
PranCS: A Protocol and Discrete Controller
Synthesis Tool

Idress Husien, Sven Schewe, and Nicolas Berthier(B)

Department of Computer Science, University of Liverpool, Liverpool, UK
nicolas.berthier@liverpool.ac.uk

Abstract. PranCS is a tool for synthesizing protocol adapters and dis-
crete controllers. It exploits general search techniques such as simulated
annealing and genetic programming for homing in on correct solutions,
and evaluates the fitness of candidates by using model-checking results.
Our Proctocol and Controller Synthesis (PranCS) tool uses NuSMV as
a back-end for the individual model-checking tasks and a simple candi-
date mutator to drive the search.

PranCS is also designed to explore the parameter space of the search
techniques it implements. In this paper, we use PranCS to study the
influence of turning various parameters in the synthesis process.

1 Introduction

Discrete Controller Synthesis (DCS) and Program Synthesis have similar goals:
they are automated techniques to infer a control strategy and an implementation,
respectively, that is correct by construction.

There are mild differences between these two classes of problems. DCS typ-
ically operates on the model of a plant. It seeks the automated construction of
a strategy to control the plant, such that its runs satisfy a set of given objec-
tives [2,22]. Similarly, program synthesis seeks to infer an implementation, often
of a reactive system, such that the runs of this system satisfy a given specifi-
cation [21]. Program synthesis is particularly attractive for the construction of
protocols that govern the intricate interplay between different threads; we use
mutual exclusion and leader election as examples.

Apart from their numerous applications to manufacturing systems [19,22,
24], DCS algorithms have been used to enforce fault-tolerance [11], deadlock
avoidance in multi-threaded programs [23], and correct resource management in
embedded systems [1,3].

Foundations of DCS and program synthesis are similar to principles of model-
checking [5,8]. Model-checking refers to automated techniques that determines
whether or not a system satisfies a number of specifications. Traditional DCS
algorithms are inspired by this approach. Given a model of the plant, they first
exhaustively compute an unsafe portion of the state-space to avoid for the desired

This work was supported by the Ministry of Higher Education in Iraq through the
University of Kirkuk and by the EPSRC through grant EP/M027287/1.

c© Springer International Publishing AG 2017
K.G. Larsen et al. (Eds.): SETTA 2017, LNCS 10606, pp. 337–349, 2017.
https://doi.org/10.1007/978-3-319-69483-2_20

338 I. Husien et al.

objectives to be satisfied, and then derive a strategy that avoids entering the
unsafe region. Finally, a controller is built that restricts the behaviour of the
plant according to this strategy, so that it is guaranteed to always comply with
its specification. Just as for model-checking, symbolic approaches for solving
DCS problems have been successfully investigated [2,4,10,20].

Techniques based on genetic programming [7,12–17], as well as on simu-
lated annealing [13,14], have been tried for program synthesis. Instead of per-
forming an exhaustive search, these techniques proceed by using a measure of
the fitness—reflecting the question “How close am I to satisfying the specifi-
cation?”—to find a short path towards a solution. Among the generic search
techniques that look promising for this approach, we focus on genetic program-
ming [18] and simulated annealing [7,12]. When applied to program synthesis,
both search techniques work by successively mutating candidate programs that
are deemed “good” by using some measure of their fitness. We obtain their fit-
ness for meeting the desired objectives by using a model-checker to measure the
share of objectives that are satisfied by the candidate program, cf. [13,14,16,17].

Simulated annealing keeps one candidate solution, and a “cooling schedule”
describes the evolution of a “temperature”. In a sequence of iterations, the algo-
rithm mutates the current candidate and compares the fitness of the old and
new candidate. If the fitness increases, the new candidate is always maintained.
If it decreases, a random process decides if the new candidate replaces the old
one in the next iteration. The chances of the new candidate to replace the old
one then decrease with the gap in the fitness and increase with the temperature;
thus, a lower temperature makes the system “stiffer”.

Genetic programming maintains a population of candidate programs over a
number of iterations. In each iteration, new candidate programs are generated
by mutation or by mixing randomly selected candidates (“crossover”). At the
end of each iteration, the number of candidates under consideration is shrunken
back to the original number. A higher fitness makes it more likely for a candidate
to survive this step.

