data from IDC [8], Android dominated the smartphone market with a share
of 86.8% in 2016Q3. In such environment, the weakness of Android permission
mechanism can be a great threat.

Lots of extensions have been proposed to refine the Android permission
model. Most enforcements attempt to address access control at the Android
middleware layer. [16,19] inspect permission through IPC call chain. [10,17,22]
track the flow of tainted data to notify the user whether the data is gained by
apps in an illegal way. However, all of these works were based on the original
permission mechanism and provided no solution for underlying UGO access con-
trol. Following works [12–14,26] involve the Linux DAC mechanism to make an
enforcement. [12,13] are relied on TOMOYO Linux [9] which is based on the UID
of application and data file to ensure the files of application are not accessed by
at kernel layer. And our work has also improve the DAC access control at kernel
layer.

In this paper, we present a new access control based on ACL, which pro-
vides a fine-grained access control according to the UID of application. The
system we present enables user to create a fine-grained policy to resources and
prevents some attacks which access resources by native code directly, such as
transplantation attack. We make a customized system at both the kernel layer
and the framework layer. ACL is a list of permissions attached to an object and
it specifies which user or system process are granted access to objects as well as
the operations allowed. The key challenge is how to support ACL in low-level
platform since there is no prior work for reference. In our system, ACL is sup-
ported in kernel layer and a system library is provided. We reset the features of
Linux kernel and recompile a new kernel for Android. Linux ACL related code
is transplanted from Linux to Android, we modify the code and add a library
into system library. Besides, we implement an API for other components to call
through embedding a hook at zygote and system server which are critical process
in Android. And we also achieve an ACL control center for users.

In summary, we make the following contributions in this paper.

– We present a novel access control enforcement based on ACL to enforce fine-
grained control on system resources. Even though ACL is a feature in Linux
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and Android is based on Linux kernel, it is not supported in Android so far.
We enable ACL in kernel and achieve an ACL library which is missing in
Android. ACL support in Android has no prior work to reference so this is a
challenging work.

– An entire system based on ACL kernel support is achieved on Android 5.1.1
platform. The system enable user configure their own policy to control appli-
cation access resource according to his own requirement. We create a new
service to provide API that is used to execute ACL command for the only
granted application or process. User has the capacity to dynamically grant
application the access to a specified resource at permission center as well as
gain the permission of the object.

– We develop a prototype and verify the effectiveness of our system against
transplantation attack. The result shows it can effectively prevent the abnor-
mal access of malicious application through native code. The customized sys-
tem has a negligible effect on performance overhead and also offers a stable
operating environment for applications.

The rest of the paper is organized as follows. Section 2 introduces neces-
sary background knowledge. Section 3 presents the system design of our scheme.
Section 4 shows the prototype implementation of our system. Section 5 presents
the evaluation. Section 6 describes related works. Finally, we conclude this paper
in Sect. 7.

2 Background

2.1 Access Control List

An access control list (ACL), with respect to a computer file system, is a list of
permissions attached to an object. (An object can be a file, process, event, or
anything else having a security descriptor.) ACL provides an additional, more
flexible permission mechanism for file systems.

UGO uses 9 bits to identify the privileges of user, group and others. The
most common privileges include the ability to read a file (or all the files in a
directory), to write to the file, and to execute the file. If the file’s privileges are
rwxr--r--, that means file owner can read, write and execute the file, the group
that file owner belongs to and others besides mentioned above have the only
permission to read the file. However, suppose there are two users need to be
given different access rights, respectively, UGO would fail to effectuate this goal,
but ACL can make it come true.

An ACL specifies which user or system process are granted access to objects,
as well as what operations are allowed on given objects. Each entry in a typical
ACL specifies a subject and an operation. For instance, if a file object has an
ACL that contains two entries: Alice: read, write; Bob: read, this would give
Alice permission to read and write the file and Bob to only read it. Thus, ACL
can assign multiple users and groups different access policies to a certain object.
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2.2 Permission Mechanism in Android

Android permission mechanism is used to protect system resources and it con-
tains two layers. One is application-level and another is kernel-level.

Android defines a series of important permissions to protect system resources,
such as SMS, contacts, etc. At the beginning of app installation, all permission
requests will be presented to user, if user agrees to the requests, the granted
permissions will be stored in the PMS (PackageManagerService).

Android replaces an authorization hooks (checkPermission () method) in
AMS (ActivityManagerService). When app accesses a resource by system API,
a permission check request with a string of applied permission and the PID
(process identifier) of caller will be sent to system server, checkPermission ()
method will be called to check if the permission is granted to this app and then
return the result back.

Android is a Linux-based open source software stack. Each application in
Android is allocated a unique user and group identifier (UID and GID respec-
tively) when it is installed and the relevant process is assigned these identifiers.
Android makes each app run in an isolated process space like Linux multi-users
system does and Linux kernel provides enforcement. In order to control the app
and system resources, Android relies on Linux DAC. DAC allows resource own-
ers to authorize apps to access system resources and files in filesystem directly.
When the holder acquiesces in the permission, the UID of app will be added in
group which pertains the object.

2.3 Transplantation Attack

In Android system, most system resources, like GPS, Camera, etc. are accessed
through system services, such as LocationManager service, Camera service.
When an app wants to obtain the resources above, app needs to send a request
to relevant system service though IPC (Inter-Process Communication). After
receiving request from app, service asks system server to check if the app has
the permission to access resource. If yes, service will call the system library (.so)
loaded in system service process to interact with hardware driver and return the
result back.

By embedding malicious code into install package and repackaging it, mal-
ware can copy system libraries from system service process space to its own
process space, and directly access the hardware driver, or software resources
through these libraries, this modus operando is donated “transplantation
attack”. We know that before application calls API to gain the system resource,
a permission check will be performed and user will be reminded if any application
makes a visit at the same time. If attack is successfully enforced, system service
process would not be necessary when malware wants to access system resources.
As a result, most of security enhancements will be bypassed in Android especially
middleware enforcements.

One type of transplantation attack [27] can take picture passing by API
auditing on user’s smartphone. Figure 1 shows the normal photo taking work-
flow and how transplantation attack applies to camera. When an app takes a
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photo, the app will send a request to MediaService where the Camera Service
runs. Then MediaService asks system server to make an API auditing and check
the permission. The code of photo taking exists in the form of .so library and it
runs in MediaService. If the caller process belongs to the camera group, camera
driver can be accessed directly by libhardware.so and libcamera.so. Transplan-
tation attack transplants the needed .so libraries from MediaService process to
malicious app process, so in app process, app can visit /dev/video0, /dev/video2,
/dev/video3, etc., to take pictures directly.

Fig. 1. Transplantation attack applied to CameraService

3 System Design

The system targets at enforcing fine-grained resource access control on system
files, including device descriptors and database files (contacts, call history). The
essence of transplantation attack is duplicating system libraries from system
service process space to malware process space, so that malicious software can
address to hardware driver or file resource directly. However, some prerequisites
are required for the implementation of transplantation attack. To access the
driver of hardware and system file, app’s identifier UID must be in the group
which object owner belongs to.

This system can set each app’s access permission for given object and it is a
new way to against transplantation attack. The system consists of three parts:
ACL Control Center, ACL Service and ACL Support, as shown in Fig. 2.
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Fig. 2. System architecture

3.1 ACL Control Center

ACL Control Center is responsible for interacting with users, and it has two
main modules: Permission monitor and Permission handler. Android is made up
of files in kernel because it is based on Linux. ACL control center allows user
to make customized policy for system files according to security requirements or
user’s own needs. Permission monitor acquires the resources access permission
of which application can access in real-time. In addition to this, it records all
the operations that performed on the specific file, such as disabling read and
write permissions for an app, or forbidding some groups to fetch the file. Per-
mission handler dynamically controls the access of resources through sending a
command to ACL Service Provider, after successfully receiving the result from
ACL Service, it feeds the result back to the user.

3.2 ACL Service Provider

ACL Service Provider is composed of three subcomponents: ACLService, Service
Client and Service Server, all of them are running in framework layer.
ACLService. We structure a new service named ACLService which runs in sys-
tem server and it provides APIs to ACL Control Center for getting and setting
the access control permissions of a specific resource. This service will apply a
permission to protect the system resource. In order to call the interfaces without
fail, ACL Control Center will apply for the permission, only when user grants
the permission can control center or other application use the APIs.
Service Client. Service client plays the role of communicating with server via
socket and runs in Process process. Service client runs in Process because there
exists a reusable-architecture of socket between Process and Zygote. To reduce
overhead of the initiation of new connection and the amount of work, we finally
choose this scheme.
Service Server. Service server serves to receive messages from service client
and after that calls libacl.so to operate the command. Service Server is executed
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as a root user because it runs in Zygote process which is the first Dalvik virtual
machine and responsible for forking other process in Android. If ACL Service is
in charge of controlling the resource access permission directly, it may have an
excessive power leading to misuse the authority. So this feature is transferred to
Zygote which has root privilege.

3.3 ACL Support

ACL Support is the most important part of this system, it transplants ACL
which is not supported in Android at present from Linux into Android. This
module is made up of three main components: Shared Library Support, Bionic
Support and Linux Kernel Support.
Shared Library Support. Shared library and bionic are included in the
Android userspace software stack. None of the prior work could be reused for
Android so we have to implant ACL related source code and recompile it for
Android. This module will provide a shared library entitled as libacl.so or libacl.a
for framework layer’s call, in general, libacl.so is used most often. It contains sev-
eral native functions that are used to convert file’s extended attributes into acl
entries and vice versa.
Bionic Support. Bionic is Android C/C++ library, libc is GNU/Linux and
other Unix-like system based library. Libc is much bigger and slower than bionic,
as a consequence, Android uses bionic as its own basic library. Though it is
different from libc, bionic still possesses functions related xattrs and then makes
a system call to set extended attributes.
Linux Kernel Support. Even though Android is based on Linux kernel which
supports ACL settings, the use of ACL in Android is still not supported because
of the simplification of linux kernel. ACL needs filesystem to provide support for
access permission, and the storage of permission can be provided through the
use of extended attributes on files. In this module, we modify some kernel build
configurations and recompile the kernel to in favor of ACL.

4 Implementation

In this section, we implement a system prototype and describe the implementa-
tion details of some critical components.

4.1 Kernel Configuration

Android is based on Linux kernel, in order to reduce the runtime memory, Google
has cut some features that are not used frequently, including ACL. In AOSP
(Android Open Source Project), there exists a shrinking and compiled kernel,
so we can do nothing to change it.

In our scheme, we recompile a new kernel of paired AOSP [3] version. In
Linux kernel source code, the code about Linux features are all kept, but the
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features of issued kernel depend on a configuration file. We reset the values
concerned about ACL in file .config, and Table 1 lists the arguments changed
before and after. From the table we can see that the properties modified are
related to file system, like EXT4 and TMPFS. Android device is using EXT4 as
its file system. Compiler finally derives a boot image booting.img in accordance
with an amended profile. After replacing a new kernel, ACL attribute will be one
of the file extended attributes in EXT4, and the information of ACL is stored in
inode which is a file node and used for logging all file and directory information.

Table 1. Configuration of kernel before and after

Before After

# CONFIG EXT4 FS POSIX ACL is not set CONFIG EXT4 FS POSIX ACL=y

# CONFIG FS POSIX ACL is not set CONFIG FS POSIX ACL=y

# CONFIG TMPFS POSIX ACL is not set CONFIG TMPFS POSIX ACL=y

# CONFIG NFSD V3 ACL is not set CONFIG NFSD V3 ACL=y

4.2 Shared Library Support

Android is divided into four layers, they are: Application layer, Application
framework layer, Libraries & Android runtime layer and Linux kernel layer from
top to bottom. Section 4.1 occurs in Linux kernel layer, and this section is focus
on Libraries & Android runtime layer. This section works on transplanting ACL
code from Linux to AOSP, the code will be compiled into a shared library and
then collected into Android C/C++ libraries that can be used by different com-
ponents in the Android system.

In Linux, most softwares and packages can be installed by command. But
in Android, no complete setup package is provided for Android installing, so we
have to make a transplantation from Linux to Android and achieve a customized
Android system-image.

At first we download ‘libacl’ code which should run on Linux from the open
source community [1]. Because the differences of system architecture between
Linux and Android, we should make an alteration to the code, including adding
missing code, removing useless code, and integrating scattered code. We put
‘libacl’ source code to the path: MYAOSP/system/core/.

We efface the files except libacl and include directories since the rest is beyond
requisite function, like some executing commands: man, setfacl, chacl, etc. In
libacl directory, there are many .c files and header files mixed together, we make
a new directory dedicate to containing the needed header files using for compil-
ing. The number of remaining .c files is a bit much and each file carries only one
function, basing on the role of each function plays, we divide these files into three
categories, and create three new files to refactor the source code, as list in Table 2.
The functions in posix functions.c are following the standards by the IEEE Com-
puter Society [20] which are used to maintain compatibility between operating
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systems and provide common APIs for other application. This file involves 29
files once were in libacl, libacl functions.c has 11 files and internal functions.c
has 6. Internal functions.c is responsible for transforming strings between ACL
and file extended attributes as well as internal calling. Libacl functions.c is the
wrapper for underlying code and offers operations about ACL such as checking
if an ACL is valid.

Table 2. Integration of files

New file name Function number Role

posix functions.c 29 Portable Operating System
Interface of UNIX

libacl functions.c 11 Wrapper for underlying code

internal functions.c 6 Internal functions about file
system

For compiling the source code successfully, we add a makefile for Android.
During the whole process of compilation, there are some missing file headers or
C files needed to be included and some variable types which are not supported
in Android should be revised in accordance with compile log. After compiling
with success, libacl.so becomes a part of system library in the path /system/lib,
the new system is a customized one that can favor ACL settings.

4.3 ACL Service Provider

System server servers as the eldest son of Zygote process, plays a significant role
in Android. Many important system service such as ActivityManagerService,
PowerManagerService, PackageManagerService are provided in system server
server process. We implemented ACL as an extra system service in system server.

We add ACLService in system server process for reason explained below.
ACL setting operation need root privilege and to be implemented in Zygote
process. System server process is an interface of Android application to Zygote.
After Zygote starting, the first thing it ready to do is registering a socket to make
itself a server, and then waiting for the notification of creating process from
system server. There is an existing socket between Zygote and system server.
Implementing ACLService in system server may simplify the communication
with Zygote and have a higher efficiency than other schemes.

Figure 3 shows the profile of ACLService provider. Firstly, we add ACLSer-
vice in system server and register it into system server, and then intercept Zygote
to inject our own socket communication code so that it can serve as an ACL set-
ting server. ACLService code in system server plays the part of a client and
sends access permission to Zygote. But there still exists a problem: how to
start a new socket between Zygote and Process. Injecting code to send a new
message in Process is moderately easy compare to handling message in Zygote.
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Fig. 3. Structure of service provider

In this part, what need to do is packing a wrapper function using existing way
to start communication. All that left is altering command parameters in com-
munication.

As for Zygote, we have to analyze the clear procedure of socket establish,
and try to locate the appropriate position to insert the code about dealing with
the message received from Process. As mentioned above, the first thing Zygote
process does after the creation is registering a socket, so we start from this and
trace the following behaviors. Through tracing the code, we find a key function
“runSelectLoop” in ZygoteInit. This function is used to receive and handle the
request from client named ActivityManagerService in loops. Inside the loop,
function serverSocket.accep() means when there comes a connection, the server
accepts it and establishes a connection. There is a ZygoteConnection queue in
Zygote, after establishing the connection, ZygoteConnection will be placed in the
queue and wait to be handled. The entrance that we are looking for eventually is
function runOnce which achieved in ZygoteConnection. By carefully analyzing, a
branch is caught in function runOnce, as shown in Listing 1.1. Line 5 is a branch,
it judges whether the parameter is true, and then next to another execution. So
a new branch which contains wrapper function can be injected here as line 9
does. If the request with a unique parameter we customized, Zygote will follow
an expected flow: ExecuteAclCmd. In this inserted channel, we imbed the code
of specifying access permission on given object.
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Listing 1.1. Imbed code in runOnce

1 boolean runOnce () throws ZygoteInit.MethodAndArgsCaller {

2 ......

3 try {

4 parsedArgs = new Arguments(args);

5 if (parsedArgs.abiListQuery) {

6 return handleAbiListQuery ();

7 }

8 // imbed hook here

9 if (parsedArgs.execShell != null) {

10 return ExecuteAclCmd(parsedArgs.execShell );

11 }

12 } catch (IOException ex) {

13 logAndPrintError (newStderr , "Exception creating

14 pipe", ex);

15 }

16 ......

17 }

4.4 SEAndroid Configuration

Android introduced a set of security mechanism based on SELinux and
this is known as SEAndroid [26]. SEAndroid adopts MAC to Android and
enforces mandatory policy between subjects and objects. A policy contains sub-
ject(domain), object(type) and operation permissions and this defines which
subject can operate which object with a series of permissions, such as read,
write, setattr.

Table 3 shows the added strategies in zygote context and system server con-
text, respectively. We assign Zygote to perform ACL enforcement in Sect. 4.3,
and the enforcement will execute some extended attribute operations like setattr,
getattr on files. Each important system process has its own permission policy file
which is contained a set of policies. There are no rules for Zygote to execute the
setattr and getattr to system data file and device file. Hence, system will deny
related actions. Therefore, Table 3 shows the rules added in zygote.te to make
these behaviors legal. Section 4.3 also hooks a new service ACLService in sys-
tem server and this service will be forbidden by SEAndroid as well because the
lack of strategy. As a result, we have to increase a new policy for system server
context at mean time as Table 3 displays.

4.5 Access Permission Checking

In our prototype, there generally will be four checks if any app or process wants
to access the resources in the kernel, such like file and device. As shown in Fig. 4,
the first one is general error checking, for example, to see whether the accessed
object is existing, whether the access parameter is correct, and so on. After
general error check finishing, the original permission check will be performed.
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Table 3. Added SEAndroid configuration of Zygote and system server

Domain Policy File name

zygote allow zygote system data file:file
setattr

zygote.te

zygote allow zygote video device:chr file
setattr

zygote.te

system server service aclService
u:object r:system server service:s0

service context

In other words, the original permission check is DAC check which is based on
the Linux UID/GID security check. Only when original permission check passed,
can ACL permission check begin to work. ACL permission check will determine
whether the access list of object contains access permission of subject according
to its UID. The last step is SELinux checks, that is, security checks based on
security contexts and security policies.

Fig. 4. Procedure of access permission check

Sections 4.1 and 4.2 implement the support of Android kernel, Sect. 4.3
achieves a service of controlling ACL permission dynamically. Generally, the
resources that require to be dynamic controlled have already authorized to be
accessed by some applications, and we increase the access control base on this.
Meanwhile, SELinux check has no effect on the previous inspection because the
subject originally has the permission of the resource.
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5 Evaluation

This section makes an evaluation for our prototype system compared to a pristine
build of the corresponding AOSP version. The AOSP images were built from the
5.1.1 r14 tag for the Nexus 6 devices, using the prebuilt kernel provided by AOSP
for shamu device. Device Nexus 6 had Snapdragon 805 CPU (2.7 GHZ, quad-
core) and 3 GB RAM. The images were used to supply the baseline for each set
of results. The system we present was built from the same AOSP version for
the same device, using a kernel built from 3.10[10]. We evaluate our prototype
system in following aspects:

(i) Verify the stability of the custom system through running various Apps on
prototype system;

(ii) Verify the effectiveness of run-time ACL access permission control of the
object in our system and the resistance of transplantation attack;

(iii) evaluate the overall performance of the prototype system.

5.1 Stability

We downloaded 100 popular Apps belonging to various categories from Google
Play [4] for experiment and chose Google Monkey [5] as testing tool because
Monkey could be easily run on any version of physical devices. Monkey would
send pseudo-random user events to designated application automatically and
help test whether the app would be crashed.

At the beginning, we manually checked the stability of some apps. Then
randomly selected 25 applications from apps we downloaded to perform Monkey,
and made a script to send 500 pseudo-random events to each application. Luckily,
we found that no app was crashed during the whole procedure. We draw a
conclusion that the system we present has almost no effect on system stability
and is compatible for app.

5.2 Effectiveness

We chose some important resources to evaluate the effectiveness of our system.
As shown in Table 4, the resources contained system databases (contacts and
sms) and device files such as camera device and socket. Host app applied all
the permissions of following resources in AndroidManifest.xml. Application vis-
ited network by creating a socket, we set the privilege bits --- to one of the
socket device files to close the access permission for holder app, then a message
‘net::ERR NAME NOT RESOLVED’ was displayed for us and log contained a
record: permission denied. Different from socket, some resources are accessed by
calling APIs, the UID of access user would be the UID of system service which
is responsible to provide API to access the resource. So we shutdown the group
privileges and inspected the result. Table 4 shows the final result.

Most applications called APIs to gain the object in a normal way, but we
could’t make sure that there was no application calling native code to access
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Table 4. Effectiveness result of some important system resources

Detail Location Result

Address book /data/data/com.android.providers.
contacts/databases/contacts2.db

Success

SMS /data/data/com.android.providers.
telephony/databases/mmssms.db

Success

Front camera device /dev/video3 Success

Back camera device /dev/video2 Success

Socket /dev/socket/dnsproxyd Success

the resource directly. To evaluate the effectiveness of preventing transplanta-
tion attack, we applied ACL to a malicious app with camera transplantation
attack and set it inaccessible to front camera device according to its UID. A
message “mm camera open: cannot open control fd of ‘/dev/video3 ’ (Permis-
sion denied)” was found in log and this attack was not executed properly after
the ACL permission setting.

5.3 Overall Performance

To measure the performance overhead of the system we present, we run three
well-known benchmarks which are hot in Google Play Store: AnTuTu, Geek-
bench4 and CF-Bench. Each benchmark was performed 10 times both on original
AOSP and built on the same device.

Antutu would comprehensively test all aspects of a device, including UX,
GPU, RAM, CPU, I/O and more. Each item was individually assessed and
given a score. Table 5 shows result for 10 runs of AnTuTu. The average and
standard deviation of each aspect are displayed. 3D, CPU, and RAM test were
not affected by our system because they had no system calls and usage of file
extended attributes. UX test included I/O, file reading and file writing, so this
evaluation could be affected and may have a small overhead because of the
check of ACL permission. We could see the overheads were 262.4 in UX and
413.3 in total and they were negligible and both within on standard deviation
of the AOSP result.

The scores and results of Geekbench4 and CF-Bench are shown in Table 6.
Each row represents one result of one benchmark, including the average of some
particular scores, the average of overall score in respective system, the overhead
and percentage of overhead it costs. CF-bench is designed to evaluate CPU and
memory for multi-core devices and test both native as well managed code perfor-
mance. Geekbench4 includes single-core, multi-core and GPU tests, it executes
CPU tests modeling real-world tasks and applications, GPU Compute tests mea-
suring the processing power of device’s GPU.

