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Abstract. Two π variants that restrict the use of received names are
studied. For either variant the external characterization of the absolute
equality is given using a family of bisimulations; the expressive com-
pleteness of the calculus is established; and a complete equational proof
system is constructed. The relative expressiveness between the two vari-
ants and their relationship to π are revealed in terms of subbisimilarity.

1 Introduction

The π-calculus of Milner, Parrow and Walker [MPW92] has proved to be a
versatile and robust programming language. Being a prime model of interac-
tion, it accommodates the λ-calculus [Mil92,CF11] and is capable of explain-
ing a wide range of phenomena where dynamic reconfiguration is a fundamen-
tal property [Wal95]. The name-passing communication mechanism of π is so
strong that most of its variations are able to simulate each other both oper-
ationally and observationally to a considerable degree [San93,Tho95,San96a].
It has been an interesting topic to investigate different π-variants from differ-
ent viewpoints [Pal03,Gor08,FL10]. The results obtained so far are important
in that they help improve our understanding of the interaction models at both
technical and conceptual levels [Fu16].

There are a number of ways to restrain the power of the π-calculus. Different
variants are obtained by considering different forms of the choice operator and
the recursion operator. Based on the results on CCS [BGZ03,BGZ04,GSV04],
the relative expressive power of these variants have been examined [Pal03,
Gor08], the most recent results being reported in [FL10]. Less close relatives
are obtained by restricting the usage of the output prefix operator. In the pri-
vate π-calculus [San96a], denoted by πP , the exported names are always local
names. Apart from its ability to code up higher order processes, the expres-
sive power of πP is almost unknown. The difficulty is partly attributed to the
fact that it has a different set of action labels than the other π-variants. In
the asynchronous π-calculus studied in [HT91a,HT91b,Bou92,ACS96] an out-
put prefix is detached from any continuation. The reason why this simple syn-
tactic manipulation provides a semantic modeling of asynchrony is explained
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in [Fu10] using the theory by process. It is our personal view that the theory of
the asynchronous π-calculus is best seen as an example of the theories defined
by the processes [Fu10]. More distant cousins of the π-calculus are the process-
passing calculi [Tho95,San93]. It is shown in [Fu16] however that these models
are too weak from the viewpoint of computation, despite of the result proved
in [LPSS08]. To achieve completeness we need to turn the higher order model
into abstraction passing calculi [San93,XYL15,Fu17].

Instead of restraining the power of the operators, the calculi that impose
conditions on the usage of the received names are the truly proper vari-
ants of the name-passing calculus [FZ15]. In the local π-calculus introduced
in [Mer00,MS04] a received name can never be used as an input channel. A piece
of program that defines a local subroutine with name say f can be rest assured
that no other programs or subroutines share the name f . This is certainly a
useful safety property and the πL-calculus is defined in this way. Symmetrically
the πR-calculus imposes the condition that a received name cannot appear as an
output channel. A host that intends to send a piece of information to another
site may send a local channel name to the site and upload the information using
the private channel. In this way the host makes sure that it is not at the receiv-
ing end of anything from any aliens. In another variant, called πS-calculus, a
process is not allowed to pass a received name to a third party. This appears as
a more fundamental restriction on the name-passing mechanism. In this model
the dynamic reconfiguration of the local communication topology is regional. One
can never know a secret about you from a third party. Despite of their practical
significance these three important variants have not been systematically studied.

Which aspects of πL, πR, πS should we look into? We cannot claim to under-
stand the calculi if we do not know the relative expressiveness between them and
the π-calculus. This brings up the issue of model independence since the expres-
siveness relationship must be defined irrespectively of any particular model. As
it turned out, the majority results in process theory are about particular mod-
els [Hoa78,Mil89,SW01]. The lack of the emphasis on model independence has
been a blocking factor for the development of the process theory. Theory of Inter-
action proposed in [Fu16] is an attempt to provide a theory for all interaction
models. The fundamental part of Theory of Interaction, the theory of equality,
the theory of expressiveness, and the theory of completeness have been outlined,
and a number of foundational results have been revealed. The applications of
this general approach to the value-passing calculus and the name-passing cal-
culus are reported in [Fu13,FZ15]. We will apply the general methodology of
Theory of Interaction to πL, πR and πS . The observational theory developed in
this manner will help to construct an equational proof system for each of the
variants. As a fallout, we will be able to say more about the theory of πP .

Section 2 defines the semantics of the π-calculus and the three variants.
Section 3 characterizes for πL and πR the absolute equality in terms of
external bisimulation. Section 4 discusses the relative expressiveness of πL, πR

and π-calculus. Section 5 confirms that all the three variants are legitimate mod-
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els of interaction. Section 6 describes the equational proof systems for πL and
πR. Section 7 takes a look at the private π-calculus. Section 8 concludes.

