
Nested Timed Automata with Invariants

Yuwei Wang1, Guoqiang Li1(B), and Shoji Yuen2

1 School of Software, Shanghai Jiao Tong University, Shanghai, China
{wangywgg,li.g}@sjtu.edu.cn

2 Graduate School of Information Science, Nagoya University, Nagoya, Japan
yuen@is.nagoya-u.ac.jp

Abstract. Invariants are usually adopted into timed systems to con-
strain the time passage within each control location. It is well-known
that a timed automaton with invariants can be encoded to an equivalent
one without invariants. When recursions are taken into consideration, few
results show whether invariants affect expressiveness. This paper inves-
tigates the effect of invariants to Nested Timed Automata (NeTAs), a
typical real-timed recursive system. In particular, we study the reacha-
bility problem for NeTA-Is, which extend NeTAs with invariants. It is
shown that the reachability problem is undecidable on NeTA-Is with a
single global clock, while it is decidable when no invariants are given. Fur-
thermore, we also show that the reachability is decidable if the NeTA-Is
contains no global clocks by showing that a good stack content still sat-
isfies well-formed constraints.

1 Introduction

From the past century, many research studies have been carried out on modeling
and verification of real time systems. The pioneer work can be traced to Timed
Automata (TAs) [1,2], which is one of the most successful models among them
due to its simplicity, effectiveness and fruitful results. A TA is a finite automaton
with a finite set of clocks that grow uniformly. Besides the constraints assigned on
the transitions of TAs, they can also be assigned to each control location, named
invariants, to constrain time passages of models. Invariants usually play a crucial
role in the application modelling and verification [3], since in reality a system is
not allowed to stay in one location for arbitrarily long time. It is well-known that
TAs with and without invariants have the same expressive power [3]. However,
little research has been conducted in investigating the impact of invariants on
the reachability problem of timed systems with recursions.

This paper proposes an extension of Nested Timed Automata (NeTAs) [4,5],
called NeTA-Is. A NeTA is a pushdown system whose stack contains TAs with
global clocks passing information among different contexts. TAs in the stack can
either be proceeding, in which clocks proceed as time elapses, or frozen, where
clocks remain unchanged. NeTA-Is naturally extend NeTAs with invariants at
each control location that must be fulfilled in all valid runs. Studies in [5] have
shown that in NeTAs, (i) the reachability with a single global clock is decidable,
and (ii) the reachability with multiple global clocks is undecidable. While in this
paper, we show that (i) the reachability problem of a NeTA-I is undecidable even

c© Springer International Publishing AG 2017
K.G. Larsen et al. (Eds.): SETTA 2017, LNCS 10606, pp. 77–93, 2017.
https://doi.org/10.1007/978-3-319-69483-2_5

78 Y. Wang et al.

with a single global clock by encoding Minsky machines to NeTA-Is, and (ii) it
is decidable when the NeTA-I has no global clocks by showing that a good stack
content still satisfies well-formed constraints [6].

Related Work. Timed Automata (TAs) [1,2] are the first model for real-timed
systems. TAs are essentially finite automata extended with real-valued variables,
called clocks. The reachability of TAs is shown to be decidable based on con-
struction of regions and zones. It is also shown that invariants do not affect the
decidability and thus only a syntactic sugar. Based on timed automata, lots of
extensions are proposed and investigated especially for a recursive structure.

Dense Timed Pushdown Automata (DTPDAs) [7] combine timed automata
and pushdown automata, where each stack frame containing not only a stack
symbol but also a real-valued clock behaves as a basic unit of push/pop oper-
ations. The reachability of a DTPDA is shown to be decidable by encoding it
to a PDA using the region technique. Another decidability proof is given in [6]
through a general framework, well-structured pushdown systems. We adopt this
framework in this paper to prove the decidability of reachability of Constraint
DTPDAs, which extend DTPDAs with clock constraints on each location.

Recursive Timed Automata (RTAs) [8] contain finite components, each of
which is a special timed automaton and can recursively invoke other components.
Two mechanisms, pass-by-value and pass-by-reference, can be used to passing
clocks among different components. A clock is global if it is always passed by
reference, whereas it is local if it is always passed by value. Although the reach-
ability problem of RTAs is undecidable, it is decidable if all clocks are global or
all clocks are local.

Similarly, the reachability problems of both Timed Recursive State Machines
(TRSMs), which combine recursive state machines (RSMs) and TAs, and
Extended Pushdown Timed Automata (EPTAs), which augment Pushdown
Timed Automata (PTAs) with an additional stack, are undecidable, while they
are decidable in some restricted subclasses [9].

To the best of our knowledge, all these prior formal models focusing on timed
systems with recursive structures lacks discussions of the impact of invariants,
including DTPDAs, RTAs, TRSMs, EPTAs and NeTAs.

Paper Organization. The remainder of this paper is structured as follows: In
Sect. 2 we introduce basic terminologies and notations. Section 3 defines syntax
and the semantics of NeTA-Is. Section 4 shows that the reachability problem of
NeTA-Is is Turing-complete. Section 5 introduces a model Constraint DTPDAs
and shows its decidability. Section 6 is devoted to proofs of decidability results of
NeTA-Is without global clocks by encoding it to a Constraint DTPDA. Section 7
concludes this paper with summarized results.

2 Preliminaries

For finite words w = aw′, we denote a = head(w) and w′ = tail(w). The
concatenation of two words w, v is denoted by w.v, and ε is the empty word.

Nested Timed Automata with Invariants 79

Let R
≥0 and N denote the sets of non-negative real numbers and natural

numbers, respectively. Let ω denote the first limit ordinal. Let I denote the set
of intervals. An interval is a set of numbers, written as (a, b′), [a, b], [a, b′) or
(a, b], where a, b ∈ N and b′ ∈ N ∪ {ω}. For a number r ∈ R

≥0 and an interval
I ∈ I, we use r ∈ I to denote that r belongs to I.

Let X = {x1, . . . , xn} be a finite set of clocks. The set of clock constraints,
Φ(X), over X is defined by φ :: = � | x ∈ I | φ ∧ φ where x ∈ X and I ∈ I.
An operation of extracting constraint EC(φ, x) is defined by induction over its
argument φ.

EC(�, x) = [0, ω)
EC(x ∈ I, x) = I

EC(y ∈ I, x) = [0, ω) if x �= y

EC(φ1 ∧ φ2, x) = EC(φ1, x)
⋂

EC(φ2, x)

A clock valuation ν : X → R
≥0, assigns a value to each clock x ∈ X. ν0 denotes

the clock valuation assigning each clock in X to 0. For a clock valuation ν and
a clock constraint φ, we write ν |= φ to denote that ν satisfies the constraint
φ. Given a clock valuation ν and a time t ∈ R

≥0, (ν + t)(x) = ν(x) + t, for
x ∈ X. A clock assignment function ν[y1 ← b1, · · · , yn ← bn] is defined by
ν[y1 ← b1, · · · , yn ← bn](x) = bi if x = yi for 1 ≤ i ≤ n, and ν(x) otherwise.
Val(X) is used to denote the set of clock valuation of X.

2.1 Timed Automata

A timed automaton is a finite automaton augmented with a finite set of clocks [1,2].

