
A Framework for Modeling and Verifying IoT
Communication Protocols

Maithily Diwan and Meenakshi D’Souza(B)

International Institute of Information Technology, Bangalore, India
maithily.diwan@iiitb.org, meenakshi@iiitb.ac.in

Abstract. Communication protocols are integral part of the ubiqui-
tous IoT. There are numerous light-weight protocols with small foot-
print available in the Industry. However, they have no formal semantics
and are not formally verified. Since these protocols have many com-
mon features, we propose a unified approach to verify these protocols
through a framework in Event-B. We begin with an abstract model of
an IoT communication protocol which encompasses common features
of various protocols. The abstract model is then refined into concrete
models for individual IoT protocols using refinement and decomposi-
tion techniques of Event-B. Using the above framework, we present
models of MQTT, MQTT-SN and CoAP protocols, and verify com-
munication properties like connection-establishment, persistent-sessions,
caching, proxying, message ordering, QoS, etc. Our protocol models can
be integrated-with or extended-to other formal models of IoT systems
using machine-decomposition within Event-B, thus paving way for for-
mal modeling and verification of IoT systems.

Keywords: IoT protocols · MQTT · MQTT-SN · CoAP · Formal mod-
eling and verification · Event-B

1 Introduction

IoT is prevalent in various industries like health care, automotive, manufactur-
ing, power grid and domotics to name a few. IoT not only connects different
computing devices but sensors, actuators, people and virtually any object. With
the prediction that there will be over 20 billion devices by 2020 [7], IoT will
be an integral part of our lives. The end nodes in the IoT are usually sensors
or small devices which have limited processing capability and low memory. In
such cases, the devices send unprocessed data to cloud which is then shared
with other devices/systems subscribing to this large amount of data (either raw
data or processed by server), making communication between these devices an
important aspect of IoT.

Various protocols are used for communication in an IoTsystem. TCP/IP is a
popular protocol used in lower layers. Several protocols are adapted for the appli-
cation layer in an IoT system - Message Queue Telemetry Transport Protocol

c© Springer International Publishing AG 2017
K.G. Larsen et al. (Eds.): SETTA 2017, LNCS 10606, pp. 266–280, 2017.
https://doi.org/10.1007/978-3-319-69483-2_16

A Framework for Modeling and Verifying IoT Communication Protocols 267

(MQTT) [9], Message Queue Telemetry Transport Protocol Sensors (MQTT-
SN) [10], The Constrained Application Protocol (CoAP) [11], eXtensible Mes-
saging and Presence Protocol (XMPP) [12], Advanced Message Queuing Proto-
col (AMQP) [13] to name a few. Most of them are being used for IoT systems
as they are bandwidth efficient, light-weight and have small code foot-print [8].
Features like publish-subscribe, messaging layer, QoS(Quality of Service) levels,
resource discovery, re-transmission, etc. are prevalent in these protocols.

Our framework for an IoT protocol modeling and verification is realized
through an abstract model of the protocol. The abstract model consists of com-
monalities among various application layer protocols like communication modes,
connection establishment procedure, message layer, time tracking and attacker
modules. We then decompose these various modules and refine them into more
concrete models for individual protocols. Properties that hold true for these
protocols are verified in these models. We use Event-B to model the commu-
nication channel and the client and server side communication entities, all of
which together implement the protocol. By verifying the accuracy of the model
through simulations, invariant checking and LTL properties satisfiability, we are
able to conclude that our models of various protocols are correct.

Messages/streams are used as basic entities of communication between mul-
tiple clients and servers. Structure of a message apart from payload, usually
consists of many fields of various types. Event-B provides record datatypes [3]
through which complicated message structure with multiple attributes and sub-
attributes can be expressed succinctly. All the properties of the protocol to
be proved are expressed as invariants which are essentially predicates that are
always true. The automatic and interactive proof discharge in Event-B using
the Rodin tool [4] verifies if these invariants (properties) are satisfied for all the
events in the model.

The paper is organized as follows. IoT protocols and their properties are
described in Sect. 2. Section 3 highlights the features of Event-B that we use for
modeling. Our Event-B model and their refinements for different protocols are
detailed in Sect. 4. Verified properties and their results are presented in Sect. 5.
Section 6 discusses related work and Sect. 7 presents the conclusion and on-going
work.

