
How to Efficiently Build a Front-End Tool
for UPPAAL: A Model-Driven Approach

Stefano Schivo1, Buğra M. Yildiz1, Enno Ruijters1(B), Christopher Gerking2,
Rajesh Kumar1, Stefan Dziwok3, Arend Rensink1, and Mariëlle Stoelinga1

1 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
{s.schivo,b.m.yildiz,e.j.j.ruijters,r.kumar,

a.rensink,m.i.a.stoelinga}@utwente.nl
2 Software Engineering, Heinz Nixdorf Institute,

Paderborn University, Paderborn, Germany
christopher.gerking@upb.de

3 Software Engineering, Fraunhofer IEM, Paderborn, Germany
stefan.dziwok@iem.fraunhofer.de

Abstract. We propose a model-driven engineering approach that facil-
itates the production of tool chains that use the popular model checker
Uppaal as a back-end analysis tool. In this approach, we introduce a
metamodel for Uppaal’s input model, containing both timed-automata
concepts and syntax-related elements for C-like expressions. We also
introduce a metamodel for Uppaal’s query language to specify temporal
properties; as well as a metamodel for traces to interpret Uppaal’s coun-
terexamples and witnesses. The approach provides a systematic way to
build software bridging tools (i.e., tools that translate from a domain-
specific language to Uppaal’s input language) such that these tools
become easier to debug, extend, reuse and maintain. We demonstrate our
approach on five different domains: cyber-physical systems, hardware-
software co-design, cyber-security, reliability engineering and software
timing analysis.

1 Introduction

Uppaal [3] is a leading model checker for real-time systems, allowing one to
verify automatically whether a system meets its timing requirements. Uppaal
and its extensions have been applied to a large number of domains, ranging
from communication protocols [28], over planning [4] to systems biology [31]. As
such, Uppaal is a popular back-end for various other real-time analysis tools,
such as ANIMO [31], sdf2ta [13] and STATE [19]. Typically such tools take their
inputs in a domain-specific language (DSL) and translate these inputs into timed
automata, which are then fed into Uppaal to perform the analysis. In this way,
domain experts can write their models in a DSL that they are familiar with,
while still using Uppaal’s powerful analysis algorithms behind the scenes.

A disadvantage of this approach is, however, that the tools that translate
from a DSL to Uppaal’s input language, i.e., software bridging tools, are often
implemented ad hoc, and hence difficult to debug, reuse, extend and maintain.
c© Springer International Publishing AG 2017
K.G. Larsen et al. (Eds.): SETTA 2017, LNCS 10606, pp. 319–336, 2017.
https://doi.org/10.1007/978-3-319-69483-2_19

320 S. Schivo et al.

To overcome this problem, we advocate to develop these tools with model-
driven engineering (MDE) techniques, which studies [26] have demonstrated can
lead to faster software development, with higher levels of interoperability and
lower cost. MDE is an approach that uses models as first-class citizens, rather
than as by-product of intermediate steps. In MDE, a metamodel captures core
concepts and behavior of a certain domain. Then, domain-specific models are
instances of this metamodel and can be transformed to other models, formats
or formalisms via model transformations.

In this paper, we propose an MDE approach for tools that use Uppaal
as a back-end. In the context of our approach, we introduce metamodels for
Uppaal timed automata, Uppaal’s query language and its diagnostic traces,
in order to transform the domain-specific models to Uppaal, analyze them and
transform the results back to a domain-specific representation, respectively. Our
metamodels also support Uppaal’s extensions with cost [4] and probability [7].

We show our approach on five diverse application domains: cyber-physical
systems, namely, coordination protocols of MechatronicUML; hardware-soft-
ware co-design, namely, scheduling of synchronous dataflow graphs; cyber-se-
curity, namely, analysis of attack trees; reliability engineering, namely, analysis
of fault trees; and software timing analysis, namely, timing analysis of Java
applications.

Our contributions. To summarize, our main contribution is an MDE approach
for building software bridging tools around the Uppaal model checker. Con-
cretely, we introduce (1) metamodels1 for Uppaal’s timed automata, queries
and traces, providing all the ingredients needed to construct Uppaal models,
verify relevant properties and interpret the results; (2) model transformations
from several domain-specific models to the Uppaal models and back; and (3)
five case studies demonstrating how the approach is applied in practice and
supports a wide range of application domains.

Overview of our MDE approach. The proposed approach can be seen in Fig. 1.
Taking into consideration the analysis of a (generic) domain-specific model, the
most important steps involving a bridging software tool that implements our
approach are the following:

– In Step 1, a domain-specific model is generated/created by the domain expert.
This model is an instance of the metamodel of a particular domain of inter-
est. Such a metamodel defines the concepts and their relationships in that
domain. For some domains, it may be more convenient to define multiple
related metamodels targeting distinct concerns.

– In Step 2, the domain-specific model is transformed to a timed-automata
model, conforming to the Uppaal Timed Automata metamodel (uta) we
propose as part of the contribution of this paper. A snippet of such a trans-
formation can be found in Fig. 7.

1 The metamodels are available at https://github.com/uppaal-emf/uppaal.

https://github.com/uppaal-emf/uppaal

How to Efficiently Build a Front-End Tool for UPPAAL 321

– In Step 3, the property against which the domain-specific model is to be
checked is specified in a query language specific to the domain.

– In Step 4, the query specified in the domain-specific query language is trans-
formed to a corresponding Uppaal query, in turn conforming to the Uppaal
Query metamodel (uqu) we propose as part of the contribution of this paper.