Definition 1 (Timed Automata). A timed automaton (TA) is a tuple A =
(Q, q0,X, I,Δ) ∈ A , where

– Q is a finite set of control locations, with the initial location q0 ∈ Q,
– X is a finite set of clocks,
– I : Q → Φ(X) is a function assigning each location with a clock constraint on

X, called invariants.
– Δ ⊆ Q × O × Q, where O is a set of operations. A transition δ ∈ Δ is a

triplet (q1, φ, q2), written as q1
φ−→ q2, in which φ is either of

Local ε, an empty operation,
Test x ∈ I? where x ∈ X is a clock and I ∈ I is an interval,
Reset x ← 0 where x ∈ X, and
Value passing x ← x′ where x, x′ ∈ X.

Given a TA A ∈ A , we use Q(A), q0(A), X(A), I(A) and Δ(A) to represent
its set of control locations, initial location, set of clocks, function of invariants and
set of transitions, respectively. We will use similar notations for other models.

We call the four operations Local, Test, Reset, and Value passing as
internal actions which will be used in Definition 3.

Definition 2 (Semantics of TAs). Given a TA (Q, q0,X, I,Δ), a configura-
tion is a pair (q, ν) of a control location q ∈ Q and a clock valuation ν on X.
The transition relation of the TA is represented as follows,

80 Y. Wang et al.

– Progress transition: (q, ν) t−→A (q, ν + t), where t ∈ R
≥0, ν |= I(q) and

(ν + t) |= I(q).

– Discrete transition: (q1, ν1)
φ−→A (q2, ν2), if q1

φ−→ q2 ∈ Δ, ν1 |= I(q1), ν2 |=
I(q2) and one of the following holds,

• Local φ = ε, then ν1 = ν2.
• Test φ = x ∈ I?, ν1 = ν2 and ν2(x) ∈ I holds. The transition can be

performed only if the value of x belongs to I.
• Reset φ = x ← 0, ν2 = ν1[x ← 0]. This operation resets clock x to 0.
• Value passing φ = x ← x′, then ν2 = ν1[x ← ν1(x′)]. The transition

passes value of clock x′ to clock x.

The initial configuration is (q0, ν0).

Remark 1. The TA definition in Definition 1 follows the style in [4] and is slightly
different from the original definition in [1]. In [1], several test and reset operations
could be performed in a single discrete transition. It can be shown that our
definition of TA can soundly simulate the time traces in the original definition.

3 Nested Timed Automata with Invariants

A nested timed automaton with invariants (NeTA-I) extended from NeTAs1 [5]
is a pushdown system whose stack alphabet is timed automata. It can either
behave like a TA (internal operations), push or fpush the current working TA to
the stack, pop a TA from the stack or reference global clocks. Global clocks can
be used to constrain the global behavior or passing value of local clocks among
different TAs. The invariants can be classified into global invariants, which are
constraints on global clocks, and local invariants, which are constraints on local
clocks. In the executions of a NeTA-I, all invariants must be satisfied at all
reachable configurations, including global invariants and local invariants. Note
that because the stack contains only information belonging to TAs and does not
contain the global clock valuation, there is no need to check global invariants in
the stack.

Definition 3 (Nested Timed Automata with Invariants). A nested timed
automaton with invariants (NeTA-I) is a tuple N = (T,A0,X,C, I,Δ), where

– T is a finite set of TAs {A0,A1, · · · ,An}, with the initial TA A0 ∈ T . We
assume the sets of control locations of Ai, denoted by Q(Ai), are mutually
disjoint, i.e., Q(Ai) ∩ Q(Aj) = ∅ for i �= j. For simplicity, we assume that
each Ai in T shares the same set of local clocks X.

– C is a finite set of global clocks, and X is the finite set of k local clocks.
– I : Q → Φ(C) is a function that assigns to each control location an invari-

ant on global clocks. For clarity, I(q) denotes the global invariant in q, and
I(Ai)(q) denotes the local invariant in q where q ∈ Ai.

– Δ ⊆ Q × (Q ∪ {ε}) × Actions+ × Q × (Q ∪ {ε}) describes transition rules
below, where Q = ∪Ai∈T Q(Ai).

1 The NeTAs here are called “NeTA-Fs” in [5].

Nested Timed Automata with Invariants 81

A transition rule is described by a sequence of Actions = {internal, push,
fpush, pop, c ∈ I, c ← 0, x ← c, c ← x} where c ∈ C and x ∈ X.

Internal (q, ε, internal, q′, ε), which describes an internal transition in the work-
ing TA with q, q′ ∈ Q(Ai).

Push (q, ε, push, q0(Ai′), q), which interrupts the currently working TA Ai at
q ∈ Q(Ai) and pushes it to the stack with all local clocks of Ai. The local
clocks in the stack generated by Push operation are proceeding, i.e., still
evolve as time elapses. Then, a TA Ai′ newly starts.

Freeze-Push (F-Push) (q, ε, fpush, q0(Ai′), q), which is similar to Push
except that all local clocks in the stack generated by F-Push are frozen (i.e.
stay the same as time elapses).

Pop (q, q′, pop, q′, ε), which restarts Ai′ in the stack from q′ ∈ Q(Ai′) after Ai

has finished at q ∈ Q(Ai) and all local clocks restart with values in the top
stack frame.

Global-test (q, ε, c ∈ I?, q′, ε), which tests whether the value of a global clock c
is in I with q, q′ ∈ Q(Ai).

Global-reset (q, ε, c ← 0, q′, ε) with c ∈ C, which resets the global clock c to 0
with q, q′ ∈ Q(Ai).

Global-load (q, ε, x ← c, q′, ε), which assigns the value of a global clock c to a
local clock x ∈ X in the working TA with q, q′ ∈ Q(Ai).

Global-store (q, ε, c ← x, q′, ε), which assigns the value of a local clock x ∈ X
of the working TA to a global clock c with q, q′ ∈ Q(Ai).

Definition 4 (Semantics of NeTA-Is). Given a NeTA-I (T,A0,X,C, I,Δ),
let ValX = {ν : X → R

≥0} and ValC = {μ : C → R
≥0}. A configuration of a

NeTA-I is an element (〈q, ν, μ〉, v) with a control location q ∈ Q, a local clock
valuation ν ∈ ValX , a global clock valuation μ ∈ ValC and a stack v ∈ (Q ×
{0, 1} × ValX)∗. We say a stack v is good, written as v⇑, if all local invariants
are satisfied in v, i.e., for each content 〈qi, f lagi, νi〉 in v with qi ∈ Q(Aj), νi |=
I(Aj)(qi) holds. We also denote v + t by setting νi := progress(νi, t, f lagi) of

each 〈qi, f lagi, νi〉 in the stack where progress(ν, t, f lag) =
{

ν + t if flag = 1
ν if flag = 0

– Progress transition: (〈q, ν, μ〉, v) t−→ (〈q, ν + t, μ + t〉, v + t) for t ∈ R
≥0, where

q ∈ Q(Ai), ν |= I(Ai)(q), μ |= I(q), (ν + t) |= I(Ai)(q), (μ + t) |= I(q), v⇑
and (v + t)⇑.

– Discrete transition: (〈q, ν, μ〉, v)
ϕ−→ (〈q′, ν′, μ′〉, v′), where q ∈ Q(Ai), q′ ∈

Q(A′
i), ν |= I(Ai)(q), μ |= I(q), ν′ |= I(A′

i)(q
′), μ′ |= I(q′), v⇑, v′⇑, and

one of the following holds.
• Internal (〈q, ν, μ〉, v)

ϕ−→ (〈q′, ν′, μ〉, v), if (q, ε, internal, q′, ε) ∈ Δ and
〈q, ν〉 ϕ−→ 〈q′, ν′〉 is in Definition 2.