From the table we can see that the overhead produced by our system in CF-
Bench is less than 1.29% and 4.14% in GeekBench4, all of it is negligible to the
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Table 5. Antutu benchmarking

AOSP Our system

Mean SD Mean SD

Total Score 70866.1 774.51 70452.8 957.86

3D Score 16823.3 706.48 16596.7 712.70

UX Score 24690.3 285.17 24427.9 423.33

CPU Score 22203 288.63 22088.2 367.93

RAM Score 7149.5 156.58 7310 230.35

Table 6. Overall performance evaluated in Geekbench4 and CF-Bench

Benchmark AOSP Our system Over Over. (%)

CF-Bench:Native 49682.2 49649.4 32.8 0.01%

CF-Bench:Java 27514.8 27159.2 355.6 1.29%

CF-Bench:Overall 36381.2 36155.6 225.6 0.62%

GeekBench4:Single-Core 1029.4 1017 12.4 1.20%

GeekBench4:Multi-Core 2932.6 2842.8 89.8 3.06%

GeekBench4:GPU 3967.2 3802.8 164.4 4.14%

system. So we can draw a conclusion that our system has little impact on overall
performance.

6 Related Work

This section provides an overview of the related work. There are a lot of Android
security enforcements proposed to improve the security of Android, whereas
most enforcements attempt to address access control at the Android middleware
layer. Section 6.1 describes the research efforts in enhancing the security at the
Android middleware layer. Solutions based on Linux DAC mechanism are present
in Sect. 6.2.

6.1 Android Middleware Layer Enforcements

Apex [23] allows user to select parts of permissions to grant to an application
during the installation. Kirin [18] checks the permission of applications for indi-
cations of malicious activities, user can refuse to install the application when it is
inconformity with security policies. Saint [24] is a policy-based application man-
agement system aimed to control how apps interact with each other. Quire [16]
provides developers with new interfaces to acquire IPC call chain which relies
on AIDL instrumentation. Felt et al. [19] proposed IPC inspection to prevent
permission re-delegation attacks through intersecting the permissions of all the
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applications in the IPC call chain. But the scheme is inflexible to allow inten-
tional permission re-delegations.

Taintdroid [17] proposes dynamic taint analysis to control the data flow
between applications. It tracks the flow of tainted data and notifies the user
if the data leaves the device through an illegal way. In [10,22], taint tracking
makes the system trace sensitive information, enterprise data possible, and can
enforce policies for those data.

[11,15,23] use context to dynamically configure app’s permissions. In [10],
special context is a necessary condition to generate security notifications. In [22],
the context is used to taint data generated in predefined environments.

6.2 Kernel Layer Enforcements

So far, most of the security extensions are aim at Android middleware layer
access control, and do not involve the Linux DAC mechanism. But the realization
of middleware access control depends on the kernel layer control to ensure the
access control can not be bypassed.

[7,14,25,26] introduce SELinux into Android to reinforce the security of
Android underlying operating system. FlaskDroid [14] uses boolean variables to
instantiate the policy which is based on the extension of SEAndroid mandatory
access control. This considerably diminishes the effect of root exploits. How-
ever, the delegation of rights or permissions in accordance to a hierarchy is not
supported.

TrustDroid [13], XManDroid SELinux [12] and SELinux [26] provide MAC
at both middleware layer and kernel layer, but TrustDroid and XManDroid are
relied on TOMOYO Linux [9] which is based on the UID of application and
data file to ensure the files of application not be accessed by other applications
rather than SELinux in kernel layer. SELinux implements SELinux at kernel
layer. Either TOMOYO Linux or SELinux changes the file access control in the
Linux level, from the original DAC into MAC.

7 Conclusions and Future Work

In this paper, we present a system which introduces ACL access control mech-
anism. ACL provides a run-time fine-grained access control and prevent the
leakages through native code such as transplantation attack. This paper imple-
ments kernel and C library support where they are barely existing, besides, a
service and a permission control center are offered. The kernel based on Linux is
recompiled according to a new configuration file which contains ACL features.
After replacing a kernel, the system we customized is supporting ACL extended
attribute in filesystem. Because of the cut of system, some system libraries are
missing, the code about libacl is transplanted to this system and a system library
libacl.so is added to make a system call and interact with filesystem. Zygote
process is intercepted to imbed a hook, by doing this, a low overhead commu-
nication can be established between Zygote and Process. When an application
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is given an ACL permission set to a resource, system would check the origin
permission at first, if passed, then ACL permission check would be executed.
Finally, the performance overhead imposed by our system is evaluated in three
benchworks and each result shows the overhead can be negligible.

The scheme we implement aims at the control of access to system resources
such as device files and system files. However, Android uses Fuse [21] which is a
user-space pseudo filesystem to provide flexibility in managing the internal stor-
age space and maintain host compatibility. Thus, some file extended attributes
are not supported in sdcard. In our future work, we intend to introduce ACL
to Fuse filesystem in Android to achieve a fine-grained access control of shared
resources in sdcard like DCIM.
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Abstract. Code protection schemes nowadays adopt language embed-
ding, a technique in which a customized language is built within a
general-purpose one, often referred to as the host language, to obfus-
cate original code through transforming it into a customized form with
which the analyst is not familiar. The transformed code is then inter-
preted by a so-called Embedded VM. This type of transformation does
increase the cost of code comprehending and maintaining, and introduces
extra runtime overhead.

In this paper, we conduct an in-depth study on embedded VM based
code protection and propose a de-obfuscation approach that aims to
recover the original code form. Our approach first pinpoints the inter-
pretation procedure and partitions handlers of the embedded VM, and
then employs a VM-state based handler translating, which represents the
VM-state-updated behaviors of handlers. Finally, the translated opera-
tions of each handler is optimized and transformed into host code. After
this process, we can obtain a clear and runtime efficient code represen-
tation. We build Nightingale, a binary translation tool, to fulfil this
de-obfuscation automatically with x86 binary executables. We test our
approach on the latest commercial code obfuscators, embedded domain-
specific languages and a set of home brewed obfuscation schemes. The
results demonstrate that this kind of obfuscated code can be simplified
with host language effectively.

Keywords: Code obfuscation · Virtual machine interpreter · Code pro-
tection

1 Introduction

Embedded languages are programming languages designed to be used from
within another program. Compared with its host language, an embedded lan-
guage is usually more flexible with clear and simple syntax. For instance, the
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Windows operating system provides the WindowsScriptingHost API for pro-
grams to load and execute scripts written in WSH language. While this hybrid
programming style significantly extends the feature of the host language and
attains success with many concrete examples (e.g., C and Lua), it may also
increase the comprehension complexity and runtime overhead if the embedded
language is not familiar to code maintainer and user. For that reason more
and more code protection schemes use custom embedded language to impede
program analysis and reverse engineering efforts. This type of protection is espe-
cially popular with the malware developers, who aim to hide the behavior and
character of their program and shield away from the scanning of Anti-Virus soft-
ware. A prevailing implementation technique for those protection schemes is to
design a simple virtual machine. It transforms original code fragment (functions
or basic blocks) into bytecode corresponding to this VM, and then simulates it
in host language by interpreting the bytecode. Code diversity is also introduced
to generate different VMs to frustrate automatic analysis. As a result, it is usu-
ally more difficult to analyze and understand such protected code with analysis
techniques and tools of host languages.

Difficulties of comprehending embedded obfuscated code mainly comes from
comprehending the definition of embedded language and the embedded language
VM. In the VM obfuscated executable, instead of analyzing original program
code, it is the VM interpreter that requires to analyze. The analysis should
first recover the structure of the used VM (e.g., program counter variable, the
fetch/decode/execute loop, and instruction buffer) and then understand the
obfuscated code. Once the structure is well defined, the syntax and semantics of
the target instruction set can be derived with static and dynamic analyses. Pre-
vious studies on VM de-obfuscation [3,13,19,20], however, mainly concentrate
on comprehending obfuscated code with traditional program analysis and do not
consider the characteristic of it. For instance, they are trying to recover high-
level syntactic structure (e.g., Control Flow Graph) of the obfuscated code, or
employ heavyweight symbolic execution to recover the syntax and semantics of
VM bytecode. These analyses usually provide less help when understanding the
VM interpreter. As a result, although traditional binary code analysis techniques
are well-developed to handle commodity programs, they are sometimes too ideal
to comprehend obfuscated code. If the target of the analysis is the embedded
language rather than the n host language, a more basic problem is to conduct
an embedded language disassembling (or translating) to help understand it.

Methodology. To tackle this challenge, this paper presents a heuristic approach
to fulfil embedded language translation. It is profitable to translate the bytecode
from the embedded language to the host language. This not only helps compre-
hend the semantics of the code with simplicity, but also reduces the runtime
overhead because the execution in host language is generally more efficient than
the interpretive style of the embedded language. Our proposed approach relies
on the assumption that each handler of the embedded language’s VM interpreter
could be translated into a set of simple operations in host language, and our target
is to automated this inverse procedure and achieve binary code translation.
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Main issues of this translation work include: (1) how to pinpoint the interpre-
tation and comprehend handlers, (2) how to translate one handler using the host
instructions, (3) how to simplify useless code inserted, and (4) how to replace
original obfuscated code. To pinpoint the interpretation procedure, we mainly
rely on the feature of how a part of the program is driven by data buffer to iden-
tify the VM. Then, a concept of VM-state, which is the core memory operated
by the VM, is used to slice code of handlers and build the concise description of
each handler. After that, the re-expressed instructions are further optimized to
generate a simpler alternative function of the obfuscated code stub. Finally, we
use dynamic instrumentation to patch the VM interpreter and replace it with
our translated code.

Two properties of embedded VM based obfuscation are leveraged to sup-
port our translation. First, most of the embedded bytecode is a transformation
of existing program code. Thus it is feasible to re-express it with the original
instruction set. This often becomes an important prerequisite for effective de-
obfuscation. Second, to communicate with host languages, the embedded code
generally uses data structures conforming to host language to pass parameters
to and from the host program to the interpreter. For instance, an x86 assembly
function will still use stack to pass the parameters even if it is obfuscated.

The core insight of our work is to leverage an abstract VM-state to rep-
resent the heavily obfuscated operations. Abstractly, the VM-state is the set of
intermediate buffer of the VM interpreter, which could be defined through a
program analysis of the interpretation. Then the behavior of the VM interpreter
is defined by how the VM-state is updated. Through this way different behaviors
of various VM interpreters can be expressed in a unified way.

We design and implement an embedded language translator, Nightingale,
to execute automated obfuscated code extraction and translation. Nightingale
mainly makes use of dynamic analysis to employ the obfuscated code extraction.
It monitors certain execution that contains a VM interpretation and extracts
handlers of the interpreter. When the handler is extracted, an offline analysis
is executed to translate and simplify the corresponding embedded code. Finally,
the simplified code in host language is dynamically inserted into the program to
replace the original obfuscated one.

Evaluation. To evaluate the effectiveness of our approach, we conduct a series
of empirical studies on several code obfuscators. To the best of our knowledge,
most previous studies on code de-obfuscation only focus on two mainstream
obfuscator manufacturers. While those code obfuscators covers a large portion
of obfuscated programs, there are still many custom obfuscators used by different
software products in the wild. Our evaluation also considers them and conducts
an in-depth analysis on some novel obfuscation measures adopted. In detail, we
collect five obfuscated samples from online Capture The Flag (CTF) contests as
well as our home brewed sample obfuscated by the popular VMProtect obfusca-
tor as one of the most famous obfuscators. We then use Nightingale to analyze
these samples and translate their embedded code stubs. While other works try
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to compare the similarity of recovered code structure with the original one, our
validation is simple: we only observe if our rewritten code is able to fulfil the
same transformation as the obfuscated one for multiple inputs. If this input-
output relationship preserves, it is believed that the translation works. Besides,
analysts will get a more comprehensible expression of the program.

Contributions. This paper makes the following contributions:

– We propose an obfuscated code translating approach for code comprehen-
sion. Our translating approach adopts a embedded language disassembling
methodology and simplifies the obfuscated code. It not only helps under-
standing the obfuscated code but also improves the execution efficiency to
some extent.

– We propose a VM-state analysis to deal with different VM implementations
and express the behavior of handlers based on this VM-state. The VM-
state based behavior expression is helpful when performing binary translating
because it is defined using host language, and is able to be integrated into
host program as a patch of the VM code.

– We implement Nightingale, a binary translating tool to fulfil the task of
code de-obfuscation. Our evaluation shows different VM implementations can
be analyzed and translated by Nightingale with a unified analysis style.

2 Preliminaries

2.1 Basic Concept

Figure 1 depicts a concrete example of VM code embedding. The non-obfuscated
program, a Windows x86 or x64 executable, is generated with normal compila-
tion process and the layout of the executable follows standard Windows PE file
format. After a VM-based code obfuscation (i.e., a code transformation process),
part of the original code is wiped and replaced as control flow transitions to
lately inserted code section defined in this paper as a VM stub. In Fig. 1, original
code of func A and func B is replaced as vm func A and vm func B. Notice that
vm func A and vm func B are not typical binary code functions. Instead, they
are composed of the header in the original Code section and a series of bytecode
placed at the VM section. Then the VM core is responsible for executing the
bytecode in the VM section. A typical header (control flow transition) of VM
stub can be a simple branch instruction in code section:

00401000|push ebp
00401001|mov ebp, esp
00401003|sub esp, 0x8
00401006|push 0x4020f4
0040100b|jmp 0x4a4a97



Nightingale: Translating Embedded VM Code in x86 Binary Executables 391

PE Header

Sections

Code

Imports

Resources

Code

func_A()

func_B()

Imports

kernel32.dll

Code

vm_func_A()

vm_func_B()

Imports
kernel32.dll

VM Section
VM Core

New EntryPoint

vm_func_A()

vm_func_B()

VM Core

dispatcher

Virtual call

Poly-decrypt 
function

main vm_func

... ...

Original
VM Obfuscated

Fig. 1. An instance of VM code embedding

The last jmp instruction in this example leads the control flow to the entry
point of the VM stub in VM sections, which consists of mainly a VM bytecode
buffer and a VM interpreter.

To fulfil the same functionality as the original code, the obfuscator will gener-
ate a segment of VM bytecode through analyzing and transforming the original
instructions. For instance, if there exists an add instruction in original code and
the code interpreter also contains an instruction that fulfils addition operation,
the obfuscator will then generate a corresponding VM bytecode instruction. The
VM bytecode buffer is basically the transformed results of original code with the
form of a customized instruction set architecture (ISA). However, not all of the
original instructions can be replaced by an alternative VM bytecode. Particu-
lar instruction in host language may be complex and the obfuscator may use a
set of alternative VM bytecode instructions to replace it. In this manner, the
embedded VM code executes within the host language execution environment
and always tries to keep the same semantics to prove the reliability.

In the scenario of VM based code obfuscation, the VM interpreter is generally
the implementation of a lightweight code interpreter written in host language.
Different VMs adopt different designs of ISA and corresponding bytecode han-
dlers. Some VMs are stack machines while some are register machines. However,
both implementations follow the common design principle of code interpreter
and each consists of basic components such as a bytecode decoder, an execution
scheduler, and numerous bytecode handlers, which are core components that
determine the ISA of the VM and fulfil the main functionality.
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2.2 Assumptions

One assumption in this paper is that the VM used for code obfuscation is a sim-
ple interpreter compared with those heavyweight interpreters (e.g., interpreters
of Ruby, Lua, and Python). Moreover, we assume that the protected code are
simple data transformations that mainly contain plain instructions. This is rea-
sonable because most obfuscators, according to our observation, only deal with
those plain instructions. Our assumption is base on the observation of common
commercial obfuscators such as VMProtect and ExeCryptor. The obfuscation is
often employed through using SDKs of those obfuscators to transform only part
of their code. Otherwise, the obfuscation process may fail or the generated exe-
cutable may not able to work properly. This indicates that these automated VM
obfuscators only deal with relatively simple instructions to prove the stability.

Another important feature is that most obfuscators would not recursively
obfuscate invoked functions in the range of protected code. That is, if the pro-
tected code contains a function invoking, obfuscators generally do not obfuscate
this invoked function. Instead, they just replace the invoking instruction (call
or jmp) with a vague stub that does not obviously expose the target function’s
address.

For commercial VM obfuscators, although we do not know their accurate
work mechanisms, we can send a home brewed sample to them and obtain the
obfuscated version (these obfuscators provides trial versions). This also helps
understand the used bytecode instructions and handlers.

3 VM Code Translating

3.1 Overview

In this paper we aim at translating the embedded VM code, which is mainly
generated by automated code obfuscator, into the form of host language of the
program. As the embedded code can be seen as an alternative transformation P ′

that replaces the original transformation P . The target is to recover the origi-
nal transformation P as much as possible. However, state-of-the-art obfuscators
can add various layers of transformations and heavily complicate the process of
reverse engineering the semantics of binary code. In most cases it is unpractical
to obtain a complete understanding of the underlying logic of a program. Thus
we do not pursuit a perfect recovery because this can be seen as a form of decom-
pilation and it is not expected to have a perfect solution to the problem. Our
solution is instead to present a generic and practical translation scheme that
reveals the state transition of VM code. Concentrating on VM code restricts
the scope of the analysis, and helps analyst focus on collect high-level informa-
tion and identify interesting parts of the obfuscated code. Particularly, in this
paper we do not consider the unpacking and anti-analysis code issues. We mainly
focus on how to comprehend the structure of embedded VM and how to translate
embedded VM bytecode into host language expression.
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Fig. 2. VM code translating process

Figure 2 depict the entire translating process, which consists of five phases.
At the very beginning, the binary code executable is analyzed to first collect
execution trace and pinpoint the interpretation procedure. Then, the interpreta-
tion procedure is partitioned into different smaller procedures corresponding to
VM bytecode handlers. The third phase then extracts and composes a VM-state
through synthesizing each handler’s behavior. After acquiring the definition of
the VM-state, the operation of each handler can be expressed in a new form of
host language instructions, and this new representation could be further simpli-
fied using traditional program optimization techniques. Finally, to complete the
translation, the VM code is replaced by those simplified code through a dynamic
binary code instrumentation. In the following, we introduce the details of each
phase.

3.2 Interpretation Pinpointing

We propose a handler partition approach, which relies on the analysis of indi-
rected branch semantics. Embedded VM code in host program often executes
with a relatively lightweight interpreter, and pinpointing its interpretation
process is crucial for the translating. Some studies assume that the VM code
and interpreter are placed into a separated section of the executable. Although
this corresponds to most commercial VM obfuscators such as VMProtect and
Themida, it is not always true for those customized VM obfuscators. Some VM
interpreters are embedded into the program during the development stage, hence
are located within the same code section as the host code. In this situation, a
more generic pinpointing approach is required.

We propose a pinpointing approach based on the feature that the execution
of the interpreter is driven by the VM code placed beforehand. A VM inter-
preter often contains a code dispatching mechanism that responds for choos-
ing the next executing instruction after the interpretation of current bytecode
instruction is finished. This code dispatching mechanism can be implemented
with a decode-and-dispatch style or with a threaded interpretation style [14]. For
the decode-and-dispatch interpreter, there exists one particular indirect branch
instructions (e.g., call eax) that transits the control flow to different handlers.
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For the threaded interpretation, the indirect branch instructions may be con-
tained in different handlers (see Fig. 3). However, both kinds of indirect branch
instructions, as we called dispatching instructions, are driven by the VM code.
Hence for both implementations, we first collect all indirect branch instructions
in the execution trace. Then how those concrete control flow transitions are
influenced by the input data (from external input or be directly coded in the
program) are extracted through a data dependency analysis. The data depen-
dency analysis mainly calculates which part of the input data determines the
final indirect branching with a basic data flow analysis against the execution
trace. The input data that influences the branching is labeled as the data source.
After the analysis, these indirect branch instructions are clustered according to
the data source that influence them. The clustering is based on the metric of
data source’s distance. A basic K-means clustering is adopted here, intending to
group those instructions that are influenced by data source with closed distance.
According to our observation, the VM code is generally placed in a continuous
buffer in data section, or hard coded in code section. If instructions are driven
by similar data that is from a small region in memory, it is very possible that
the data represents the VM code and the clustered instructions indicate the
existence of the interpretation. Another observation is that the embedded VM
code has generally been placed during the program generation stage. Thus the
buffer of VM bytecode should be placed before the execution of the program. We
leverage this property to classify VM bytecode interpreter and the state machine
of network protocol, which possesses similar data-driven behavior but the data
source is often determined during the execution (i.e., received from the network).

After pinpointing the code dispatching part of the interpretation, the next
step is to partition the entire execution trace into individual operation of
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bytecode instruction handler. We directly use the code dispatching part as the
splitter to partition the execution trace, and consider each partitioned segment
as a handler. Notice that a handler is not necessarily implemented as a function.
Thus a partitioning with the granularity of assembly function is not feasible for
this application.

3.3 VM-State Analysis

The key insight of our approach is to recover the format of VM-state, which
contains the virtual context of the VM during the interpretation. In general, a
VM-state is a set of memory buffer and registers that represents the context of
the current VM execution and is maintained by the VM. However, because our
analyzed VM is embedded into a host program and the VM itself is implemented
using the host language, its VM-state is also expressed using the host memory
and registers and is not easily distinguished from the host program’s context.
Moreover, we expect that the VM-state can still be defined using host language
so that in the later translating we can utilize this expression to rewriting the
interpretation. To this end, our VM-state analysis is a reverse engineering effort
to recover basic format of the VM-state. Since we do not know the virtual ISA
beforehand, it is infeasible to define a fixed abstraction of this state beforehand.
For instance, if the VM is a stack machine, it often uses a memory buffer to sim-
ulate its own virtual stack and manages its own stack push and pop operations.
However, if the VM is a register machine, the abstraction may vary significantly.
Hence, our analysis only define a VM as the program that manipulates a mem-
ory buffer with relative pointers. Take a virtual push operation as an example,
our analysis gives the result of a memory write operation only. In this way, we
aim to express different VMs in a unified style.

The VM-state reverse engineering starts from analyzing memory and regis-
ters updating of each handler in a trace. Now that the aforementioned handler
partitioning has already defined the range of each handler, in this phase we
concern about how each handler update memory and registers and among the
updated content, which part is the used by the following operations. This can
be done by a simple data citation analysis: the memory and registers updat-
ing of one handler is first recorded and then the following handlers’ operations
are checked to see which part of those memory buffers and registers is cited in
at least one following handler’s operation. If the particular memory buffer or
register is cited, it is labeled as a critical context, otherwise it is labeled as a
forgiving context. Then we analyze every handler to acquire each one’s critical
context, and merge them to generate the VM-state. In addition, how each han-
dler manipulates the element in the VM-state is also recorded so that we can
define data member of the VM-state with a finer granularity. After this phase
the VM-state is extracted from the host program context and the handlers are
expected to be translated into host language.
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3.4 Handler Translating

Handler translating is the core phase of the entire VM code translating process. It
translates variously implemented handlers into a unified form based on the defin-
ition of VM-state. That is, one handler’s operation is translated as an expression
consisted of basic calculation and VM-state elements. For instance, if a handler
originally fulfils an add operation on two abstract registers, then the translation
results may be:

VM-state.buffer[0:4] =
VM-state.buffer[0:4] + VM-state.buffer[4:8]

As the operation of one handler is represented as the operation on the VM-
state, it provides a clear description of the handler’s behavior with the help of
the VM-state. Moreover, it tackles the issue of implementation diversity issue.
Even the VM obfuscator adopts code diversity technique to change same handler
in different implementations, our analysis is still able to recover the semantics
with the VM-state representation.

