
Chapter 9

Solutions for Path Planning Using Spline

Parameterization

M. Elbanhawi, M. Simic, and Reza N. Jazar

9.1 Introduction

Human drivers display remarkable abilities when controlling vehicles in a highly

reactive manner and with impeccable precision. Even more impressive is the

implicit consideration of the vehicle and road parameters. Researchers have

shown that humans use specific visual cues to identify road curvature and endeavor

to match it. Analysis that drew inspiration from the steering commands, used by

operators of varying driving experience, is attempted to generate likewise natural

paths. This approach can be combined with a path planning algorithm to generate

paths with natural smooth trajectories for autonomous vehicles. This will circum-

vent the need to rely on computationally intensive planning algorithms that are

based on forward model integration. Humans have been controlling the steering

wheel for the past century. Currently self-driving is emerging as technology that

promises to improve our lives greatly. Cars are underactuated systems designed to

facilitate their control for operators. This simplification of actuation has adverse

effects when attempting to automate such systems, leading to the appearance of

nonholonomic constraints (Jazar 2008). Researchers have shown that drivers rely

on certain visual landmarks to assess the path curvature prior to attempting to steer

toward it (Land and Lee 1994; Land and Horwood 1995). The majority of studies,

conducted on human steering, focus on modeling and predicating it, using control

system theories (Donges 1978; MacAdam 1981; Prokop 2001). The aim of this

chapter is to employ an efficient spline parameterization method to synthesize paths
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that mimic human steering controls, in order to generate motions that feel natural

and familiar to human passengers. It is not uncommon for robotics researchers to

draw inspiration by observing natural behavior (Donghyun et al. 2014; Lentink

2014). We hope that the results, presented in this chapter, can be employed in

robotics to efficiently plan spline-based paths, similar to Yang et al. (2014), in

addition to mimicking human steering, improving passenger comfort, and explicitly

considering the limitations of the car.

Advances in sensing technology, computer vision, communications, and com-

putational power have contributed toward the development of autonomous agents

in a wide range of fields. Self-driving ground vehicles are used in military, urban

transportation, and industrial and agricultural applications. Unmanned aerial vehi-

cles (UAVs) and micro aerial vehicles (MAVs) are considered as a cost-effective,

safe, and efficient choice for several military and civil applications. Robotic

platforms are currently equipped with multiple sensors, which enable them to

sense their surroundings and localize themselves in reference to their environment,

goals, and obstacles. Path planning is a widely studied, fundamental task for mobile

robots. Robot navigation mandates a strategy that steers it from its current location,

through the environment while avoiding obstacles toward its goal.

Classical planning algorithms, such as A* algorithm (Hart et al. 1968), Voronoi

diagrams (Canny 1985), visibility graphs (Asano et al. 1985), and cell decomposi-

tions (Brooks and Lozano-Perez 1985) produce piecewise linear paths. These paths

consist of subsequent waypoints joined by straight lines. Potential field methods

guide the robot toward its goal by applying attractive forces, toward the goal, and

repulsive, away from obstacles (Khatib 1986). Potential field methods tend to

produce oscillating paths in narrow passages (Koren and Borenstein 1991).

Sampling-based motion planning algorithms, such as rapidly exploring random

trees (RRT) (LaValle 2000) and probabilistic roadmap method (PRM) (Kavraki

et al. 1996), rely on stochastic sampling to efficiently explore the search space.

Resulting paths from randomization are suboptimal and require post-processing to

improve their quality (Elbanhawi and Simic 2014c). Motion planning using state

lattices is disadvantaged by discretization (Pivtoraiko et al. 2009; Pivtoraiko and

Kelly 2011). Coarse discretization leads to loss of completeness, while high-fidelity

subdivision increases the computational time of the planner, especially in highly

dimensional scenarios. Homotopy class optimization of trajectories is proposed

(Zucker et al. 2013). These methods do not discuss curvature continuity, and the

performance is dependent on the optimization algorithm. Optimization methods are

not immune from local minima and are not guaranteed to converge.

Agile robots, such as omnidirectional, differential-drive robots and quadrotors,

are capable of traversing piecewise linear paths. Such paths require stationary turns,

at every waypoint, to change heading toward the subsequent waypoint. This

approach is inefficient with regard to time, energy, and jerk considerations. The

motion of some robots, such as car-like vehicles and fixed-wing UAVs, is highly

constrained. Nonholonomic robots must be considered in the planning procedure,

as they cannot follow piecewise linear paths. Minimum turning radius constraints
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impose further limitations on the path, which is often represented by maximum

curvature restrictions.

Traditionally, Dubins paths or Reed’s and Shepp’s (Xuan-Nam et al. 1994;

Reeds and Shepp 1990) are used in path smoothing for vehicles with minimum

turning radius constraint in a two-dimensional space. Configurations are joined by

sets of primitives consisting of circular arcs and straight lines. The amalgamation of

circular arcs and lines results in discontinuities in curvature. Clothoids may appear

to be suitable for path smoothing, as they are characterized by continuous curvature

(Fraichard and Scheuer 2004). However, clothoid generation is challenging, as they

have no closed-form expression. High-order splines (11th order) and polynomials

(26th order) have been proposed for clothoid approximation (Wang et al. 2001;

Meek and Walton 2004; Walton and Meek 2005; McCrae and Singh 2009; Montes

et al. 2008). Recent work has enabled the real-time approximation of clothoids

under bounded length and orientation limitations (Brezak and Petrovic 2013).