In Sect. 2, we describe the tool PranCS, which implements the simulated
annealing based approach proposed in [13,14] as well as approaches based on
similar genetic programming from [16,17]. PranCS uses quantitative measures
for partial compliance with a specification, which serve as a measure for the
fitness (or: quality) of a candidate solution. Furthering on the comparison of
simulated annealing with genetic programming [13,14], we extend the quest for
the best general search technique in Sect. 3 by:

1. looking for good cooling schedules for simulated annealing; and
2. investigating the impact of the population size and crossover ratio for genetic

programming.

2 Overview of PranCS

PranCS implements several generic search algorithms that can be used for solving
DCS problems as well as for synthesising programs.

PranCS: A Protocol and Discrete Controller Synthesis Tool 339

2.1 Representing Candidates

The representation of candidates depends on the kind of problems to solve.
Candidate programs are represented as abstract syntax trees according to the
grammar of the sought implementation. They feature conditional and iteration
statements, assignments to one variable taken among a given set, and expressions
involving such variables. Candidates for DCS only involve a series of assignments
to a given subset of Boolean variables involved in the system (called “control-
lables”).

2.2 Structure of PranCS

The structure of PranCS is shown in Fig. 1. Via the user interface, the user can
select a search technique, and enter the problem to solve along with values for
relevant parameters of the selected algorithm. For program synthesis, the user
enters the number, size, and type of variables that candidate implementations
may use, and whether thay may involve complex conditional statements (“if”
and “while” statements). DCS problems are manually entered as a series of
assignments to state variables involving expressions expressed on state and input
variables; the user also lists the subset of input variables that are “controllable”.
In both cases, the user also provides the specification as a list of objectives.

User
Interface

Generator

Translator Fitness
MeasureNuSMV

Search
Tech-
nique

parameters
properties

Candidate

Model Output

properties Fitness

Output

candidate
update

Fig. 1. Overview of PranCS.

Generator. The Generator uses the
parameters provided to either gen-
erate new candidates or to update
them when required during the
search.

Translator & NuSMV. We use
NuSMV [6] as a model-checker.
Every candidate is translated into
the modelling language of NuSMV
using a method suggested by Clark
and Jacob [7]. (We detail this trans-
lation for programs and plants in [14]
and [13] respectively, and give an example program translation in Appendix A.)
The resulting model is then model-checked against the desired properties. The
result forms the basis of a fitness function for the selected search technique.

Fitness Measure. To design a fitness measure for candidates, we make the
hypothesis that the share of objectives that are satisfied so far by a candidate is a
good indication of its suitability w.r.t. the desired specification. We additionally
observe that weaker properties that can be mechanically derived are useful to
identify good candidates worth selecting for the generation of further potential
solutions. For example, if a property shall hold on all paths, it is better if it
holds on some path, and even better if it holds almost surely.

340 I. Husien et al.

Search Technique. The fitness measure obtained for a candidate is used as a
fitness function for the selected search technique. If a candidate is evaluated as
correct, we return (and display) it to the user. Otherwise, depending on the
search technique selected and the old and new fitness measure/s, the current
candidate or population is updated, and one or more candidates are sent for
change to the Generator. The process is re-started if no solution has been found
in a predefined number of steps (genetic programming) or when the cooling
schedule expires (simulated annealing).

2.3 Selecting and Tuning Search Techniques

In terms of search techniques, PranCS implements the following methods: genetic
programming, and simulated annealing. Katz and Peled [17] extend genetic pro-
gramming by considering the fitness as a pair of “safety-fitness” and “liveness-
fitness”, where the latter is only used for equal values of “safety-fitness”. Building
upon this idea, we define two flavours for both simulated annealing and genetic
programming: rigid (where the classic fitness function is used) and safety-first,
which uses the two-step fitness approach as above. Further, genetic programming
can be used with or without crossovers between candidates [13,14].

Fig. 2. Graphical User Interface. PranCS allows the user
to fine-tune each search technique by means of dedicated
parameters.

Depending on the
selected search tech-
nique, the tool allows
the user to input para-
meters that control
the dynamics of the
synthesis process. These
parameters determine
the likelihood of find-
ing a correct program
in each iteration and
the expected running
time for each iteration,
and thus heavily influ-
ence the overall search
speed. For the genetic
programming approach, the parameters include the population size, the number
of selected candidates, the number of iterations, and the crossover ratio. For
simulated annealing, the user chooses the initial temperature and the cooling
schedule. Figure 2 shows the graphical user interface of PranCS.