2 Pi and the Variants

Our definition of the π-calculus follows the presentation given in [FZ15].
Throughout the paper, we adopt the following notational conventions.

– The small letters a, b, c, d, e, f, g, h from the beginning of the alphabet range
over the infinite set N of the names.

– The lowercase letters u, v, w, x, y, z towards the end of the alphabet range
over the infinite set Nv of the name variables.

– The letters l,m, n, o, p, q in the middle of the alphabet range over N ∪ Nv.

We often write c̃ for a name sequence c1, . . . , cn and similarly x̃ for x1, . . . , xn.
In the π-calculus a name received in a communication can be used as either an

output channel, or an input channel, or the content of a further communication.
The π-terms are defined by the following grammar:

T := 0 |
∑

i∈I

n(x).Ti |
∑

i∈I

nmi.Ti | T |T ′ | (c)T | [p=q]T | [p �=q]T | !n(x).T | !nm.T.

In the πL-calculus a received name cannot be used as an input channel. The
πL-terms are inductively generated by following grammar:

T := 0 |
∑

i∈I

a(x).Ti |
∑

i∈I

nmi.Ti | T |T ′ | (c)T | [p=q]T | [p �=q]T | !a(x).T | !nm.T.

In the πR-calculus a received name cannot appear as an output channel. Its
terms are produced by the following grammar:

T := 0 |
∑

i∈I

n(x).Ti |
∑

i∈I

ami.Ti | T |T ′ | (c)T | [p=q]T | [p �=q]T | !n(x).T | !am.T.

Finally in the πS-calculus a received name is not allowed to be transmitted to
another process. The grammar is

T := 0 |
∑

i∈I

n(x).Ti |
∑

i∈I

nci.Ti | T |T ′ | (c)T | [p=q]T | [p �=q]T | !n(x).T | !nc.T.

∑

i∈I n(x).Ti is an input choice term and
∑

i∈I nmi.Ti an output choice term.
The binder n(x) is an input prefix and nmi an output prefix. The components
n(x).Ti and nmi.Ti are called summands. In n(x).Ti the name variable x is
bound. A name variable is free if it is not bound. We use guarded replications
!n(x).T and !nm.T . The conditional operator [p=q] is a match and [p �=q] a mis-
match. The restriction term (c)T is in localization form, where the name c is
local. A name is global if it is not local. We will write gn( ) for the function that
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returns the set of the global names. The derived prefix operator a(c).T abbrevi-
ates (c)ac.T . We assume α-convention, meaning that no misuse of names/name
variables ever occurs. The application of a substitution σ = {n1/x1, . . . , ni/xi}
to a term is denoted by Tσ. A term is open if it contains free name variables; it
is closed otherwise. A process is a closed term. For each π-variant π′, the set of
the π′-processes is denoted by Pπ′ and is ranged over by L,M,N,O, P,Q.

The semantics of π, πL, πR, πS is defined by the same labeled transition sys-
tem. The observable action set is L = {ab, ab, a(c) | a, b, c ∈ N}. The action set
L ∪ {τ} is ranged over by λ. The semantic rules are given below.
Action

∑

i∈I a(x).Ti
ac−→ Ti{c/x} ∑

i∈I aci.Ti
aci−→ Ti

Composition

T
λ−→ T ′

S | T
λ−→ S | T ′

S
ac−→ S′ T

ac−→ T ′

S | T
τ−→ S′ | T ′

S
ac−→ S′ T

a(c)−→ T ′

S | T
τ−→ (c)(S′ | T ′)

Localization

T
ac−→ T ′

(c)T
a(c)−→ T ′

T
λ−→ T ′

(c)T λ−→ (c)T ′
c �∈ gn(λ)

Condition

T
λ−→ T ′

[a=a]T λ−→ T ′
T

λ−→ T ′

[a�=b]T λ−→ T ′

Replication

!ac.T
ac−→ T | !ac.T !a(x).T ac−→ T{c/x} | !a(x).T

The notation =⇒ denotes the reflexive and transitive closure of τ−→.

3 Observational Theory

The first fundamental relationship in process theory is the equality relationship.
It is argued in [Fu16] that from the point of view of both computation and
interaction, there is only one equality that satisfies the following conditions:

– it is model independent;
– it is an equality for self-evolving and interactive objects.

