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Abstract. Event-B is a formal method that supports correctness by
construction in system modeling using stepwise refinement. However, it
is difficult to understand the rigorous behaviors of models from Event-B
specifications, such as the reachable state space or the possible sequences
of events. This is because the Event-B model is described in a style that
lists events that have concurrently been enabled depending on their guard
conditions. This paper proposes a method that helps in understanding
the rigorous behaviors of an Event-B model by creating an abstract state
graph. The core of our method involves dividing the concrete state space
by using the guard conditions of individual events to extract states that
are essential to enable possible transitions to be understood. Moreover,
we further divided the state space by using the guard conditions of events
in the models before refinement to support understanding of changes in
behaviors between the models before and after refinement. Our unique
approach facilitated finding of invariants that were not specified but held,
which were useful for validation.

1 Introduction

Event-B [1] is a formal specification language based on first-order predicate logic
and set theory. It adopts a refinement mechanism to allow developers to grad-
ually build a model while ensuring its correctness by using these mathematical
methods. Developers in Event-B modeling start from the most abstract machine
to build the model and then refine it by building a more concrete machine
that introduces new aspects so that it is closer to the comprehensive machine
to be obtained. This refinement process is continued until the comprehensive
machine is obtained that includes all the target aspects. This refinement mech-
anism reduces the difficulty in rigorously modeling and verifying a complicated
model by enabling focus on individual small steps.

Event-B is a state-based formal method and the behavior of an Event-B
model is expressed by states and transitions. Thus, it is important for developers
to comprehend the reachable state space or the possible sequences of events
in terms of validation. However, this is difficult because infinite sets, such as
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integers, can be used as types of variables and thus the size of the state space
can be infinite or too large to comprehend.

ProB [12] is one of the standard tools to check Event-B models. Although
ProB provides several methods of visualizing the state space [9,11], there have
been problems with these methods. They have required developers to specify that
the range of infinite sets be finite to generate a graph because they constructed
the state space by exhaustive simulation. Thus, the state space was restricted and
developers could miss unexpected behaviors outside the space. Moreover, there
are no methods of graph visualization that takes refinement into consideration,
even though it would be useful to know how a concrete machine can refine an
abstract one.

This paper proposes two methods of graph visualization of an Event-B model
from the specifications without simulation to enable behaviors to be rigorously
understood. The first method involves constructing an abstract state graph using
predicate abstraction [8], which is useful to enable developers to explore the full
state space and not to overlook the differences in behaviors, according to the
range of infinite sets. Our key idea was to use guard conditions of events for
predicate abstraction, which allowed us to extract essential insights into possi-
ble transitions (event occurrences) in each state. The second method was graph
visualization that took refinement into account. It is useful for developers to
validate behaviors by checking the correspondence between the states and tran-
sitions of abstract and concrete machines. Moreover, these graphs are useful
for developers to find stronger invariants than those described in the specifi-
cations and help them to validate the state space. The unique feature in our
approach is that we first constructed apparently reachable states from the speci-
fied predicates, such as invariants, and we then examined actual (un)reachability.
This approach could expose unexpectedly unreachable states, which represented
implicit expectations or faults.

We have organized the rest of this paper as follows. Section 2 provides the nec-
essary background on Event-B and Sect. 3 describes our methods of generating
graphs. Section 4 explains how we evaluated our methods by providing various
applications. Section 5 relates our study to other studies and Sect. 6 concludes
the paper.

2 Preliminaries

2.1 Event-B Models

An Event-B model consists of two modules, which are called machine and con-
text. A context contains a set of constants and a set of axioms. Axioms are
predicates that denote the constraints that the constants must satisfy. A machine
contains a set of variables, a set of invariants and a set of events. Invariants are
predicates that denote the safety properties that developers require variables
and constants to satisfy. That they are actually invariants is verified by proving
some statements, which are called “proof obligations”. An event mainly consists
of some guards and actions. Guards are predicates to denote the conditions under
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which an event is to be enabled. Actions are called before-after predicates that
denote the relationships between the values of variables just before and after
an event. The values of the constants cannot be changed by the events. Thus,
the states of the model consist of the dynamic values of the variables and the
static values of the constants. The transitions between them are triggered by the
occurrence of the events.