Consequently, they are still not suited for real-time replanning and highly dimen-

sional scenarios.

Curvature discontinuities result in overactuation, slipping, localization errors

(Magid et al. 2006), passenger discomfort (Gulati and Kuipers 2008), mechanical

wear and failure (Berglund et al. 2010; Maekawa et al. 2010), and control instability

(Lau et al. 2009; Roth and Batavia 2002). Subsequently, achieving continuous

curvature is advantageous in applications that involve carrying sensitive cargos

such as human passengers (Gulati and Kuipers 2008) or heavy loads in mining

applications (Berglund et al. 2010; Maekawa et al. 2010) and those which require

precise localization such as agricultural applications to minimize the impact of the

vehicle on crops (McPhee and Aird 2013; Sabelhaus et al. 2013; Alshaer et al.

2013) or energy loss minimization for MAVs with battery-size restrictions (Myung

et al. 2007).

In our earlier work, we proposed an evaluating and bounding B-spline paths

approximate solution. We show that humans control vehicles with continuous

commands and generate paths that obey the vehicles kinematic constraints. We

propose the premise of using a single B-spline curve to generate paths that resemble

human driving and obey the vehicle’s constraints. This is achieved by defining the

curvature of a B-spline segment in terms of the parameters of its corresponding

control polygon, which in this case is assumed to be a linear path generated by a

path planning algorithm.

In this work we improve B-spline-based motion planning by proposing efficient

methods for segment curvature evaluation and analytical bounding. The character-

istics of B-splines are exploited to present two solutions for continuous curvature

bounding, which can be combined together or used separately. The novelty of our

proposal is that it is not limited to a plane or a dimension; it is not subject to

orientation, length, or control polygon restrictions. It guarantees continuity

throughout the path while preserving real-time performance. We also show that it

is possible to plan the trajectory of a robot with nonholonomic constraints and

maintain parametric continuity.
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This chapter is organized as follows: Sect. 9.2 lists the current related research in

path smoothing. The problem is formally described in Sect. 9.3. B-spline curve

synthesis is introduced in Sect. 9.4. We address curvature continuity, segment

curvature formulation, and curvature bounding in 2D in Sect. 9.5. Our findings

are validated and compared with previous work using simulation experiments, as

given in Sect. 9.6. The chapter is concluded in Sect. 9.7.

9.2 Related Work

There are two separate problems addressed in this chapter: firstly, planning a

geometric curve with curvature bounds given in Sect. 9.4 and, secondly,

maintaining parametric continuity of the generated trajectory. The authors could

not ascertain any literature that combined these two problems. There are only

approaches that address each issue separately. The benefits of synthesizing

kinodynamically feasible and continuous paths are well studied in robotics

(McPhee and Aird 2013; Magid et al. 2006; Gulati et al. 2009; Gulati and Kuipers

2008; Maekawa et al. 2010; Lau et al. 2009; Myung et al. 2007; Sabelhaus et al.

2013; Alshaer et al. 2013). However, current solutions given in the literature fail to

guarantee C2 continuity with curvature bounds for nonholonomic mobile robots.

Similarly, in trajectory generation literature, there are multiple solutions to

optimally generate bounded trajectories for given geometric curves with regard to

time (Balkcom and Mason 2002; Wu et al. 2000) and jerk considerations (Guarino

Lo Bianco 2013). Other approaches considered curvature and acceleration bounds

as parameters in optimization problems (Johnson and Hauser 2012; Kunz and

Stilman 2013; Sachin et al. 2014). However these methods, adversely, provided

no discussion on the parametric continuity problem and often led to C1 continuity

only. The approach developed by Velenis and Tsiotras (2008) for vehicles is limited

to velocity continuity and acceleration bounds and ignored acceleration continuity

which will undoubtedly lead to a jerky and uncomfortable ride (Gulati and Kuipers

2008; Guarino Lo Bianco 2013). Control laws proposed for unicycle robots ignored

acceleration and curvature bounds (Lapierre et al. 2007; Sgorbissa and Zaccaria

2010; Morro et al. 2011).

Dubins paths and circular arcs were commonly used for robot planning despite

their curvature discontinuity. Dubins paths were generated under the assumption

that the vehicle maintains constant linear velocity. Multiple circular segments have

been proposed for UAV path smoothing (Anderson et al. 2005). This approach was

limited to planar scenarios and produces discontinuous paths. Bézier curves were

commonly used for path smoothing. The order of Bézier is dependent on the

number of control points, which resulted in limiting them to maintain a low-order

curve (Jolly et al. 2009; Lau et al. 2009; Kwangjin and Sukkarieh 2010). A

comparative navigational-based analysis showed that Bézier curves poorly inter-

polate a linear path as opposed to B-splines, (Elbanhawi et al. 2014). Limiting the
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number of control points of Bézier curves results in the need to join multiple curve

segments. Discontinuities arise at the joint of two Bézier segments.

A condition for Bézier curve geometric, G2, continuity was presented in (Walton

et al. 2003). However, this condition had no closed-form solution. Kwangjin et al.