– In Step 5, Uppaal checks if the timed-automata model (a uta model) satisfies
the property specified by the generated query (a uqu model). The result of
this operation is usually a diagnostic trace. As part of this step, the uta and
uqu models are transformed into the native Uppaal input formats; moreover,
the diagnostic trace natively produced by Uppaal is transformed into yet
another model, conforming to the Uppaal Trace metamodel (utr) that we
also propose as part of the contribution of this paper.

– In Step 6, the utr model is transformed back to a domain-specific represen-
tation. This representation can conform to a metamodel that is designed to
express the analysis results in an understandable way by the domain experts.

U
PP

AA
L

D
om

ai
n

conforms to

Domain-Specific
Metamodel

Domain-Specific
Model

Timed Automata
Model

 UPPAAL Timed
Automata

Metamodel (UTA)

conforms to

conforms to

Domain-Specific
Query Language

Domain-Specific
Query

UPPAAL Query

UPPAAL Query
Metamodel (UQU)

conforms to

Trace Model

UPPAAL Trace
Metamodel (UTR)

conforms to

Model
Transforma on

Model
Transforma on

Model Checking

Model
Transforma on

1

2

3

4

5

6

conforms to

Domain-Specific
Representa on

Metamodel

Domain-Specific
Representa on

Fig. 1. The generic model-driven engineering approach for building front-end tools that
use Uppaal as a back-end analysis engine.

322 S. Schivo et al.

Organization of the paper. Section 2 provides some background information
about MDE and the timed-automata formalism. Section 3 introduces the three
metamodels and their transformations. Section 4 discusses the case studies.
Section 5 discusses the related work and Sect. 6 concludes the paper.

2 Background

In this section, we provide some background information about model-driven
engineering (cf. Sect. 2.1) and the timed-automata formalism (cf. Sect. 2.2).

2.1 Model-Driven Engineering

Models are powerful tools to express structure, behavior and other properties
in domains such as engineering, physics, architecture and other fields. Model-
Driven Engineering (MDE) is a software engineering approach that considers
models not only as documentation, but also adopts them as basic abstractions
to be used directly in development processes [33].

To define models of a particular domain, we need to specify their language.
In MDE, such a language (often referred to as a domain-specific language, DSL)
is also specified as a model at a more abstract level, called a metamodel. A meta-
model captures core concepts and behavior of a certain domain, and defines the
permitted structure and behavior, to which its instances (models) must adhere.
Another way of saying this is that metamodels describe the syntax of models
[34]. Following the common terminology, we will write that a model conforms to
or is an instance of its metamodel.

MDE provides interoperability between domains (and tools in these domains)
via model transformations. The concept of model transformation is shown in
Fig. 2. Model transformations are usually defined in a language designed specif-
ically to this aim and map the elements of a source metamodel to the elements
of a target metamodel. The transformation engine executes the transformation
definition on the input model and generates an output model.

Model

conforms to

Target Metamodel

Model

conforms to

Source Metamodel Transforma on
Defini on

Transforma on
Engine

executes

maps from maps to

input output

Fig. 2. The concept of model transformation.

How to Efficiently Build a Front-End Tool for UPPAAL 323

Benefits of MDE. MDE provides a range of important benefits [36], some of
which we briefly discuss below:

– Interoperability: As we have mentioned before, there can be multiple domains
in a project where various tools are used, each with its own I/O formats. MDE
provides interoperability between these domains (and tools in these domains)
via model transformations.

– Higher level of reusability: The metamodels, models and tools from a domain
can be reused by many projects targeting the same domains. Such reuse also
increases the quality of the final product since the reused units are revised
and improved continuously.

– Faster tool development: Domain experts only focus on the concepts of the
domain while creating models. Transformations on these models are imple-
mented using languages designed specifically for model transformations rather
than using general-purpose languages. Because of these advantages of MDE,
the development time of tools decreases.

Tool Choice. There are a number of tools for realizing MDE. The case studies
presented in this paper are implemented using the Eclipse Modeling Framework
(EMF) [35], a state-of-art tool for implementing MDE techniques. EMF provides
the Ecore format for defining metamodels and many plug-ins to support various
functionalities, such as querying, validation and transformation of models.

2.2 Timed Automata and UPPAAL

Timed automata are finite-state automata with the addition of real-valued clocks
and synchronization channels. In Fig. 3, we show an example timed-automata
model (from [5]), with clocks x and y. Locations are indicated by circles (double
circle for the initial location), and transitions are represented by edges. Condi-
tions on clocks can enable transitions (e.g., x > 10 in Fig. 3b, from dim to off)
or allow residence in locations (y < 5 in Fig. 3a). Synchronizations can occur
when two automata perform complementary actions on the same channel: in the
example, outputs press! synchronize with inputs press?. When taking a transi-
tion, clocks can be reset (x:=0, y:=0).

Timed-automata models are verified with Uppaal [3] through queries
expressed in a subset of CTL [12]. In Fig. 3c, we show the trace resulting from
the verification of the reachability query E<>lamp.bright, which asks whether
a state where the lamp automaton is in the bright location is reachable. The
verification returns a positive outcome, together with a witness trace, listing the
sequence of states and transitions leading to the desired target.

In addition to the standard version of Uppaal, some of the models presented
in this paper are intended for analysis by Uppaal CORA [4], which allows to
compute cost-optimal traces (see Sect. 4.2), and Uppaal-SMC [7], which allows
to perform statistical model checking (see Sect. 4.4).