Parameters for Simulated Annealing. In simulated annealing (SA), the intuition
is that, at the beginning of the search phase, the temperature is high, and it
cools down as time goes by. The higher the temperature, the higher is the like-
lihood that a new candidate solution with inferior fitness replaces the previous
solution. While this allows for escaping local minima, it can also happen that
the candidates develop into an undesirable direction. For this reason, simulated

PranCS: A Protocol and Discrete Controller Synthesis Tool 341

annealing does not continue for ever, but is re-started at the end of the cooling
schedule. Consequently, there is a sweet-spot in just how long a cooling sched-
ule should be and when it becomes preferable to re-start, but this sweet-spot is
difficult to find. We report our experiments with PranCS for tuning the cooling
schedule in Sect. 3.1.

Parameters for Genetic Programming. For Genetic Programming (GP), the
parameters are the initial population size, the crossover vs mutation ratio, and
the fitness measure used to select the individuals. The population size affects the
algorithm in two ways: a larger population size could provide better diversity
and reduce the number of iterations required or, for a fixed number of iterations,
increase the likelihood of finding a solution. However, it also increases the time
spent for each individual iteration. The crossover ratio describes the amount of
new candidates that are generated by mating. Crossovers allow for the appear-
ance of solutions that synthesise the best traits of good candidates, and a high
crossover ratio promises to make this more likely. This requires, however, a high
degree of diversity in the population, where these traits need to draw from dif-
ferent parts of the program tree, and it comes to the cost of creating diversity
through a reduction of the number of mutations applied in each iteration.

We investigate how the population size and crossover ratio affect the perfor-
mance of these algorithms in Sects. 3.2 and 3.3.

3 Exploration of the Parameter Space

Besides serving as a synthesis tool, PranCS provides the user with the ability
to compare various search techniques. In [13,14], we have carried out experi-
ments by applying our algorithms to generate correct solutions on benchmarks
comprising mutual exclusion, leader election, and DCS problems of growing size
and complexity. With parameter values borrowed from [16,17], we could already
accelerate synthesis significantly using simulated annealing compared to genetic
programming (by 1.5 to 2 orders of magnitude).

In this paper, our aim is to further explore the performance impact of the
parameters for each search technique. We thus reuse the same scalable bench-
marks as in [13,14]: program synthesis problems consist of mutual exclusion (“2
or 3 shared bits”) and leader election (“3 or 4 nodes”); DCS problems com-
pute controllers enforcing mutual exclusions and progress between 1 to 6 tasks
modelled as automata (“1 through 6-Tasks”).

In all Tables, execution times are in seconds; t is the mean execution time of
single executions (succeeding or failing), and columns T extrapolate t based on
the success rate obtained in 100 single executions (columns “%”).

3.1 Exploring Cooling Schedules for Simulated Annealing

In order to test if the hypothesis from [9] that simulated annealing does most of
its work during the middle stages—while being in a good temperature range—

342 I. Husien et al.

holds for our application, we have developed the tool to allow for “cooling sched-
ules” that do not cool at all, but use a constant temperature. In order to be com-
parable to the default strategy, we use up to 25,001 iterations in each attempt.

We have run 100 attempts to create a correct candidate using various con-
stant temperatures, and inferred expected overall running times T based on the
success rates and average execution time of single executions t. We first report the
results for program synthesis and DCS problems in Tables 1 and 2 respectively.

Table 1. Impact of search temperature (θ) for program synthesis with safety-first
simulated annealing

θ 3 nodes 4 nodes 2 shared bits 3 shared bits

t % T t % T t % T t % T

0.7 316 0 ∞ 521 0 ∞ 147 0 ∞ 155 0 ∞
400 285 0 ∞ 493 0 ∞ 143 0 ∞ 148 0 ∞
4,000 196 11 1,781 368 10 3,680 129 3 4,300 121 4 3,025

7,000 97 14 692 314 13 2,415 77 12 641 81 11 252

10,000 73 21 347 138 18 766 15 22 68 17 24 70

13,000 78 22 354 146 19 768 16 23 69 18 24 75

16,000 83 20 415 150 17 882 17 21 80 19 22 86

20,000 87 19 457 153 15 1,020 21 20 105 23 22 104

25,000 94 17 494 167 13 1,284 23 19 121 25 21 191

30,000 108 15 720 184 11 1,672 28 18 155 30 19 157

40,000 117 15 780 193 11 1,754 31 16 193 34 17 200

50,000 129 13 992 201 10 2,010 37 15 246 41 16 256

100,000 193 12 1,608 287 9 3,188 52 11 472 58 13 446

The findings support the hypothesis that some temperatures are much better
suited than others: low temperatures provide a very small chance of succeeding,
and the chances also go down at the high temperature end.