(Kwangjin and Sukkarieh 2010; Kwangjin et al. 2013) provided a solution for a

particular case of the G2 planar condition. This approach was used for upper-

bounded curvature smoothing algorithms. It is still limited to a plane and, in fact,

incapable of considering different curvature bounds in horizontal and vertical

planes. Fixed-wing UAVs have different turning angle (horizontal plane) and

climbing angle (vertical plane) limitations. Barsky and Derose (1990) proposed

geometric continuity, Gk, as condition for ensuring that curve endpoints had the

same directions, not the values. The work in (Kwangjin and Sukkarieh 2010;

Kwangjin et al. 2013) fails to guarantee velocity and acceleration continuity,

which are more realistic for robotics than geometric continuity. Pan et al. (2012)

have shown that only C2 parametric continuities of acceleration and velocity are

suitable for real robots and provided a shortcutting algorithm that guarantees

continuity in most scenarios but fails to address the maximum curvature constraint.

Recent studies investigated trajectory planning for trailer cars with continuous

velocities (Ghilardelli et al. 2014).

The advantages of B-splines for real-time planning have been shown (Dyllong

and Visioli 2003; Elbanhawi and Simic 2012). A genetic algorithm was employed

to select the location of a fixed number of control points, for a single B-spline curve

(Nikolos et al. 2003). This guaranteed the continuity of the curve. However, having

a constant number of control points reduced the robustness of the generated path.

B-splines were used for generating smooth paths for passenger transporting robots

(Gulati and Kuipers 2008). That approach is limited to a 2D setting and robots with

no curvature bounds. Similarly, a 3D B-spline smoothing algorithm was presented

that did not consider curvature continuity or upper bounds (Koyuncu and Inalhan

2008). Several optimization algorithms are limited to 2D offline B-spline smooth-

ing and curvature bounding (Berglund et al. 2010; Maekawa et al. 2010). A

B-spline shortcutting algorithm was proposed, which used multiple segments;

however, it did not guarantee continuity in all segments and did not consider the

maximum curvature (Pan et al. 2012). In our earlier work, we provided an approx-

imate B-spline-based approach to the presented problem and did not consider

acceleration and velocity bounds (Elbanhawi et al. 2014). Research findings were

implemented, in real time, on experimental vehicle (Elbanhawi and Simic 2014b).

On the other hand, in here we present solution of the problem analytically and

consider kinodynamic constraints.
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9.3 Problem Statement

We consider front wheel-steered vehicles, referred to as car-like robots. It is

common to model the vehicle using the bicycle model, which assumes identical

steering angles on both sides (Jazar 2008), as shown in Fig. 9.1. This model has

been shown to be adequate for modeling the global kinematic motion of front

wheel-steered vehicles (Campion et al. 1996). The advantage of our approach is in

solving two closely related problems simultaneously, which are generally

decoupled in robotic literature. We aim to synthesize a curve that satisfies condi-

tions given by Eqs. (9.1, 9.2, 9.3, and 9.4) and maintain parametric continuity. The

vehicle’s Cartesian coordinates (x, y) and heading angle θ are measured from the

center of the rear axle relative to a global frame. The length between the front and

back wheel is referred to as wheel base,W. The two actuation commands are linear

velocity, v, and steering angleΦ. It is clear that the vehicle is underactuated as it has
two controls and three degrees of freedom, i.e., it is not fully controllable (Ogata

2010). The velocity components in the x and y directions, vx and vy, are constrained
as given in Eq. 9.1. This nonholonomic condition is often referred to as the rolling

without slipping constraint.

vx sin θð Þ � vy cos θð Þ ¼ 0 ð9:1Þ
Consider a planning algorithm that produces a path consisting of, n�1, straight

lines joining successive, n, waypoints, P¼ [P1, P2. . .Pn], where Pi ¼ (Pxi, Pyi, Pzi)

for i¼ [1, 2, ..,n�1, n]. It is required to generate a curve, c(u), which closely follows
straight-line path, where u is the normalized path length parameter. It is an

independent variable in the range of [0,1] for any curve, c(u). Parameter u takes

the value u ¼ 0 at the beginning of the segment and reached the value u ¼ 1 at the

end. The generated curve must satisfy the following imposed constraints.

Path continuity at the endpoints of two curve segments must be addressed; such a

situation is illustrated in Fig. 9.1. For two consecutive curve segments cj(u) and
cj + 1(u), C

k parametric continuity could be then defined as shown in Eq. 9.2,

according to Farin (2002), where k is a positive integer denoting the order of the

parametric continuity.

Fig. 9.1 Joining two path

segments
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∂i
cjþ1 0ð Þ
∂ui

¼ ∂i
cj 1ð Þ
∂ui

,8i ¼ 1, 2, 3::k ð9:2Þ

The curvature of the path must not exceed the maximum curvature, Kmax, at any

point. The curvature, k(u), along a path is defined as Eq. 9.3, where c(u) ¼ [x(u), y
(u)] and the first- and second-order derivatives with respect to u are c’(u) ¼ [x’(u),
y’(u)] and c”(u) ¼ [x”(u), y”(u)].

k uð Þ ¼ x0 uð Þy00 uð Þ � x00 uð Þy0 uð Þ
x0 uð Þ2 þ y0 uð Þ2

� �3=2
ð9:3Þ

The minimum radius of curvature, rmin, in a plane restricts the curvature of the

path to Kmax in that plane. For car-like robots, the curvature constraint is a result of

the maximum steering Φmax angle due to the mechanical construction of the

vehicle, as shown in Eq. 9.4. In three-dimensional scenarios for aerial vehicles,

the maximum yaw and pitch angles in the horizontal and vertical planes must be

considered separately (Fig. 9.2).

kmax ¼ 1

rmin

¼ tan ϕmaxð Þ
W

ð9:4Þ

Fig. 9.2 Bicycle model for front wheel-steered vehicles
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9.4 Spline Primitives

B-splines are vector-valued parametric curves, initially proposed by Schoenberg

(1946). B-splines and nonuniform rational B-splines (NURBs) are commonly used

for computer-aided design (CAD) applications as a result of their efficient synthesis

and robustness (Farin 1992). In addition to CAD, they have been utilized in reverse

engineering (Ma and Kruth 1998; Piegl and Tiller 2001), finite element analysis

(Hughes et al. 2008), machining (Cheng et al. 2002; Sungchul and Taehoon 2003),

medical imaging (Zhang et al. 2007), computer vision (Biswas and Lovell 2008),

bio-inspired data fitting (Jones and Adamatzky 2014), and signal processing (Unser

et al. 1993). As discussed in earlier sections, their use in robotics is fairly recent.