For example, let us take Abrial’s model of “controlling cars on a bridge”
(from [1, Chap. 2]) into account. There is a mainland, an island, a bridge between
them, and traffic lights that control cars going to and coming from them in the
model. There was only the mainland and island in the initial model. It consisted
of a context Ctx0 and a machine Mac0 shown in Fig. 1. The constant d defined
in Ctx0 denotes the maximum number of cars allowed to be on the island. The
variable n defined in Mac0 represents the number of cars on the island. The
invariant inv0 2 means that constant d is actually the maximum number of cars
on the island. The states of the model consist of two values of variable n and
constant d, such as (n, d) = (0, 1). The state space is infinite because d can
be an arbitrary natural number that is more than zero. The event init is the
initialization event, ML out is the event corresponding to the transition of a car
from the mainland to the island, and ML in is its inverse event. The guard grd1
of the event ML out is n < d and the action act1 is the before-after predicate
n′ = n + 1. The value of the variable just after an event has occurred makes its
before-after predicate true. A primed variable, such as n′ appearing in act1 in a
before-after predicate, denotes the value of the variable just after an event has
occurred. Thus, the before-after predicate act1 means that the value of variable
n just after the event is equal to the value of variable n just before it has occurred
plus one.

context Ctx0
constants d
axioms

axm0 1 d ∈ IN
axm0 2 d > 0

sees Ctx0
variables n
invariants

inv0 1 n ∈ IN
inv0 2 n ≤ d

Events
initialization
begin
init: n = 0

end
ML out ML in
when when
grd1: n < d grd1: 0 < n

then then
act1: n = n + 1 act1: n = n − 1

end end

Fig. 1. Event-B specifications of Mac0
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2.2 Event-B Refinement

The refinement mechanism in Event-B is a way of gradually building a model.
An abstract machine is refined by a new machine and new features and details
are introduced into the abstract machine. A new machine is called a concrete
machine. A sequence of machines linked by a refinement relationship is called
a “refinement chain”. An increasingly more complicated but accurate model is
built through stepwise refinements.

For example, Mac1 (Fig. 2) refines Mac0. A one-way bridge is introduced
into the abstract machine. The variable a is the number of cars on the bridge
going to the island, b is the number on the island and c is the number on the
bridge coming to the mainland. The variable n defined in Mac0 is replaced by
these three variables and the invariant inv1 2 denotes the relationship between
n and a, b, c. The states consist of four values of the variables a, b, c and the
constant d. The invariant inv1 3 denotes that the bridge is one-way. The two
events ML out and ML in in Mac0 are refined as they are events on these

refines Mac0
sees Ctx0
variables a, b, c
invariants

inv1 1 a ∈ IN ∧ b ∈ IN ∧ c ∈ IN
inv1 2 a + b + c = n
inv1 3 a = 0 ∨ c = 0

Events
initialization
begin
init: a = 0 ∧ b = 0 ∧ c = 0

end
ML out ML in
refines ML out refines ML in
when when
grd1: a + b < d grd1: 0 < c
grd2: c = 0

then then
act1: a = a + 1 act1: c = c − 1

end end
IL in IL out
when when
grd1: 0 < a grd1: 0 < b

grd2: a = 0
then then
act1: a = a − 1 act1: b = b − 1
act2: b = b + 1 act2: c = c + 1

end end

Fig. 2. Event-B specifications of Mac1
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three variables. ML out in Mac1 corresponds to the transition of a car from the
mainland to the bridge and ML in is its inverse event. These refined events must
simulate the original ones. The before-after predicate of ML out is a′ = a+1 but
it implicitly contains b′ = b and c′ = c, which means that the values of missing
variables in the predicate are equal to the values just before the event. Thus, its
precise before-after predicate is a′ = a+1∧ b′ = b∧ c′ = c, and it simulates that
of the original because the invariant a + b + c = n holds. Guards of the refined
event must not contradict those of the original. The guard of the event ML out
in Mac1 is a + b < d and does not contradict the guard n < d of the abstract
one because the invariant a + b + c = n holds.