324 S. Schivo et al.

relax

studyy < 5

idle

y>10
press!

press!
y:=0

press!

press!

press!
y:=0

(a) Student

bright

dim

off

x > 10
press?

press?

x<=10
press?

press?
x:=0

(b) Lamp

Verifying formula 1: E<> lamp.bright

-- Formula is satisfied.
Showing example trace.

State:
(student.idle lamp.off)
student.y=0 lamp.x=0

Transitions:
student.idle–>student. id5 { 1, press!, y := 0 }
lamp.off–>lamp.dim { 1, press?, x := 0 }

State:
(student. id5 lamp.dim)
student.y=0 lamp.x=0

Transitions:
student. id5–>student.study { 1, press!, 1 }
lamp.dim–>lamp.bright { x <= 10, press?, 1 }

State:
(student.study lamp.bright)
student.y=0 lamp.x=0

(c) Trace

Fig. 3. An example of a timed-automata model (a, b) and the textual output (c) of
verifying the reachability query E<>lamp.bright as provided by Uppaal’s command-
line tool.

3 Metamodels for the Approach

We use metamodeling to represent the domain of timed automata and enable the
back-end analysis of domain-specific models. Our approach extends the work by
Greenyer and Rieke [17] towards full-fledged metamodels, covering all language
features accepted by the Uppaal model checker. Thereby, we make sure that
model transformations may freely use any of Uppaal’s concepts when translat-
ing domain-specific models into timed-automata models.

In Sect. 3.1, we present the metamodel for Uppaal timed automata (uta).
Section 3.2 describes a metamodel extension for Uppaal’s query language (uqu).
A metamodel for traces obtained from Uppaal (utr) is given in Sect. 3.3.

3.1 The UPPAAL Timed Automata Metamodel

Figure 4a shows an excerpt from our Uppaal Timed Automata metamodel
(uta), extending the metamodeling approach proposed in [17]. This metamodel
reflects the basic structure of timed automata accepted by Uppaal.

At the core of uta is a network of timed automata (NTA). An NTA includes a
set of global Declarations, containing instances of the abstract base class Declara-

tion. A declaration is used to introduce elements such as clocks or synchronization
channels. Primarily, an NTA includes a non-empty set of templates where each
Template represents a type of timed automaton. Moreover, an NTA contains a
separate set of system declarations. These are specific TemplateInstances (omitted
from the figure), which constitute the set of concrete timed automata that make
up the system to be model-checked.

How to Efficiently Build a Front-End Tool for UPPAAL 325

NTA
name : String

Template
name : String

Loca on
name : String

Edge

Declara ons

Declara on

templates global
system

local

declara onsedgesloca ons incoming

outgoing

1..*

1..* 0..*

0..*

0..*

0..*
ini al

Expression
invariant updates

0..*

1

1

(a) uta (Uppaal Timed Automata)

Property

UnaryProperty
quan fier : PathQuan fier
operator : TemporalOperator

Expression

LeadsToProperty

rightle
expression

PropertyRepository

proper es

1

11

0..*

(b) uqu (Uppaal Queries)

Fig. 4. Partial views from the uta and uqu.

Templates include locations and edges, and every Template refers to one par-
ticular initial location. Templates may also include local declarations (e.g., for
clocks that should not be reset from outside the automaton). Every Location

refers to its incoming and outgoing edges. In addition, a Location specifies an invari-

ant which is a boolean expression as an instance of the abstract base class Expres-

sion. An Edge may contain expressions as well to specify updates of variables (e.g.,
clock resets). The metamodel also contains syntax-related elements for the C-like
expressions supported by Uppaal.

uta models are not the native input format of Uppaal and, therefore, are
not directly processable. We have implemented a model-to-text transformation,
which takes a uta model as input and transforms it into Uppaal native XML.

3.2 The UPPAAL Query Metamodel

Figure 4b depicts an excerpt from our Uppaal Query metamodel (uqu). Queries
are temporal logic properties to be verified using model checking. Multiple
queries are bundled by a PropertyRepository, which is the root class of the meta-
model. A repository contains a set of properties, where every Property represents
one query. Every property is either a UnaryProperty or a LeadsToProperty.

A UnaryProperty is a temporal formula that conforms to the computation tree
logic (CTL, [12]). First, such a property includes a quantifier (one of universal
or existential quantification) to describe whether the property must hold on all
execution paths, or at least one path. Second, it consists of a modal operator (one
of globally or finally) to describe if the property needs to hold in all states of a
certain execution path, or needs to hold eventually in some state. Third, unary
properties include an expression to be evaluated in the context of the quantifier
and the operator. For example, this expression could represent an active location
inside an automaton, or a clock value. To this end, uqu extends uta and reuses
the Expression class introduced in Sect. 3.1.

326 S. Schivo et al.

A LeadsToProperty represents a binary property connecting two expressions by
means of the leads-to operator supported by Uppaal. Please note that, according
to the restrictions imposed by Uppaal on the set of CTL formulas supported, our
metamodel does not allow nested properties. However, we introduce dedicated
classes for logical connections of expressions (omitted from Fig. 4b), precisely
reflecting the range of functions actually supported by Uppaal.

Like uta models, also uqu queries have to be transformed to Uppaal’s
native format before they can be actually processed. For this purpose, we provide
another model-to-text transformation.

3.3 The UPPAAL Trace Metamodel

The outcome of evaluating a query in Uppaal can be twofold: either a simple
“yes” (for a universally quantified query claiming that a given property holds for
all paths) or “no” (for an existentially quantified query asking whether a path
with a given property exists), and possibly a trace through the state-space of
the timed-automata model along which the query fails to hold (for a universal
query) or that is a witness (for an existential query). Queries are very often
formulated in such a way that it is known a priori whether they hold or not,
the interesting part of the outcome is then that diagnostic trace.

