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Preface

This book is based on the same concept used in the previous volumes of the series

Nonlinear Approaches in Engineering Applications, organized by the editors.

Nonlinear analysis and approaches have been developed alongside the development

and modelling of natural dynamic phenomena. Although the main approaches in the

analysis of dynamic phenomena are still linear approaches, depending on the

required level of accuracy, linear analyses reach their limits, and nonlinear

approaches become necessary. The beauty of nonlinearity is that every single

system will be treated as a unique system such that a general solution and classi-

fication cannot be found. Every nonlinear system needs its own unique method of

modelling and analysis.

Considering that modelling of nonlinear systems is as important as development

of solution methods, we selected topics to cover both, modelling and solution

methods. The book is divided into four sections; Section 1, Energy Applications;

Section 2, Vibrations and Automotive Applications; Section 3, Modern Engineer-

ing Applications; and Section 4, Analytical-Numerical Analysis Applications.

Every section includes a few selected topics which are very interesting to investi-

gators and researchers working in the area of nonlinear approaches in dynamic

system analysis.

Level of the Book

This book is aimed at engineers, scientists, researchers and engineering and physics

graduate students, together with the interested individuals in engineering, physics

and mathematics. The book focuses on the application of nonlinear approaches

representing a wide spectrum of disciplines of engineering and science. Throughout

the book, great emphasis is placed on engineering applications, the physical

meaning of the nonlinear systems and methodologies of the approaches in

analysing and solving for the systems. Topics that have been selected are of high
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interest in engineering and physics. An attempt has been made to expose the

engineers and researchers to a broad range of practical topics and approaches.

The topics contained in the present book are of specific interest to engineers who

are seeking expertise in vehicle- and automotive-related technologies as well as

engines and alternative fuels, mathematical modelling of complex systems, biome-

chanical engineering approaches to robotics and artificial muscles, nonclassical

engineering problems and modern mathematical treatments of nonlinear equations.

The primary audience for this book are; researchers, graduate students and

engineers in mechanical engineering, engineering mechanics, electrical engineer-

ing, civil engineering, aerospace engineering, mathematics and science disciplines.

In particular, the book can be used for training graduate students as well as senior

undergraduate students to enhance their knowledge by taking a graduate or

advanced undergraduate course in the areas of nonlinear science, dynamics and

vibration of discreet and continuous system, structure dynamics and engineering

applications of nonlinear science. It can also be utilized as a guide to readers’
fulfilment in practices. The covered topics are also of interest to engineers who are

seeking to expand their expertise in these areas.

Organization of the Book

The main structure of the book consists of 4 parts, energy applications, vibrations

and automotive applications, modern engineering applications and analytical-

numerical analysis applications, including 15 chapters. Each chapter covers an

independent topic along the line of nonlinear approach and engineering applica-

tions of nonlinear science. The main concepts in nonlinear science and engineering

applications are explained fully with necessary derivatives in detail. The book and

each of the chapters are intended to be organized as essentially self-contained. All

necessary concepts, proofs, mathematical background, solutions, methodologies

and references are supplied except for some fundamental knowledge well known

in the general fields of engineering and physics. The readers may therefore gain the

main concepts of each chapter with as less as possible the need to refer to the

concepts of the other chapters and references. Readers may hence start to read one

or more chapters of the book for their own interests.

Method of Presentation

The scope of each chapter is clearly outlined, and the governing equations are

derived with an adequate explanation of the procedures. The covered topics are

logically and completely presented without unnecessary overemphasis. The topics

are presented in a book form rather than in the style of a handbook. Tables, charts,

equations and references are used in abundance. Proofs and derivations are
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emphasized in such a way that they can be straightforwardly followed by the

readers with fundamental knowledge of engineering science and university physics.

The physical model and final results provided in the chapters are accompanied with

necessary illustrations and interpretations. Specific information that is required in

carrying out the detailed theoretical concepts and modelling processes has been

stressed.

Prerequisites

The readers should be familiar with the fundamentals of dynamics, calculus and

differential equations associated with dynamics in engineering and physics, as well

as have a basic knowledge of linear algebra and numerical methods. The presented

topics are given in a way to establish as conceptual framework that enables the

readers to pursue further advances in the field. Although the governing equations

and modelling methodologies will be derived with adequate explanations of the

procedures, it is assumed that the readers have a working knowledge of dynamics,

university mathematics and physics together with theory of linear elasticity.
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Chapter 1

Nonlinear Behaviour Diagnosis for Horizontal-

Axis Wind Turbine Blades Subjected

to Inconstant Wind Excitations

Dandan Xia, Liming Dai, Changping Chen, and Pan Fang

Nomenclature

Ω Speed of the blade

Ω0 Average angular velocity

A Amplitude for blade rotation

ω Frequency for blade rotation

Vv Varying velocity of the fluctuating wind

V0 Average wind speed

V(t) Fluctuating wind speed

S Area of the wind wing blade

CL Lift coefficient of the wing

Va Wind speed on the hub

fax Centrifugal force on the x direction

fay Centrifugal force on the y direction

u Displacement along the x direction

v Displacement along the y direction

ε0 Extensional strain of the blade in axial direction

ε1 Ending strain from the central axis of the blade

E Elastic modulus
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A
0

Section area

I Moment of inertia

μ Damping coefficient

m Mass of blade

ρair Density of air

1.1 Background

As a clean and renewable energy source, wind energy has attracted more and more

attentions from the countries in the world. The potential of wind energy is enor-

mous. As it is anticipated that the total wind energy can be 2.7� 109 MW in the

world; and among which, about 2� 107 MW can be implemented for electricity

generation. This is about ten times of that of the hydraulic energy that can be

developed and used on the earth. The wind power becomes an important energy

source for the human society in striving to reduce the dependence of fossil fuels. As

can be seen from Fig. 1.1, which was reported by Global Wind Energy Council

(GWEC) (2015), the wind power cumulative capacity has been increased dramat-

ically in the past two decades, and one may anticipate that the increase of the wind

power capacity will follow the exponential trend as shown in the figure.

Fig. 1.1 Global wind power cumulative capacity reported by Global Wind Energy Council

(GWEC)
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To utilize the wind energy, wind turbines play an important role. A wind turbine,

also known as an aerofoil-powered generator, is a device that converts the wind

energy into kinetic energy of the turbine blades and then into electrical power.

Among all types of wind turbines implemented in the world, horizontal-axis wind

turbines (HAWT) are probably the most popular ones, and they are becoming an

increasingly important source of green and renewable energy and have attracted

great attention from researchers and engineers in their development and applica-

tions. As shown in Figs. 1.2 and 1.3, a horizontal-axis wind turbine usually has three

blades and designed to point into the wind. This is usually achieved by motors

controlled by computers, particularly for large-scale wind turbines.

In the past decades, in fact, the HAWT have been built larger and larger in size,

in the attempt to collect more wind energy and generate electricity with high

efficiency. As per the report by Pentland (2014), shown in Fig. 1.2 with the data

up to 2011, the capacity of the maximum HAWT has been increased from 75 kW to

7500 kW, and the hub height of the wind turbine with maximum capacity has been

increased from 17 m to 140 m, whereas the maximum HAWT has a rotor diameter

of 126 m, increased from 17 m in the 1980s. Recently, the wind turbine with a

nominal capacity of 8 MW was installed in Denmark and has an overall height of

220 m, a rotor diameter of 164 m (Wittrup 2014).

Indeed, high-power HAWT start to play an increasingly influential role in the

electricity market. Figure 1.3a, b show the wind turbines in 1980 and 2005,

respectively (Larsen 2005). At the early stage of the wind turbine development,

the power of the turbine is relatively small, as shown in Fig. 1.3a, where the power

of the turbine is 30 KW. When the high-power HAWT are implemented in the

market, arrays of the HAWT turbines, known as wind farms, are applied. This is

true especially for the huge wind turbines established at the shores, as shown in

Fig. 1.3b.

As the wind turbines become larger and larger, the blades of the wind turbines

become lighter, longer, and more flexible, as can be seen from Fig. 1.4. Large-sized

wind turbine with large blades has a massive effect on the surrounding flow fields

Fig. 1.2 Evolution of HAWT in size and capacity
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Fig. 1.3 (a) Single wind turbine of 30 KW used in the 1980s (Larsen 2005). (b) Arrays of HAWT

of 2.3 MW each at the shores (Larsen 2005)

Fig. 1.4 Wind turbine blade in transportation (Statkraft 2012)
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especially for the turbulence phenomena due to vortex shedding of the blades.

Other effects such as rotation of the blades, the aerodynamics of the rotor blades,

and the vibrations of the rotors also play a significant role in the dynamics of wind

turbine blades, therefore affecting the operation and service life of the wind

turbines. Moreover, with the consideration of cost of the turbines, the blades

installed are becoming increasingly flexible. This causes the concerns of nonlinear

vibrations of the blades, as the nonlinear vibrations may lead to large deflections or

fatigue failures of the blades and gear boxes of the turbines.

1.2 Nonlinear Investigations of Wind Turbine Blades

The nonlinear vibrations described above produce instability of the wind turbine

blades and therefore cause difficulties in controlling their operations and bring

negative effects on the quality of the electricity generated by the wind turbines.

The dynamics and nonlinear responses of thewind turbine blades therefore need to be

studied and comprehended for designing and operating the wind turbines and their

blades. Conventionally, the nonlinear structural dynamics of wind turbine blades

were investigated considering the decoupling of tower and blade system. The entire

wind blade was regarded as a rigid body which was studied as a Bernoulli-Euler

beam. In 1983, Krenk (1983a) developed a linear theory for the blades simplified as

pretwisted elastic beams which were considered as under general loads. The cross-

sectional deformation in the longitudinal direction was investigated. Further research

developed an explicit asymptotic formula for the torsion-extension coupling for the

blades simplified as pretwisted elastic beams which had arbitrary homogeneous cross

section (Krenk 1983b). Esmailzadeh and Jalili (1998) developed a linear model for

the blades considered as non-rotating cantilever Timoshenko beams. Nevertheless,

the study only considered the first mode of vibration. The results obtained showed

that the increase of tip mass would almost always reduce the stable region. From the

study of model established, it was concluded that purely flexural or even the Euler-

Bernoulli model rather than Timoshenkowould produce an incorrect periodic region.

Kane et al. (1987) investigated the dynamics of a cantilever beam attached to a

moving base. The stretching and bending in shear and warping directions were

considered. Later on, Dwivedy and Kar (1999a, b) studied both the steady-state

response and stability of a blade modelled as a slender beam with an attached mass

retaining up to cubic nonlinearities. Hanagud and Sarkar (1989) redefined the stretch

in studying a blade simplified as a cantilever beam attached to a moving support. The

research was considered valid for large displacement. In 2004, Yang et al. (2004)

studied the flexible motion of a blade considered as a uniform Euler-Bernoulli beam

attached to a rotating rigid hub and developed a set of fully coupled nonlinear-

differential equations to describe the axial, transverse, and rotational motions of the

beam. The centrifugal stiffening effect was included without the restriction

concerning angular velocity. The structural nonlinearities were found significant in

studying the dynamic characteristics of the blade.
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However, with the increase of the wind wing size, the large displacement of the

wing in both edgewise and blade direction can no longer be considered as the

second derivative of the elastic displacement. Larsen and Nielsen (2007) analysed

the nonlinear dynamic responses of rotating wind turbine wings with considerations

of the modal interactions due to parametric and additive excitation from the

motions of a support point. In their study, the interaction between the nacelle and

the wings is introduced as a support point motion of the wings (Larsen and Nielsen

2006). A Galerkin reduced degrees-of-freedom model was derived for analysing

various nonlinear phenomena. Moreover, the important nonlinear coupling between

the fundamental blade mode and the fundamental edgewise modes is identified by

the reduced system.

With the increasing demand for large-scale wind turbines and for the high

efficiency and controllability of the operations of the turbines, comprehension of

the nonlinear behaviour of the wind turbine blades becomes all the time important.

Several theoretical and numerical investigations on the nonlinear behaviour of the

blades are seen in the current literature (Larsen and Nielsen 2006; Liu et al. 2015;

Huang 2001). However, due to the complexities of the wind turbine blades under

dynamic wind loads, not many systematic studies on nonlinear behaviour of the

blades are found in the field, and a thorough comprehension of nonlinear behaviour

of the blades is still lacking. The research presented in this chapter intends to study

the nonlinear behaviour of the HAWT blades under fluctuating wind loads and to

characterize these nonlinear behaviour. The influences of different external excita-

tions due to the wind loads on the nonlinear responses of the blade are to be

examined. With implementation of the newly developed periodicity-ratio (P-R)

method, the nonlinear responses of the blade are quantitatively characterized, and

the results are compared with that of the Lyapunov exponent method, which is

probably the most popular method in the field in diagnosing nonlinear behaviour of

a dynamic system. With the approach described in this chapter, the global responses

of the wind turbine blades can be quantified and accurately diagnosed

corresponding to large ranges of system parameters, geometric dimensions, and

loading conditions. A periodic-nonperiodic-quasiperiodic-chaotic region diagram

is to be created with the approach for quantitatively and graphically evaluating the

nonlinear behaviour of the blades. This research is significant for HAWT blade

designs with considerations of nonlinear vibrations of the blades. In analysing and

characterizing the nonlinear responses of the HAWT blades, the approach described

in this chapter shows efficiency and accuracy, in comparing with the other

approaches used in the field.

1.3 HAWT Modelling

Figure 1.5 shows a sketch of HAWT considered in this chapter. The blade of the

turbine is illustrated in Fig. 1.6. For the sake of clarity, the blade is considered as a

cantilever beam. In Fig. 1.5, OX0Y0 represents the inertial coordinate system for the

8 D. Xia et al.



blade, and the OXY is the rotating coordinate system moving with the blade under

the wind load.

The speed of the blade is considered as varying with time and can be

expressed as

Ω ¼ Ω0 þ A cosωt ð1:1Þ
where Ω0 is the average angular velocity, A is amplitude, and ω is the frequency for

blade rotation.

The wind speed can be divided into the long period and short period part (Wang and

Zhang 2003). The varying velocity of the fluctuating wind applied on the turbine

blade is assumed as

Fig. 1.5 Sketch of

horizontal-axis wind

turbines (HAWT)

Fig. 1.6 Blade of turbine
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Vv ¼ V0 þ V tð Þ ð1:2Þ
where V0 is the average wind speed and V(t) is a function reflecting the fluctuating

wind. According to the aerodynamic principle (Wang and Zhang 2003; Huang

2001), the wind force on any point of wind wing blade in the rotated plane can be

written as

F xð Þ ¼ 1

2
ρSCL Ωxð Þ2 þ 2

3
Vh

� �2
" #

ð1:3Þ

where S is the area of the wind wing blade, CL is the lift coefficient of the wing, and

Vh is the wind speed on the hub.

For the sake of analysis, take the infinitesimal as an example, as shown in Fig. 1.4;

the displacement can be ignored comparing with the length of the beam.

The centrifugal force on the X and Y direction can be written as in Eqs. (1.4a)

and (1.4b):

f ax ¼ f lx þ f kx þ f qx ¼ m

Ω0 þ Ω00 cosΩ1tð Þ2x
þ2 Ω0 þ Ω00 cosΩ1tð Þ _v

�Ω00Ω1 sin Ω1tð Þv

2664
3775dx ¼ f xdx ð1:4aÞ

f ay ¼ f ly� f qy ¼ m Ω0þΩ00 cosΩ1tð Þ2vþmΩ00Ω1 sin Ω1tð Þx
h i

dx¼ f ydx: ð1:4bÞ

The equation of internal force of the infinitesimal can be written as in Eq. (1.4a),

with the assumption that the beam is made of homogeneous material and the axis

will not change after deformation as shown in the Fig. 1.7.

Therefore, the displacement of end F is obtained as follows:

ΔF ¼ FF0 ¼ u x; tð Þiþ v x; tð Þj, ð1:5Þ

Fig. 1.7 Model of beam

after deformation
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and the displacement of end G is obtained by

ΔG ¼ uþ uxdxð Þiþ vþ vxdxð Þj: ð1:6Þ
F and G are two boundaries of the beam, and F

0
and G

0
are the two boundaries after

deformation; the following equation can be obtained:

ΔFþΔF
0
G

0¼ΔGþdxi, ð1:7Þ
where ΔF is the displacement of the F and ΔG is the displacement of the G.
Therefore, the displacement of ΔF

0
G

0
can be acquired as

ΔF0G0 ¼ ΔGþ dxi� ΔF ¼ ux þ 1ð Þdxiþ vxdxj: ð1:8Þ
The length of the infinitesimal after deformation can be written as

ΔF0G0j j ¼ ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ux þ 1ð Þ2 þ v2x

q
: ð1:9Þ

And the extensional strain of the beam in axial direction can be calculated with

ε0 ¼ ds� dx

dx
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ uxð Þ2 þ υ2x

q
� 1: ð1:10Þ

The bending strain from the central axis of the beam can be given as

ε1 ¼ y
∂2υ

∂x2
1þ ∂υ

∂x

� �2
" #�3=2

8<:
9=;: ð1:11Þ

Applying Taylor series expansion for above-mentioned equations, to obtain

ε0 ¼ ds� dx

dx
¼ ux þ 1

2
v2x þ � � �� � � ð1:12Þ

ε1 ¼ y
∂2

v

∂x2
1þ ∂v

∂x

� �2
" #-3

2

8<:
9=; ¼ y

∂2
v

∂x2
þ � � �� � � ð1:13Þ

According to Eqs. (1.12) and (1.13), strain ε is obtained by

ε ¼ ε0 þ ε1 ¼ ux þ 1

2
v2x þ y

∂2
v

∂x2
: ð1:14Þ

In the cross section of the beam that is asymmetrical related to plane xz, one can

have

E

ðð
A

y
∂2

v

∂x2
dA ¼ 0: ð1:15Þ
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In this case, the axial force of the deformation section along the vector ΔF
0
G

0
(δ) is

expressed with

N x; tð Þδ ¼ EA
0 ∂u
∂x

þ 1

2

∂v
∂x

� �2
" #

δ ¼ EA
0 ds� dx

dx
δ: ð1:16Þ

And the bending moment of the section in the beam is equal to

M x; tð Þ ¼
ðð

σydA0 ¼ E

ðð
ε x; y; tð ÞydA0 ¼ EI

∂2
v

∂x2
: ð1:17Þ

Then, the shear force in the beam section is given by

Q ¼ ∂M
∂x

j ¼ EIv
000
j: ð1:18Þ

Considering the aerodynamic force and inertia force and per the Newton’s law, the
dynamic equation of system can be given by

N x; tð Þδþ F xð Þjþ f xiþ f yj ¼ m€u iþ m€v j: ð1:19Þ

In the above equation,

N x; tð Þδ ¼ ux þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ux þ 1ð Þ2 þ v2x

q iþ vxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ux þ 1ð Þ2 þ v2x

q j: ð1:20Þ

The governing equation along the X and Y directions can be expressed as

∂
∂x

EA0 1� 1þ uxð Þ2 þ v2x

h i�0:5
� �

1þ uxð Þ
� �

þ f x ¼ m€u ð1:21aÞ

∂
∂x

EA0 1� 1þ uxð Þ2 þ v2x

h i�0:5
� �

vx

� �
� EIv

0 0 0 0 þ F xð Þ þ f y ¼ m€v ð1:21bÞ

Assume f ux; vxð Þ ¼ 1þ uxð Þ2 þ v2x

h i�0:5

, Taylor series expansion of f(ux, vx) can be

implemented,

f 0; 0ð Þ ¼ 1, ð1:22Þ
∂f
∂ux

¼ 1þ uxð Þ 1þ uxð Þ2 þ v2x

h i�3
2

; thus
∂f
∂ux

���� ux ¼ 0

vx ¼ 0

¼ �1 ð1:23Þ

∂f
∂vx

¼ �vx 1þ u2x
� 	2 þ v2x

h i
; and therefore

∂f
∂vx

���� ux ¼ 0

vx ¼ 0

¼ 0 ð1:24Þ
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∂2
f

∂ux∂ωx
¼ 3ωx 1þ uxð Þ 1þ uxð Þ2 þ ω2

x

h i�5
2

; and
∂2

f

∂ux∂ωx

����� ux ¼ 0

vx ¼ 0

¼ 0 ð1:25Þ

∂2
f

∂u2x
¼� 1þuxð Þ2þω2

x

h i�3
2þ3 1þuxð Þ2 1þuxð Þ2þω2

x

h i�5
2

;and
∂2

f

∂u2x

�����ux¼0

vx¼0

¼2 ð1:26Þ

∂2
f

∂ω2
x

¼� 1þuxð Þ2þω2
x

h i�3
2þ3ω2

x 1þuxð Þ2þω2
x

h i�5
2

;and thus
∂2

f

∂ω2
x

�����ux¼0

vx¼0

¼�1: ð1:27Þ

Then, f(ux, vx) can be expressed by

f ux; vxð Þ ¼ 1� ux þ u2x �
1

2
v2x : ð1:28Þ

Equation (1.21a) can be rewritten as

uxx þ
∂ 1

2
v2x þ 1

2
uxv

2
x � u3x


 �
∂x

þ f x
EA

0 ¼ m

EA
0 €u: ð1:29Þ

Neglecting the third-order nonlinear and inertia terms, applying the integral oper-

ation, Eq. (1.29) can be rearranged by

ux ¼ e tð Þ � 1

2
v2x �

1

EA
0

ðx
0

f xdx: ð1:30Þ

Sequentially, with Taylor expansion for Eq. (1.21b) and retaining the second-order

term, one may have

EA0 ∂
∂x

uxvxf g � EIv
0 0 0 0 þ F xð Þ þ f y ¼ m€v: ð1:31Þ

Substitute Eq. (1.25) into Eq. (1.26) to obtain

m€vþ EIv00 � EA
0
e tð Þv0000 � F xð Þ þ

∂
Ðx
0

f xdx

∂x
v0 � f y ¼ 0: ð1:32Þ

Substituting the interrelated formulas into Eq. (1.32), one may obtain

m€vþEIv00 �EA
0
e tð Þv0000 �ρairSCL Ω0þΩ00 cos Ω1tð Þ2x2þ4

9
V0þV1 cos Ω2tð Þ

� 
þ ∂
∂x

ðx
0

Ω0þΩ00 cos Ω1tð Þ2xþ2 Ω0þΩ00 cos Ω1tð Þ _v �Ω00Ω1 sin Ω1tð Þv
h i

v0dx

8<:
9=;

� Ω0þΩ00 cos Ω1tð Þ2vþΩ00Ω1 sin Ω1tð Þx
h i

¼ 0

ð1:33Þ
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with boundary conditions

x ¼ 0 : υ ¼ 0,
∂v
∂x

¼ 0,

x ¼ l :
∂2

v

∂x2
¼ 0,

∂3
v

∂x3
¼ 0:

ð1:34Þ

Introduce the following dimensionless parameters into Eq. (1.33):

x∗ ¼ x

l
,v¼ v

l
,g¼Al2

2I
,p¼ ρairSCLl

3

2m
, t∗ ¼

ffiffiffiffiffiffiffi
EI

ml4

r
t,V∗

0 ¼
ffiffiffiffiffiffiffi
EI

ml4

r
V0,V

∗
1 ¼

ffiffiffiffiffiffiffi
EI

ml4

r
V1,

Ω∗
0 ¼

ffiffiffiffiffiffiffi
ml4

EI

r
Ω0,Ω∗

00 ¼
ffiffiffiffiffiffiffi
ml4

EI

r
Ω00,Ω∗

1 ¼
ffiffiffiffiffiffiffi
ml4

EI

r
Ω1,Ω∗

2 ¼
ffiffiffiffiffiffiffi
ml4

EI

r
Ω2:

ð1:35Þ
The dimensionless form (3.24) of the partial differential Eq. (1.34) can be obtained

as shown below:

€vþ 2μ _v þ v
0000 � g

ð1
0

v00v02dx� p Ω0 þ A cosωtð Þ2x2 þ 4

9
V0 þ V1 cosω1tð Þ2

� 

þ ∂
∂x

ð1
0

Ω0 þ A cosωtð Þ2xþ 2 Ω0 þ A cosωtð Þ _v � Aω sin ωtð Þv
h i

v0dx

8<:
9=;

� Ω0 þ A cosωtð Þ2vþ Aω sin ωtð Þx
h i

¼ 0

ð1:36Þ
where μ is the damping coefficient and ω1 is the frequency of the wind fluctuation.

Apply Galerkin method to discretize Eq. (1.36), and assume that the solution of

Eq. (1.36) can be expressed as

v xð Þ ¼ y1 tð Þ∗Y1 xð Þ ð1:37Þ
where y1 is a weight function of time and Y1 is the mode function of the blade.

Assume that the mode function takes the following form:

Yj xð Þ ¼ cos h rjx
� 	� cos rjx

� 	þ cos hrj þ cos rj
sin hrj þ sin rj

sin hrj � sin rj

 �

: ð1:38Þ

Substituting the solution and the mode function into Eq. (1.36), the following

governing equation for the beam can thus be obtained as the following:

€y1 þ 2μ1 _y 1 þ ω2
0y1 � ay31 � bp Ω0 þ A cosωtð Þ2 þ 4

9
cp V0 þ V1 cosω1tð Þ2

� Ω0 þ A cosωtð Þ2y1 � Aωd sin ωtð Þ ¼ 0

ð1:39Þ
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where

a ¼ �gλ2r

ð1
0

Y1
0 0
xð Þdx, b ¼

ð1
0

Y1 xð Þx2dx

c ¼
ð1
0

Y1 xð Þdx, d ¼
ð1
0

xY1 xð Þdx:

1.4 Implementation of Periodicity-Ratio in Characterizing

Nonlinear Dynamic Responses

1.4.1 Concept of Periodicity-Ratio Method

The periodicity-ratio method or P-R method is an efficient method for diagnosing

nonlinear behaviour of dynamic systems. The P-R method considers the geometry

of Poincare maps of nonlinear response. An index named P-R value is developed to

describe the periodicity of a system through an examination of the overlapping

points in a Poincare map with respect to the total number of points generated by

Poincare sections (Nayfeh and Mook 1979; Dai 2008; Dai and Wang 2008).

Consider a general dynamic system subjected to an external excitation of period

T; for a solution of a considered system x(t), the following expression must be

satisfied if it is a periodic solution:

x t0 þ jTð Þ ¼ x t0ð Þ, ð1:40Þ
where t0 denotes a random time and j is the number of visible points in the

corresponding Poincare map and T is the period of the system. For a completely

periodic system, all the points in a Poincare map must be overlapping points,

regardless of how large the time rang is. For a real dynamical system, there is a

finite number of j points in the Poincare map. To define whether a point in the

Poincare map is an overlapping point or not can be judged by the following

equations (Dai 2008; Dai and Wang 2008):

Xki ¼ X t0 þ kTð Þ � X t0 þ iTð Þj j, ð1:41Þ
_X ki ¼ _X t0 þ kTð Þ � _X t0 þ iTð Þ�� ��, ð1:42Þ

where k is an integer in the range 1� k� j and i is an integer in the range 1� i� n in
which n is the total number of points generated for the Poincare map over the time

range considered. Equation (1.41) and Eq. (1.42) are to define whether the dis-

placements and velocities of the two points i and k are identical receptively. With

these definitions, the following conclusions can be obtained:

1. As the points in the Poincare map are represented by displacement and velocity

indicated as (xi, _x i) for the ith points, if the ith point (xi, _x i) is an overlapping
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point of the kth point (xk, _x k ), the velocity and displacement of the kth point

should be identical with the ith point. The two points can be concluded as

overlapping points.

2. The point (xi, _x i) is considered to be an overlapping point of (xk, _x k) if and only if

the expressions of Eqs. (1.41) and (1.42) satisfy the following conditions:

Xki ¼ 0; _X ki ¼ 0: ð1:43Þ
If the above conditions are satisfied, the two points can be regarded as overlapped

points with each other. The total number of the points overlapping the kth point can
be calculated by

ζ kð Þ ¼
Xn

i¼k
Q Xkið ÞQ� _X ki

	
 �n o
P
Xn

i¼k
Q Xkið ÞQ� _X ki

	
 �� 1
� �

, ð1:44Þ

where Q(y) and P(z) are step functions expressed in the following form:

Q yð Þ ¼ 1, if y ¼ 0;
0, if y 6¼ 0;

�
ð1:45Þ

P zð Þ ¼ 1, if z ¼ 0;
0, if z 6¼ 0:

�
ð1:46Þ

The total number of overlapping points can be expressed as

N ¼ ζ 1ð Þ þ
Xn

k¼2
ζ kð Þ P

Yk�1

i¼1
Xki þ _X ki

� �� �
: ð1:47Þ

For a perfect periodic case,

N ¼
X j

k¼1
ζ kð Þ: ð1:48Þ

1.4.2 Further Development in Determining for P-R Values

Overlapping points are not necessarily periodically appearing in a Poincare map. To

determine the number of the periodic points in a Poincare map, assume that there

are M sets of visible points in a Poincare map and j sets among these contain

overlapping points.

Consider the average time span of the overlapping points:

τ ¼ tk,q � tk, 1
q� 1

, ð1:49Þ

where q represents the number of the overlapping points in the kth set and tk, q
indicates the time when the qth overlapping point appears. In the kth set, each

overlapping point may appear in every τ time units named periodic overlapping
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points. Consider the following variance for determining how periodic overlapping

points may occur:

p2 ¼
Pq�1

i tk, iþ1 � tk, i � τð Þ2
q� 1

: ð1:50Þ

If p2 equals to 0 or is small enough, the overlapping points in the kth set are

completely periodic overlapping points.