The detailed handler translating starts from a value-based backward code
slicing [3] that resects irrelevant instructions in the handler. It keeps those
instructions related to VM-state updating in the handler, which can be employed
by a standard slicing approach. Then the remained instructions are transformed
into a expression. This expression is generated according to the input and the
output of the handler, and illustrates the semantics of the input and the output.
Because we can define the input and the output using VM-state, the expression
is obviously consists of the relevant VM-state elements.

3.5 Code Simplification

The VM-state based expression of handler may still be complex even if the
code slicing removes irrelevant instructions. The reasons for this complexity
include the VM obfuscator’s implementation is not efficient, or the VM obfus-
cator intentionally uses a combination of operations to fulfil a simple operation.
For instance, some VM obfuscators would use NOR and NAND operations only
to emulate every arithmetic operations. To improve the execution efficiency of
our translated code, a further code simplification is required.

Our code simplification relies on state-of-the-art code compilation tools to
perform code optimization. We first translate every handler in the concrete exe-
cution trace to output a VM-state operation sequence. This VM-state operation
sequence represents the specific transformation executed by the VM interpre-
tation. Then we rewrite this sequence as a single function using commodity
program language so that it can be compiled by state-of-the-art code compila-
tion tools. In our work we use C programming language to rewrite this sequence
and use LLVM as the optimization tool. We can compile this single function as
a static or a dynamic lib and it could be linked latterly.
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3.6 Dynamic Patching

The final step of our translating is to replace the embedded code with a more
clear and efficient form. As the embedded code has already been translated
and encapsulated into a static or dynamic lib. We can link this lib and use the
alternative function to replace the VM stub.

Our dynamic patching is implemented through dynamic code instrumenta-
tion. We use popular code instrumentation tools such as Intel’s PIN to rewrite
the binary code. For a VM stub, we instrument an alternative stub before its
entry point to replace its functionality. The control flow is then directed to the
new translated function implemented in our lib. And after the execution of this
function as a replacement, the alternative stub directly leads the control flow to
the invoker of VM stub.

Notice that our translated function is generated by a dynamic analysis phase,
which means it may suffer from code coverage problem. The translated function
may only able to perform a partial transformation of the original one. However,
our observation indicates that most VM stubs are simple transformations with
few or no branches. This guarantees our patching works most of the time.

4 Empirical Evaluation

We implement Nightingale, a binary translation tool, to fulfil this de-
obfuscation automatically with x86 and x64 binary executables. Nightingale
consists of an execution trace recording module, an offline program analysis mod-
ule, and a code patching module. The execution trace recording module and the
code patching module are based on Intel’s PIN instrumentation framework (900+
LOC) [8], and the offline program analysis module is written in Python (2900+
LOC). In this section we report our empirical study using Nightingale on five
different obfuscators including the state-of-the-art VM obfuscator–VMProtect
3.0, and four VM obfuscators from different CTF contests that introduce spe-
cial code obfuscation techniques (all of the samples from CTF contests can be
found online).

4.1 Analysis Results

The chosen samples cover mainstream implementation styles of VM obfusca-
tion and the diversity of each sample is significant for analysis. Foodie-VM
is a simple VM from 0CTF 2015 CTF contest. It is implemented in C and
adopts a standard decode-and-dispatch model. BCTF-VM is a C++ imple-
mented VM adopting standard decode-and-dispatch interpretation model. It
contains basic arithmetic operations (add, sub, mul, and div), logic operations
(xor, and), and virtual stack operations (push, pop). Paris-VM is an obfuscation
sample from the PlaidCTF 2014 CTF contest, which utilizes exception-driven
and data-driven implicit control flow manipulating to hide the execution path.
DonnBeach-VM is an obfuscation sample from the Hack.lu 2012 CTF contest,
which utilizes Intel’s MMX instruction set to fulfil a simple AES encryption (2
rounds). The overall experiment results are listed in Table 1.
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Table 1. Features of different VMs and the analysis results

VMs Type Host language Handlers VM-state

VMProtect Threaded interpretation C++ 138 53 units, 156 bytes

BCTF-VM Decode-and-dispatch C++ 19 59 units, 448 bytes

Foodie-VM Decode-and-dispatch C 6 104 units, 260 bytes

Paris-VM Data-control C++ 20 7 units, 440 bytes

DonnBeach-VM Decode-and-dispatch C 16 8 units, 64 bytes

VMProtect. VMProtect adopts a threaded interpretation style rather than the
classic decode-and-dispatch style used in previous versions. Each handler of its
interpreter contains a decode stub at the end of its procedure and calculates next
handler in situ, which increases the difficulty of handler partitioning. However,
using our indirect branch instruction clustering, Nightingale still successfully
extracts the handler related decoding and dispatching instructions and partitions
the handlers from the entire execution trace.

BCTF-VM. For BCTF-VM, because of the C++ implementation style, static
program analysis does not recognize the caller and callee relationship of dis-
patching procedure. Our approach solves this issue through dynamic analysis
and successfully recognizes all handlers in the execution trace. The recovered
VM-state contains 59 memory units and because this VM does not insert any
interfering instructions, the backward slicing only resect a few instructions. We
can pinpoint handler with method proposed in Sect. 3.2.

Foodie-VM. Handlers of Foodie-VM generally include core functionality and a
decode procedure to determine next handler. The extracted VM-state include
104 memory units, and with value-based backward slicing and handler trans-
lating, the result is partially showed in Fig. 6. We then compare this recovered
result with the original source code of the VM and find it corresponds to original
design well.

DonnBeach-VM. The analysis of DonnBeach-VM finds the dispatcher–an obvi-
ous indirect branch instruction at 0x40522F driven by buffer 0x405000, and
handlers are easily partitioned due to its decode-and-dispatch interpretation
style. However, the VM-state of this obfuscator is hard to be analyzed due
to the MMX instructions such as palignr mmx7, mmx7, 0x7. To handle this
situation we add an extra MMX instruction analysis to Nightingale so that
it could parse these handlers. As the handlers are parsed, the VM-state of this
obfuscator is finally defined as an 8× 8 byte array, which reflects the eight MMX
registers (each register is 128-bit). Also notice that in the host language (x86
Assembly) there is no corresponding instruction for those SIMD operations, e.g.,
an 128-bit xor operation, we manually add some template functions to fulfil such
operations.
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Paris-VM. Paris-VM is the most special sample in our analysis. It uses three
continuous memory buffers plus four independent bytes to store the VM-state.
Instead of using either threaded interpretation or decode-and-dispatch interpre-
tation, this VM executes every handler in each iteration. Only one handler is
effective in each iteration and this is determined by the current VM bytecode.
Each handler first executes its own functionality and then performs a calculation
according to the VM bytecode. Only if the result corresponds to particular han-
dler, the updating of VM-state could be preserved. Otherwise, state updating of
those ineffective handlers is restored from a mirror VM-state maintained by the
VM.

4.2 Case Studies

VMProtect 3.0. In our experiment we use VMProtect 3.0, the latest version of
VMProtect software (until 2015.08), to protect a sample program. VMProtect
inserts many interfering instructions in the handler to obscure the semantics
from being comprehended. Using our VM-state analysis proposed in Sect. 3.3,
we obtain a VM-state containing 53 units and according to relevant operations of
those 53 units, crucial instructions in this handler can be determined. After the
backward slicing with the information collected we obtain optimized handlers
and the simplification effect is shown in Fig. 4

Fig. 4. Handler simplification of VMP handlers

We use one of the handlers to illustrate our analysis. The original handler ful-
fils the functionality of poping two data elements from the virtual stack (VMPro-
tect uses ebp to store the virtual stack’s header pointer). Then those two ele-
ments are stored into eax and ecx register respectively. Finally a calculation
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((!eax) & (!ecx)), i.e., a NOR logic computation is executed and the results
of calculation and flag register modification are pushed into the virtual VM
stack. In addition, the decode procedure, which fetches a 4-byte VM code and
uses ret instruction to transit to next handler, is attached at the end.

Then we execute the handler translating on this result to obtain the trans-
lated code in Fig. 5. It shows the top 10 handlers with the most simplification
degree. The translated code is expressed in C and is able to be compiled (the
decode part of VM-state is omitted). We then integrated the entire translated
code of the execution trace to replace the original VM stub. The execution dis-
plays that our code updates the status of the program with the same semantics.

1 ...
2

3 void handler_NOR()
4 {
5 /* Pop 2 data from VM Stack */
6 // 0x44ae3c: mov eax, dword ptr [ebp];
7 (eax.r32[0]) = vm_state[22];
8 // 0x44ae47: mov ecx, dword ptr [ebp+0x4]
9 (ecx.r32[0]) = vm_state[24];

10

11 /* NOR */
12 // 0x44ae51: not eax
13 (eax.r32[0]) = (~(eax.r32[0])) & 0xffffffff;
14 // 0x44ae55: not ecx
15 (ecx.r32[0]) = (~(ecx.r32[0])) & 0xffffffff;
16 // 0x44ae5d: and eax, ecx
17 (eax.r32[0]) = (eax.r32[0]) & (ecx.r32[0]);
18

19 /* Push Result to VM Stack */
20 //44ae5f: mov dword ptr [ebp+0x4], eax
21 vm_state[24] = (eax.r32[0]);
22

23 // Push Flag to VM Stack
24 // 0x44ae6b: pushfd
25 (esp.r32[0]) = (esp.r32[0]) - 0x4;
26 // 0x44ae76: pop dword ptr [ebp]
27 *(unsigned int *)(esp.r32[0]) = eflags.r32[0];
28 vm_state[22] = *(unsigned int *)((esp.r32[0]));
29 (esp.r32[0]) = (esp.r32[0]) + 0x4;
30

31 /* Fetch next handler offset */
32 // 0x44ae8e: mov eax, dword ptr [esi]
33 (eax.r32[0]) = (*(unsigned int *)((esi.r32[0])));
34

35 /* Offset Decryption
36 Calculating next Handler address */
37 ...
38 }

Fig. 5. A translated handler of VMProtect obfuscated code

Foodie-VM. Foodie-VM is a VM that simulates an online shellcode battle
between two players. The authors have released the source code so we can verify
the de-obfuscation result, especially the recovered VM-state with the original
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1 // MOVri source code
2 int32_t vm(Ins *code, uint32_t code_size, char *input)
3 {
4 ...
5 for (i = 0; i < code_size && executing == VM_EXECUTING; ++i)
6 {
7 Ins ins = read_mem(ctx->memory, ctx->pc);
8 Opcode op = get_opcode(ins);
9 ctx->pc++;

10 switch(op)
11 {
12 ...
13 case MOVri:
14 reg0 = get_reg_idx(ins, 0);
15 if (reg0 == ERR_REG_IDX)
16 executing = VM_STOP;
17 else
18 ctx->reg[reg0] = (Reg)get_imm(ins);
19 break;
20 ...
21 }
22 }
23 ...
24 }

(a) Source code of Foodie-VM

1 // Result of Handler Translating
2 void MOVri()
3 {
4 ...
5 // Fetch Immediate from VM bytecode
6 eax.r32[0] = (*(unsigned short *)((ebp.r32[0]) + 0x8));
7 eax.r32[0] = (eax.r32[0]) & 0x3ff;
8

9 // Get VM Context address
10 ecx.r32[0] = vm_state[11];
11

12 // Update VM Register with Immediate
13 vm_state[18] = (eax.r16[0]);
14 ...
15 // Update VM PC
16 edx.r16[0] = vm_state[17];
17 edx.r16[0] = (edx.r16[0]) + 0x1;
18 vm_state[17] = (edx.r16[0]);
19 ...
20 }

(b) Translated handler of MOVri operation

Fig. 6. Comparison between original code and translated handler of Foodie-VM

structure. We got 104 memory units from the VM-State Analysis. After value-
based backward slicing and handler Translating, all of the vm bytecode handlers
were successfully translated. Figure 6 lists one bytecode named MOVri, which
fulfils the function of moving one immediate into VM register that specified in
the operand component of the bytecode (we only reserve the key part of the
source code and translating result).
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In the result of handler translating, new code fetches 4 bytes whose memory
address is specified in ebp.r32[0] (line 6 of Fig. 6b) and stores the fetched data
to vm state[18] (line 13 of Fig. 6b). The corresponding operations in source code
are listed at line 19 of Fig. 6a, which indicate the assignment from immediate
operand of VM bytecode to the VM register reg0. Finally, vm state[17] increases
by one (line 16–18 in Fig. 6b), which corresponds to ctx->pc++ in source code.
From the result analysts could infer that vm state[17] is the VM’s virtual PC
after observing all of the handlers since most of handlers have to update the
VM’s virtual PC during execution. Thus, our translated results will be helpful
to accelerate the process of reverse engineering.

5 Related Work

Code obfuscation is an active and practical field of code protection. Although
the theoretic proof of impossibility of perfect obfuscation has been provided by
Barak et al. [1] in 2012. There are still numerous code obfuscation schemes and
most of them are ad hoc implemented. These schemes can be classified into two
categories. Schemes in the first category mainly work with source code only,
and cover many programming languages include C, C++, Java and C#. Among
them, the Obfuscator-LLVM [7] (OLLVM) project is a recently emerged obfus-
cation scheme that takes advantage of the feature of LLVM-IR to help obfuscate.
It is initiated in June 2010 by the information security group of the University
of Applied Sciences and Arts Western Switzerland of Yverdon-les-Bains (HEIG-
VD). As it works at the Intermediate Representation (IR) level, Obfuscator-
LLVM compatible with all programming languages and target platforms cur-
rently supported by LLVM. Thus it is widely deployed by many applications on
different ISAs.

The second category of code obfuscation schemes could manipulate binary
code and are frequently used by commercial software and malware. Two famous
obfuscation software providers, VMProtect Software [17] and Oreans Technolo-
gies [9], release a vast majority of publicly known obfuscators such as VMProtect,
Themida, WinLicense, and Code Virtualizer). Other binary code obfuscators
such EXEcryptor [16] and SafeEngine [12] may even be more complex, but are
not so popular and less used mainly due to their compatibility issues.

To the best of our knowledeg, the work of Sharif et al. [13] proposed the
first generic de-obfuscation approach against VM based code obfuscation. They
mainly relies on abstract variable analysis and binding to recognize VPC (vir-
tual pc of the emulator) and re-construct the CFG. Their work provides a clear
definition of the VM analyzed. However, their analysis relies on the assumption
of certain VM structure and only focuses on recovering structure (CFG) of the
VM bytecode. This is less meaningful for VM based code obfuscation because
a VM stub is generally transformed from a relatively simple function or basic
block. It is the bytecode’s definition rather than the structure that gives the
information of the obfuscation code. Yadegari et al. [20] also propose a generic
de-obfuscation approach. The advantage of their proposed approach is that it
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does not make any assumptions about the nature of the obfuscation scheme, but
instead using semantics-preserving program transformations to simplify away
obfuscation code. Although the proposed code simplification technique is effec-
tive, the main target of their approach is still the CFG and the approach does
not provide any concrete bytecode definition.

Coogan et al. [3] proposed a semantics-based approach to de-obfuscate com-
mon commercial obfuscators. However they make a strong assumption that
requires the involving of system calls to help analyzing. This assumption is not
valid for many VM stubs and thus their approach is not universal. Rolf Rolles
gives a well-defined de-obfuscation procedure on unpacking virtualization obfus-
cators in [10] and proposes a semantics-based methods in [11]. However these
work lacks details on handling many obfuscator variants and do not scale.

Specific de-obfuscation tools corresponding to particular version of obfusca-
tors are frequently developed. VMSweeper is a plugin of popular Ollydbg debug-
ger that helps decompile VM code of Code Virtualizer (Oreans Technology) and
VMProtect (VMProtect Software). Oreans UnVirtualizer is also an Ollydbg plu-
gin that focus on analyzing Code Virtualizer. In response to LLVM-IR based
obfuscation, de-obfuscation technique [5] against OLLVM is also proposed. This
technique utilize Miasm [2], a Python open source reverse engineering framework,
to deal with specific cases of Control Flow Flattening, Bogus Control Flow, and
Instructions Substitution. Besides, there are works concentrating on particular
aspects of de-obfuscation. Using symbolic execution to help de-obfuscate VM
stub is a promising strategy and many studies have been proposed [6,15,19].
Other de-obfuscation techniques include using probable-plaintext attacks to de-
obfuscate malware [18] and simplifying obfuscated machine Code [4].

For famous code obfuscator, corresponding analysis tools are able to deal
with fixed pattern and recover the obfuscated code with necessary manual effort.
However, as the obfuscators change or evolve, these tools are immediately not
available. This becomes an endless arms race and the designers of VM obfuscator
have the advantage of adopting “security by obscurity” strategy. Moreover, for
those obfuscators in the wild, there is no known effective de-obfuscation tool
to analyze them. As a result, our automated and universal analysis is more
profitable.

6 Conclusion

In this paper we study the VM based obfuscation and propose a binary transla-
tion approach to simplify the embedded VM stub in a host program. Our app-
roach differs from most recent de-obfuscation schemes for its VM-state analysis,
which is a universal analysis against various VM implementations. Based on the
VM-state a clear expression of VM handler is generated and translated into host
language. This translated code can replace the VM stub and fulfil same func-
tionality, and is easily to understand and more efficient. Experiments on five
different VMs illustrate the feasibility of our approach.
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Abstract. Information flow security states that secret information should not
affect what is publicly observable. Such a requirement is usually expressed as a
noninterference policy, which in general stipulates that the executions of a
program must be indistinguishable to public observers when the program runs
on inputs that differ only in secret values. When applied to multithreaded pro-
grams, an appropriate noninterference policy should specifically care about the
nondeterministic behavior of programs resulting from the fact that the under-
lying scheduler is not known a priori. Observational determinism is such a
policy that we aim to enforce in multithreaded programs. To do so, we first
elaborate on how the inputs that are equivalent to public observers may lead to
different public outputs. This, in turn, helps us propose a run-time verification
mechanism based on threaded program dependence graphs and dynamic pro-
gram slicing to prevent what causes the policy to be violated. The proposed
mechanism is provably sound and is more permissive than analogous static
mechanisms. It is also shown that the mechanism prevents illegal information
flows when programs run in environments with different thread schedulers.

Keywords: Concurrent programs � Dynamic program slicing � Information
flow security � Run-time verification � Observational determinism

1 Introduction

Information flow security is usually expressed as a noninterference policy. Such
policies, in general, demand that runs of a secure program on inputs that differ only in
secret (high) values be indistinguishable to public (low) observers, who can only
observe public (low) values [1]. The enforcement of such a policy in multithreaded
programs is more challenging than that in sequential programs because, in multi-
threaded programs, a variable may be defined in one thread and be used in another
thread. In addition, a multithreaded program may run in an environment with a
scheduler that is not known a priori. Thus, an appropriate information flow policy for
such programs should be independent of the scheduler the program runs on.

There are a number of suggestions for an appropriate information flow policy for
multithreaded programs among which observational determinism [2] has received great
attention. This policy requires a program to be deterministic in the view of public
observers. If all possible runs of a multithreaded program on low-equivalent inputs are
indistinguishable to low observers, the program is deterministic in the view of low
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observers and satisfies observational determinism. This policy indeed formulates a
scheduler-independent information flow policy.

One promising mechanism for information flow control is the use of data and
control dependence graphs in identifying possible paths of information flows from
secret to public variables [3]. Indeed, one should find those parts of a program, also
known as a slice, that potentially influence the amounts calculated at a point of interest.
Given a program dependence graph (PDG) and a slicing criterion, which is a node on
the PDG, a slice for the node consists of all nodes from which there is a path to the
slicing criterion. A noninterference policy can in general be enforced if the slice for any
statement creating publicly observable values does not include the statements or
expressions that depend on secret values [4–6].

Incorporating the concept of dependence analysis into multithreaded programs has
led to so-called threaded PDGs (tPDGs) [7, 8]. In addition to the types of edges an
ordinary PDG has, threaded PDGs also include edges to reflect the possibility of
parallel execution and edges to address intransitive data dependence among threads. To
employ tPDGs in the run-time verification of observational determinism, we also define
two relations on the nodes of a tPDG. A node N1 that defines a variable x in a thread is
said to have a data conflict with any node N2 defining or using x in another thread,
provided the two threads can run concurrently. Moreover, any pair of nodes repre-
senting the commands that output values on public channels in concurrent threads are
said to be in output conflict with each other.

By using tPDGs, we devise a mechanism that applies program slicing to enforcing
observational determinism in multithreaded programs. To achieve a higher precision,
however, we make use of dynamic slices instead of static ones. Indeed, among the
nodes of the tPDG located in the slice for a given slicing criterion, we only consider the
nodes that have already traversed in the current run of the program together with the
untaken nodes controlled by secrets conditionals. Slicing criteria for enforcing obser-
vational determinism are outputs on public channels.

Whenever the program is going to execute a public output command, the proposed
mechanism investigates if there exist data and control paths from the nodes defining
secret variables to this output command in the corresponding dynamic slice. The
mechanism suppress the execution of the output command if there exist such paths of
information. The mechanism also checks that there are no pairs of nodes with data
conflict relation in the dynamic slice of the public output command. If such nodes
occur in the slice, the mechanism suppresses the output command. The mechanism also
suppresses any public output that is in output conflict with some other output com-
mands in the tPDG of the program. We evaluate the proposed mechanism by applying
it to example multithreaded programs which run on different thread schedulers. We also
give a formal proof of the soundness of the proposed mechanism.

This paper goes on as follows: Sect. 2 defines some basic concepts. In Sect. 3, we
devise a run-time verification mechanism for observational determinism. Section 4 is
on the verification of the proposed mechanism. Section 5 concludes the paper.
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2 Preliminaries

A program slice consists of parts of a program that potentially affect the value of
variables as well as the mere execution of the command at a particular point of the
program [9–12]. Program slicing is to find such parts of the program given a so-called
slicing criterion, which is a pair C of a point P of interest and a subset V of variables
therein. A slice for C is a subset of commands in the original program. Static slicing is
to find such a subset of commands irrespective of the actual path taken at run-time.
A dynamic slice, on the contrary, does not include those commands not executed at
run-time. By dynamic slicing, one can analyze programs more accurately [13]. Notice
that program slicing may be based on abstract interpretation where properties of values,
i.e., abstract values, are considered in lieu of concrete values at slicing criteria [14].

A program dependence graph (PDG) is a directed graph whose nodes represent
statements or expressions of a program and edges represent data and control depen-
dence among the nodes. PDGs are extended to threaded programs [7, 8] in which case
they are called threaded PDGs or tPDGs for short. In addition to control and data
dependencies, these graphs also encode so-called interference dependence among the
nodes. A node N2 of one thread is said to be interference dependent on a node N1 of
another thread if a variable used in N2 is defined in N1, provided the two threads can
run concurrently.