Self-evolution is the feature of computation and interaction is what a process
is supposed to do. We refer the reader to [Fu16] for a detailed argument and
convincing technical support for the above remarks and the principles behind
the argument. In this short paper we simply repeat the relevant definitions.
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Definition 1. A symmetric relation R on processes is a bisimulation if it vali-
dates the following bisimulation property:

– If QRP
τ−→ P ′ then one of the following statements is valid:

(i) Q =⇒ Q′ for some Q′ such that Q′RP and Q′RP ′.
(ii) Q =⇒ Q′′RP for some Q′′ such that ∃Q′.Q′′ τ−→ Q′RP ′.

It is codivergent if the following codivergence property is satisfied:

– If QRP
τ−→ P1

τ−→ . . .
τ−→ Pi . . . is an infinite computation, then ∃Q′.∃i �

1.Q
τ=⇒ Q′RPi.

It is extensional if the following extensionality property holds:

1. if MRN and PRQ then (M |P )R(N |Q);
2. if PRQ then (a)PR(a)Q for every a ∈ N .

It is equipollent if P ⇓⇔ Q ⇓ whenever PRQ, where P ⇓, meaning that P is
observable, if and only if P =⇒ λ−→ P ′ for some P ′ and some λ �= τ .

The bisimulation of the above definition is what van Glabbeek and Weijland
called branching bisimulation [vGW89,Bae96]. Codivergence is Priese’s even-
tually progressing property [Pri78]. Equipollence is the most abstract form of
Milner and Sangiorgi’s barbness condition [MS92]. All the properties introduced
in Definition 1 are model independent. Their combination imposes a minimal
requirement from the point of computation as well as interaction and a maximal
condition from the point of model independence.

Definition 2. The absolute equality = is the largest relation on processes vali-
dating the following statements:

1. The relation is reflexive;
2. The relation is equipollent, extensional, codivergent and bisimilar.

The approach to extend the absolute equality from the processes to the terms is
standard. The model independence necessarily means that the absolute equality
is difficult to work with. If there is a single technical lemma that helps reason
about =, it must be the Bisimulation Lemma stated next.

Lemma 1. If P =⇒ P ′ = Q and Q =⇒ Q′ = P , then P = Q.

The property stated in Lemma 1 is called X-property by De Nicola, Montanari
and Vaandrager [DNMV90].

Once we have defined the absolute equality, we can distinguish two kinds
of internal actions. We will write T

ι−→ T ′ if T
τ−→ T ′ �= T , and T → T ′ if

T
τ−→ T ′ = T .
The observational theory discusses model specific characterizations of the

absolute equality. A model dependent counterpart of = is often far more
tractable. An external bisimilarity is a Milner-Park style bisimulation [Mil89,
Par81] in which every action is explicitly bisimulated. The external characteri-
zation of = for the π-calculus is given in [Fu16]. For the πL-calculus we can give
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an external counterpart in terms of a family of relations in the style of Sangiorgi’s
open bisimulations [San96b]. In the following definition ⊆f stands for the finite
subset relationship.

Definition 3. A πL-bisimulation is a family {RF}F⊆fN of codivergent symmet-
ric bisimulations on PπL if the following statements are valid whenever PRFQ:

1. If P
ab−→ P ′ then Q =⇒ Q′′ ab−→ Q′RFP ′ and PRFQ′′ for some Q′, Q′′.

2. If P
ab−→ P ′ and a /∈ F then Q =⇒ Q′′ ab−→ Q′RFP ′ and PRFQ′′ for some

Q′, Q′′.

3. If P
a(c)−→ P ′ and a /∈ F then Q =⇒ Q′′ a(c)−→ Q′RF∪{c}P ′ and PRFQ′′ for

some Q′, Q′′.

We write
{

�πL

F
}

F⊆fN
for the largest πL-bisimulation, each �πL

F is called the

F-πL-bisimilarity. The �πL

-bisimilarity �πL

is the ∅-πL-bisimilarity.

The idea of Definition 3 is that an indexing set F records all the local names
that have been opened up as it were by bound output actions. If P �πL

F Q and
a ∈ F then the action ab say need not be bisimulated for the reason that no
environments that have received the local name a will ever do any input actions
at a. A similar idea motivates the following definition.

Definition 4. A πR-bisimulation is a family {RF}F⊆fN of codivergent sym-
metric bisimulations on PπR if the followings are valid whenever PRFQ:

1. If P
ab−→ P ′ and a /∈ F then Q =⇒ Q′′ ab−→ Q′RFP ′ and PRFQ′′ for some

Q′, Q′′.
2. If P

ab−→ P ′ then Q =⇒ Q′′ ab−→ Q′RFP ′ and PRFQ′′ for some Q′, Q′′.