A p-th degree B-spline curve, c(u), is defined by n control points and a knot

vector û, evaluated by Eq. 9.5. The length of the one-dimensional knot vector, m, is
equal to n + p + 1. Normalized path length parameter, u, is simply referred to as the

path parameter (Farin 2002).

c uð Þ ¼
Xn
i¼0

Ni,p uð ÞPi ð9:5Þ

Pi is the i-th control point, which is in turn influenced by a corresponding basis

functions. The number of basis functions therefore mirrors the number of control

points, n. Nn,i (u) is the i-th B-spline basis function, which is defined using the Cox-
de Boor recursive algorithm (De Boor 1972). First-order basis functions are eval-

uated using Eq. 9.6 based on the predefined knot vector. Higher-order functions are

computed by the recursive substitution in Eq. 9.7.

Ni, 0 uð Þ ¼ 1 u2�
ûi; ûiþ1

�
0 else

�
ð9:6Þ

Ni,p uð Þ ¼ u� ûi
ûiþp � ûi

Ni,p�1 uð Þ þ ûiþpþ1 � u

ûiþpþ1 � ûiþ1

Niþ1,p�1 uð Þ ð9:7Þ

We have previously shown B-spline properties that render them as superior to

other parametric curves, for the task of robot navigation (Elbanhawi et al. 2014).

The curve’s degree, p, is independent of the number of control points, n. This allows
the possibility of using a single curve for the entire path smoothing without

imposing limitations on the number of control points. It is in contrast to Bézier

curve methods (Jolly et al. 2009; Kwangjin and Sukkarieh 2010; Lau et al. 2009;

Kwangjin et al. 2013) where the number of control points is predefined. Modifica-

tion of control points affects the curve shape locally and does not change the rest of

the path. This enables the local control of the path for smoothing or obstacle

avoidance purposes. A clamped B-spline curve follows its control polygon more

closely in comparison to a Bézier curve of the same order. Clamping is achieved by

having (p + 1) multiplicity of the initial and final knots, û (Farin 2002). Knot

multiplicity ensures that the curve passes through the initial and final control points.
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Despite the beneficial properties that characterize B-splines, maintaining path

continuity and controlling its curvature are nontrivial issues. They continue to

challenge the use of B-splines in robotic path planning applications (Lau et al.

2009; Elbanhawi and Simic 2014a; Pan et al. 2012). It must be noted that both

Beziers and B-spline are essentially combinations of polynomials. In principal,

there should exist control laws, or conditions, that are capable of generating

parametrically continuous trajectories using Bezier curves as well. The authors

could not identify such methods in literature. Consequently, we have utilized the

existing benefits of B-splines for motion planning.

9.5 Curvature Bounding

9.5.1 Parametric Continuity

The challenge of path continuity stemmed from the linking of two separate path

segments. Primitives such as circular arcs, polynomials, and clothoids were not

flexible enough to represent a path using a single segment. The number of control

points, which were usually predefined prior to smoothing, governs the order of a

Bézier curve. Consequently, multiple Bézier curves must be linked for smoothing a

single piecewise linear path.

The order of a B-spline curve is independent of the number of control points in

the path, as already mentioned. In theory, it is possible to smooth a path using a

single curve of a predefined order. The single B-spline curve approach was adopted

for UAV planning; however, the number of control points was fixed (Nikolos et al.

2003). The region in which planning is conducted and path shape robustness are

significantly limited by fixing the number of control points. The work by Jolly et al.

(2009) is based on rapid replanning with a short planning horizon and relies on four

control points. We did not pose any restrictions on the number of control points,

apart from that the number of control points must exceed the degree of the curve, p.
The local control property of B-spline enables the modification of a curve segment

without changing the entire path. The necessity for rerouting commonly results

from obstacle detection or smoothing purposes.

Despite the superiority of B-splines over a Bézier curve of the same order, in

closely following the shape of a path, they still deviate from the original path

(control polygon). Ideally, the curve would follow the original linear path and

smoothly cut corners when turning is needed. It is desired to maintain proximity

to the originally planned straight-line path as it is more likely to be collision-free.

This was achieved by forcing the tangency of the curve to the sides of the control

polygon. B-spline tangency to collinear control points is leveraged to ensure the

close following of the original path. Systematic midpoint insertion, between every

two successive points, effectively transformed control polygon edges into lines

connecting three control points, thus forcing the curve’s tangency to the edges. The
effect of midpoint insertion is illustrated in Fig. 9.3. It is worth highlighting that in
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both cases, a single curve segment was used for smoothing. That guarantees

continuity along the path. This avoids the need to address parametric continuity

at union points, as illustrated in Fig. 9.1. The curvature and higher-order derivatives

do not exhibit any abrupt changes after adding midpoints. This can be validated by

comparing the resulting trajectories given in Fig. 9.4.