Considering the kth set of overlapping points among the j sets, the time span

between the ith point in the kth set and the i þ 1th point in the same set can be

defined as

Tk, i ¼ tk, iþ1 � tk:i: ð1:51Þ
And the time span between the (iþ 2)th point and the (iþ 1)th point can be

described:

Tk, iþ1 ¼ tk, iþ2 � tk, iþ1: ð1:52Þ
If the overlapping points in the kth set satisfy the following equation:

Tk, i � Tk, iþ1 ¼ 0 ð1:53Þ
then the i, iþ 1, iþ 2 points are periodic points. The number of periodic points with

an identical time span in the kth group can be determined by employing the

following formula:

ξ ið Þ ¼
Xq�1

h¼i

Q Tk,h � Tk,hþ1ð Þ
( )

P
Xq�1

h¼i

Q Tk,h � Tk,hþ1ð Þ � 1

 !
þP Q

Xq�1

h¼i
Q Tk,h � Tk,hþ1ð Þ

� �� �
: ð1:54Þ

The total number of periodic points in the kth set can be given by

ɸ kð Þ ¼ ξ 1ð Þ þ
Xq�1

i¼2
ξ ið ÞP

Yi�1

h¼1
Tk,h � Tk,hþ1f g

� �
: ð1:55Þ

The total number of periodic overlapping points (NPP) is expressible as

NPP ¼
X j

k¼1
ɸ kð Þ: ð1:56Þ

Thus, the P-R value can be defined as

γ ¼ lim
n!1

NPP

n
: ð1:57Þ

The P-R value therefore quantifies the periodicity of a response of a dynamic

system. If the dynamic system is completely periodic, all the points in the Poincare
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map are overlapping points, and the P-R value should equal to 1. If a system is

completely nonperiodic, γ equals 0, the system will be quasiperiodic or chaotic. The

quasiperiodic cases can then be distinguished from chaos by the other means such

as least square method. Also, as one may notice that there may exist infinite number

of different types of response with different P-R values in between zero and one, it

should be noticed that the P-R value is calculated based on the infinitely large

number of n and the time range considered should be t2 [0,1).

1.5 Lyapunov Exponent

1.5.1 Concept of Lyapunov Exponent

In order to understand the characteristics of the Lyapunov exponent method, it may

need to review the definition and application of the method. Lyapunov exponent of

a dynamical system is used to measure the sensitive dependence upon initial

conditions that is a characteristic of chaotic behaviour. The exponent actually

indicates the average exponential rate of divergence or convergence of nearby

trajectories in a phase diagram.

For a system evolving from two slightly differing initial conditions, say x and x
+ ε, where ε is a small quantity, after n iterations of a numerical simulation, the

divergence of the two systems can be characterized approximately as

ε nð Þ � εeλn, ð1:58Þ
where λ is defined as the Lyapunov exponent.

Considering a nonlinear dynamic described by a general equation

xnþ1 ¼ f xnð Þ ð1:59Þ
after n iterations, the difference between two initially nearby states can be written as

f n xþ εð Þ � f n xð Þ � εeλn, ð1:60Þ
where fn(x)¼ f{f[. . .f[f(x)]. . .]}.
Taking the natural logarithm of the equation, it can be obtained as

ln
f n xþ εð Þ � f n xð Þ

ε

� 
� nλ: ð1:61Þ

For small ε, the general expression of the Lyapunov exponent can be given by

λ � 1

n
ln

df n

dx

���� ����, ð1:62Þ
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or

λ ¼ lim
n!1

1

n

Xn�1

i¼0
ln f

0
xið Þ�� ��: ð1:63Þ

From the definitions above, it can be seen that when λ< 0, the system is periodic,

while if λ> 0, nearby trajectories diverge, and the evolution is sensitive to initial

conditions and is therefore chaotic. However, the divergence of chaotic trajectories

can only be locally exponential. Therefore, to obtain the Lyapunov exponents, one

must average the local exponential growth over a long time. Lyapunov exponents

have been defined in terms of the principal axes of an n-dimensional ellipsoid in an

n-dimensional phase space. Similarly, the behaviour of the volume of the ellipsoid

is related to the sum of Lyapunov exponents. The relative rate of change of an

n-dimensional volume V in n-dimensional phase space under the action of flow is

given by the ‘Lie derivative’ (Rong et al. 2002; Shahverdian and Apkarian 2007;

Kim and Choe 2010).

For an n-dimensional system, there are n Lyapunov exponents, since stretching

can occur for each axis. An n-dimensional initial volume is developed as (Henon

1976; Wolf et al. 1985)

V ¼ V0e
λ1þλ2þλ3ð Þn: ð1:64Þ

For the continuous time dynamic system, the n-dimensional initial volume devel-

oped as

V ¼ V0e
λ1þλ2þλ3ð Þt: ð1:65Þ

For a dissipative system, the sum of the exponents must be negative. If the system is

chaotic, then at least one of the exponents is positive.

Taking a driven pendulum system as an example, three Lyapunov exponents

should be used to describe the three dimensions of the phase space (θ,ω,φ) where θ
is the phase angle, ω is the phase velocity, and φ is the initial phase angle. Since the

orbits of the pendulum are the solutions to a set of differential equations governing

the dynamic system, the calculation for the Lyapunov exponents is rather compli-

cated. On a chaotic attractor, the directions of divergence and contraction are

locally defined, and the calculation must be constantly adjusted. Despite this

difficulty, many computer programs have been developed for calculating Lyapunov

exponents. The Lyapunov exponent approach is not valid for diagnosing whether or

not this system is periodic or chaotic if it cannot determine an expression for a

dynamic system. The usual test for chaos with the utilization of the Lyapunov

exponent is the calculation for the largest Lyapunov exponent. The largest positive

Lyapunov exponent of a system is believed to indicate the corresponding system is

chaotic. As an example, for a three-dimensional dissipative system, (0,�,�) of the

Lyapunov exponents implies stable limit cycle; (0, 0, �) implies quasiperiodic

oscillation, and (þ, 0, �) suggests a strange attractor of chaos (Carbajal-Gómez

et al. 2013). For a four-dimensional dissipate dynamical system, (þ,þ,0,�),
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(þ,0,0,�), and (þ,0,�,�) of the Lyapunov exponent indicate strange attractors, and

the first cases represent hyperchaos, as indicated in hyper-Rossler system (Shin and

Hammond 1998; Liao 2016). Currently, Lyapunov exponent is the only method to

diagnose hyperchaos.

1.5.2 Calculation of Lyapunov Exponent Spectrum

There are several different methods to calculate the Lyapunov exponent, such as the

whole Lyapunov exponent, global and local Lyapunov exponent, and Lyapunov

spectrum. The method of whole Lyapunov exponent also known as the maximum

Lyapunov exponent is suitable for the discrete differential system, whereas the

Lyapunov spectrum is more suitable for continuous differential systems (Castanier

and Pierre 1995; Yang and Wu 2011). The global Lyapunov exponent, on the other

hand, gives a measure for the total predictability of a system, whereas the local

Lyapunov exponent estimates the local predictability around a given point in phase

space.

Considering an n-dimensional continuous dynamical system

dX

dt
¼ F Xð Þ ð1:66Þ

X(t) such as X (t¼ 0)¼X0(t) represents a trajectory of the system from X0(0), and X
(t) is another trajectory, let define

X̌ tð Þ ¼ X tð Þ � X0 tð Þ: ð1:67Þ
It can be obtained that

dX̌

dt
¼ DF X0 tð Þ; tð ÞX̌ ð1:68Þ

where DF is the Jacobian matrix with time-dependent coefficients. If we consider

an initial deviation of X0(t), then

X̌ tð Þ ¼ M tð Þ~X 0 ð1:69Þ
where M(t) is the fundamental (transition) matrix solution of Eq. (1.67) associated

with the trajectory X0(t) and the evolution equation of M(t) can be obtained as

dM tð Þ
dt

¼ DF X0 tð Þ; tð ÞM tð Þ: ð1:70Þ

For an appropriately chosen X0(t), the rate of the exponential expansion or contrac-
tion in the direction of X0(t) on the trajectory passing through X0 can be expressed as
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λi ¼ lim
t!1

1

t
ln
� X0 tð Þkk

X0 0ð Þkk ð1:71Þ

where the symbol kk represents the vector norm and λi is the calculated Lyapunov

exponent.

To obtain the Lyapunov exponent spectrum for a continuous dynamical system, a

set of linearly independent vectors x1, x2, x3. . .xn may form the basis of the n-
dimensional state space. Choosing an initial deviation along each of these

n factors, n Lyapunov exponent λi can be determined, and this set of Lyapunov

exponent can be defined as Lyapunov exponent spectrum. For each initial vector,

the Eq. (1.70) can be integrated for a finite time T, and a set of vectors X1(T ),
X2(T ), . . .Xn(T ) can be obtained. The new set of vectors is orthonormalized by the

application of Gram-Schmidt procedure as follows:

X̂1 ¼
X1 Tð Þ
X1 Tð Þkk ð1:72Þ

X̂n ¼
Xn Tð Þ �Pn�1

i¼1 Xn Tð ÞX̂i


 �
X̂i

Xn Tð Þ �Pn�1
i¼1 Xn Tð ÞX̂i


 �
X̂i

�� : ð1:73Þ

Subsequently, using X(t¼ T) as an initial condition for Eq. (1.70) and using each of
the X̂i as an initial condition for Eq. (1.69), Eqs. (1.69) and (1.70) can be integrated

again for a finite time and carry out the Gram-Schmidt procedure to obtain a new set

of orthonormal vectors. The norm in the denominator can be denoted by Nk
j .

Thus, after repeating the integrations and the processes of Gram-Schmidt

orthonormalization r times, the Lyapunov exponent can be obtained from

bλi ¼ 1

rT

X r

k¼1
lnNk

j ð1:74Þ

The Lyapunov exponent spectrum can be obtained as a consequence.

Numerous numerical methods are proposed to estimate the spectrum of the

Lyapunov exponent (Odavic et al. 2017) base on the numerical integration of

vibrational equation, aiming to improve the accuracy and efficiency of algorithms.

The Lyapunov exponent is also applied in diagnosing the dynamic of the system in

engineering applications (Czolczynski et al. 2017). Moreover, numerous researches

have been conducted for the development of Lyapunov exponent. For instance, it

has shown its efficiency in differentiating the hyperchaotic system in a four-

dimensional vibrational system (Yang and Liu 2013; Li et al. 2014).

Although the spectrum of the Lyapunov exponent has been proven to be one of

the most theoretically sound methods which can be used to obtain a measure of the

sensitive dependence upon initial conditions and has been proven as a powerful tool

in characterizing the nonlinear behaviour of dynamic systems (Kim and Choe 2010;

Wolf et al. 1985; Castanier and Pierre 1995), it should be noticed, however,

although the Lyapunov exponent method is developed on a solid theoretical
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basis, the actual determination of the Lyapunov exponents is rather time-consuming

and relying on numerical calculations. The numerical method used and the numer-

ical computations themselves may bring unavoidable errors in determining the

Lyapunov exponents.

1.6 Analyses and Diagnosis of the Nonlinear Behaviour

of the Wind Turbine Blade

The behaviour of the HAWT blade governed by the model described in Sect. 1.3 is

nonlinear and complex. With the utilization of the model, the nonlinear behaviour

of the HAWT blade can be examined numerically. For diagnosing the nonlinear

behaviour of the blade, the P-R method can be implemented.

Numerical simulations based on fourth-order Runge-Kutta method can be

conducted to demonstrate the nonlinear motions of the considered system, though

the other numerical methods can also be considered. In order to demonstrate the

types of the nonlinear responses of the system governed by the model established in

Sect. 1.3, phase diagrams and Poincare maps of are plotted for various cases.

Figures 1.8 and 1.9 show the phase diagram and Poincare map, respectively, for a

periodic case with a specific set of parameters. The P-R value corresponding to this

case is indeed equal to 1, i.e. all the overlapping points in the corresponding

Poincare map are periodic, as expected.

Many cases are found irregular, i.e. neither perfectly chaotic nor perfectly

periodic. Figures 1.10 and 1.11 indicate the phase diagram and Poincare map for

such an irregular case of which the P-R equals to 0.34.

Quasiperiodic cases of the nonlinear system considered are also found in the

numerical simulations. Figures 1.12 and 1.13 illustrate the phase diagram and

Poincare map for a quasiperiodic case of which the P-R value is zero.

Fig. 1.8 Phase diagram

Ω ¼ 1.2, V1¼ 1

22 D. Xia et al.



Fig. 1.9 Poincare map

Ω ¼ 1.2, V1¼ 1

Fig. 1.10 Phase diagram

Ω ¼ 2.4, V1¼ 3

Fig. 1.11 Poincare map

Ω ¼ 2.4, V1¼ 3
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The system considered has chaotic responses as well. Figures 1.14 and 1.15

show the phase diagram and Poincare map for a chaotic case of this system. In this

case, the P-R equal is zero as expected.

In considering that the P-R value can be used as a single value index to describe

the periodicity for infinite types of responses of a nonlinear system, the nonlinear

behaviour of the system can be quantitatively diagnosed by the P-R method without

physically plotting a single diagram, and large ranges of system parameters can be

considered as desired. With the P-R values, therefore, a diagram named periodic-

quasiperiodic-chaotic region diagram can be conveniently constructed for graphi-

cally demonstrating the nonlinear behaviour of the turbine blade considered over

the ranges of system parameters needed. Two of such diagrams are shown in

Figs. 1.16 and 1.17, for analysing the nonlinear responses of the blade under various

wind speed and turbine rotation speed. In the diagrams, blue diamonds are used for

Fig. 1.12 Phase diagram

Ω ¼ 3, V1¼ 16

Fig. 1.13 Poincare map

Ω ¼ 3, V1¼ 16
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Fig. 1.14 Phase diagram

Ω ¼ 4, V1¼ 10

Fig. 1.15 Poincare map

Ω ¼ 4, V1¼ 10

Fig. 1.16 Nonlinear

behaviour region diagram

(V1 vs. Ω)
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illustrating the periodic responses of the blade, red stars for chaos, and black stars

for quasi-periodic motions. As found in the present research, some of the responses

of the system are not falling into the well-categorized characteristics; they can be

nonperiodic, i.e. not periodic, or quasiperiodic or chaotic, though they may show

certain level of periodicity. They are therefore named irregular motions and plotted

with black plus symbols (þ’s) as shown in Figs. 1.16 and 1.17.

As can be seen from Fig. 1.16, various responses may occur with respect to

different wind speed and turbine rotation speed. The nonlinear behaviour can be

identified from the region diagram within a large range of parameters. When wind

speed and turbine rotation speed become larger, chaotic response of the blade may

occur as can be seen from Figs. 1.18 and 1.19. Moreover, Figs. 1.20, 1.21, 1.22,

and 1.23 show the quasiperiodic and periodic selected cases from Fig. 1.17 con-

sidering the parameters Ω and V0.

Fig. 1.17 Nonlinear

behaviour region diagram

(V0 vs. Ω)

Fig. 1.18 Phase diagram

Ω ¼ 4.5, V0¼ 20
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It can be seen, from the region diagram, the dynamical behaviour varies with a

tiny change of parameters. Figures 1.24 and 1.25 show the phase diagram and

Poincare map of a chaotic case with P-R value 0. Figures 1.26 and 1.27 represent a

periodic case with P-R equal to 1. It can be seen that, with the Ω change from 2.7 to

3.2, the system changes from chaos to a periodic case.

The Lyapunov exponent method is probably the most popular method used in

the field for diagnosing the nonlinear behaviour of a dynamic system. Lyapunov

exponent determines convergence or divergence of a system. Convergent cases are

usually considered as periodic cases. However, as recognized by the researchers in

the field, not all the converged cases are periodic cases (Henon 1976). As found in

the present research, the Lyapunov exponent approach is less reliable for some

cases especially when its maximum value is around zero. One case, in comparing

with the approach of P-R method, is shown in Figs. 1.28 and 1.29. As can be seen

Fig. 1.19 Poincare map

Ω ¼ 4.5, V0¼ 20

Fig. 1.20 Phase diagram

Ω ¼ 3.5, V0¼ 15
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Fig. 1.21 Poincare map

Ω ¼ 3.5, V0¼ 15

Fig. 1.22 Phase diagram

Ω ¼ 1.2, V0¼ 10.8

Fig. 1.23 Phase diagram

Ω ¼ 1.2, V0¼ 10.8
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Fig. 1.24 Phase diagram

V1¼ 12, Ω ¼ 3.2

Fig. 1.25 Poincare map

V1¼ 12, Ω ¼ 3.2

Fig. 1.26 Phase diagram

V1¼ 12, Ω ¼ 2.7
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Fig. 1.27 Poincare map

V1¼ 12, Ω ¼ 2.7

Fig. 1.28 Poincare map

Ω ¼ 14, V1¼ 10

Fig. 1.29 Lyapunov

exponent Ω ¼ 14, V1¼ 10
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from the figures, the Lyapunov exponent is positive which is 0.0014, but the

response of the blade is obviously not chaotic though Lyapunov exponent indicates

divergence of the system. Nevertheless, the P-R value in this case is 0.64 that

implies certain periodicity but not perfectly periodic. Indeed, the response of the

blade in this case is nonperiodic and shows irregular behaviour.

Also, based on the computations for diagnosing the nonlinear behaviour of the

blade, P-R method is more efficient and uses much less time for the diagnosis in

comparing with that of Lyapunov method. In generating the P-R value, the CPU

time used is about 2.1 s, while the time used by Lyapunov method is about 5.3 s for

each case. Actually, as indicated in the literature, in generating the periodic-

quasiperiodic-chaotic region diagram, the CPU time used by the P-R method is

about 1/3 of that of the Lyapunov method (Xia 2016).

1.7 Conclusions

Horizontal-axis wind turbines (HAWT) are becoming popular in people’s efforts of
implementing green power in the electric power market. The HAWT, especially

those constructed at the shores, are getting larger and more powerful with longer

and more flexible wind turbine blades, which are subjected to inconstant wind

loads. These cause the concerns of the researchers and engineers for the nonlinear

vibratory responses of the blades and the effects of the nonlinear responses on the

operation, service life, and reliability of the structures of the HAWT. Analysis of

the nonlinear behaviour of the HAWT is therefore crucial to the design,

manufacturing, and application of the blades and the turbines themselves. This

chapter provides the development of an analytical model for HAWT blades and an

approach to quantitatively characterize the nonlinear behaviour of the HAWT

blades. With the descriptions and concepts provided in the chapter, the following

can be summarized:

1. The behaviour of HAWT blades can be very complex, and a powerful and

practically sound tool is needed not only for analysing nonlinear behaviour of

the blades but also for diagnosing the complex behaviour of the blade systems.

2. In analysing the behaviour of the HAWT blades, the effects of aerodynamic

forces, elastic forces, and inertia forces including Coriolis forces acting on the

blades are the essential loads on the blades and needed to be taken into

consideration in establishing the mode governing the motion of the blades.

The blade geometric nonlinearity and the nonlinear rotation of the blade

subjected the inconstant wind loads may also need to be counted in modelling

the HAWT blades as described in the context.

3. The periodicity-ratio approach and the P-R value described in the chapter show

efficiency and accuracy in quantitatively describing the periodicity of the

responses of a dynamic system and can be implemented to reliably characterize

the nonlinear behaviour of a dynamic system.
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4. With implementation of the periodicity-ratio approach, a perfect periodic

motion can be identified as the case of which its P-R value is one, whereas a

perfectly chaotic case can be identified as perfectly nonperiodic with P-R value

equals to zero.

5. As the P-R value described the periodicity of the nonlinear response, there can

be infinite types of responses corresponding to different levels of periodicity

i.e. different P-R values.

6. With application of the P-R method, the irregular motions in between perfect

periodic and chaotic motions can be diagnosed for research and engineering

application purpose.

7. The periodic-quasiperiodic-chaotic region diagrams provided in this chapter

are significant for analysing the nonlinear behaviour of a HAWT blade as they

provide visible regions of different types of nonlinear responses of the blade.

Such diagram can also be used as a powerful tool in designing and manufactur-

ing the blades. It should be noticed, however, although three system parameters

are used for generating the two diagrams provided, more system parameters

can be conveniently considered if so desire.

8. As per the numerical simulations conducted with implementation of the model

established, the HAWT blade considered shows periodic responses when the

wind speed and blade rotation speed are both not very high.

9. Quasiperiodic and chaotic responses of the blade are related to initial condi-

tions and also related to the system parameters, in addition to the wind speed

and blade rotation speed.

10. In comparing the Lyapunov exponent method, as a single value index, P-R

method is more efficient in terms of calculation time for diagnosing the

nonlinear characteristics.

11. The approach described in this chapter provides a practically sound tool for

quantifying and diagnosing the vibratory responses of HAWT blade and is

significant for turbine and turbine blade designs with considerations of

nonlinear vibrations of the blades.
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Appendix A

This appendix provides the main code for calculating phase diagram, Poincare map,

P-R value, region diagrams and Lyapunov exponents. The numerical simulation is

based on the fourth-order Runge-Kutta method. Main process of the calculation is

provided in the Appendix, and implementations are added in each line as well.
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Code for Poincare map plotting

[x,x1,t]=RKwindwing3(x0,x10,omega0,omega00,omega1,miu,omega2,w1,f1,a,b,c,d
,hh,n,V0,V1);
figure; plot(t(1:n),x(1:n),'k','linewidth',2);hold on;  %wave diagram
xlabel('\fontname{Times New 

Roman}\fontsize{30}\it{t}');ylabel('\fontname{Times New 
Roman}\fontsize{30}\it{x}');   
set(gca,'FontName','Times New Roman','FontSize',20,'linewidth',2);

%set(gca,'XTick', [800  1000 1200]);   
%print(gcf,'-dpng','-r350','1.png');
figure; plot(x(1:n),x1(1:n),'k','linewidth',2);hold on;  %wave diagram
xlabel('\fontname{Times New 

Roman}\fontsize{30}\it{x}');ylabel('\fontname{Times New 
Roman}\fontsize{30}\it{x1}');   

set(gca,'FontName','Times New Roman','FontSize',20,'linewidth',2);  
%print(gcf,'-dpng','-r350','2.png');

n2=floor((n-n1)/(aa));xx=zeros(1,n2);xx1=zeros(1,n2);
%prepare for poincare map
figure;
for i=1:n2

xx(i)=x(n1+round((i-1)*(aa)));
xx1(i)=x1(n1+round((i-1)*(aa)));
plot(xx(i),xx1(i),'.k','markersize',10);hold on;

end
%poincare map
xlabel('\fontname{Times New Roman}\fontsize{30}\it{x}');
ylabel('\fontname{Times New Roman}\fontsize{30}\it{x1}');
%set xlabal and y label
set(gca,'FontName','Times New Roman','FontSize',20,'linewidth',2); 
print(gcf,'-dpng','-r350','3.png');
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Code for region diagram plotting

[x,x1,t]=RKwindwing3(x0,x10,omega0,omega00,omega1,miu,omega2,w1,f1,a11,c11
1,c211,k11,lamad11,b1,d1,hh,n,V0,V1,g);
figure; plot(t(1:n),x(1:n),'k','linewidth',2);hold on;  %wave diagram
xlabel('\fontname{Times New Roman}\fontsize{30}\it{t}');
ylabel('\fontname{Times New Roman}\fontsize{30}\it{x}');   
set(gca,'FontName','Times New Roman','FontSize',20,'linewidth',2);
set(gca,'XTick', [800  1000 1200]);    
figure; plot(x(1:n),x1(1:n),'k','linewidth',2);hold on;  %wave diagram

xlabel('\fontname{Times New Roman}\fontsize{30}\it{x}');
ylabel('\fontname{Times New Roman}\fontsize{30}\it{x1}');   

set(gca,'FontName','Times New Roman','FontSize',20,'linewidth',2);   

n2=floor((n-n1)/(aa));xx=zeros(1,n2);xx1=zeros(1,n2);
%prepare for poincare map

figure;
for i=1:n2

xx(i)=x(n1+round((i-1)*(aa)));
xx1(i)=x1(n1+round((i-1)*(aa)));
plot(xx(i),xx1(i),'.k','markersize',10);hold on;

end
xlabel('\fontname{Times New 
Roman}\fontsize{30}\it{x}');ylabel('\fontname{Times New 
Roman}\fontsize{30}\it{x1}'); %set xlabal and y label

set(gca,'FontName','Times New Roman','FontSize',20,'linewidth',2);
%set size of coordinate  
nnn1=100;nnn2=100;
nV0=zeros(1,nnn1);nomega1=zeros(1,nnn2);pr=zeros(nnn1,nnn2);
for jj=1:nnn1

for jjj=1:nnn2
nV0(jj)=0.2*jj+10;
nomega1(jjj)=0.035*jjj+1;
V0=nV0(jj);
omega1=nomega1(jjj);
omega2=omega1;
aa=2*3.14159265/omega1/hh;

[x,x1,t]=RKwindwing3(x0,x10,omega0,omega00,omega1,miu,omega2,w1,f1,a1,b1,c
1,d1,hh,n,V0,V1);

n2=floor((n-n1)/(aa));xx=zeros(1,n2); xx1=zeros(1,n2); 
for i=1:n2

xx(i)=x(n1+round((i-1)*(aa)));
xx1(i)=x1(n1+round((i-1)*(aa)));

end
z=zeros(n2,n2);
for i=1:n2

for j=i:n2
z(i,j)=sqrt((xx(i)-xx(j))^2+(xx1(i)-xx1(j))^2);

if z(i,j)<0.0001 %value for calculation 
z(i,j)=1;

else
z(i,j)=0;

end
end

end
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Code for Lyapunov exponent calculations

for ii=1:n2-2
zz=z(ii,ii+1:n2);
zza=find(zz==1);
if length(zza)>=1

for t=1:length(zza)
z(zza(t)+ii,zza(t)+ii+1:n2)=0;

end
end

end
for k1=3:n2

a=z(1:k1-1,k1);
b=find(a==1);
if length(b)>1

z(b(1)+1:k1-1,k1)=0;
end

end
e=zeros(1,n2);
for t=1:n2

c=z(t,:);
d=find(c==1);
if length(d)>1

e(t)=length(d);
else

e(t)=0;

end
end
sum=0;
for t=1:n2

sum=sum+e(t);
end
pr(jj,jjj)=sum/n2;                   %need to find it in 

workspace
end

end
for jj=1:nnn1

for jjj=1:nnn2        
if pr(jj,jjj)>=0.9

plot(nV0(jj),nomega1(jjj),'dk');hold on;
end
if (pr(jj,jjj)<0.9)&(pr(jj,jjj)>0.001)

plot(nV0(jj),nomega1(jjj),'+k');hold on;
end
if pr(jj,jjj)==-1

plot(nV0(jj),nomega1(jjj),'*k');hold on;
end

end
end
xlabel('\fontname{Times New 

Roman}\fontsize{30}\it{f2}');ylabel('\fontname{Times New 
Roman}\fontsize{30}\it{\omega}');
set(gca,'FontName','Times New Roman','FontSize',16,'linewidth',2);
%set(gca,'XTick', [-4 -3 -2 -1 0 1 2 3 4]);

%set coordinate value for xlabel                               
%set(gca,'YTick', [-10 -5 0 5 10]);   
%axis([0.2,2.05,-0.01,0.21]);
%print(gcf,'-dpng','-r350','Region diagram of f2 to omiga.png');

toc
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[x,x1,t]=RKwindwing3(x0,x10,omega0,omega00,omega1,miu,omega2,w1,f1,a11,c11
1,c211,k11,lamad11,b1,d1,hh,n,V0,V1,g);

x=x(50000:10:100000);
N=length(x);                   

m=3;             
dt=1;                         
N=N-(m-1)*dt;                  
Y=chonggou(x,m,N,dt);          
xP=abs(fft(x)).^2;

N1=floor(length(xP)/2);     
xP(1)=[];                  
xP=xP(1:N1);
[maxP,T]=max(xP);     

dmin=inf;                           
for i=1:(N-1)

for j=i+1:N
d(i,j)=sqrt(sum((Y(:,i)-Y(:,j)).^2));     
if dmin>d(i,j)

dmin=d(i,j);
end

end
end
davg=2*sum(sum(d))/(N*(N-1));                     
deps=(davg-dmin)*0.02;        
epsmin=dmin+deps/2;           
epsmax=dmin+2*deps;           

lmdsum=0 ;                              
for i=1:(N-1)

if i==1
L=inf;                              
for j=(T+1):(N-1)                              

d=sqrt(sum((Y(:,j)-Y(:,i)).^2));         
if (d<L)&&(d>epsmin)

L=d;
n=j;                           

end
end

end
if i>1
L1=sqrt(sum((Y(:,i)-Y(:,n+1)).^2));      
oldn=n;
if (L1~=0)&&(L~=0)

lmdsum=lmdsum+log(L1/L);
end
lmd(i-1)=lmdsum/(i-1);          

num=0;         
cth=0;          
kznum=0;        
while (num==0)          

for j=1:(N-1)
if abs(j-i)<T     

continue;     
end

d=sqrt(sum((Y(:,i)-Y(:,j)).^2));      
if (d<epsmin)||(d>epsmax)  

continue;
end
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dd=sum((Y(:,i)-Y(:,j)).*(Y(:,i)-Y(:,oldn+1)));
CTH=dd/(d*L1);          

if acos(CTH)>(pi/4)    
continue;

end
if CTH>cth

cth=CTH;        
n=j;

L=d;
end
num=num+1;

end
if num<2           

epsmax=epsmax+deps;     
kznum=kznum+1;          
if kznum>5             

L=inf;
for j=1:(N-1)

if abs(i-j)<T-1     
continue;     

end
d=sqrt(sum((Y(:,i)-Y(:,j)).^2));      
if (d<L)&&(d>epsmin)            

L=d;
n=j;

end
end
break; 

end
num=0;          
cth=0;

end
end

end
end

maxlambda=sum(lmd)/length(lmd)
toc
.
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2.1 Introduction

Concentrated solar power (CSP) systems collect sunlight energy at high tempera-

ture and transfer heat to a power cycle that produces electricity. Lenses or mirrors

are used in CSP systems to concentrate the solar thermal energy on a small area.