Given the PDG of a sequential program, a slicing criterion is a node of the graph
and the corresponding slice consists of all the nodes of the PDG having a path to the
slicing criterion. Indeed, paths on PDGs reflect dependencies because data and control
dependence are transitive relations. Paths on tPDGs, however, may not necessarily
reflect dependencies among the nodes, since interference dependence is not transitive.
Throughout this paper, we make use of the algorithms presented in [7, 8] to find the
slices of multithreaded programs.

A noninterference policy in general states that the runs of a program on the same
public (low) inputs should be the same in the view of public observers [1]. That is, any
change in secret (high) inputs has no effect on public outputs of the program. An
important instantiation of this concept for concurrent programs is known as observa-
tional determinism [2]. This policy is an appropriate formulation of information flow
security for nondeterministic systems and demands that programs be deterministic in
the view of public observers. Because the scheduling policy of the environment is not
known a priori, a multithreaded program is indeed a nondeterministic system. Thus,
observational determinism stipulates that low observers can learn nothing about high
inputs no matter which scheduler the environment employs.

One may make use of PDGs for enforcing information flow policies in sequential
programs [15–18]. It is known that if there is no path from a node N1 to another N2 on
the PDG of a given program, no information flows from N1 to N2—we exclude the
flows that result from side channels. This indicates that PDGs can be used in run-time
verification for information flow policies [19–22]. In particular, PDGs may convey the
lattice of security labels so that a number of flow relations, which are required for
security, can be derived [16]. A run-time mechanism using dynamic slicing has also
been devised for enforcing information flow policies in sequential programs [17].
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A tool for analyzing information flow control in Java bytecode has also been intro-
duced which derives PDGs from program texts and employs program slicing to enforce
noninterference [23].

3 Dynamic Program Slicing for Enforcing Observational
Determinism

We propose a run-time mechanism that uses tPDGs to enforce observational deter-
minism. The mechanism computes dynamic slices and prevents illegal flows at
run-time. Attackers are assumed to know the program, the low inputs to the program,
and the values the program outputs on public channels.

The programming language we consider in this paper is a While language that
supports multithreaded programming. For the sake of simplicity, it is assumed that
programs do not include nested threads. Moreover, threads exchange information
through shared memories. Every program begins with a block of input commands. The
input block may be followed by a sequence of non-input commands that run
sequentially. To create threads, one may put a number of threads {c}, separated by
commas, between cobegin and coend. The command inputLðvarÞ reads a value from an
input channel with security label L and stores it in the variable var. Similarly,
outputLðvarÞ outputs the value of variable var on an output channel whose security
label is L. Security labels are assumed to make a lattice ð L;Hf g; �Þ where L�H. The
syntax of the language is shown in Fig. 1.

Definition 1. An event is defined to be a triple ðtype; label; valÞ where type 2 fI;Og
indicates the type of the event which is either input (I) or output (O), label is the
security label of the corresponding channel, and val is the value read form or written to
the channel. A trace of a program is a sequence of events the program can generate at
run-time. A low event is defined to be an event whose label is L. A low observable
behavior of a program is a subsequence of a trace t of that program, denoted by tL,
obtained by removing high events from t.

Notice that any trace of any program of our multithreaded While language begins
with a fixed number of input events. It is also worth noting that the sequence of events a

Fig. 1. Syntax of the multithreaded while language.
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program generates is obtained from the semantics of the language. Here, we assume the
standard semantics of While languages [15, 24]. The root of the nondeterministic
behavior of programs is in the way the unknown thread scheduler determines which
thread should be run at a given step of a computation, see [25–27] for how one may
model the interaction between a program and an unknown scheduler in the language
semantics.

Definition 2. A program is said to satisfy observational determinism if for every pair t
and u of traces of that program, tL ¼ uL holds whenever tinL ¼ uinL , where tinL is the
subsequence of t consisting of low input events.

Definition 3. A node N1 in the tPDG of a multithreaded program defining a variable in
a thread is said to have data conflict with another node N2 in another thread if N2

defines or uses that variable and the two threads can run concurrently. Two nodes in
different threads are said to have output conflict if the nodes represent the commands
that output public values and the threads can run concurrently.

We present a run-time verification mechanism for observational determinism. The
mechanism makes use of the tPDG of the target program and the nodes marked at
run-time to decide whether an output command should be suppressed. The proposed
mechanism indeed derives the dynamic slice of low output commands from the tPDG
of the program as well as the actions the program takes at run-time. In this way, the
mechanism is able to guarantees that

• the target program never outputs the low values that depend on high inputs,
• data conflicts have no effect on low outputs, and
• the program never runs the commands having output conflict.

The first point above ensures that implicit and explicit flows do not leak high
information. The second and the third guarantee that the value and the order of public
outputs do not depend on the underlying scheduler. Figure 2 gives a high-level
description of how the proposed mechanism uses tPDGs to enforce these requirements.
The mechanism can indeed be thought of as an algorithm (program) that runs in
parallel with the target program. It is assumed that each thread has its own program
counter, which keeps track of the commands of the thread that have already been
executed. If the mechanism decides not to execute the command of the current thread,
the program counter of that thread is incremented without the execution of that com-
mand. Notice that the scheduler selects a thread for execution after the execution of an
instruction. The following are the functions used in Fig. 2.

• MarkAsExecutedðPCÞ: marks as executed the node of the tPDG represented by PC.
• DynamicSliceðPCÞ: calculates the dynamic slice for the slicing criterion represented

by PC.
• evalðeÞ: returns the value of expression e.
• MarkRegionAsExecutedðPC; bÞ: gets a program counter and a Boolean value and

marks as executed the nodes representing the branch of the control structure not
taken in case the value of the condition part is b.

• StatementAtðPCÞ: returns the statement PC points to.
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• EnterDCðDynamicSliceðPCÞÞ: returns the nodes having data conflict with the nodes
in the dynamic slice of the slicing criterion represented by PC.

The mechanism described in Fig. 2 operates as follows: it marks as executed any
statement on the tPDG of the program before executing the statement. To control
information flow, the mechanism conducts specific run-time analyses of output com-
mands and control structures. For an output command in the current thread, the
mechanism first checks that its corresponding node on the tPDG is not in output
conflict relation to any other output command of the program. Then, the mechanism
verifies that there is no explicit or implicit information flow from secret variables to this
output command. Moreover, it is checked that no node in the tPDG of the program is in

///Verify observational determinism using tPDGs
//PC_Thread[Num] is the program counter of the thread NUM

INPUTS:  
1. A tPDG with data and output conflict relations 
2. Secret = the set of secret variables 

while (not end of program) do
  Num = Get the thread number from the scheduler(); 
  MarkAsExecuted(PC_Thread[Num]); 

Case statementAt(PC_Thread[Num]) do
output: 

if (PC_Thread[Num] is in output-conflict relation) then
         PC_Thread[Num] = PC_Thread[Num] + 1; //NOP 
         Continue; // Go to while statement 

endif
if (DynamicSlice(PC_Thread[Num])  Secret != ) then

         PC_Thread[Num] = PC_Thread[Num] + 1;  
         Continue;  

endif
   List = EnterDC(DynamicSlice(PC_Thread[Num])); 

If (List != ) 
         PC_Thread[Num] = PC_Thread[Num] + 1;  
         Continue;  

endif
if(e):

if (DynamicSlice(PC_Thread[Num])  Secret != ) then
         MarkRegionAsExecuted(PC_Thread[Num],not eval(e)); 

endif
while(e):

if (DynamicSlice(PC_Thread[Num])  Secret != ) then
if (eval(e) == false) then 

            MarkRegionAsExecuted(PC_Thread[Num],true); 
endif

endif
endCase

 execute(PC_Thread[Num]); 
 PC_Thread[Num] = PC_Thread[Num] + 1; 
Wend

Fig. 2. A run-time verification mechanism for observational determinism based on tPDGs and
dynamic program slicing.
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data conflict relation to some node in the dynamic slice of this output command. If the
verification fails in any of the stages above, the mechanism suppresses the execution of
the output command and goes to the next command to be executed. It is worth noting
that the mechanism may also replace such an output command with some other
commands [15]. The mechanism marks the untaken branch of a conditional statement
whenever there exists a secret variable in the dynamic slice of the node representing the
condition part of the statement.

4 Verifying the Proposed Mechanism

To illustrate how effective the proposed mechanism is, we apply it to the program of
Fig. 3 in environments with different schedulers. We also give a formal proof of the
soundness of the mechanism. In what follows, it is assumed that all threads are within a
main thread and each thread has its own program counter. The threads of a program are
numbered with natural numbers and the main thread is numbered 0. The thread
numbered i is denoted by Ti and its program counter is noted PCi. The tPDG of the
program of Fig. 3 is shown in Fig. 4. The mechanism is applied to the program where
the environment employs a round-robin or a FIFO scheduler and the results are given in
Tables 1 and 2. Notice that nodes N11 and N16 are in output conflict relation to each
other and N14 are in data conflict relation to N11. There are no other pairs in output
conflict and data conflict relations associated with the tPDG of the program.

begin 
   inputH(h1);   1 
   inputH(h2); 2 
   inputL(l1); 3 
   inputL(l2); 4 
   cobegin { 
      l1 = 2; 5 
      if (h1 >= 0) then  6 
         Skip; 7 
         Skip; 8 
         Skip 9 
                   else  
         Skip 10 
      endif; 
      outputL (l1) 11 
      },{ 
      while (h2 < 0) do  12 
         h1 = h1 + 1 13 
      endw; 
      l1 = 3; 14 
      l2 = 4; 15 
      outputL (l2) 16 
      } 
   coend 
end 

Fig. 3. A program of the multithreaded while language.
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Table 1 gives the result of executing the program of Fig. 3 in the presence of the
proposed run-time mechanism and in an environment with a round-robin scheduler.
The inputs are h1 ¼ 1, h2 ¼ 2, l1 ¼ 1, and l2 ¼ 2. The secret variables are those that
occur at lines 1 and 2. Thus, the set of secret variables is Secret ¼ f1; 2g. For the sake
of simplicity, we take PCi to be equal to the line numbers the program counter points
to. The action execute PCið Þ denotes executing the command PCi refers to. By
markðPCiÞ, we mean the mechanism marks as executed the corresponding node on the
given tPDG. Moreover, sliceðPCiÞ is the result of computing the dynamic slice for the

Start
N0

inputH (h1)
N1

inputH (h2)
N2

inputL (l1)
N3

inputL (l2)
N4CoStart

Start Start

Skip
N7

Skip
N8

Skip
N10

outputL(l1)
N11

l1=2
N5

if (h1>=0)
N6

Skip
N9

while (h2<0)
N12

h1=h1+1
N13

l1=3
N14

l2=4
N15

outputL (l2)
N16

Control Flow   
Parallel Flow
Data Dependency
Control Dependency
Interference Dependency

Fig. 4. The tPDG of the program shown in Fig. 3
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node represented by PCi. It is also assumed that one command is executed in every
quantum of the scheduler. As seen, output command at lines 11 and 16 are not exe-
cuted, and thus, a low observer sees no output when the program runs under the
proposed mechanism. As seen in Table 2, the same holds when the program runs in an
environment with a FIFO scheduler. This demonstrates that the proposed mechanism
can enforce observational determinism.

4.1 Proof of Soundness

We prove that the proposed mechanism is sound for observational determinism. That
is, by using the mechanism, for every program of the multithreaded While language, a
low observer sees the same sequence of low events irrespective of the high inputs to the
program and the thread scheduler employed by the run-time environment.

Lemma 1. Let t and u be two traces of program P and tinL ¼ uinL . Then, the position of a
low output event produced by a specific output command in P is the same in tL and uL
whenever P runs in the presence of the proposed mechanism.

Proof. Suppose that e is a low output event at position i of tL which results from the
execution of an output command c at a specific line of P. This occurs if c is not in

Table 1. The result of executing the program shown in Fig. 3 using the proposed mechanism
where the run-time environment uses a round-robin scheduler.

Secret = {1,2}, Inputs:h1 = 1, h2 = 2, l1 = 1, l2 = 2

PC1 PC2 T Memory Mechanism’s actions After
execution

5 T1 [h1 = 1, h2 = 2, l1 = 1,
l2 = 2]

execute (5) l1 = 2
PC1 = 6

12 T2 [h1 = 1, h2 = 2, l1 = 2,
l2 = 2]

slice(12) = {2}, mark
(13), execute(12)

PC2 = 14

6 T1 [h1 = 1, h2 = 2, l1 = 2,
l2 = 2]

slice(6) = {1, 13},
mark(10), execute(6)

PC1 = 7

14 T2 [h1 = 1, h2 = 2, l1 = 2,
l2 = 2]

execute (14) l1 = 3
PC2 = 15

7 T1 [h1 = 1, h2 = 2, l1 = 3,
l2 = 2]

execute (7) PC1 = 8

15 T2 [h1 = 1, h2 = 2, l1 = 3,
l2 = 2]

execute (15) L2 = 4
PC2 = 16

8 T1 [h1 = 1, h2 = 2, l1 = 3,
l2 = 4]

execute (8) PC1 = 9

16 T2 [h1 = 1, h2 = 2, l1 = 3,
l2 = 4]

slice(16) = {15} END T2

9 T1 [h1 = 1, h2 = 2, l1 = 3,
l2 = 4]

execute (9) PC1 = 11

11 T1 [h1 = 1, h2 = 2, l1 = 3,
l2 = 4]

slice(11) = {5, 14} END T1

Run-Time Verification for Observational Determinism 413



output conflict relation to any other nodes of the tPDG of P. Also, assume that e0 is an
event at position j of u which occurs when c is executed. If i 6¼ j, it has been possible
for c to run concurrently with some other output commands of P. This means that c is
in output conflict relation to some other output command, which is a contradiction.

Lemma 2. Let e be a low output event in a trace t of program P that is executed in the
presence of the proposed mechanism. Then, the same event e occurs in any trace u with
uinL ¼ tinL .

Proof. Because e occurs in t in the presence of the proposed mechanism, the command
c producing e does not depend on high variables. Moreover, there exists no node on the
tPDG of P that is in data conflict to any node the dynamic slice of c. Similarly, c is not
in output conflict to any node of the tPDG of P. Thus, e occurs in any other trace u with
uinL ¼ tinL .

Theorem 1. The proposed mechanism is sound for observational determinism.

Proof. It is immediate form Lemmas 1 and 2.

Table 2. The result of executing the program shown in Fig. 3 using the proposed mechanism
where the run-time environment uses a FIFO scheduler.

Secret = {1,2}, Inputs:h1 = 1, h2 = 2, l1 = 1, l2 = 2

PC1 PC2 T Memory Mechanism’s actions After
execution

5 T1 [h1 = 1, h2 = 2,
l1 = 1, l2 = 2]

execute (5) L1 = 2
PC1 = 6

6 T1 [h1 = 1, h2 = 2,
l1 = 2, l2 = 2]

slice(6) = {1, 13}, mark
(10), execute(6)

PC1 = 7

7 T1 [h1 = 1, h2 = 2,
l1 = 2, l2 = 2]

execute(7) PC1 = 8

8 T1 [h1 = 1, h2 = 2,
l1 = 2, l2 = 2]

execute (8) PC1 = 9

9 T1 [h1 = 1, h2 = 2,
l1 = 2, l2 = 2]

execute (9) PC1 = 11

11 T1 [h1 = 1, h2 = 2,
l1 = 2, l2 = 2]

slice(11) = {5,14} PC1 = 12
END T1

12 T2 [h1 = 1, h2 = 2,
l1 = 2, l2 = 2]

slice(12) = {2}, mark(13),
execute (12)

PC2 = 14

14 T2 [h1 = 1, h2 = 2,
l1 = 2, l2 = 2]

execute (14) PC2 = 15
l1 = 3

15 T2 [h1 = 1, h2 = 2,
l1 = 3, l2 = 4]

execute (15) PC2 = 16
l2 = 4

16 T2 [h1 = 1, h2 = 2,
l1 = 3, l2 = 4]

slice(16) = {15} END T2
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5 Conclusion

This paper proposes a run-time verification mechanism for observational determinism.
The mechanism is based on modified dynamic slices of multithreaded programs. The
proposed mechanism indeed ensures a fixed order of execution for the nodes whose
execution leads to low observable outputs. In doing so, the mechanism prevents any
race on public outputs. It also guarantees that there is no explicit or implicit flow from
high to low information resulting from the sequential or concurrent execution of
commands. We prove that the proposed mechanism is sound and give examples
showing how the mechanism prevents illegal flows when programs run on different
thread schedulers. Extending the ideas presented in this paper to the languages sup-
porting classes, objects, and other features of modern languages deserves future
research. Another challenging problem is to modify the mechanism so that it can
suppress fewer output commands.
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Abstract. A recent trend in the construction of security protocols such
as voting and certificate management systems is to make principals
accountable for their actions. Whenever some principals deviate from
the protocol’s prescription and cause the failure of a goal of the sys-
tem, accountability ensures that the system can detect the misbehaving
parties who caused that failure. Accountability is an intuitively stronger
property than verifiability as the latter only rests on the possibility of
detecting the failure of a goal. A plethora of accountability and verifia-
bility definitions have been proposed in the literature. Those definitions
are either very specific to the protocols in question, hence not applicable
in other scenarios, or too general and widely applicable but requiring
complicated and hard to follow manual proofs.

In this paper, we advance formal definitions of verifiability and
accountability that are amenable to automated verification. Our defi-
nitions are general enough to be applied to different classes of proto-
cols and different automated security verification tools. Furthermore, we
point out formally the relation between verifiability and accountability.
We validate our definitions with the automatic verification of three pro-
tocols: a secure exam protocol, Google’s Certificate Transparency, and
an improved version of Bingo Voting. We find through automated ver-
ification that all three protocols satisfy verifiability while only the first
two protocols meet accountability.

1 Introduction

In the real world, disputes among principals can be resolved with trials. A judge
or jury will decide on a trial according to the evidence presented by the parties.
In the digital world, even if the design of a security protocol is sound, dishon-
est principals may still attempt attacks that cause protocol functional failures.
Similarly to real-world protocols, principals should be able to raise disputes in
which a judge blames principals who caused the failure according to the evi-
dence. This notion is known as accountability and ensures that (i) failures are
detectable and (ii) misbehaving principals can be blamed. Accountability is a
stronger notion than verifiability as the latter only requires that the failure of a
protocol’s goal can be detectable [1]. Thus, security protocols should be designed
to provide adequate evidence to enable accountability. In so doing, principals are
discouraged to misbehave, fostering minimal intentional protocol failures.

c© Springer International Publishing AG 2017
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Contribution. The goal of this paper is to fully mechanise the analysis of verifi-
ability and accountability in security protocols. We propose definitions based on
the existence of an accountability test that decides whether a principal should
be blamed for the failure of a protocol’s goal. We conveniently adapt a generic
definition of protocol advanced by Küsters et al. [2] to specify the soundness
and completeness conditions for accountability tests that can be checked by
automated security protocol tools. We show that verifiability is a necessary con-
dition for accountability and our treatment of accountability is general enough to
apply to different tools and protocols. Then, we validate our definitions in three
different case studies with two different tools. The first case study is about a
secure exam protocol, and we check accountability with ProVerif [3]. The second
case study concerns Google’s Certificate Transparency, and we prove account-
ability with AIF-ω [4]. The third case study considers an improved version of
Bingo Voting, which is analysed again with ProVerif.

Outline. The paper is organised as follows. Section 2 discusses some related
work. Section 3 details our definitions of verifiability and accountability. Section 4
validates the definitions in a secure exam protocol. Section 5 details the formal
analysis of Google’s Certificate Transparency. Section 6 analyses verifiability and
accountability in Bingo Voting. Finally, Sect. 7 concludes the paper.

2 Related Work

In this paper we define an accountability test, which can be used to decide if a
protocol is accountable, meaning if it has the capability to single out reliably the
parties (if any) that are compromised and behaving dishonestly. A precondition
for our accountability test is verifiability that is designed to detect if something
went wrong in the first place. The hallmark characteristic of our accountability
and verifiability definitions is that they are mechanizable in the symbolic model.
The definition of our criterion is formalism and tool independent, which sets it
apart from related projects, which we discuss briefly below.

Our work builds on the work by Küsters et al. [2] who define notions of
accountability and verifiability in the symbolic and computational models. The
symbolic definitions aim at precisely describing the assessment of the level of
accountability that a protocol provides. This comes at the cost of definitions that
may not be amenable to automated analysis as the verification approach would
heavily depend on the accountability property under consideration. Differently,
our definitions are explicitly adapted for checking accountability with automated
security protocol tools. To aid the reader familiar with Küsters et al. work in
comparing our work to theirs, we revisit in this paper the example of Bingo
Voting, whose analysis was supported with manual proofs in Küsters et al.’s
work.

Milner et al. [5] focus on a provably sound detection of misuse of secrets.
Their work has yielded new insights into detecting the misuse of a Certification
Authorities key on the Internet and contributed to the broader area of Certificate
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Transparency. Again, to aid the reader familiar with this work to compare their
results to ours, we demonstrate how to mechanise this argument in AIF-ω [4].

Jagadessan et al. [6] proposed a framework that deals with the general notion
of accountability but cannot deal with cryptography. Bella and Paulson [7]
advanced a computer-assisted analysis of accountability of the Zhou-Gollman
non-repudiation protocol [8]. Similarly, Abadi and Blanchet [9] analysed account-
ability for a certified email protocol. The definitions proposed in these works are
not general but specific to the protocols in question.

The notion of verifiability has been extensively studied in voting [1,10]. The
notion of individual verifiability signifies that voters can verify that their votes
have been handled correctly, namely “cast as intended”, “recorded as cast”, and
“counted as recorded” [11,12]. The notion of universal verifiability has been
introduced to express the concept in which auditors can verify the correctness of
the tally using only public information [11,13,14]. Kremer et al. [10] formalised
both individual and universal verifiability in the applied pi-calculus. They also
introduced the requirement of eligibility verifiability, which expresses that audi-
tors can verify that each vote in the election result was cast by a registered voter,
and there is at most one vote per voter. Smyth et al. [15] used ProVerif to check
verifiability in three voting protocols. They express the requirements as reacha-
bility properties. Similarly, Dreier et al. [16] checked in ProVerif soundness and
completeness conditions for verifiability-tests in three auction protocols. In this
paper, we also analyse two security protocols in ProVerif. However, our defin-
itions of verifiability and accountability are constrained neither to the applied
pi-calculus nor ProVerif.

Guts et al. [17] defined auditability as the quality of a protocol, which stores a
sufficient number of pieces of evidence, to convince an honest judge that specific
properties are satisfied. Auditability is a weaker notion of accountability and
expresses the same concept of universal verifiability: anyone, even an outsider
without a private knowledge about the protocol execution, can verify that the
system relies only on the available pieces of evidence.

3 Definitions

We begin our formal treatment with the formal definition of a protocol, following
roughly the exposition of Küsters et al. [2]. Our definitions differ from theirs to
support better the mechanisation effort discussed below.

Definition 1 (Protocol). A protocol is a tuple P = 〈Ch,A,Π,G〉 such that:

– Ch = {ch1, . . . , chn} is a set of channels;
– A = {α1, . . . , αn} is a set of principals;
– Π is the set of programs run by the principals;
– G is the set of goals that the protocol aims to meet.