• Push (〈q, ν, μ〉, v)
push−−−→ (〈q0(Ai′), ν0, μ〉, 〈q, 1, ν〉.v), if (q, ε, push,

q0(Ai′), q) ∈ Δ.
• F-Push (〈q, ν, μ〉, v)

f-push−−−−→ (〈q0(Ai′), ν0, μ〉, 〈q, 0, ν〉.v), if (q, ε, fpush,
q0(Ai′), q) ∈ Δ.

• Pop (〈q, ν, μ〉, 〈q′, f lag, ν′〉.w)
pop−−→ (〈q′, ν′, μ〉, w), if (q, q′, pop, q′, ε) ∈ Δ.

• Global-test (〈q, ν, μ〉, v) c∈I?−−−→ (〈q′, ν, μ〉, v), if (q, ε, c ∈ I?, q′, ε) ∈ Δ and
μ(c) ∈ I.

82 Y. Wang et al.

• Global-reset (〈q, ν, μ〉, v) c←0−−−→ (〈q′, ν, μ[c ← 0]〉, v), if (q, ε, c ←
0, q′, ε) ∈ Δ.

• Global-load (〈q, ν, μ〉, v) x←c−−−→ (〈q′, ν[x ← μ(c)], μ〉, v), if (q, ε, x ←
c, q′, ε) ∈ Δ.

• Global-store(〈q, ν, μ〉, v) c←x−−−→ (〈q′, ν, μ[c ← ν(x)]〉, v), if (q, ε, c ←
x, q′, ε) ∈ Δ.

The initial configuration of a NeTA-I is (〈q0(A0), ν0, μ0〉, ε), where ν0(x) = 0
for x ∈ X and μ0(c) = 0 for c ∈ C. We use −→ to range over these transitions,
and −→∗ is the reflexive and transitive closure of −→.

Intuitively, in a stack v = (q1, f lag1, ν1) . . . (qn, f lagn, νn), qi is the control
location of the pushed/fpushed TA, flagi ∈ {0, 1} is a flag for whether the TA
is pushed (flagi = 1) or fpushed (flagi = 0) and νi is a clock valuation for the
local clocks of the pushed/fpushed TA.

4 Undecidability Results of NeTA-Is

In this section, we prove undecidability of NeTA-Is by encoding the halting
problem of Minsky machines [10] to NeTA-Is with a single global clock.

Definition 5 (Minsky Machine). A Minsky machine M is a tuple (L,C,D)
where:

– L is a finite set of states, and lf ∈ L is the terminal state,
– C = {ct1, ct2} is the set of two counters, and
– D is the finite set of transition rules of the following types,

• increment counter d = inc(l, cti, lk): start from l, cti := cti + 1, goto lk,
• test-and-decrement counter d = dec(l, cti, lk, lm): start from l, if (cti >

0) then (cti := cti − 1, goto lk) else goto lm,
where cti ∈ C, d ∈ D and l, lk, lm ∈ L.

In this encoding, we use three TAs, A0,A1 and A2. Each TA has three local
clocks x0, x1 and x2. A0 is a special TA, as two local clocks of A0, x1 and x2

encode values of two counters as xi = 2−cti for i = 1, 2. Decrementing and
incrementing the counter cti are simulated by doubling and halving of the value
of the local clock xi in A0, respectively. In all TAs, x0 is used to prevent time
progress. In A1 and A2, x1 and x2 are used for temporarily storing value. We
use only one global clock c to pass value among different TAs.

There are two types of locations in the encoding, q-locations and e-locations.
All q-locations are assigned with invariants x0 ∈ [0, 0]. These invariants ensures
that in all reachable configurations at q-locations, the value of x0 must be 0. So
time does not elapse at q-locations.

The idea of doubling or halving of xi in A0 is as follows. First the value of xi

is stored to the global clock c. Then the current TA A0 is fpushed to the stack
and through transitions in A1 and A2, the global clock c is doubled or halved.
Later A0 is popped back and the value of c is loaded to xi. Since all locations are
q-locations in A0, time does not elapse in A0. This ensures that while doubling
or halving a local clock, the other one is left unchanged.

Nested Timed Automata with Invariants 83

The encoding is shown formally as follows.
A Minsky machine M = (L,C,D) can be encoded into a NeTA-I N =

(T,A0,X,C ′, I,Δ), with T = {A0,A1,A2} where

–
Q(A0) = {ql | l ∈ L}⋃{qinc,i,lk

1 | inc(cti, l, lk) ∈ D}⋃ {qdec,i,lk
j | dec(cti, l, lk, lm) ∈ D, 1 ≤ j ≤ 2}

Q(A1) = {qinc,i,lk
j | inc(cti, l, lk) ∈ D, 2 ≤ j ≤ 8}⋃ {einc,i,lk
j | inc(cti, l, lk) ∈ D, j = 1, 2 or 4}⋃ {qdec,i,lk
j | dec(cti, l, lk, lm) ∈ D, 3 ≤ j ≤ 7}⋃ {edec,i,lk
2 | dec(cti, l, lk, lm) ∈ D}

Q(A2) = {qinc,i,lk
j | inc(cti, l, lk) ∈ D, 9 ≤ j ≤ 11}⋃ {einc,i,lk
3 | inc(cti, l, lk) ∈ D}⋃ {qdec,i,lk
j | dec(cti, l, lk, lm) ∈ D, 8 ≤ j ≤ 10}⋃ {edec,i,lk
1 | dec(cti, l, lk, lm) ∈ D}

– X = {x0, x1, x2} and C ′ = {c}.
– I(Ai)(q) = x0 ∈ [0, 0] and I(Ai)(e) = � where 0 ≤ i ≤ 2 and denotes any

valid symbol. Here q denotes the q-location, which is labeled with q, and e
denotes the e-location, which is labeled with e.

– Δ is shown implicitly in the following simulations due to limited space.
• increment counter simulate inc(l, cti, lk). Initially ν(xi) = d with 0 <

d ≤ 1. In qlk , xi will be halved. The value of xi is stored to the global clock
c and context is changed to A1. Then the value of c is halved. Although the
timed elapsed in state einc,i,lk

2 and einc,i,lk
3 are nondeterministic, to reach

the location qlk , the value of x1 and c must coincide (i.e., they reach 1
together) at state einc,i,lk

4 . The readers can check that timed elapsed in
einc,i,lk
1 must be 1 − d, in einc,i,lk

2 and einc,i,lk
4 must be d/2, and in einc,i,lk

3
must be 1 − d/2

ql
c←xi−−−→ qinc,i,lk

1

fpush−−−−→ einc,i,lk
1

x0←0−−−−→ qinc,i,lk
2

c∈[1,1]?−−−−−→ qinc,i,lk
3

c←0−−−→
einc,i,lk
2

x0←0−−−−→ qinc,i,lk
4

fpush−−−−→ einc,i,lk
3

x0←0−−−−→ qinc,i,lk
9

c∈[1,1]?−−−−−→ qinc,i,lk
10

c←x1−−−→ qinc,i,lk
11

pop−−→ qinc,i,lk
4

x2←0−−−−→ einc,i,lk
4

x0←0−−−−→ qinc,i,lk
5

c∈[1,1]?−−−−−→ qinc,i,lk
6

x1∈[1,1]?−−−−−−→ qinc,i,lk
7

c←x2−−−→ qinc,i,lk
8

pop−−→ qinc,i,lk
1

xi←c−−−→ qlk

• test-and-decrement counter simulate dec(l, cti, lk, lm). Initially ν(xi) =
d with 0 < d ≤ 1. At the beginning of the simulation, xi = 1 is tested,
which encodes the zero test of cti. In qlk , xi will be doubled. The readers
can also check that to reach the location qlk , timed elapsed in edec,i,lk