Uppaal outputs its traces in a native textual format that is not too well doc-
umented. From [6], we have taken a metamodel (utr) to capture the information
in a tractable way and a parser that produces utr models from Uppaal’s out-
put. Like uqu, also utr depends on uta itself, so that the traces can refer back
to their constituent components. Figure 5 gives a high-level overview of utr.

Trace

Transi on

EdgeTransi onDelayTransi on
delay : Float

transi onsstates

target

transi onTo

transi onFrom1

1..*
Loca on

Edge

edges
1..*

loca ons

State
name : String
valua ons : Valua on [0..*]
clocks : ClockBoundary [0..*]

me : Float

1 source
0..*

Fig. 5. A partial view from utr (Uppaal Trace metamodel).

A Trace consists of States and Transitions; every State except the final one has
a single outgoing Transition. A State refers to a set of Locations (one for every
TemplateInstance in the system, though that cannot be seen from the provided
metamodel fragment), together with Valuations, i.e., bindings for all the variables
to concrete values, as well as boundaries for all the clocks in the system (the Val-

uation and ClockBoundary classifiers are omitted from the figure). Finally, a State

stores the absolute time at which the system arrived in that state. A Transition

can either be a DelayTransition, in which only time passes, or an EdgeTransition,
in which a number of Edges (one for every TemplateInstance involved) fire in syn-
chrony. Location and Edge are imported from uta.

How to Efficiently Build a Front-End Tool for UPPAAL 327

4 Case Studies

The general MDE approach we propose for bridging software tools has been
introduced in Sect. 1. In this section, we present five case studies that have put
this approach into practice.

In Table 1, an overview of these case studies is given. After the section num-
ber, the second column shows to which domain the approach is applied. The
third column contains the list of the metamodels that are used to describe that
domain. The fourth column gives the motivation why model checking is used for
the particular case study. The fifth column shows which steps from the approach
(given in Fig. 1) are implemented in the particular case study. The following sub-
sections describe these case studies in more detail.

The transformations for the cyber-physical systems case study are specified
in the QVTo [27] language, for the other cases in the Epsilon Transformation
Language [21]. Translation of the timed-automata models to the XML input
files for Uppaal is performed via the Xtend [11] language, using its template
expressions for model-to-text transformations.

4.1 Coordination Protocols of CPSs

Future cyber-physical systems (CPS; e.g., cars, railway systems, smart facto-
ries) will heavily interact with each other to contribute to aspects like safety,
efficiency, comfort and human health. They may achieve this by coordinating
their actions via asynchronous message exchange. However, such a coordination
must be safe and has to obey hard real-time constraints because any (timing)
error may lead to severe damage and even loss of human life. Consequently, the
development of so-called coordination protocols that specify the allowed message
exchange sequences requires formal verification like model checking to guarantee
the functional correctness of the coordination.

Model checkers like Uppaal are appropriate for verifying such coordina-
tion protocols but their language has no built-in support for domain-specific
aspects like asynchronous communication including message buffers and quality-
of-service (QoS) assumptions (e.g., message delay and reliability). Consequently,
the domain expert has to encode these aspects manually, which is a complex and
error-prone task. Therefore, the model-driven method MechatronicUML [10]
defines a DSL for specifying coordination protocols of CPS at a more abstract
level. Among others, this DSL enables to specify hierarchical state machines,
real-time constraints, message buffers and the QoS assumptions of the proto-
col. Furthermore, MechatronicUML defines a domain query language to ease
the specification of formal verification properties that a coordination protocol
of MechatronicUML shall fulfill. For example, the requirement “At least one
instance per message type of the coordination protocol can be in transit” may be
specified as follows: forall(m : MessageTypes) EF messageInTransit(m).

In [9,15], we have achieved to fully hide the model checker Uppaal from the
domain expert by specifying domain-specific model checking for coordination
protocols of MechatronicUML using Uppaal. Our approach requires all six

328 S. Schivo et al.

Table 1. An overview of the case studies applying the proposed approach.

Sect. Domain Domain Metamodels Motivation for using
a model checker

Steps of the
approach

4.1 Cyber-
Physical
Systems

Protocol, Query To verify whether a
coordination proto-
col fulfills all stated
properties

1, 2, 3, 4, 5, 6

4.2 Hardware-
Software
Co-Design

Synchronous Data Flow
Graph, Hardware Plat-
form, Allocation

To obtain a sched-
ule for the execu-
tion of the tasks con-
sidering optimization
objectives of resource
and energy

1, 2, 5, 6

4.3 Cyber-
Security

Attack-Fault tree To obtain a schedule
of attack steps opti-
mizing objectives like
time and cost, or sto-
chastic values, e.g.,
probability of attack
within mission time

1, 2, 5, 6

4.4 Reliability
Engineering

Attack-Fault tree To obtain the prob-
ability of failure
within mission time

1, 2, 5

4.5 Software
Timing
Analysis

Java Bytecode, Timing
Analysis Extension

To validate Java
applications to
ensure that they
fulfill their timing
specifications

1, 2, 5

steps that we introduce in Sect. 1. In particular, we assume that the coordination
protocol and its domain queries are specified in Steps 1 and 3. Then, in Step 2,
we transform a coordination protocol of MechatronicUML into a set of timed
automata that conform to uta. Moreover, in Step 4, we transform our domain
query language into properties that conform to uqu. We automate Uppaal
in Step 5 and parse the textual trace into a model that conforms to the utr
metamodel. Finally, in Step 6, we apply a model transformation to translate
the trace back to the level of MechatronicUML in order to show the trace
to the domain expert. We have implemented our concepts successfully into the
MechatronicUML Tool Suite.