The concentrated light is converted to heat, which ultimately produces superheated

steam which drives a Rankine steam turbine cycle. The basic principles of CSP

systems are covered in reference works such as Romero-Alvarez and Zarza (2007)

and are not repeated here.

Concentrators differ in tracking of the sun and focusing the light. Concentrating

technologies exist in different optical types, the most popular parabolic trough (PT),

and solar power tower (SPT). Solar concentrators are simple. Nevertheless, the

concentrators are still far from achieving the theoretical maximum concentration of

sun energy. Different concentrators produce different receiver temperatures and

different peak temperatures of the steam for the power cycle, with correspondingly

varying thermal efficiency of the power cycle. In addition to the type of receiver and

the solar field feeding this receiver, also the receiver fluid plays a role in the peak

temperatures of the steam. The receiver fluid may be oil, molten salt (MS), or

directly water/steam. In the first case, intermediate heat exchangers are needed

between oil or MS and water/steam. MS permits thermal energy storage (TES) in

hot and cold reservoir to decouple in some extent the electricity production from the

availability of sunlight, have a quicker start-up at sunrise, or prolongate the

electricity production after sunset.

An additional MS circuit has been proposed as an addition to existing CSP plants

with oil as the receiver fluid. However, MS better replaces the oil as the receiver

fluid. Replacement of oil with MS in existing PT CSP plants has translated in

operation at higher temperatures translating in higher steam temperature for higher

efficiency in power generation and additionally in lower-cost TES.

Direct use of water/steam has a receiver fluid that has the advantage of simplic-

ity, cost, and, possibly, in some extent, efficiency, but this limits the production of

electricity to the sun availability. Condensation of steam usually occurs in

air-cooled towers.

Boost by combustion of fossil fuels, typically natural gas (NG), drastically

improves the match between production and demand of CSP plants in every

configuration. However, boost by NG burners is reasonable only if performed in

minimal extent, for efficiency of energy use and regulations concerning emissions

of carbon dioxide. The use of NG in a combined cycle gas turbine (CCGT) plant

occurs with a fuel conversion efficiency that may be almost double the efficiency of

a CSP plant operated NG only (fuel conversion efficiency above 60% vs. fuel

conversion efficiencies around 30%). The spreading in between the fuel conversion

efficiency of CSP and NG plant is even larger in case of cogeneration, where the gas

turbine plant also features production of process heat, for heating, cooling, desali-

nation, or other activities.
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Despite the largest CSP plant uses the SPT technology, the global market is

dominated by PT plants. About 90% of all the CSP plants are designed with the PT

technology. The SPT technology offers theoretically higher efficiency because of

the higher temperature. However, the technology is also more demanding from the

economic and technical view point, reason why SPT developments are less

advanced than PT systems. The two largest CSP projects in the world are the

Ivanpah Solar Electric Generating System (ISEGS) SPT facility and the Solar

Energy Generating Systems (SEGS) facility which uses PT.

Figure 2.1 presents a Google Map image of the central tower and heliostats of the

Ivanpah CSP SPT facility.

The net capacity of Ivanpah 1-3 is 377 MW, while the net capacity of SEGS

II-IX is 340 MW. Both facilities use NG to boost the electricity production, in a

Fig. 2.1 Google Map image of the Ivanpah CSP SPT facility. https://www.google.com/maps/

@35.5572423,-115.4705938,703m/data¼!3m1!1e3?hl¼en
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greater extent the Ivanpah facilities, in a minor extent the SEGS facilities, and both

lack of TES capabilities. As discussed later, the actual capacity factors (ε) of both
installations (electricity produced in a year divided by the product of net capacity by

365 days by 24 h a day) are about 20%, even with the benefit of the boost by

combustion of NG not included in the computation.

The CSP technologies presently do not compete on price with photovoltaics

(PV) solar panels that have come through enormous progress in recent years

because of the decreasing prices of the PV panels and the much smaller operating

costs. While the total solar electricity generation (2015) is 253.0 TW�h, or 1.05% of

the total, CSP plants represent (2015) less than 2% of the worldwide installed

capacity of solar electricity plants, for a total CSP contribution to the global energy

mix of about 0.02%.

2.2 Solar Power Tower (SPT)

A solar power tower concentrates the sunlight from a field of heliostats on a central

tower. The heliostats are dual-axis tracking reflectors. Heliostats are grouped in

arrays. They concentrate sunlight on a relatively small central receiver that is

located at the top of the tower. As the sunlight is much more concentrated, the

working fluid in the receiver may be heated to temperatures of 500–1000 �C
depending on the fluids and the solar concentration. This heat is the hot source

driving the power generation cycle.

The field of heliostats focuses the light on top of the tower with typically a 500�
to 1000� concentration. Light is absorbed by metal tubes and delivered to the

receiver fluid, either water/steam or nitrate salt. Not all the incident light is

collected by the receiver fluid because the light may be shaded, blocked, absorbed,

or spilled. All these losses account for more than 40% of the incident light.

Receiver, piping, and tank thermal losses further reduced the amount of energy

transferred to the power cycle. The power cycle then rejects the most of this energy

as waste heat to the air-cooled condenser. Peak steam temperature is about 550 �C.
Condenser temperature in desert installations with high solar exposure is 40 �C. The
gross electric energy production is about 23–24% of the incident light. The net

electric energy production, depurated by the energy to pumps and other auxiliaries,

is finally 21–22% of the incident light. The above figures are based on the 565 �C
molten nitrate salt SPT with Rankine power cycle of Reilly and Kolb (2001).

Figure 2.2 presents a scheme of a CSP SPT with TES having MS as the receiver

fluid and steam as the power cycle fluid. An auxiliary NG heater is included in the

scheme to boost production.

Reference SPT specifications change if the receiver fluid is water/steam or MS

(nitrate salt) as follows (data from Reilly and Kolb 2001; Margolis et al. 2012;

Radosevich 1988): for nitrate salt as the receiver fluid, the receiver temperature is

565 �C, the peak flux on receiver is 1000 kW/m2, the hot storage temperature is

565 �C, the cold storage temperature is 290 �C, and condenser temperature is 40 �C
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for heat rejection. In the case of water/steam as the receiver fluid, the receiver

temperature is 550 �C; the peak flux on receiver is >300 kW/m2. The hot and cold

storage tanks are not available in this case, all the other parameters being

unchanged.

Supercritical steam power cycles (Pacheco et al. 2013) and supercritical carbon

dioxide power cycles (Turchi et al. 2013) are presently considered to improve the

conversion efficiency thermal electric. Higher temperature receiver fluids and

higher temperature MS and water/steam towers are also considered. Materials

and manufacturing improvements are however the focus to reduce the cost of the

solar thermal plant, still the major downfall of CSP SPT.

2.3 Parabolic Troughs (PT)

A parabolic trough (PT) is made up of a linear parabolic reflector concentrating the

sunlight onto a tubular receiver located along the focal line of the reflector. The

tubular receiver is filled with a working fluid that may be oil, nitrate salt, or water/

steam. The reflector follows the sun. The tracking operates along a single axis. The

working fluid is usually heated to 390–500 �C, depending on the fluid, as it flows

through the receiver. If oil or MS, this fluid is then used as the heat driving the

production of steam for the power cycle.

The shaped mirrors of a PT focus the sunlight on a tube running along the focus

line with an 80� concentration. The sunlight is absorbed by tube often in a glass

vacuum and delivered to the receiver fluid. While PT may be less efficient than

SPT, they are much simpler and less expensive to build and operate.

Fig. 2.2 Simplified scheme of a CSP SPT with TES having MS as the receiver fluid and steam as

the power cycle fluid. An auxiliary NG heater is included in the scheme to boost production
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Figure 2.3 presents a scheme of a CSP PT with TES having MS as the receiver

fluid and steam as the power cycle fluid. An auxiliary NG heater is included in the

scheme to boost production.

Reference PT specifications change if fluid is water/steam, oil, or MS (nitrate

salt) as follows (data from Margolis et al. 2012; Kearney and Herrmann 2006;

Feldhoff et al. 2012; Bendt et al. 1979): for oil as the receiver fluid, the receiver

temperature is 390 �C. The peak flux on receiver is 25 kW/m2. The hot storage

temperature is 390 � C, the cold storage temperature is 290 �C, and condenser

temperature is 40 � C for heat rejection. For nitrate salt as the receiver fluid, the

receiver temperature is 500 �C, the peak flux on receiver is 25 kW/m2, the hot

storage temperature is 500 �C, and the cold storage temperature is 300 � C. The

condenser temperature is unchanged. In the case of steam as the receiver fluid, the

receiver temperature is 500 �C; the peak flux on receiver is 25 kW/m2. The hot and

cold storage tanks are not available in this case, all the other parameters being

unchanged.

Supercritical steam power cycles (Pacheco et al. 2013) and supercritical carbon

dioxide power cycles (Turchi et al. 2013) are being considered to improve the

conversion efficiency thermal electric. Higher temperature receiver fluids. Mate-

rials and manufacturing improvements to reduce costs are also the major area of

concern for CSP PT.

Fig. 2.3 Simplified scheme of a CSP PT with TES having MS as the receiver fluid and steam as

the power cycle fluid. An auxiliary NG heater is included in the scheme to boost production
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2.4 Capacity Factors and Boost by Natural Gas

Plant level data of electricity production and NG consumption of CSP plants with

NG boost in the United States are provided in (Energy Information Administration

2017).

The capacity factor (ε) is presently defined as the ratio of the actual electricity

produced in a year E [MW�h] vs. the product of net capacity P [MW] by 365 days

by 24 h.

ε1 ¼ E

P � 365 � 24
This capacity factor does not account for the consumption of NG to boost produc-

tion. Hereafter, we refer to this capacity factor as ε1.
Data of Energy Information Administration (2017) includes the energy input

from both the sun and the NG. A first opportunity to account for the NG consump-

tion is to multiply the above capacity factor by the ratio of the solar energy input

QSun to the total sun and NG energy input QSun + QNG, all in [MW�h]. Hereafter, we
refer to this capacity factor as ε2.

ε2 ¼ E

P � 365 � 24 �
QSun

QSun þ QNG

Two other capacity factors are here defined. These capacity factors help to under-

stand the value the NG has in a GT or CCGT plant vs. the CSP plant value.

A third capacity factor, ε3 hereafter, is defined as the ratio of the actual electricity
produced reduced of the electricity produced by burning the NG in a GT plant,

estimated by using a reference thermal conversion efficiency ηGT ¼ 30% vs. the

product of net capacity by 365 days by 24 h.

ε3 ¼ E� QNG � ηGT
P � 365 � 24

A fourth capacity factor, ε4 hereafter, is defined as the ratio of the actual

electricity produced reduced of the electricity produced by burning the NG in a

CCGT plant, estimated by using a reference thermal conversion efficiency

ηCCGT ¼ 60% vs. the product of net capacity by 365 days by 24 h.

ε4 ¼ E� QNG � ηCCGT
P � 365 � 24

These other capacity factors permit to better assess the actual efficiency of the

CSP plants that use boost by NG.

Finally, an important parameter not accounted for in the present review is the

electricity generation profile requested from a specific facility. The largest is the
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departure of the electricity generation profile from the sun energy profile during a

day, the more difficult is to achieve a large capacity factor.

The availability of TES is indeed a key factor to reduce NG boost or complement

by burning natural gas, however, requiring extra costs.

Table 2.1 presents the capacity factors of the three largest CSP projects, Ivanpah,

SEGS, and Solana, described later in the manuscript.

2.5 Ivanpah Solar Electric Generating System (ISEGS)

Information on CSP projects including ISEGS is provided in (National Renewable

Energy Laboratory 2017). The CSP technology is SPT. Ivanpah consists of three

separate units. Ivanpah 1 has gross capacity 126 MW (121 MW net), while Ivanpah

2 and 3 have gross capacity 133 MW each (128 MW net). Location is Primm, NV,

California, United States. The total turbine capacity is 377 net and 392 gross. The

plant is operational since January 2014. The land area is 14,164,000 m2. The solar

resource is 2717 kW�h/m2/year. The planned electricity generation is

1,079,232 MW�h/year, corresponding to a capacity factor ε1 from the 377 MW

net power of 33%. The approximate cost of the project is about 2200 USD million

(2014 values), corresponding to about 2272 USD million in August 2017.

The solar field is characterized by a heliostat solar field aperture area of

2,600,000 m2. The number of heliostats is 173,500. Every heliostat is made of

Table 2.1 Capacity factors of the three largest CSP projects

Time window for average and way

to account for the NG boost Ivanpah 1 Ivanpah 2 Ivanpah 3 SEGS IX Solana

Years 2014, 2015, and 2016, NG

not accounted for (ε1)
19.43% 16.29% 18.42% 22.85% 29.89%

Years 2014, 2015, and 2016, NG

accounted for with η actual plant
(ε2)

16.09% 13.55% 15.08% 20.02% 29.89%

Years 2014, 2015, and 2016, NG

accounted for with η ¼ 30% (ε3)
16.15% 13.56% 15.37% 20.33% 29.89%

Years 2014, 2015, and 2016, NG

accounted for with η ¼ 60% (ε4)
12.88% 10.82% 12.32% 17.81% 29.89%

Jul 2016 to Jun 2017, NG not

accounted for (ε1)
22.98% 21.59% 23.67% 22.54% 32.65%

Jul 2016 to Jun 2017, NG

accounted for with η actual plant
(ε2)

19.20% 18.04% 20.12% 19.91% 32.65%

Jul 2016 to Jun 2017, NG

accounted for with η ¼ 30% (ε3)
19.40% 18.19% 20.37% 20.22% 32.65%

Jul 2016 to Jun 2017, NG

accounted for with η ¼ 60% (ε4)
15.83% 14.80% 17.07% 17.91% 32.65%
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two mirrors and has an aperture area of 15.0 m2. The tower height is 140 m. The

receiver fluid is water/steam with inlet temperature 249 �C and outlet temperature

566 �C. The power cycle is steam Rankine with pressure 160 bar. Cooling method is

dry cooling. The planned annual gross solar-to-electricity efficiency is 28.72%.

Fossil boost (or backup) is by NG. The facility has no TES.

Data of electricity production and NG consumption of the Ivanpah CSP plant are

provided in (Energy Information Administration 2017).

Figure 2.4 presents the energy input to the solar plant, either solar or NG: the

efficiency of the plant, as ratio of electricity out to energy input; the electricity out,

from the actual plant and from a reference GT or CCGT plant burning the NG; and

finally the capacity factors, ε1 to ε4 defined before, for the Ivanpah 1 facility, of net
capacity 121 MW. The missing data of NG consumption in (Energy Information

Administration 2017) are interpolated from the neighboring months. ε2 and ε3 are
very close each other. The peak CSP plant efficiency is well above 30%. The

capacity factors are those of Table 2.1 column 1. The capacity factors are improving

after 3 years from commissioning. The average July 2016 to June 2017, NG not

accounted for, is 22.98%. In the case of NG accounted with η actual plant, it drops
to 19.20%. In the case of NG accounted for with η ¼ 60%, it reduces to 15.83%.

Figure 2.5 presents the electricity produced month by month in the Ivanpah

2 plant, the electricity produced burning the NG in a GT plant, and the electricity

produced burning the NG in a CCGT plant, plus the capacity factors, ε1, ε3, and ε4.
The net capacity is 128 MW.

The capacity factors are those of Table 2.1 column 2. The capacity factors are

improving also here. The average July 2016 to June 2017, NG not accounted for, is

21.59%. In the case of NG accounted with η actual plant, it drops to 18.04%. In the

case of NG accounted for with η ¼ 60%, it reduces to 14.80%.

Figure 2.6 presents the electricity produced month by month in the Ivanpah

3 plant, the electricity produced burning the NG in a CSP plant and the electricity

produced burning the NG in a CCGT plant, plus the three capacity factors, ε1, ε3,
and ε4. The net capacity is 128 MW.

In the case of Ivanpah 3, with net capacity 128 MW net, the capacity factors are

those of Table 2.1 column 3. The capacity factors are improving the same of

Ivanpah 1 and 2. The average July 2016 to June 2017, NG not accounted for, is

23.67%. In the case of NG accounted with η actual plant, it drops to 20.12%. In the

case of NG accounted for with η ¼ 60%, it reduces to 17.17%.

Ivanpah 3 is the best performing plant of the Ivanpah installations over the last

12 months.

The actual capacity factors for the three installations are much smaller than the

planned values, 23.67% of the latest best performing Ivanpah 3 vs. the planned

33%, without accounting for the consumption of NG. Accounting for the NG

contribution at actual plant efficiency, the capacity factor is reduced to a 15%. In

the case of NG accounted for with η ¼ 60%, it reduces to another 15%.

The interested reader may find working models of SPT and PT plants including

the Ivanpah and the SEGS facilities in between the examples of Thermoflow
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Fig. 2.4 Energy input to the solar plant, either solar or NG; the efficiency of the plant, as ratio of

electricity out to energy input; the electricity out, from the actual plant and from a reference GT or

CCGT plant burning the NG; and finally the capacity factors ε1 to ε4 defined above for the Ivanpah
1 CSP SPT plant
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(Thermoflow, Inc 2017, 2012; Martin 2017), the leading multi-physics CSP system

simulation software.

A scheme of the Ivanpah 1 facility, design point operation, is provided in

Fig. 2.7, courtesy of Thermoflow, www.thermoflow.com (Thermoflow, Inc 2017,

2012).

A working model of another SPT installation, the 150 MW Rice Solar Energy

Project, proposed for Rice Valley, California, United States, and put on indefinite

hold in 2014, is provided in between the sample applications available with the free

trial software THERMOFLEX 23 by Thermoflow. Rice is featuring a much more

sophisticated design with MS as the receiver fluid and a double-tank TES on the MS

circuit permitting extended operation without any NG boost.

Fig. 2.5 Electricity produced month by month in the Ivanpah 2 plant, the electricity produced

burning the NG in a CSP plant, and the electricity produced burning the NG in a CCGT plant, plus

the three capacity factors ε1, ε3, and ε4
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A scheme of the Rice facility, design point operation, is provided in Fig. 2.8,

courtesy of Thermoflow, www.thermoflow.com (Thermoflow, Inc 2017, 2012).

2.6 Solar Energy Generating Systems (SEGS) Plants

Information on CSP projects including SEGS is provided in (National renewable

Energy Laboratory 2017). The CSP technology is PT. The 340 MW net, 376 MW

gross, SEGS facility, located in the California’s Mojave Desert, United States, is the

second largest CSP facility in the world and uses eight PT solar power fields.

Construction began in 1983, and the first unit was commissioned in 1984.

Fig. 2.6 Electricity produced month by month in the Ivanpah 3 plant, the electricity produced

burning the NG in a CSP plant and the electricity produced burning the NG in a CCGT plant, plus

the three capacity factors, ε1, ε3, and ε4
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Constructions of the other units followed. In addition to the eight units still

operational (SEGS II-IX), two units were canceled, one unit was not completed,

and one unit, SEGS I, has been decommissioned.

The total number of collectors, including the decommissioned unit, is 936,384.

The total land area is 6,474,970 m2. The solar resource is 2725 kW�h/m2/year. The

total solar field aperture area of SEGS II to SEGS IX is 2,232,018 m2.

Fig. 2.7 Thermoflow scheme of the Ivanpah 1 facility. Design point balance (Courtesy of

Thermoflow, www.thermoflow.com. All data extracted from public available sources, California

Energy Commission)

Fig. 2.8 Thermoflow scheme of the Rice facility. Design point balance (Courtesy of Thermoflow,

www.thermoflow.com. All data extracted from public available sources, California Energy

Commission)
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SEGS I, now decommissioned, had installed a 3 h TES. This TES was intended

for producing electricity during peak periods. The TES was damaged by a fire in

1999 and never restored. The other facilities, SEGS II to SEGS IX, do not

have TES.

The receiver fluid is Therminol. The power cycle is steam Rankine. The syn-

thetic oil is heated up to 400 �C in the receivers. There is fossil fuel backup

(or boost) by NG in all the facilities.

As an example of cost, one of the 33 MW Kramer Junction facilities required

90 USDmillion to build (1999 values). The approximate cost of a project delivering

the same net capacity of Ivanpah on PT technology would be 1569 USD million in

August 2017.

Solar Electric Generating Station II (SEGS II) is in Daggett, California. The start

year was 1985. The solar resource is 2725 kWh/m2/year. The solar field has an

aperture area of 190,338 m2. The solar field outlet temperature is 316 �C. The power
block is characterized by a turbine capacity of 30 MW net and 33 MW gross, the

power cycle pressure is 40 bar, and the turbine efficiency is 29.4%. There is fossil

fuel backup (or boost) by NG.

Solar Electric Generating Station III (SEGS III) is in Kramer Junction, Califor-

nia. The start year was 1985. The solar resource is 2725 kWh/m2/year. The solar

field has an aperture area of 230,300 m2. The solar field outlet temperature is

349 �C. The power block is characterized by a turbine capacity of 30 MW net

and 33 MW gross, the power cycle Pressure is 40 bar, and the turbine efficiency is

30.6%. There is fossil fuel backup (or boost) by NG.

Solar Electric Generating Station IV (SEGS IV) is also located in Kramer

Junction. Start year was 1989. The solar field has an aperture area of 230,300 m2.

The other characteristics are same of SEGS III.

Solar Electric Generating Station V (SEGS V) is also located in Kramer Junc-

tion. Start year was 1989. The solar field has an aperture area of 250,500 m2. The

other characteristics are the same of SEGS III.

Solar Electric Generating Station VI (SEGS VI) is also located in Kramer

Junction. Start year was 1989. The solar field aperture area is 188,000 m2. The

solar field outlet temperature is now 390 �C. The power block is characterized by a
turbine capacity of 30 MW net and 35 MW gross, the power cycle pressure is

100 bar, and the turbine efficiency is 37.5%. There is fossil fuel backup (or boost)

by NG.

Solar Electric Generating Station VII (SEGS VII) is also located in Kramer

Junction. Start year was 1989. The solar field aperture area is 194,280 m2. The other

characteristics are the same of SEGS VI.

Solar Electric Generating Station VIII (SEGS VIII) is in Harper Dry Lake,

California. The start year was 1989. The solar resource is 2725 kWh/m2/year.

The solar field aperture area is 464,340 m2. The solar field outlet temperature is

390 �C. The power block is characterized by a turbine capacity of 80 MW net and

89 MW gross, the power cycle pressure is 100 bar, and the turbine efficiency is

37.6%. There is fossil fuel backup (or boost) by NG.
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Solar Electric Generating Station IX (SEGS IX) is also located in Harper Dry

Lake. The start year was 1990. The solar field aperture area was 483,960 m2. The

other characteristics are the same of SEGS VIII.

Data of electricity production and NG consumption of the SEGS II to IX CSP

plants are provided in (Energy Information Administration 2017).

Figure 2.9 presents the energy input to the solar plant, either solar or NG; the

efficiency of the plant, as ratio of electricity out to energy input; the electricity out,

from the actual plant and from a reference GT or CCGT plant burning the NG; and

finally the capacity factors, ε1 to ε4 defined above of SEGS IX. The net capacity is

80 MW.

ε2 and ε3 are still very close each other, however, with larger differences vs. the

Ivanpah 1 facility. The peak CSP plant efficiency is above 35%. The capacity

factors are those of Table 2.1 column 4. The capacity factors are about constant or

even slightly reducing, as these plants are operating since many years. The average

July 2016 to June 2017, NG not accounted for, is 22.54%. In the case of NG

accounted with η actual plant, it drops to 19.91%. In the case of NG accounted for

with η ¼ 60%, it reduces to 17.91%. Only without accounting for the NG con-

sumption, Ivanpah is marginally better than SEGS IX.

When compared to the Ivanpah 3 facility, the latest 12 months’ capacity factor

for the SEGS IX facility is 1.1% lower if NG is not accounted for, 22.54%

vs. 23.67%. Accounting for the NG contribution at actual plant efficiency, the

capacity factor is only 0.2% lower, 19.91% vs. the 20.12% of Ivanpah 3, reflecting

the larger use of NG to boost production of the Ivanpah facility.

To be noted, the SEGS facilities have significantly different net and gross

capacity values, while in the Ivanpah facilities, net and gross capacity values are

much closer.

The operation of the SEGS VI plant is also discussed in Lippke (1995) and

Griffin et al. (2009). A scheme of the SEGS VI facility, design point operation, is

provided in Fig. 2.10, courtesy of Thermoflow, www.thermoflow.com

(Thermoflow, Inc 2017, 2012). A working model of SEGS VI is also provided in

between the sample applications available with the free trial software

THERMOFLEX 23 by Thermoflow.

2.7 Solana Generating Station

Information on CSP projects including Solana is provided in (National renewable

Energy Laboratory 2017). The 280 MW gross Solana CSP PT plant is the largest

single location CSP PT project in the world. It is in Gila Bend, Arizona, United

States. Solana features TES, in the form of a MS system that is coupled to the

otherwise traditional oil receiver fluid circuit. The TES system provides up to 6 h of

generating capacity after sunset. The net turbine capacity is 250 MW; the gross

turbine capacity is 280 MW. The start year is 2013. The land area is 7,800,000 m2.
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Fig. 2.9 Energy input to the solar plant, either solar or NG; the efficiency of the plant, as ratio of

electricity out to energy input; the electricity out, from the actual plant and from a reference GT or

CCGT plant burning the NG; and finally the capacity factors ε1 to ε4 defined above for the SEGS

IX CSP PT plant

56 A. Boretti



The planned electricity generation is 944,000 MW�h/year. The planned capacity

factor from the net capacity of 250 MW is therefore 43%.

The cost is approximately 2 USD billion, 10% less than the Ivanpah facility that

was completed only 2 months later, however, for 34% less net capacity.

The solar field aperture area is 2200,000 m2. Therefore, Solana has a solar field

aperture area per MW of gross capacity 44% larger than SEGS IX. (SEGS IX only

has a solar field aperture area of 483,960 m2 for a gross capacity of 89 MW.)

The number of solar collector assemblies (SCAs) is 3232. The number of loops

is 808. There are four SCAs per loop. Every SCA is made of ten modules. The

receiver fluid is Therminol VP-1. The TES fluid is Xceltherm MK1. The solar field

inlet temperature is 293 �C, while the solar field outlet temperature is 393 �C. The
power block is characterized by two turbines of gross power 280 MW (net power is

250 MW). The power cycle is steam Rankine, of maximum pressure 100.0 bar.

The cooling method is wet cooling. This permits better performances than the

dry cooling of the other plant located in desert areas but at the expenses of using

water. A fossil backup type based on NG is mentioned in (National renewable

Energy Laboratory 2017). However, no NG consumption data is given in (Energy

Information Administration 2017).

TES is by two-tank indirect (there is a separate circuit of MS fitted through a heat

exchanger to the oil circuit that also includes the receiver and the heat exchanger for

steam production). The storage capacity is 6 h.

Data of electricity production of the Solana CSP plant are provided in (Energy

Information Administration 2017).

Figure 2.11 presents the solar energy input to the plant; the efficiency of the

plant, as ratio of electricity out to energy input; the electricity out; and finally the

capacity factor ε1 for Solana. The net capacity is 250 MW. The capacity factors are

those of Table 2.1 column 5. The capacity factors are increasing, as this plant is also

relatively new. The average July 2016 to June 2017 is 32.65%. This capacity factor

Fig. 2.10 Thermoflow scheme of the SEGS VI facility. Design point balance (Courtesy of

Thermoflow, www.thermoflow.com. All data extracted from public available sources, California

Energy Commission)
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is much better than those of SEGS II to IX or Ivanpah 1 to 3, even if much lower

than the planned values of 43%.

A scheme of a smaller but similar PT installation, featuring oil as the receiver

fluid and a double-tank MS TES added the oil circuit, the 50 MW Andasol 1 plant,

located in Aldeire (Granada), Spain, is shown in Figs. 2.12 and 2.13, courtesy of

Thermoflow, www.thermoflow.com (Thermoflow, Inc 2017, 2012). Figure 2.12

presents a scheme of the Andasol 1 heat balance design point operation, while

Fig. 2.13 presents a scheme of the molten salt thermal energy storage system of the

facility.

A working model of Andasol 1 is also provided in between the sample applica-

tions available with the free trial software THERMOFLEX 23 by Thermoflow.