1 must
be 1 − d, and in edec,i,lk

2 must be d.

ql
xi∈[1,1]?−−−−−−→ qlm and

ql
xi∈(0,1)?−−−−−−→ qdec,i,lk

1
c←xi−−−→ qdec,i,lk

2

fpush−−−−→ qdec,i,lk
3

x1←c−−−→ qdec,i,lk
4

fpush−−−−→
edec,i,lk
1

x0←0−−−−→ qdec,i,lk
8

c∈[1,1]?−−−−−→ qdec,i,lk
9

c←x1−−−→ qdec,i,lk
10

pop−−→ qdec,i,lk
4

ε−→
edec,i,lk
2

x0←0−−−−→ qdec,i,lk
5

c∈[1,1]?−−−−−→ qdec,i,lk
6

c←x1−−−→ qdec,i,lk
7

pop−−→
qdec,i,lk
2

xi←c−−−→ qlk

84 Y. Wang et al.

Theorem 1. The reachability of aNeTA-I with a single global clock is undecidable.

Remark 2. The invariants here are used to prevent time progress, and it can not
be simulated by the traditional approach if pop rules are allowed, i.e., simply
resetting x0 to 0 first, and then using a test transition x0 ∈ [0, 0]? at the tail.
For example, in the pop rule qinc,i,lk

11

pop−−→ qinc,i,lk
4 , the state qinc,i,lk

11 is the final
state of A2, and there is no way using only test transition x0 ∈ [0, 0]? to promise
time not elapsing in qinc,i,lk

11 . Because after popping, we can not check values of
the local clocks in the original TA A2, which has been already popped from the
stack. Of course, if we introduce a fresh global clock, say c0, the test transition
c0 ∈ [0, 0]? can prevent time progress. Then it is actually an encoding from a
Minsky machine to a NeTA with two global clocks and without invariants, which
is consistent with results in [5].

5 Constraint Dense Timed Pushdown Automata

In this section, we first present syntax and semantics of Constraint Dense Timed
Pushdown Automata. Later, we introduce digiwords and operations which are
used for encoding from a Constraint Dense Timed Pushdown Automaton to a
snapshot pushdown system. Finally, the decidability of reachability of a snapshot
pushdown system is shown by observing that it is a growing WSPDS with a well-
formed constraint [6].

Definition 6 (Constraint Dense Timed Pushdown Automata). A con-
straint dense timed pushdown automaton (Constraint DTPDA) is a tuple D =
〈S, s0, Γ,X, I,Δ〉 ∈ D , where

– S is a finite set of states with the initial state s0 ∈ S,
– Γ is a finite stack alphabet,
– X is a finite set of clocks (with |X| = k),
– I : S → Φ(X) is a function that assigns to each state an invariant, and
– Δ ⊆ S × Action+ × S is a finite set of transitions.

A (discrete) transition δ ∈ Δ is a sequence of actions (s1, o1, s2), · · · , (si, oi, si+1)
written as s1

o1;··· ;oi−−−−−→ si+1, in which oj (for 1 ≤ j ≤ i) is one of the followings,

– Local ε, an empty operation,
– Test φ, where φ ∈ Φ(X) is a clock constraint,
– Reset x ← 0 where x ∈ X,
– Value passing x ← x′ where x, x′ ∈ X,
– Push push(γ), where γ ∈ Γ is a stack symbol,
– F-Push fpush(γ), where γ ∈ Γ is a stack symbol, and
– Pop pop(γ), where γ ∈ Γ is a stack symbol.

Definition 7 (Semantics of Constraint DTPDAs). For a Constraint
DTPDA 〈S, s0, Γ,X, I,Δ〉, a configuration is a triplet (s, w, ν) with a state
s ∈ S, a stack w ∈ (Γ × (R≥0)k × {0, 1} × Φ(X))∗, and a clock valua-
tion ν on X. Similarly, a stack w good, written as w⇑, if for each con-
tent (γi, t̄i, f lagi, φi) in w, we have ν[x1 ← t1, · · · , xk ← tk] |= φi where

Nested Timed Automata with Invariants 85

t̄i = (t1, · · · , tk). For w = (γ1, t̄1, f lag1, φ1). · · · .(γn, t̄n, f lagn, φn), a t-time
passage on the stack, written as w + t, is (γ1, progress′(t̄1, t, f lag1), f lag1, φ1).
· · · .(γn, progress′(t̄n, t, f lagn), f lagn, φn) where

progress′(t̄, t, f lag) =
{

(t1 + t, · · · , tk + t) if flag = 1 and t̄ = (t1, · · · , tk)
t̄ if flag = 0

The transition relation of the Constraint DTPDA is defined as follows:

– Progress transition: (s, w, ν) t−→D (s, w + t, ν + t), where t ∈ R
≥0, w⇑, ν |=

I(s), (w + t)⇑ and (ν + t) |= I(s).
– Discrete transition: (s1, w1, ν1)

o−→D (s2, w2, ν2), if s1
o−→ s2, w⇑

1 ,ν1 |= I(s1),
w⇑

2 ,ν2 |= I(s2) and one of the following holds,
• Local o = ε, then w1 = w2, and ν1 = ν2.
• Test o = φ, then w1 = w2, ν1 = ν2 and ν1 |= φ.
• Reset o = x ← 0, then w1 = w2, ν2 = ν1[x ← 0].
• Value passing o = x ← x′, then w1 = w2, ν2 = ν1[x ← ν1(x′)].
• Push o = push(γ), then ν2 = ν0, w2 = (γ, (ν1(x1), · · · , ν1(xk)), 1,

I(s1)).w1 for X = {x1, · · · , xk}.
• F-Push

o = fpush(γ), then ν2 = ν0, w2 = (γ, (ν1(x1), · · · , ν1(xk)), 0, I(s1)).w1

for X = {x1, · · · , xk}.
• Pop o = pop(γ), then ν2 = ν1[x1 ← t1, · · · , xk ← tk], w1 =

(γ, (t1, · · · , tk), f lag, φ).w2.

The initial configuration κ0 = (s0, ε, ν0). We use −→D to range over these
transitions, and −→∗

D is the transitive closure of −→D .

Intuitively, in a stack w = (γ1, t̄1, f lag1, φ1). · · · .(γn, t̄n, f lagn, φn), γi is a
stack symbol, t̄i is k-tuple of clocks values of x1, · · · , xk respectively, flagi = 1 if
the stack frame is pushed and flagi = 0 if fpushed and φi is a clock constraint.

Example 1. Figure 1 shows transitions between configurations of a Constraint
DTPDA with S = {s1, s2, s3, · · · }, X = {x1, x2}, Γ = {a, b, d} and I = {I(s1) =
x1 ∈ [0, 1) ∧ x2 ∈ [3, 4), I(s2) = x1 ∈ [0, 3), I(s3) = �, · · · }. Values changed from
the last configuration are in bold. For simplicity, we omit some transitions and
start from s1. From s1 to s2, a discrete transition fpush(d) pushes d to the stack
with the values of x1 and x2, frozen. After pushing, value of x1 and x2 will be
reset to zero. Then, at state s2, a progress transition elapses 2.6 time units, and
each value grows older for 2.6 except for frozen clocks in the top. From s2 to s3,
the batched transition first pops symbol d from the stack and clock values are
recovered from the poped clocks. Then, the value of x1 is reset to 0. Note that
the invariants are always satisfied in these reachable configurations.