3. If P
a(c)−→ P ′ then Q =⇒ Q′′ a(c)−→ Q′RF∪{c}P ′ and PRFQ′′ for some Q′, Q′′.

We write
{

�πR

F
}

F⊆fN
for the largest πR-bisimulation, each �πR

F is called the

F-πR-bisimilarity. The �πR

-bisimilarity �πR

is the ∅-πR-bisimilarity.

The proof of the next lemma is routine.

Lemma 2. Both �πL

and �πR

are equivalence and congruence relations.

The next is another useful technical lemma.

Lemma 3. The following statements are valid:

1. If P �πL

F∪{c} Q and c is not a global output channel in P | Q then P �πL

F Q;

2. If P �πR

F∪{c} Q and c is not a global input channel in P | Q then P �πR

F Q;

3. If P �π′
F∪{c} Q for π′ ∈ {πL, πR} then (c)(P | A) �π′

F (c)(Q | A) for each A.

Without further ado, we come to the main result of this section.
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Theorem 1. The following are valid:

1. The πL-bisimilarity �πL

coincides with =πL

.
2. The πR-bisimilarity �πR

coincides with =πR

.

Proof. Lemma 2 implies both �πL⊆=πL

and �πR⊆=πR

. The proof of the reverse
inclusions is a modification of a proof in [Fu05]. For the present proof we
only have to mention the part that differs from the previous proofs. (2) Let
{RF}F⊆fN be defined in the following manner.

R{c1,...,cn}
def=

⎧

⎨

⎩

(P,Q)

∣

∣

∣

∣

∣

∣

{a1, . . . , an} ∩ gn(P | Q) = ∅,

(c1, . . . , cn)(a1c1 | . . . | ancn | P ) =πR

(c1, . . . , cn)(a1c1 | . . . | ancn | Q)

⎫

⎬

⎭

.

We prove that {RF}F⊆fN is a πR-bisimulation. Suppose A = B, where

A
def= (c1, . . . , cn)(a1c1 | . . . | ancn | P ),

B
def= (c1, . . . , cn)(a1c1 | . . . | ancn | Q),

such that {a1, . . . , an} ∩ gn(P | Q) = ∅. Consider P
a(c)−→ P ′ for some c �∈

{c1, . . . , cn}. Let d, f, an+1 be fresh and let D be defined by

D
def= a(x).(an+1x | [x �∈ gn(P | Q)]f) + a(x).d.

Now
A |D τ−→ (c)(A′ | an+1c | [c �∈ gn(P | Q)]f)

must be bisimulated by

B |D =⇒ B′′ |D τ−→ (c)(B′ | an+1c | [c �∈ gn(P | Q)]f).

Since B′′ |D τ−→ (c)(B′ | an+1c | [c �∈ gn(P | Q)]f)) must be a change-of-state,
it must be the case that A |D =πR

B′′ |D. It follows easily from Bisimulation

Lemma that B =⇒ B′′ a(c)−→ B′ =πR

A′. Clearly,

A′ ≡ (c1, . . . , cn)(a1c1 | . . . | ancn | P ′),
B′ ≡ (c1, . . . , cn)(a1c1 | . . . | ancn | Q′),
B′′ ≡ (c1, . . . , cn)(a1c1 | . . . | ancn | Q′′)

for some P ′, Q′, Q′′. It follows from B =⇒ B′′ a(c)−→ B′ that Q =⇒ Q′′ a(c)−→ Q′.
Moreover PR{c1,...,cn}Q′′ and P ′R{c1,...,cn,c}Q′ by definition. We can symmetri-
cally deal with (1). ��
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4 Relative Expressiveness

The second fundamental relationship in process theory is the expressiveness rela-
tionship between process calculi. For this relationship to make sense at all, model
independence has to be a born property. A theory of expressiveness is developed
in [Fu16]. The philosophy of the theory is that the expressiveness relationship is
the generalization of the absolute equality from one model to two models. Again
we will simply repeat the definition here.

Definition 5. Suppose M,N are two π-variants. A binary relation R ⊆ PM×PN

is a subbisimilarity if it validates the following statements.

1. R is reflexive in the following sense:
(a) R is total, meaning that ∀M ∈ PM.∃N ∈ PN.MRN.
(b) R is sound, meaning that N1R

−1M1 =M M2RN2 implies N1 =N N2.
2. R is equipollent, extensional, codivergent and bisimilar.

We say that M is subbisimilar to N, notated by M � N, if there is a subbisimi-
larity from M to N. We write M � N if M � N and N �� M. Intuitively M � N

means that N is at least as expressive as M.