While the values for low temperatures are broadly what we had expected,
the high end performed better than we had thought. This might be because
some small guidance is maintained even for infinite temperature, as a change
that is decreasing the fitness is taken with an (almost) 50% chance in this case,
while increases are always selected. However, the figures for high temperatures
are much worse than the figures for the good temperature range of 10,000 to
16,000.

In the majority of cases, the best results have been obtained at a temperature
of 10,000. Notably, these results are better than the running time for the cooling
schedule that uses a linear decline in the temperature as used and reported in [13,
14]. They indicate that it seems likely that the last third of the improvement
cycles in this cooling schedule had little avail, especially for smaller problems.

PranCS: A Protocol and Discrete Controller Synthesis Tool 343

Table 2. Impact of search temperature (θ) for DCS with Safety-first simulated
annealing

1-Task 2-Tasks 3-Tasks 4-Tasks 5-Tasks 6-Tasks

θ t % T t % T t % T t % T t % T t % T

0.7 163 0 ∞ 177 0 ∞ 192 0 ∞ 332 0 ∞ 298 0 ∞ 613 0 ∞
400 93 0 ∞ 99 0 ∞ 163 0 ∞ 167 0 ∞ 153 0 ∞ 598 0 ∞
4,000 54 7 771 58 6 966 88 6 1,466 98 3 3,266 98 4 2,450 278 3 9,266

7,000 39 12 325 47 9 522 45 9 500 65 6 1,083 79 6 1,316 125 5 2,500

10,000 18 19 94 29 14 207 26 11 236 39 9 433 61 9 677 99 8 1,237

13,000 22 20 110 33 15 220 31 11 281 43 11 390 67 10 670 115 9 1,277

16,000 29 19 152 39 13 300 37 10 370 58 9 644 73 8 912 127 9 1,411

20,000 37 17 217 47 11 427 42 10 420 67 9 744 81 6 1,350 134 7 1,914

25,000 43 15 286 56 10 560 47 9 522 81 7 1,157 89 6 1,483 152 6 2,533

30,000 49 15 326 67 10 670 56 8 700 89 6 1,483 102 4 2,550 159 6 2,650

40,000 53 13 407 75 9 833 63 9 700 95 6 1,583 116 3 3,866 168 6 2,800

50,000 59 12 491 82 7 1,171 79 7 1,128 103 5 2,060 128 4 3,200 192 5 3,840

100,000 72 11 654 94 7 1,342 98 7 1,400 118 4 2,950 178 3 5,933 253 4 6,325

A robust temperature sweet-spot clearly exists for our scalable benchmarks,
suggesting that the quest for robust and generic good cooling schedules is worth
pursuing.

3.2 Impact of Population Size for Genetic Programming

One of the important parameters of genetic programming is the initial population
size; another parameter worth tuning is the number of candidates η selected for
mating at each iteration of the algorithm. In order to investigate their effects on
our synthesis approach and evaluate the actual cost of large population sizes,
we defined several setups with various values for the population size |P | and
amount of mating candidates η. We then performed 100 executions of our GP-
based algorithms with each of these setups for the 2 shared bits mutual exclusion
and 2-Tasks problems.

We show the results in Tables 3 and 4. As expected, increasing the size of the
initial population also dramatically increases the cost of finding a good solution.
Broadly speaking, increasing the population size reduces the number of iterations
and increases the success rate, but it also increases the computation time required
at each individual iteration. Smaller population sizes appear to benefit individual
running times more than they harm success rates.

The impact of η on performance appears very limited on the range we have
investigated.