In the following subsections, we denote the set of finite multisets over D by
MP(D), and the union of two multisets M,M ′ by M �M ′. We regard a finite set
as a multiset with the multiplicity 1, and a finite word as a multiset by ignoring
the ordering. Let frac(t) = t − floor(t) for t ∈ R

≥0.

86 Y. Wang et al.

w

ν

I

(a, (1.9, 4.5), 1, x1 ∈ [1, 6))
(b, (6.7, 2.9), 0, �)
(a, (3.1, 5.2), 1, x2 ∈ [5, ω))
(d, (4.2, 3.3), 1, �)

x1 ← 0.5
x2 ← 3.9

x1 ∈ [0, 1) ∧ x2 ∈ [3, 4)

(d, (0.5,3.9),0,x1 ∈ [0,1) ∧ x2 ∈ [3,4))
(a, (1.9, 4.5), 1, x1 ∈ [1, 6))
(b, (6.7, 2.9), 0, �)
(a, (3.1, 5.2), 1, x2 ∈ [5, ω))
(d, (4.2, 3.3), 1, �)

x1 ← 0
x2 ← 0

x1 ∈ [0, 3)

(s1, w1, ν1)
fpush(d)−−−−−−−−−−−−−−−−−→D (s2, w2, ν2)

2.6−−−−−−−−−−−→D

(d, (0.5, 3.9), 0, x1 ∈ [0, 1) ∧ x2 ∈ [3, 4))
(a, (4.5,7.1), 1, x1 ∈ [1, 6))
(b, (6.7, 2.9), 0, �)
(a, (5.7,7.8), 1, x2 ∈ [5, ω))
(d, (6.8,5.9, 1, �)

x1 ← 2.6
x2 ← 2.6

x1 ∈ [0, 3)

(a, (4.5, 7.1), 1, x1 ∈ [1, 6))
(b, (6.7, 2.9), 0, �)
(a, (5.7, 7.8), 1, x2 ∈ [5, ω))
(d, (6.8, 5.9), 1, �)

x1 ← 0
x2 ← 3.9

�
−−−→D (s2, w3, ν3)

pop(d);x1←0−−−−−−−−−−−−−−−→D (s3, w4, ν4)

Fig. 1. An example of constraint DTPDAs

5.1 Digiword and Its Operations

Let 〈S, s0, Γ,X, I,Δ〉 be a Constraint DTPDA, and let n be the largest integer
(except for ω) appearing in I and Δ.

Definition 8 (Two Subsets of Intervals). Let

Intv(n) = {r2i = [i, i] | 0 ≤ i ≤ n} ∪ {r2i+1 = (i, i + 1) | 0 ≤ i < n} ∪ {r2n+1 = (n, ω)}

Let I(n) denote a subset of intervals I such that all integers appearing in I(n)
are less than or equal to n. For v ∈ R

≥0, proj(v) = ri if v ∈ ri ∈ Intv(n).

Example 2. In Example 1, n = 6 and we have 13 intervals in Intv(6),

0 r1 1 r3 2 r5 3 r7 4 r9 5 r11 6 r13

r0 r2 r4 r6 r8 r10 r12

I(6) contains intervals (a, b′), [a, b], [a, b′) and (a, b] where a, b ∈ {0, 1, . . . , 6}
and b′ ∈ {0, 1, . . . , 6, ω}.

Intv(n) intend to contain digitizations of clocks, e.g., if a clock has value 1.9,
then we say it is in r3. I(n) intend to contain intervals in invariants, e.g., an
invariant x ∈ [1, 2] ∧ y ∈ (3, 4) can be split into two intervals [1, 2] and (3, 4).
Both Intv(n) and I(n) are finite sets.

Nested Timed Automata with Invariants 87

Definition 9 (Digitization). A digitization digi : MP((X ∪ Γ) × R
≥0 ×

{0, 1} × I(n)) → MP((X ∪ Γ) × Intv(n) × {0, 1} × I(n))∗ is defined as follows.
For Ȳ ∈ MP((X ∪Γ)×R

≥0 ×{0, 1}×I(n)), digi(Ȳ) is a word Y0Y1 · · · Ym,
where Y0, Y1, · · · , Ym are multisets that collect (x, proj(t), f lag, I)’s having the
same frac(t) for (x, t, f lag, I) ∈ Ȳ. Among them, Y0 (which is possibly empty)
is reserved for the collection of (x, proj(t), f lag, I) with frac(t) = 0 and t ≤
n (i.e., proj(t) = r2i for 0 ≤ i ≤ n). We assume that Yi except for Y0 is
non-empty (i.e., Yi = ∅ with i > 0 is omitted), and Yi’s are sorted by the
increasing order of frac(t) (i.e., frac(t) < frac(t′) for (x, proj(t), f lag, I) ∈ Yi

and (x′, proj(t′), f lag′, I ′) ∈ Yi+1).

For Yi ∈ MP((X ∪ Γ) × Intv(n) × {0, 1} × I(n)), we define the projections
by prc(Yi) = {(x, proj(t), 1, I) ∈ Yi} and frz(Yi) = {(x, proj(t), 0, I) ∈ Yi}.
We overload the projections on Ȳ = Y0Y1 · · · Ym ∈ (MP((X ∪ Γ) × Intv(n) ×
{0, 1} × I(n)))∗ such that frz(Ȳ) = frz(Y0)frz(Y1) · · · frz(Ym) and prc(Ȳ) =
prc(Y0)prc(Y1) · · · prc(Ym).

For a stack frame v = (γ, (t1, · · · , tk), f lag, φ) of a Constraint DTPDA,
we denote a word (γ, t1, f lag, EC(φ, x1)) · · · (γ, tk, f lag, EC(φ, xk)) by dist(v).
Given a state s and a clock valuation ν, we define a word time(s, ν) =
(x1, ν(x1), 1, EC(I(s), x1)) . . . (xk, ν(xk), 1, EC(I(s), xk)) where x1 . . . xk ∈ X.

Example 3. For the configuration
1 = (s1, v4 · · · v1, ν1) in Example 1, let
Ȳ = dist(v4) � . . . � dist(v1) � time(s1, ν1), and Ȳ = digi(Ȳ), i.e.,

Ȳ = {(a, 1.9, 1, [1, 6)), (a, 4.5, 1, [0, ω)), (b, 6.7, 0, [0, ω)), (b, 2.9, 0, [0, ω)),
(a, 3.1, 1, [0, ω)), (a, 5.2, 1, [5, ω)), (d, 4.2, 1, [0, ω)),
(d, 3.3, 1, [0, ω)), (x1, 0.5, 1, [0, 1)), (x2, 3.9, 1, [3, 4))}