Given a set of primitive operations, for example, for sending and receiving
messages on channels, encrypting and decrypting messages using keys, etc. we
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refer to sequences of such operations as programs. The set of all such programs is
denoted by Π, with the intention that for each run of the protocol each principal
αi ∈ A is expected to running one and only one such program παi

∈ Π. We write
r for a run of the protocol. Each run produces a trace. A witness trace, which we
denote with t, is a run of the protocol from the point of the view of a principal
and serves as input and evidence for the verifiability and accountability tests.
We do not distinguish between input and output channels. Instead, we introduce
predicates g ∈ G that range over traces and distinguish the traces that achieve
the goal of a protocol from those that do not. As we shall see later, verifiability
and accountability definitions are pivoted on protocol’s goal. Thus, we detail its
treatment here to obtain clearer definitions later.

For each set of goals G, we define ΠG as the set of all tuples {παi
}αi∈A, where

each such tuple defines one program for each respective principal, that converge
towards satisfying all the goal defined within G, when running in parallel, as
(πα1 |πα2 | . . . |παn

). For instance, let us consider two principals, Alice and Bob,
who will communicate over some channel. The goal g of this protocol is that
Bob eventually receives some message. Let us consider the protocol consisting
of two programs (π1

Alice, π
1
Bob) that Alice and Bob are expected to run. The first

program consists of π1
Alice that sends one message while the other π1

Bob expects
to receive some message. Now, let us assume that Alice runs a different program
π2
Alice that sends two messages. Although Alice runs a program that deviates

from the original protocol prescription, the tuple of programs (π2
Alice, π

1
Bob) still

clearly converges towards the goal. Consequently, (π1
Alice, π

1
Bob) ∈ Πg as well as

(π2
Alice, π

1
Bob) ∈ Πg. We say that both programs π1

Alice, π
2
Alice are goal-convergent.

The specification of goals is left to the specific formalism adopted by the chosen
tool.

The introduction of the set ΠG is useful to clarify the notion of misbehav-
iour. A principal may run a program that deviates from the original protocol
prescription, but if such deviation is irrelevant for the purpose of achieving the
goal, the principal should not be considered as a misbehaving entity. This notion
of misbehaviour contrasts from the usual interpretation that a principal misbe-
haves if she runs any program that differs from the expected one. However, our
interpretation is necessary for accountability as in a dispute a judge should never
blame a principal who runs a goal-convergent program.

Having seen the definition of a protocol, we can specify the definition of
verifiability test as follows.

Definition 2 (Verifiability Test). A verifiability test vt(T , g) : bool is an
efficient and terminating algorithm such that:

– T is a set of witness traces;
– g is a goal in G.

The verifiability test should return true if, according to the evidence, a
protocol run met the goal. It should return false otherwise. In other words, the
verifiability test returns true if it accepts the set of witness traces, and false
otherwise. Definition 3 formalises the concept of verifiability.
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Definition 3 (g-verifiability). A Protocol P is g-verifiable if P admits a ver-
ifiability test vt that meets the following conditions:

1. (soundness) vt(T , g) : true =⇒ g holds in r(P );
2. (completeness) g holds in r(P ) =⇒ vt(T , g) : true;

for any run r(P ).

The soundness condition guarantees that the verifiability test returns true
only if the goal holds in a run. However, this condition alone is not sufficient:
a verifiability test that always returns false is sound but useless. Such kind of
possibilities is ruled out with the completeness condition. Completeness implic-
itly states that the verifiability test cannot fail if all principals execute programs
that converge towards the goal. It follows that P is correct as it meets the goal
when all principals behave honestly.

Both soundness and completeness conditions can be checked automatically
with cryptographic tools as reachability properties. For soundness, we check
that there exists no trace in which we reach a state where the verifiability test
returns true while the goal does not hold. For completeness, we check that there
exists no trace in which we reach a state where the verifiability test returns
false assuming all principals being honest. The analysis of three case studies
considered later in this paper demonstrates that such mechanisation is possible.

Next, we focus on accountability, more precisely on a test that can be used
to identify those principals who are responsible in the case a goal is not reached.

Definition 4 (Accountability Test). An accountability test atαy(T , g,A) :
bool is an efficient and terminating algorithm such that:

– T is a set of witness traces;
– g is a goal in G;
– αy is an indicted principal over the set of principals A.

The definition of the accountability test is methodologically close to the def-
inition of verifiability. The test should return true if according to the witness
traces the indicted principal αy did not run a goal-convergent program, namely
παi

/∈ Πg
αy

. The test should return false otherwise.
Now, we can advance a definition of accountability that is centred around a

principal and a protocol’s goal.

Definition 5 ((αy, g)-accountability). A Protocol P is (αy, g)-accountable if
given an indicted principal αy ∈ A, a goal g, and the set of its goal-convergent
programs Πg

αy
, P meets the following conditions

1. P is g-verifiable;

and P admits an accountability test atαy that meets the following conditions:

2. (soundness) atαy(T , g) : false =⇒ παy ∈ Πg
αy

;
3. (completeness) παy ∈ Πg

αy
=⇒ atαy(T , g) : false.

for any run r(P).
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Condition 1 guarantees that the event that triggers the failure can be identi-
fied, namely anyone can be convinced that a run of P failed to ensure the goal.
The relation between verifiability and accountability becomes clear here. If a goal
is not verifiable, then we cannot account any principal because we cannot state
whether the protocol run met the goal or not. Hence, verifiability is a precon-
dition for accountability. Note that condition 1 is goal-centred and independent
from the indicted principal αy.

Conditions 2 and 3 are defined similarly to the corresponding conditions for
verifiability: the accountability test returns true if it accepts the set of wit-
ness traces, and false otherwise. Soundness guarantees that the accountability
test returns false only if the indicted principal runs a goal-convergent pro-
gram. Completeness states that the accountability test cannot return true if
the indicted principal runs a goal-convergent program.

Remark. Verifiability is essential to have a meaningfulness definition of account-
ability. For example, let us assume a protocol P with three principals α1, α2,
and α3 of which only α1 is partially g-accountable (i.e. P is partially (α1, g)-
accountable) according to conditions 2 and 3 only. If α1 is not guilty (i.e. the
accountability test fails), then we cannot say anything else about accountability
in P without condition 1 since α1 is the only culpable principal. In particular,
we cannot say whether P failed because either or both α1 and α2 misbehaved or
due to an external attacker. We cannot even say if the protocol meets the goal.
If we can rule out the possibility for an external attacker, thanks to Condition 1,
we know that at least either or both α1 and α2 misbehaved although P is nei-
ther (α1, g)-accountable nor (α2, g)-accountable, something that we would miss
without Condition 1.

Finally, we propose the definition of full g-accountability. It states that a
protocol is fully accountable for a goal if the protocol is accountable for each
principal on that goal.

Definition 6 (Full g-accountability). A Protocol P is fully g-accountable if
∀α ∈ A, P is (α, g)-accountable for any run r(P).

It is easy to see that all three conditions in our definition of accountabil-
ity can be checked automatically. Condition 1 regards verifiability, and we have
already seen that soundness and completeness conditions of g-verifiability can
be modelled as reachability properties to be automatically checked by crypto-
graphic tools. Conditions 2 and 3 can also be modelled as reachability properties.
In particular, soundness can be checked by showing that there exists no trace
in which we reach a state where the accountability test returns false when all
principals but the indicted are honest, and the verifiability test fails. For com-
pleteness, we check that there exists no trace in which we reach a state where
the accountability test returns true when all principals but the indicted are
dishonest.

Table 1 describes the systematic approach that can be used to check verifi-
ability and accountability as reachability properties. This approach is validated
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Table 1. Strategies to model verifiability and accountability as reachability properties.

Property Condition Principals controlled
by the attacker

Strategy

Verifiability Soundness All (modulo the
goal)

vt(T , g) : true �
g holds

Completeness None vt(T , g) : true

Accountability Soundness Indicted vt(T , g) : false �
atαy(T , g) : true

Completeness All but the indicted atαy(T , g) : false

with two different tools and three different security protocols in the following
sections.

4 Case Study I: Secure Exam Protocol

Bella et al. [18] propose a secure exam protocol that does not rely on any trusted
party. Hence it can resist to corrupted candidates and authorities. The protocol
involves four roles (i.e. candidate, administrator, examiner, and invigilator), and
runs in four phases (i.e. preparation, testing, marking, and notification). The
most interesting aspect of the protocol regards the outcome of preparation, in
which candidate and administrator jointly generate the candidate’s pseudonym
as a pair of visual cryptography shares using an oblivious transfer scheme. One
visual crypto share is held by the candidate, who prints it on a paper sheet
together with signatures generated by the administrator. The other visual crypto
share is printed by the administrator as a transparency printout and handed to
the candidate at testing. Each share alone does not reveal the pseudonym, which
the candidate learns only when the two shares are overlapped at testing. Thus,
the goal of preparation is to distribute the generation of the two visual cryptog-
raphy shares that, when overlapped, reveal an intelligible code. We consider this
goal to analyse accountability, hence we leave testing, marking, and notification
phases and focus only on the outcome of preparation in our analysis.

The idea underlying the preparation phase is that the candidate provides a
commitment to an index into an array while the administrator fills the array
with a secret permutation of the characters, and only when the two secrets
are brought together is the selection of a character determined. Notably, no
one learns anything about the code without the knowledge of both shares. The
outcome of preparation is two sheets jointly generated by candidate and admin-
istrator using a combination of visual cryptography, commitment, and oblivious
transfer schemes. The commitment scheme comes with a function commit(·, ·)
that takes in a random value and a secret, and outputs the commitment. The
oblivious transfer schemes consists of (i) the function obf(·, ·), which takes a com-
mitment and a set of secrets, and returns a set of obfuscated values; and (ii) the
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function deobf(·, ·), which takes in a set of obfuscated values and a commitment,
and returns the corresponding set of secrets.

The authors prove in ProVerif that the protocol meets a set of authentication,
privacy, and verifiability properties. They also prove a form of accountability,
but their definitions are specific to the protocol in question. Differently, we prove
accountability using our general approach that can be applied to other protocols.

As we shall see later, our accountability tests take in the content of the paper
and transparency sheets. The paper sheet contains the candidate visual share
β, the set of candidate’s chosen indexes I, the random commitment value c,
and two signatures sign1 and sign2 both generated by the administrator and
encoded as QR codes. The first signature contains the commitment comA of the
administrator on α. The second signature contains the commitment comC of
the candidate chosen indexes I, and the set of obfuscated values Ω due to the
oblivious transfer scheme. The transparency printout contains the visual share α,
and the random commitment value a on the administrator’s commitment comA.
A succinct representation of the contents of the sheets is outlined in Table 2.

Table 2. The content of the paper and transparency sheets

Sheet Content Description

Paper (candidate) β Visual cryptography share

c Random commitment value on
comc

I Set of indexes chosen by the
candidate

sign1 comA Administrator’s commitment

sign2 comC Candidate’s commitment on I

Ω Set of obfuscated values

Transparency
(administrator)

α Visual cryptography share

a Random commitment value on
coma

4.1 Analysis

Our analysis focuses on the goal of generating two correct visual shares. If
so, an intelligible code should appear when the candidate overlaps paper and
transparency sheets. We propose two distinct dispute resolution procedures (i.e.
accountability tests) — one for the candidate and the other for the administrator
— for which we can have formal guarantees of correctness. Our accountability
tests can be used with the same sheets generated at preparation of the origi-
nal protocol. We use ProVerif, an automatic protocol analyser that can prove
reachability and equivalence-based properties in the Dolev-Yao model.
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Verifiability. First, we demonstrate that the protocol is g-verifiable. Namely,
there exists a verifiability test that is sound and complete according to Defini-
tion 3 for the goal of generating an intelligible pseudonym. We specify verifiability
in ProVerif as a reachability property and use correspondence assertions to prove
soundness. The verification scenario consists of checking that, for any execution
of the protocol, all traces in which the verifiability test returns true, there is
another event, earlier in the trace, that signals that the goal holds. In this case,
the goal holds if both candidate and administrator print the correct visual shares
on the respective sheets. The attacker may control either the administrator or
the candidate, but we force two events to be emitted by candidate and adminis-
trator processes only when they print the correct visual shares. ProVerif proves
that there exists no trace in which the attacker can input the verifiability test
with false data so that the test returns true without that the goal holds.

The verification scenario to prove completeness consists of checking that,
for any execution of the protocol in which the goal holds, the verifiability test
returns true. In this case, the ProVerif model enforces only honest principals
and prevents the attacker to manipulate the input data of the verifiability-tests.
In fact, a complete verifiability-test must succeed if its input data is correct.
Specifically, the overlapping of the two visual shares should always produce an
intelligible code. ProVerif proves that there exists no trace in which the veri-
fiability test returns false when its input data is correct. Since the proposed
verifiability test is sound and complete, the protocol is g-verifiable.

Algorithm 1. The accountability test for the Candidate
Data:

- paper = β, c, I, sign1 , sign2 where
- sign1 = SignA{comA}.
- sign2 = SignA{comC , Ω}.

- transp = α, a.

if sign1 = ⊥ or sign2 = ⊥ or comc �= commit(c, I) or β �= deobf(Ω, c) then
return true

else
return false

Accountability. We propose Algorithms 1 and 2 as accountability tests for can-
didate and administrator respectively. In the following, we show that both algo-
rithms enable the protocol to meet soundness and completeness according Defi-
nition 5.

Accountability can be specified as reachability property, but the verification
scenario to check the soundness of the accountability test differs from the one
we have seen for verifiability. To check soundness, we leave the indicted principal
under the control of the attacker (i.e., we force all principals but the indicted
one to be honest). Then, if the protocol fails (i.e. the verifiability test returns
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Algorithm 2. The accountability test for the Administrator
Data:

- paper = β, c, I, sign1 , sign2 where
- sign1 = SignA{comA}.
- sign2 = SignA{comC , Ω}.

- transp = α, a.

if sign1 �= ⊥ and sign2 �= ⊥ and comA �= commit(a, α) then
return true

else
return false

false, we expect that the accountability test returns true, namely it blames
the indicted principal for all traces and protocol runs. ProVerif proves that Algo-
rithms 1 and 2 are sound since there exists no trace in which the accountability
tests return false in such scenario.

The verification scenario to prove completeness is complementary to the sce-
nario outlined above. We assume the indicted principal to be honest and leave
all the others principals under the control of the attacker. We expect that the
accountability test does not blame the indicted principal, hence it returns false
for all traces and protocol run. ProVerif proves that Algorithms 1 and 2 are com-
plete since there exists no trace in which the accountability test returns true
in this verification scenario. Thus, we conclude that the secure exam protocol is
verifiable and accountable for the goal of correctly generating and distributing
the visual cryptography shares.

5 Case Study II: Certificate Transparency

Public Key Infrastructures (PKI) are the source of accountability for a very
common use case: a client C – who wants to establish a secure connection to
a server S – receives and checks a certificate issued by a certificate authority
CA. A certificate essentially binds an identity S with a public key PKS , along
with other information such as the expiration date and a chain of certificates
leading to a root CA, which we denote as certS = signCA(PKS , S, info). The
strongest limitation of PKI is that the client should maintain a list of all trusted
CAs (usually hundreds) and if even one of them becomes compromised and
misbehaves, then the whole system is compromised. In fact, a dishonest server
colluding with a compromised CA can obtain a signed certificate for another
server identity and impersonate them, and this behaviour can go undetected
since the dishonest server can show the certificate only to the targeted users.
Moreover, the PKI standard does not require a CA to show which certificates it
has issued.
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5.1 Certificate Transparency

To solve the accountability problem of PKIs, Google proposed Certificate Trans-
parency (CT) [19], an extension of standard PKIs that allows the servers to check
that the CAs behave properly. It does so by maintaining a public, append-only,
cryptographic log of issued certificates that anybody can check. When a client
C wants to connect to S, she first receives from S their certificate certS , along
with a cryptographic proof that certS is included the log L. Conversely, the log
can be audited either as a whole in a heavy-weight fashion, or in small parts by
piggy backing a chatter protocol on top of the handshake between C and S, as
shown with by the “cloud” in the communication diagram of Fig. 1.

S

C

LogAdmin

CertAuth

Fig. 1. Certificate Transparency, communication diagram

If a CA misbehaves then their misconduct will appear publicly in the log and
will be revealed by auditing. On the other side, a log administrator colluding
with a CA could produce two different histories for the client and the server: it
could, for example, give S a log where there appears no fake certificate for S,
and give C a log where such fake certificate appears, in order to convince her to
connect to a rouge server. However, the log signs all histories presented to the
various stakeholders, so if the log gives incompatible histories to different entities,
their misbehaviour will eventually be detected, by comparing two incompatible
histories. All these operations can be implemented efficiently by the use of Merkle
trees [20], i.e. they require time and space O(log(n)) for n certificates in the log.

It is important to note that CT does not prevent attacks against clients:
a CT-enabled client C checks validity and the presence of a certificate in a
log, but nothing prevents C from accessing a compromised server SD if both
the validity check and the presence check succeed. CT ensures instead that—as
long as the Log Administrators are honest—eventually the presence of a fake
certificate is revealed to the legitimate owner of a certain domain, who can then
take appropriate actions to contain the breach. Furthermore, it claims to support
accountability for both the CA and the log administrator, in that if an attack
happens there is evidence that they misbehaved: for the CA, this is the presence
of a signed certificate without a proper proof of identity given by the legitimate
owner, while for the Log Administrator, it is the presence of two incompatible
histories, eventually revealed by two different parties exchanging them.
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5.2 Analysis

We construct a symbolic model of the Certificate Transparency protocol and
show that it satisfies both verifiability and accountability for the Certificate
Authorities and the Log Administrators. We model the protocol with AIF-
ω [4], which allows to encode stateful protocols by tracking the membership
of values in a number of sets, indexed by agent names and other parame-
ters. For example, the logs in our model are represented by a family of sets
log(LogAdmin,Server ,Cert ,Auth,User) of public keys, logged by a LogAdmin,
issued for a Server by a CertAuth, and presented to an User , where each camel-
case word defines the respective role in the protocol. Therefore we allow an
la ∈ LogAdmin to present two different stories to two different users and treat a
log as a database of signed public keys, related to the CAs that produced them
and the servers that they represent. We abstract away from the implementation
details using Merkle trees and enforce that their properties–efficient querying for
the presence of a certificate, and efficient proofs of extension–are maintained in
the database.

Verifiability. We show first that the protocol is g-verifiable according to Defin-
ition 3 for the goal of producing a valid certificate for a server. The soundness
result specifies that, for all execution traces where the verifiability test succeeds,
then the protocol has been executed only by an honest and behaving certificate
authority and log administrator; in other words, there has not been a trace where
a misbehaving CA or LA manage to pass the verifiability test. In this case, the
goal holds if there is no scenario where a malicious certificate is produced that
does not come with a proof of identity for its server and does not show two
incompatible logs (i.e. one with the certificate and one missing it). Algorithms 3
and 4 check these conditions. That is, Algorithm3 returns true if and only if the
Certificate Authority lacks a valid proof of identity for the given combination
of server and public key, and Algorithm4 returns true iff there is evidence that
the Log Administrator produces two logs log1 and log2 that are incompatible
extensions of one another. It is important to stress that in this model we assume
that there is a direct connection between the interested Server and Client com-
paring the two logs, whereas in reality there is an indirect channel realised by
the chatter network, as shown in Fig. 1. Hence in the model, the check of Algo-
rithm4 is quantified over all possible pairs of logs, and this is not a problem for
soundness, but for completeness it requires further justification.

Completeness requires that if a certificate is produced by a dishonest CA
and logged only for the client by a dishonest LA, then the client and the server,
communicating through the chatter network, will be able to discover the misbe-
haviour. In this case it is important to stress that this is a reachability property,
in that eventually the client and server will be able to discover the misbehav-
iour through the chatter log, but that might be after the client has suffered a
man-in-the-middle attack.

Accountability. The accountability test for the Certificate Authority and the Log
Administrator coincide with Algorithms 3 and 4 considered singularly. From our
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Algorithm 3. The accountability test for the Certificate Authority
Data:

- cert = signCA(PK , S, info)
- poi = proofOfID(PK ′, S′)

if poi = ⊥ or PK �= PK ′ or S �= S′ then
return true

else
return false

Algorithm 4. The accountability test for the Log Administrator
Data:

- log1

- log2.

if log1 � log2 and log2 � log1 then
return false

else
return true

model, we prove that both algorithms are sound and complete: they do no blame
any honest CA/LA, while in any case of a misbehaving CA/LA, there is a proof
that they misbehaved.

It is interesting to note that the accountability test amounts to splitting the
two checks of the verifiability test, which are aimed at indicting the Certificate
Authority and the Log Administrator, respectively. In fact, if a protocol is fully
accountable, i.e. if for every principal the accountability test is both sound and
complete, we can produce a verifiability test by composing the accountability
tests of each principal, therefore obtaining a verifiability test that is also both
sound and complete.

6 Case Study III: Bingo Voting

Bingo Voting is a cryptographic voting scheme proposed by Bohli, Müller-Quade
and Röhrich in 2007 [21]. It provides individual verifiability based on a trusted
random number generator. Each voter receives a receipt that enables the voter
to verify that the corresponding vote was counted correctly. But the receipt does
not provide any information about how the voter voted to any third party. The
original version of Bingo Voting does not include any dispute resolution proce-
dure that enables voters to prove that some manipulation took place and their
vote was altered. Küsters et al. [2] demonstrated that the original version also
allows dishonest voters to spoil an election by wrongly complaining that the elec-
tion was manipulated even if this is not the case. Bohli et al. [22] then proposed
some improvements to the original scheme that enable dispute resolution proce-
dures during the voting and the tallying phases. In this paper, we consider the
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improved version of Bingo Voting and focus on the dispute resolution procedure
during the voting phase concerning the cast-as-intended goal.

The underlying idea of Bingo Voting is that the voting machine encodes
the voter’s choice in the receipt using random numbers. Each receipt in this
election contains each candidate and one random number assigned to it. There
are two types of random numbers, dummy random numbers generated by the
voting authority before the voting phase, and fresh random numbers that are
generated during the voting phase by the trusted random number generator. The
random number used to denote the voter’s choice is the fresh random number
generated and displayed by the trusted random number generator inside the
voting booth. All other random numbers associated to the rest of candidates are
dummy random numbers.

At preparation phase, the voting authority generates and publish the set of
dummy votes. A dummy vote consists of a pair of Pedersen commitments that
hide a dummy random number and the corresponding candidate. The voting
authority generates a number of dummy votes equal to the product of the number
of candidates and the number of the voters. In addition to the set of dummy
votes, the voting machine generates a proof using randomized partial checking
[23] to show that each candidate has received the same number of dummy votes.
At voting, the voter enters the voting booth and records her choice on a paper
ballot that is then fed into the scanner of the voting machine. The scanner
prints a random barcode onto one margin of the paper ballot. The barcode is
used as alignment information in case of a dispute as the receipt contains an
identical barcode. The trusted random number generator generates one fresh
random number that is sent to the voting machine and displayed on a screen
inside the voting booth so that the voter sees the number. The voting machine
generates a receipt such that the fresh random number generated by the trusted
random generator is printed next to the candidate chosen by the voter, while
unused dummy random numbers are printed next to the other candidates. If the
voter thinks that the receipt is correct, she destroys the paper ballot and leaves
the voting booth keeping the receipt. The paper ballot needs to be destroyed to
prevent vote-buying and coercion.