344 I. Husien et al.

Table 3. Impact of population size (|P |) for Program Synthesis (2 shared bits mutual
exclusion only)

Rigid GP Safety-first GP

w/o crossover with crossover w/o crossover with crossover

|P | η t % T t % T t % T t % T

150 5 583 7 8,328 589 9 6,544 113 31 364 115 33 348

7 583 7 8,328 589 9 6,544 113 31 364 115 33 348

9 584 7 8,342 588 9 6,533 113 31 364 114 33 345

250 5 1,024 12 8,533 1,057 15 7,046 230 46 500 245 49 500

7 1,024 12 8,533 1,057 15 7,046 230 46 500 245 49 500

9 1,024 12 8,533 1,057 15 7,046 231 46 502 245 49 500

350 5 1,435 15 9,566 1,451 18 8,061 325 63 515 367 67 547

7 1,435 15 9,566 1,451 18 8,061 325 63 515 366 67 546

9 1,435 15 9,566 1,451 19 7,636 325 64 507 367 67 547

Table 4. Impact of population size (|P |) for DCS (2-Tasks only)

Rigid GP Safety-first GP

w/o crossover with crossover w/o crossover with crossover

|P | η t % T t % T t % T t % T

150 5 463 3 15,433 484 4 12,100 132 13 1,015 138 15 920

7 463 3 15,433 485 4 12,125 132 13 1,015 139 15 926

9 464 3 15,466 485 4 12,125 131 13 1,007 139 14 992

250 5 943 5 18,860 969 7 13,842 241 18 1,338 218 19 1,147

7 943 5 18,860 969 7 13,842 241 18 1,338 218 19 1,147

9 943 5 18,860 969 7 13,842 242 18 1,344 218 19 1,147

350 5 1,517 9 16,855 1,557 10 15,570 403 24 1,679 340 24 1,416

7 1,517 9 16,855 1,557 10 15,570 403 24 1,679 340 24 1,416

9 1,518 9 16,866 1,557 10 15,570 403 24 1,679 340 24 1,416

3.3 Impact of Crossover Ratio for Genetic Programming

Finally, we have also studied the effect of changing the share between crossover
and mutation in genetic programming.

We report our results in Tables 5 and 6. Interestingly, the running time per
instance increased with the share of crossovers, which might point to a produc-
tion of more complex candidate solutions. Regarding expected running times,
the results also indicate the existence of a sweet-spot for the crossover ratio at
around 20% for both Rigid and Safety-first variants of the algorithm.

PranCS: A Protocol and Discrete Controller Synthesis Tool 345

Table 5. Impact of crossover ratio (ρ, in percent) for Program Synthesis with Rigid
and Safety-first GP

Rigid GP Safety-first GP

ρ t % T t % T

2 shared bits 0 583 7 8,328 113 31 364

20 589 9 6,544 115 33 348

40 602 9 6,688 123 33 372

60 614 8 7,657 134 33 406

80 613 8 7,662 142 21 676

100 652 2 32,600 151 5 3,020

3 shared bits 0 615 7 8,785 171 17 1,005

20 620 9 6,888 175 19 921

40 637 9 7,077 187 19 984

60 658 8 8,225 196 19 1,031

80 669 4 16,725 207 11 1,881

100 682 2 34,100 223 3 7,433

3 nodes 0 1,120 3 37,333 418 15 2,786

20 1,123 6 18,716 421 16 2,631

40 1,137 5 22,740 427 16 2,668

60 1,149 5 22,980 453 13 3,484

80 1,154 3 38,466 469 9 5,211

100 1,167 2 58,350 487 4 12,175

4 nodes 0 1,311 3 43,700 536 11 4,872

20 1,314 5 26,280 541 14 3,864

40 1,325 4 33,125 557 13 4,284

60 1,336 3 44,533 569 13 4,376

80 1,345 3 44,833 581 9 6,455

100 1,353 2 67,650 593 3 17,966

Table 6. Impact of crossover ratio (ρ, in percent) for DCS with Rigid and Safety-
first GP

Rigid GP Safety-first GP

ρ t % T t % T

1-Task 0 378 4 9,450 89 17 523

20 385 5 7,700 94 20 470

40 403 5 8,060 101 19 531

60 418 4 10,450 109 19 573

80 425 3 14,166 116 12 966

100 438 1 43,800 124 5 2,480

(continued)

346 I. Husien et al.

Table 6. (Continued)