2.8 Discussion and Conclusions

The NG boost of CSP plants is controversial. In principle CSP plants should not use

NG, as otherwise they do not qualify as carbon-free plants. If CSP plants use NG

boost, this should be accounted for in the computation of the capacity factor.

The actual contribution to the total energy output by NG in a CSP with boost by

NG is also controversial. As the fuel energy conversion efficiency of the CSP

thermal plant is lower than the fuel conversion efficiency of a CCGT plant, it

may be argued that the splitting between solar and NG contributions to the

produced electricity in the specific plant is incorrect and the use of the NG in a

CCGT plant operated in parallel should be preferred.

We proposed different capacity factors to account for the NG boost and compare

CSP plants with and without NG boost. We analyzed the three world’s largest CSP
plants, Ivanpah, SEGS, and Solana.

Ivanpah SPT uses steam as the receiver fluid and has no TES. SEGS PT has oil as

the receiver fluid and steam produced in a heat exchanger oil-water/steam, but no

TES. Both Ivanpah and SEGS make use of NG boilers to boost their solar energy

output to match the contractual outputs. The Ivanpah and SEGS facilities are

limited by rules in the use of this NG, as this impacts on the monitored carbon

dioxide emission of the facilities. However, Ivanpah has used so far much more

boost by NG than SEGS to meet the contractual daily output. The recent Ivanpah

does not perform better than the old SEGS, delivering very close capacity factors

with or without the NG accounted for. Solana PT does not use NG boost, it has oil as

the receiver fluid and steam produced in a heat exchanger oil-water/steam featuring

a MS TES connected to the oil circuit. Even if other aspects affect the capacity

factor, nevertheless, the TES drives significantly up the capacity factor. Within the

limit of an analysis that does not include the actual daily generation profile, Solana

has a capacity factor 33% better than Ivanpah and SEGS also without considering

the help by NG boost for Ivanpah and SEGS.

Not considered in the present analysis, the daily generation profile may be

different for Ivanpah and SEGS.
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Fig. 2.11 Solar energy input to the plant; the efficiency of the plant, as ratio of electricity out to

energy input; the electricity out; and finally ε1. The actual capacity factor is still far from the

planned value
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Fig. 2.12 Thermoflow scheme of the Andasol 1 facility. Design point balance (Courtesy of

Thermoflow, www.thermoflow.com)

Fig. 2.13 Thermoflow scheme of the thermal energy storage of the Andasol 1 facility (Courtesy of

Thermoflow, www.thermoflow.com)
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We found TES is a key factor to achieve high capacity factors and avoid NG

boost. MS TES technology appears as the best avenue to generate nonintermittent

electricity with CSP and achieve high capacity factors. A 10 h TES eliminates the

need for a fossil fuel backup or boost of electricity production at sunrise and in the

evening peak hours. Next-generation CSP plants will very likely consist of three

major units, PT or SPT MS receivers to convert the solar energy into thermal

energy, TES section to store thermal energy using the MS, and finally power block

generating electricity through a steam turbine. While costs are expected to further

increase, the capacity factors may possibly rise well above the 40% mark.
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Chapter 3

Diagnosis of Nonlinear Stochastic Dynamics

of Active Slider in Nanometer Spacing

Y.F. Wang, Y. Lu, and G. Chen

3.1 Introduction

Storage of 10 Tb/in2 has been used to estimate the flying height signal. Recently,

hard disk drives requires a physical spacing in the level of 0.25 nm at the read-write

transducer location. A lot of physical and tribology issues exist to such a low flying

height. At such a small spacing intermittent contact of solid-solid and solid-liquid

between the slider and disk surface becomes inevitable.

At first, the current MEMS-based thermal fly-height control (TFC) technology

needs further improvement to satisfy the future needs. How to control slider to

reduce touchdown instability and eventually eliminate bouncing has been a press-

ing and challenging research topic. There are much research dedicated to address

this complex problem, including the effects of hysteresis, the influence of surface

roughness and waviness, and the lubricant modulation and uncertainty (Hua et al.

2016; Eguchi 2016; Canchi and Bogy 2010; Tagawa et al. 2007; Ono 2008; Xu

et al. 2007, Sheng and Xu 2011; Hua et al. 1999, 2009; Wang et al. 2000). Basically,

the contact dynamics of slider involves strong nonlinearity and stochastic proper-

ties. The existing research has clarified many nonlinear dynamic phenomena using

the FFT spectrum; however, many more complicated phenomena such as narrow-

band and wideband frequency spectrum and the stochastic features of system

response have yet been clarified. The existing analytical and numerical research

has been centered on deterministic model analysis. The widely observed random

properties of roughness and waviness of solid surfaces and modulation of lubricant

have not been fully reflected in the analysis.
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Secondly, in order to improve the capacity of HDD, a higher areal density and

accordingly higher track density in tracks per inch (TPI) are required. This poses a

big challenge for the servo-mechanical system to support the positioning of the

R/W head with a standard deviation of a few nanometers. Thus, accurately posi-

tioning the read/write head through the voice coil motor (VCM) actuator becomes

more critical to sustaining the recording density growth. One disk side was dedi-

cated to servo information to generate the position error signal (PES) between the

read/write head and the desired track Yang et al. 2001. The rotary actuator was

composed of a voice coil motor (VCM) and the bearing-supported actuator arm

with the read/write head and its suspension system. Head-disk interface-induced

vibrations are mixed with the position error signal (PES). Therefore, the rejection of

these kinds of disturbances is critical to improving the positioning accuracy of the

R/W head.

In this paper, we characterize the complex dynamics of active slider and then

develop the fuzzy rules from PES signal data and use these fuzzy rules to identify

noise type. A novel fuzzy median-mean filter is proposed which is capable of

removing large amounts of mixed Gaussian and impulsive noise. It can be showed

from the result of the test and the theoretical analysis that the proposed signal filter

provides superior results in the mixed noise environment when compared to

conventional median filters and mean filter.

3.2 Dynamics of Thermal Fly-Height Control Slider

The current slider technology uses thermal fly-height control (TFC) to bring the

read-write sensors of the slider closer to the disk by resistive heating-induced

thermal deformation/protrusion. While sub-nanometer level spacing has been

achieved using the TFC, slider stability and head-disk interface (HDI) reliability

at very small spacing remain to be fully understood. The TFC slider touchdown

dynamics with clearance from sub-3 nanometer to sub-nanometer involves in

varied interface effects in nanometer clearance regime including nonlinear

air-bearing force, intermolecular force, electrostatic force, and solid-solid and

solid-lubricant contact forces influenced by the uncertain effect of lubricant surface

profile and disk topographic effect which possess underlying fractal structure. The

nonlinear dynamics of TFC slider has been widely studied. The drawback of the

results lies in the limit of conventional nonlinear dynamic methods used, which are

majorly based on assumptions of small nonlinearity and being deterministic. In our

investigation, the data from well-known models and measured real data are used for

the diagnosis. Figures 3.1 and 3.2 are the typical FFT spectrum and spectrogram of

the responses of two TFC sliders in touchdown and near-contact process.

Thermal fly-height control is used in a static manner in todays’ disk drives, i.e., a
constant power is applied to the heater during writing and reading, respectively.

Dynamic flying height variations of a slider over a disk are composed of repeatable

and non-repeatable contributions. As the name suggests, repeatable variations of
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flying height occur at the same angular and radial position of the slider above the

disk at each revolution. Thus, the question arises as to whether a thermal fly-height

control slider can be used to dynamically control the repeatable flying height

variations between slider and disk. One of the first approaches to dynamic flying

height has been shown in Shiramatsu et al. (2008) where time domain and fre-

quency domain data have been used to estimate the flying height signal.
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Recently, a novel method of measuring the relative head-medium spacing based

on a measurement in the servo sectors is developed and simulated using a read-back

signal model by following Eqs.3.1 and 3.2 in Boettcher et al. (2011).

Δz ¼ � λ

2π
ln

ΦA λ; zð Þ þΦB λ; zð Þ
ΦA λ; zrefð Þ þΦB λ; zrefð Þ

� �
ð3:1Þ

PES ¼ A� B

Aþ B
ð3:2Þ

Therefore, the exact PES signal is critical to improving the accuracy of the TFC and

positioning control (PC).

3.3 Noise Properties of PES Signal

A HDD consists of a voice coil motor (VCM), several magnetic heads, several

disks, and a spindle motor. The head-positioning control system in HDDs is

illustrated in Fig. 3.3. The position error signal (PES) in the current hard disk drives

Disk

Spindle motor Disk

Magnetic head

Voice coil motor (VCM)

Controlled object

Spindle motor

Magnetic head

Position
detector

Power
amplifier

A/D
converter

D/A
converter

Servo
controller

Host
computer

VCM

Fig. 3.3 Schematic diagram of HDD
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is generated from the embedded servo data and used as the input for the track-

following controller. It is well known that the PES often be contaminated by noise

disturbances in hard disk drives. The control system for the micro-actuator loop is

shown in Fig. 3.4, where P (s) is the VCM actuator model, C(z) is the feedback

controller, and e is the measurement or the position error signal (PES) in HDDs.

Di(s), i ¼ 1, 2,. .., r are disturbance models and wi are white noises with unity

variances. v is the measurement noise with its standard deviation given in Du et al.

(2009). PES is the relative position between the R/W head and the disk track.

A hard disk drive position error signal (PES) can be decomposed in the fre-

quency domain into three components in Bramovitch et al. (1997).

This is typically due to the rotation of the spindle and therefore synchronous with

it or one of the spindle orders. While synchronous excitation may be large, it is

already a standard practice in the disk drive industry to use feedforward cancellers

to dramatically attenuate its effect: nonsynchronous or non-repeatable spectral

excitation. While this excitation does not correspond to any of the spindle orders,

it does have sharp spectral peaks due to cage orders. Typical sources of this

excitation are disk or arm resonances (which are less sharp but still narrowband),

often stimulated by synchronous or broadband excitation. Again, this can have a

significant effect on PES; however, it has become recently apparent that such

phenomena as disk resonances can be considerably reduced by the use of damped

substrates: broadband or baseline noise. This is the broad baseline level of the noise

that remains when all the narrowband components have been removed.

In order to achieve very high track densities, each of these sources of PES must

be reduced considerably. These noises are displayed in the form of useless infor-

mation, reduce the signal quality, and impact the successive work.

There are two popular kinds of noises studied: one is the Gaussian noise in Lin

et al. (2000) and the other is impulse noise in Gao et al. (2009). These effort

approaches for PES signal restoration are aimed at removing either Gaussian or

Fig. 3.4 Servo control loop with injected disturbances and measurement noise
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impulsive noise. However, in many situations, practical PES signal seldom only

contains single noise (Gaussian or impulse noise), and it is often contaminated by

more than one type of noises, such as mixed noise. The mixed noise corruption

often happens in some complex environment, for example, a signal with Gaussian

noise is transmitted through a disturbed communication channel. As such it is

important to design a filter to remove mixed noise in a PES signal-processing

environment without blurring the signal details.

3.4 Advanced Diagnosis of Noise Properties

Generally, data mining is the process of analyzing data from different perspectives

and summarizing it into useful information. In Wang et al. (2011), an off-line data

mining method with completeness and robustness to extract the fuzzy rules of the

friction force model was developed. In this section, we will improve that data

mining method so that it can be used to online identify the noise types and filtering

for PES signal. The scheme is described as follows:

3.4.1 Define Fuzzy Variables

Let e(k) denote the position error signal in this normal case. When the normal

position error signal is corrupted by d(k), the contaminated position error signal is

given by

~e kð Þ ¼ e kð Þ þ d kð Þ ð3:3Þ
where d(k) may be the disturbance noise, or the measurement noise, or a mix of the

disturbance noise and measurement noise.

We calculate the mean value of the contaminated position error signal as follows:

x kð Þ ¼ 1

k

Xk
j¼0

~e kð Þj j ð3:4Þ

Assume el and eu be some lower and upper bounds for e. Define the contaminated

position error signal ẽ(k) composed of three discrete signal levels, denoted by

{r1, r2, r3}. The probability density function (PDF) of ri is defined as

p rið Þ ¼ ni
k
, i ¼ 1, 2, 3 ð3:5Þ

where n1 is the number of lower signal (e˜(n) > el, n ¼ 0,..., k), n2 is the number of

middle signal (el < ẽ (n) < eu, n ¼ 0,..., k), and n3 is the number of upper signal
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(e˜(n) > eu, n ¼ 0,..., k). Based on the PDF, the feature variable y using identifica-

tion of the mixed noise is defined as

y kð Þ ¼ Min p r1ð Þ; p r3ð Þf g
Max p r1ð Þ; p r3ðð Þf g ð3:6Þ

3.4.2 Online Identify Noise Types

To identify the noise type by the use of fuzzy rules, our proposed approach consists

of the following steps:

Step 1. Divide the input and output spaces into fuzzy regions

Assume that the domain intervals of x(k) and y(k) are [x�, x+] and [y�, y+],
respectively, where the domain interval of a variable means that most probably, this

variable will lie in this range. The sets of linguistic labels are denoted by A ¼ {A1,
A2, A3} for x(k) and B ¼ {B1, B2, B3} for y(k), where each linguistic label is

associated with a fuzzy membership function. We use the fuzzy sets and member-

ship functions as shown in Fig. 3.5.

Step 2. Calculate degree of support

From a data mining perspective, the degree of support is the percentage of

records where the rule holds. If a fuzzy rule has practical meaning, it must have a

large enough degree of support from PES signal online data. Therefore, the degree

of support for a specific fuzzy input space is a good indicator for extraction of fuzzy

rules from numerical data. The degree of support for a fuzzy rule is defined as

follows:

Fig. 3.5 Fuzzy sets and membership functions
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Supx)y kð Þ ¼

Pk
p¼0

μBl y pð Þð ÞμAj
x pð Þð Þ

Pk
p¼0

μ Ajð Þp x pð Þð Þ
, ð3:7Þ

where the μAj (x( p)) and the μBl (y( p)) are values of membership functions for the p-
th record, respectively, and k is the PES sample, l, j 2 {1, 2, 3}.
For simplicity, we can use the following formula to calculate the degree of support:

Supx)y kð Þ ¼ 1

k þ 1ð Þ
Xk
p¼0

μBl
y pð Þð ÞμAj

x pð Þð Þ ð7:8Þ

Step 3. Generate a fuzzy rule base

Details of the data mining algorithm can be found in Fig. 3.6. We show the process

for a fuzzy rule-base generation. Design A¼ {A1, A2, A3} is a set of linguistic labels
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Fig. 3.6 Process of the data mining algorithm for PES signal noise
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for attribute x(k), and B¼ {B1, B2, B3} is another set of linguistic labels for attribute

y(k). For {A1}, we first calculate the respective degrees of support for pairs {A1,
B1}, {A1, B2}, and {A1, B3}. Then, we select a fuzzy subspace with the maximum

degree of support for this column. Repeating this process for {A2} and {A3}, we can

obtain one of the following fuzzy rules R(1), R(2), and R(3) in Step 4.

Step 4. Decide noise type using fuzzy rule base

Focusing on the R(1) rule base, i.e., the group of rules having B1 as the

consequent, we conclude that the noise type is a Gaussian noise. Similarly, if we

obtain the R(2) rule base, i.e., the group of rules having B3 as the consequent, the

noise type is generally considered as impulsive noise.

R 1ð Þ : IF x kð Þ;Aið Þ THEN y kð Þ;B1ð Þ, i ¼ 1, 2, 3 ð3:9Þ

R 2ð Þ : IF x kð Þ;Aið Þ THEN y kð Þ;B3ð Þ, i ¼ 1, 2, 3 ð3:10Þ
When the consequents of the fuzzy rules are not identical, i.e., various combinations

of B1, B2, and B3 (except R(1)and R(2)) appear in the THEN part, we define the type

of noise as a mixed one.

In such a case, the proposed fuzzy mean-median filter will be applied to remove

noises from PES signal.

R 3ð Þ :
IF x kð Þ;A1ð Þ THEN y kð Þ;Bið Þ
IF x kð Þ;A2ð Þ THEN y kð Þ;Bj

� �
, i, j, l ¼ 1, 2, 3:

IF x kð Þ;A3ð Þ THEN y kð Þ;Blð Þ

8<
: ð7:11Þ

3.5 Advanced Filtering of Noise Properties

3.5.1 Knowledge on Filter Selection

In signal processing, the most common methods are median filter and mean filter,

which are representations of nonlinear filter and linear filter, respectively. The

principles of the two techniques are different. The median filter and mean filter fit

for deferent kinds of noise. Mean filter has been applied to restrain Gaussian noise,

while median filter has been applied to restrain impulse noise.

In a mixed noise environment, where both Gaussian and impulsive noises are

present, new filtering techniques must be used. Hybrid filters have been suggested

as a method of solving this problem. In this paper, we combined both mean filter

and median filter together with an adjustment parameter. This adjustment parameter

is just equal to the fuzzy membership function B1 in Sect. 3.3. The flow chart of the

image denoising process is given in Fig. 3.7.
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3.5.2 Fuzzy Media-Mean Filter

In the following, a novel filter, fuzzy media-mean (FMM) filter, is developed to

remove the mixed noise. The fuzzy media-mean filter operates on a filtering

window. The proposed method operates as follows:

ϕ ¼ μB1 y kð Þð Þ ð3:12Þ
at first, weighted average fuzzy membership function is defined according to the

following relationship:

e kð Þ ¼ φm1 þ 1� φð Þm2

m1 ¼ median e k � 1ð Þ; ~e kð Þ; e k � 2ð Þ½ �, M ¼ 1

m2 ¼ mean e k � 1ð Þ; ~e kð Þ; e k � 2ð Þ½ �,M ¼ 1

8<
: ð3:13Þ

secondly, the final fuzy media-mean filter is obtained by means of the following

relationship,

e kð Þ ¼ φm1 þ 1� φð Þm2

m1 ¼ median e k � 1ð Þ; ~e kð Þ;RROe kð Þ½ �, M > 1

m2 ¼ mean e k � 1ð Þ; ~e kð Þ;RROe kð Þ½ �, M > 1

8<
: ð3:14Þ

where m1 is the mean filter and m2 is the median filter in Eq. 3.15. RRO, which is

synchronous to the rotational speed of the spindle motor, is also included in the

feedback servo loop. If PES is assumed to be ergodic and the average of PES NRRO

converges to zero, PES RRO can be calculated as in Eq. 3.15 with M rows of data

composed of n measured PESs from sector number 0 in Eq.3.17.

RROe kð Þ ¼ 1

M

XM
i¼1

PESi kð Þ ð3:15Þ

where k means the index of PES sample and i means the index of PES data row.

Gauss noise Mean filter

Median filter

Fuzzy median mean

Impulse noise

Mixed noise

Output signal

Identifying noise type
using data mining

Input signal

j

Fig. 3.7 The flow chart of noise removal
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3.5.3 Simulation Results

The reliability of the signal which was used for this purpose can be evaluated by

signal-to-noise ratio (SNR) which is given in Eq. 3.16. When the signal ratio of a

PES signal is high and the noise ratio is low, this PES signal is considered to be

good quality. Therefore, in the analysis of a PES signal, SNR value should

absolutely be examined. The parameters used for the following experiments are

specified as follows: a ¼ 0.03, b ¼ 0.1, c ¼ 0.2, d ¼ 0.5, and e ¼ 0.85 in Fig. 3.5.

The lower bound el ¼ �0.12, and the upper bound eu ¼ 0.12.

SNR ¼ 10lg

PN
k¼1

e kð Þ � ~eð Þ2

PN
k¼1

e kð Þ � ~e kð Þð Þ2
ð3:16Þ

The corrupted and the normal PES signal (200 sector/revolution) is shown in

Fig. 3.8. The noise PES signal is corrupted by white Gaussian noise and impulse

noise. And the experiment results using mean filter, median filter, and our proposed

filter are shown in Figs. 3.9, 3.10, and 3.11, respectively. The mean filter and

median filter using the following relations are indicated in (Gao et al. 2009).

e kð Þ ¼ median e k � 1ð Þ; ~e kð Þ;RROe kð Þ½ �
e kð Þ ¼ mean e k � 1ð Þ; ~e kð Þ;RROe kð Þ½ �

�
ð3:17Þ

It is obviously seen that FMM filter using Eqs. 3.13 and 3.14 has a better perfor-

mance aiming at mix noise especially the last few revolutions.

We can make a further comparison of SNR value of the FMM filter with mean

filter and median filter as shown in Table 3.1. The RRO values in the first revolution

equal to ẽ(k), so the filtered result e(k) using median filter equal to ẽ (k), which
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Fig. 3.8 Comparison of normal signal and corrupted signal

3 Diagnosis of Nonlinear Stochastic Dynamics of Active Slider in Nanometer Spacing 73



A
m

pl
itu

de
 o

f s
ig

na
ls

 (
x 

tr
an

ck
w

id
th

)

0.3

0.2

0.1

0

−0.1

−0.2

0 100 200 300 400 500 600 700 800 900 1000

Samples (200 sector/revolution)

Fig. 3.9 Comparison of normal signal and filtered signal using mean filter

A
m

pl
itu

de
 o

f s
ig

na
ls

 (
x 

tr
an

ck
w

id
th

)

.3

0.2

0.1

0

−0.1

−0.2

0 100 200 300 400 500 600 700 800 900 1000

Samples (200 sector/revolution)

Fig. 3.10 Comparison of normal signal and filtered signal using median filter

A
m

pl
itu

de
 o

f s
ig

na
ls

 (
x 

tr
an

ck
w

id
th

)

Samples (200 sector/revolution)

0.3

0.2

0.1

0

−0.1

−0.2

0 100 200 300 400 500 600 700 800 900 1000

Fig. 3.11 Comparison of normal signal and filtered signal using FMM filter

74 Y.F. Wang et al.



means the result is actually not filtered in the first revolution. Therefore, a compar-

ison of the last four revolutions of three filters is also shown in Table 3.1.

3.6 Conclusion

In this paper, the nonlinear stochastic dynamics of active slider are characterized. A

novel noise classifier and fuzzy median-mean filter using data mining techniques

for removing mixed noise from corrupted PES signal are proposed. The fuzzy

median-mean filter combining a median-type filter with a mean filter is able to

recover PES signal corrupted by Gaussian plus impulsive noise. The performance

of the proposed method is evaluated and compared with the classical median filter,

mean filter, and fuzzy filter algorithms for both impulsive noise and Gaussian noise

removal tasks. The quantitative and qualitative results on test PES signal demon-

strate that the proposed method can remove the noise effectively while preserving

the PES signal local features.
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Chapter 4

Formation Control of Nonholonomic Mobile
Robots Using an Acoustic Sensor

Michael Hegedus, Mehran Mehrandezh, and Raman Paranjape

4.1 Introduction

4.1.1 Leader-Follower Formation Controller

Everyday tasks that humans easily perform are extremely difficult for autonomous

robots. For example, an individual driving a vehicle can follow another automobile

at a relatively constant range. This person maintains a simple formation without

knowing his/her or the other vehicle’s location on Earth, travelling speed, and

angular velocity. Additionally, two drivers do not need to communicate with each

other to follow in formation; a driver only needs his vision to determine the relative

range and bearing of the other vehicle.

This research investigates the development of leader-follower formation con-

trollers for a team of mobile robots. The set of formation controllers proposed

assumes no communication between the leader and following robot. To maintain

formation, a position sensor is mounted on the follower. This sensor measures local

information: relative distance and bearing between the follower and a target.

Targets can include stationary objects in the environment and fixed points on the

leader. Global information relating to the leader and follower, such as world
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coordinates, linear velocity, and angular velocity, are unknown and need to be

estimated using only local range and bearing measurements.

List of Symbols

Sensor model for leader-follower configuration

(XO, YO) Position of object “o” in the world frame, where “a” can be the leader (l ), follower
( f ), or landmark (w)

(OX, OY ) Coordinate frame (X-axis, Y-axis) attached to object “o” in the world frame

(fXO,
fYO) Position of an object “o” in the follower’s coordinate frame

(frO,
fØO) Pose (range, bearing) to an object “o” in the follower’s coordinate frame

Mobile robot kinematic model

(a, b) Position away from a robot’s center of rotation, offset along its X-axis and Y-axis

ϴO Bearing of object “o,” with respect to the world frame

(vO, ωO) Linear and angular velocity of object “o”

Relative leader-follower kinematics

q Position vector of the leader’s center of rotation in the world frame, qєℝ3

V Linear velocity vector of the leader, Vєℝ3

Ω Angular velocity vector of the leader, Ωєℝ3

(RO,TO) Rotation and translation vector of object “o” in the world frame, (RO,TO)єSE(3)
uf Control input (law) for the following robot, uf ¼ (vf,ωf)

Tє ℝ2

(k1, k2) Positive control gains

Relative leader-follower kinematics

TMN Time delay for sound to travel from microphone “M” to “N”bTMN
Time-delay measurement of sound travelling from microphone “M” to “N”

LMN Distance between microphone “M” and “N,” LMN ¼ DMIC

c Speed of sound travelling in dry air at room temperature

βMN Bearing to a sound source w.r.t the microphone pair “M” and “N”

(R, ϴ) Range and bearing to a sound source w.r.t the center of the acoustic array

4.1.2 Leader-Follower Configuration

A position sensor is equipped on a follower travelling behind a leader. This sensor is

simultaneously observing a point on the leader, and a stationary object located in

the environment (see Fig. 4.1). Coordinate frames are attached to a point on the

leader, follower, landmark, and world. Superscripts identify an object’s coordinate
system (or reference frame), and subscripts identify other objects located in that

coordinate system. The parameter i ¼ {l,f,w} represents the following objects:

leader (l ), follower ( f ), and landmark (w). By convention, no superscripts are

used to identify objects located in the world frame. For example, (Xl,Yl) is

the coordinate of the origin of the leader’s reference frame in the world frame,

while ( fXl,
fYl) is the coordinate of the origin of the leader’s reference frame with

respect to the follower’s coordinate frame. The kinematic model of the formation is

derived in the next section using these depictions.

78 M. Hegedus et al.



4.1.3 Kinematic Model for Nonholonomic Mobile Robots

In order to derive the kinematic of the formation, one needs to derive the kinematic

model of each individual robot in the team. Here we assume a differential-drive
model in the wheeled mobile robots used in the team. The kinematics model

(Fig. 4.2) for each robot travelling on a plane perpendicular to the z-axis, with
respect to their rotational center, is described as:24 _X i

_Y i
_θ i

35 ¼
vi cos θi
vi sin θi

ωi

24 35 ð4:1Þ

where vi, ωi, and θi represent the linear velocity, angular velocity, and orientation of
a robot, i ¼ {l,f}, with respect to the world frame.

4.1.4 Kinematic Model for a Point Attached
to a Nonholonomic Mobile Robot

In this section, the kinematics of a point attached to the robot with an offset with

respect to its center of rotation is derived. The velocity of a point qs ¼ (Xs,Ys)
Tє ℝ2

fX
frw

frl

fØw

fØl

(Xl,Yl)

Follower (f)

Stationary 
Landmark (w)

fY

=Sensor Location

Y

X

(Xw,Yw)

Leader (l)

lX

lY

Fig. 4.1 Sensor model for

simple leader-follower

configuration

Y

θi

ωi

(Xs,Ys)

iY
iX

vi

X

a
b

(Xi,Yi)

Fig. 4.2 Mobile robot

kinematics model
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attached to a robot, located at displacement (a,b)Tє ℝ2 from a robot’s rotational
center, is described as (see Fig. 4.2):�

_X s
_Y s

�
¼ vi cos θi

vi sin θi

� �
þ �a sin θi � b cos θi

a cos θi � b sin θi

� �
_θ i ð4:2Þ

4.1.5 Leader-Follower Kinematics for a Position Sensor

A model must be created that defines the motion between the leader and follower

before a formation control law for the follower can be defined. Specifically, a model

must be defined that describes the motion of a point observed by a follower, while it

is undergoing both translation and rotation. For this model, a position sensor that

observes a point on the leader’s center of rotation is mounted on the follower’s
center of rotation so that the coordinate frames attached to the follower and position

sensor are identical.

4.1.6 Relative Leader-Follower Kinematics

Consider the simplest case where one follower is travelling behind a leader, and the

follower is observing a target point q ¼ (X,Y,Z )Tє ℝ3 attached to the leader. While

travelling on the XY-plane, a mobile robot undergoes linear velocity Vєℝ3 and

angular velocity Ωєℝ3. An observed target point q ¼ (X,Y,Z)Tє ℝ3 evolves in the

sensor’s coordinate frame (identical to the robot’s coordinate frame). However, this

reference frame is affected by the relative angular and linear velocity (fΩl,
fVl)

occurring between the leader and follower. To discover the motion of the leader

in the follower’s reference frame (fΩl,
fVl), the pose of each robot is represented by

its rotation (R) and translation (T) at time “t,” with respect to a fixed reference

frame. The pose is defined as (Ri,Ti)є SE(3), where Ri is 3 � 3, Ti is 3 � 1, and

i ¼ {l,f} (see Fig. 4.3).