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

x

y

B-spline path (midpoint)
Control polygon
B-spline path 

Fig. 9.3 Midpoint insertion improves the path proximity of B-splines without compromising

parametric continuity. It forces the curve (blue) tangency to the edge of the control polygon (black)
unlike the unmodified B-spline curve (red)
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Fig. 9.4 Parametric continuity was maintained before (left) and after (right) midpoint insertion as

a result of using a single B-spline segment
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9.5.2 Curvature Evaluation

9.5.2.1 Path Segmentation

Our aim was to control the curvature, k, of a B-spline curve. Specifically, it was

required to maintain the curvature below the maximum curvature bound, Kmax.

Systematic midpoint insertion allowed for the definition of a repeated segment

throughout the path (see for Fig. 9.5(a) illustration). The segment consists of two

intersecting control edges and a total of five control points (including two mid-

points). It was required to define B-spline paths curvature in terms of their

corresponding segment parameters. This enabled the isolation of each segment

and local modifications of its parameters by leveraging the local support property

of B-splines. Smoothing modifications will be proposed to ensure maximum cur-

vature bounds are obeyed.

The parameters of the reoccurring control segment are the side length, L, the
angle between segment sides, α, and the length ratio of both sides, r, as illustrated in
Fig. 9.5(b). In our earlier work (Elbanhawi et al. 2014), segments of equal sides

were assumed, r ¼ 1, which overestimated the curvature of the path and resulted in

attaining approximate solutions. The use of the length ratio parameter, r, is

presented to enable a more precise evaluation of the curvature. Position vectors

describing the five control points of the segment can be defined with respect to the

parameters of the same segment and are given in Eq. 9.8.

P
Px

Py

� �
¼

L,
L

2
, 0, r

L

2
cos αð Þ, rL cos αð Þ

0, 0, 0, r
L

2
sin αð Þ, rL sin αð Þ

0
B@

1
CA ð9:8Þ

The cubic B-spline curve, p¼ 3, has five control points, n¼ 5, and, m¼ 9, knots
with four initial and final multiplicity for clamping, û ¼ [0,0,0,0,0.5,1,1,1,1]. Initial

order basis functions were evaluated using Eq. 9.6. Following that, basis functions,

N(u), were computed, using the Cox-de Boor algorithm by recursive evaluation of

Fig. 9.5 (a) The notion of a reoccurring control segment through the path. A segment consists of

two intersecting straight lines and five control points. (b) The parameters of a single segment
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Eq. 9.7. The following third-order basis functions can be defined as given in the set

of Eq. 9.9.

N0,3 ¼ 1� 2uð Þ3
2

ð9:9aÞ
N1,3 ¼ 6u3 � 6u2 þ 1 ð9:9bÞ
N2,3 ¼ �6u2 þ 6u� 1 ð9:9cÞ

N3,3 ¼ �6u3 þ 12u2 � 6uþ 1 ð9:9dÞ
N4,3 ¼ 2u� 1ð Þ3

2
ð9:9eÞ

In order to define the curvature of a segment in terms of its parameters, k¼ f(r, L,
α)¸ the position vectors of the segment, Eq. 9.8, and basis functions, Eq. 9.9, were

substituted in the curve Eq. 9.5. The curve was defined as a function of its

corresponding segment parameters, c uð Þ ¼ x uð Þ
y uð Þ

	 

¼ x r; L;/ð Þ

y r; L;/ð Þ
	 


; x(u) and y(u)

are given in Eq. 9.10.

x uð Þ ¼ 1�2uð Þ3
2

∗
Lþ 6u3 � 6u2 þ 1ð Þ∗L

2

þ �6u3 þ 12u2 � 6uþ 1ð Þ∗ rL cos αð Þ
2

2u� 1ð Þ3
2

∗

rL cos αð Þ
ð9:10aÞ

y uð Þ ¼ �6u3 þ 12u2 � 6uþ 1
� �∗ rL sin αð Þ

2
þ 2u� 1ð Þ3

2

∗

rL sin αð Þ ð9:10bÞ

For a given segment, its parameters, r, L, and α, are constant and known prior to
a curvature query. The first- and second-order derivatives with respect to the path

parameter, u, are derived below from equations set (Eq. 9.11).

x0 uð Þ ¼ 3L u2 r cos αð Þ � 1ð Þ þ 2uþ 1
� � ð9:11aÞ

x00 uð Þ ¼ 6L u r cos αð Þ � 1ð Þ þ 1ð Þ ð9:11bÞ
y0 uð Þ ¼ 3Lr sin αð Þu2 ð9:11cÞ
y00 uð Þ ¼ 6Lr sin αð Þu ð9:11dÞ

The curvature expression, k¼ f(r, L, α), in Eq. 9.12 was obtained by substituting
the curve and its first- and second-order derivatives from Eq. 9.11 into Eq. 9.3. It

can be noted that when substituting by r¼ 1, in Eq. 9.12 we get the same expression

derived in Elbanhawi et al. (2014). Prior to introducing the parameter, r, curvature
evaluations were approximate, and the accuracy of the maneuvers could not be

ascertained.

k uð Þ¼ 2ru u�1ð Þsin αð Þ
3L u4 r2�2rcos αð Þþ1ð Þþ4u3 rcos αð Þ�1ð Þ�2u2 rcos αð Þ�3�4uþ1ð Þð Þ3=2 ð9:12Þ
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9.5.2.2 Segment Curvature Evaluation