4.2 Synchronous Dataflow Graphs

Hardware-software (HW-SW) co-design is an engineering approach to simulta-
neously design the hardware and software components of a system to meet opti-
mization objectives. Synchronous dataflow (SDF) graphs [25] are a frequently

How to Efficiently Build a Front-End Tool for UPPAAL 329

used formalism in the HW-SW co-design domain to represent streaming and
dataflow applications in terms of their computation tasks and the data rela-
tionships among them. Tasks are represented as nodes, and data input-output
relationships between these tasks are represented as edges. SDF graphs can be
used to calculate an (energy- or time-) optimal schedule of an application allo-
cated on a particular hardware platform.

In [1], we have applied the generic approach presented in this paper for
scheduling analysis of SDF graphs with an energy-optimization objective. Three
metamodels are introduced as domain metamodels: The SDF metamodel rep-
resenting SDF graphs, the hardware platform metamodel representing multi-
processor hardware platforms on which SDF graphs can be mapped, and the
allocation metamodel representing such mappings. The domain-specific model,
which consists of one instance of each metamodel, is transformed to a timed-
automata model and is analyzed with Uppaal CORA [4]. The trace resulting
from this analysis, which is an instance of the trace metamodel given in Sect. 3.3,
represents an energy-optimal schedule. In order to make the result available to
the domain experts, we have implemented a model transformation from trace
models to schedule models. Schedule models conform to the Schedule metamodel
(see Fig. 6) that we have developed and described below.

Schedule is the root of the metamodel. It consists of Executors, Executables and
Tasks. An Executor represents a processing unit (which is usually a processor or
a core) that executes a task. An Executable is a computation unit that can be
executed while a Task is one execution instance of an Executable. A Task has a
start time and an optional end time, which are both Time references. The end
time is optional since a Schedule may contain Tasks that have not finished.

4.3 Attack Tree Analysis

Modern day infrastructures are frequently faced with cyber attacks. A key chal-
lenge is to identify the most dangerous security vulnerabilities, estimate their
likelihood and prioritize investments to protect the system from the most riskful
scenarios. Security experts often model threat scenarios and perform quantitative
risk assessment using attack trees (ATs). These describe how atomic attack steps
(the tree leaves) combine into complex attacks (intermediate nodes, also called
gates), leading to the security breach represented by the root of the tree. Over the
years, numerous formalisms inspired by ATs have been proposed [22]. As they

Time

Schedule

Task
name : String

Executor
name : String

Executable
name : String

tasks

executors

executableexecutor 11

startTime

endTime
1

value : Float

executables
0..*

0..*

0..*

Fig. 6. The Schedule metamodel.

330 S. Schivo et al.

all share the same basic structure, we have developed a metamodel [20] to sup-
port interoperability between the different tools made to analyze attack trees.
Furthermore, as attack trees resemble fault trees, we enriched the AT meta-
model with fault tree constructs, resulting in the attack-fault tree (AFT) meta-
model [29].

A piece of the transformation from attack trees to Uppaal can be seen
in Fig. 7. This section produces the overall structure (i.e., system declaration
in Uppaal) from the class called AttackTree in the metamodel AFT. The
.equivalent() function transforms each node into an Uppaal template and
declaration, automatically selecting the transformation rule for that node.

rule Base transform at : AFT!AttackTree to out : Uppaal!NTA {
out.systemDeclarations = new Uppaal!SystemDeclarations();

out.systemDeclarations.system = new Uppaal!System();

var iList = new Uppaal!InstantiationList();

out.systemDeclarations.system.instantiationList.add(iList);

for (node : AFT!Node in at.Nodes) {
var converted = node.equivalent();

if (converted <> null) {
out.template.add(converted.get(0));

out.systemDeclarations.declaration.add(converted.get(1));

iList.template.add(converted.get(1).declaredTemplate);

}
}
out.addTopLevel(at.Root);

}
rule andGate transform node : AFT!Node to ret : List {

guard : node.nodeType.isKindOf(AFT!AND)

...

Fig. 7. Snippet of the translation from the Attack Tree metamodel to uta.

Traditional ATs are static, and their leaves are decorated with single
attributes like cost or time. In order to account for multiple attributes and
temporal dependencies we defined transformations from AFT models to uta
models. The security properties that can be checked require either optimization,
like “What is the cost-optimal path taken by an attacker? [24]”, or the use of
stochastic values, like “What is the probability of an attack within m months?
[23]”. Similar to what we did for Synchronous Dataflow models, the results of
optimization queries are computed using Uppaal CORA. The outcome of such
analysis is a trace which is automatically parsed, obtaining a utr model. A trace
obtained from this analysis can additionally be transformed into a schedule, rep-
resented by an instance of the Schedule metamodel described in Sect. 4.2. The
adoption of MDE allows us to reuse the Schedule metamodel to describe results
from the attack tree domain, as they are semantically close to the SDF results.
The stochastic values are computed using Uppaal-SMC. Plotting these results
over time yields graphs similar to the one in Fig. 8.

How to Efficiently Build a Front-End Tool for UPPAAL 331

Currently, the optimization and stochastic security properties are expressed
as queries specific for Uppaal CORA and Uppaal-SMC, making them incom-
patible with the current query metamodel.