Rigid GP Safety-first GP

ρ t % T t % T

2-Tasks 0 475 3 15,833 127 13 976

20 484 4 12,100 138 15 920

40 491 4 12,275 146 15 973

60 501 3 16,700 158 13 1,215

80 509 2 25,450 169 11 1,536

100 521 1 52,100 181 4 4,525

3-Tasks 0 571 3 19,033 189 9 2,100

20 589 4 14,725 201 11 1,827

40 597 3 19,900 209 11 1,900

60 606 3 20,200 217 8 2,712

80 613 1 61,300 225 7 3,214

100 627 1 62,700 239 3 7,966

4-Tasks 0 658 3 21,933 288 9 3,200

20 664 4 16,600 296 12 2,466

40 679 4 16,975 303 11 2,754

60 687 3 22,900 313 10 3,130

80 693 2 34,650 321 8 4,012

100 711 1 71,100 333 4 8,325

5-Tasks 0 776 1 77,600 438 7 6,257

20 787 3 26,233 445 11 4,045

40 792 3 26,400 451 8 5,637

60 799 2 39,950 459 7 6,557

80 804 2 40,200 467 5 9,340

100 815 1 81,500 479 2 23,950

6-Tasks 0 961 2 48,050 659 6 10,983

20 972 3 32,400 673 10 6,730

40 981 2 49,050 679 10 6,790

60 989 2 49,450 695 7 9,928

80 997 2 49,850 703 4 17,575

100 1,011 1 101,100 718 2 35,900

4 Conclusion

Together with our extensive exploration of the parameter space, the evaluation
of PranCS indicates that simulated annealing is faster than genetic programming
(we report some synthesis times with the best parameters observed using simu-
lated annealing in Table 7), and that some temperature ranges are more useful
than others. Additional information about the tool can be found at: https://cgi.
csc.liv.ac.uk/∼idresshu/index2.html.

https://cgi.csc.liv.ac.uk/~idresshu/index2.html
https://cgi.csc.liv.ac.uk/~idresshu/index2.html

PranCS: A Protocol and Discrete Controller Synthesis Tool 347

Table 7. Synthesis times with the best parameters observed for Simulated Annealing
with linearly decreasing cooling schedule applied to our DCS benchmarks; results for
row “2-Tasks” should be compared with best results reported in Table 4 for solving the
same DCS benchmark problem using GP-based algorithms.

Rigid SA Safety-first SA

t % T t % T

1-Task 20 13 153 19 16 118

2-Tasks 25 10 250 24 13 184

3-Tasks 33 9 366 29 10 290

4-Tasks 47 9 522 43 9 477

5-Tasks 76 8 950 70 9 777

6-Tasks 119 7 1,700 106 7 1,514

In order to integrate this result into the cooling schedule we plan to use an
adaptive cooling schedule, in which the decrements of the temperature depends
on the improvement of the fitness.

Appendix A Pseud-Code to NuSMV Translation Example

To evaluate the fitness of the produced program, it is first translated into the
language of the model checker NuSMV [6]. We have used the translation method
suggested by Clark and Jacob [7].

In this translation, the program is converted into very simple statements,
similar to assembly language. To simplify the translation, the program lines

Fig. 3. Translation example – source pseudo-code (left) and target NuSMV (right)

348 I. Husien et al.

are first labeled, and this label is then used as a pointer that represents the
program counter (PC). From this intermediate language, the NuSMV model is
built by creating (case) and (next) statements that use the PC. Figure 3 shows
the translation of a mutual exclusion algorithm.

References

1. Altisen, K., Clodic, A., Maraninchi, F., Rutten, E.: Using controller-synthesis tech-
niques to build property-enforcing layers. In: Degano, P. (ed.) ESOP 2003. LNCS,
vol. 2618, pp. 174–188. Springer, Heidelberg (2003). doi:10.1007/3-540-36575-3 13

2. Asarin, E., Maler, O., Pnueli, A.: Symbolic controller synthesis for discrete
and timed systems. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.)
HS 1994. LNCS, vol. 999, pp. 1–20. Springer, Heidelberg (1995). doi:10.1007/
3-540-60472-3 1

3. Berthier, N., Maraninchi, F., Mounier, L.: Synchronous Programming of Device
Drivers for Global Resource Control in Embedded Operating Systems. ACM Trans.
Embed. Comput. Syst. 12(1s), 39: 1–39: 26., March 2013

4. Berthier, N., Marchand, H.: Discrete controller synthesis for infinite state systems
with ReaX. In: 12th Internation Workshop on Discrete Event Systems. WODES
20114, IFAC, pp. 46–53, May 2014

5. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

6. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002). doi:10.1007/3-540-45657-0 29