Ȳ = {(a, r7, 1, [0, ω))}{(a, r11, 1, [5, ω)), (d, r9, 1, [0, ω))}{(d, r7, 1, [0, ω))}
{(x1, r1, 1, [0, 1)), (a, r9, 1, [0, ω))}{(b, r13, 0, [0, ω))}{(x2, r7, 1, [3, 4)),
(a, r3, 1, [1, 6)), (b, r5, 0, [0, ω))}

prc(Ȳ) = {(a, r7, 1, [0, ω))}{(a, r11, 1, [5, ω)), (d, r9, 1, [0, ω))}{(d, r7, 1, [0, ω))}
{(x1, r1, 1, [0, 1)), (a, r9, 1, [0, ω))}{(x2, r7, 1, [3, 4)), (a, r3, 1, [1, 6))}

frz(Ȳ) = {(b, r13, 0, [0, ω))}(b, r5, 0, [0, ω))}

Definition 10 (Digiwords and k-pointers). A word Ȳ ∈ (MP((X ∪ Γ) ×
Intv(n) × {0, 1} × I(n)))∗ is called a digiword. We say a digiword Ȳ is good,
written as Ȳ ⇑, if for all (x, ri, f lag, I) in Ȳ , ri ⊆ I. We denote Ȳ |Λ for Λ ⊆
Γ ∪X, by removing (x, ri, f lag, I) with x �∈ Λ. A k-pointer ρ̄ of Ȳ is a tuple of k
pointers to mutually different k elements in Ȳ |Γ . We refer to the element pointed
by the i-th pointer by ρ̄[i]. From now on, we assume that a digiword has two pairs
of k-pointers (ρ̄1, ρ̄2) and (τ̄1, τ̄2) that point to only proceeding and frozen clocks,
respectively. We call (ρ̄1, ρ̄2) proceeding k-pointers and (τ̄1, τ̄2) frozen k-pointers.
We also assume that they do not overlap each other, i.e., there are no i, j, such
that ρ̄1[i] = ρ̄2[j] or τ̄1[i] = τ̄2[j].

ρ̄1 and ρ̄2 intend the store of values of the proceeding clocks at the last and
one before the last Push, respectively. τ̄1 and τ̄2 intend similar for frozen clocks
at F-Push.

88 Y. Wang et al.

Definition 11 (Embedding over Digiwords). For digiwords Ȳ = Y1 · · · Ym

and Z̄ = Z1 · · · Zm′ with pairs of k-pointers (ρ̄1, ρ̄2), (τ̄1, τ̄2), and (ρ̄′
1, ρ̄

′
2), (τ̄

′
1, τ̄

′
2),

respectively, we define an embedding Ȳ � Z̄, if there exists a monotonic injection
f : [1..m] → [1..m′] such that Yi ⊆ Zf(i) for each i ∈ [1..m], f ◦ ρ̄i = ρ̄′

i and
f ◦ τ̄i = τ̄ ′

i for i = 1, 2.

The embedding � is a well-quasi-ordering which will be exploited in Sect. 5.3.

Definition 12 (Operations on Digiwords). Let Ȳ = Y0 · · · Ym, Ȳ ′ =
Y ′

0 · · · Y ′
m′ ∈ (MP((X ∪ Γ) × Intv(n) × {0, 1} × I(n)))∗ such that Ȳ (resp.

Ȳ ′) has two pairs of proceeding and frozen k-pointers (ρ̄1, ρ̄2) and (τ̄1, τ̄2) (resp.
(ρ̄′

1, ρ̄
′
2) and (τ̄ ′

1, τ̄
′
2)). We define digiword operations as follows.

– Decomposition: Let Z ∈ MP((X ∪Γ)×Intv(n)×{0, 1}×I(n)). If Z ⊆ Yj,
decomp(Ȳ , Z) = (Y0 · · · Yj−1, Yj , Yj+1 · · · Ym).

– Refresh refresh(Ȳ , s) for s ∈ S is obtained by updating all elements
(x, ri, 1, I) with (x, ri, 1, EC(I(s), x)) for x ∈ X.

– Init init(Ȳ) is obtained by removing all elements (x, r, 1, I) from Ȳ and
inserting (x, r0, 1, [0, w]) to Y0 for all x ∈ X.

– Insertx insertx(Ȳ , x, y) adds (x, ri, 1, I) to Yj for (y, ri, 1, I) ∈ Yj, x, y ∈ X.
– InsertI : Let Z ∈ MP((X∪Γ)×Intv(n)×{0, 1}×I(n)) with (x, ri, f lag, I) ∈

Z for x ∈ X ∪ Γ . insertI(Ȳ , Z) inserts Z to Ȳ such that
⎧
⎨

⎩

either take the union of Z and Yj for j > 0, or putZ at any place after Y0

if i is odd
take the union of Z andY0 if i is even

– Delete. delete(Ȳ , x) for x ⊆ X is obtained from Ȳ by deleting the element
(x, r, 1, I) indexed by x.

– Permutation. Let V̄ = prc(Ȳ) = V0V1 · · · Vk and Ū = frz(Ȳ) =
U0U1 · · · Uk′ . A one-step permutation Ȳ ⇒ Ȳ ′ is given by ⇒ = ⇒s ∪ ⇒c,
defined below. We denote inc(Vj) for Vj in which each ri is updated to ri+1

for i < 2n + 1.

(⇒s) Let{
decomp(U0 . inc(V0) . tl(Ȳ), Vk) = (Ȳ k

	 , Ŷ k, Ȳ k

)

decomp(insertI((Ŷ k \ Vk) . Ȳ k

 , Vk), Vk) = (Z̄k

	, Ẑk, Z̄k

).

For j with 0 ≤ j < k, we repeat to set{
decomp(Ȳ j+1

	 . Z̄j+1
	 , Vj) = (Ȳ j

	 , Ŷ j , Ȳ j

)

decomp(insertI((Ŷ j \ Vj) . Ȳ j

 , Vj), Vj) = (Z̄j

	, Ẑj , Z̄j

).

Then, Ȳ ⇒s Ȳ ′ = Ȳ 0
	 Z̄0

	 Ẑ0 Z̄1
	 Ẑ1 · · · Z̄k

	 Ẑk Z̄k

.

(⇒c) Let Ȳ k
	 = U0 ∪ inc(Vk) and Z̄k

	 = inc(V0) Y1 · · · (Yi′ \ Vk) · · · Ym.
For j with 0 ≤ j < k, we repeat to set{

decomp(Ȳ j+1
	 .Z̄j+1

	 , Vj) = (Ȳ j
	 , Ŷ j , Ȳ j

)
decomp(insertI((Ŷ j \ Vj).Ȳ

j

 , Vj), Vj) = (Z̄j

	, Ẑj , Z̄j

).

Then, Ȳ ⇒c Ȳ ′ = Ȳ 0
	 Z̄0

	 Ẑ0 Z̄1
	 Ẑ1 · · · Z̄k−1

	 Ẑk−1 Z̄k−1

 .

Nested Timed Automata with Invariants 89

(ρ̄1, ρ̄2) is updated to correspond to the permutation accordingly, and (τ̄1, τ̄2)
is kept unchanged.

– Rotate: For proceeding k-pointers (ρ̄1, ρ̄2) of Ȳ and ρ̄ of Z̄, let Ȳ |Γ ⇒∗ Z̄|Γ
such that the permutation makes ρ̄1 match with ρ̄. Then, rotateρ̄1 �→ρ̄(ρ̄2) is
the corresponding k-pointer of Z̄ to ρ̄2.

– Mapflag
→ mapfl

→(Ȳ , γ) for γ ∈ Γ is obtained from Ȳ by, for each xi ∈ X,
replacing (xi, rj , 1, I) with (γ, rj , f l, I). Accordingly, if fl = 1, ρ̄1[i] is updated
to point to (γ, rj , 1, I), and ρ̄2 is set to the original ρ̄1. If fl = 0, τ̄1[i] is
updated to point to (γ, rj , 0, I), and τ̄2 is set to the original τ̄1.