New events can be introduced into abstract models. IL in and IL out in
Mac1 are new events. IL in corresponds to the transition of a car from the
bridge to the island and IL out is its inverse event. They do not need to modify
any abstract variables so that the abstract model is not contradicted, i.e., they
need to refine null event skip in which guard is true and action has no meaning.

3 Method

3.1 Construction of Abstract State Graph (CASG)

The goal discussed in this subsection was to construct a state graph from the
Event-B specifications, which is useful for understanding the rigorous behavior
of an Event-B model. The state space that may be infinite is abstracted by
predicate abstraction. We called the graph an “abstract state graph” as in Graf
and Säıdi [8] and called our method of constructing the abstract state graph
CASG.

Let us assume that we have a machine M . We use symbols InvM to denote
the conjunction of all invariants and axioms that appear in the refinement chain
that precedes M , and BAevt for the conjunction of all before-after predicates
of the event evt and the event that refines evt in the refinement chain. For
example, InvMac1 = (d > 0 ∧ n ≤ d ∧ a + b + c = n ∧ (a = 0 ∨ c = 0)) and
BAML out = (n′ = n+1∧a′ = a+1∧ b′ = b∧ c′ = c). We also use symbols Gevt

to denote the conjunction of all the guards of event evt and EvtM to denote the
set of the events of model M .

An abstract state graph of the Event-B machine consists of (S, I, L, δ), where
S is a set of abstract states, I is a set of initial abstract states, L is a labeling
function of the set S and δ is a transition function with guard conditions. An
abstract state that constitutes S is defined by a predicate and a set of states
that satisfy the predicate. For example, 0 ≤ n ≤ 2 represents the set of states
{(n, d) | n, d ∈ IN, 0 ≤ n ≤ 2}. After this we will use a predicate to denote an
abstract state, i.e., we will refer to abstract states and predicates as exchangeable
words. We will use “concrete states” to refer to states of the model to distinguish
them from abstract states.
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First, let us define set S of abstract states. We use sat(p) to denote that the
predicate p is satisfiable. Set S is constructed as:

S =
{

s | E ⊆ EvtM , s = InvM ∧
∧

evt∈E

Gevt ∧
∧

evt∈EvtM\E

¬Gevt , sat(s)
}

.

This definition constructs abstract states by making equivalence classes of con-
crete states that satisfy invariants in terms of enabled events in each state. The
possibly infinite state space is reduced into finite state space. However, note
that the state space is approximated by the invariants and it may include some
unreachable concrete states. This is discussed in Subsect. 3.5. This approximation
is reasonable since invariants are properties that developers require the model to
satisfy and they are verified by discharging proof obligations. Although the idea
that states that have the same enabled events are regarded as being the same
is similar to the method described in Leuschel and Turner [13], our method
does not require developers to specify the range of infinite sets. It also provides
predicates that explain the conditions of individual states.

The set I of initial abstract states is the set of abstract states that the before-
after predicate of the initialization event satisfies.

The labeling function L for each s ∈ S, to specify the events enabled in an
abstract state, is defined as:

L(s) = {evt ∈ EvtM | sat(Gevt ∧ s)}.

The transition function δ is then constructed. We use after(s) for each
predicate s to denote a predicate where all variable symbols are replaced with
primed variable symbols, which means that they are values just after events
have occurred. Note that after only replaces variable symbols, and not constant
symbols. The δ for each s ∈ S and evt ∈ L(s) is defined as:

δ(s, evt) = {(s′, g) | s′ ∈ S, g = s ∧ BAevt ∧ after(s′), sat(g)}.

The predicate BAevt ∧after(s′) is like the weakest precondition if the state will
be s′ just after evt has occurred. Thus, g is a guard condition of the transition.
Note that even if there is an edge, the corresponding transition cannot always
occur in M because of our approximation.

Let us take the model Mac0 (Fig. 1) as an example. The graph constructed by
using CASG is outlined in Fig. 3. The two lines in each ellipse, such as {ML out}
and n = 0&d > 0 in the top ellipse, denote the enabled events and abstract
states. Type invariants have been omitted. The two lines beside the arrow denote
the name of the event and the guard condition.