Midpoint insertion ensured the curve’s tangency to the polygon edges, which

resembled paths generated by human operators in the experiments conducted by

Elbanhawi et al. (2014). Subsequently, the curvature of the path started at u¼ 0 and
finished at u ¼ 1, with k ¼ 0. Curvature peaked to kpeak at some point, upeak, in
between, u ¼ [0,1]. In order to limit path curvature to the maximum value of Kmax,

the peak curvature, kpeak, of the segments must be evaluated first. The point, upeak,
along the parametric path length, u, where the curvature peaks, was found by

solving Eq. 9.13. Then kpeak was computed by substituting upeak in Eq. 9.12.

dk uð Þ
du

¼ 0 ð9:13Þ

For every path segment, there exists a singular curvature peak, as shown in

Fig. 9.6. The red profiles show the influence of changing the segment angle while

maintaining fixed length and ratio. The location of the peak curvature was entirely

dependent on the length and ratio. For a large angle (blue) and fixed length, the ratio

changed both the position and value of the peak curvature. Similarly, for a much

smaller segment angle (gray), the length ratio was still influential on both the peak

value and position.

Solving Eq. 9.13 for upeak can prove to be a computationally intensive task,

particularly when kpeak had to be evaluated multiple times during each query of the

path planning procedure. One useful observation is that the location of upeak is

dependent on the segment angle, α, and length ratio, r, as highlighted in Fig. 9.7.

We note that, while upeak is dependent on r and α only, the peak curvature value,

kpeak, is still dependent on r, α, and L. It was possible to store upeak values in a

lookup table of equal intervals from r¼ 1 to 10 and α ¼ 0 to π. The required values
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Fig. 9.6 Changing segment parameters shifts the position of the curvature peaks. In all cases,

curvature profile is continuous with a singular peak
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can be interpolated. To maintain a sparse lookup table, we use the property in

Eq. 9.14, which can be observed from Fig. 9.7. In our case, retaining a lookup table

(less than 10kB in size) produced curvature values of 10�3 accuracy.

If 0 < r < 1, thenupeak r;αð Þ ¼ 1� upeak 1=r;αð Þ ð9:14Þ

9.5.3 Curvature Bounding

In this section, two analytical solutions for curvature bounding are presented. They

ensured peak segment curvature does not exceed the maximum curvature,

kpeak � Kmax. This confirms that the path is feasible, having shown in the previous

section that each path segment has a single peak. The first solution was relaxed

ensuring a smooth curvature. The second solution was strict to minimize deviation

from the original control polygon. It was possible to combine both conditions in

different segments, on account of B-spline local support property, with minimal

effect on other segments. Both conditions were designed to make certain that the

path was contained within the convex hull of the original control polygon to reduce

the probability of the obstacle collision. Both solutions are essential homotopy class

transformation to ensure feasibility. Nonetheless, the guarantee that the path is

collision-free was not addressed in this work. We assume that this work will

eventually be combined within a planning framework and will not be restricted to

path smoothing.
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Fig. 9.7 Parametric length location, upeak, of the peak curvature, kpeak, is dependent on the

segment angle, α, and the length ratio, r. It can be noted that when length ratio is 0 < r < 1,
upeak > 0.5 and when r > 1, upeak < 0.5. This results from the observation that upeak is shifted
toward the shorter segment edge
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9.5.3.1 Single-Peak Solution

Consider the single control segment, shown in Fig. 9.8, whose corresponding

B-spline curvature violates the maximum curvature condition. The segment con-

sists of two lines ln,n + 2, joining point (n) and point (n + 2), and ln + 2, n + 4, joining

point (n + 2) and point (n + 4), shown as solid black lines. Point (o) is the

intersection point between ln, n + 4 (thin gray line) and line lo,n + 2 (dotted blue

line) which is passing through point (n + 2) and is orthogonal to ln, n + 4.

The current curvature, kn + 2, and segment angle, αn + 2, are known, and

kn + 2 > Kmax. Assume that point (n + 2) is shifted toward point (o), along the

line, lo,n + 2, while points (n) and (n + 4) are unchanged and the midpoints (n + 1)
and (n + 3) are recomputed accordingly. Finally at αn + 2 ¼ π, ko ¼ 0. It is required

to find the nearest point ( p), at which kp ¼ Kmax, as point (n + 2) is being shifted

toward (o) along lo,n + 2. The minimum angle αp lies between αo ¼ π and αn + 2 as

given by Eq. 9.15. We define li, j as the Euclidean distance between two points

(i) and (j) whose Cartesian coordinates are known.

Assuming line lo,n + 2 is parameterized between Pn + 2 and Po using l̂ ¼[0,1], the

value of l̂ is required where the point ( p) satisfies the curvature requirement. Firstly,

Pp is given as follows:

Pp ¼ Pnþ2

�
1� l̂

�þ P0 l̂ ð9:15Þ
In every iteration, the curvature is evaluated until the kp ¼ Kmax condition is

satisfied. To optimize the search, we can estimate the initial point where the

curvature may be equal to Kmax. This is achieved by knowing that, at l̂ ¼
0, k ¼ kp and, at l̂ ¼ 1, k ¼ 0.

Fig. 9.8 First smoothing

solution; it is required to

find the point (P) along the

line (dotted blue line),

joining point (n + 2) and
point (o), that ensures the
curvature, kpeak, does not
exceed Kmax
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l̂init ¼ 1� Kmax

Kp

����
���� ð9:16Þ

An example of curvature bounding is shown in Fig. 9.9 using this solution. The

resulting curvature has a single segment as shown in Fig. 9.10 and was bound to

0.14 m�1. Curvature continuity was maintained in both cases.