Theorem 2. Suppose M,N ∈ {π, πL, πR}. If M,N are distinct then M �� N.

Proof. Suppose F is a subbisimilarity from M to N. The proof of Theorem 4.23
in [Fu16] essentially shows that, for all P,Q such that PFQ, the following Global
Bisimulation property holds:

– If P
ac−→ P ′ then Q =⇒ Q′′ ac−→ Q′F−1P ′ and PFQ′′ for some Q′′, Q′.

– If Q
ac−→ Q′ then P =⇒ P ′′ ac−→ P ′F−1Q′ and P ′′FQ for some Q′′, Q′.

– If P
ac−→ P ′ then Q =⇒ Q′′ ac−→ Q′F−1P ′ and PFQ′′ for some Q′′, Q′.

– If Q
ac−→ Q′ then P =⇒ P ′′ ac−→ P ′F−1Q′ and P ′′FQ for some Q′′, Q′.

Using the above property the following crucial fact is established in [Fu16]:

Self Interpretation: AFA whenever A contains no replication operator.

The Global Bisimulation property, the extensionality and Theorem 1 are neces-
sary to guarantee the Self Interpretation property.

Now we can argue as follows:

– It should be clear that a(x).x F a(x).x implies π �� πL, a(x).x F a(x).x
implies π �� πR.

– It follows from the Self Interpretation property that

(d)(ad | d.e)F (d)(ad | d.e), (1)
(d)(ad | d)F (d)(ad | d). (2)

The equality (d)(ad | d.e) = (d)(ad | d) holds in πL. It holds in none of π, πR.
Therefore (1) and (2) imply πL �� π and πL �� πR.
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– Similarly the Self Interpretation property implies

(d)(ad | d.e) F (d)(ad | d.e),
(d)(ad | d) F (d)(ad | d),

from which πR �� π and πR �� πL follow.

We are done. ��

5 Expressive Completeness

The variants πL, πR, πS would not be interesting if they are not complete. For
interaction models completeness means that the computable functions can be
encoded as interactive processes. There are many notions of Turing complete-
ness. In this paper we adopt the definition introduced in [Fu16]. The idea is to
formalize the following interactive version of the Church-Turing Thesis:

Axiom of Completeness. C � M for all models of interaction M.

Here C is the Computability Model, which is basically the interaction model of
computable function. The reader is referred to [Fu16] for the definition of C and
what it means for M to satisfy C � M. It is sufficient to say that a proof of
completeness boils down to showing how the natural numbers are defined and
how the recursive functions are translated into processes that can input natural
numbers and output the computing results. To avoid confusion we will write
0, 1, 2, . . . , i, . . . for the natural numbers. We will use the following notations for
the recursive functions defined in [Rog87]:

– s(x) is the successor function.
– i(x1, . . . , xn) is the n-ary constant function with value i.
– pi

n(x1, .., xn) is the n-ary projection function at the i-th parameter.
– f(f1(x̃), .., fi(x̃)) is the function composed of f(x1, . . . , xi), f1(x̃), .., fi(x̃).
– rec z.[f(x̃, x′, z), g(x̃)] is the recursion function defined by f(x̃, x′, z), g(x̃).
– μz.f(x̃, z) is the minimization function over f(x̃, z).

Theorem 3. C � πL, C � πR and C � πS.

The encoding of the natural numbers in πL is as [[0]]π
L

c
def= c(z).z and

[[n+1]]π
L

c
def= (d)(c(z).zd | [[n]]π

L

d ). Every number is accessible at a global name.
The encoding makes use of a special name ⊥. This is harmless because ⊥ never
appears as a channel name in our encoding. Since an input number might be
used several time when computing a recursive function, a persistent form of
the above encoding is necessary. This is given by [[!0]]π

L

c
def= !c(z).z and

[[!n+1]]π
L

c
def= (d)(!c(z).zd | [[!n]]π

L

d ). In sequel we shall use Milner’s encoding of
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the polyadic π-prefixes in terms of the monadic prefixes [Mil93]. This is given
by

a(x1, · · · , xk).T def= a(z).z(c).c(x1). · · · .c(xk).T,

a〈n1, · · · , nk〉.T def= a(d).d(y).yn1. · · · .ynk.T.