A graph constructed by using CASG is an abstraction of the actual state
graph of an Event-B model, in which state space may be infinite. Solving satis-
fiability problems enables us to explore the full state space when checking the
existence of transitions. An important aspect of this abstraction is that transi-
tions that actually occur in the model are in the graph and transitions that are
not in the graph do not occur in the model.
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{ML_out}
n=0&d>0

{ML_out,ML_in}
0<n<d

ML_out
0<n<d-1

ML_in
1<n<d

ML_in
n=1&d>1

{ML_in}
n=d&d>0

ML_out
0<n=d-1

ML_out
n=0&d>1

ML_out
n=0&d=1

ML_in
1<n=d

ML_in
n=1&d=1

Fig. 3. Abstract state graph of Mac0

3.2 Construction of Refinement Abstract State Graph (CRASG)

This subsection explains how we constructed a graph that took refinement into
consideration. We assumed that we had machines MA and MC , such that MC

refined MA. Each state in MA was refined by some states in MC through the
refinement. We wanted to reflect such a relation between the graphs of MA and
MC . In other words, each abstract state of the graph of MC constructed with
the method described in this subsection corresponds to one abstract state of the
graph of MA constructed with CASG. We called the method of constructing the
abstract state graph that took refinement into account CRASG.

Let us define a binary relation RV to clarify the relation between the abstract
state graphs for MA and MC . The RV is a binary relation between the abstract
states of the graphs. Let SA be the abstract states set of the graphs for MA that
is constructed by using CASG, and let SC be the abstract states set of the graph
for MC that is constructed by using CRASG. The RV is defined as:

RV = {(s, s′) ∈ SC × SA | sat(s ∧ s′)}.

Here, (s, s′) ∈ RV means that there is a concrete state in s that corresponds
to a state in s′. Our main objective in this subsection is to explain how we
constructed the graph of MC , such that RV is a function, which means each
abstract state in SC corresponds to one abstract state in SA.

Let us now construct the abstract states set S. Let Evt = EvtMC
∪ EvtMA

.
The S is constructed as:

S =
{

s | E ⊆ Evt, s = InvMC
∧

∧
evt∈E

Gevt ∧
∧

evt∈Evt\E

¬Gevt, sat(s)
}

.
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The construction of S splits the state space of MC by the equivalence relation,
where the enabled events of MC are the same and those of MA are the same if
the space is projected onto the space of MA. Therefore, the abstract states in the
graph of MA that are constructed by using CASG are divided even more into S,
and RV becomes a function. Note that unlike CASG, there can be states where
the same events of MC are enabled. Then, the remainder of the construction of
the graph is similar to that with CASG.

For example, the graph of Mac1 that is constructed by using CRASG is
given in Fig. 4. The squares denote the abstract states of the Mac0 graph. The
dashed arrows mean that they correspond to transitions in the Mac0 graph.
The predicates in the graph have been omitted to the extent that they can be
understood. The guard labels have been completely omitted.

{ML_in}

{ML_out,ML_in}

{ML_out}

{ML_out}
a=b=c=0

{IL_in}
a>0&0â ¤b&a+b=d&c=0

ML_out

{ML_out,IL_in}
a>0&bâ ¥0&a+b<d&c=0

ML_out

IL_in

{IL_out}
a=c=0&b=d

IL_in

{ML_in,IL_out}
a=0&b>0&c>0&b+c=d IL_out

{ML_in}
a=b=0&c=d

IL_out

{ML_out,IL_out}
a=c=0&0<b<d

ML_in

{ML_in,IL_out}
a=0&b>0&c>0&b+c<d

ML_in

IL_out

IL_out

ML_in

{ML_in}
a=b=0&0<c<d

ML_in

ML_out

ML_outIL_in

IL_in

ML_out

ML_out

IL_out

IL_out

ML_in

ML_inIL_out

IL_out ML_in

ML_in

Fig. 4. Abstract state graph of Mac1 by taking refinement into consideration

The graph of MC that is constructed by using CRASG is the refinement
of the graph of MA that is constructed with CASG. The abstract states of the
graph of the concrete model can be grouped by which abstract state of the graph
for MA they satisfy because the binary relation RV is a function. Moreover, the
transitions of the graph for MC can be grouped by which transition of the graph
for MA they simulate. These facts indicate that the graph provides a visualization
of how MC simulates MA in terms of states and transitions.