4.4 Fault Tree Analysis

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0 2 4 6 8 10

U
nr

el
ia

bi
lit

y

Years

Fig. 8. Example plot of reliability
over time as produced by automatic
analysis of a fault tree using the
Uppaal-SMC metamodel.

As society becomes ever more dependent on
complex technological systems, the failure
of these systems can have disastrous conse-
quences. The field of reliability engineering
uses various methods to analyze such sys-
tems, to ensure that they meet the required
high standards of dependability.

A popular formalism to perform such an
analysis is fault tree analysis. Faults trees
(FTs) are similar to attack trees (described
in Sect. 4.3), however rather than model-
ing deliberate steps in executing an attack,
they model component failures (called basic
events) that may combine to cause system failures or other undesired events.

Standard FTs were developed in the 1960 s and describe only boolean combi-
nations of faults. Since then, a large number of variations and extensions of fault
trees have been developed [30], covering aspects such as timing dependencies,
uncertainty, and maintenance. Most of these extensions were developed indepen-
dently and traditional tools do not support combinations. MDE simplifies the
combination of models of different kinds and the analysis of those aspects that
are shared between the different formalisms.

Fault trees are described in a unified attack-fault tree (AFT) metamodel
also used for attack trees. The main difference from ATs is in the attributes
of the basic events. Where attack steps are controlled by an external attacker
who makes deliberate decisions based on factors such as cost, faults are inher-
ently stochastic in nature: The failure time is not externally decided, but rather
governed by a probability distribution attached to the fault.

The AFT metamodel supports basic events governed by hypoexponential
distributions, and gates from standard fault trees, dynamic fault trees [8] and
fault maintenance trees [29], as well as gates from attack trees.

As one of the analysis back-ends of the AFT metamodel, we provide a model
transformation to a uta model. Unlike most applications described in this paper,
the analysis of this model does not result in a trace or a schedule, nor can
its queries be expressed in the current query metamodel. Queries are usually
probabilistic in nature, asking questions such as “What is the probability of
the system failing within 5 y”. Results are then numeric values answering such
queries. While it is possible to extract a trace from an FT, its value is limited
due to the stochastic nature of the fault tree.

332 S. Schivo et al.

Instead, the typical use of the fault tree metamodel is to produce one
Uppaal-SMC model and automatically query the failure probability at dif-
ferent times. The results of these queries can than be used to produce a plot of
the system reliability over time, such as the one shown in Fig. 8.

4.5 Analysis of Java Programs

Model-based verification techniques for software applications require the exis-
tence of expressive models. Typically, these models are derived manually, which
is a labor-intensive and error-prone task. Also, models need to be maintained
and kept consistent with the software application, lest they become outdated.

The framework we have introduced in [38] adopts the generic approach pre-
sented in this paper for automatically deriving timed-automata models to vali-
date Java applications, timing requirements in particular, using model checking.
In this framework, the bytecode metamodel [37] and its timing analysis exten-
sion are introduced as the domain metamodels. The instance of the bytecode
metamodel (bytecode model) is generated from the target Java application auto-
matically using the JBCPP plug-in. Following this, the bytecode metamodel is
enriched through a number of model transformations with additional informa-
tion necessary for analysis; this includes recursion handling, loop detection, loop
iteration bounding, timing information, etc. The additional information is repre-
sented as an instance of the extension metamodel. The enriched bytecode model
is then transformed to a uta model to be analyzed with Uppaal.

Queries are currently manually written and results of the model checking
process are not translated back to a domain-specific representation such as to
a source-code view. However, the implementation of these points using MDE is
suggested in the generic approach is a future direction of the study in [38].

5 Related Work

There are many studies that use Uppaal to verify systems. We limit this section
to the studies that automatically transform domain-specific models to timed
automata, or map the results of model checking back to the domain of interest.

The tool ANIMO (Analysis of Networks with Interactive MOdeling) [32] has
been introduced to analyze complex biological processes in living cells. ANIMO
transforms the domain-specific models defined by biologists to Uppaal models;
then the results of the model checking process are presented back in a domain-
specific fashion. The transformations in ANIMO are implemented in a general-
purpose language, i.e., Java, whereas the case studies reported in this paper use
languages specifically designed for model management tasks.

Frost et al. [14] have introduced a tool for static analysis of timing properties
of Java programs. The tool transforms the domain-specific model, which consists
of the program, the virtual machine, and the hardware models, to an Uppaal
timed-automata model. The paper does not report any use of MDE techniques.

How to Efficiently Build a Front-End Tool for UPPAAL 333

A toolset to support design-space exploration of embedded systems was intro-
duced by Basten et al. [2]. It aims for the reuse of models between various
domains, by providing Java libraries to read design models written in its own
specification language and then transform them for use with other tools includ-
ing Uppaal for design-space exploration. If the toolset needs to support a new
tool, one has to implement new transformations using these libraries. Using a
language not specifically designed for such transformations leads to challenges in
maintaining the toolset, which are in fact stated as a future direction of research.

In the study by Fakih et al. [13], a tool named sdf2ta has been introduced for
analyzing timing bounds of SDF graphs. The tool takes an SDF graph defined
using the tool SDF3 and a hardware model defined separately, and automatically
generates an Uppaal timed-automata model. Similar to our tooling choice, they
have used EMF for the implementation of sdf2ta, however, it is not reported how
the generation of the timed-automata model is achieved.

Herber and Glesner [19] proposed a framework to verify hardware-software
co-designs using timed automata. It translates the co-design implemented in
SystemC to Uppaal’s timed automata format. This translation is automatically
achieved by the SystemC Timed Automata Transformation Engine (STATE)
that is specifically designed for SystemC-to-Uppaal transformations. STATE is
implemented directly in Java, which limits interoperability with other tools.