It is not a very faithful translation [Fu16]. But this point should not concern us
since the above encoding will only be used locally. Now for every πL-term T , we
would like to introduce a πL-term Rp(n, a).T that is capable of converting an
input number to its persistent form. More specifically, it enables the following
change-of-state internal action: [[n]]π

L

c |Rp(c, d).T ι−→= [[!n]]π
L

d |T . The process
Rp(n, a).T is defined by

(f)(n(c).c(y).([y=⊥](!a(z).z⊥ |T ) | [y �=⊥]y(c).c(z).(d)f〈d, z〉.!d(z1).z1⊥)
| !f(u, v).([v=⊥](!a(z).zu |T ) | [v �=⊥]v(c).c(z).(d)f〈d, z〉.!d(z2).z2u)).

Once we have the process [[n+1]]π
L

c and [[!n+1]]π
L

c , we might want to make a copy
of them when necessary. This is achieved by Cp(n, a).T defined by

(f)(n(c).c(y).([y=⊥](a(z).z⊥ |T ) | [y �=⊥]y(c).c(z).(d)f〈d, z〉.d(z1).z1⊥)
| !f(u, v).([v=⊥](a(z).zu |T ) | [v �=⊥]v(c).c(z).(d)f〈d, z〉.d(z2).z2u)),

which is very much similar to the previous process. Clearly the following inter-
actions are admissible.

[[n]]π
L

c |Cp(c, d).T ι−→= [[n]]π
L

d |T,

[[!n]]π
L

c |Cp(c, d).T ι−→= [[!n]]π
L

c | [[n]]π
L

d |T.

An n-ary function f(x1, · · · , xn) is translated to a process that picks up n
inputs consecutively before outputting the result. The input and output actions
must be carried out in particular channels. We write [[F b

a1···an
(f(x1, · · · , xn))]]π

L

for the translation of f(x1, · · · , xn) in πL at the input channels a1, . . . , an and
the output channel b. The structural definition goes as follows:

– The successor, constant, projection and composition functions are defined as
follows:

[[F b
a1(s(x))]]π

L def
= (d1)Rp(a1, d1).(c)Cp(d1, c).b(x).x(c),

[[F b
a1···an

(in(x1, · · · , xn))]]π
L def

= (d1)Rp(a1, d1). · · · .(dn)Rp(an, dn).[[i]]π
L

b ,

[[F b
a1···an

(pi
n(x1, · · · , xn))]]π

L def
= (d1)Rp(a1, d1). · · · .(dn)Rp(an, dn).Cp(di, b),

[[F b
a1···an

(f(f1(x̃), · · · , fi(x̃)))]]π
L def

= (d1)Rp(a1, d1). · · · .(dn)Rp(an, dn).(c1 · · · ci)

([[F b
c1···ci(f(x̃))]]π

L | [[F c1
d1···dn

(f1(x̃))]]π
L

| · · · | [[F ci
d1···dn

(fi(x̃))]]π
L

)
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– [[F b
a1···an+1

(recz.[f(x̃, x′, z), g(x̃)])]]π
L

is the following process

(d1)Rp(a1, d1). · · · .(dn+1)Rp(an+1, dn+1).dn+1(c).c(y).

([y=⊥][[F b
d1,··· ,dn

(g(x̃))]]π
L

| [y �=⊥](f)(Rec | (g)f〈g, y〉.g(w).[[F b
d1,··· ,dn,w,yf(x̃, x′, z)]]π

L

))

where Rec stands for

!f(u, v).u(d).([v=⊥][[F d
d1,··· ,dn

(g(x̃))]]π
L

| [v �=⊥]v(c).c(y).(g)f〈g, y〉.(g(w).[[F d
d1,··· ,dn,w,v(f(x̃, x′, x′′))]]π

L

)).

– [[F b
a1···an

(μz.[f(x̃, z)])]]π
L

is the following process

(d1)Rp(a1, d1). · · · .(dn)Rp(an, dn).(f)(Mu | f(c).[[0]]π
L

c )

where Mu stands for

!f(v).(g)Rp(v, g).(d)([[F d
d1,··· ,dn,g(f(x̃, z))]]π

L

| d(e).e(z).([z=⊥]Cp(g, b). | [z �=⊥]f(c).(c′)Cp(g, c′).c(y).yc′)).

This completes the definition of [[ ]]π
L

. The reader can work out the encoding
[[ ]]π

R

symmetrically. The proof of the completeness of πS is subsumed by that
for πP . See Sect. 7 for more details. We only have to remark that the parametric
definitions can be implemented in πS using the replication operator.

6 Proof System

Based on Theorem 1 one may talk about complete equational proof systems for
the absolute equality of the π-variants. In view of Theorem 3 no decidable proof
system is possible for all processes. However the finite fragment consisting of 0,
the choice operator, the match/mismatch operator and the localization operator
is decidable. Equational systems for various congruence relations on the finite
π-processes are well-known. The paper by Parrow and Sangiorgi [PS95] deserves
particular attention. A complete equational system AS for the absolute equality
on the finite π-terms is studied in [FZ15]. In this section we shall briefly explain
how to construct complete systems for πL and πR by extending AS.