3.3 Implementation

These two methods need to solve numerous satisfiability problems. Event-B is
based on first-order predicate logic, and thus predicates used in Event-B models
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are first-order predicates within a practical range. A satisfiability modulo the-
ories (SMT) solver [3] is one of the tools used to solve them automatically.
Although the range of problems that it can solve is limited, it can solve many of
the predicates in practical Event-B models. We used Z3 [5] as an SMT solver for
our implementation. We succeeded in automatically creating a graph for Mac0,
Mac1 and Mac2 (as a result of the second refinement of “controlling cars on a
bridge”) by using CASG and the graph for Mac1 and Mac2 by using CRASG.

3.4 Checking for Existence of Transitions

A transition corresponding to an edge in the graph of the model constructed
with our methods could not always actually occur in the model because of our
approximation. However, developers could check whether or not each transition
(s, evt, s′) could actually occur by using linear temporal logic (LTL [7]) model
checking. The properties to check for occurrences could be directly represented
by using LTL[e] [15] that introduced the operator [evt], which meant the next
executed event was evt. The condition that a transition (s, evt, s′) could occur
was formulated by LTL[e] in the form ¬G¬(s ∧ [evt] ∧ X(s′)).

The LTL model checker could be used in ProB [14], which also supports
LTL[e]. Note that it adopts lower approximation and model checking is done
under some values of constants. Thus, developers need to appropriately set the
range.

3.5 Checking Validity and Strengthening Invariants

This subsection introduces another unique use of the graphs that were con-
structed with our methods due to our construction. It promotes the enhance-
ment of invariants to strictly represent their expectations on acceptable and
unacceptable states.

Sufficient invariants should ideally be given to strictly distinguish expecta-
tions on reachable and unreachable state spaces. However, this does not always
hold, even at the level of the model appearing in [1], which is one of the most
well-known references on Event-B. One reason for this is that developers com-
pletely understand the reachable concrete state space and decide not to add
invariants to the model because it is redundant and these would not matter. In
other words, reachable spaces are indirectly constrained by other means, such
as guard conditions in events. This implicit approach may cause problems when
other developers try to understand and revise the model in this case. Another
reason is that they do not understand the reachable state space and have missed
the invariants held in the model. There probably will be unexpected behaviors
in the model in this case. Therefore, it is worth suggesting invariants that hold
to confirm validity.

Our approach approximates the concrete state space with the invariants of
a model. Thus, our graph can provide the difference between the actual reach-
able state space and the invariants by examining reachability. Other visualiza-
tion methods [9,11] could not provide this because their construction was based
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on the simulation of the model and did not take invariants into consideration.
Developers then checked each of the suggested invariants; they could be invari-
ants that should have been added or they represented unexpectedly attained
unreachable states caused by faults in the model (e.g., overly strong guard con-
ditions). There are three methods that suggest invariants that can be achieved
by using our graph.

First, let us assume there is an unreachable abstract state s from the initial
abstract state. Then, its negation ¬s is an invariant. This is because if there are
no transitions into the abstract state in the model, then all the events preserve
the negation.

Second, let us assume that there is a transition s
evt,g−−−→ s′ in the graph

that actually does not occur in the model (recall Subsect. 3.4). There are some
unreachable concrete states in the source abstract state s of the transition in that
case. We can find such a state by using an SMT-solver and finding an assignment
of the predicate s ∧ g ∧ BAevt ∧ s′. Developers can then find some invariants by
investigating why this state was unreachable.

Third, let us assume that there is abstract state s that contains a concrete
state unreachable from other abstract states. The condition is formulated as:

after(s) ⇒
∨

(s′,evt):(s,g)∈δ(s′,evt)

s′ ∧ BAevt.