A point qєℝ3 on the leader, observed in the follower’s reference frame, is

expressed as:

f

f

l

l

T
Tl

fTl

q
R

R
Follower

Leader

Y

X

Fig. 4.3 Relative leader-

follower kinematics model
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f q tð Þ ¼ fRl tð Þlq þ fTl tð Þ ð4:3Þ
Where the leader’s pose (Rl,Tl) є SE(3) in the follower’s frame is given by (see

Fig. 4.3):

f Rl≜ Rf

� �T
Rl

fTl≜ Rf

� �T
Tl � Tf

� � ð4:4Þ
Therefore, a point observed on the leader with respect to the follower is

calculated as (Vidal et al. 2002, 2003):

f q tð Þ ¼ RT
f tð ÞRl tð Þlq þ RT

f tð Þ Tl tð Þ � Tf tð Þ� � ð4:5Þ

Differentiating Eq. 4.5 yields the rate of change of the leader’s pose (i.e., angular
velocity and linear velocity) in the follower’s reference frame (Vidal et al. 2002,

2003).

df q

dt
¼ f _q ¼ � _R T

f Rl þ RT
f
_R l

�
lq þ _R T

f Tl � Tf

� �þ RT
f

�
_T l � _T f

� ð4:6Þ

Isolating lq from Eq. 4.5 and substituting it into Eq. 4.6 produces:

f _q ¼ � _R T
f Rf þ RT

f
_R lR

T
l Rf

�
f q þ RT

f
_T l � _T f � _R lR

T
l Tl � Tf

� �� � ð4:7Þ

[Ω]xє SO(3) is a skew-symmetric matrix of the vectorΩєℝ3 to generate the cross

product Ωxq ¼ [Ω]xq for all values of q. Since _R iR
T
i E SO 3ð Þ, the following

identities exist (Vidal et al. 2002, 2003):

_R T
i Ri ¼ �RT

i
_R iR

T
i Ri RT

i Ωj

� �
� ¼ RT

i Ωj

� �
�Ri ð4:8Þ

where the angular velocity Ωi for each robot is defined as (Vidal et al. 2002, 2003):

Ωi½ �� ¼ _R iR
T
i , i ¼ l; ff g ð4:9Þ

Equations 4.8 and 4.9 simplify Eq. 4.7 to the following form:

f _q ¼
h��RT

f
_R fR

T
f Rf

�þ RT
f
_R lR

T
l Rf

i
f q þ RT

f

h
_T l � _T f � _R lR

T
l Tl � Tf

� �i
f _q ¼

h
� RT

f Ωf

� �
�Rf þ RT

f Ωl½ ��Rf

i
f q þ RT

f

h
_T l � _T f � Ωl½ �� Tl � Tf

� �i
f _q ¼

�
RT

f Ωl

h i
�
� RT

f Ωf

h i
�

�
f q þ RT

f

h
_T l � _T f � Ωl½ �� Tl � Tf

� �i
f _q ¼ RT

f Ωl�Ωf

� �h i
� f qþRT

f
_T l� _T f � Ωl½ �� Tl�Tf

� �� �
≜ fΩl

� �
�
f qþ fVl ð4:10Þ
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Therefore, the relative angular and translational velocity (fΩl,
fVl) of the leader in

the follower’s reference frame can be calculated as:

fΩl≜RT
f Ωl �Ωf

� � ð4:11Þ
fVl≜RT

f
_T l � _T f � Ωl½ �� Tl � Tf

� �� � ð4:12Þ

The motion of a point (X,Y,0) є ℝ3 on the leader observed in the follower’s
reference frame, located at (Xf,Yf,0) є ℝ

3, is numerically calculated from Eqs. 4.11

and 4.12 by substituting Ti ¼ (Xi,Yi,0)
Tєℝ3, _T i ¼

�
_Xi; _Yi ; 0

�T
єℝ3,Ωi ¼

�
0; 0; _θ i

�
T

єℝ3, andRi¼Rz(θi)є SO(3);Rz(θi) is a 3�3 matrix that rotates an object around its

z-axis and i ¼ {l,f}:

fΩl≜

24 0

0
_θ l� _θ f

35, fVl≜
cosθf sinθf 0

�sinθf cosθf 0

0 0 1

24 35 24 _X � _X f
_Y � _Y f

0

35þ Y�Yf

� �
� X�Xf

� �
0

24 35 _θ l

8<:
9=;

ð4:13Þ
Assuming the leader and follower can move freely in any direction, Eq. 4.13

describes the relative motion occurring between a point on the leading and follow-

ing robot. To incorporate the nonholonomic constraints of each robot, the kinematic

Eqs. 4.1 and 4.2 are substituted into Eq. 4.13. Considering the case when the

observed point on the leader is offset a displacement (a,b)Tє ℝ2 from the leader’s
rotational center, the observed point q becomes qs ¼ (Xs,Ys,0)

Tє ℝ3, and its motion

in the follower’s reference frame is calculated by substituting Eq. 4.2, where i ¼ l,
into Eq. 4.13:

fΩs ≜fΩl,
fVs≜

cos θf sin θf 0

� sin θf cos θf 0

0 0 1

24 35
�

vl cos θl � ωl a sin θl þ b cos θlð Þ � vf cos θf
vl sin θl þ ωl a cos θl � b sin θlð Þ � vf sin θf

0

24 35þ
Ys � Yf

� �
� Xs � Xf

� �
0

24 35ωl

8<:
9=;
ð4:14Þ

The kinematics of a source offset from the leader’s rotational center, observed by
the follower, reduces to the following:

fΩs≜fΩl ¼
0

0

ωl � ωf

24 35, fVs≜�
1

0

0

24 35vf þ fFl

0

� �
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fFs ¼ cos θl � θf
� �

sin θl � θf
� �� �

vl � sin θl � θf
� �

cos θl � θf
� �

� cos θl � θf
� �

sin θl � θf
� �� �

a
b

� �
ωl

� cos θf sin θf
� sin θf cos θf

� � � Ys � Yf

� �
Xs � Xf

� �� �
ωl ð4:15Þ

Considering the case when the source is located on the leader’s center of

rotation, i.e., (a,b)T ¼ (0,0)T, point q becomes ql and Eq. 4.15 becomes:

fΩl≜
0

0

ωl � ωf

24 35, fVl≜�
1

0

0

24 35vf þ fFl

0

� �
fFl ¼ cos θl � θf

� �
sin θl � θf
� �� �

vl � cos θf sin θf
� sin θf cos θf

� � � Yl � Yf

� �
Xl � Xf

� �� �
ωl ð4:16Þ

Therefore, combining Eq. 4.10 with Eq. 4.16 describes the motion of a source,

on the leader’s rotational center, observed by the follower moving along an XY-
plane. This is represented in Cartesian and polar coordinates, respectively.�

f _X l
f _Y l

�
¼ �1 fYl

0 �fXl

� �
vf
ωf

� �
þ 1 0 �f Yl

0 1 f Xl

� �
fFl

ωl

� �
ð4:17Þ�

f _r l
f _ϕ l

�
¼

� cos fϕl 0

sin fϕl
f rl

�1

24 35 vf
ωf

� �
þ

cos fϕl sin fϕl 0

� sin fϕl
f rl

cos fϕl
f rl

1

24 35 fFl

ωl

� �
ð4:18Þ

Simplifying the two previous equations yields:�
f _X l
f _Y l

�
¼ H f Xl,

f Yl

� �
uf þG f Xl,

f Yl

� �f
dl ð4:19Þ�

f _r l
f _ϕ l

�
¼ H f rl,

fϕl

� �
uf þG f rl,

fϕl

� �f
dl ð4:20Þ

For both Eqs. 4.19 and 4.20, the control input of the follower uf¼ (vf, ωf)
Tєℝ2 is

separated from the state and control inputs of the leader G(fXl,
fYl)

fdlє ℝ2, where
fdl ¼ (fFl, ωl)єℝ

3 represents the control input of the leader and current state of both

the leader and follower. Note that both H(fXl,
fYl)/H(frl,

fØl) and G(fXl,
fYl)/G(frl,

fØl)

are 2� 2 and 2� 3 matrices, respectively, and only contain position measurements

gathered by the follower’s position sensor.
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4.2 Follower Control Law

Given the leader-follower configuration shown in Fig. 4.1, the following robot is set

to follow behind the leader at a desired range (frd) and bearing (
fØd). The kinematic

equations that describe this two-robot system are defined by Eq. 4.19 in Cartesian or

by Eq. 4.20 in polar coordinates. These equations isolate the control input of the

follower and treat the state of the leader as an exogenous input. By applying input-

output feedback linearization, the control law of the follower becomes:

uf ¼ �H f Xl,
f Yl

� ��1
G f Xl,

f Yl

� �f
dl þ k1

f Xl � f Xd

� �
k2

f Yl � f Yd

� �� �� 	
ð4:21Þ

uf ¼ �
�1 �

f Yl

f Xl

0 � 1
f Xl

0BB@
1CCA G f Xl,

f Yl

� �f
dl þ k1

f Xl � f Xd

� �
k2

fYl � f Yd

� �� �� 	

uf ¼ �H f rl,
fϕl

� ��1
G f rl,

fϕl

� �f
dl þ k1

f rl � f rd
� �

k2
fϕl � fϕd

� �� �� 	
ð4:22Þ

uf ¼ �
� 1

cos fϕl

0

� sin fϕl
f rl cos fϕl

�1

0BB@
1CCA G f rl,

fϕl

� �f
dl þ k1

f rl � f rd
� �

k2
fϕl � fϕd

� �� �� 	

The positive control gains (k1,k2) are user selected while Eq. 4.23 is an auxiliary
control input.

k1
f Xl � f Xd

� �
k2

f Yl � f Yd

� �� �
k1

f rl � f rd
� �

k2
fϕl � fϕd

� �� �
ð4:23Þ

The nonlinear control law defined for uf stabilizes the closed-loop system when

k1 > 0 and k2 > 0. It exponentially reduces the error between the leader’s current
and desired position (frd,

fØd) to zero(Vidal et al. 2003); this remains true only if (vl,
ωl) are constant, vl 6¼ 0, and ωl¼ 0. Under these conditions, the leader is travelling a

constant speed along a line, while the follower is approaching its desired position.

When (vl, ωl) are constant, vl 6¼ 0, and ωl 6¼ 0, the steady-state tracking error will

remain constant but will not decay to zero. Under these conditions, the leader is

travelling a constant speed along a circle, and the follower can only approach its

desired position while maintaining a stable formation. If vl ¼ 0 and ωl 6¼ 0, a zero

dynamics condition occurs because the follower cannot tell whether the leader is

stationary or purely rotating. Under these conditions, the follower will stop until

vl 6¼ 0.

Equations 4.21 and 4.22 guarantee that the following robot will approach the

desired position as long as frl 6¼ 0 and fØl 6¼ �π/2 (or fXl 6¼ 0). The first case is trivial

since it indicates that the leader and follower occupy the same physical space.

However, when the second constraint is violated, the source attached to the leader
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crosses the follower’s y-axis. As a result, the controller will become singular, and uf
will saturate. This also infers that the desired formation cannot be selected as frd¼ 0

or fØd ¼ �π/2 because the controller will become unstable if the following robot

reaches its desired position. Since it is likely that the leader will cross the follower’s
y-axis, a pseudo-feedback-linearization control law is proposed to avoid this degen-

eracy (Vidal et al. 2003):

uf ¼ �
� cos fϕl 0

� sin fϕl cos
fϕl

f rl
�1

0@ 1A G f rl,
fϕl

� �f
dl þ k1

f rl � f rd
� �

k2
fϕl � fϕd

� �� �� 	
ð4:24Þ

The new control law, defined by Eq. 4.24, does not become singular when
fØl 6¼ �π/2 and takes advantage of the position sensor providing measurements

in polar coordinates. However, a degeneracy condition still exists when fØl ¼ �π/2
due to the robot’s nonholonomic constrains; if fØl ¼ �π/2 and the tracking error

does not equal zero, the follower cannot maintain formation because it cannot

translate along its y-axis.

4.2.1 Estimating the State of the Leader

Unfortunately, the control laws defined by Eqs. 4.22 and 4.24 cannot be solved

explicitly because the follower has no knowledge of the state and control input of

the leader G(frl,
fØl)

fdl—nor is this information communicated from the leader to

the follower. To estimate G(frl,
fØl)

fdl, the following robot takes advantage of

observing a stationary landmark (Vidal et al. 2002; Das et al. 2001), where

vw ¼ ωw ¼ 0 for all stationary sources. Using Eq. 4.20, the motion of the observed

landmark in the follower’s reference frame is defined by:�
f _r w
f _ϕ w

�
¼ H f rw,

fϕw

� �
uf ð4:25Þ

If the follower is observing the leader at the same time, the motion of the leader

in the follower’s reference frame is known as:�
f _r l
f _ϕ l

�
¼ H f rl,

fϕl

� �
uf þG f rl,

fϕl

� �f
dl ð4:26Þ

Combining these two equations, the state and control input of the leader can be

estimated using only measurements gathered by the position sensor.

G f rl,
fϕl

� �f
dl ¼

�
f _r l
f _ϕ l

�
�H f rl,

fϕl

� �
H f rw,

fϕw

� ��1
�

f _r w
f _ϕ w

�
ð4:27Þ
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4.3 Compensating for Zero Dynamics

4.3.1 Zero Dynamics Problem

By mounting the source at the center of rotation on the leader, a zero dynamics state

exists when the leader is stationary. If the leading robot does not move, the follower

is unable to determine if it is stationary or undergoing pure rotation. Assuming the

follower has reached its desired position (frd,
fØd) and the leader undergoes pure

rotation, the control output will be (vf,ωf)
T ¼ (0,0)T. As a result, the desired

position’s tracking error will not accumulate, while the leader is purely rotating.

4.3.2 Observing Any Point on the Leading Robot

To resolve this zero dynamics problem, the source (Xs,Ys)
Tєℝ2 on the leading robot

is offset a displacement (a,b)Tє ℝ2 from the robot’s center of rotation (Xl,Yl)
Tє ℝ2

(see Fig. 4.4). If the robot is stationary with an offset source, the control output will

be (vf,ωf)
T¼ (0,0)T, but if leader is purely rotating, the control action of the follower

will be non-zero (vf,ωf)
T 6¼ (0,0)T.

4.3.3 Leader-Follower Dynamics and Control Law
with Offset Source Position

The motion of an observed source attached to any point qєℝ3 on the leader in the

follower’s coordinate frame is determined from Eq. 4.15.

fΩs≜
0

0

ωl � ωf

24 35, fVs≜�
1

0

0

24 35vf þ fFs

0

� �

frw

rs

Øw

Øs

Follower 

Stationary 
Landmark (w)

fY

=Sensor Location

Y

X

(Xw,Yw) (Xs,Ys)

a

b(Xl,Yl)
Point (s) 

located on 
Leader (l)

Fig. 4.4 Leader-follower

configuration

86 M. Hegedus et al.



fFs ¼ cos θl � θf
� �

sin θl � θf
� �� �

vl � sin θl � θf
� �

cos θl � θf
� �

� cos θl � θf
� �

sin θl � θfð Þ
� �

a
b

� �
ωl

� cos θf sin θf
� sin θf cos θf

� � � f Ys�f Yf

� �
f Xs�f Xf

� �� �
ωl

Therefore, combining Eq. 4.10 with Eq 4.15 describes the motion of a source,

offset from the leader’s rotational center, observed by the follower moving along an

XY-plane.�
f _r s
f _ϕ s

�
¼

� cos fϕs 0

sin fϕs
f rs

�1

24 35 vf
ωf

� �
þ

cos fϕs sin fϕs 0

� sin fϕs
f rs

cos fϕs
f rs

1

24 35 fFs

ωs

� �
fFs

¼ cos θl � θf
� �

sin θl � θf
� �� �

vl � sin θl � θf
� �

cos θl � θf
� �

� cos θl � θf
� �

sin θl � θf
� �� �

a
b

� �
ωl

� cos θf sin θf
� sin θf cos θf

� � �fYs
fXs

� �
ωl ð4:28Þ

While the control law and leader’s state estimation remains unchanged.

uf ¼ �
� cos fϕs 0

� sin fϕs cos
fϕs

f rs
�1

0@ 1A G f rs,
fϕl

� �f
ds þ k1

f rs � f rd
� �

k2
fϕd � fϕd

� �� �� 	

G f rs,
fϕs

� �f
ds ¼

�
f _r s
f _ϕ s

�
�H f rs,

fϕs

� �
H f rw,

fϕw

� ��1� f _r w
f _ϕ w

�

4.4 Sensory Model for Acoustic Array

To estimate the leader’s pose, a passive acoustic array is mounted onto the follower

that simultaneously listens to two sound sources: one stationary in the environment,

while the other is fixed on the leader. The array is comprised of five microphones

that share a common center (Fig. 4.5). To estimate the bearing of a source between

any pair of spatially separated microphones, a coherent signal is assumed to be

emitted by the source, and its incoming wave front passes across the receivers at

two different moments in time. The source’s bearing, relative to a microphone pair,

is estimated by using the ratio of time-delay estimate (bT42) and maximum achiev-

able time-delay T42_MAX between receivers (Eq. 4.29) (Julián et al. 2004). Here, the

two-digit subscripts denote the microphone pair used for localization. The time-

delay estimate is discovered by applying the generalized cross-correlation method

(Charles and Carter 1976; Carter 1987, 1992). This estimate assumes receivers are

close together, relative to the range of the source, and the source is sufficiently
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distant for the curvature of its wave fronts to flatten upon reaching the receivers.

The accuracy of this model is dependent on the source’s position. If the source is

located broadside to the receivers, this model provides an exact solution for

estimating the bearing to the source. However, as the source moves toward

β ¼ �45� of the receivers’ baseline (or axis), a small error associated with the

bearing estimate increases.

bβ42 ffi cos �1
bT42

T42 MAX

 !
, bα42 ¼ π

2
� bβ42 ð4:29Þ

• Subscript “42” denotes information pertaining to the microphone pair M4 and

M2

• bT42 is the measured time delay

• T42_MAX ¼ L42/c is the maximum achievable time delay between receivers

• c � 345 m/s is the speed of sound travelling in dry air at room temperature

As shown in Fig. 4.5, an array of three microphones is needed to estimate

position in 2-D because two bearing estimates are linearly projected into space;

the point where these two projections intersect is the estimated position of the

source. In Cartesian coordinates, this can be achieved by relating a microphone’s
bearing estimate to the slope of a line passing through the center of the microphone

pair. To estimate the source’s bearing and range precisely, the time delay between

microphone pairs must be measured accurately. This becomes increasingly impor-

tant for estimating range because as the source moves further away from the array,

small errors associated with the time-delay measurement result in large errors

associated with the position estimate (Bangs and Schultheiss 1973; Hahn 1975;

Carter 1978, 1981). The variance of range error linearly depends on time-delay

variance between microphone pairs and exponentially depends on the ratio of true

range over effective half array length. To minimize the variance of range error for a

passive array, time delay between receivers needs to be measured with a high

degree of precision, effective distance between receivers must be large, or the

source needs to be close to the array.

M1 M2 M3

M4

M5

X
β4

β25

RL42

L25

Θ

Sound
Source

YFig. 4.5 Acoustic array

configuration
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4.5 Simulation Experimental Setup

Five types of simulations are conducted for the leader-follower pair to analyze the

proposed controller when implemented with instruments that have position error

associated with their measurements. Each simulation compares the output of an

acoustic array to a laser range finder with �1 cm accuracy. Overlaid on top of each

output is the controller output if it received ideal position estimates. The acoustic

array’s parameters are initially set to have a microphone separation of 36 cm (L) and

sampling rate of 20 � 48 kHz. These parameters are doubled to show the perfor-

mance of the controller when the accuracy of the sensor is increased. The follower is

set to maintain a desired distance rd ¼ 1.0 m and bearing Ød ¼ 180� directly behind
the leader. For all simulations, controller gains are set to k1 ¼ 0.8 and k2 ¼ 1.6. The

laser range finder and acoustic array processes position estimates at a rate of 10 Hz.

In each simulation, the leader moves along a predetermined path; these paths

include a straight trajectory (vl 6¼ 0, ωl ¼ 0), turning trajectory (vl 6¼ 0, ωl 6¼ 0), and

making a 90� turn (vl ¼ 0, ωl 6¼ 0). When making a 90� turn, two additional

simulations are added: one shows the effects of the controller when the source on

the leader is moved (a,b)T ¼ (0.5 m,0.0 m)T from its center of rotation. The last

simulation shows how the landmark’s placement affects the controller’s stability. In
all simulations, the landmark is placed in the environment to cross the Y-axis of the
follower at least once. The landmark is represented with the “*” symbol while the

target being observed on the leader is represented with “+.”

4.5.1 Travelling Along a Straight Trajectory

The following is an example of a leader travelling along a straight trajectory and the

follower maintaining a 1.0 m distance behind the follower. The source on the leader

is located at its rotational center which is being observed by a follower using

measurements from a laser range finder or acoustic array (Figs. 4.6 and 4.7).

4.5.2 Travelling Along a Turning Trajectory

The following is an example of a leader always turning and the follower

maintaining a 1.0 m distance behind the follower. The source on the leader is

located at its rotational center which is being observed by a follower using mea-

surements from a laser range finder or acoustic array
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4.5.3 Travelling Along a Straight Path and Turning 90�

(Source not Offset)

The following is an example of a leader travelling along a straight path, stopping,

purely rotating 90�, and resuming a new straight path. The source on the leader is

located at its rotational center which is being observed by a follower using mea-

surements from a laser range finder or acoustic array
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4.5.4 Travelling Along a Straight Path and Turning 90�

(With an Offset Source)

The following is an example of a leader travelling along a straight path, stopping,

purely rotating 90�, and resuming a new straight path. The source on the leader is

located offset 0.5 m ahead of the robot which is being observed by a follower using

measurements from a laser range finder or acoustic array

4.5.5 Travelling Along a Straight Path and Turning 90�

(With an Offset Source and Landmark Moved)

This simulation is exactly like the previous except the landmark is moved to a new

location to show how its arbitrary placement affects the controller

4.6 Controller Discussion

When utilizing an acoustic array or laser range finder, the controller’s steady-state
tracking error converges to a constant value when the follower is travelling along

straight (vl 6¼ 0, ωl ¼ 0) or circular (vl 6¼ 0, ωl 6¼ 0) path (Figs. 4.8, 4.9, 4.10, 4.11,

4.12, 4.13, 4.14, 4.15, 4.16, and 4.17). This tracking error is only reduced to zero

when the leader is travelling along a straight trajectory. However, the performance

of the controller is affected by the landmarks’ placement. Observing Figs. 4.9 and

Fig. 4.8 Pose between follower leader, using (a) a laser range finder and (b) an acoustic array

4 Formation Control of Nonholonomic Mobile Robots Using an Acoustic Sensor 91



4.15, the landmark causes the follower’s controller to destabilize (break formation)

when it crosses the y-axis of the follower. While travelling along a straight

trajectory, this occurs at t � 15 s and along a turning trajectory, it occurs at

t � 14 s. Formation is regained afterwards, but the controller destabilizes if the

landmark is observed to be Øw ¼ �90�.
Due to the nature of error associated with each type of sensor, sensor selection

and error also have an impact on the performance of the controller. A laser range

finder with a constant �1 cm error associated with its measurements causes its

Fig. 4.9 Control output of follower and leader, using (a) a laser range finder and (b) an acoustic

array

Fig. 4.10 (a) Pose between follower leader, (b) doubling the sample rate and DMIC of acoustic

array
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output to oscillate at a constant variance (excluding any instance when the land-

mark crosses the y-axis of the follower). Since an acoustic array’s accuracy is

dependent on the distance of a target, its performance excels when the leader and

landmark are within close proximity to the array. When the array moves further

away from the landmark (t� 25 s in Fig. 4.10), the controller’s oscillation increases
due to larger measurement error.

When the leader is purely rotating (Figs. 4.18 and 4.19), the system experiences

a zero dynamics condition if the leader’s speaker is attached to its rotational center.
If the speaker is offset from the leader’s center of rotation, zero dynamics is

Fig. 4.11 (a) Control output of follower and leader, (b) doubling the sample rate and DMIC of

acoustic array
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avoided, and the follower responds appropriately to the leader purely rotating

(vl ¼ 0, ωl 6¼ 0). As a result, the follower reaches its desired formation quicker

when zero dynamics is avoided (Figs. 4.20, 4.21, 4.22, 4.23, 4.24, 4.25, 4.26, 4.27,

4.28, 4.29, 4.30, 4.31, 4.32 , 4.33 and 4.34).

For all simulations, the acoustic array and laser range finder follow the same

response as a sensor that provides ideal position estimates. As in the first two
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simulations, the controller using data from the acoustic array performs the worse

when it is furthest away from the landmark. In Figs. 4.20 and 4.29, this can be

observed at t � 0 s and t � 30s. By either doubling the sampling rate or increasing

the microphone distance of the array, the sensor accuracy increases which improves

the controller result. From these two options, doubling the microphone distance

yields the best performance. However, when doubling the microphone distance of

the array, the target source (from the leader or landmark) is more likely to move into

the array’s near field. When this occurs, position error occurs which causes the

controller to output a transient response. These transients are shown in Figs. 4.11,

Fig. 4.15 Pose between follower leader, using (a) a laser range finder and (b) an acoustic array

Fig. 4.16 (a) Pose between follower leader, doubling the sample rate and DMIC of acoustic array
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4.17, 4.23, 4.29, and 4.35 when doubling the microphone distance; at the time of the

transient, the landmark or leader was within the microphone’s near field.
The last simulation shows how much the landmark’s location affects the con-

troller’s stability. When the landmark is placed closer to the follower (Fig. 4.30),

the magnitude of the controller’s oscillation increases whenever the landmark

crosses the follower’s y-axis. In the last simulation, the landmark crosses the

follower’s Y-axis at t� 5 s, t� 13 s, and t� 26 s. This almost leaves a contradiction

for the placement of a landmark. The landmark placement should be close to

improve sensor accuracy, but if it is close, the landmark cannot cross the y-axis
of the follower. If the y-axis of the follower is crossed, it is best that the landmark is

located away from the follower because this placement destabilizes the

controller less.

Fig. 4.17 (a) Control output of follower and leader, (b) doubling the sample rate and DMIC of

acoustic array

Fig. 4.18 Follower’s path turning 90�. (a) after 18 s , (b) after 30 s
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Fig. 4.19 Pose between the follower landmark

Fig. 4.20 Control output of follower and leader, using (a) a laser range finder and (b) an acoustic
array
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4.7 Conclusions and Future Work

A leader-follower formation controller is proposed that allows a follower to main-

tain a desired position behind a leader by viewing one point on a leader (i.e., source)

and a stationary landmark in the environment. The nonlinear nature of formation

kinematics necessitates the design of a nonlinear controller. An exact feedback-

linearization strategy was used. This approach involves deriving a transformation of

Fig. 4.21 Pose between follower leader, using (a) a laser range finder and (b) an acoustic array

Fig. 4.22 (a) Pose between follower leader, (b) doubling the sample rate and DMIC of acoustic

array
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the nonlinear equations into an equivalent linear system by choosing a suitable

nonlinear control input. However, one drawback of this approach is that global

stability can be obtained over observable states only (i.e., systems with no zero

dynamics). We proposed a novel way to avoid zero dynamics by placing the source

with an offset of the center of rotation of the leading robot. Due to the

nonholonomic constraints of the wheeled robots used in this study, the source

movement will remain observable all the time (no zero dynamics).

By using either an acoustic array or laser range finder, the proposed leader-

follower formation controller allows a follower to maintain a desired position

behind a leader. Simulations show that the controller can exponentially reduce

the tracking error to a steady-state value, and zero dynamics can be compensated by

observing a point offset from the leader’s center of rotation. To avoid singularities,

Fig. 4.23 (a) Control output of follower and leader, (b) doubling the sample rate and DMIC of

acoustic array
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Fig. 4.24 Follower’s path turning 90� (offset source). (a) after 18 s, (b) after 30 s
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the nonholonomic constraints (Ø 6¼ �π/2) of the mobile robots must not be

violated, and the positioning sensor mounted on the follower must accurately locate
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Fig. 4.25 Pose between the follower landmark

Fig. 4.26 Control output of follower and leader, using (a) a laser rangefinder and (b) an acoustic

array
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both the landmark and follower within �1 cm. An acoustic array’s having a

microphone separation of 36 cm and sampling rate of 20 � 48 kHz is shown to

maintain a desired position behind the leader if the leader and stationary landmark

are within 5 m of the microphone array mounted on the follower. This range can

increase by either increasing the microphone distance of the array or sampling rate

of the sensor.

Implementing this on real robots moving in formation in environments cluttered

with obstacles is underdevelopment. Development of a predictive motion planning

Fig. 4.27 Pose between follower leader, using (a) a laser range finder and (b) an acoustic array

Fig. 4.28 (a) Pose between follower leader, (b) doubling the sample rate and DMIC of acoustic

array
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and control strategy to avoid collision between the robots in the team and their

colliding with physical obstacles while maintaining the formation is currently under

investigation.

Fig. 4.29 (a) Control output of follower and leader, (b) doubling the sample rate and DMIC of

acoustic array
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Fig. 4.32 Control output of follower and leader, using (a) a laser range finder and (b) an acoustic
array

4 Formation Control of Nonholonomic Mobile Robots Using an Acoustic Sensor 103



Fig. 4.33 Pose between follower leader, using (a) a laser range finder and (b) an acoustic array

Fig. 4.34 (a) Pose between follower leader, (b) doubling the sample rate and DMIC of acoustic

array
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Chapter 5

Nonlinear Size-Dependent Instability

of Hybrid FGM Nanoshells

S. Sahmani and M.M. Aghdam

5.1 Introduction

Piezoelectricity plays a useful role within a variety of applications involving the

production and detection as well as fine focusing. On the other hand, as a special

class of composite materials, the functionally graded material (FGM) includes a

mixture of homogenous materials with continuous change in mechanical properties

along with a specific direction. As a consequence, in order to develop smart

structures having adaptive characteristics, joining of FGM efficient features with

smart responses of piezoelectricity has attracted increasing attraction.