L n(c).C[
∑

i∈I cmi.Ti] = n(c).C[0]
R n(c).C[

∑
i∈I c(x).Ti] = n(c).C[0]

Fig. 1. Axioms for the variants.
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In Fig. 1 two axioms are proposed. The law L is valid for �πL

and the law R is
valid for �πR

. Let ASL be AS ∪{L} and ASR be AS ∪{R}. The first indication
of the power of ASL, as well as ASR, is a normalization lemma stating that
all finite terms can be converted to some normal forms. Due to the presence of
mobility the normal forms for the πL-terms are a bit involved. But the main
definition is the following.

Definition 6. Suppose F ,G ⊆f N ∪ Nv. The πL-term T is a normal form on
F and G if it is of the form

∑

i∈I

λi.Ti

such that for each i ∈ I one of the followings holds.

1. If λi = τ then Ti is a normal form on F and G.
2. If λi = n̄m and n �∈ G then Ti is a normal form on F and G.
3. If λi = n̄(c) and n �∈ G then Ti ≡ (

∧

n∈F c�=n)T c
i for some normal form T c

i

on F ∪ {c} and G ∪ {c}.
4. If λi = c(x) then Ti is of the form

(
∧

n∈F
x�=n)T �=

i +
∑

m∈F
[x=m]Tm

i

such that T �=
i is a normal form on F ∪ {x} and G, and, for each m ∈ F ,

x �∈ fv(Tm
i ) and Tm

i is a normal form on F and G.
The reader can easily work out the definition of the normal forms for the πR-
processes from Definitions 3, 4 and 6. The rest of the arguments and proofs are
almost an reiteration of corresponding arguments and proofs in [FZ15]. Without
further ado, let’s state the main result.

Theorem 4. The following statements are valid:

1. S �πL

T if and only if ASL � τ.S = τ.T for all finite πL-terms S, T .
2. S �πR

T if and only if ASR � τ.S = τ.T for all finite πR-terms S, T .

The above theorem is concerned with πL-terms, from which we can easily
derive that P �πL

Q if and only if ASL � P = Q for all finite πL-processes P,Q

and that P �πR

Q if and only if ASR � P = Q for all finite πR-processes P,Q.

7 Private Pi

The private π-calculus of Sangiorgi [San96a], denoted by πP , is interesting in
that it is a nontrivial model that stays between CCS and the π-calculus. All
mobility admitted in πP is internal. It is shown in [FL10] that πP fails to be
complete if recursion is provided by the replication operator. So normally πP

comes with the parametric definition. Here is its grammar:

T := 0 |
∑

i∈I

n(x).Ti |
∑

i∈I

n(c).Ti | T |T ′ | (c)T | D(p1, . . . , pn).
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A parametric definition is given by

D(x1, . . . , xn) = T, (3)

where {x1, . . . , xn} is the set of all the name variables in T . An instantiation of
the parametric definition at p1, . . . , pn, denoted by D(p1, . . . , pn), is the term
T{p1/x1, . . . , pn/xn}. The match and mismatch operators are absent in πP

because they are useless in this particular model. The operational semantics
of πP can be read off from the semantics of the π-calculus. We will not repeat
it here.

The Turing completeness of πP [BGZ03] does not imply the completeness of
πP since the latter is a strictly stronger property. We still need be assured that
πP is a legitimate model according to the Axiom of Completeness. Unlike in πL

and πR the natural numbers in πP must be defined in prefix form.

[[0]]π
P

p
def= p(b0, b1).b0, (4)

[[n+1]]π
P

p
def= p(b0, b1).[[n]]π

P

b1 . (5)

To get a feeling of how (4,5) work, let’s see how the successor function Sc
and the predecessor function Sb are defined.

Sc(u, v).T def= u(x0, x1).(v(e0, e1).e1(f0, f1).Com(x0, x1, f0, f1) |T ),

Sb(u, v).T def= u(x0, x1).(x0.v(e0, e1).e0
|x1(y0, y1).v(e0, e1).Com(y0, y1, e0, e1) |T ),

where Com is introduced by the following parametric definition:

Com(x0, x1, y0, y1) = x0.y0 |x1(z0, z1).y1(c0, c1).Com(z0, z1, c0, c1).