The predicate s′ ∧ BAevt means the possible reachable states from s′ just after
event evt has occurred. Thus, the formula means that abstract state s is actually
included in the possible reachable states from other states. There are unreachable
concrete states in s if the condition does not hold, and some invariants can be
added.

4 Evaluation

4.1 Setting

We evaluated our methods by using three applications of the graphs.
Subsection 4.2 explains how we investigated the graph constructed by using
CASG. This is useful for understanding the overall behaviors of the model and
the validation of the state space by using predicates. Subsection 4.3 describes how
we investigated the graph constructed with CRASG. This would help devel-
opers understand the details on changes in behaviors caused by refinement.
Subsection 3.5 explains how many we found the stronger invariants than those
described in the specifications. We used the Mac2 model (from [1, Chap. 2]) that
refines Mac1 to evaluate our methods in addition to Mac0 and Mac1.

4.2 Abstract State Space Exploration

Our main objective was to help developers understand the behaviors of an Event-
B model. Our methods provide state graphs that represent behaviors. Abstrac-
tion of the state space reduces the complexity of the original state graph and
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makes it easy for developers to comprehend behaviors. In addition, abstract
states help them validate the model since these states are represented by predi-
cates on the variables and constants in the model and the predicates can promote
developers’ understanding of the states.

Here, we will provide an example of exploring the state space by using our
graph. Our graph provides the conditions for the variables and constants that
represent the set of all concrete states that enable the same events. The example
of Mac0 (Fig. 1) indicates that, if ML out and ML in are concurrently enabled,
then developers can see that 0 < n < d holds in the state on the left in Fig. 3. The
predicate is easy for them to compare with their intentions because they describe
various predicates in Event-B modeling and they can perceive the situation with
the model from the predicates. If they write the guard of ML out incorrectly
as n < d − 1, the predicate of the state with label {ML out,ML in} will be
0 < n < d − 1. They can then find that the guard is incorrect because their
intention is for the number of cars allowed on the island to be d, but this is not
achieved. It is also important for d to be symbolic. Due to this, they can validate
that this condition holds no matter what the value of constant d is.

The graph of an Event-B model constructed by using CASG helps developers
validate the state space by providing predicates on the variables and constants.
However, this method does not completely solve the problem of complexity in the
graph if the model is very complicated. One possible solution is for developers
to focus on the change caused by refinement, which will be discussed in next
section. This cannot completely solve the problem, but it is effective for limited
ranges of investigation.

It also helps developers to comprehend overall sequences of the executed
events by searching paths in the graph, even though not all sequences of events
that correspond to the paths can be executed. The guard conditions of the tran-
sitions are useful when validating sequences of events because they can express
conditions where the sequences can be executed.

4.3 Refinement Abstract State Graph Exploration

A graph constructed by using CRASG helps developers understand changes in
behaviors caused by refinement. Changes are not trivial from the specifications
because refinement is across the invariants, guards, and actions. The graph is
very useful for understanding some aspects of the effect of refinement.

An aspect is how a concrete model simulates its abstract model. In other
words, the correspondences between abstract states and transitions in the model
before refinement to those in the model after refinement are drawn in the graphs.
Let us take model Mac1 (Fig. 2) as an example. There is a square in Fig. 4 that is
labeled {ML in}, which represents the abstract state of the graph for Mac0 that
satisfies the predicate n = d∧d > 0. The predicate n = d means that the number
of cars on the island has reached the limit. Thus, the states and transitions in the
square describe how the cars are moving between the island and mainland along
the bridge to solve traffic jams in the model Mac1. There are also two transitions
labeled ML out between the squares labeled {ML out,ML in}, and {ML in}
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in Fig. 4. Such transitions correspond to the transition in the graph in Fig. 3 that
are labeled ML out between the abstract states labeled {ML out,ML in} and
{ML in}, which means that the number of cars on the island has just reached
the limit.