In the work by Hartmanns and Hermanns [18], a toolset has been intro-
duced to facilitate the reuse of various model checkers targeting the stochastic
hybrid automata formalism. The toolset uses a high-level compositional model-
ing language that serves as an interoperability point among existing languages
and tools. Conceptually, this language is similar to a metamodel and the trans-
formations from/to this language are implemented using traditional compiler
techniques.

The study by Glatz et al. [16] uses model checking to test distributed control
systems. The authors mathematically define a mapping from concepts in the
control systems domain to the timed-automata domain. In their approach, they
suggest implementing this mapping as a translation between the XML formats
of these domains, which can be seen as a textual model-based transformation.

6 Conclusions

We have demonstrated the use of MDE in the development of software bridging
tools that use Uppaal as a back-end analysis tool. Our approach uses metamod-
els as the foundation to translate domain-specific concepts into timed-automata
models and queries; the results delivered by Uppaal are similarly translated
back to the original domain, providing experts with access to formal analysis
techniques without requiring additional training. We have presented five case
studies in different domains to demonstrate how our approach has been applied
in practice with the aim of a higher level of interoperability, faster software
development and easier maintainability.

334 S. Schivo et al.

The principles we have presented here can be applied to formalisms and
analysis tools different from timed automata and Uppaal by replacing the cen-
tral metamodels uta, uqu and utr with suitable counterparts. Thus we expect
our approach to be generally applicable in the development of more software
bridging tools which act between DSLs and formal methods.

Acknowledgements. This research was partially funded by STW and ProRail under
the project ArRangeer (grant 12238), STW project SEQUOIA (15474), NWO projects
BEAT (612001303) and SamSam (628.005.015), and EU project SUCCESS.

References

1. Ahmad, W., Yildiz, B.M., Rensink, A., Stoelinga, M.: A model-driven framework
for hardware-software co-design of dataflow applications. In: Berger, C., Mousavi,
M.R., Wisniewski, R. (eds.) CyPhy 2016. LNCS, vol. 10107, pp. 1–16. Springer,
Cham (2017). doi:10.1007/978-3-319-51738-4 1

2. Basten, T., Hamberg, R., Reckers, F., Verriet, J.: Model-Based Design of Adaptive
Embedded Systems. Springer Publishing Company, New York (2013). doi:10.1007/
978-1-4614-4821-1

3. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Petterson, P., Yi, W.,
Hendrink, M.: Uppaal 4.0. In: Proceedings of 3rd International Conference on
Quantitative Evaluation of Systems (QEST), pp. 125–126 (2006). https://doi.org/
10.1109/QEST.2006.59

4. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Optimal scheduling using priced
timed automata. SIGMETRICS Perform. Eval. Rev. 32(4), 34–40 (2005)

5. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-27755-2 3

6. Brandt, J.: Understanding attacks: modeling the outcome of attack tree analysis.
In: 25th Twente Student Conference on IT, vol. 25. University of Twente (2016),
BSc. Thesis; see. http://referaat.cs.utwente.nl/conference/25/paper

7. Bulychev, P., David, A., Larsen, K.G., Mikuc̆ionis, M., Poulsen, D.B., Legay, A.,
Wang, Z.: Uppaal-SMC: statistical model checking for priced timed automata. In:
Proceedings of 10th Wks. Quantitative Aspects of Programming Languages (2012).
https://doi.org/10.4204/EPTCS.85.1

8. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Fault trees and sequence dependencies. In:
Proceedings of Annual Reliability and Maintainability Symposium, pp. 286–293,
January 1990

9. Dziwok, S., Gerking, C., Heinzemann, C.: Domain-specific Model Checking of
MechatronicUML Models Using Uppaal. Technical report tr-ri-15-346, Paderborn
University, Jul 2015. https://www.hni.uni-paderborn.de/pub/9121

10. Dziwok, S., Pohlmann, U., Piskachev, G., Schubert, D., Thiele, S., Gerking, C.: The
mechatronicUML design method: process and language for platform-independent
modeling. Technical report tr-ri-16-352, Software Engineering Department, Fraun-
hofer IEM / Software Engineering Group, Heinz Nixdorf Institute , version 1.0,
December 2016

11. Eclipse foundation Inc: XTend - modernized Java. https://www.eclipse.org/xtend/
index.html

http://dx.doi.org/10.1007/978-3-319-51738-4_1
http://dx.doi.org/10.1007/978-1-4614-4821-1
http://dx.doi.org/10.1007/978-1-4614-4821-1
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1109/QEST.2006.59
http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://referaat.cs.utwente.nl/conference/25/paper
https://doi.org/10.4204/EPTCS.85.1
https://www.hni.uni-paderborn.de/pub/9121
https://www.eclipse.org/xtend/index.html
https://www.eclipse.org/xtend/index.html

How to Efficiently Build a Front-End Tool for UPPAAL 335

12. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982)

13. Fakih, M., Grüttner, K., Fränzle, M., Rettberg, A.: State-based Real-time analysis
of SDF applications on MPSoCs with shared communication resources. J. Syst.
Archit. 61(9), 486–509 (2015)

14. Frost, C., Jensen, C., Luckow, K.S., Thomsen, B.: WCET analysis of java bytecode
featuring common execution environments. In: Proceedings of 9th International
Wks. Java Technologies for Real-Time and Embedded Systems, pp. 30–39. ACM
(2011)