7. Clark, J.A., Jacob, J.L.: Protocols are programs too: the meta-heuristic search for
security protocols. Inf. Softw. Technol. 43, 891–904 (2001)

8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

9. Connolly, D.: An improved annealing scheme for the qap. Eur. J. Oper. Res. 46,
93–100 (1990)

10. Cury, J.E., Krogh, B.H., Niinomi, T.: Synthesis of supervisory controllers for hybrid
systems based on approximating automata. IEEE Trans. Autom. Control 43(4),
564–568 (1998)

11. Girault, A., Rutten, É.: Automating the addition of fault tolerance with discrete
controller synthesis. Formal Methods Syst. Des. 35(2), 190 (2009)

12. Henderson, D., Jacobson, S.H., Johnson, A.W.: The theory and practice of sim-
ulated annealing. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Meta-
heuristics, International Series in Operations Research & Management Science,
vol. 57, pp. 287–319. Springer, Boston (2003). doi:10.1007/0-306-48056-5 10

13. Husien, I., Berthier, N., Schewe, S.: A hot method for synthesising cool controllers.
In: Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on
Model Checking of Software. SPIN 2017, pp. 122–131. ACM, New York (2017)

14. Husien, I., Schewe, S.: Program generation using simulated annealing and model
checking. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp.
155–171. Springer, Cham (2016). doi:10.1007/978-3-319-41591-8 11

http://dx.doi.org/10.1007/3-540-36575-3_13
http://dx.doi.org/10.1007/3-540-60472-3_1
http://dx.doi.org/10.1007/3-540-60472-3_1
http://dx.doi.org/10.1007/3-540-45657-0_29
http://dx.doi.org/10.1007/0-306-48056-5_10
http://dx.doi.org/10.1007/978-3-319-41591-8_11

PranCS: A Protocol and Discrete Controller Synthesis Tool 349

15. Johnson, C.G.: Genetic programming with fitness based on model checking. In:
Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.)
EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-71605-1 11

16. Katz, G., Peled, D.: Model checking-based genetic programming with an appli-
cation to mutual exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78800-3 11

17. Katz, G., Peled, D.: Model checking driven heuristic search for correct programs.
In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt 2008. LNCS (LNAI), vol. 5348,
pp. 122–131. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00431-5 8

18. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

19. Krogh, B.H., Holloway, L.E.: Synthesis of feedback control logic for discrete man-
ufacturing systems. Automatica 27(4), 641–651 (1991)

20. Marchand, H., Bournai, P., Le Borgne, M., Le Guernic, P.: Synthesis of discrete-
event controllers based on the signal environment. Discrete Event Dynamic Syst.
Theory Appl. 10(4), 325–346 (2000)

21. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL 1989. pp. 179–190. ACM, New York (1989)

22. Ramadge, P., Wonham, W.: The control of discrete event systems. Proc. IEEE
Spec. Issue Dyn. Discr. Event Syst. 77(1), 81–98 (1989)

23. Wang, Y., Lafortune, S., Kelly, T., Kudlur, M., Mahlke, S.: The theory of dead-
lock avoidance via discrete control. In: Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
252–263. POPL 2009. ACM, New York (2009)

24. Zhou, M., DiCesare, F.: Petri Net Synthesis for Discrete Event Control of Manu-
facturing Systems, vol. 204. Springer Science & Business Media, Heidelberg (2012).
doi:10.1007/978-1-4615-3126-5

http://dx.doi.org/10.1007/978-3-540-71605-1_11
http://dx.doi.org/10.1007/978-3-540-71605-1_11
http://dx.doi.org/10.1007/978-3-540-78800-3_11
http://dx.doi.org/10.1007/978-3-540-78800-3_11
http://dx.doi.org/10.1007/978-3-642-00431-5_8
http://dx.doi.org/10.1007/978-1-4615-3126-5

	PranCS: A Protocol and Discrete Controller Synthesis Tool
	1 Introduction
	2 Overview of PranCS
	2.1 Representing Candidates
	2.2 Structure of PranCS
	2.3 Selecting and Tuning Search Techniques

	3 Exploration of the Parameter Space
	3.1 Exploring Cooling Schedules for Simulated Annealing
	3.2 Impact of Population Size for Genetic Programming
	3.3 Impact of Crossover Ratio for Genetic Programming

	4 Conclusion
	References