9.5.3.2 Double-Peak Solution

In this section we proposed a different approach for the same problem considered in

the previous section. The curvature of a control segment, P1, P0, P5 and their
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Fig. 9.9 Bounding using

single-peak solution. The

original path is blue and
new path is red
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midpoints in Fig. 9.1 exceeds Kmax. Segment P1, P0, P5 is decomposed into two

segments, P1, P2, P4 (segment 1) and P2, P4, P5 (segment 2). Line segment P2P4 is

constructed to be parallel to edge P1P5 . As a result, triangles ΔP1P0P5 and

ΔP2P0P4 are similar, and the ratio between their side lengths is (1-β), where
0 < β < 1 (Fig. 9.11). Segment 1 and 2 parameters can be described in terms of

β, where segment angles are constant, as given in Table 9.1.

By substituting the segment parameters, given in Table 9.2, in Eq. 9.12, it is

possible to find a range for β, subset of set [0,1), in which both segment curvatures

are less than Kmax. Firstly, we compute a separate range for each segment 1 and

2 [βmin1, βmax1] and [βmin2, βmax2]. These computations are efficient by virtue

of using the lookup table in the previous section. The allowable range for β is [max

(βmin1, βmin2), min(βmax1, βmax2)].

Fig. 9.11 Second

smoothing solution; it is

required to find the value of

β that ensures curvature

bounding in both segments

and minimizes the total path

length

Table 9.1 Comparing related methods

Method Curvature bounds Curve Path Continuity

Nikolos et al. (2003) Yes B-spline 3D C2

Anderson et al. (2005) Yes Arcs/line 2D No

Gulati and Kuipers (2008) No B-spline 2D No

Koyuncu and Inalhan (2008) No B-spline 3D No

Jolly et al. (2009) No Bézier 2D C2

Lau et al. (2009) No Bézier 2D No

Berglund et al. (2010) Yes B-spline 2D No

Maekawa et al. (2010) Yes B-spline 2D No

Pan et al. (2012) No B-spline 3D/2D C2/C1

Kwangjin (2013) Yes Bézier 2D G2

Huh and Chang (2014) No Polynomial 2D G2

Proposed Yes B-spline 2D/3D C2
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We nominate the β value that minimizes the total length. Now, new segment

control points P2, P3, P4 can be computed, where for any control point we have

Pi ¼ (xi, yi).

β ¼ argmin β L1 þ L2 � L0ð Þ þ L0ð Þ, β E βmin; βmax½ � ð9:17Þ
P2 ¼ βP1 þ 1� βð ÞP0 ð9:18Þ
P4 ¼ βP5 þ 1� βð ÞP0 ð9:19Þ

A midpoint is inserted between the two added points based on the ratio between

the lengths of both, such that if both lines are equal, r ¼ 1; the midpoint is

equidistant between them.

P3 ¼ r

r þ 1
P4 � P2ð Þ þ P2 ð9:20Þ

An example of curvature bounding is shown in Fig. 9.12 using this solution. The

resulting curvature has two segments as shown in Fig. 9.13 and was bound to 0.14 m
�1. Curvature continuity was maintained in both cases.

Table 9.2 Segment

parameter
Parameter Symbol Segment 1 Segment 2

Length ratio r 1�βð ÞL0
βL1

1�βð ÞL0
βL2

Edge length L βL1 βL2
Segment angle α γ1 γ2
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Fig. 9.12 Bounding using

double-peak solution. The

original path is blue and the

feasible path is red
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9.6 Results

9.6.1 Curvature Evaluation

To efficiently evaluate a segment’s curvature, we proposed storing the peak curva-

ture position upeak in a sparse lookup table and evaluating the curvature using the

segment parameters. We conducted 1000 queries, for a range of segment parame-

ters where r and L¼ [1 m, 10 m] in steps of 1 m and α was ¼ [30�, 180�] in steps of
15�. The time performance of this evaluation method was compared with solving

Eq. 9.13. From the results, given in Table 9.3, it is clear that this method is more

efficient. Comparing with previously published research results Elbanhawi et al.

(2014), which assumed equal segment length, we show that this approach has better

accuracy. The results are illustrated in Fig. 9.14 and given in Table 9.4.

9.6.2 Curvature Bounding

In this section we compared the presented bounding solutions to our earlier work in

Elbanhawi et al. (2014). Two different examples were used as shown in Figs. 9.15

and 9.18. The linear reference paths are assumed to result from a planning
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Table 9.3 Curvature evaluation time performance for 1000 queries

Query time Analytical solution Lookup table

Mean (ms) 122.16 0.91

Standard deviation (ms) 6.95 0.34
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Fig. 9.14 Curvature evaluation errors of proposed lookup table compared to Elbanhawi et al. (2014)

Table 9.4 Curvature

evaluation errors
Error [mm�1] Proposed Elbanhawi et al. (2014)

Mean 0.87 384.25

Standard deviation 1.738 788.45

Maximum 19.34 6592.10
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Fig. 9.15 Example 1: Bounding paths using different methods
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algorithm. It can be noted that the proposed solutions maintain the curve within the

convex hull of the original reference path. In both cases, the curvature is success-

fully bounded to 0.2 and 0.15 m�1 successively, and its continuity is maintained as

shown in Figs. 9.16, 9.17, and 9.18. The proposed solutions reduce the deviation

from the original path and the total path length, outperforming our earlier work as

detailed in Tables 9.5 and 9.6. Solution (1) results in a low-frequency single-peak

curvature profile as opposed to solution (2), which may have a better impact on

passenger comfort in autonomous cars, as suggested in (Gulati and Kuipers 2008;

Turner and Griffin 1999). On the other hand, solution (2) minimizes deviation from

the reference paths and as a consequence minimizing the risk of collision.