15. Gerking, C., Schäfer, W., Dziwok, S., Heinzemann, C.: Domain-specific model
checking for cyber-physical systems. In: Proceedings of 12th Wks. Model-Driven
Engineering, Verification and Validation (MoDeVVa 2015). Ottawa, September
2015

16. Glatz, B., Cleary, F., Horauer, M., Schuster, H., Balog, P.: Complementing test-
ing of IEC61499 function blocks with model-checking. In: Proceedings of 12th
IEEE/ASME International Conference on Mechatronic, Embedded Systems and
Applications (MESA) (2016)

17. Greenyer, J., Rieke, J.: Applying advanced TGG concepts for a complex transfor-
mation of sequence diagram specifications to timed game automata. In: Schürr, A.,
Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 222–237. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34176-2 19

18. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54862-8 51

19. Herber, P., Glesner, S.: A HW/SW co-verification framework for systemC. ACM
TECS 12(1s), 61:1–61:23 (2013)

20. Huistra, D.: A unifying model for attack trees. Research Project. University of
Twente (2015). http://essay.utwente.nl/69399/

21. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063,
pp. 46–60. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69927-9 4

22. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense
modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13–14,
1–38 (2014)

23. Kumar, R., Stoelinga, M.: Quantitative security and safety analysis with attack-
fault trees. In: Proceedings of IEEE 18th International Symposium High Assurance
Systems Engineering (HASE), pp. 25–32, January 2017

24. Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative attack tree analysis via
priced timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FOR-
MATS 2015. LNCS, vol. 9268, pp. 156–171. Springer, Cham (2015). doi:10.1007/
978-3-319-22975-1 11

25. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–
1245 (1987)

26. Mohagheghi, P., Dehlen, V.: Where Is the proof? - a review of experiences from
applying MDE in industry. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-
FA 2008. LNCS, vol. 5095, pp. 432–443. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-69100-6 31

27. Object Management Group (OMG): Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, Version 1.2. OMG Document Number
formal/01 Feb 2015. http://www.omg.org/spec/QVT/1.2

http://dx.doi.org/10.1007/978-3-642-34176-2_19
http://dx.doi.org/10.1007/978-3-642-54862-8_51
http://dx.doi.org/10.1007/978-3-642-54862-8_51
http://essay.utwente.nl/69399/
http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://dx.doi.org/10.1007/978-3-319-22975-1_11
http://dx.doi.org/10.1007/978-3-319-22975-1_11
http://dx.doi.org/10.1007/978-3-540-69100-6_31
http://dx.doi.org/10.1007/978-3-540-69100-6_31
http://www.omg.org/spec/QVT/1.2

336 S. Schivo et al.

28. Ravn, A.P., Srba, J., Vighio, S.: A formal analysis of the web services atomic
transaction protocol with UPPAAL. In: Margaria, T., Steffen, B. (eds.) ISoLA
2010. LNCS, vol. 6415, pp. 579–593. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16558-0 47

29. Ruijters, E., Guck, D., Drolenga, P., Stoelinga, M.: Fault maintenance trees: reli-
ability contered maintenance via statistical model checking. In: Proceedings IEEE
62nd Annual Reliability and Maintainability Symposium (RAMS). IEEE, January
2016

30. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015)

31. Schivo, S., Scholma, J., Wanders, B., Camacho, R.A.U., van der Vet, P.E., Karperien,
M., Langerak, R., van de Pol, J., Post, J.N.: Modeling Biological Pathway Dynamics
With Timed Automata. IEEE J. Biomed. Health Inform. 18(3), 832–839 (2014)

32. Schivo, S., Scholma, J., van der Vet, P.E., Karperien, M., Post, J.N., van de Pol,
J., Langerak, R.: Modelling with ANIMO: between fuzzy logic and differential
equations. BMC Syst. Biol. 10(1), 56 (2016)

33. da Silva, A.R.: Model-driven engineering: A survey supported by the unified con-
ceptual model. Comput. Languages, Systems & Structures 43, 139–155 (2015)

34. Sprinkle, J., Rumpe, B., Vangheluwe, H., Karsai, G.: Metamodelling. In: Model-
Based Engineering of Embedded Real-Time Systems, pp. 57–76. Springer (2010)

35. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse modeling
framework 2.0. Addison-Wesley Professional, 2nd edn. (2009)

36. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-driven software
development: technology, engineering, management. John Wiley & Sons (2006)

37. Yildiz, B.M., Bochisch, C.M., Rensink, A., Aksit, A.: An MDE approach for mod-
ular program analyses. In: Proc. Modularity in Modelling Workshop (2017)

38. Yildiz, B.M., Rensink, A., Bockisch, C., Aksit, M.: A Model-Derivation Framework
for Software Analysis. In: Proc. 2nd Wks. Models for Formal Analysis of Real
Systems (MARS) (2017)

http://dx.doi.org/10.1007/978-3-642-16558-0_47
http://dx.doi.org/10.1007/978-3-642-16558-0_47

	How to Efficiently Build a Front-End Tool for UPPAAL: A Model-Driven Approach
	1 Introduction
	2 Background
	2.1 Model-Driven Engineering
	2.2 Timed Automata and UPPAAL

	3 Metamodels for the Approach
	3.1 The UPPAAL Timed Automata Metamodel
	3.2 The UPPAAL Query Metamodel
	3.3 The UPPAAL Trace Metamodel

	4 Case Studies
	4.1 Coordination Protocols of CPSs
	4.2 Synchronous Dataflow Graphs
	4.3 Attack Tree Analysis
	4.4 Fault Tree Analysis
	4.5 Analysis of Java Programs

	5 Related Work
	6 Conclusions
	References