2 IoT Communication Protocols: MQTT, MQTT-SN
and CoAP

Most of the applications in IoT need a reliable network and use existing Internet
to communicate with the cloud/servers and with other nodes. Hence it is common
to use the existing TCP/IP stack with underlying physical, DLL, network and
transport layer. However TCP/IP is heavy weight as compared to a lighter UDP,
in which case reliability has to be built in the application layer protocol. Other
IoT communication requirements are: low bandwidth, low memory consumption,
small code foot-print, self recovery, resource discovery, light-weight, low message
overhead, low power consumption, authentication, security, appropriate QoS.

268 M. Diwan and M. D’Souza

We briefly describe some of the application protocols highlighting the features
and properties which we verify in this paper.

2.1 MQTT

MQTT [9] is a publish-subscribe protocol designed for constrained devices con-
nected over unreliable, low bandwidth networks. It gives flexibility to connect
multiple servers to multiple clients. The protocol has low message overhead which
makes it bandwidth efficient and can be easily implemented on a low powered
device. Significant features offered by MQTT are explained below:

1. 3 levels of QoS: “At most once”- no acknowledgement is expected for a publish
message, “at least once” - every message receives an acknowledgement and
“exact once” - guaranteed message delivery without duplicates.

2. Subscribe: Clients can subscribe/unsubscribe to a topic with desired QoS.
3. Keep-alive: In absence of application messages within keep-alive time, client

sends a ping request to keep the network active.
4. Persistent Session: Persistent session is achieved by storing the session state

of channel and can be restored upon re-connection. It includes previous con-
figurations, subscriptions, unacknowledged messages, etc.

5. Retain Message: When a new subscriber or an offline subscriber re-connects,
the retained message is immediately published with configured QoS.

6. Will message: Pre-configured “will” message is sent by the server when a
publishing client goes offline and wants to inform the subscribing clients.

7. Authentication: A user-password feature is used for authentication. TLS
(Transport Layer Security) is optional for data encryption [9].

2.2 MQTT-SN

MQTT-SN is another data centric protocol and is based on MQTT with adapta-
tions to suit the wireless communication environment. Unlike MQTT, MQTT-SN
does not require an underlying network like TCP/IP making it a low complexity,
light weight protocol. Significant differences between MQTT and MQTT-SN are
listed below:

1. Gateway Advertisement and Discovery: A MQTT-SN client conntects to
MQTT server via a gateway, implementing translation between the two pro-
tocols. A discovery procedure is used by the clients to discover the actual
network address of an operating server/gateway.

2. Topic Registration: To reduce bandwidth, a client can use pre-defined short
topic names/IDs or register a long topic name with the server and use a
corresponding topic ID for further communication.

3. QoS −1: In addition to QoS 0, 1 and 2, MQTT-SN offers QoS −1 where the
client communicates with the server without a formal connection establish-
ment and topic registration procedures.

4. Support of Sleeping Clients: Power saving clients can to go to sleep mode
and wake up periodically using keep-alive message. A server/gateway buffers
messages destined to the client and send them to client when they wake up.

A Framework for Modeling and Verifying IoT Communication Protocols 269

2.3 CoAP

CoAP is a specialized web transfer protocol based on REST architecture, ful-
filling Machine to Machine (M2M) requirements in constrained environments.
CoAP has low header overhead, parsing complexity, and has uri based address-
ing. It is stateless HTTP mapping, allowing proxies to be built providing access
to CoAP resources via HTTP. Following are significant features of CoAP:

1. Layered Architecture: CoAP implements a request-response model with asyn-
chronous message exchanges at lower layer. The messaging layer deals with
UDP and asynchronous nature of interactions, and the request-response inter-
actions use method and response codes. Requests and responses are carried
in confirmable and non-confirmable messages. A response can be piggybacked
in acknowledgement or separate message.

2. Unicast/multicast requests: For discovering resources and services in the net-
work, CoAP uses multicast request. After a connection is established with a
server, unicast mode is used.

3. Reliability: CoAP uses a layer of messages that supports optional reliability
of “at least once” with an exponential back-off mechanism.

4. Proxying and Caching: A cache could be located in an endpoint or an interme-
diary called proxy. Caching is enabled using freshness and validity information
carried with CoAP responses. A max-age option in a response indicates its
not fresh after its age is greater than the specified time. A proxy can however
validate the stored response with server even after max-age expiry.