Several engineering applications of hybrid FGM materials with piezoelectric

face sheets such as active vibration control (Liew et al. 2004; Selim et al. 2011),

monomorph actuator (Chen et al. 2004), efficient sensors (Es’haghi et al. 2011), and
structures with more creep resistance (Dai et al. 2013) have led to various investi-

gations for this type of smart material. For instance, Shen (Shen 2005) investigated

the postbuckling behavior of FGM plates with piezoelectric actuators subjected to

thermo-electromechanical loading condition. Shariyat (Shariyat 2008) predicted

the dynamic buckling characteristics of FGM cylindrical shells including surface-

bonded piezoelectric layers under combined thermo-electromechanical loads.

Sofiyev et al. (Sofiyev et al. 2009) studied the buckling of hydrostatic pressurized

thin FGM hybrid truncated conical shells to present the related stability and

compatibility equations. Meng et al. (Meng et al. 2010) reported the local buckling

for the delimitation of an elliptic shape in the vicinity of the surface of piezoelectric

laminated shells. Sheng and Wang (Sheng and Wang 2010) investigated the

thermoelastic vibration and buckling responses FGM piezoelectric cylindrical

shells. Duc et al. (Duc et al. 2016) analyzed the nonlinear dynamic response of
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FGM plates reinforced by piezoelectric stiffeners under electromechanical load in

conjunction with thermal environments. Li and Pan (Li and Pan 2015) anticipated

the size-dependent static bending and free vibration behaviors of FGM piezoelec-

tric microplate on the basis of modified couple stress elasticity theory within the

framework of sinusoidal shear deformation plate theory. Wang and Luo (Wang and

Luo 2016) presented an exact solution in terms of Bessel functions for radial

vibration response of FGM piezoelectric ring transducers. Wu and Lim (Wu and

Lim 2016) used Reissner’s mixed variational theorem to predict dynamic behavior

of thick FGM piezoelectric hollow cylinders incorporating electromechanical

effects. Liu and Zhang (Liu and Zhang 2016) studied numerically the electrome-

chanical response of an FGM system coating with piezoelectric material subjected

to axisymmetric conducting indenter.

In the modern engineering applications, the use of smart FGM structures at

nanoscale seems to be attractive. In such range of application, small-scale effect

plays a vital role in mechanical characteristics. Due to the lack of generality of the

classical continuum theory to characterize the size dependency in mechanical

response of nanostructures, several higher-order continuum elasticity theories

have been proposed and utilized during the past decade. Among the different

proposed nonclassical continuum theories, the nonlocal continuum elasticity

(Eringen 1972) has the capability as well as convenience to capture the size effect

through addition of only one material length scale parameter. In accordance with

this nonconventional elasticity theory, it is supposed that the stress tensor at a

reference point of body is related not only to strain components of that position but

also to all other points in the continuum. In the last decade, the nonlocal continuum

mechanics have been utilized in several studies to capture size-dependent behavior

of nanostructures. Hao et al. (Hao et al. 2010) predicted size effect on the torsional

buckling of carbon nanotubes based on nonlocal multi-shell model. Reddy (Reddy

2010) reformulated different classical beam and plate theories based on nonlocal

continuum mechanics for nonlinear bending analysis of nanobeams and nanoplates.

Ansari et al. (Ansari et al. 2010) established an efficient nonlocal plate model to

predict the free vibration response of graphene sheets, the results of which were

compared by those of molecular dynamics simulations. K. Kiani (Kiani 2010)

applied the meshless method to investigate nonlocal free transverse vibration of

carbon nanotubes resting on elastic matrix modeled by various beam theories.

Ansari et al. (Ansari et al. 2011) implemented nonlocal continuum theory to

study axial buckling behavior of carbon nanotubes in thermal environments using

Rayleigh-Ritz solving process. Şimşek (Şimşek 2011) studied analytically the

forced vibration of two CNTs connected elliptically with each other on the basis

of nonlocal continuum theory. Narendar and Gopalakrishnan (Narendar and

Gopalakrishnan 2011) analyzed thermal buckling of carbon nanotubes resting in

elastic medium based on nonlocal Timoshenko beam model. Ansari and Sahmani

(Ansari and Sahmani 2012) obtained the fundamental frequencies of carbon

nanotubes via different nonlocal beam model and calibrated them with molecular

dynamics simulations. Juntarasaid et al. (Juntarasaid et al. 2012) obtained size-

dependent bending deformation and buckling compression of shear deformable
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nanorods with the aid of nonlocal elasticity theory. Yang and Lim (Yang and Lim

2012) proposed a novel analytical solution to obtain the vibrational frequencies of

Timoshenko nanobeams using nonlocal elastic theory. Shen (Shen 2013) analyzed

torsional buckling and postbuckling of microtubules under temperature change

based on Eringen’s nonlocal continuum. Ansari and Sahmani (Ansari and Sahmani

2013) studied size-dependent biaxial buckling of graphene sheets on the basis of

nonlocal plate model, and then the results were compared with molecular dynamics

simulations. Zhang et al. (Zhang et al. 2014) examined the dispersion of elastic

waves in a piezoelectric nanoplate incorporating the influence of nonlocality. Li

et al. (Li et al. 2015) presented the nonlinear frequencies of graphene/piezoelectric

laminated films subjected to electric field based on the nonlocal continuum theory.

Sari (Sari 2015) predicted the free vibration response of annular sector plates

through implementation of nonlocal continuum elasticity into the Mindlin plate

theory.

More recently, Yang et al. (Yang et al. 2016) analyzed the dynamic pull-in

instability of FGM nanocomposite nano-actuators including simultaneously the

nonlocal stress and strain gradients in conjunction with Casimir force. Wang

et al. (Wang et al. 2016) employed the theory of nonlocal piezoelectricity to predict

the free and forced vibration response of circular nanoplates made of piezoelectric

ceramic. Zhang et al. (Zhang et al. 2016) provided an element on the basis of

kp-Ritz method to investigate the buckling behavior of graphene sheets surrounded

by elastic medium. Jun Yu et al. (Jun Yu et al. 2016) reported the critical buckling

loads of nanobeams used in nano-electromechanical systems under nonuniform

temperature change based on the nonlocal thermoelasticity. Khorshidi and Fallah

(Khorshidi and Fallah 2016) evaluated the critical buckling loads of FGM

nanoplates via nonlocal elasticity theory in the form of exponential shear deforma-

tion plate theory. Sahmani and Aghdam (Sahmani and Aghdam 2017a) analyzed

size-dependent radial postbuckling behavior of hybrid FGM nanoshells on the basis

of the nonlocal continuum mechanics. Liu et al. (Liu et al. 2017) analyzed the

transverse vibration of double-nanoplate system made of viscoelastic FGM using

Eringen’s nonlocal elasticity. Sahmani and Aghdam (Sahmani and Aghdam 2017b)

employed nonlocal elasticity theory to analyze the size dependency in axial

postbuckling response of hybrid FGM nanoshells. Mercan and Civalek (Mercan

and Civalek 2017) reported the size-dependent critical buckling loads of silicon

carbide nanotubes via surface and nonlocal elasticity theories. Sahmani and

Aghdam (Sahmani and Aghdam 2017c) presented temperature-dependent axial

postbuckling behavior of hybrid FGM nanoshells under through-thickness heat

conduction on the basis of the nonlocal continuum theory. Farajpour et al.

(Farajpour et al. 2017) explored the nonlocal vibration, buckling, and smart control

of microtubules with the aid of piezoelectric nanoshells.

In the current study, the nonlocal nonlinear instability of hybrid FGM nanoshells

embedded in elastic medium is examined corresponding to two loading cases: axial

compression combined with lateral electric field and hydrostatic pressure combined

with lateral electric field. To this end, nonlocal theory of elasticity is implemented

into a refined exponential shear deformable shell theory to develop a size-
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dependent shell model. Afterward, the boundary layer theory of shell buckling in

conjunction with a two-stepped perturbation technique is utilized to propose

explicit analytical expressions for nonlocal stability curves of hybrid FGM

nanoshells relevant to both loading cases.

5.2 Nonlocal Exponential Shear Deformable Hybrid FGM

Shell Model

In Fig. 5.1, a hybrid FGM cylindrical nanoshell embedded in an elastic medium is

illustrated with length L, radius R, and thickness h composed of an FGM substrate

of thickness hf, and piezoelectric surface layers of thickness hp completely bonded

the substrate.

The hybrid FGM is a type of hybrid composite materials. In contrast to the

traditional composite materials in which the combination of structural units yields a

material with composite properties similar to the separate state, the mixture of units

in the hybrid composites emerges a new property which causes multiple structural

functionalities. Herein, by adding two piezoelectric face sheets to the FGM sub-

strate, a hybrid composite material, namely, as hybrid FGM, is obtained which

contains the new piezoelectricity property. The FGM substrate of nanoshell is

assumed to be metal-rich and ceramic-rich at the top surface (z¼ � hf/2) and the

bottom surface (z¼ hf/2), respectively. The effective material properties including

Young’s modulus, Poisson’s ratio, and thermal expansion coefficient for the FGM

substrate are considered temperature dependent which can be estimated as below:

Fig. 5.1 Schematic representation of an embedded hybrid FGM nanoshell in an elastic medium
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Ef zð Þ ¼ Ec � Emð ÞVf zð Þ þ Em ð5:1aÞ
νf zð Þ ¼ νc � νmð ÞVf zð Þ þ νm ð5:1bÞ

in which the subscripts m and c denote the metal and ceramic phases, respectively.

Furthermore, in accordance with the power law function, the volume fraction can be

expressed as (Fares et al. 2009)

Vf zð Þ ¼ 1

2
þ z

hf

� �k

ð5:2Þ

where k represents the material gradient index.

In accordance with the exponential shear deformation theory (Hosseini-Hashemi

et al. 2010), the displacement components of a nanoshell can be presented as

ux x; y; zð Þ ¼ u x; yð Þ � z
∂w x; yð Þ

∂x
þ ze�

2z2

h2 ψ x x; yð Þ ð5:3aÞ

uy x; y; zð Þ ¼ v x; yð Þ � z
∂w x; yð Þ

∂y
þ ze�

2z2

h2 ψ y x; yð Þ ð5:3bÞ

uz x; y; zð Þ ¼ w x; yð Þ ð5:3cÞ
in which u, v, and w in order are the midplane displacements along x, y, and z axes,
ψx and ψy are, respectively, the rotations of the midplane normal about the y- and x-
axis. Using the exponential shear deformation theory has two main advantages.

Firstly, in contrast to the first-order shear deformation theory, there is no need for a

shear correction factor which is hard to find its value as it depends on various

parameters. Secondly, in contrast to the third-order shear deformation theory, for

the in-plane and transverse displacements, the bending components do not contrib-

ute toward shear components and vice versa.

Based upon the kinematics of nonlinearity in von Kármán-Donnell-type form

(Donnell 1976), the kinematical strain-displacement equations can be written as

εxx

εyy

γxy

8><>:
9>=>;¼

ε0xx
ε0yy

γ0xy

8><>:
9>=>;þ

εExx
εEyy

γ Exy

8><>:
9>=>;þ z

κ 1ð Þ
xx

κ 1ð Þ
yy

κ 1ð Þ
xy

8>><>>:
9>>=>>;þ ze�

2z2

h2

κ 2ð Þ
xx

κ 2ð Þ
yy

κ 2ð Þ
xy

8>><>>:
9>>=>>;¼

∂u
∂x

þ 1

2

∂w
∂x

� �2

∂v
∂y

� w

R
þ 1

2

∂w
∂y

� �2

∂u
∂y

þ ∂v
∂x

þ ∂w
∂x

∂w
∂y

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

þ

d31V
hp

d32V
hp
0

8>>>>><>>>>>:

9>>>>>=>>>>>;
� z

∂2
w

∂x2

∂2
w

∂y2

2
∂2

w

∂x∂y

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
þ ze�

2z2

h2

∂ψ x

∂x
∂ψ y

∂y

∂ψx

∂y
þ ∂ψ y

∂x

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
ð5:4Þ

5 Nonlinear Size-Dependent Instability of Hybrid FGM Nanoshells 111



γxz
γyz

� �
¼ 1� 4z2

h2

� �
e�

2z2

h2
ψ x

ψ y

� �
where (ε0ij ; i, j ¼ x, y

�
denote the strain components in midplane, (κ 1ð Þ

ij ; i, j ¼ x, y)

are the first-order curvature components, and (κ 2ð Þ
ij ; i, j ¼ x, y) represent the higher-

order curvature components. Moreover, d31, d32 stand for the piezoelectric con-

stants, andV ¼ Ezh is the value of voltage related to the applied lateral electric field.
In contrast to the local (classical) continuum theory, in the nonlocal continuum

elasticity, the stress at a reference point is dependent on the strain components of all

other point of the continuum in addition to that of the reference point. Accordingly,

one will have (Eringen 1972)

σ0ij ¼
Z
Ω

ϱ X0 � Xj jð Þσij X0ð Þ� �
dΩ ð5:5Þ

in whichX andX0 in order are a point and any point else in the body, σij and σ0ij are
the local (classical) and nonlocal stress components, respectively. Also,

ϱ X0 � Xj jð Þ represent the nonlocal kernel function associated with internal char-

acteristic length of material. For a two-dimensional material, it yields

1� e20θ
2∇2

	 �
σ0ij ¼ σij ð5:6Þ

where e0θ denotes the nonlocal parameter in such a way that θ is an internal

characteristic constant and e0 is a constant related to the selected material. Also, ∇2

represents the Laplacian operator. Thereby, the nonlocal constitutive relations for a

hybrid FGM nanoshell are in the following form

1� e20θ
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	 � σ0xx
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σ0xz
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where
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Qp1

 � ¼ Qp2


 � ¼
λp þ 2μp λp 0 0 0

λp λp þ 2μp 0 0 0

0 0 μp 0 0

0 0 0 μp 0

0 0 0 0 μp

266664
377775

Qf

 � ¼

λf zð Þ þ 2μf zð Þ λf zð Þ 0 0 0

λf zð Þ λf zð Þ þ 2μf zð Þ 0 0 0

0 0 μf zð Þ 0 0

0 0 0 μf zð Þ 0

0 0 0 0 μf zð Þ

266664
377775 ð5:8Þ

in which λf zð Þ ¼ νf zð ÞEf zð Þ
1�νf zð Þð Þ 1þ2νf zð Þð Þ,μf zð Þ ¼ Ef zð Þ

2 1þνf zð Þð Þ are the Lame’s constants for the

FGM substrate, and λp ¼ νpEp

1�νpð Þ 1þ2νpð Þ, μp ¼
Ep

2 1þνpð Þ represent the Lame’s constants

for piezoelectric layers of hybrid FGM nanoshell.

For the hydrostatic pressure loading case, the work ΠP done by the external

hydrostatic pressure q can be read as

ΠP ¼
Z
S

qwdS ð5:9Þ

Moreover, the external work done by Pasternak elastic foundation can be

expressed as

Πk ¼
Z
S

K1w
2 þK2

∂w
∂x

� �2

þ ∂w
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� �2
 ! !

dS ð5:10Þ

in which K1 and K1 are Winkler and shear stiffness constants, respectively.

Additionally, based upon the nonlocal exponential shear deformation shell

model, the total strain energy of the hybrid FGM nanoshell can be expressed as

Πs ¼ 1
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where the stress resultants can be introduced as
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Nyy � e20θ
2 ∂2

Nyy

∂x2
þ ∂2

Nyy

∂y2

 !

Nxy � e20θ
2 ∂2

Nxy

∂x2
þ ∂2

Nxy

∂y2

 !

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
¼

A∗
11 A∗

12 0

A∗
12 A∗

22 0

0 0 A∗
66

24 35 ε0xx
ε0yy
γ0xy

8<:
9=;

þ
B∗
11 B∗

12 0

B∗
12 B∗

22 0

0 0 B∗
66

24 35 κ 1ð Þ
xx

κ 1ð Þ
yy

κ 1ð Þ
xy

8><>:
9>=>;

þ
B∗∗
11 B∗∗

12 0

B∗∗
12 B∗∗

22 0

0 0 B∗∗
66

24 35 κ 2ð Þ
xx

κ 2ð Þ
yy

κ 2ð Þ
xy

8><>:
9>=>;

Mxx � e20θ
2 ∂2

Mxx

∂x2
þ ∂2

Mxx

∂y2

 !

Myy � e20θ
2 ∂2

Myy

∂x2
þ ∂2

Myy

∂y2

 !

Mxy � e20θ
2 ∂2

Mxy

∂x2
þ ∂2

Mxy

∂y2

 !

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
¼

B∗
11 B∗

12 0

B∗
12 B∗

22 0

0 0 B∗
66

24 35 ε0xx
ε0yy
γ0xy

8<:
9=;

þ
D∗

11 D∗
12 0

D∗
12 D∗

22 0

0 0 D∗
66

24 35 κ 1ð Þ
xx

κ 1ð Þ
yy

κ 1ð Þ
xy

8><>:
9>=>;

þ
D∗∗

11 D∗∗
12 0

D∗∗
12 D∗∗

22 0

0 0 D∗∗
66

24 35 κ 2ð Þ
xx

κ 2ð Þ
yy

κ 2ð Þ
xy

8><>:
9>=>;
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Hxx � e20θ
2 ∂2

Hxx

∂x2
þ ∂2

Hxx

∂y2

 !

Hyy � e20θ
2 ∂2

Hyy

∂x2
þ ∂2

Hyy

∂y2

 !

Hxy � e20θ
2 ∂2

Hxy

∂x2
þ ∂2

Hxy

∂y2

 !

8>>>>>>>>>>><>>>>>>>>>>>:

9>>>>>>>>>>>=>>>>>>>>>>>;
¼

B∗∗
11 B∗∗

12 0

B∗∗
12 B∗∗

22 0

0 0 B∗∗
66

2664
3775

ε0xx

ε0yy

γ0xy

8>><>>:
9>>=>>;

þ
D∗∗

11 D∗∗
12 0

D∗∗
12 D∗∗

22 0

0 0 D∗∗
66

2664
3775

κ 1ð Þ
xx

κ 1ð Þ
yy

κ 1ð Þ
xy

8>>><>>>:
9>>>=>>>;

þ
G∗

11 G∗
12 0

G∗
12 G∗

22 0

0 0 G∗
66

24 35 κ 2ð Þ
xx

κ 2ð Þ
yy

κ 2ð Þ
xy

8>>><>>>:
9>>>=>>>;

Qx � e20θ
2 ∂2

Qx

∂x2
þ ∂2

Qx

∂y2

 !

Qy � e20θ
2

∂2
Qy

∂x2
þ ∂2

Qy

∂y2

 !
8>>>>><>>>>>:

9>>>>>=>>>>>;
¼ A∗

44 0

0 A∗
55

� 
ψ x

ψ y

� �
ð5:12Þ

in which

Nxx

Nyy

Nxy

8<:
9=; ¼

Z h
2

�h
2

σxx
σyy
σxy

8<:
9=;dz,

Mxx

Myy

Mxy

8<:
9=; ¼

Z h
2

�h
2

σxx
σyy
σxy

8<:
9=;zdz

Hxx

Hyy

Hxy

8><>:
9>=>; ¼

Z h
2

�h
2

σxx

σyy

σxy

8><>:
9>=>;ze�

2z2

h2 dz,
Qx

Qy

( )
¼
Z h

2

�h
2

σxz

σyz

� �
1� 4z2

h2

� �
e�

2z2

h2 dz

ð5:13Þ
and
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A∗
11,B

∗
11,D

∗
11

B∗∗
11 ,D∗∗

11 ,G∗
11

� �
¼ A∗

22,B
∗
22,D

∗
22

B∗∗
22 ,D∗∗

22 ,G∗
22

� �

¼
Z z1

z0

Qp1
11

h i 1, z, z2

ze
� 2z2

h2 , z2e
� 2z2

h2 , z2e
� 4z2

h2

( )
dz

þ
Z z2

z1

Qf
11

h i 1, �z, �z2

�ze
� 2�z2

h2 , �z2e
� 2�z2

h2 , �z2e
� 4�z2

h2

( )
dz

þ
Z z3

z2

Qp2
11

h i 1, z, z2

ze
� 2z2

h2 , z2e
� 2z2

h2 , z2e
� 4z2

h2

( )
dz

A∗
12,B

∗
12,D

∗
12

B∗∗
12 ,D∗∗

12 ,G∗
12

� �
¼ A∗

21,B
∗
21,D

∗
21

B∗∗
21 ,D∗∗

21 ,G∗
21

� �

¼
Z z1

z0

Qp1
12

h i 1, z, z2

ze
� 2z2

h2 , z2e
� 2z2

h2 , z2e
� 4z2

h2

( )
dz

þ
Z z2

z1

Qf
12

h i 1, �z, �z2

�ze
� 2�z2

h2 , �z2e
� 2�z2

h2 , �z2e
� 4�z2

h2

( )
dz

þ
Z z3

z2

Qp2
12

h i 1, z, z2

ze
� 2z2

h2 , z2e
� 2z2

h2 , z2e
� 4z2

h2

( )
dz

A∗
66,B

∗
66,D

∗
66

B∗∗
66 ,D∗∗

66 ,G∗
66

� �
¼
Z z1

z0

Qp1
66

h i 1, z, z2

ze
� 2z2

h2 , z2e
� 2z2

h2 , z2e
� 4z2

h2

( )
dz

þ
Z z2

z1

Qf
66

h i 1, �z, �z2

�ze
� 2�z2

h2 , �z2e
� 2�z2

h2 , �z2e
� 4�z2

h2

( )
dz

þ
Z z3

z2

Qp2
66

h i 1, z, z2

ze
� 2z2

h2 , z2e
� 2z2

h2 , z2e
� 4z2

h2

( )
dz ð5:14Þ

A∗
44

A∗
55

� �
¼

R z1
z0

Qp1
44

h i
1�4z2

h2

� �
e
�2z2

h2 dzþR z2z1 Qf
44

h i
1�4�z2

h2

� �
e
�2�z2

h2 dz

þR z3z2 Qp2
44

h i
1�4z2

h2

� �
e
�2z2

h2 dz

R z1
z0

Qp1
55

h i
1�4z2

h2

� �
e
�2z2

h2 dzþR z2z1 Qf
55

h i
1�4�z2

h2

� �
e
�2�z2

h2 dz

þR z3z2 Qp2
55

h i
1�4z2

h2

� �
e
�2z2

h2 dz

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
Moreover, �z ¼ z� z0 as z

0
is the z-coordinate of the physical neutral plane

associated with FGM substrate which can be defined as
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z0 ¼
R hf =2
�hf =2

λf zð Þ þ 2μf zð Þ	 �
zdzR hf =2

�hf =2
λf zð Þ þ 2μf zð Þ	 �

dz
ð5:15Þ

In accordance with the virtual work’s principle as

δ
Zt2
t1

Πs � ΠP � Πkð Þdt ¼ 0 ð5:16Þ

and taking the variation of u, v, w, ψx, ψy and then integrating by parts, the size-

dependent governing equations in terms of the stress resultants can be developed as

∂Nxx

∂x
þ ∂Nxy

∂y
¼ 0 ð5:17aÞ

∂Nxy

∂x
þ ∂Nyy

∂y
¼ 0 ð5:17bÞ

∂2
Mxx

∂x2
þ 2

∂2
Mxy

∂x∂y
þ ∂2

Myy

∂y2
þ Nyy

R
þ Nxx

∂2
w

∂x2
þ 2Nxy

∂2
w

∂x∂y
þ Nyy

∂2
w

∂y2

þ q�K1wþK2

∂2
w

∂x2
þ ∂2

w

∂y2

 !
¼ 0

ð5:17cÞ

∂Hxx

∂x
þ ∂Hxy

∂y
� Qx ¼ 0 ð5:17dÞ

∂Hxy

∂x
þ ∂Hyy

∂y
� Qy ¼ 0 ð5:17eÞ

Thereafter, through definition of Airy stress function f(x, y) as below, the two

first governing Eqs. (5.17a) and (5.17b) can be satisfied completely:

Nxx ¼ ∂2
f x; yð Þ
∂y2

, Nyy ¼ ∂2
f x; yð Þ
∂x2

, Nxy ¼ �∂2
f x; yð Þ
∂x∂y

ð5:18Þ

Furthermore, for a perfect nanoshell, the compatibility relation corresponding to

the midplane strain components can be rewritten as

∂2ε0xx
∂y2

þ ∂2ε0yy
∂x2

� ∂2γ0xy
∂x∂y

¼ ∂2
w

∂x∂y

 !2

� ∂2
w

∂x2
∂2

w

∂y2
� 1

R

∂2
w

∂x2
ð5:19Þ

Now, by substituting Eq. (5.18) in the inverse of Eq. (5.12) and using Eqs. (5.17)

and (5.19), the governing differential equations for a nonlocal hybrid FGM expo-

nential shear deformable nanoshell can be established as
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φ1

∂4
f

∂x4
þ φ7 � 2φ2ð Þ ∂4

f

∂x2∂y2
þ φ1

∂4
f

∂y4
þ φ4

∂4
w

∂x4
þ 2 φ3 � φ8ð Þ ∂4

w

∂x2∂y2
þ φ4

∂4
w

∂y4

� φ6

∂3ψ x

∂x3
� φ5 � φ9ð Þ ∂3ψ x

∂x∂y2
� φ6

∂3ψ y

∂y3
� φ5 � φ9ð Þ ∂3ψ y

∂x2∂y
þ 1

R

∂2
w

∂x2

¼ ∂2
w

∂x∂y

 !2

� ∂2
w

∂x2
∂2

w

∂y2

ð5:20aÞ

φ10

∂4
w

∂x4
þ 2 φ11 þ 2φ12ð Þ ∂4

w

∂x2∂y2
þ φ10

∂4
w

∂y4
þ φ13

∂3ψ x

∂x3
þ φ14 þ 2φ15ð Þ ∂3ψ x

∂x∂y2

þφ13

∂3ψ y

∂y3
þ φ14 þ 2φ15ð Þ ∂3ψ y

∂x2∂y
� 1

R

∂2
f

∂x2
þK1w�K2

∂2
w

∂x2
þ ∂2

w

∂y2

 !

¼ 1� e20θ
2∇2

	 �� ∂2
w

∂x2
∂2

f

∂y2
� 2

∂2
w

∂x∂y
∂2

f

∂x∂y
þ ∂2

w

∂y2
∂2

f

∂x2
þ q

 !
ð5:20bÞ

φ16

∂3
f

∂x3
þ φ17

∂3
f

∂x∂y2
þ φ18

∂3
w

∂x3
þ φ19 þ 2φ20ð Þ ∂3

w

∂x∂y2
þ φ21

∂2ψx

∂x2
þ φ22

∂2ψ x

∂y2

þ φ23 þ φ22ð Þ ∂
2ψ y

∂x∂y
� A∗

44ψ x ¼ 0

ð5:20cÞ

φ16

∂3
f

∂y3
þ φ17

∂3
f

∂x2∂y
þ φ18

∂3
w

∂y3
þ φ19 þ 2φ20ð Þ ∂3

w

∂x2∂y
þ φ21

∂2ψy

∂y2
þ φ22

∂2ψ y

∂x2

þ φ23 þ φ22ð Þ ∂
2ψ x

∂x∂y
� A∗

55ψ y ¼ 0

ð5:20dÞ
where the parameters φi (i¼ 1, . . ., 23) are defined in Appendix A.