The interesting thing about Com is that it works in a lazy fashion. It is only
when a produced number is being used can the copy mechanism of Com be
invoked. This feature is prominent in all the following encodings. For example
the persistent form of the natural number must make use of Com:

[[!0]]π
P

p = [[!0]]π
P

p | [[0]]π
P

p ,

[[!n+1]]π
P

p
def= (c)([[!n]]π

P

c | !PSc(c, p)),

where

PSc(u, v).T def= v(e0, e1).(u(x0, x1).e1(f0, f1).Com(x0, x1, f0, f1) |T ).

The copy term can be simply defined in terms of Com:

Cp(u, v).T def= u(x0, x1).(v(e1, e2).Com(x0, x1, e1, e2) |T ).
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It is not difficult to see that the following actions are admissible:

[[n]]π
P

a |Cp(a, b).T ι−→= [[n]]π
P

b |T,

[[!n]]π
P

a |Cp(a, b).T ι−→= [[!n]]π
P

a | [[n]]π
P

b |T.

The definition of the replication term is slightly more involved:

Rp(u, v).T def= u(x0, x1).(x0.[[!0]]π
P

v |x1(y0, y1).(c)(!PSc(c, v) | R(y0, y1, c)) |T ),

R(y0, y1, w) = y0.[[!0]]π
P

w | y1(z0, z1).(c)(!PSc(c, w) |R(z0, z1, c)).

The reader is advised to verify that the following action is admissible:

[[n]]π
P

a |Rp(a, b).T ι−→= [[!n]]π
P

b |T.

Another process useful to the encoding is the following:

Eq(u, v).(T0, T1)
def= u(x0, x1).v(y0, y1).

(d0d1)(E(x0, x1, y0, y1, d0, d1) | d0.T0 | d1.T1),

E(x0, x1, y0, y1, u0, u1)
def= x0.(y0.u0 | y1(z0, z1).u1)

|x1(z0, z1).(y0.u1 | y1(w0, w1).E(z0, z1, w0, w1, u0, u1)).

The encoding [[ ]]π
P

of the computable functions in πP can now be given. It
should be enough to explain how the recursion functions and the minimization
functions are interpreted.

– [[F b
a1···an+1

(recz.[f(x̃, x′, z), g(x̃)])]]π
P

is defined by the following process

(d1)Rp(a1, d1). · · · .(dn)Rp(an, dn).(dn+1)Rp(an+1, dn+1).

(d0)([[!d0(0)]]π
P |Eq(d0, dn+1).([[F

b
d̃
(g(x̃))]]π

P

,

(e′eg)Sb(dn+1, e
′).Rp(e′, e).([[F b

d̃ge
(f(x̃, x′, x′′))]]π

P |Rec(g, e, d0, ˜d)))),

where

Rec(u, v, z0, z̃) = Eq(z0, v).([[F u
z̃ (g(x̃))]]π

P

,

(e′eg)Sb(v, e′).Rp(e′, e).([[F u
z̃ge(f(x̃, x′, x′′))]]π

P |Rec(g, e, z0, z̃))).

– [[F b
a1···an

(μz.[f(x̃, z)])]]π
P

is the following process

(d1)Rp(a1, d1). · · · .(dn)Rp(an, dn).
(d0d′)([[!d0(0)]]π

P | [[F d′

d̃,d0
(f(x̃, z))]]π

P |Eq(d0, d′).(Cp(d0, b),

(e′ef)Sc(d0, e′).Rp(e′, e).([[F f

d̃,e
(f(x̃, z))]]π

P |Mu(f, e, d0, ˜d, b)))),

where

Mu(u, v, z0, z̃, w) = Eq(z0, u).(Cp(v, w),

(e′ef)Sc(v, e′).Rp(e′, e).([[F f

d̃,e
(f(x̃, z))]]π

P |Mu(f, e, z0, z̃, w))).

We have coded up all the computable functions. Hence the next result.

Theorem 5. πP , and consequently πS as well, are complete.
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8 Remark

We have provided the observational theories for πL and πR. Our attempt to do
the same thing for πS , πP has not been successful. What has stopped us from
getting a similar picture for the latter is the absence of an external characteri-
zation of the absolute equality for either variant. It is easy to conceive a family
of explicit bisimilarities for πS . But we probably need a new technique to show
that it gives rise to an alternative way of defining the absolute equality in πS .
The external characterization of = for πP appears more elusive. For one thing
the match and the mismatch operators are not of any use in any proof since they
are redundant in πP . So πP poses a bigger challenge.

The completeness of all the four calculi raises the following question: What
kind of universal processes does each of them have? It has been shown in [Fu]
that the π-calculus proper has very powerful universal processes. The situations
in πL, πR, πS , πP remain to be seen.
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