5. Resource Discovery: Like MQTT-SN, CoAP uses multicast requests to dis-
cover services and resources in the network.

6. Observe feature: CoAP can be used in publish-subscribe mode by using
observe and notification options.

7. Security: Optional security using Datagram Transport Layer Security
(DTLS).

3 Event-B

Event-B [1] is based on B-Method which provides a formal methodology for
system-level modeling and analysis. Event-B uses set theory as a modeling nota-
tion and first order predicate calculus for writing axioms and invariants. It uses
step by step refinement to represent systems at different abstraction levels and
provides proofs to verify consistency of refinements. Initially the model is con-
structed on basis of known requirements. As and when required, one can refine
and add the new properties while satisfying the requirements in the underlying
model.

An Event-B model has two types of components: contexts and machines. Con-
texts contain all the data structures required for the system which are expressed
as sets, constants and relations over the sets. A machine “sees” a context to use
the data structures or types. A machine has several events and can also define

270 M. Diwan and M. D’Souza

Table 1. Comparison of IoT communication protocols

Sl.no Protocol feature MQTT MQTT-SN CoAP

1 Architecture Asynchronous

Message exchange

Asynchronous

Message exchange

REST architecture

Layered Approach

2 Transport Layer TCP Any UDP

3 Communication type UniCast UniCast/Multicast UniCast/Multicast

4 Addressing ClientID

Server address

ClientID

Server address

Uri Based

5 Messaging pattern Publish Subscribe Publish Subscribe Request-Response

Publish-Subscribe

6 QoS Levels AtmostOnce,

AtleastOnce,

ExactOnce

AtmostOnce,

AtleastOnce,

ExactOnce

AtmostOnce,

AtleastOnce

7 Persistent Session Yes Yes Yes

8 Retained Message

/Offline/Caching

Yes Yes Yes

9 Proxying/Caching No Yes Yes

10 Resource Discovery No Yes Yes

11 Sleep Mode No Yes Yes

12 Security Optional TLS Optional TLS Optional DTLS

variables and its types. A machine can refine another machine to introduce new
events, refine events, split events or merge events. An event consists of guards
which need to be satisfied before the actions in events are executed. When an
event is enabled and executed, the variables are updated as per the actions in
the event.

An invariant is a condition on the state variables that must hold permanently.
In order to achieve this, it is required to prove that, under the invariant in
question and under the guards of each event, the invariant still holds after being
modified according to the transition associated with that event [5].

Rodin and ProB

Rodin [4] implements Event-B and is based on Eclipse platform. It provides
an environment for modeling refinements and discharges proofs. It has sophisti-
cated automatic provers like PP, ML and SMT, which automatically discharge
proofs for refinements, feasibility, invariants and well-definedness of expressions
within guards, actions and invariants. Event-B also provides interactive prov-
ing mechanism for manual proofs which can be used when the automatic proof
discharge fails. Rodin offers various plug-ins for development including different
text editors, decomposition/modularization tools, simulator ProB, etc.

ProB [6] provides a simulation environment through animation for Event-B
model. A given machine can be simulated with all its events. In the animation
environment, one can select and run the given events by selecting parameters
or execute with random solution. During simulation, the state of the system
before and after every event execution can be observed. The state gives values
of all the variables in the machine, evaluates invariants, axioms and guards for

A Framework for Modeling and Verifying IoT Communication Protocols 271

all the events. Additionally any expression can be monitored in the animator.
The model can also be checked for deadlocks, invariant violations and errors in
the model which will help to construct an accurate model.

4 Protocol Modeling and Decomposition Using Event-B

A communication channel is a network connection which is established between
a client and a server or between two clients or between two servers. In an IoT
system there could be multiple channels connecting several clients and servers.
Our Event-B model consists of communication channels of the IoT system which
implement a communication protocol. As shown in the Fig. 1, the model has
Event-B contexts and machines. The contexts have all the data structures and
axioms required to setup a machine. The machine includes communication part
of client and server implemented as events, and the properties required to be
verified are written as invariants.