Regarding the boundary conditions at the left and right ends of the hybrid FGM

nanoshell, the clamped edge supports are considered based on which:

w ¼ 0 , ∂w
∂x ¼ 0

Also, the equilibrium satisfaction for loading conditions along x-axis for axial
compression and hydrostatic pressure loading cases yields, respectively, asZ 2πR

0

Nxxdyþ 2πRhσxx ¼ 0 ð5:21aÞZ 2πR

0

Nxxdyþ πR2q ¼ 0 ð5:21bÞ
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For a closed shell-type structure, the periodicity condition results inZ 2πR

0

∂v
∂y

dy ¼ 0 ð5:22Þ

which can be rewritten in the following form:Z 2πR

0

φ1

∂2
f

∂x2
�φ2

∂2
f

∂y2
þφ4

∂2
w

∂x2
þφ3

∂2
w

∂y2
�φ6

∂ψx

∂x
�φ5

∂ψy

∂y
þw

R
�1

2

∂w
∂y

� �2

þd32V
hp

 !
dy¼0

ð5:23Þ
In addition, the unit shortening associated to the movable ends of the hybrid

FGM exponential shear deformable nanoshell can be evaluated by

Δx

L
¼ � 1

2πRL

Z 2πR

0

Z L

0

∂u
∂x

dxdy

¼ � 1

2πRL

Z 2πR

0

Z L

0

φ1

∂2
f

∂y2
� φ2

∂2
f

∂x2
þ φ3

∂2
w

∂x2
þ φ4

∂2
w

∂y2
� φ5

∂ψ x

∂x
� φ6

∂ψ y

∂y

 

�1

2

∂w
∂x

� �2

þ d31V
hp

!
dxdy

ð5:24Þ

5.3 Solving Process for Asymptotic Solutions

5.3.1 Boundary Layer Theory of Nonlocal Shell Buckling

In order to solve the problem in a more general framework, the following dimen-

sionless parameters are taken into consideration:

X ¼ πx

L
, Y ¼ y

R
, β ¼ L

πR
, η ¼ L

πh
, E ¼ π2Rh

L2

a∗11; a
∗
12; a

∗
44; a

∗
55; a

∗
66

� � ¼ A∗
11

A00

;
A∗
12

A00

;
A∗
44

A00

;
A∗
55

A00

;
A∗
66

A00

� �
, g∗11; g

∗
12; g

∗
66

� �
¼ G∗

11

A00h
2
;
G∗

12

A00h
2
;
G∗

66

A00h
2

� 
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b∗11, b
∗
12, b

∗
66, b

∗∗
11 , b∗∗

12 , b∗∗
66

d∗11, d
∗
12, d

∗
66, d

∗∗
11 , d∗∗

12 , d∗∗
66

� �
¼

B∗
11

A00h
,
B∗
12

A00h
,
B∗
66

A00h
,
B∗∗
11

A00h
,
B∗∗
12

A00h
,
B∗∗
66

A00h
D∗

11

A00h
2
,
D∗

12

A00h
2
,
D∗

66

A00h
2
,
D∗∗

11

A00h
2
,
D∗∗

12

A00h
2
,
D∗∗

66

A00h
2

8>><>>:
9>>=>>;

ð5:25Þ
W ¼ Ew

h
, F ¼ E2f

A00h
2

, ΨX;ΨYf g ¼ E2L
πh

ψ x;ψ y

� �
℘x ¼

σxxR

2A00

, δx ¼ ΔxR

2Lh
, ℘q ¼

33=4qLR3=2

4πA00h
3=2

, δq ¼ 33=4Δx

ffiffiffi
R

p

4πh3=2
, G ¼ e0θ

L

in which A00¼ (λm + 2μm)h. As a consequence, the dimensionless form of the

nonlocal nonlinear governing differential equations can be obtained as

ϑ1
∂4

F

∂X4
þ ϑ7 � 2ϑ2ð Þβ2 ∂4

F

∂X2∂Y2
þ ϑ1β

4 ∂
4
F

∂Y4

þ E ϑ4
∂4

W

∂X4
þ 2 ϑ3 � ϑ8ð Þβ2 ∂4

W

∂X2∂Y2
þ ϑ4β

4 ∂
4
W

∂Y4

 !
� ϑ6

∂3ΨX

∂X3

� ϑ5 � ϑ9ð Þβ2 ∂3ΨX

∂X∂Y2
� ϑ6β

3 ∂
3ΨY

∂Y3
� ϑ5 � ϑ9ð Þβ ∂3ΨY

∂X2∂Y
þ ∂2

W

∂X2

¼ β2
∂2

W

∂X∂Y

 !2

� β2
∂2

W

∂X2

∂2
W

∂Y2
ð5:26aÞ

E2 ϑ10
∂4

W

∂X4
þ2 ϑ11þ2ϑ12ð Þβ2 ∂4

W

∂X2∂Y2
þϑ10β

4∂
4
W

∂Y4
þk1W�k2

∂2
W

∂X2
þ∂2

W

∂Y2

 ! !

þE ϑ13
∂3ΨX

∂X3
þ ϑ14þ2ϑ15ð Þβ ∂3ΨX

∂X2∂Y

 !

þE ϑ13β
3∂

3ΨY

∂Y3
þ ϑ14þ2ϑ15ð Þβ2 ∂3ΨY

∂X∂Y2

 !
�∂2

F

∂X2

¼ 1�π2G2∇2
	 �� β2

∂2
W

∂X2

∂2
F

∂Y2
þ2β2

∂2
W

∂X∂Y
∂2

F

∂X∂Y
þβ2

∂2
W

∂Y2

∂2
F

∂X2
þE3=2

4

3
31=4℘q

 !
ð5:26bÞ

ϑ16
∂3

F

∂X3
þ ϑ17β

2 ∂3
F

∂X∂Y2
þ E ϑ18

∂3
W

∂X3
þ ϑ19 þ 2ϑ20ð Þβ2 ∂3

W

∂X∂Y2

 !
þ ϑ21

∂2ΨX

∂X2

þ ϑ22β
2 ∂

2ΨX

∂Y2
þ ϑ23 þ ϑ22ð Þβ ∂2ΨY

∂X∂Y
� a∗44η

2ΨX ¼ 0

ð5:26cÞ
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ϑ16β
3 ∂

3
F

∂Y3
þ ϑ17β

∂3
F

∂X2∂Y
þ E ϑ18β

3 ∂
3
W

∂Y3
þ ϑ19 þ 2ϑ20ð Þβ ∂3

W

∂X2∂Y

 !

þϑ21β
2 ∂

2Ψ Y

∂Y2
þ ϑ22

∂2ΨY

∂X2
þ ϑ23 þ ϑ22ð Þβ ∂2ΨX

∂X∂Y
� a∗55η

2ΨY ¼ 0

ð5:26dÞ

Furthermore, the dimensionless form of the clamped boundary conditions at the

left (X¼ 0) and right (X¼ π) ends of the hybrid FGM nanoshell can be given as

W ¼ 0, ∂W
∂X ¼ 0.

Also, the boundary layer-type equilibrium requirement for loading condition

along x-axis corresponding to axial compression and hydrostatic pressure loading

cases can be expressed as

1

2π

Z 2π

0

β2
∂2

F

∂Y2
dY þ 2E℘x ¼ 0 ð5:27aÞ

1

2π

Z 2π

0

β2
∂2

F

∂Y2
dY þ 2

3
31=4E3=2℘q ¼ 0 ð5:27bÞ

The dimensionless periodicity condition becomes

Z 2π

0

ϑ1
∂2

F

∂X2
�ϑ2β

2∂
2
F

∂Y2
þ E ϑ4

∂2
W

∂X2
þϑ3β

2∂
2
W

∂Y2

 !
�ϑ6

∂Ψ x

∂X
�ϑ5β

∂ΨY

∂Y

(

þW�β2

2

∂W
∂Y

� �2

þd32RV
hhp

)
dY¼ 0

ð5:28Þ

Additionally, the unit shortening of the hybrid FGM exponential shear deform-

able nanoshell in dimensionless form can be introduced for axial compression and

hydrostatic pressure loading cases, respectively, as

δx ¼ � 1

4π2E

Z 2π

0

Z π

0

�ϑ2
∂2

F

∂X2
þ ϑ1β

2 ∂
2
F

∂Y2
þ E ϑ3

∂2
W

∂X2
þ ϑ4β

2 ∂
2
W

∂Y2

 !( )

�ϑ5
∂ΨX

∂X
� ϑ6β

∂ΨY

∂Y
� 1

2

∂W
∂X

� �2

þ d31RV
hhp

)
dXdY

ð5:29aÞ

δq ¼ � 33=4

8π2ε3=2

Z 2π

0

Z π

0

�ϑ2
∂2

F

∂X2
þ ϑ1β

2 ∂
2
F

∂Y2
þ E ϑ3

∂2
W

∂X2
þ ϑ4β

2 ∂
2
W

∂Y2

 !(

� ϑ5
∂Ψ x

∂X
� ϑ6β

∂Ψ y

∂Y
� 1

2

∂W
∂X

� �2

þ d31RV
hhp

)
� dXdY

ð5:29bÞ
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5.3.2 Perturbation-Based Solution Methodology

In the preceding subsection, through definition of E, namely, as the small perturba-

tion parameter, the nonlocal governing differential Eqs. (5.26) were constructed in

the form of boundary layer. At this step of the solving process, using the singular

perturbation technique (Shen 2008; Shen 2009; Shen 2011a; b; Shen and Xiang

2014; Sahmani et al. 2016a; b; c; Sahmani and Aghdam 2017d; e; f; Sahmani and

Aghdam 2018), the independent variables are considered as the summations of the

regular and boundary layer solutions in the following forms:

W ¼ �W X; Y; Eð Þ þ ~W X; Y; E; ξð Þ þ Ŵ X; Y; E; ςð Þ ð5:30aÞ
F ¼ �F X; Y; Eð Þ þ ~F X; Y; E; ξð Þ þ F̂ X; Y; E; ςð Þ ð5:30bÞ

ΨX ¼ ΨX X; Y; Eð Þ þ ~Ψ X X; Y; E; ξð Þ þ bΨ X X; Y; E; ςð Þ ð5:30cÞ
ΨY ¼ ΨY X; Y; Eð Þ þ ~Ψ Y X; Y; E; ξð Þ þ bΨ Y X; Y; E; ςð Þ ð5:30dÞ

where the accent character represents the regular solution and the accent characters

~ andedenote the boundary layer solutions associated with the left (X¼ 0) and right

(X¼ π) ends of piezoelectric nanoshell, respectively.
Now, each part of the solutions can be altered to the perturbation expansions in

the following forms:

�W X; Y; Eð Þ ¼
X
i¼0

Ei=2 �Wi=2 X; Yð Þ, �F X; Y; Eð Þ ¼
X
i¼0

Ei=2 �Fi=2 X; Yð Þ

Ψ x X; Y; Eð Þ ¼
X
i¼1

Ei=2Ψ xi=2 X; Yð Þ, Ψ y X; Y; Eð Þ ¼
X
i¼1

Ei=2Ψ yi=2 X; Yð Þ

~W X;Y; e; ξð Þ ¼
X
i¼0

Ei=2þ1 ~W i=2þ1 X;Y; ξð Þ, ~F X;Y; e; ξð Þ

¼
X
i¼0

Ei=2þ2~F i=2þ2 X;Y; ξð Þ ð5:31Þ
~Ψ x X; Y; E; ξð Þ ¼

X
i¼0

Eiþ3=2 ~Ψ xiþ3=2 X;Y; ξð Þ, ~Ψ y X; Y; E; ξð Þ

¼
X
i¼0

Ei=2þ2 ~Ψ yi=2þ2
X;Y; ξð Þ

Ŵ X; Y; E; ςð Þ ¼
X
i¼0

Ei=2þ1Ŵ i=2þ1 X; Y; ςð Þ, F̂ X; Y; E; ςð Þ ¼
X
i¼0

Ei=2þ2F̂i=2þ2 X; Y; ςð Þ

bΨ x X;Y; E; ςð Þ ¼
X
i¼0

Eiþ3=2 bΨ xiþ3=2 X; Y; ςð Þ, bΨ y X; Y; E; ςð Þ ¼
X
i¼0

Ei=2þ2 bΨ yi=2þ2 X; Y; ςð Þ

where ξ and ς represent the boundary layer variables in the following forms:

ξ ¼ X

E1=2
, ς ¼ π � X

E1=2
ð5:32Þ
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In addition, it is assumed that

E3=2
4

3
31=4q ¼

X
i¼0

EiQi ð5:33Þ

Thereby, by substituting Eqs. (5.30) and (5.31) into the nonlocal governing

differential Eqs. (5.26) and then collecting the expressions having the similar

order of E, the sets of perturbation equations can be extracted for both regular and

boundary layer solutions. This procedure resumes until a maximum order of E
corresponding to which the convergence of the solving process is confirmed. For

this purpose, a tolerance limit <0.001 is supposed, and it is indicated that the

tolerance limit is achieved up to the forth order of the small perturbation parameter.

To continue the solution methodology, the initial buckling mode shape for the

hybrid FGM nanoshell is defined corresponding to axial compression and hydro-

static pressure loading cases, respectively, as follows:

�W2 X; Yð Þ ¼ A 2ð Þ
00 þA 2ð Þ

11 sin mXð Þ sin nYð Þ þ A 2ð Þ
02 cos 2nYð Þ ð5:34aÞ

�W2 X; Yð Þ ¼ A 2ð Þ
00 þA 2ð Þ

11 sin mXð Þ sin nYð Þ ð5:34bÞ
Afterward, through performing some mathematical calculations, the asymptotic

solutions can be extracted relevant to each independent variable as given in

Appendix A for each loading case. By inserting them in Eqs. (5.27) and (5.29)

and rearranging them in accordance with the order of the second perturbation

parameter (A 2ð Þ
11 E for combination of axial compression with lateral electric field

and A 2ð Þ
11 E

2 for combination of hydrostatic pressure with lateral electric field), the

explicit expressions for the nonlocal stability curves are obtained corresponding to

each loading case as below:

• For combination of axial compression with lateral electric field:

℘x ¼
X

i¼0, 2, 4, ...
℘ ið Þ

x A 2ð Þ
11 E

� �i
¼ ℘ 0ð Þ

x þ ℘ 2ð Þ
x A 2ð Þ

11 E
� �2

þ ℘ 4ð Þ
x A 2ð Þ

11 E
� �4

þ . . . ð5:35Þ

δx ¼
X

i¼0, 2, 4, ...
δ ið Þ
x A 2ð Þ

11 E
� �i

þ δE
x

¼ δ 0ð Þ
x þ δEx þ δ 2ð Þ

x A 2ð Þ
11 E

� �2
þ δ 4ð Þ

x A 2ð Þ
11 E

� �4
þ . . . ð5:36Þ

• For combination of hydrostatic pressure with lateral electric field:

℘q ¼
X

i¼0, 2, 4, ...
℘ ið Þ

q A 2ð Þ
11 E

2
� �i

¼ ℘ 0ð Þ
q þ ℘ 2ð Þ

q A 2ð Þ
11 E

2
� �2

þ . . . ð5:37Þ

δq ¼
X

i¼0, 2, 4, ...
δ ið Þ
q A 2ð Þ

11 E
2

� �i
þ δEq ¼ δ 0ð Þ

q þ δEq þ δ 2ð Þ
q A 2ð Þ

11 E
2

� �2
þ . . . ð5:38Þ
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The parameters presented in the above equations are defined in Appendix

B. Now, it is supposed that the dimensionless coordinate of the point in which the

maximum deflection occurs is in the form as (X,Y )¼ (π/2m, π/2n). So, it yields:

• For combination of axial compression with lateral electric field:

A 2ð Þ
11 E ¼

wm

h
þ S2 þ S1

wm

h
þ S2

� �2
ð5:39Þ

• For combination of hydrostatic pressure with lateral electric field:

A 2ð Þ
11 E

2 ¼ E
wm

h
þ S4 þ S3 E

wm

h
þ S2

� �2
ð5:40Þ

where wm represents the maximum deflection. Also, the symbols S1,S2,S3 and

4 are defined in Appendix B.

5.4 Numerical Results and Discussion

Herein, selected numerical results for nonlocal nonlinear instability of hybrid FGM

exponential shear deformable nanoshells subjected to the two types of loading

condition are presented. In the preceding presentation of the results, the left and

right ends of nanoshell are supposed to be clamped, and R/h¼ 50, L¼ 2R. The
properties of FGM substrate made of the mixture of silicon and aluminum and

PZT-5H piezoelectric surface layers are tabulated in Table 5.1.

In Fig. 5.2, the nonlocal load-deflection equilibrium paths of hybrid FGM

nanoshells under axial compression are depicted corresponding to various values

of nonlocal parameter and thickness of FGM substrate. It can be seen that the

influence of nonlocality causes to reduce the critical buckling compression, but it

increases the minimum load relevant to the postbuckling regime. Furthermore, the

width of the postbuckling domain decreases by taking the nonlocal effect into

Table 5.1 Material

properties of different phases

of hybrid FGM nanoshell

(Miller and Shenoy 2000; Yan

and Jiang 2011)

Aluminum <1 1 1>

E (GPa) 70

ν 0.35

Silicon <1 0 0>

E (GPa) 210

ν 0.24

PZT-5H piezoelectric

E (GPa) 92.3

ν 0.30

d31 (m/V ) �2.65� 10�10

d32 (m/V ) �2.65� 10�10
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consideration. These anticipations are more prominent for nanoshells with lower

thickness of FGM substrate which indicates that the nonlocality size effect plays

more important role in the nonlinear instability of thinner hybrid FGM nanoshells.

Figure 5.3 illustrates the nonlocal load-shortening equilibrium paths of hybrid

FGM nanoshells with different nonlocal parameters and thickness of FGM sub-

strate. It is observed that the nonlocal size dependency has a negligible influence on

the slope of prebuckling part of the load-shortening equilibrium path of hybrid

FGM nanoshell under axial compressive load. Moreover, it can be found that the

depth of snap-through phenomenon related to the axial postbuckling behavior

decreases due to the nonlocality influence. This pattern is more significant for

thinner hybrid FGM nanoshell.

Displayed in Fig. 5.4 are the size-dependent load-deflection equilibrium curves

of hybrid FGM nanoshells under hydrostatic pressure corresponding to various

values of nonlocal parameter. It can be seen that by taking the influence of

nonlocality into consideration, the hybrid FGM nanoshell buckles at lower hydro-

static pressure. Moreover, by moving to deeper part of the postbuckling domain, the

size dependency of the nonlinear instability of nanoshell decreases. Additionally, it

is found again that for hybrid FGM nanoshells with higher thickness of FGM

substrate, the influence of nonlocality on the postbuckling behavior reduces.
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Fig. 5.2 Local and nonlocal load-deflection response of hybrid FGM nanoshells under axial

compression corresponding to different nonlocal parameters (k¼ 1, hp¼ 0.25 nm,V¼ k1¼ k2¼ 0):

(a) hf¼ 1 nm, (b) hf¼ 2 nm
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Fig. 5.3 Local and nonlocal load-shortening response of hybrid FGM nanoshells under axial

compression corresponding to different nonlocal parameters (k¼ 1, hp¼ 0.25 nm,V¼ k1¼ k2¼ 0):

(a) hf¼ 1 nm, (b) hf¼ 2 nm
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Fig. 5.4 Local and nonlocal load-deflection response of hybrid FGM nanoshells under hydrostatic

pressure corresponding to different nonlocal parameters (k¼ 1, hp¼ 0.25 nm,V¼ k1¼ k2¼ 0): (a)

hf¼ 1 nm, (b) hf¼ 2 nm
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Figure 5.5 represents the size-dependent load-shortening equilibrium curves

including both prebuckling and postbuckling regimes of hybrid FGM nanoshells

under hydrostatic pressure with different nonlocal parameters. It is revealed that the

nonlocal continuum elasticity has a negligible influence on the slope of prebuckling

part of the load-shortening response of hybrid FGM nanoshells. Also, it is seen that

the nonlocality size effect causes to decrease the critical hydrostatic pressure, but it

leads to increase the associated shortening of the movable ends of nanoshells.

Plotted in Fig. 5.6 are the local and nonlocal load-deflection equilibrium paths of

hybrid FGM nanoshells under axial compression with various material property

gradient indexes. It is seen that the significance of the influence of material gradient

index on the critical buckling compression is approximately the same for the local

and nonlocal shell models. However, the reduction of minimum postbuckling load

due to the increment in the value of material property gradient index is more

considerable in the nonlocal shell model compared to the local one.

Figure 5.7 shows the local and nonlocal load-shortening equilibrium paths for

both prebuckling and postbuckling domains of hybrid FGM nanoshells under axial

compression with different material property gradient indexes. It is revealed that by

moving from the ceramic-rich to metal-rich substrate, the slope of prebuckling part

of the load-shortening equilibrium path decreases. Additionally, as it was men-

tioned before, the nonlocality leads to decrease the depth of the snap-through
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Fig. 5.5 Local and nonlocal load-shortening response of hybrid FGM nanoshells under hydro-

static pressure corresponding to different nonlocal parameters (k¼ 1, hp¼ 0.25 nm,
V¼ k1¼ k2¼ 0): (a) hf¼ 1 nm, (b) hf¼ 2 nm
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Fig. 5.6 Load-deflection response of hybrid FGM nanoshells under axial compression

corresponding to different material property gradient indexes (hf¼ 1 nm, hp¼ 0.25 nm,
V¼ k1¼ k2¼ 0): (a) e0θ¼ 0 nm, (b) e0θ¼ 4 nm
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Fig. 5.7 Load-shortening response of hybrid FGM nanoshells under axial compression

corresponding to different material property gradient indexes (hf¼ 1 nm, hp¼ 0.25 nm,
V¼ k1¼ k2¼ 0): (a) e0θ¼ 0 nm, (b) e0θ¼ 4 nm
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phenomenon relevant to the postbuckling response of hybrid FGM nanoshell, and

this pattern is more significant corresponding to lower value of material property

gradient index.

In Fig. 5.8, the effect of material property gradient index on the local and

nonlocal load-deflection responses of hybrid FGM nanoshells under hydrostatic

pressure is depicted. It can be observed that by moving from the ceramic-rich

hybrid nanoshell to metal-rich one, the critical hydrostatic pressure reduces. The

intensity of this reduction is approximately the same for both local and nonlocal

shell models. In addition, it can be found that by moving to the deeper part of the

postbuckling domain, the gap between the load-deflection stability curves of axially

loaded hybrid FGM nanoshells becomes more significant.

Plotted in Fig. 5.9 are the local and nonlocal load-shortening responses of hybrid

FGM nanoshells under hydrostatic pressure with various material property gradient

indexes. It is indicated that by increasing the value of material property gradient

index, the slope of load-shortening equilibrium curves of hybrid FGM nanoshell

decreases, but this reduction is more considerable in the postbuckling regime in

comparison with the prebuckling one. These observations are similar corresponding

to both local and nonlocal shell models.

In Fig. 5.10, the local and nonlocal load-deflection equilibrium paths of hybrid

FGM nanoshells under combination of axial compression and lateral electric field
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Fig. 5.8 Load-deflection response of hybrid FGM nanoshells under hydrostatic pressure

corresponding to different material property gradient indexes (hf¼ 1 nm, hp¼ 0.25 nm,
V¼ k1¼ k2¼ 0): (a) e0θ¼ 0 nm, (b) e0θ¼ 4 nm
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Fig. 5.9 Load-shortening response of hybrid FGM nanoshells under hydrostatic pressure

corresponding to different material property gradient indexes (hf¼ 1 nm, hp¼ 0.25 nm,
V¼ k1¼ k2¼ 0): (a) e0θ¼ 0 nm, (b) e0θ¼ 4 nm
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Fig. 5.10 Load-deflection response of axially loaded hybrid FGM nanoshells with different

material gradient indexes subjected to various applied voltages (hf¼ 1 nm, hp¼ 0.25 nm,
k1¼ k2¼ 0): (a) e0θ¼ 0 nm, (b) e0θ¼ 4 nm
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created by various values of applied voltage are demonstrated. It can be observed

that the lateral electric field created by a positive applied voltage leads to increase

the critical buckling compression of an axially loaded hybrid FGM nanoshell, while

the lateral electric field coming from a negative voltage causes to reduce

it. However, no change occurs for the value of the minimum postbuckling load

through applying the external lateral electric field. In addition, it is indicated that

the significance in the influence of lateral electric field on the nonlinear instability

characteristics of hybrid FGM nanoshell modeled via nonlocal shell model is more

than its local counterparts.

Depicted in Fig. 5.11 are the local and nonlocal load-shortening equilibrium

paths including both prebuckling and postbuckling domains for hybrid FGM

nanoshells under combination of axial compression and lateral electric field coming

from various values of applied voltage. It is found that positive and negative applied

voltages cause, respectively, initial shortening and initial extension in the hybrid

FGM nanoshell. As a result, the value of shortening associated with the critical

point increases by applying a positive lateral electric field, and it decreases by a

negative one. Also, it is seen that the initial shortening or extension are approxi-

mately the same for both local and nonlocal shell models and all values of material

property gradient index.

In Fig. 5.12, the local and nonlocal load-deflection characteristics of hybrid

FGM nanoshells with different material gradient indexes and subjected to combi-

nation of hydrostatic pressure and lateral electric field coming from various applied
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Fig. 5.11 Load-shortening response of axially loaded hybrid FGM nanoshells with different

material gradient indexes subjected to various applied voltages (hf¼ 1 nm, hp¼ 0.25 nm,
k1¼ k2¼ 0): (a) e0θ¼ 0 nm, (b) e0θ¼ 4 nm
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voltages are illustrated. It is demonstrated that an electric field coming from a

positive voltage causes to increase the critical hydrostatic pressure of nanoshells,

while negative electric fields lead to reduce it. By moving to the deeper region of

the postbuckling regime, the difference between load-deflection equilibrium paths

associated with various values of electric field increases. Furthermore, it can be

seen that this pattern is somehow more significant in the local shell model compared

to the nonlocal one.

Figure 5.13 shows the local and nonlocal load-shortening behavior of hybrid

FGM nanoshells under combination of hydrostatic pressure and various lateral

electric fields corresponding to different material property gradient indexes. It is

observed that a positive value of applied voltage leads to an initial shortening, while

a negative one causes an initial extension in the hybrid FGM nanoshell. These

initial shortening and extension lead to, respectively, increase and decrease the

value of shorting of the movable ends associated with the critical buckling point.

In Figs. 5.14 and 5.15, the influence of the elastic foundation on the load-

deflection and load-shortening stability curves of hybrid FGM nanoshells under

axial compression is demonstrated, respectively. It can be seen that by adding the

Winkler elastic foundation, both the critical buckling load and minimum

postbuckling load increase, but no change occurs for the width of the postbuckling

regime. However, the Pasternak foundation including shear stiffness causes to

enhance the buckling and minimum postbuckling loads, and also it increases the

0 2 4 6 8
0.4

0.6

0.8

1

1.2

1.4

1.6

Dimensionless max. deflection

D
im

en
si

o
n

le
ss

 h
yd

ro
st

at
ic

 p
re

ss
u

re
(a)

0 2 4 6 8
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Dimensionless max. deflection

D
im

en
si

o
n

le
ss

 h
yd

ro
st

at
ic

 p
re

ss
u

re

(b)

k = 0.5 , V = 0 mv

k = 0.5 , V = 2 mv

k = 0.5 , V = -2 mv

k = 2 , V = 0 mv

k = 2 , V = 2 mv

k = 2 , V = -2 mv

Fig. 5.12 Load-deflection response of hydrostatic pressurized hybrid FGM nanoshells with

different material gradient indexes subjected to various applied voltages (hf¼ 1 nm,
hp¼ 0.25 nm, k1¼ k2¼ 0): (a) e0θ¼ 0 nm, (b) e0θ¼ 4 nm
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Fig. 5.14 Influence of the elastic foundation on load-deflection response of axially loaded hybrid
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e0θ¼ 0 nm, (b) e0θ¼ 4 nm
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width of the postbuckling domain which leads to higher maximum deflection

associated with the minimum postbuckling load. Moreover, it can be observed

that the influence of the Pasternak elastic foundation on the value of minimum

postbuckling load is less than its influence on the critical buckling load, and this

pattern is more significant by taking nonlocal size dependency into account.

Additionally, it is seen that the elastic foundation has no influence on the slope of

prebuckling part of the load-shortening response, but it enhances the shortening of

hybrid FGM nanoshell at the critical buckling point.

5.5 Conclusion

In the current study, the nonlocal size dependency in the nonlinear instability

characteristics of FGM nanoshells integrated with piezoelectric face sheets and

embedded in an elastic medium was investigated under two different loading

conditions including axial compression and hydrostatic pressure combined with

external lateral electric field. It was observed that the influence of nonlocality

causes to reduce the critical buckling compression, but in the case of axially loaded,

it increases the minimum load relevant to the postbuckling regime. Furthermore,

the width of the postbuckling domain decreases by taking the nonlocal effect into
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Fig. 5.15 Influence of the elastic foundation on load-shortening response of axially loaded hybrid

FGM nanoshells with different material gradient indexes (hf¼ 1 nm, hp¼ 0.25 nm,V¼ 0): (a)

e0θ¼ 0 nm, (b) e0θ¼ 4 nm
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consideration. In addition, it was found that an electric field coming from a positive

voltage causes to increase the critical load, while a negative electric field leads to

reduce it. However, in the case of axially loaded, it was seen that the external

electric field has no influence on the minimum postbuckling load. By moving to the

deeper region of the postbuckling regime, the difference between load-deflection

equilibrium paths associated with various values of electric field increases.

Also, it was indicated that by adding the Winkler elastic foundation, both the

critical buckling load and minimum postbuckling load increase, but no change

occurs for the width of the postbuckling regime. However, the Pasternak foundation

including shear stiffness causes to enhance the buckling and minimum postbuckling

loads, and also it increases the width of the postbuckling domain which leads to

higher maximum deflection associated with the minimum postbuckling load. More-

over, it can be observed that the influence of the Pasternak elastic foundation on the

value of minimum postbuckling load is less than its influence on the critical

buckling load, and this pattern is more significant by taking nonlocal size depen-

dency into account.
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This point should be noted that the parameters of ϑi (i¼ 1, . . ., 23) are the

dimensionless form of φi.
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The solutions in asymptotic forms corresponding to each of independent vari-

ables are extracted as below:

• For combination of axial compression and lateral electric field loading case:
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• For combination of hydrostatic pressure and lateral electric field loading case:
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E1=2

" #
℘q

þ 31=4 Γ2
1 þ Γ2

2

	 �
2ϑ1 � ϑ2ð Þ2

6πΓ2

 !
E

" #
℘2

q ð5:B10Þ
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δ 2ð Þ
q ¼ 33=4m2

32

� 
E�3=2 ð5:B11Þ

δEq ¼
33=4

4
d31RV
hhp

 !
E1=2 ð5:B12Þ

where

H11 ¼ 1þ π2G2 m2 þ β2n2
	 �

, H02 ¼ 1þ 4π2G2β2n2

H20 ¼ 1þ 4π2G2m2 , H13 ¼ 1þ π2G2 m2 þ 9β2n2
	 � ð5:B13Þ

where U i i ¼ 0; . . . ; 9ð Þ are constant parameters extracted via the perturbation sets

of equations.