– Mapflag
← mapfl

←(Ȳ , Ȳ ′, γ) for γ ∈ Γ is obtained,
(if fl = 1) by replacing each ρ̄1[i] = (γ, rj , 1, I) in Ȳ |Γ with (xi, rj , 1, I) for

xi ∈ X. Accordingly, new ρ̄1 is set to the original ρ̄2, and new ρ̄2 is set
to rotateρ̄′

1 �→ρ̄2(ρ̄
′
2). τ̄1 and τ̄2 are kept unchanged.

(if fl = 0) by replacing each τ̄1[i] = (γ, rj , 0, I) in Ȳ |Γ with (xi, rj , 1, I) for
xi ∈ X. Accordingly, new τ̄1 is set to the original τ̄2, and new τ̄2 is set to
τ̄ ′
2. ρ̄1 and ρ̄2 are kept unchanged.

We will use these operations on digiwords for encoding in the next subsection.

5.2 Snapshot Pushdown System

In this subsection, we show that a Constraint DTPDA is encoded into its dig-
itization, called a snapshot pushdown system (snapshot PDS), which keeps the
digitization of all clocks in the top stack frame, as a digiword. The keys of the
encoding are, (1) when a pop occurs, the time progress recorded at the top stack
symbol is propagated to the next stack symbol after finding a permutation by
matching between proceeding k-pointers ρ̄2 and ρ̄′

1, and (2) only invariants in
the top stack frame need to be checked. Before showing the encoding, we first
define the encoded configuration, called snapshot configuration.

Definition 13 (Snapshot Configuration). Let π :
0 = (s0, ε, ν0) −→∗
D

 = (s, w, ν) be a transition sequence of a Constraint DTPDA from the initial
configuration. If π is not empty, we refer the last step as λ :
′ −→D
, and the
preceding sequence by π′ :
0 −→∗

D
′. Let w = vm · · · v1. A snapshot is snap(π) =
(Ȳ , f lag(vm)), where Ȳ = digi(�idist(vi) � time(s, ν)). Let a k-pointer ξ̄(π) be
ξ̄(π)[i] = (γ, proj(ti), f lag(vm), I) for (γ, ti, f lag(vm), I) ∈ dist(vm). A snapshot
configuration Snap(π) is inductively defined from Snap(π′).
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s0, snap(ε)) if π = ε.(ρ̄1, ρ̄2) and (τ̄1, τ̄2) are undefined.
(s′, snap(π) tail(Snap(π′))) if λ isTimeprogresswith Ȳ ′ ⇒∗ Ȳ .

Then, thepermutationȲ ′ ⇒∗ Ȳ updates (ρ̄′
1, ρ̄′

2) to (ρ̄1, ρ̄2).
(s′, snap(π) tail(Snap(π′))) if λ isLocal, Test, Reset, Value − passing.
(s, snap(π) Snap(π′)) if λ isPush. Then, (ρ̄1, ρ̄2) = (ξ̄(π), ρ̄′

1).
(s, snap(π) Snap(π′)) if λ isF − Push.Then, (τ̄1, τ̄2) = (ξ̄(π), τ̄ ′

1).
(s, snap(π) tail(tail(Snap(π′)))) if λ isPop.

If flag = 1, (ρ̄1, ρ̄2) = (ρ̄′
2, rotateρ̄′′

1 �→ρ̄′
2
(ρ̄′′

2)); otherwise, (τ̄1, τ̄2) = (τ̄ ′
2, τ̄ ′′

2).

We refer head(Snap(π′)) by Ȳ ′, head(tail(Snap(π′)) by Ȳ ′′. Pairs of pointers
of Ȳ , Ȳ ′, and Ȳ ′′ are denoted by (ρ̄1, ρ̄2), (ρ̄′

1, ρ̄
′
2), and (ρ̄′′

1 , ρ̄′′
2), respectively. If

not mentioned, pointers are kept as is.

90 Y. Wang et al.

Definition 14 (Snapshot PDS). For a Constraint DTPDA 〈S, s0, Γ,X, I,∇〉,
a snapshot PDS S is a PDS (with possibly infinite stack alphabet)

〈S ∪ {serr}, s0, (MP((X ∪ Γ) × Intv(n) × {0, 1} × I(n)))∗ × {0, 1},Δd〉.
with the initial configuration 〈s0, ({(x, r0, 1, EC(I(s0), x)) | x ∈ X}, 1)〉. For

simplicity, we define s′′ =

{
s′ if Ȳ ′⇑,

serr otherwise
where serr is a special error

state that is used to indicate invariants are violated. Then Δd consists of:

Progress 〈s, (Ȳ , f lag)〉 ↪→S 〈s′′, (Ȳ ′, f lag)〉 for Ȳ ⇒∗ Ȳ ′, where s′ = s.
Local (s ε−→ s′ ∈ Δ) 〈s, (Ȳ , f lag)〉 ↪→S 〈s′′, (Ȳ ′, f lag)〉, where Ȳ ′ =

refresh(Ȳ , s′).

Test (s
φ−→ s′ ∈ Δ) 〈s, (Ȳ , f lag)〉 ↪→S 〈s′′, (Ȳ ′, f lag)〉, where Ȳ ′ =

refresh(Ȳ , s′), if for every (x, ri, f lag, I) ∈ Ȳ with x ∈ X, ri ⊆ EC(φ, x)
holds,

Reset (s x←0−−−→ s′ ∈ Δ with λ ⊆ X) 〈s, (Ȳ , f lag)〉 ↪→S 〈s′′, (Ȳ ′, f lag)〉,
where Ȳ ′ = refresh(insertI(delete(Ȳ , x), (x, r0, 1, [0, w))), s′).

Value-passing (s
x←y−−−→ s′ ∈ Δ with x, y ∈ X) 〈s, (Ȳ , f lag)〉 ↪→S

〈s′′, (Ȳ ′, f lag)〉,
where Ȳ ′ = refresh(insertx(delete(Ȳ , x), x, y), s′)〉.

Push (s
push(γ)−−−−−→ s′ ∈ Δ; fl = 1) and F-Push (s

fpush(γ)−−−−−−→ s′ ∈ Δ; fl = 0)
〈s, (Ȳ , f lag)〉 ↪→S 〈s′′, (Ȳ ′, f l)(Ȳ , f lag)〉,
where Ȳ ′ = refresh(init(mapfl

→(Ȳ , γ), s′).

Pop (s
pop(γ)−−−−→ s′ ∈ Δ) 〈s, (Ȳ , f lag)(Ȳ ′′, f lag′)〉 ↪→S 〈s′′, (Ȳ ′, f lag′)〉,

where Ȳ ′ = refresh(mapflag
← (Ȳ , Ȳ ′′, γ), s′).

By induction on the number of steps of transitions, the encoding relation
between a Constraint DTPDA and a snapshot PDS is observed.

Lemma 1. Let us denote
0 and
 (resp. 〈s0, w̃0〉 and 〈s, w̃〉) for the initial
configuration and a configuration of a Constraint DTPDA (resp. its encoded
snapshot PDS S).

(Preservation) If π :
0 −→∗
D
, there exists 〈s, w̃〉 such that 〈s0, w̃0〉 ↪→∗

S〈s, w̃〉 and Snap(π) = 〈s, w̃〉.
(Reflection) If 〈s0, w̃0〉 ↪→∗

S 〈s, w̃〉,
s = serr is an error state, or
s �= serr and there exists π :
0 −→∗

D
 with Snap(π) = 〈s, w̃〉.

5.3 Well-Formed Constraint

A snapshot PDS is a growing WSPDS (Definition 6 in [6]) and ⇓Υ gives a well-
formed constraint (Definition 8 in [6]). Let us recall the definitions.