Communication Protocol Event−B Model

 Context

Sets in the ContextChannels, Servers, Clients, Messages

Constants and Axioms in the ContextsMessage Attributes and properties

 Machine

Events in the Machine

Guards of the Event

Attacker, Time Tracking
Transmit/Receive Messages, Error Event

Conditions for message transmission/
consumption,ErrorDetection ,Timer

Variables in the MachineBuffers, Channel Properties, Timers

Protocol Properties for IoT Invariants in the Machine

Fig. 1. Mapping between communication protocol and Event-B model

The protocol modeling is done in two major steps:

1. Building a common abstract model encompassing the common features of
various protocols.

2. Refining this common abstract model into a concrete model of a particular
IoT protocol.

Our modeling is done using the techniques of machine decomposition [14], refine-
ment [2] and atomicity decomposition in Event-B [15].

272 M. Diwan and M. D’Souza

4.1 Common Abstract Model

The common abstract model implements the commonalities among various pro-
tocols as mentioned in Table 1. Figure 2 is a diagrammatic representation of the
abstract model.

Context: A basic communication entity is modelled as a message. Set named
MSG and all its attributes are defined as relations over the set MSG and the
sets defined for the attributes. A projection function is used to extract the value
of an attribute for a given message [3].

Machine Refinements: The atomicity of event Communication Channel is
broken into two events representing modes of communication: Unicast and
Broadcast/Multicast. Similarly a further refinement of the model breaks down
the atomicity of these events into Service and Resource Discovery. A UniCast
event is broken into ChannelEstablishment and ChannelConversation events.
Since these events are not yet atomic, they can be further split as shown in
Fig. 3 where ChannelConversation of previous refinement is further broken into
many more events. Figures 2 and 3 together show the three refinement steps
done in the common abstract model. It is to be noted that our common abstract
model does not breakdown to the lowest atomic level of events. This is achieved
in the next step of building concrete model for a particular protocol.

Communication
Channel

Establishment

UniCastMultiCast/
BroadCast

Channel Channel
Conversation

Resource Discovery Service Discovery

1st Refinement

2nd Refinement

Fig. 2. Atomicity decomposition of common abstract model

NonConfirmable
MessageSend

Confirmable
MessageSend

Timer
Increment

Timer Intruder

Message
Acknowlege

Timeout
Detection

Conversation
Channel

Send
Message

3rd Refinement

4th Refinement

Fig. 3. Atomicity decomposition of ChannelConversation module

A Framework for Modeling and Verifying IoT Communication Protocols 273

Machine Decomposition: The leaves of the atomicity decomposition diagram
give us the events of the final refinement of the common model. Further on when
we build models of particular protocols, these events further explode into more
atomic events blowing up the size of the model. It has been observed that many of
these events have very few interfaces among them and they can be independently
be refined. This allows us to use the technique of machine decomposition in
Event-B. Figure 4 gives such a decomposition of our abstract model. In Sect. 4.2
we give an example of how these modules of decomposed machines are further
refined to give more concrete model of MQTT.

Fig. 4. Machine decomposition of common abstract model

Events in Decomposed Modules

1. Multicast/Broadcast: It is used when a node has to communicate to more
than one peer node. The Multicast/Broadcast event is broken down into
atomic events Service Discovery and Resource Discovery which are used to
find the nodes that can publish the required information on the network. Once
the nodes with required resources/services are discovered, the information is
shared with ChannelEstablishment module.

2. ChannelEstablishment: The List of Resources/Services is used to establish
connection with the desired node. Events ConnectRequest and ConnectAc-
knowledgement are used for connection establishment. After the communica-
tion is over the connection can be disconnected to release the limited resources
through Disconnect event. Disconnect event is made convergent to avoid live
lock in the model. Error handling events detect errors and appropriately ter-
minate connections as per the session configurations. In our model, error
detection events are related to connection time-out and reconnecting an exist-
ing channel. Timeout error information is communicated through Timeout
interface with Timer module and the channelEstablished interface is shared
with ChannelConversation modules.

274 M. Diwan and M. D’Souza

3. ChannelConversation: This is a pseudo module which contains the Message-
Exchange, Timer and Intruder modules.

4. MessageExchange: This module includes all the application message transfer
events i.e., all the transmit/receive events for message send and acknowledge-
ment. These events update the message buffers and track time for message
transmission and reception.