In the case of a dispute, the voter can put paper ballot and receipt inside
privacy sleeves. The privacy sleeves aim at solving a dispute without revealing
how a voter voted. There are two types of privacy sleeves. The first type leaves
uncovered the barcodes and the candidate names (see Fig. 2). This would allow
the voter to prove that the candidates are not placed identically with respect
to the barcode on the receipt and the paper ballot. The second type of sleeve
uncovers the barcodes and one row of the marking area on the paper ballot and
of random numbers on the receipt (see Fig. 3). This would allow the voter to
prove a mismatch between her choice and the random numbers that appear on
the receipt and on the screen.

The next phase of Bingo Voting is the tallying phase, which we do not cover
here since our focus is on the dispute resolution procedure during the voting
phase.
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Fig. 2. The type of privacy sleeve to check the correctness of the alignment of candi-
dates

Fig. 3. The type of privacy sleeve to check the correctness of the encoding of the voter’s
choice

6.1 Analysis

We analyse verifiability and accountability of the improved version of Bingo
Voting in ProVerif. We assume two candidates are competing for the election
and, as we shall see later, prove that the improved version of Bingo Voting
meets verifiability but not accountability.

Verifiability. Our analysis strategy to check verifiability of Bingo Voting is simi-
lar to the one adopted to check verifiability of the secure exam protocol in Sect. 4.
We prove soundness using correspondence assertions and checking that, for any
execution of the protocol, all traces in which the test returns true, the vote was
cast as intended. Since either the voting authority/machine or the candidate
can be malicious, we prove the soundness of the verifiability test in each of these
scenarios. The verifiability test is as in Algorithm 5. It takes in the paper ballot,
the receipt and the random number displayed in the screen, and checks whether
the barcodes of paper ballot and receipt match. It also checks that the choice
on the paper ballot is associated to the correct random number, which matches
with the one displayed in the screen. ProVerif proves that the verifiability test
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is sound. To prove completeness, we check in ProVerif that when the input data
of the test is correct, the test never returns false. Since the verifiability test is
sound and complete, Bingo Voting allows any one to verify that a vote has been
cast as intended.

Accountability. The accountability test for the dispute resolution coincides with
the verifiability test. In fact, the failure of the verifiability test (i.e., it returns
false) is a sufficient condition to blame the Voting Authority since the random
generator is trusted by assumption. Hence, the soundness of the accountability
test can be trivially checked by proving that if the verifiability test fails, then
the accountability test never returns false when the indicted principal is the
Voting Authority and it is controlled by the attacker. Since the accountability
test and the verifiability test coincide, ProVerif trivially proves the soundness
of the accountability test. To check completeness, we set the Voting Authority
honest and the voter controlled by the attacker. We aim at showing in ProVerif
that the accountability test never returns true, namely it does not blame the
honest Voting Authority. ProVerif fails to prove completeness and shows an
attack trace in which two corrupted voters can collaborate to falsely blame an
honest Voting Authority. The attack consists of a voter who hands his receipt to
the next voter. The latter, on the isolation assumption of the voting booth, swaps
the fresh receipt printed by the Voting Machine with the one handed previously
by the colluding voter. Then, he puts the fresh paper ballot and the old receipt in
the privacy sleeves so that the two barcodes mismatch. The attack is meaningful
unless voters are searched before entering the voting booth. We believe this is
unlikely to happen as it would decrease the applicability and acceptance of the
voting system. Thus, the improved version of Bingo Voting still fails in that of
allowing dishonest voters to spoil an election by wrongly complaining that the
election was manipulated even if this is not the case.

Algorithm 5. The verifiability test for Bingo Voting
Data:

- screen = r.
- paper = choice, barcode p.
- receipt = r1, r2, barcode r.

if (choice = c1 and r = r1 and barcode p = barcode r) or (choice = c2 and
r = r2 and barcode p = barcode r) then

return true

else
return false

7 Conclusion

Accountability is an essential property for critical systems. Although it has been
studied in several security protocols, it has never been defined in a way that
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fully enables its automated analysis with cryptographic tools. To the best of our
knowledge, we advance the first approach that enables the accountability analysis
of security protocols automatically. Soundness and completeness conditions are
tailored so that verifiability and accountability can be specified as reachability,
a property that many cryptographic tools can check automatically nowadays.
We validate our approach by applying our definitions to the analysis of three
different protocols: a secure exam protocol, Certificate Transparency, and Bingo
Voting. We propose the accountability tests that make exam administrators
and candidates accountable for the failure of the exam. We show in ProVerif
that our accountability tests are sound and complete. We prove in AIF-ω that
Certificate Transparency meets its goal of blaming Certificate Authorities and
Log administrators if they misbehave. Finally, we find that the improved version
of Bingo Voting does not satisfy accountability, although we consider a trusted
random generator.

Extending the applicability of automated verification methods to security
protocols is a major direction for future work. Manual proofs are complicated
and hard to follow as they may involve reasoning about probability and computa-
tional complexity, hence prone to human errors. We believe that our mechanised
approach will favour the adoption of automated formal verification techniques
for the analysis of accountability.
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families. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 233–
253. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49635-0 12

5. Milner, K., Cremers, C.J.F., Yu, J., Ryan, M.: Automatically detecting the misuse
of secrets: Foundations, design principles, and applications. IACR Cryptol. ePrint
Arch. 234 (2017)

6. Jagadeesan, R., Jeffrey, A., Pitcher, C., Riely, J.: Towards a theory of accountability
and audit. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp.
152–167. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04444-1 10

7. Bella, G., Paulson, L.C.: Accountability protocols: formalized and verified. ACM
Trans. Inf. Syst. Secur. 9, 138–161 (2006)

8. Zhou, J., Gollmann, D.: A fair non-repudiation protocol. In: Proceedings of the
1996 IEEE Conference on Security and Privacy, SP 1996, pp. 55–61. IEEE Com-
puter Society, Washington, DC (1996)

9. Abadi, M., Blanchet, B.: Computer-assisted verification of a protocol for certified
email. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 316–335. Springer,
Heidelberg (2003). doi:10.1007/3-540-44898-5 17

http://dx.doi.org/10.1007/978-3-662-49635-0_12
http://dx.doi.org/10.1007/978-3-642-04444-1_10
http://dx.doi.org/10.1007/3-540-44898-5_17


434 A. Bruni et al.

10. Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting
protocols. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 389–404. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15497-3 24

11. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections (extended abstract).
In: Proceedings of the 26th Symposium on Theory of Computing (STOC 1994),
pp. 544–553. ACM, New York (1994)

12. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556. Springer,
Heidelberg (2000). doi:10.1007/3-540-45539-6 38

13. Cohen, J., Fischer, M.: A robust and verifiable cryptographically secure election
scheme (extended abstract). In: Proceedings of the 26th Annual Symposium on
Foundations of Computer Science (FOCS 1985), Portland, Oregon, USA, pp. 372–
382. IEEE Computer Society (1985)

14. Benaloh, J.: Verifiable Secret-Ballot Elections. Ph.D. thesis, Yale University (1996)
15. Smyth, B., Ryan, M., Kremer, S., Kourjieh, M.: Towards automatic analysis of

election verifiability properties. In: Armando, A., Lowe, G. (eds.) ARSPA-WITS
2010. LNCS, vol. 6186, pp. 146–163. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16074-5 11

16. Dreier, J., Jonker, H., Lafourcade, P.: Defining verifiability in e-auction proto-
cols. In: Proceedings of the 8th ACM Symposium on Information, Computer and
Communications Security (ASIACCS 2013), Hangzhou, China, pp. 547–552. ACM
(2013)

17. Guts, N., Fournet, C., Zappa Nardelli, F.: Reliable evidence: auditability by typing.
In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 168–183.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-04444-1 11

18. Bella, G., Giustolisi, R., Lenzini, G., Ryan, P.Y.: Trustworthy exams without
trusted parties. Comput. Secur. 67, 291–307 (2017)

19. Laurie, B., Langley, A., Kasper, E.: Certificate transparency. Technical report
(2013)

20. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). doi:10.1007/3-540-48184-2 32
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Abstract. A Cyber Security Operations Center (CSOC) is a facility
where target networks are monitored, analyzed and defended. To detect
suspected intrusions, it in general installs an Intrusion Detection System
(IDS) at a strategic point within each target network. Security oper-
ators in a CSOC should check and analyze security event logs gener-
ated by IDSs as fast as they could. However, the amount of security
events detected by IDSs of a CSOC is massively increasing owing to ever-
increasing cyber threats. It goes beyond the control of security operators
using a text-based user interface (TUI) that an IDS typically provides.

Therefore, we propose a novel real-time visualization to effectively
display a lot of security event logs collected by IDSs of a CSOC, as a
complementary tool to the existing TUI. To the best of our knowledge,
it is the first visualization designed for security events of IDSs installed
in multiple networks. It is a three-dimensional coordinate system that
consists of three parallel plane-squares representing global source net-
works, target networks, and global destination networks. Security events
are displayed between the three planes according to intrusion detection
methods, traffic direction, IP addresses and port numbers. We apply it
to a public CSOC, and present its beneficial effects.

1 Introduction

A lot of cyber security mechanisms have been devised and developed to coun-
teract the ever increasing cyber threats. An Intrusion Detection System (IDS)
is one of fundamental security mechanisms which is in general use in most net-
work security infrastructures. It primarily detects suspicious intrusions or mali-
cious activities by monitoring a network or systems and reports them to an
administrator.

Cyber Security Operations Center (CSOC) is a facility where target networks
are monitored, accessed, and defended [1]. It compromises security experts who
are charged with detecting, analyzing, and preventing cyber attacks within target
networks [7,15]. To detect cyber security incidents, it in general installs IDSs at
strategic points within target networks. Security operators of a CSOC should
quickly discern the security sate of the traffic of target networks by checking

c© Springer International Publishing AG 2017
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and analyzing logs of security events (referred to herein as s-events) collected
through IDSs.

However, as cyber threats are rapidly increasing, the amount of s-events
generated by IDSs of a CSOC is massively increasing, and thus it exceeds a
CSOC’s manpower supply available. In addition, an IDS typically provides a
text-based user interface (TUI) which displays intrusion detection logs in text
mode. It is not user-friendly to perceive the current sate of network security from
massive s-event logs.

Various mechanisms have been proposed to make effective analysis of large
amounts of security data. One of the mechanisms is information visualization.
It has been increasingly applied as a key method to understand huge volumes of
information at once, by turning them into interactive graphical displays. There
exist many prior art to visualize network security data including network traffic
or IDS alarms, to observe and understand large textual data effectively. However,
to the best of our knowledge, there is no any visualization for security data
collected through multiple networks, while there are many visualizations for
security data of a single network.

Therefore, we design a new visualization suitable for s-events collected from
IDSs installed in multiple networks. The proposed Visualization of Intrusion
Detection Alarm Collection (VisIDAC) consists of three parallel plane-squares
that represent global source networks, target networks, and global destination
networks, respectively. An s-event is represented by a moving object between
two adjacent planes which is shaped, colored and located according to its main
features. It provides a three-dimensional (3-D) comprehensive view of the flow
of s-events in real-time.

We apply VisIDAC to a public CSOC, Science and Technology Cyber
Security Center (S&T-CSC), which takes charge of cyber security defence of
government-supported organizations of science and technology in Korea. It
makes use of an extended version of network-based IDSs, named Threat Man-
agement System (TMS), as a core intrusion detection mechanism. TMS consists
of sensors and managers: each sensor is installed in a target network and detects
suspicious outbound and inbound traffic; a manager stores and displays s-events
collected by sensors, so that security operators monitor and analyze them.

The application of VisIDAC to TMS s-events demonstrates its beneficial
effects. It helps to understand more intuitively the overall flow of security events
and grasp their trend, makes it easy to recognize large-scale security events such
as network scanning, port scanning, and DoS/DDoS attacks, and is also effective
to distinguish security event types: which target network they are related to;
whether they are inbound or outbound traffic; what protocol and port number
are mainly used; and whether they are momentary or continuous.

We first review and compare related work in Sect. 2. Next, we introduce
TMS and its s-events, and present our motivation for designing a visualization
of s-events collected by IDSs of a CSOC in Sect. 3. Section 4 proposes a novel
visualization method of s-event collection, and the following section shows its
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application to S&T-CSC. Finally, we summarize our work and suggest future
work.

2 Related Work

A large number of visualizations of security-related network data have been
researched and proposed. Several of them utilize 3-D coordinate systems as a
visual structure, as the proposed visualization does. We here review them and
compare their features.

The spinning cube of potential doom (referred to herein as SCPD) [4] is a 3-D
visual display of network traffic, especially TCP connections, collected through
the Bro intrusion detection system [8]. It displays all instances of successful
and unsuccessful TCP connections within a 3-D cube using scatter diagram.
Bro passively monitors network links over which an intruder’s traffic transits,
to search for malicious traffic that potentially violates a site’s access and usage
policies [4,8]. The three axes of the cube represent different components of a TCP
connection [4]. The x-axis is the local IP address space, the z-axis is the global
IP addresses space, and the y-axis is the port numbers used in connections to
locate services and coordinate communication [4]. TCP connections are displayed
as single points for each connection. Successful TCP connections are shown as
white dots, while incomplete TCP connections are shown as colored dots varying
by port number [4].

NetBytes Viewer [13] is a 3-D cube visualization tool designed to show the
historical network flow data per port of a single host or subnetwork over a certain
time [13]. It visualizes NetFlow data processed using the CERT open source traf-
fic analysis tool suite, SiLK. NetFlow is an industry standard network protocol
developed by Cisco for monitoring traffic of a network and collecting IP traffic
information. It shows the per port outbound NetFlow volumes for a certain time
interval over a specified time period, in order to find anomalous data transmis-
sion patterns on suspicious port on an entity or a subnetwork [13]. In its cube
display, the z-axis represents port numbers for a single host or subnetwork [13].
The x-axis represents time which is set as a specified time period (e.g. a week),
and y-axis represents the magnitude of traffic (in flows, packets, or bytes) seen by
the host (or subnet) for a certain time interval (e.g. hourly) [13]. The processed
network flow is shown using an orthogonal 3-D impulse graph plot in the cube.
Color is used to identify clearly all the data for a specific port.

Cube [12] is a cubic dimensional visualization system to display traffic of a
darknet [2,5]. which is a set of unsigned IP addresses of National organization of
Information and Communications Technology (NICT) without real systems [3].
In Cube, the left face, called source plane, shows source IP addresses and port
numbers of network packets from the Internet, and the right face, called destina-
tion plane, shows destination IP addresses and port numbers of network packets
toward the darknet. On both the faces, The x-axis represents port numbers and
The y-axis represents IP addresses. Each packet is represented by a thin rectan-
gle moving from the source plane to the destination plane. A thin rectangle glides
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from a point on the source plane to a point on the destination plane taking about
several seconds according to its source IP address, source port number, destina-
tion IP address, and destination port number. Color is used to distinguish five
different packet types: TCP/SYN, TCP/SYN-ACK, TCP/except above, UDP,
and ICMP.

P3D [6] is a 3-D coordinate visualization tool to display network packets
named P3D flow packet [6]. P3D flow packet is defined as a network connection
between two nodes or a set of packets with the same source IP, destination IP,
source port and destination port, and is categorized by its connection as various
scans such as FIN, ACK, SYN, and Ping scans [6]. It is designed to display
these scanning clearly. It consists of two planes based the x, y, and z coordinate
systems. One plane represents a range of source IP addresses along the y-axis
and a range of destination port numbers along the z-axis, and the other plane
represents a range of destination IP addresses and port numbers in the same way.
The port numbers range from 0 to 65535, and the IP address range depends on
the monitored network. A network connection is denoted by a line in a flow
between two planes. Color can be used to distinguish TCP connection types.

Though the existing visualization systems have their own benefits depending
on their purposes, they are less effective for monitoring the large amount of IDS
data from the multiple networks of different organizations. Thus, we design a
new visualization system appropriate for our own target data and visualization
goal, which is inspired and influenced by the prior art described above.

Table 1. Comparison between the prior art and VisIDAC

Name Target data Target network Structure Data shape Time Main parameters

SCPD [4] IDS data A network Cube Dot Non-real-time Local IP, global IP,
and port

NetBytes
Viewer [13]

Network flow A network Cube Impulse Certain time Port, time, period
and traffic volume

Cube [12] Darknet
packets

A darknet Two planes Thin
rectangle

Real-time SRC IP, SRC port,
DST IP and DST
port

P3D [6] Network
packets

A network Two planes Line Non-real-time SRC IP, SRC port,
DST IP and DST
port

VisIDAC IDS data Networks Three planes Short arrow or
straight line

Real-time TN IP, TN port, SRC
IP, SRC port, DST IP
and DST port

In Table 1, we compare the above 3-D coordinate visualization systems to
VisIDAC, with respect to the following features: target data, target network,
structure, data shape, time, and main parameters, where SRC, DST, and TN
mean source, destination, and target network, respectively.

3 Motivation and Background

We first introduce an extended version of IDSs, TMS which is made for the
usage of a CSOC, and then explain the motives of designing a new visualization
system of s-events.



Visualization of Intrusion Detection Alarms 441

3.1 Threat Management System

TMS monitors target networks, identifies and logs possible malicious attacks,
and reports the attempts to administrators [10,11]. TMS consists of managers
and sensors, as follows:

– Sensor: It is a type of network-based IDSs, and is installed at a strategic
point within the network of a target organization, to monitor traffic to and
from all systems in the network. It examines the network traffic for signs
of malicious activity, and detects suspected intrusions by comparing them
with patterns (also known as signatures) of known attacks. Once malicious
behavior is sensed, it transmits the relevant traffic information, i.e. an s-event,
to a manager described below.

– Manager: It is responsible for management of sensors and s-events. It checks
the state of sensors and updates their patterns. It also collects and stores s-
events transmitted by sensors, and provides a user interface via which security
operators monitor and analyze s-events and get statistics of them.

Fig. 1. TMS configuration diagram

Figure 1 shows TMS configuration diagram. Each sensor deployed in the net-
work of an organization detects s-events and sends them to a manager located
in a CSOC. Security operators of a CSOC examine s-events of target networks
via a user interface providing by managers.

The information of an s-event includes the following elements:

– Event name: It is an s-event’s name defined as a pattern (e.g. TCP service
scanning and UDP flooding).

– Time: It is the date and time when the s-event is detected by a sensor.
– Src IP : It is the source IP address of the s-event.
– Src port : It is the protocol and source port number used (e.g. TCP 6000).
– Dst IP : It is the destination IP address of the s-event.
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– Dst port : It is the protocol and destination port number used.
– Num: It is the number of the s-event detected for a second.
– In/Out : In and Out mean inbound and outbound traffic, respectively.
– Location: It displays the site of a sensor by which the s-event is detected.

A manager’s console screen lists the information of s-events in text mode, as
shown in Fig. 2, where confidential information such as IP addresses and location
is covered. But the number of s-events which its TUI can display is as limited
as the size of the screen, and even they are updated every second to display new
s-events.

Fig. 2. Screen snapshot of TMS TUI

The volume of s-events collected by sensors of a CSOC is normally a lot,
because it monitors more than one network. In case of S&T-CSC that is respon-
sible for cyber defense of more than 50 organizations, the number of s-events
detected from its target networks in 2016 is 5,142,182,012; the average number
of daily TMS s-events is 15,395,755. That is, security operators of S&T-CSC
should be able to examine on average 178 s-events per second, to check whether
they are false positives or true positives. Then how many skilled security oper-
ators are required! But, it is difficult to increase the number of security opera-
tors proportionally to the amount of TMS s-events because of many restrictions
including financial constraints and finite skilled manpower.

A variety of mechanisms have been researched and developed to make effec-
tive analysis of such large amounts of information. One of the mechanisms is
information visualization. S&T-CSC adopts it to quickly discover and identify
malicious activities and network behaviors from s-event collection.
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4 Visualization of IDS alarms from multiple networks

4.1 Design Goals

The proposed visualization VisIDAC is designed for efficiently displaying alarms
of IDSs in real-time, which are installed in more than one target networks.

It has the following three features. First, it classifies s-events with shape,
color, and location, for quick grasp of the main properties of s-events. The classi-
fication methods are as follows: (a) it sorts s-events according to target networks,
(b) it separates inbound s-events and outbound s-events to distinguish them, (c)
it groups s-events according to protocols (i.e. TCP, UDP and ICMP) and desti-
nation port numbers used, (d) it could segregate s-events by specific source and
destination IP addresses, or specific source and destination port numbers, and
(e) it distinguishes between a single s-event and multiple s-events.

Next, it shows the overall traffic of s-events in real-time, to be able to under-
stand its scale and current at a glance, and to observe the packet flow of s-events:
where they come from and where they are going to; what port numbers are
frequently used; what types of s-events are mainly occurred; which monitored
networks are mostly targeted; and which source continues generating abnormal
traffic.

Lastly, it is for distinguishing large-scale cyber threats noticeably from other
individual s-events, such as network scanning, port scanning, and DoS/DDoS
attacks. They are popularly exploited by attackers to find vulnerabilities of a
system or attack a system. In VisIDAC, such types of s-events can be clearly
separated by distinct displays.

The framework of VisIDAC takes the following elements of s-events as its
main parameters for effective visibility: event type, source IP and port, and desti-
nation IP and port. It is because the basic core information of an s-event is what,
from where, and to where attributes. It separates three network areas: global
source networks, target networks, and global destination networks. Between the
areas, s-events flow in real-time (more accurately, near real-time in implementa-
tion), according to its key properties.

4.2 Structure and Components

VisIDAC consists of three parallel plane-squares. The planes are named source
network (referred to as SN), target networks (referred to as TN), and destination
network (referred to as DN). S-events are represented by either an arrowhead
or a straight line between the three plane-squares. Figure 3a shows the structure
of VisIDAC, which is comprised of three plane-squares and two different shaped
s-events.

Three Plane-Squares. VisIDAC has three parallel plane-squares, i.e. SN, TN,
and DN planes. SN plane represents global source networks, where the horizontal
axis represents a range of source IP addresses, and the vertical axis represents
a range of source port numbers from 0 to 65535. DN plane represents global
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(a) Whole structure (b) Front of TN plane

Fig. 3. Structure of VisIDAC

destination networks, where the horizontal axis represents a range of destination
IP addresses, and the vertical axis represents a range of destination port numbers
from 0 to 65535.

TN plane represents target networks, and is divided into square cells, accord-
ing to the number of target networks. A cell represents a target network, where
the horizontal axis represents the IP address space of the target network, and the
vertical axis represents the port numbers of the target network. The position of
a cell on TN plane is based on a user’s selection. The acronym or abbreviation of
each target network is shown on each cell transparently to distinguish one from
another.