Let P be a set of control locations and let Γ be a stack alphabet. Different
from an ordinary definition of PDSs, we do not assume that P and Γ are finite,
but associated with well-quasi-orderings (WQOs) � and ≤, respectively. Note
that the embedding � over digiwords is a WQO by Higman’s lemma.

Nested Timed Automata with Invariants 91

For w = α1α2 · · · αn, v = β1β2 · · · βm ∈ Γ ∗, let w � v if m = n and ∀i ∈
[1..n].αi ≤ βi. We extend � on configurations such that (p,w) � (q, v) if p � q
and w � v for p, q ∈ P and w, v ∈ Γ ∗. A partial function ψ ∈ PFun(X,Y) is
monotonic if γ ≤ γ′ with γ ∈ dom(ψ) implies ψ(γ) � ψ(γ′) and γ′ ∈ dom(ψ).

A a well-structured PDS (WSPDS) is a triplet 〈(P,�), (Γ,≤),Δ〉 of a set
(P,�) of WQO states, a WQO stack alphabet (Γ,≤), and a finite set Δ ⊆
PFun(P ×Γ, P ×Γ≤2) of monotonic partial functions. A WSPDS is growing if,
for each ψ(p, γ) = (q, w) with ψ ∈ Δ and (q′, w′) � (q, w), there exists (p′, γ′)
with (p′, γ′) � (p, γ) such that ψ(p′, γ′) � (q′, w′).

A well-formed constraint describes a syntactical feature that is preserved
under transitions. Theorem 5 in [6] ensures the reachability of a growing WSPDS
when it has a well-formed constraint.

Definition 15 (Well-formed constraint). Let a configuration (s, w̃) of a
snapshot PDS S. An element in a stack frame of w̃ has a parent if it has a
corresponding element in the next stack frame. The transitive closure of the
parent relation is an ancestor. An element in w̃ is marked, if its ancestor is
pointed by a pointer in some stack frame. We define a projection ⇓Υ (w̃) by
removing unmarked elements in w̃. We say that w̃ is well-formed if ⇓Υ (w̃) = w̃.

The idea of ⇓Υ is to remove unnecessary elements (i.e., elements not related
to previous actions) from the stack content. Note that a configuration reachable
from the initial configuration by ↪→∗

S is always well-formed. Since a snapshot
PDS is a growing WSPDS with ⇓Υ , we conclude Theorem 2 from Lemma 1.

Theorem 2. The reachability of a Constraint DTPDA is decidable.

6 Decidability Results of NeTA-Is

In this section, we encode NeTA-I with no global clocks to constraint DTPDAs
and thus show the decidability of the former model.

Given a NeTA-I N = (T,A0,X,C, I,Δ) with no global clocks (C = ∅), we
define the target Constraint DTPDA E(N) = 〈S, s0, Γ,X, I′,∇〉 such that

– S = Γ =
⋃

Ai∈T Q(Ai) is the set of all control locations of TAs in T .
– s0 = q0(A0) is the initial control location of the initial TA A0.
– X = {x1, ..., xk}is the set of k local clocks.
– I

′ : S → Φ(X) is a function such that I
′(s) = I(Ai)(s) where s ∈ Q(Ai).

– ∇ is the union
⋃

Ai∈T Δ(Ai)
⋃ H(N) where{

Δ(Ai) = {Local,Test,Reset,Value-passing},
H(N) consists of rules below.

Push q
push(q)−−−−−→ q0(Ai′) if (q, ε, push, q0(Ai′), q) ∈ Δ(N)

F − Push q
fpush(q)−−−−−−→ q0(Ai′) if (q, ε, f -push, q0(Ai′), q) ∈ Δ(N)

Pop q
pop(q′)−−−−→ q′ if (q, q′, pop, q′, ε)) ∈ Δ(N)

92 Y. Wang et al.

Definition 16. Let N be a NeTA-I (T,A0,X,C, I,Δ) with no global clocks and
let E(N) be the encoded constraint DTPDA 〈S, s0, Γ,X, I′,∇〉. For a configu-
ration κ = (〈q, ν, μ〉, v) of N such that v = (q1, f lag1, ν1) . . . (qn, f lagn, νn),
�κ� denotes a configuration (q, w(κ), ν) of E(N) where w(κ) = w1 · · · wn with
wi = (qi, νi, f lagi, I(qi)).

We can prove that transitions are preserved and reflected by the encoding.

Lemma 2. For a NeTA-I N with no global clocks, its encoded Constraint
DTPDA E(N), and configurations κ, κ′ of N ,

(Preservation) if κ −→ κ′, then �κ� −→∗
D �κ′�, and

(Reflection) if �κ� −→∗
D
, there exists κ′ with
 −→∗

D �κ′� and κ −→∗ κ′.

Theorem 3. The reachability of a NeTA-I with no global clocks is decidable.

7 Conclusion

This paper proposes a model NeTA-Is by extending NeTAs with invariants
assigned to each control location. We have shown that the reachability problem
of a NeTA-I with a single global clock is undecidable, while that of a NeTA-I
without global clocks is decidable. Compared to the different result of NeTA [5],
it is revealed that unlike that of timed automata, invariants affect the expressive-
ness of timed recursive systems. Hence, when adopting timed recursive systems
to model and verify complex real-time systems, one should carefully consider the
introduction of invariants.

Acknowledgements. This work is supported by National Natural Science Founda-
tion of China with grant Nos. 61472240, 61672340, 61472238, and the NSFC-JSPS
bilateral joint research project with grant No. 61511140100.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126,
183–235 (1994)

2. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Inf. Comput. 111, 193–244 (1994)

3. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-27755-2 3

4. Li, G., Cai, X., Ogawa, M., Yuen, S.: Nested timed automata. In: Braberman,
V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 168–182. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40229-6 12

5. Li, G., Ogawa, M., Yuen, S.: Nested timed automata with frozen clocks. In:
Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp.
189–205. Springer, Cham (2015). doi:10.1007/978-3-319-22975-1 13

6. Cai, X., Ogawa, M.: Well-structured pushdown system: case of dense timed push-
down automata. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475,
pp. 336–352. Springer, Cham (2014). doi:10.1007/978-3-319-07151-0 21

http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://dx.doi.org/10.1007/978-3-642-40229-6_12
http://dx.doi.org/10.1007/978-3-319-22975-1_13
http://dx.doi.org/10.1007/978-3-319-07151-0_21

Nested Timed Automata with Invariants 93

7. Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In: Pro-
ceedings of the LICS 2012, pp. 35–44. IEEE Computer Society (2012)

8. Trivedi, A., Wojtczak, D.: Recursive timed automata. In: Bouajjani, A., Chin, W.-N.
(eds.) ATVA 2010. LNCS, vol. 6252, pp. 306–324. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-15643-4 23

9. Benerecetti, M., Minopoli, S., Peron, A.: Analysis of timed recursive state
machines. In: Proceedings of the TIME 2010, pp. 61–68. IEEE Computer Soci-
ety (2010)

10. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Upper Sad-
dle River (1967)

http://dx.doi.org/10.1007/978-3-642-15643-4_23

	Nested Timed Automata with Invariants
	1 Introduction
	2 Preliminaries
	2.1 Timed Automata

	3 Nested Timed Automata with Invariants
	4 Undecidability Results of NeTA-Is
	5 Constraint Dense Timed Pushdown Automata
	5.1 Digiword and Its Operations
	5.2 Snapshot Pushdown System
	5.3 Well-Formed Constraint

	6 Decidability Results of NeTA-Is
	7 Conclusion
	References