5. Timers: There is a global time ticking through an event called “Timer” and
there are local timers maintained by client and server. These timers are incre-
mented when either there is a send event happening or to just delay time in
case of channel inactivity. Every transmission and reception event will store
the time at which each message was sent or received. Time tracking is used for
keep-alive mechanism, time-out handling and for verifying time related prop-
erties. In further refinements of concrete protocols, timers can also be used
for strategies like exponential back off in case of failed acknowledgement.

6. Intruder: This module is introduced to emulate disturbance in channel which
leads to loss of messages. A malicious Intruder event can consume any message
in the channel that is not yet received by the intended client or server. Intruder
can simulate attackers, connection drops, or any other disturbances in the
network that can lead to loss of the application message. This is a convergent
event and does not run forever.

4.2 Concrete Protocol Models

From the common abstract model, the decomposed machines are refined further
to add details specific to a protocol. Some of the features which are not used
in the protocol need not be used or refined. For example there is no broadcast
or multicast support in MQTT protocol. Hence this module does not need any
refinement in MQTT model. The contexts from the abstract model are extended
to add detailed attributes. Channel variables and internal buffers are introduced
to track the dynamic behaviour of the channel that include messages in channel,
topics subscribed, payload counters, send and receive buffers, timers, configura-
tion settings, etc. Following is a detailed description of MQTT protocol model
created from the abstract model. We then briefly describe the other two protocol
models (MQTT-SN and CoAP) which follow similar procedures.

MQTT Protocol Model: MQTT protocol is modeled by abstracting commu-
nication network in an IoT system consisting of two channels. For illustrative
purpose, we have modeled the channels with two servers and two clients.

ChannelEstablishment Module - From the abstract module containing events
ConnectRequest, ConnectAcknowledgement and Disconnect, MQTT specific
refinement is done to include configuration details and disconnection due to
errors. When a channel is established, the configuration settings of the channel
communicated between the client and the server are stored in channel variables.

MessageExchange Module - First refinement of the module introduces publish
and subscribe message with their acknowledgement events. These events are

A Framework for Modeling and Verifying IoT Communication Protocols 275

further refined to send original message, duplicate message and reception of the
message at both client and server sides. Figure 5 gives the refinement steps and
atomic decomposition for transmit messages in this module. Similar model is
built for acknowledgement messages.

Publish
QoS2

Publish
QoS1

Message

Release QoS2
Publish

Publish Qos2
Release Rcv

1st Refinement

2nd Refinement

Subscribe

Send

Subscribe
Send

Subscribe
Receive

. . . .Publish
QoS2 Orig

Publish
QoS2 Rcv

Publish
QoS2 Dup

Publish
QoS2 Orig

Client

Publish
QoS2 Rcv

Publish
QoS2 Rcv

Server

.
3rd Refinement

Fig. 5. Atomicity decomposition of confirmable message transmission - QoS1 and QoS2

To track if the correct message is delivered with required QoS and time, the
“Payload” is implemented as a counter with a range of 0 to 9 which allows us
to uniquely identify every message transmitted. The range of the counter can be
extended to any number without affecting our model. By keeping a track of how
many times the message with a given payload value is received, we can verify
interesting properties related to QoS, message ordering, retained message and
persistent sessions. Figure 6 is an example of the QoS0 Publish event transmitted
by an MQTT client. The guards ensure that a message of type publish with QoS0
is transmitted on the channel which is already established. In the actions, the
channel is populated with a new message carrying unique payload, ClientTimer
is initialized, direction of the message is set, PayloadCounter is incremented and
Timer-increment event is triggered.

Timer and Intruder modules - Timer Module is refined to include ClientSide
and ServerSide Timer, and corresponding Timeout events. Intruder Module does
not have any particular refinement for MQTT.

MQTT-SN Protocol Refinement: MQTT-SN model reuses MessageEx-
change, ChannelEstablishment, Timer and Intruder Modules from MQTT. The
Multicast/Broadcast Module is refined from common abstract model to add
events related to gateway discovery in the network using search gateway mes-
sages. New topic registration procedure is added to the ChannelConversation
Module.

CoAP Protocol Refinement: ChannelConversation module from abstract
model is refined to include request-response layer by adding events that are

276 M. Diwan and M. D’Souza

Fig. 6. Event for publishing message with QoS0

enabled to send a request and receive a corresponding response either piggy-
backed or separate. Each of these events then trigger the message layer events
to transmit confirmable or non-confirmable messages and receive correspond-
ing acknowledgements. Token ID matching and message ID matching is carried
out to ensure every request receives its response. ChannelEstablishment module
is refined to add multi-hop connection consisting of multiple channels. Multi-
cast/Broadcast module is refined to discover resources and services in the net-
work. Timer and Intruder modules are directly used from the common abstract
model.