Another aspect is how a concrete model does not simulate its abstract model.
The abstract model can be refined so that some transitions of the abstract
model cannot occur in the concrete model by strengthening guards regardless
of whether they have been intended or not. This graph helps developers at such
times to discover what transition has occurred and what has not occurred in the
concrete model. If developers write the guard of ML out of Mac1 incorrectly as
a + b < d − 1, the transitions that correspond to the transition labeled ML out
between abstract states labeled {ML out,ML in} and {ML in} will actually
disappear from the graph. Developers can then find the degree of degradation
and check whether it is intended.

The graph constructed by using CRASG provides correspondences in the
state graph for concrete and abstract models. It is useful for developers to fully
understand refinement by comparing it with the models. It also helps developers
explore the model by focusing on the change if the model is complicated.

4.4 Checking Validity and Strengthening Invariants

We applied the method described in Subsect. 3.5 to Mac2 and found missing
invariants that were needed to express precise reachable states. The details are
described in AppendixA. As a result, we discovered seven invariants and dis-
charged their proof obligations on the Rodin platform [2], which is equipped
with theorem provers. Moreover, we checked that the state space expressed by
the invariants was the actual reachable state space of the Mac2 model.

However, methods such as these three present several problems. One problem
is that the methods are not automatic except for the first one. The methods
provide a hint but require some suggestions by developers. Even though they
are required to do so, it is difficult for other graph visualization methods to
find stronger invariants. Moreover, such suggestions also help them validate the
model and the discovered invariants support the building of a more accurate
model.

5 Related Work

Our method is classified in terms of abstraction as the predicate abstraction
described in Graf and Saidi [8]. Given a set of predicates, it splits the state
space of variables appearing in a program or model based on the Boolean value
of the predicates. It can solve a state space explosion problem in model checking
by providing appropriate predicates. We used it for graph visualization of an
Event-B model. We chose the set of guards for the event and the invariants
of the model as input for predicate abstraction. This very effectively expressed
behaviors of the model because the state space could be approximated by the
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invariants and the guards determined the sequences of the executed events. The
unique feature of our approach is that we first construct apparently reachable
states from specified predicates, such as invariants, and we then examine actual
(un)reachability.

Graph visualization is one of the primary methods of enabling the behaviors
of a finite state machine to be understood. As described in Dulac et al. [6], the
readability of formal specifications is a factor that has not widely been used
in industry and visualization often helps people understand specifications. Our
methods were aimed at visualizing the behaviors of a possibly infinite state
machine of Event-B by reducing it into a finite state machine using predicate
abstraction.

There are several other methods of visualizing the state space of an Event-B
model. ProB [12] can generate a state graph of the model. The number of states
and transitions in the graph are sizably large because it tries to generate the
original state space. Thus, it is hard to understand behaviors. Moreover, ProB
requires the range of infinite sets to be specified. Thus, the generated state space
may be restricted and developers may miss unexpected behaviors. However, the
state space of our graph is approximated by invariants so that all the behaviors
of the model can be expressed in the graph.

Other methods of visualizing the state space are described in Leuschel and
Turner [13]. There are two methods called the deterministic finite automaton
(DFA)-abstraction algorithm and the signature merge method. These methods
have aimed at reducing the complexity of the graph generated by ProB. The
method of DFA abstraction is based on the classical minimization algorithm for
DFA. This method produces a graph in which the sequences of transitions are
equivalent to those in the original state space, but it cannot effectively reduce
the state space and its graph still makes it difficult for developers to under-
stand behaviors. The signature merge method is similar to ours in terms of the
way abstraction focuses on enabled events. However, there are no predicates to
represent the states and developers thus find our graph is more understandable.

Another similar approach described in Ladenberger and Leuschel [11] is cre-
ating projection diagrams. A projection diagram is an abstraction of the origi-
nal graph that is obtained by using some projection function. The method can
reduce complexity more effectively than the two approaches explained above and
our methods by focusing on certain variables or some expressions in the model.
However, it may lose too much information to enable the overall behavior to be
understood, unlike that in ours.

In contrast to visualizing the state space of the model, unified modeling
language-B (UML-B) [16] is a method of building an Event-B model by drawing
a diagram. It is similar to UML and easy to use by developers who are familiar
with it. It mitigates the burden in Event-B modeling but is not suitable for
building a complex model.