For example, assume that there are 7 target networks. Then TN plane can
be divided into 3 by 3 square cells. The 7 of 9 cells are matched with the 7 target
networks, and are arranged on TN plane according to a user’s choice. The other
2 cells remain empty. Figure 3b shows the example of TN plane. In the figure,
TN plane has 7 occupied cells as the number of the target network, and letters
A to G on cells are examples of the short names of target networks.

S-Event Display. S-events have two different shapes according to intrusion
detection methods, are colored according to s-event groups, and are placed in
two different spaces according to traffic direction.

Shape. S-events can be categorized into two major types according to detec-
tion methods: signature-based event and threshold-based event. The former is an
s-event type detected by signatures that are specific patterns to identify mal-
ware, such as byte sequences in network traffic, or known malicious instruction
sequences used by malware. The latter is an s-event type detected when the
number of packets including specific patterns is more than a certain threshold,
and in most cases it is large-scale, for example, network scanning, port scanning,
login brute force attacks, DoS attacks, and DDoS attacks.
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VisIDAC displays the two types of s-events in different shapes. A signature-
based event is represented by an arrowhead, which moves one plane to the other
plane – either from SN plane to TN plane or from TN plane to DN plane – over
the s-event appearance duration set by a user (in general several seconds). A
threshold-based event is represented by a straight line which connects between
two adjacent planes – either from SN plane to TN plane or from TN plane to
DN plane – over the s-event appearance duration, as shown in Fig. 3a.

Space. S-events can also be divided into two groups according to traffic direction:
inbound s-events and outbound s-events. VisIDAC displays them in two different
areas. Inbound s-events are visualized in the space between the right two adjacent
planes, while outbound s-events are visualized in the space between the left two
adjacent planes. More specifically, when a target network is the destination of
an s-event, an arrowhead (resp. a straight line) moves (resp. connects) from a
point on SN plane to a point on TN plane; when a target network is the source
of an s-event, an arrowhead (resp. a straight line) moves (resp. connects) from
a point on TN plane to a point on DN plane.

Color. VisIDAC displays s-events with different colors to distinguish character-
istics of s-events. S-events can be grouped in the following ways, and each group
can be displayed in a unique color.

First, s-events can be categorized according to protocols and destination port
numbers. They are firstly divided into three groups according to protocols, i.e.
TCP, UDP, and ICMP, and are secondly subdivided according to port numbers,
i.e. the well-known port numbers and other port numbers. Therefore, s-events
basically have five groups: TCP & the well-known port numbers, TCP & other
port numbers, UDP & the well-known port numbers, UDP & the well-known
port numbers, and ICMP. Additionally, an individual protocol and specific port
number can be added as an s-event group for independent observation, for exam-
ple, TCP 1443 and UDP 53. Table 2a shows the five basic groups and the two
additional group types.

Next, VisIDAC can group s-events according to source and destination IP
addresses, which has three group types. Type 1 is an s-event group type in which
destination IP address or IP address range is specified (e.g. 122.34.155.0/24 →
ANY), Type 2 is an s-event group type in which source IP address or IP address
range is specified (e.g. ANY → 231.156.89.11), and Type 3 is an s-event group
type in which both source and destination IP addresses or IP address ranges are
specified (e.g. 122.34.155.11 → 231.156.89.0/24). Table 2b shows the three types
of s-event groups divided by source and destination IP addresses.

Also, VisIDAC can separate s-events associated with specific source/
destination port numbers from others by color. There are three group types
according to source and destination port numbers. Type 1 is an s-event group
type in which destination port number is specified (e.g. Any → 12345), Type 2
is an s-event group type in which source port number is specified (e.g. 123 →
Any), and Type 3 is an s-event group type in which both source and destina-
tion port numbers are specified (e.g. 123 → 12345). It is useful when observing
s-events sourced from a specific port number and/or destined for a specific port
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Table 2. S-event group types

(a) Groups by protocols and destination port numbers

Group Protocol Destination port number

Basic

TCP
The well-known port numbers

Other port numbers

UDP
The well-known port numbers

Other port numbers
ICMP N/A

Type 1 TCP Specific port number

Type 2 UDP Specific port number

(b) Groups by IP addresses

Group Source IP address Destination IP address

Type 1 Any Specific IP or IP range

Type 2 Specific IP or IP range Any

Type 3 Specific IP or IP range Specific IP or IP range

(c) Groups by port numbers

Group Source port number Destination port number

Type 1 Any Specific port number

Type 2 Specific port number Any

Type 3 Specific port number Specific port number

number, Table 2c shows the three types of s-event groups divided by source and
destination port numbers.

Additionally, s-events can be colored by source countries. It is useful for
observing s-events sourced from a specific country.

4.3 Additional Functions

When clicking an s-event appeared on screen, a small window is pop up to show
the s-event’s detailed information, whose background color is the same as its
group color. The window shows the following information of an s-event:

– Event : The field is the s-event name, e.g. UDP flooding.
– Source: The field is the information of the s-event source IP address,

port number, protocol type, and the name of country or organization, e.g.
173.18.254.1 (80) [CN].

– Destination: The field is the information of the s-event destination, i.e. IP
address, port number, protocol type, and the name of country or organization,
e.g. 21.119.22.18 (8080) [KISTI]

– Time: The field is the time and date of the s-event detection, e.g. 12:33,
06/07/2017.
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– Packets: The field is the size of packets of the s-event.
– The number of detection: The field is the number of the s-event detected for

a second.

Table 3 shows an example of an s-event information window display which
gives the detailed information of an s-event, UDP flooding.

Table 3. S-event information window display

Security Event Information

Event UDP flooding

Source 173.18.254.1 (80) [CN]

Destination 21.119.22.18 (8080) [KISTI]

Time 12:33, 06/07/2017

Packets 34.04 Kbps

# of detection 35

In VisIDAC, s-events are visualized in near real-time. They are shown on
screen for several seconds and soon thereafter disappeared. To have enough time
to keep an eye on some s-events, VisIDAC provides a pause function, by which
all the movements of s-events can stop for a while. It makes it easy to point and
click an s-event on screen, and makes it possible to check the details of multiple
s-events shown on screen at the same time.

It also has zoom in, zoom out, and 360 ◦ rotation functions for users to be
able to observe s-events in more detail. There is a replay function to search s-
events of the past, by setting a specific period of time. It allows users to review
the movements of s-events occurred for the period repeatedly.

4.4 Display of Special S-Events

We add noticeable visualization effects to some of large-scale s-event types, i.e.
network scanning, port scanning, and DoS/DDoS attacks, to attract extra atten-
tion. It is because cyber-attacks is often accompanied by these s-events.

We also gives a distinct mark to s-events that are sourced from a target
network and destined for a target network, to pay attention. The visualization
methods of the above s-event types are specified below.

Network Scanning. Network scanning is a procedure scanning IP addresses
for identifying active hosts on a network, for mainly network security assess-
ment, which returns information about which IP addresses map to live hosts
that are active on the Internet. But it can also be employed by attackers to
identify potential network vulnerabilities. In most cases of network scanning
events (e.g. TCP syn scanning and ICMP scanning), the destination IP address



448 B. Song et al.

of the s-events is a range of IP addresses. If a host(s) is scanning systems in tar-
get networks, it should be carefully observed, because it could be a preparation
step for the following attack attempts.

Thus, VisIDAC highlights such an s-event type in a triangular shape; an s-
event is shown to connect from a point on SN (resp. TN) plane based on its
source IP address and port number to a horizontal line on TN (resp. DN) plane
based on its destination port number, as shown in Fig. 4a. It looks like a upward-
facing triangle connecting one plane and the other plane, whose base is on the
second plane.

(a) Network scanning (b) Port scanning

(c) DoS/DDoS attacks (d) S-events from and to target networks

Fig. 4. Visualization methods of special s-events

Port Scanning. Port scanning is a procedure for probing a system for open
ports to identify running services on the system. It can be employed by attackers
to look for a weakened access point to break into a system. Port scanning events
(e.g. TCP port scanning and UDP port scanning) have a range of destination
port numbers in most cases. If a host(s) is scanning ports of a system(s) in a
target network, it should be carefully observed, because it may be precedent
activities to an attack attempt(s).

Thus, VisIDAC distinguishes such an s-event type in a triangular shape. It
is shown to connect from a point on SN (resp. TN) plane based on its source IP
address and port number to a vertical line on TN (resp. DN) plane based on its
destination IP address, as shown in Fig. 4b. It looks like a front-facing triangle
connecting one plane and the other plane, whose base is on the second plane.
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DoS/DDoS Attacks. A DoS attack is a cyber-attack that makes a system
or network resource unavailable to its intended users by preventing them from
accessing information or services. The most common type of DoS attack is accom-
plished by flooding the targeted system or resource with superfluous requests to
overload the system and thus prevent legitimate users of a service from using
that service. A DDoS attack is a type of DoS attacks where more than one, often
thousands of, unique IP addresses are used to flood a targeted system. When
such s-events are detected, it is necessary to examine them thoroughly, because
they are explicit attack attempts.

In some of DoS/DDoS s-events (e.g. TCP syn flooding and UDP flooding),
their source IP address is a range of IP address, or their source port number is
more than one. In such cases, VisIDAC makes them noticeable in a triangular
shape. When a range of IP addresses is the source of an s-event, it is shown to
connect from a horizontal line on SN (resp. TN) plane based on its source port
number to a point on TN (resp. DN) plane based on its destination IP address
and port number. It looks like a upward-facing triangle connecting one plane
and the other plane, whose base is on the first plane. When an s-event has many
source port numbers, it is shown to connect from a vertical line on SN (resp. TN)
plane based on its source IP address to a point on TN (resp. DN) plane based on
its destination IP address and port number. It looks like a front-facing triangle
connecting one plane and the other plane, whose base is on the first plane. In
Fig. 4b, the left triangle shows the former s-event and the right triangle shows
the latter s-event.

S-Events Occurred Between Target Networks. Some s-events are sourced
from a target network and destined for a target network. VisIDAC gives a dis-
cernable mark to such s-events, because there is a possibility that a system
infected by a malware(s) attempts to attack another system in target networks.

In VisIDAC, they are visualized in the space between TM plane and DN
plane. On DN plane, the acronym or abbreviation of the destination target
network is written nearby the destination point over the s-event appearance
duration to indicate that the s-event’s destination is the target network.

Figure 4d shows the visualization method of s-events occurred between target
networks. In the figure, there are four target networks named A, B, C and D on
TN plane, and there are two examples of s-events occurred from and to target
networks; one is a threshold-based event sourced from B and destined for A, and
the other is a signature-based event sourced from C and destined for B. The
short names of target networks, A and B, are displayed on DN plane to indicate
their destination network clearly.

5 Application of VisIDAC to S&T-CSC

VisIDAC is implemented in C++ on CentOS, and developed for practical use
in S&T-CSC. The CSOC provides information security services to more than
50 organizations of science and technology, and uses TMS as its core intrusion
detection tool for the target networks.
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5.1 Basic Setting

In S&T-CSC, the data source of VisIDAC is s-events collected by TMS sensors
which are installed in the networks of the target organizations. The information
of a TMS s-event consists of Event name, Time, Src IP, Src port, Dst IP, Dst
port, Num, In/Out, and Location (see Sect. 3.1 for details).

Fig. 5. Screen snapshot of S&T-CSC VisIDAC

The number of cells on its TN plane is matched with the number of the target
networks. Figure 5 is a screen snapshot of S&T-CSC VisIDAC, where each cell
on TN plane represents each target network of S&T-CSC, and the acronym or
abbreviation of each target network is shown on cells to distinguish them.

S&T-CSC VisIDAC basically divides TMS s-events into the five basic s-event
groups, TCP & the well-known port numbers, TCP & other port numbers, UDP
& the well-known port numbers, UDP & other port numbers, and ICMP (see
Sect. 4.2). It also has additional s-event groups for indicating the most often used
protocols and destination port numbers.

The top five protocol and destination port numbers of S&T-CSC in 2016 are
TCP 22, TCP 80, UDP 123, TCP 23, and UDP 53, whose percentage in the
total s-events are 29.7%, 7.1%, 4.6%, 3.9%, and 3.4%, respectively. The sum of
their percentages is 49%; it is almost half of the total s-events of 2016. Figure 6a
shows the list of the top 10 destination port numbers of the s-events of 2016.

Accordingly, color legends in S&T-CSC VisIDAC are currently configured to
distinguish TCP 22, TCP 80, UDP 123, TCP 23, UDP 53, and the five basic
s-event groups, as shown in Fig. 6b, where the upper five legends represent the
additional s-event groups, and the lower five legends the basic s-event groups.
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(a) Top 10 DST ports of 2016 s-events (b) Color legends

Fig. 6. S-event groups of S&T-CSC VisIDAC

5.2 Overall Effects

The application of VisIDAC to S&T-CSC demonstrates the it provides many
useful benefits. First, it allows users to get the information of s-events quicker
than TUI can do, by performing further classifications: which target networks
they are related to; where they are coming from and where they are going to;
whether they are a threshold-based event or a signature-based event; whether
they are a single event or multiple events; and whether they are momentary or
continuous.

Also, it makes it easier to recognize large-scale events and also distinguish
whether they are port scanning, network scanning, or DoS/DDoS attacks by
using different noticeable displays.

We here introduce two visualization examples of large-scale s-events. S&T-
CSC detected massive Domain Name Server (DNS) amplification attacks [9,14]
toward the networks of the target organizations from July 2013 to 2015. It is still
one of the top 10 popular s-events detected in S&T-CSC until now. The attack is
a popular form of DDoS attacks that relies on the use of publicly accessible open
DNS servers to overwhelm a victim system with DNS response traffic, which uses
UDP and a port number 53 in general [9,14]. Figure 7a is a screen snapshot of
massive DNS amplification attacks which started from Turkey and went toward
the network of a target organization. It was colored by red to indicate s-events
using UDP 53.

A huge amount of xmas scanning and full xmas scanning events were detected
for three months in 2014, which were sourced from several European countries
and destined for systems in many target organization networks. Figure 7b is
a screen snapshot of these xmas scanning events, and the s-event information
window displays the information of a full xmas scanning which was sourced
from Denmark and destined for a target organization, including IP addresses,
port numbers, protocols, traffic packets, and detection time. The s-event was
colored in pink which was assigned for s-events of TCP & other port numbers.
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(a) DNS amplification attacks (b) Xmas scanning

Fig. 7. Screen snapshots of large-scale s-events of S&T-CSC VisIDAC

As shown in the above examples, VisIDAC is very effective in discerning the
flow of large-scale events in real-time: where they are from and are going toward.
It also makes it much easier to grasp the trend of such s-events than reading
logs listed on a TUI.

Next, it is very helpful in observing the overall traffic flow of s-events in real-
time and understand their trend: how many s-events are occurring right now;
which target networks they are mostly headed for or started from; what sort of
s-events are mainly happened; and what port numbers are often destined.

Finally, it makes it possible to find s-events repeated in the same pattern,
by remembering its graphical patterns which is much easier than remembering
textual patterns. In such a case, security operators can track the related s-events
over time.

There is a scalability issue. As the number of target networks increases, the
amount of security events is getting larger, while the size of cells on TM plane is
getting smaller. Thus, if target networks is too many to display on a screen, it
would be better to divide them into few groups to display them separately with
different visualization settings.

In conclusion, S&T-CSC is making good use of VisIDAC as a helpful supple-
mentary monitoring interface of TMS.

6 Conclusion and Future Work

We have first discussed a difficulty in monitoring a large number of IDS logs of
a CSOC in text mode, which are collected across multiple target networks, The
massive volume of the s-events goes beyond the control of security operators.

We have proposed a real-time 3-D visualization of s-event collection,
VisIDAC, as a solution for it. It consists of three parallel plane-squares, and
each plane represents different control information of the packet of s-events. The
left plane represents a range of global source IP addresses along the horizontal
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axis and a range of source port numbers along the vertical axis, and the right
plane represents a range of global destination IP addresses along the horizontal
axis and a range of destination port numbers along the vertical axis. The middle
plane is divided into cells according to the number of target networks, and each
cell on the plane represents a range of IP addresses of a target network along
the horizontal axis and a range of port numbers of a target network along the
vertical axis. S-events represented by either a moving arrowhead or a straight
line are displayed between two adjacent planes, according to intrusion detection
methods, traffic direction, IP addresses and port numbers.

We have applied VisIDAC to S&T-CSC, and have presented its useful effects.
It provides a 3-D comprehensive view of the overall s-events of target networks
in near real-time. It makes it much easier and faster to identify s-events col-
lected from multiple target networks by providing the following features: (a)
classification according to target networks, traffic direction, and detection meth-
ods, (b) grouping by protocols & destination port numbers, IP addresses, or
port numbers, (c) apparent displays of three types of large-scale events, i.e. net-
work scanning, port scanning, and DoS/DDoS attacks, (d) noticeable marks of
s-events occurred between target networks, and (e) near real-time visualization
of the current s-events.

We will discuss the feedback of security operators using VisIDAC on its
usability in near future. We will also provide more beneficial use cases of it, and
monitor and track its improvements.
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Abstract. In recent years, many attacks targeting USB were proposed.
Besides spreading virus through USB storage, attackers are tending to
attack USB stacks because in most cases, any information from devices
will be trusted. In this paper, we design a system named Curtain on
Windows to defend those attacks by analyzing their IRP flows. Curtain
is deployed as a filter driver in USB stack on Windows. It’ll sniff all
the IRP flows of each USB device and analyze them. It’s based on the
fact that an attack always happens in a short time and that will be
reflected in IRP flows. In short, Curtain provides a solution to defend
USB attacks on Windows by inserting a filter driver to USB stacks and
catch the behaviors of each device.

Keywords: USB · Device security · Windows driver

1 Introduction

As the Universal Serial Bus (USB) provides the convenience for host computers
to easily attach various external devices through the USB ports, we can hardly
find one common PC without USB ports. From USB 2.0 to USB 3.1, updated
USB ports become more and more powerful for supporting high-speed transmis-
sion of almost all common data types. Computer manufactures think highly of
USB ports, for example, Apple’s latest Macbook only sustains four type-c USB
ports.

Due to USB’s prevalence, attackers exploit many ways to carry out their
attacks [1,3]. In the early stages, USB storage has served as a delivery media
for many malicious softwares. For a striking example, the famous “Stuxnet” [4]
tried to modify the PLC to change the actions of Industrial production con-
trol system in 2010, which caused huge social impact. This kind of attack only
uses the storage as a carrier, so antivirus softwares are able to defend from this
by detecting the virus [2]. In recent years, a new means called Human Inter-
face Device Attack (HID Attack) has emerged [5]. During the enumeration [26]
phase defined in the USB protocol, a single USB device can register itself as
a different type device and enable its ability to inject malicious scripts. For an
c© Springer International Publishing AG 2017
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instance, RUBBER DUCKY [6,7] penetration tool can declare itself to be a
keyboard and inject malicious keyboard input to the host, which is already a
mature product. An even more insidious form of USB attack called BadUSB
[9,10] has come up at Black Hat in 2014. Without using human interface devices
as the HID attack, the BadUSB attack [11] only needs to modify the firmware
inside and disguise itself as a standard USB device. For it can perform firmware
attack (e.g. adding keyboard emulation to a storage device), USB security faces
more severe situation. What’s more, security researchers of Bastille Networks
raise a new channel-based USB attack called MouseJack [14], which targets on
wireless USB devices [8]. Utilizing the vulnerability of unencrypted communica-
tion signals between wireless mouse and its receiver, attackers can sniff or even
hijack the device so as to control user’s host. Another newly raised attack Key-
board Sniffer [15], which targets on wireless keyboards, performs the same trick.
These new attacks can bypass the antivirus software’s detecting becasue they
hide malicious code in the firmware or just sniffer the communication of USB
devices. However, existing antivirus softwares just perform static analysis on the
files of USB storage, they have no ideas of these new attacking modes.

Therefore, there is a great need for us to consider why existing technologies
can’t defend from these new attacking modes. First of all, the root cause of the
HID attack and the BadUSB attack is a lack of access control for drivers in Win-
dows. During the enumeration phase of USB protocol, malicious USB can make
spurious claims defined by its identity, so malicious device is unlimited to request
any device drivers. Also, the root cause of the channel-based attack of Mouse-
Jack and Keyboard Sniffer is a lack of protection for the communication between
the wireless USB devices and the USB interface. Second, it is tempting to con-
clude that, a technology which can monitor USB device’s behaviors is urgently
needed. This technology can effectively protect the host from untrusted devices
without modifying the communication mechanism of wireless USB devices on
the market. Last but not the least, while USB Implementers Forum leaving the
authentication of malicious USB devices to users, it is unlikely for users to verify
the functionality and the intent of USB devices independently.

In order to make USB secure again, Dave Tian proposed the GoodUSB [13],
a host-side defense for Linux against HID attack and BadUSB attacks in 2015.
Then he optimized this work and proposed the USBFILTER [12], an access con-
trol system, on USENIX in 2016. However, both technologies are designed for
Linux system. Although many users are familiar with Linux system, there is
no doubt that most normal computer users are using Windows system. Also,
GoodUSB needs to modify the kernel of Linux system. If other implementations
need to modify the kernel or users have to update the kernel, it might disable
the defense function or even cause the disruption of the system. More impor-
tantly, both defenses can’t protect the host from channel-based USB attacks like
MouseJack or Keyboard Sniffer.

Based on the working process of USB authorization and the working process
of USB devices, this paper proposed Curtain, a multi-layered USB defending sys-
tem installed as a filter driver [19] in Windows. Utilizing the programmability



Curtain: Keep Your Hosts Away from USB Attacks 457

and the flexibility of filter driver, Curtain system don’t need to modify any upper
layer software or lower level device drivers. Based on I/O request packet (IRP)
tracking [17], Curtain can monitor, hook, and modify the IRP flow, so as to mon-
itor the activity of USB. What’s more, Curtain system can not only successfully
protect the host from HID attack or BadUSB, but also can defend channel-
based USB attack by analyzing the IRP traffic. Furthermore, users of Curtain
can take part into the security process by choosing the expected intention of the
USB device.

Our contribution can be summarized as follows:

– Design and propose a multi-layered USB defense framework and
USB attack model. For no one has proposed a recognized USB working
model, it is often obscure for developers to make progress on USB security. At
first, we define main working layers of the USB working process on Windows.
Then, we summarize the main points of existing USB attacks respectively and
precisely abstract these attacks to related USB working layers. By declaring
this multi-layered USB working model, developers can fast and clearly find
where the vulnerabilities are, then developers are able to produce effective
defense towards new attack forms.

– Propose new effective technologies for the USB defense on Win-
dows. Our system is the first to apply an IRP tracking and analyzing mech-
anism for USB on Windows, in order to monitor the USB’s package from the
enumeration phase till it gets plugged out. This analyzation process can iden-
tify the true intention of the USB device, and stop unauthentic USB behaviors
before attacks performing out. Also, Curtain realizes an anomalous detection
on detecting the abnormal USB behavior based on the concepts of Intrusion
Detection System. It is made up of three methods to detect attacks. One
of them is based on user’s choice. The second one is based on the Isolation
Forest algorithm and the last one is based on static rules. The combination
of these three methods is much stronger than IDS with static rules only.