4.3 Model Validation

ProB is used for validating our model through simulation of events and check-
ing LTL properties for common abstract model. Accuracy of the model can be
obtained by executing different runs and observing the sequence of events and
variable values in each of these events. ProB also reports any invariant violation
or error in events which is then corrected in the model. Model validation is also
done by writing and verifying invariants.

5 Verification of IoT Properties Using Event-B

Following are some of the significant properties that are verified through the
model by writing them as invariants that have to be satisfied for all the events
in protocol specific models. The property invariant contains two parts well-
definedness expressions and the actual property to be proved. We omit the
well-definedness conditions and state only the actual property to be proved.
Properties 1 to 7 are verified in MQTT and MQTT-SN models and 8 to 11 are
verified in CoAP model.

A Framework for Modeling and Verifying IoT Communication Protocols 277

1. Message Ordering: If both client and server make sure that no more than one
message is “in-flight” at any one time, then no QoS1 message will be received
after any later one. For example a subscriber might receive them in the order
1, 2, 3, 3, 4 but not 1, 2, 3, 2, 3, 4.
Refer to Sect. 4.6 in [9].

∀ch·∀pc1 · ∀pc2 · ((pc1 ∈ 0 · ·9 ∧ pc2 ∈ 0 · ·9 ∧ ch ∈ establishChannel

∧ (pc1 ∈ Client MsgSentQoS2 (ch) ∨ pc1 ∈ Client MsgSentQoS1 (ch))

∧ (pc2 ∈ Client MsgSentQoS2 (ch) ∨ pc2 ∈ Client MsgSentQoS1 (ch))

∧ (time > SendTRange(pc2) + Response Timeout)

∧ pc1 �= pc2 ∧ (SendTRange(pc1) < SendTRange(pc2))

⇒ (RcvTRange(pc1) ≤ RcvTRange(pc2))

(1)

2. Persistent Session: When a client reconnects with “CleanSession” set to 0,
both the client and server must re-send any unacknowledged publish pack-
ets (where QoS > 0) and publish release packets using their original packet
Identifiers. Refer to Normative Statement number MQTT-4.4.0-1 in [9]. The
variable RcvTRange is updated with current time only after the message is
received. Hence it should be greater than the SendTRange time.

∀ch · ∀pc · ((pc ∈ 0 · ·9 ∧ ch ∈ establishChannel

∧ Channel CleanSess(ch) = FALSE

∧ ((pc ∈ Client MsgSentQoS1 (ch)) ∨ (pc ∈ Client MsgSentQoS2 (ch))

∧ (time > (SendTRange(pc) + Response Timeout))

⇒ (RcvTRange(pc) > SendTRange(pc)))

(2)

3. QoS of a message from Client1 to Client2: The effective QoS of any message
received by the subscriber is minimum of QoS with which the publishing client
transmits this message and the QoS set by the subscriber while subscribing
for the given topic. E.g. Publishing client sends with QoS1 oand subscribing
client has subscribed with QoS2, with effective QoS being 1. Refer to Sect.
4.3 in [9].

∀ch · ∀pc · ∀chnl · ∀msg · ((pc ∈ 0 · ·9 ∧ ch ∈ establishChannel

∧ msg ∈ MSG ∧ chnl ∈ establishChannel

∧ (pc ∈ Client MsgSentQoS1(ch)

∧ (msg 	→ ((PUBLISH 	→ AtleastOnce) 	→ pc)) ∈ Msg Type QoS

∧ ((Msg Topic(msg) 	→ ExactOnce) ∈ Channel TopicQoS(chnl))

∧ ((time − SendTRange(pc)) � Response T imeout)))

⇒ (∃QC · ((QC ≥ 1) ∧ Client MsgReceived 2 (chnl) = QC)))

(3)

4. Exponential Backoff: The sender retransmits the Confirmable message at
exponentially increasing intervals, until it receives an acknowledgement or
runs out of attempts. Refer to Sect. 4.2 in [11].