Another method of understanding the behavior of models is model check-
ing [4]. In particular, Hoang et al. [10] stated that proof obligations in Event-
B ensure safety properties; on the other hand, LTL model checking ensured
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temporal liveness properties. However, it is difficult to check overall behavior
unlike that in our methods, such as the reachable state space or the sequences
of executed events.

6 Conclusion

We proposed two methods of constructing the graph of an Event-B model from
the specifications. Our methods are useful for graphically understanding the rig-
orous behavior of the model. They also allow developers to investigate reachable
or unreachable states and transitions that cannot be searched by other graph
visualizations [11,13]. The second method is useful for checking the correspon-
dence between the graphs of the abstract and concrete machines and understand-
ing changes in behaviors caused by refinement. Additionally, our methods enable
developers to enhance invariants to strictly represent their expectations. We con-
cluded that our methods could help developers to understand the behaviors of
the model and validate it from various viewpoints. One possible direction in
future work is to develop a more effective way of visualization for large systems.

A Appendix

This appendix explains how we investigated the advanced and unique use
described in Subsects. 3.5 and 4.4 to discover invariants that were stronger than
the invariants described in the specifications by using a graph constructed with
CASG. We used the Mac2 model and the specifications are in Abrial [1, Chap. 2].

We applied the first method and discovered three unreachable states from
the graph. One of them is represented by

a = 0 ∧ 0 < b < d ∧ c = 0 ∧ ml tl = il tl = red ∧ ml pass = il pass = true.

We then tried to add the predicate

¬(a = 0 ∧ 0 < b < d ∧ c = 0 ∧ ml tl = il tl = red ∧ ml pass = il pass = true)

as an invariant to the Mac2 model on the Rodin platform [2]. As proof obligation
is automatically discharged by them, the predicate is actually an invariant of the
model. This invariant is equivalent to:

(a = c = 0 ∧ ml tl = il tl = red ∧ ml pass = il pass = true) ⇒ (b = 0 ∨ b = d),

which means that if all the traffic lights are red, the flags are true and there
are no cars on the bridge, then the number of cars on the island is zero or has
reached its capacity. Developers can check if the situation is valid in the model.

We investigated the number of transitions in the Mac2 graph constructed
by using CASG that could occur in the second method. We specified the range
of the constant d from one to 10 because it seemed to be sufficient from our
investigation of the model. We checked all 58 edges in the graph and discovered
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16 edges that did not actually occur. One of them was the transition labeled
IL in from the abstract state represented by:

a > 0∧ b ≥ 0∧a+ b < d−1∧ c = 0∧ml tl = green∧ il tl = red∧ il pass = true

to another represented by:

a = c = 0 ∧ b < d − 1 ∧ ml tl = green ∧ il tl = red ∧ il pass = true

∧(b = 0 ∨ (b > 0 ∧ ml pass = false)).
(1)

A concrete state where the transition can occur is:

(a, b, c, d,ml tl, il tl,ml pass, il pass) = (1, 1, 0, 4, green, red, false, true).

However, it is actually unreachable because the condition ml pass = false
requires the event ML tl green to occur and ML out 1 and ML out 2 must
not subsequently occur. There was some suggestion that the model always sat-
isfies a > 0 ⇒ ml pass = true because a > 0 means ML out 1 or ML out 2
has occurred at least once just after ML tl green has taken place. Then, we
added it as an invariant to the Rodin platform, but its proof obligation was not
automatically discharged. Due to an analysis of the failure of the proof, which
is often used in Event-B, we added (ml tl = red ∧ a + b �= d) ⇒ a = 0 as an
invariant and all proof obligations were automatically discharged.

Finally, let us take Mac2 as an example of the third method. The abstract
state represented by the predicate (1) does not satisfy the condition. All the
transitions into it are labeled ML tl green. Since ML tl green makes ml pass
false, all concrete states where ml pass is true in the abstract state are unreach-
able. There was some suggestion that the predicate a = b = 0∧ml tl = green ⇒
ml pass = false was an invariant. Therefore, we added it and proof obligation
was discharged.
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