– Demonstrate validity in real-world scenarios and characterize per-
formance. In the experiment stage, we explore how Curtain can defend
against various USB attacks and provide convenience for benign devices.
Also, we demonstrate how Curtain causes minimal burden on USB traffic
in Windows system. Furthermore, our system is not only able to protect USB
storage device and human interface devices, but can also cope with devices
like wireless keyboards. As a result, our system is well-suited for protecting
any USB workload for the public.

2 Background and Threat Model

In this section, first we will introduce how USB devices work generally. Second,
we’ll show more details about how USB devices work in Windows. After that,
attackers’ methods to exploit USB devices will be described and our threat model
will be proposed based on this.
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2.1 USB Work Flow

In general, when connecting to a host, the USB and the host controller start to
negotiate about how to transfer data later. Details about this process is shown
in Fig. 1 [9,23].

Fig. 1. USB devices enumeration

First, the host will appoint an address for the device and the device will send
an ACK message to the host. Then, the host controller will try to get descriptors
from the device so that it can load corresponding functional drivers to operate
the device. If the device claims itself to be a keyboard, the host controller will
load a keyboard driver and hand over control to the keyboard driver. After
loading drivers, the enumeration process is done. The functional driver starts to
work as a middleware between application and the device.

In the process, the host trusts all the data from the device with no hesitation.
Whatever the device claims it to be, the host controller will load the correspond-
ing functional driver for the device. Also, the functional driver will send the data
from the device to all the application related no matter what the data is.

2.2 USB Devices’ Enumeration in Windows

While in Windows, some differences exist in enumeration. When a USB device
connects to the host, the host controller driver starts to work. Then, the descrip-
tors will be sent to the driver. Depending on the content of the descriptor, the
host controller driver will assign different functional drivers for the device to
work for applications. It’s worth mentioning that several functional drivers can
be applied for the same device at the same time. They will make up a stack
called device driver stack [16,18]. When transmitting data from the device to
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the host, the functional driver will poll the host controller to receive all the data
from device by sending IRP from the top of driver stack [17]. When transmitting
data from the host to the device, IRP will be sent to the functional driver at the
top of the stack and those drivers will call the next driver until the driver at the
bottom of the stack. It will then return the data of URB.

2.3 Existing Attack Methods

Many USB attacking methods are proposed these years. Since USB was invented,
many virus were spread by USB disks. Then, many attackers modified the human
interface devices (HID) to insert malicious input to the host, which exploits the
vulnerability in the enumeration phase defined by USB protocol. This attack-
ing method is called HID attack. In 2014, SRLabs proposed a method named
BadUSB in BlackHat [9,10]. They rewrite the firmware of USB devices to dis-
guise them as any device the attackers want. In 2015, Bastille Security Group
proposed a channel-based attack to attack wireless mouses and keyboards using
the flaw of USB communication [14,15]. They sniff the wireless transmitted data,
then edit it or directly replay it to control the I/O of the host in a short time.
By using scripts, of course an attack can be done with given conditions.

2.4 Threat Model

USB protocol itself is secure superficially. But why USB devices always under
attack these years? In our research, the followings are concluded. For the whole
system related to USB, a model can be built like Fig. 2. USB protocol works
between Interface Layer and Driver Layer. When a device connects to the host,
the host controller collects the device’s descriptors stored in the firmware, which
contains the type ID of the device. (vulnerabilities between Interface Layer to
and Driver Layer) What’s worse, vulnerabilities also exist between Application
Layer and Driver Layer (data-based attack), and between Physical Device Layer
and Interface Layer (channel-based attack). The problem is that in most cases,
we can only do access control between Driver Layer and Interface Layer, but
we have to defend all attacks shown in Sect. 1 (vulnerabilities excluded). That’s
why our system is meaningful.

3 System Design

Attribute to the complex architecture of USB working mechanism in Windows
kernel [16,18], it is difficult to build an efficient system to intercept the USB’s
behavior. While the calling process between the driver layer and hardware
is twisted, controlling inserted USB devices effectively is challenging. In this
section, we introduce the main architecture of Curtain system and how can it
protect us from malware USB devices by illustrating every module’s function and
communication with other modules in detail. The whole system is as described
in Fig. 3. In the User Layer, Device Identifier is used for identifying device type,
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Fig. 2. USB threat model

IRP Analyser is responsible for counting IRP features and sending statistic to
Anomaly Detector, which can judge whether a USB device’s behavior is mali-
cious. Then Anomaly Detector sends decisions to the IRP Collector & Filter, a
filter driver in the Driver Layer, to accomplish the management on USB device’s
specific behaviors.

3.1 IRP Collector & Filter

As the name implies, one of the main function of this module is collecting IRP
from USB Client Driver. In brief, this is a filter driver [19] we built between USB
Driver Stack and USB Client Driver. As we illustrated in Sect. 2.2, when a USB
device want to carry out an operation, drivers will be called and the message
transmitted from USB Client Driver to hardware is IRP. So through the Driver
Development Interface (DDI) provided by Windows, this filter driver is actually
built in the Client Driver Stack to take part into the transmission of IRP. As
a result, this module enables our system to intercept every behavior of USB
devices by obtaining all IRPs of USB’s behaviors.
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Fig. 3. Main architecture of Curtain System

Also, as a filter driver, this module has the ability to supervise USB devices by
dropping specific IRPs and controlling the data transferring speed indirectly. As
we discuss in Sect. 2.2, many polling IRPs from upper level drivers often return
null if USB devices don’t have any operations. However, with the method of
dropping non-null IRPs, we can indirectly control the speed of IRP transmission.
The specific operation of this module responses to the Decision received from
the Anomaly Detector. After dropping specific IRPs from USB Client Driver if
IRP Collector & Filter is requested to, it will send IRP flow to the USB Driver
Stack to complete the normal IRP transmitting process.
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3.2 Device Identifier

When a USB device first connects to a host with Curtain System, new device
will enter the device enumeration phase. In this phase, new device will request
for drivers. Windows will detect the device and generate specific IRPs, which
will be transferred to the IRP Collector & Filter. This module will then generate
specific IRPs which can request for USB’s descriptor. Then the IRP Collector
& Filter will send the descriptor to the Device Identifier. The Device Identifier
module will be awakened during the Device Enumeration phase and examine the
Device Type [20] in the descriptor. In the meantime, Curtain will let users to
name the device and choose the expectative device type, in order to obtain user’s
acknowledgement of the USB devices. Then, our system can compare these two
device types. If user’s choice is not consistent with the device’s declaration of its
type, our system can easily catch this potentially malicious device which tries
to disguise itself from its appearance. Our system will warn users and stop its
following operations at once. If two choices are the same, the device can be used
normally. In the end, the Device Identifier module will send the Device Type to
the Anomaly Detector module in order to help our system to use certain type
of default basal IRP statistic for supervising the new device.

3.3 IRP Analyser

Receiving IRP flow from the IRP Collector & Filter, IRP Analyser is responsible
for checking the content of each IRP and counting the types of IRPs. In a certain
period of time, this module will count the proportion of each type’s IRP numbers
in all received IRPs. For certain type of USB device has specific IRP flow, this
statistic can indicate whether the device is doing normal operations. Also, this
module will check if an IRP’s content contains system sensitive directory. It is
because that if a USB device tries to send unknown files to system key locations
may achieve attacks, so we must warn the users. In the end, IRP Analyser will
send these information to the Anomaly Detector.

3.4 Anomaly Detector

Anomaly Detector is the most important module in Curtain System because it
will judge whether a USB device is doing illegal operation and make decisions
for the filter driver to control the IRP transmission. Based on the fact that
certain type of USB devices share similar IRP flow, we can set default IRP type
statistics for each kind of common USB devices in this module in advance. In
this module, the Anomaly Detector will first compare the received IRP statistics
with the default basal IRP statistics. If there is a huge difference between these
two statistics, this module will identify this abnormal operation and catch the
potential malware. Otherwise, we use Isolation Forest algorithm [24] to modify
the basal IRP statistics in the module with received IRPs statistics in order
to generate specific IRP statistics for unique devices. This process will be fully
explained in the following. The constantly changing basal IRP statistics will help
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the judging process more and more accurate. However, if the judging process of
Anomaly Detector finds the IRP flow suspectable, the Anomaly Detector will
ask IRP Collector & Filter to stop or slow down the IRP transmitting and
send warnings to the user, in order to defend user from the potential malware.
Through using Isolation Forest algorithm to recalculate the IRP statistic for
every USB device under our management respectively, the judging process for
each USB device will be more and more accurate.

4 Malicious Objects Detection

As mentioned in Sect. 3.4, the most important module of Curtain is Anomaly
Detector. In fact, Anomaly Detector is based on several malicious objects detec-
tion algorithm. Of course, to detect an anomaly behavior of devices is not that
simple in user mode because in user mode, applications receive data from drivers
and process those data. Attackers are tend to be familiar with the process and
design specific data so that applications will become one of their assistants. It’s
difficult to defend such attacks except attackers is unaware of our defense system,
which is difficult to achieve. So we turn to kernel mode, we insert a filter driver
in driver stack to help us capture information in kernel mode as mentioned in
Sect. 3.1. Based on those IRP information, we design three algorithms to detect
malicious objects. That’s the key why Curtain can defend most of attacks shown
above. Those three algorithms are introduced below.

4.1 Unauthorized Access to Important Files Detection

In Sect. 2.2, it has been shown that in Windows systems, USB devices exchange
data with host by IRP created by the top driver of driver stack. So when a device
is trying to transmit a file to/from an important directory, the action must be
completed with a sequence of IRP.

In Curtain, the sequence is detected as follows. First we catch all the IRPs of a
device by IRP collector. Then, IRP collector will send all IRP information (IRP
type and its properties) to IRP analyzer. When resolving IRP MJ CREATE,
IRP analyzer will get the path of the file that the USB device is trying to access
and send those pre-processed data to Anomaly Detector. Anomaly Detector
maintains a blacklist set in which files are not allowed to be accessed by devices
except with user’s special permission. If the path in IRP is included in blacklist
set, the following IRPs related to files will all be cut off by IRP filter. While if
not, Curtain keeps spying on them but allowing the following IRPs.

4.2 Abnormal Behaviors Detection

As shown above, there exists many channel-based attacks. When talking about
IRP type statistics or properties of IRPs, no difference exists between attacked
devices and normal devices because attackers always use normal function of
the device to complete an attack. For example, MouseJack and KeyboardSniffer
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Table 1. Features to detect abnormal behaviors

No Feature Description

1 Number of IRP type The number of IRP type can reflect what
kind of device it is in some way

2 Number of IRP related with file
system

The number of IRP related with file
system can reflect whether the device is
trying to attach file system. It is used to
figure out whether the device is
performing unauthorized operations

3 Number of IRP related with
HID devices

The number of IRP related with HID
devices can reflect whether the device

4 average time interval of two
adjacent IRP

The speed of opearations is a great
feature to judge if those operations are
performed by the user or an attacker.
That’s because there always exist
differences between two human-beings
and between human-beings and scripts

5 Whether impossible IRP
appears

A device type corresponds to a set of
IRP types. Any IRP type not included in
the set is impossible to appear when the
device of that type is woring

enable attackers to control the input of a wireless mouse or keyboard. When
we look into IRP flow, there only exist IRP MJ READ and no harmful value
can be found. But they still can be detected. The reason is that if the attackers
send the input value one by one just as the user is coding, the user will find the
problem at once as the malicious script is running on the screen. So attackers
always send the input value in a fast speed and that’s different with normal input
process. In Curtain, IRP flow will be divided into many pieces and each piece
contains 20 IRPs. Then, we choose 5 features for each piece. They are shown in
Table 1. Based on these features of each piece, we use Isolation Forest to detect
abonormal behaviors [24]. In the algorithm, those abnomral behaviors should be
outliers. So if some piece were judged as a outlier, we think maybe an abonormal
behavior is performing. Then we send warning messages to users.

4.3 Fake Device Type Claim

It’s obvious that if devices can always claim themselves to be anything they want,
hosts will never be able to defend BadUSB attacks. In identifing the fake device,
GoodUSB tried to solve the problem with the only trust input, user’s choice
[13]. Usbfilter is tend to work like a firewall to defend some known attacks [12].
But both of them cannot solve the problem effective and convenient for users.
We solve the problem by the steps following. First, we get the descriptors of
the new device just as the normal device enumeration does. Then depending
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on the descriptors, we find the device type that the device claiming itself to
be. Meanwhile, we’ll ask users for the main device type of the new device (e.g.
Mouse, Keyboard, Printer). Finally, we combine user’s choice and the result from
descriptors. If they match, we call it success and allow the following enumeration
steps. But if not, we will ask user about this inconformity. Then users can choose
to trust the device or to ban the device. Curtain will kill the device’s enumeration
steps and deny this device connecting the host.

5 Evaluation

In this section, we will evaluate Curtain. We provide a functionality evaluation
of Curtain, where Curtain is tested against a variety of malicious and benign
devices. After that, we provide a performance evaluation of Curtain to show
that it won’t cost too much.

5.1 Functionality Evaluation

The authors of BadUSB have published a proof-of-concept implementation
online. The POC is able to rewrite the firmware of some specific devices with
malicious scripts. But rather than use such highly specific instance of BadUSB,
we use some common penetration tools to launch the BadUSB attack. Besides
that, Bastille shared their proof-of-concept implementation of MouseJack and
KeySniffer on GitHub. We launch these attacks with the shared code. After
that, we compared our results with those of some famous anti-virus softwares.

We prepared two host machines with Windows 10 in VMware, named PC-
A and PC-B. They are almost the same but Curtain is installed in PC-A and
Kaspersky Anti-Virus is installed in PC-B.

BadUSB Attack. In this part, we launched two attacks. First we tried to
claim a U-disk to be a keyboard when Windows trying to get descriptors from
our attack device. Later the “keyboard” will input some malicious code into the
host (test-1). Second, we tended to claim one more keyboard while the U-disk
still works well (test-2).

In test-1, we use Teensy 3 [22] development board as attack device. First,
we installed Arduino Development Kit in Kali Linux, which is a tool to rewrite
development boards like Teensy. Then, we rewrote the Teensy to be a keyboard
exactly but it still looked like a U-disk in appearance. The code inside Teensy
will claim itself to be a keyboard and after installation, it will start to input
our malicious code immediately. In the test, the code was to download a Trojan
generated by Metasploit Kit from the Internet and launch it. Then we plugged
the Teensy into PC-A first. Curtain detected that a new device was plugged
in and popped up a window, requesting the user to select expected device type.
Because the Teensy here was masked to be a U-disk, we chose USB storage. Then
it was detected that user’s choice was different with the device’s claim. So Curtain
threw a warning. The attack has been defended. While in PC-B, we performed
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the same operations but nothing trying to defend the attack happened. The
Teensy successfully downloaded the Trojan and we saw PC-B was online in our
control side of the Trojan.

In test-2, we still use Teensy 3 development board as attack device. The
difference is that we rewrote the Teensy to be a multi-purpose device. It can
work as a U-disk and a keyboard at the same time. The function of malicious
code was the same in the first test. After preparation, we plugged the Teensy
into PC-A. Everything went well. But Curtain detected that two devices were
plugged so it popped up two windows, requesting the user to choose expected
device type. Of course, in our mind, we only plugged in a U-disk. So we rejected
the second device to work. In fact, the attack was defended here. While in PC-B,
the malicious code worked well. We also saw PC-B was online in our control side
of Metasploit.

Two tests above have shown that Curtain really works when talking about
BadUSB attacks. In fact, any attack trying to mask the device to be another
device or inject one more device descriptor to send malicious operations will be
detected by Curtain.

Table 2. Functionality evaluation result

Test name Attack Machine Installed system Result

test-1 BadUSB: Fake Device
Type Claim(mask to be
another device)

PC-A Curtain Attack detected.
Device claim not
corresponding to
user’s choice.

PC-B Kaspersky Anti-Virus Attack success.

test-2 BadUSB: Fake Device
Type Claim(Add
malicious device)

PC-A Curtain Attack detected.
One more device
detected.

PC-B Kaspersky Anti-Virus Attack success.

test-3 KeySniffer: Operations
Replay

PC-A Curtain Attack detected.
An outlier of IRP
flows detected.

PC-B Kaspersky Anti-Virus Attack success.

test-4 KeySniffer: Operations
Injection

PC-A Curtain Attack detected.
An outlier of IRP
flows detected.

PC-B Kaspersky Anti-Virus Attack success

MouseJack and KeySniffer Attacks. In this part, we also launched two
attacks. One is to replay I/O operations of the keyboard (test-3) and the other
one is to inject some I/O operations of keyboard to attack the target (test-4).
The attack device in this part is Crazyradio PA Dongles and we used Logitech
K345 keyboard as target device.
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In test-3, we performed the test as Bastille introduced in their papers [15].
First, we rewrote the Crazyradio PA Dongles to make sure the scripts shared
by Bastille on GitHub can work on it. Then, we plugged the receiver of K345 to
PC-A and typed the story of Little Red Riding Hood in Word. Meanwhile, the
Crazyradio PA Dongles was sniffing and recorded the data sniffed into test-3.log.
After that, we used Crazyradio PA Dongles to replay the operations recorded in
test-3.log. The result is that, the replay attack was detected by Curtain while
only two words was typed. Then, we performed the same operations in PC-B.
The result was that there existed two same story in Word, which means that the
replay attack had been successful.

In test-4, first we used Crazyradio PA Dongles to sniff and record the data
transferred by K345. Then, we pressed each button of K345, whose receiver
was plugged in my own laptop. After that, we had already known how to map
a command string to data transferred to receiver. Then K345’s receiver was
plugged in PC-A again. We developed a script to automatically transform input
into data can be received by the receiver and send them through Crazyradio PA
Dongles. With the script, we tried to open CMD and download our Trojan. But
Curtain detected our attack while only the first input Win+R was received and
resolved. After that, anything we are trying to send to PC-A was rejected. So
the attack was unable to continue.

While in PC-B, whatever we tried to input, PC-B would resolve them nor-
mally. The result is that we had got the control of the keyboard of PC-B. Then,
we downloaded a Trojan generated by Metasploit and ran it. We saw PC-B was
online later.

Test-3 and test-4 have shown that those channel-based attacks cannot be
defended by traditional anti-virus systems like Kaspersky, but Curtain solved
the problem.

As a conclusion, tests shown above have proved that Curtain really works
when talking about channel-based attacks and firmware-based attacks. From
Table 2, we can conclude that Curtain can detect attacks shown before while
traditional anti-virus systems cannot.

5.2 Performance Evaluation

In this part, we use the software named USB Flash Benchmark as our test tool.
It’s aimed to test the read and write speed of any USB Flash Drive. Our host
machine is a PC, with a 3.30GHz Intel(R) Core(TM) i5-4590 CPU and 16 GB
of RAM and Windows 10 installed in it. Two virtual machines of Windows 10
named PC-C and PC-D are deployed on the PC, each of them works with 4GB
of RAM. The file system type of them is NTFS. The testing USB device is a
Kingston DataTraveler Ultimate 3.0 G3 (64 GB). Besides that, Kaspersky Anti-
Virus is installed in PC-C and Curtain is installed in PC-D. Then, we plug the
Kingston USB Flash Drive to PC-C and PC-D and start USB Flash Benchmark
to test the performance of the device on them. The result is shown in Table 3.
The write speed of PC-D is slower than that of PC-C by 4.93% and the read
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speed of PC-D is slower by 4.21%. In fact, we think that such latency is tolerable
in most cases.

Table 3. Performance evaluation result

Test name Machine Result

Write speed PC-C 82.79 MB/s

PC-D 78.71 MB/s

Read speed PC-C 185.73 MB/s

PC-D 177.92 MB/s

6 Future Work

Curtain is the first USB defending system for Windows based on IRP analyz-
ing. While Curtain is able to prevent malicious from installing unknown files to
system key location, it currently cannot detect the USB storage and find the
malicious virus in advance. In future work, we intend to strengthen its detecting
ability on USB virus. In order to customize our system for all types of USB
devices more precisely, we intend to train Curtain with more USB devices. By
refining the classification for USB devices types and functions, we can improve
the accuracy of our system and reduce the training cost for diverse USB devices.
In short, a more efficient and accurate math model should be defined. Although
the USB devices’ working process must comply with Windows’ USB working
mechanism, we may bypass the analyzing of IRP flow of upper level drivers
and try to work on analyzing USB’s I/O operations. We may apply this idea
without modifying original system architecture and improve Curtain’s efficiency.
A commercial software named USB monitor pro [28] can monitor both IRP and
URB flows. So in the future, we may tend to find an algorithm to combine IRP
and URB flows to detect malicious behaviors.

7 Discussion

7.1 Automatically Device Type Identification

As our system will ask users to choose the expectable type of the USB devices,
is it possible for us to release users from this burden? However, based on the
defense method of Curtain, we treat USB devices as untrusted, while we treat
users as trusted. As we proposed, users’ choice is meaningful to us because we
will compare their choice with the device type which the USB device itself declare
it to be. Without user’s assistance to tell us which kind of USB device should
the plugged-in USB device should be, we can only blindly trust the device type
inside the descriptor of the USB device. In the case of the BadUSB attack,
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attackers can modify the firmware of the USB device and disguise it as any type
of USB devices, so it is able to request any device drivers to perform its attack.
To prevent this, it is essential for us to ask for users’ assistance with choosing
the expectable type of the USB device they used. Through this, Curtain is able
to warn users timely. Further, we are also keen to find a new way to complete
our defense goal without users’ assistance, because in some cases we cannot treat
users as trusted either. It would be much better if we are able to construct our
whole defense process on our own. Unfortunately, we are unable to find such way
to optimize our defense system up to now. In our further research, we will keep
working on this, in order to make our system better.

7.2 Migration to Other OS

It’s worth mentioning that Curtain can only work in Windows now. But when
talking about adapting Curtain to some other operating systems like Ubuntu or
CentOS, what should we do? Of course, the main idea of Curtain can be totally
applied to other systems if needed. We are facing attacks shown in Fig. 2 no
matter which system we are using. In fact, we can also monitor the traffic of USB
devices and analyze them to figure out how to detect abnormal behaviors from
them. But in our research, there are still many challenges. First of all, Curtain
contains a component named IRP collector, which is based on the Driver Stack
of Windows. So when adapting Curtain to other systems, we should know how
those systems’ device drivers work and find a way to insert a “filter driver”. Then,
different operating systems implement USB protocol in a different way. We have
to find something similar to IRP in those systems so that we can extract features
from it. Besides this, Device Identifier, IRP Analyser and Anomaly Detector are
easy to be immigrated to other systems.

8 Conclusion

USB attacks are becoming more and more sophisticated. They make the security
both of USB devices and communications between USB devices and hosts fragile.
What’s worse, no practical defensive solution against these USB attacks is well-
developed till now. In this paper, we present the design and implementation of
Curtain, which will catch all the IRP flows of each device and analyze their
behaviors to detect attacks. With this tool, users can possess a more reliable
system to protect their valuable data and devices.
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