278 M. Diwan and M. D’Souza

∀ch · ∀pc · ((pc ∈ 0 · ·11 ∧ ch ∈ establishChannel ∧ pc ∈ MsgSent(ch)

∧ RetransmissionCounter(pc) � Max Retransmit(ch)

⇒ ((SendTRange(pc) − SendTPrev(pc)) ≤ Ack T imeout(pc)

∧ (SendTRange(pc) − SendTPrev(pc)) > 0))

(4)

5.1 Proof Obligations Results

Our validated models of MQTT, MQTT-SN and CoAP have together discharged
1840 proof obligations, of which 88% proof obligations were automatically dis-
charged through AtlierB, SMT, PP and ML provers. The proof obligations
include well-definedness of predicates and expressions in invariants, guards,
actions, variant and witnesses of all the events, feasibility checks, variable re-
use check, guard strengthening and witness feasibility in refinements, variant
checks for natural number and decreasing variants for convergent and antici-
pated events, theorems in axioms and invariant preservation for refinements and
invariants used for verification of required properties. About 30% of proofs dis-
charged in the models are for verification of properties written as invariants.
Table 2 gives a summary of the properties verified.

Table 2. Proof obligation statistics for verified properties of IoT protocols

Sl.no Protocol property Proof obligations Result

1 Duplicate Channel 10 Passed

2 Message Ordering 34 Passed

3 Persistent Session 34 Passed

4 QoS1 in single channel 26 Passed

5 QoS2 in single channel 26 Passed

6 Retained QoS1 message 24 Passed

7 Retained QoS2 message 24 Passed

8 Effective QoS0 in Multi channel(3 cases) 66 Passed

9 Effective QoS1 in Multi channel(3 cases) 66 Passed

10 Effective QoS2 in Multi channel(3 cases) 72 Passed

11 Request-Response Matching and Timeout 39 Passed

12 Confirmable Message ID Matching and Timeout 39 Passed

13 Exponential Backoff 39 Passed

A Framework for Modeling and Verifying IoT Communication Protocols 279

6 Related Work

Communication protocols for IoT have been used for over a decade now, but
there has been no attempt to provide formal semantics for these protocols. A
recent paper shows that there are scenarios where MQTT has failed to adhere
to the QoS requirement [16]. However the paper is limited to partial model of
MQTT protocol for QoS properties. In another work, a protocol used for IoT -
Zigbee is verified for properties related to connection establishment proper-
ties [17] using Event-B. In [19] and [20], the authors give methods to evaluate
performance of MQTT protocol with regards to different QoS levels used and
compare with other IoT protocol CoAP. In [18] the author again tests connection
properties using passive testing for XMPP protocol in IoT.

We differ from the above mentioned approaches by proposing a framework
comprising of a common model for IoT protocols which can be used to build
models of different IoT protocols. These models verify properties required for
IoT like connection establishment, persistent sessions, retained-message trans-
mission, will messages, message ordering, proxying, caching and QoS and pro-
vide proof obligations for these properties through automatic proof discharge
and interactive proof discharge methods.

7 Conclusion and Future Work

In this paper we have proposed a framework using Event-B to model IoT proto-
cols. We then have used this framework and went on to model some of the widely
used IoT protocols viz., MQTT, MQTT-SN and CoAP. Through simulation and
proof obligation discharge in Rodin, we have formally verified that the properties
related to QoS, persistent session, will, retain messages, resource discovery, two
layered request-response architecture, caching, proxying and message deduplica-
tion. We show that the protocols work as intended in an uninterrupted network
as well as with an intruder which consumes messages in the network. The three
protocols modeled in this paper implement simple mechanisms to provide reliable
message transfer over a lossy network. They are also able to reduce overhead by
providing features like persistent connections, retain messages, caching and prox-
ying which are essential for IoT systems. Our work is a stepping stone towards
providing formal semantics of IoT protocols and systems.

Future research would focus on modeling the other aspects of protocols like
security, user authentication, encryption and different attacker modules. We
would also like to move verification of more properties from the concrete pro-
tocol models to the common abstract model. We would like to further compare
other protocols for IoT like AMQP and XMPP by modeling them using our
framework. It would also be interesting to integrate the protocol model into an
existing model of IoT system and verify the properties required at the system
level.