Example (3) highlights the ability of the proposed method to generate a feasible

path among obstacles. The benefit of maintaining the curve within the convex hull

of the path is apparent in this example. The linear path was generated from a rapidly

exploring random tree (RRT) algorithm (Elbanhawi and Simic 2014b). The

resulting B-spline path among obstacles is illustrated in Fig. 9.19. Post-processing

RRT algorithms have been shown to improve path quality and produce fairly

consistent results. Nonetheless these methods do not guarantee that the path is

collision-free. The resulting trajectory is given in Fig. 9.20. It is clear that the multi-

segment path maintains curvature and parametric continuity.

9.7 Conclusion

An approach to continuous curvature robot path smoothing that satisfies the max-

imum curvature bounds and parametric continuity is presented here. B-spline

curves have been proposed for this task. In this chapter we offer the following

contributions:
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• Maintaining path parametric C2 continuity, by using a single B-spline curve

segment with midpoint insertion, to generate more realistic robot paths (Pan

et al. 2012). No limitations were posed on the number of control points, for the

B-spline curve, enabling a more robust representation of the path, unlike the

work in (Nikolos et al. 2003; Jolly et al. 2009).

• Two analytical solutions are offered, formulating the path curvature in terms of a

predefined path segment’s parameters. They modify the path to limit its curva-

ture to the maximum kinodynamic curvature and satisfy the vehicle’s con-

straints. Our previous publications presented an introduction to the more

advanced solutions (Elbanhawi et al. 2014; Elbanhawi and Simic 2014b).

Table 9.5 Example 1: Resulting path lengths and deviation

Path Length [m] Deviation mean [m] Deviation maximum [m]

Linear path 94.33 – –

Reference B-spline 92.28 – –

Elbanhawi et al. (2014) 112.59 12.48 17.19

Solution (1) 71.78 8.58 12.89

Solution (2) 84.42 2.94 5.50

Table 9.6 Example 2: Resulting path lengths and deviation

Path Length [m] Deviation mean [m] Deviation maximum [m]

Linear path 579.88 – –

Reference B-spline 507.35 – –

Elbanhawi et al. (2014) 535.28 20.15 45.04

Solution (1) 464.47 6.48 27.03

Solution (2) 506.27 6.04 23.99
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Fig. 9.19 Example 3: Kinodynamic motion among obstacles
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Based on the presented numerical and experimental results, we show that this

approach:

• Improved accuracy of segment curvature evaluation

• Accelerated segment curvature evaluation

• Decreased path length compared to reference spline and linear path

• Decreased deviation from reference path

• Bounded curvature to desired value while maintaining parametric continuity

The proposed method results in paths that lie within the convex hull of the linear

path, with no undesirable oscillations in the path. This produced realistic commands

with continuous velocity and acceleration.

This approach relies on smoothing a path defined by successive waypoints,

which are generated by a planning algorithm. As presented here, smoothing is

considered as a post-planning procedure. Consequently, obtaining an obstacle-free

smooth path cannot be guaranteed. In many cases, when collision is detected,

replanning is required (Koyuncu and Inalhan 2008). Several researchers examine

collision detection for parametric curves (Kwangjin and Sukkarieh 2010; Pan et al.

2012). Circumventing the need for replanning can be achieved by incorporating the
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smoothing process within the planning framework. The benefits of guiding the

search by the reachability of the robot have been revealed (Shkolnik et al. 2009;

Jaillet et al. 2011). In this context, the reachable set can be computed using the

efficient curvature evaluation method presented here. Several comments have to be

made regarding the presented contributions.

The benefit of solving C2 parametric continuity problem with maximum curva-

ture constraint and employing the results to mimic human steering is the possibility

to combine this parameterization, within any planning framework, such as an RRT

or A* algorithm for autonomous vehicles. We predict improvements in human

comfort as a result of mimicking human steering, in addition to other claims made

by researchers, with regard to continuous curvature paths.

The proposed midpoint insertion algorithm is used to simplify the smoothing

algorithm; a more generalized approach would include the location of the inserted

point, as a function of the segment angle, but the benefits of doing that are not clear.

That could be the subject of other investigation.

In the practical implementation through experiments, we demonstrated that the

closely following control polygon method is advantageous over the other algo-

rithms. This benefit comes from the assumption that the path planning algorithm

generates a collision-free piecewise linear path, which is then used by our smooth-

ing algorithm, as shown in (Elbanhawi and Simic 2014b).The results can be

developed within the context of a recently developed sampling-based algorithm

(Elbanhawi and Simic 2014c), which employs efficient collision-checking

procedures.

We expect that the outcomes of presented research can be integrated within an

efficient planning framework, in which the spline-parameterized motions feel

natural to passengers and improve their comfort. Passenger comfort and natural

paths are obviously subjective terms that require a large sample of human volun-

teers for validation. The promising simulations’ results, presented here, will be

followed by field tests using prototype ground vehicles and UAVs. We plan to

validate the concept of graceful motions and curvature continuity, with regard to

passenger comfort, by conducting full-scale field experiments.
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