280 M. Diwan and M. D’Souza

References

1. Event-B. http://www.Event-B.org/
2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press, Cambridge (2010)
3. Evans, N., Butler, M.: A proposal for records in Event-B. In: Misra, J., Nipkow, T.,

Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 221–235. Springer, Heidelberg
(2006). doi:10.1007/11813040 16

4. Rodin Tool. http://wiki.Event-B.org/index.php/Rodin Platform
5. Rodin Hand Book. https://www3.hhu.de/stups/handbook/rodin/current/pdf/

rodin-doc.pdf
6. ProB tool. https://www3.hhu.de/stups/prob/index.php/Main Page
7. Gartner newsroom. http://www.gartner.com/newsroom/id/3165317
8. Karagiannis, V., Chatzimisios, P., Vazquez-Gallego, F., Alonso-Zarate, J.: A survey

on application layer protocols for the internet of things. Trans. IoT Cloud Comput.
3(1), 11–7 (2015)

9. MQTT Ver. 3.1.1. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.
1-os.html

10. MQTT-SN Ver. 1.2. http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-
SN spec v1.2.pdf

11. The Constrained Application Protocol (CoAP) RFC7252. https://tools.ietf.org/
html/rfc7252

12. Extensible Messaging and Presence Protocol (XMPP) Core RFC6120. http://
xmpp.org/rfcs/rfc6120.html

13. Advanced Message Queuing Protocol ver. 1.0. http://docs.oasis-open.org/amqp/
core/v1.0/amqp-core-complete-v1.0.pdf

14. Pascal, C., Renato, S.: Event-B model decomposition, DEPLOY Plenary Technical
Workshop (2009)

15. Salehi Fathabadi, A., Butler, M., Rezazadeh, A.: A systematic approach to atom-
icity decomposition in Event-B. In: Eleftherakis, G., Hinchey, M., Holcombe, M.
(eds.) SEFM 2012. LNCS, vol. 7504, pp. 78–93. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-33826-7 6

16. Aziz, B.: A formal model and analysis of the MQ telemetry transport protocol. In:
Ninth International Conference, Availability, Reliability and Security (ARES), pp.
59–68. Fribourg (2014)

17. Gawanmeh, A.: Embedding and verification of ZigBee protocol stack in Event-B.
In: Procedia Computer Science, vol. 5, pp. 736–741. ISSN 1877–0509 (2011)

18. Che, X., Maag, S.: A passive testing approach for protocols in Internet of Things.
In: Green Computing and Communications (GreenCom), IEEE and Internet of
Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber,
Physical and Social Computing, pp. 678–684. IEEE Press (2013)

19. Lee, S., Kim, H., Hong, D.K., Ju, H.: Correlation analysis of MQTT loss and
delay according to QoS level. In: The International Conference on Information
Networking(ICOIN), pp. 714–717. IEEE (2013)

20. Thangavel, D., Ma, X., Valera, A., Tan, H.X., Tan, C.K.: Performance evaluation
of MQTT and CoAP via a common middleware. In: IEEE Ninth International Con-
ference, Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP),
pp. 1–6. IEEE Press (2014)

http://www.Event-B.org/
http://dx.doi.org/10.1007/11813040_16
http://wiki.Event-B.org/index.php/Rodin_Platform
https://www3.hhu.de/stups/handbook/rodin/current/pdf/rodin-doc.pdf
https://www3.hhu.de/stups/handbook/rodin/current/pdf/rodin-doc.pdf
https://www3.hhu.de/stups/prob/index.php/Main_Page
http://www.gartner.com/newsroom/id/3165317
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
http://xmpp.org/rfcs/rfc6120.html
http://xmpp.org/rfcs/rfc6120.html
http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf
http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf
http://dx.doi.org/10.1007/978-3-642-33826-7_6
http://dx.doi.org/10.1007/978-3-642-33826-7_6

	A Framework for Modeling and Verifying IoT Communication Protocols
	1 Introduction
	2 IoT Communication Protocols: MQTT, MQTT-SN and CoAP
	2.1 MQTT
	2.2 MQTT-SN
	2.3 CoAP

	3 Event-B
	4 Protocol Modeling and Decomposition Using Event-B
	4.1 Common Abstract Model
	4.2 Concrete Protocol Models
	4.3 Model Validation

	5 Verification of IoT Properties Using Event-B
	5.1 Proof Obligations Results

	6 Related Work
	7 Conclusion and Future Work
	References