S1 ¼ � U0

U5 þ U2U6

E�1 þ 2ϑ2℘ 2ð Þ
x ð5:B14Þ

S2 ¼ 2ϑ2℘ 0ð Þ
x þ d32RV

hhp
ð5:B15Þ

S1 ¼ � 2ϑ1 � ϑ2ð Þ ℘ 2ð Þ
q

� �h i
ð5:B16Þ

S2 ¼ � 2ϑ1 � ϑ2ð Þ ℘ 0ð Þ
q

� �
þ d32RV

hhp

� �
E ð5:B17Þ
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Part II

Vibrations and Automotive Applications



Chapter 6

Vibration Analysis of Oscillators
with Generalized Inertial and Geometrical
Nonlinearities

D. Younesian, E. Esmailzadeh, and H. Askari

6.1 Introduction

Significant attention has been devoted recently to the large-amplitude vibration

analysis of continuous systems because of having wide range of applications in

micro- and nanomechanics. Dynamic behavior of nano- and microsensors, resona-

tors, power generators, and switches has been proved to be nonlinear. The signif-

icance of this research corresponds to the fact that the mechanical, transport, and

electronic properties of these kind of structures are highly influenced by their

vibration modes and resonant frequencies.

There is no doubt that closed-form solutions could promote the engineering

foundation to have enhanced intelligence on the dynamic characteristic of such

complicated systems. A number of researchers have proposed varieties of powerful

and reliable approaches to elicit analytical solutions of such nonlinear systems

(Nayfeh and Mook 1995). The homotopy perturbation method, variational

approach, variational iteration method, max-min technique, frequency-amplitude

formulation, energy balance method, Hamiltonian approach, simple approach, and

parameter-expansion method have all been recently proposed in this line of
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research. Subsequently, several researchers have employed these methods to iden-

tify and model different phenomena in the nature (Askari et al. 2013; He 2006,

2010).

All the abovementioned methods are quite capable in solving different types of

nonlinear differential equations. Variational approach, frequency-amplitude formu-

lation, energy balance method, and Hamiltonian approach are effectively applicable

for solving the nonlinear conservative oscillators, such as the relativistic oscillators,

plasma physics equations, and the nonlinear oscillators with fractional power and

Duffing-harmonic oscillators. Homotopy perturbation and variational iteration

methods are powerful approaches that are applicable for solving both the nonlinear

ordinary and partial differential equations.

Simple approach is also a new method, which has been developed based on the

iteration perturbation method, and it is applicable of solving nonlinear differential

equations of the oscillatory systems. Parameter expansion is a novel approach,

which has been proposed by many researchers, that has been used for solving

diverse types of nonlinear equations. Parameter-expansion method is a strong

method in comparison with the Lindstedt-Poincaré method. Actually, it is a potent

vehicle for investigating different types of nonlinear problems with strong

nonlinearity. In the Lindstedt-Poincaré method, the solution of the nonlinear dif-

ferential equation and also the natural frequency are expanded with respect to

“small parameter, namely, epsilon.” However, in the parameter-expansion method,

all the coefficient of the elastic terms belonging to the nonlinear differential

equation must be expanded.

Many types of the well-known nonlinear differential equations in physics and

engineering have been analyzed by the abovementioned methods. Younesian et al.

(2010a, b, 2011, 2012) considered three kinds of the generalized nonlinear oscilla-

tors supporting a wide range of applications in nonlinear mechanics as listed in

Table 6.1. Cveticanin et al. (2010) have also pointed out several applications and

also proposed a new sequence of generalized nonlinear system addressed in

Table 6.1. Along the same track, Khan et al. (2011) considered a new path in this

area to deal with another type of generalized nonlinear oscillators. Their progress

on the area of generalized nonlinear oscillatory systems is also summarized in

Table 6.1.

A new type of generalized nonlinear differential equation, which has been

challenged in this chapter, could be represented in its most general form of

€uþ
Xn

j¼ 0,1,2,3, ::
q¼ 2jþ1

αju
qþ

X
i¼ 1,2,3, . . .
k¼ 2i
p¼ k�1

βi
�
uk€uþ kup _u 2=2

�¼ 0;u 0ð Þ¼A and _u 0ð Þ¼ 0 ð6:1Þ

in which q and k are the two arbitrary indices. This equation can generally represent
the dynamics of a wide range of oscillators with the geometrical and inertial

nonlinearities. Geometric nonlinearity, which normally appears in the potential

energy of the system, usually originates from the large deformations or deflections
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in flexible structures. Large deformations usually correspond to the nonlinear

strain- and curvature-displacement relationships.

The kinetic energy of the system is the origin of the inertia nonlinearities. These

nonlinear terms usually appear when the centripetal and Coriolis accelerations

would exist. Dynamics of large number of systems in mechanics and physics can

be physically described by Eq. (6.1). This equation becomes the well-known

generalized Duffing equation when βi¼ 0 and has been solved by several

researchers (Younesian et al. 2010a, b, 2011, 2012, 2013; Esmailzadeh and

Nakhaie-Jazar 1997; He 2002a; Askari et al. 2014a; Diba et al. 2014).

The main focus of this chapter is to find the analytical solutions of Eq. (6.1) and

also investigate the accuracy of the obtained results. The energy balance method

developed in 2002, the modified energy balance method published first in 2010, and

the parameter-expansion method utilized in 2007 have all been considered in this

chapter to determine the frequency-amplitude relationship in its most general form.

Different applications of the proposed generalized equation are summarized in

Table 6.2. It can be seen that this generic equation can formulate a wide range of

dynamical systems from the classical discrete and distributed vibrating systems to

the nano-mechanical structures and biomechanical systems.

6.2 Solution Procedure

In this section, the energy balance method (EBM), the modified energy balance

method (MEBM), and the parameter-expansion method (PEM) (He 2002b) have

been utilized to find the general solutions of Eq. (6.1).

Table 6.2 Special cases of the general forms of the differential Eq. (6.1)

Nonlinear vibration system Governing differential equation of motion

Vibration of inextensible

cantilever beam (Hamdan

and Shabaneh 1997; Askari

et al. 2015)

€uþ α0uþ α1u
3 þ α2u

5 þ β1
�
u2€uþ u _u 2

�þ β2
�
u4€uþ 2u3 _u 2

� ¼ 0

Vibration of a microbeam

(Younesian et al. 2014)
€uþ α0uþ α1u

3 þ β1
�
u2€uþ u _u 2

� ¼ 0

Vibration of embedded

nanotubes and nanowires

(Askari et al. 2014b, 2017;

Jamshidifar et al. 2016)

€uþ α0uþ α1u
3 ¼ 0

Vibration of microtubules

in the living cells (Shen

2011)

€uþ α0uþ α1u
3 þ α1u

5 ¼ 0

Motion of a particle on

rotating parabola (Marinca

and Herişanu 2010)

1þ 4q2u2
� �

€uþ 4q2
�
_u
�2
uþ Δu ¼ 0
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6.2.1 Energy Balance Method

According to the energy balance method (EBM), initially the variational form of

Eq. (6.1) should be constructed as shown below:

J uð Þ ¼
ðt
0

� _u 2 1þ
Xn

i ¼ 1, 2, 3, . . .
k ¼ 2i

βiu
k

0
BB@

1
CCA=2þ 1

qþ 1

Xn
j ¼ 0, 1, 2, 3, ::
q ¼ 2jþ 1

αju
qþ1

0
BB@

1
CCAdt ð6:2Þ

and subsequently, the Hamiltonian function of Eq. (6.1) can be derived as

H¼ _u 2 1þ
Xm

i¼1,2,3, . ..
k¼2i

βiu
k

0
BB@

1
CCA=2þ 1

qþ1

Xn
j¼0,1,2,3, ::
q¼2jþ1

αju
qþ1¼ 1

qþ1

Xn
j¼0,1,2,3, ::
q¼2jþ1

αjA
qþ1 ð6:3Þ

The residual function for Eq. (6.3) can then be obtained as

R tð Þ¼ _u 2=2 1þ
Xm

i¼1,2,3, .. .
k¼2i

βiu
k

0
BB@

1
CCAþ

Xn
j¼0,1,2,3, ::
q¼2jþ1

αju
qþ1�

Xn
j¼0,1,2,3, ::
q¼2jþ1

αjA
qþ1

0
BB@

1
CCA= qþ1ð Þ

ð6:4Þ
where u¼A cosωt is considered as the initial guess for the solution of Eq. (6.1), and
therefore, by substituting it into Eq. (6.4), one may arrive at

R tð Þ
ωt!

π

4

¼ 1

2
A2ω2 sin 2ωt 1þ

Xm
i ¼ 1, 2, 3, . . .
k ¼ 2i

βiA
k cos kωt

0
BB@

1
CCA

þ 1

qþ 1

Xn
j ¼ 0, 1, 2, 3, ::
q ¼ 2jþ 1

αjA
qþ1 cos qþ1ωt�

Xn
j ¼ 0, 1, 2, 3, ::
q ¼ 2jþ 1

αjA
qþ1

0
BB@

1
CCA ¼ 0

ð6:5Þ

Finally, one could obtain an expression for the frequency of the oscillation as
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ω ¼ 2

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j ¼ 0, 1, 2, 3 . . .
q ¼ 2jþ 1

1
qþ1

αjA
qþ1

� �
1� ffiffiffi

2
p

=2
� �qþ1

� �

1þ Pm
i ¼ 1, 2, 3, ::
k ¼ 2i

βiA
k

ffiffiffi
2

p
=2

� �k

vuuuuuuuut ð6:6Þ

6.2.2 Modified Energy Balance Method

The drawbacks of the classical energy balance method have been overcome by

using a summation term in this updated procedure. In order to modify the classical

EBM, Younesian et al. (2010a) combined the classical EBM with the Petrov-

Galerkin method. They have stated that instead of setting the residual term to

zero at a given collocation point, one should try to set its integration to zero.

Hence, it may write

~R tð Þ ¼
ðT=4
0

R tð Þ cosωtdt ¼ 0 ð6:7Þ

Substituting Eq. (6.5) into Eq. (6.7) would yield as

~R tð Þ ¼ Ð T=4
0

�1
2
A2ω2 sin 2ωt 1þ

Xm
i ¼ 1, 2, 3, ::
k ¼ 2i

βiA
k cos kþ1ωt

0
BB@

1
CCA

þ
Xn

j ¼ 0, 1, 2, 3, ::
q ¼ 2jþ 1

αj
qþ 1

Aqþ1 cos qþ2ωt� cosωt
� �

dt ¼ 0

ð6:8Þ

and accordingly one could arrive at

ω ¼ 2

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ T=4
0

Pn
j ¼ 0, 1, 2, 3, ::
q ¼ 2jþ 1

αjA
qþ1 cos qþ2ωt� cosωt½ �= qþ 1ð Þ� �

dt

2
Ð T=4
0

sin 2ωt 1þ Pm
i ¼ 1, 2, 3, . . .
k ¼ 2i

βiA
k cos kþ1ωt

0
B@

1
CAdt

vuuuuuuuuuut
ð6:9Þ
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6.2.3 Parameter-Expansion Method

In this method, if one needs to solve Eq. (6.1) by the parameter-expansion method

(PEM), the new form of Eq. (6.1) should be constructed as

€uþ 0:uþ 1:
Xn

j ¼ 0, 1, 2, 3, . . .
q ¼ 2jþ 1

αju
q þ 1:

Xm
1 ¼ 1, 2, 3, ::
k ¼ 2i
p ¼ k � 1

βi uk€uþ k

2
up _u 2

 �
¼ 0 ð6:10Þ

Actually, Eq. (6.1) is developed based on the parameter-expansion method, and the

coefficients of zero (0) and one (1) must be replaced with the elastic force of the

generalized nonlinear differential equation. Subsequently, the newly defined coef-

ficients are expanded based on the small parameter ε. Accordingly, number (1) is

expanded based on the small parameter ε for the nonlinear terms of the generalized

nonlinear differential equation in order to find the natural frequency of the consid-

ered equation for this part of the equation.

Therefore, based on the parameter-expansion method, the following equations

could be developed:

u ¼ u0 þ εu1 þ ε2u2 þ . . .
0 ¼ ω2 þ εω1 þ ε2ω2 þ . . .
1 ¼ εa1 þ ε2a2 þ . . .
1 ¼ εb1 þ ε2b2 þ . . .
1 ¼ εc1 þ ε2c2 þ . . .

ð6:11Þ

Then one may substitute Eq. (6.11) into (6.10) in order to obtain

�
€uþ ε€u1 þ ε2€u2 þ . . .

�þ ω2 þ εω1 þ ε2ω2 þ . . .ð Þ u0 þ εu1 þ ε2u2 þ . . .ð Þ
þ εa1 þ ε2a2 þ . . .ð ÞP αj u0 þ εu1 þ ε2u2 þ . . .ð Þq
þ εb1 þ ε2b2 þ . . .ð ÞP βi u0 þ εu1 þ ε2u2 þ . . .ð Þk�€u0 þ ε€u1 þ ε2€u2 þ . . .

�
þ εc1 þ ε2c2 þ . . .ð ÞP k

2
βi u0 þ εu1 þ ε2u2 þ . . .
� �p�

_u 0 þ ε _u 1 þ ε2 _u 2 þ ::
�2 ¼ 0

ð6:12Þ
By equating the terms of the identical powers for ε, one could arrive at

ε0 : €u0 þ ω2u0 ¼ 0

ε1 : €u1 þ ω2u1 þ ω1u0 þ a1
P

αju
q
0 þ b1

P
βiu

k
0€u0 þ c1

P k

2
βiu

p
0 _u

2
0 ¼ 0

ð6:13Þ
where u¼A cosωt is considered to be the initial guess for the solution.
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€u1 þ ω2u1 þ ω1A cosωtþ a1
X

αjA cos qωt

þ b1
X

βiA
k cos kωt �Aω2 cosωt

� �þ c1
X k

2
βiu

p
0 _u

2
0 ¼ 0 ð6:14Þ

Using the Fourier expansion method and the definition of Gamma function Γ, one
will obtain

€u1 þ ω2u1 þ ω1A cosωtþ a1
P

αjA
q 4Γ 2þ qð Þ=2ffiffiffi

π
p

qþ 1ð ÞΓ qþ 1ð Þ=2
�b1

P
βiA

kþ1ω2 4Γ k þ 3ð Þ=2ffiffiffi
π

p
k þ 2ð ÞΓ 2þ kð Þ=2

þc1
P k

2
βiA

pþ2ω2 4Γ 3þ kð Þ=2ffiffiffi
π

p
pþ 1ð ÞΓ pþ 1ð Þ=2�

4Γ 4þ pð Þ=2ffiffiffi
π

p
pþ 1ð ÞΓ pþ 1ð Þ=2

 �
cosωtþ . . .ð Þ

� cos 3ωtþ . . .

ð6:15Þ
Eliminating the secular terms would then yield to

ω1A cosωtþ a1
P

αjA
q 4Γ 2þ qð Þ=2ffiffiffi

π
p

qþ 1ð ÞΓ qþ 1ð Þ=2
�b1

P
βiA

kþ1ω2 4Γ 3þ kð Þ=2ffiffiffi
π

p
k þ 2ð ÞΓ k þ 2ð Þ=2

þc1
P k

2
βiA

pþ2ω2 4Γ 3þ kð Þ=2ffiffiffi
π

p
pþ 1ð ÞΓ pþ 1ð Þ=2�

4Γ 4þ pð Þ=2ffiffiffi
π

p
pþ 1ð ÞΓ pþ 1ð Þ=2

 �
¼ 0

ð6:16Þ
By considering the first approximation when ε¼ 1, one could write

u ¼ u0 þ u1
a1 ¼ 1, b1 ¼ 1, and c1 ¼ 1

0 ¼ ω2 þ ω1 ð6:17Þ
Combining Eq. (6.16) and Eq. (6.17) would lead into the following expression:

�ω2A cosωtþP αjA
q 4Γ 2þ qð Þ=2ffiffiffi

π
p

qþ 1ð ÞΓ qþ 1ð Þ=2
�P βiA

kþ1ω2 4Γ 3þ kð Þ=2ffiffiffi
π

p
k þ 2ð ÞΓ 2þ kð Þ=2

þP k

2
βiA

pþ2ω2 4Γ 3þ kð Þ=2ffiffiffi
π

p
pþ 1ð ÞΓ pþ 1ð Þ=2�

4Γ 4þ pð Þ=2ffiffiffi
π

p
pþ 1ð ÞΓ pþ 1ð Þ=2

 �
¼ 0

ð6:18Þ
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6.3 Numerical Examples and Discussions

The general solutions for four special case studies are presented in this section. The

results obtained using the three proposed solution methods were compared with

those published in literature. The intention is to cover both the discrete dynamical

systems and the continuous elastic systems. The nonlinear vibration of a tapered

beam and also that of an inextensible cantilever beam have been considered here,

and the corresponding frequency responses are obtained.

6.3.1 Nonlinear Vibration of Tapered Beam

The governing differential equation of motion, which corresponds to the funda-

mental vibration mode of a tapered beam, is presented by

€uþ α0uþ α1u
3 þ β1

�
u2€uþ u _u 2

� ¼ 0 ð6:19Þ
By utilizing Eq. (6.6) and Eq. (6.18), it is found that the solutions using the energy

balance method and the parameter-expansion method will give the same results as

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α0 þ 3α1A

2=4

1þ β1A
2=2

s
ð6:20Þ

However, using Eq. (6.9) that is based on the modified energy balance method, one

could obtain the frequency-amplitude relationship as

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α0 þ 7α1A

2=10

1þ 6β1A
2=15

s
ð6:21Þ

The exact value of the natural frequency from Eq. (6.19) can be numerically

obtained as

ωex ¼ 2π

Te Að Þ ¼
π

2
Ð π=2
0

2 1þ αA2 cos 2θ
� �

= 2þ βA2 1þ cos 2θð Þ� �� �1=2
dθ

ð6:22Þ

The accuracy of the presented results is evaluated numerically and illustrated in

Fig. 6.1 for the sake of comparison. It can be seen that the reliability of the modified

energy balance method (MEBM) is much higher in comparison with the other two

procedures used, namely, the energy balance method (EBM) and the parameter-

expansion method (PEM).

Figure 6.1 demonstrates that the extra improvement, which results from the

MEBM, is quite remarkable. It is found that this modification would decrease the

ultimate relative errors of up to 50%.
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The ultimate relative error is defined to be

limA!1
ωEBM,PEM Að Þ

ωex

¼ 2
ffiffiffi
3

p

π

ðπ=2
0

cos tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos 2t

p dt � 0:8660 ð6:23Þ

and

limA!1
ωMEBM Að Þ

ωex

¼ 2
ffiffiffi
3

p

π

ðπ=2
0

cos tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos 2t

p dt � 0:9354 ð6:24Þ

The phase-plane trajectories of Eq. (6.19) are numerically plotted in Fig. 6.2 for

various values of the initial conditions. This represents the important fact that the

oscillation of the tapered beam is found to be periodic, and it represents like a

Hamiltonian system.

The time history diagram of the oscillations of the system with respect to

nondimensional parameter h or (t/T, time/period) is shown in Fig. 6.3. It can be

seen that the results obtained are acceptable even when the system has strong

nonlinearities and undergoes large amplitudes of vibration.

The frequency responses for the system with different nonlinearity indices are

illustrated in Fig. 6.4. It is seen that the parameter β1 plays an important role of

either hardening or softening tuning parameter. Moreover, within its specific range

of β1 2 [1.5 2.25], the system behaves similar to a linear oscillator, and hence, the

natural frequency becomes independent of the initial amplitude.
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Fig. 6.1 Relative percentage errors for the natural frequencies obtained for very large amplitudes

and amplitudes of less than 10
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6.3.2 Nonlinear Vibration of Inextensible Cantilever Beam

The nonlinear vibration of an inextensible cantilever beam is analyzed by Hamdan

and Shabaneh (1997). Subsequently, other researchers made a good attempt to find

the frequency-amplitude relationship of this system (Sfahani et al. 2011; Herişanu

and Marinca 2010). The governing equation of motion corresponding to the fun-

damental vibration mode of such system is described by Hamdan and Shabaneh

(1997):

1
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Fig. 6.3 Comparison of the solutions of exact method with those of EBM, MEBM, and PEM:
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Fig. 6.2 Phase-plane trajectories for different initial amplitudes: α1¼ β1¼ 1
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€uþ α0uþ α1u
3 þ α2u

5 þ β1
�
u2€uþ u _u 2

�þ β2
�
u4€uþ 2u3 _u 2

� ¼ 0 ð6:25Þ
The frequency-amplitude relationship, based on the solution method of parameter

expansion, is obtained as Eq. (6.18):

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α0 þ 3α1A

2=4þ 5α2A
4=8

1þ β1A
2=2þ 3β2A

4=8

s

ð6:26Þ
The frequency-amplitude relationship, based on the solution method of energy

balance, by means of Eq. (6.8), is obtained as

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α0 þ 3α1A

2=4þ 15α2A
4=32

1þ β1A
2=2þ β2A

4=8

s

ð6:27Þ
and eventually using the modified energy balance method (MEBM) for Eq. (6.9)

will give

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α0 þ 7α1A

2=10þ 19α2A
4=35

1þ 6β1A
2=15þ 24β2A

4=105

s
ð6:28Þ
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Fig. 6.4 Frequency-amplitude responses for different nonlinearity indices
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The validity of the obtained solution methods is evaluated at this stage. The

nonlinear natural frequencies for four different real case studies are summarized

in Table 6.3.

It can be seen that the parameter-expansion method (PEM) presents the most

accurate responses in this case. In accordance with the results presented in

Table 6.3, the modified energy balance method is far more accurate than the energy

balance method.

The phase-plane trajectories and time history diagrams of Eq. (6.25) are illus-

trated in Figs. 6.5 and 6.6, respectively. Numerical approach is considered to plot

phase-plane trajectories shown in Fig. 6.5. According to these figures, the model is

classified as a harmonic Hamiltonian system, and the solution methods have all

been proven to be satisfactory even for the large-amplitude oscillations and also in

the presence of strong nonlinearities.

Table 6.3 Comparison of natural frequencies using different solution methods

Case A β1 β2 α1 α2

ωPEM

(RE%)

ωEBM

(RE%)

ωMEBM

(RE%)

1 1.0 0.3268 0.1295 0.2325 0.0878 1.007129

(0.299)

1.029511

(1.916)

1.021383

(1.112)

2 0.5 1.6420 0.9130 0.3135 0.2042 0.932556

(0.409)

0.953429

(1.819)

0.949704

(1.422)

3 0.2 4.0514 1.6652 0.2814 0.1496 0.965469

(0.121)

0.973067

(0.665)

0.972678

(0.624)

4 0.3 8.2055 3.1453 0.2723 0.1337 0.859702

(0.527)

0.885784

(2.490)

0.884388

(2.329)
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Fig. 6.5 Phase-plane trajectories for different initial conditions: α1¼ β1¼ 1 and α2¼ β2¼ 1
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6.3.3 Nonlinear Vibration of an Embedded Carbon
Nanotube

Large-amplitude free-vibration equation of an embedded nanotube is modeled by

(Askari et al. 2017):

EI
d4w

dx4
þ ρA

d2w

dt2
¼ EA

2L

ð l
0

∂w
∂x

	 

dx

 �
∂2

w

∂x2
þ p x; tð Þ� ð6:29Þ

where p(x, t) is the interaction pressure per unit axial length between the outer tube

and the surrounding elastic medium, which is described by the Winkler model as

p ¼ �kw ð6:30Þ
Substituting Eq. (6.30) into Eq. (6.29) gives

EI
d4w

dx4
þ ρA

d2w

dt2
þ kw ¼ EA

2L

ð l
0

∂w
∂x

	 

dx

 �
∂2

w

∂x2
ð6:31Þ

Assuming the simply supported boundary conditions for the two ends of the

proposed system, the unknown function w(x, t) may be written as

w x; tð Þ ¼ u tð Þ sin πx
l

ð6:32Þ
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Fig. 6.6 Comparison of the exact solution with the EBM, MEBM, and PEM solutions:

α1¼ β1¼ 1 and α2¼ β2¼ 1
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By substituting Eq. (6.32) into Eq. (6.31), the nonlinear differential equation for the

time function u(t) can be obtained as (Fu et al. 2006; Esmailzadeh and Nakhaie-

Jazar 1998; Esmailzadeh et al. 1996)

d2u

dt2
þ π4EI

l4ρA
þ k

ρA

	 

uþ π4E

4l4ρ
u3 ¼ 0 ð6:33Þ

The frequency-amplitude relationship, based on the parameter-expansion method

(PEM), is hence obtained from Eq. (6.18) as

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π4EI

l4ρA
þ k

ρA

	 

þ 3

4

π4E

4l4ρ
A2

s
ð6:34Þ

The frequency-amplitude relationship, based on the energy balance method (EBM),

is obtained by using Eq. (6.8) as

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π4EI

l4ρA
þ k

ρA

	 

þ 3

4

π4E

4l4ρ
A2

s
ð6:35Þ

Finally, the modified energy balance method (MEBM) presented in Eq. (6.9) gives

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π4EI

l4ρA
þ k

ρA

	 

þ 7

10

π4E

4l4ρ
A2

s
ð6:36Þ

To analyze the proposed system, the effects of varying the initial conditions on the

natural frequency of the system are illustrated in Fig. 6.7. The frequency ratio
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Fig. 6.7 Influences of the stiffness and initial condition on the frequency ratio
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increases by an increase of the initial conditions similar to a hardening system.

However, it is seen that the value of nonlinear frequency decreases by an increase in

the stiffness of the system for a given initial amplitude.

Figure 6.8 represents the accuracy of the different approaches. The modified

energy balance method (MEBM) has the highest accuracy in comparison with the

parameter-expansion method (PEM) and the energy balance method (EBM) for

vibration analysis of an embedded carbon nanotube.

6.3.4 Motion of a Particle on Rotating Parabola

The motion of a particle on a rotating parabola is analyzed as an illustrative

example in the dynamic analysis of discrete systems. Considering the governing

differential equation of motion, developed earlier by Nayfeh and Mook (1995) and

Marinca and Herişanu (2010):

1þ 4q2u2
� �

€uþ 4q2
�
_u
�2
uþ Δu ¼ 0 ð6:37Þ

The frequency-amplitude relationship based on the parameter-expansion method

(PEM) is obtained as (Eq. 6.18):

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ
1þ 2q2A2

s
ð6:38Þ

The frequency-amplitude relationship, developed by means of Eq. (6.8), is obtained

as
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Exact
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Fig. 6.8 Accuracy analysis of the three approaches with the exact method

6 Vibration Analysis of Oscillators with Generalized Inertial. . . 163



ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ
1þ 2q2A2

s
ð6:39Þ

and the modified energy balance method (MEBM) solution given in Eq. (6.9) yields

to

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ
1þ 24q2A2=15

s
ð6:40Þ

The relative errors of the three different solution methods are then been obtained as

lim
q2A!1

Tex

TEBM,PEM
¼ 4

Ð π
2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4q2A2 cos 2t

p
dt

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2q2A2

p ¼ 2
ffiffiffi
2

p

π
� 0:9 ð6:41Þ

and

lim
q2A!1

Tex

TMEBM

¼ 4
Ð π

2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4q2A2 cos 2t

p
dt

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24q2A2=15

p ¼ 4

π
ffiffiffiffi
24
15

q ¼ 1:0065 ð6:42Þ

In this case, one may conclude that in order to analyze the motion of a particle on a

rotating parabola, the modified energy balance method (MEBM) has presented the

highest accuracy in comparison with those obtained from the EBM and PEM.

6.4 Conclusion

A new class of generalized nonlinear oscillator has been investigated in detail. The

applications of the generalized nonlinear equation in the structural dynamics and

applied mathematics were then addressed. The governing dynamic equations were

solved by means of three powerful approaches, namely, the energy balance method

(EBM), the modified energy balance method (MEBM), and the parameter-

expansion method (PEM). Utilizing these methods, the corresponding solutions

were sought after, and three different general frequency-amplitude relationships in

a closed-form format were obtained. It has been proved that the accuracy of these

results is consistent. A tapered beam was chosen as a special case study, and the

solution results showed that MEBM is the most accurate approach for the vibration

analysis of a tapered beam; however, both the two methods of EBM and PEM could

also present similar results for this system. The phase-plane trajectories demon-

strated that this system is considered as the Hamiltonian type, which exhibits a

periodic behavior. In spite of the nonlinear structure of the differential equation, for

a specific range of β1 2 [1.5 2.25], the system performs similar to a linear oscillator,

and the natural frequency shows to be independent of the initial amplitude. A
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second special case in the form of an inextensible cantilever beam was considered.

In accordance with the numerical results obtained for the cantilever beam, it is

found that the PEM is the most accurate method to understand and analyze the

vibration of such system. It is observed that the accuracy of the results found by

using the MEBM is superior than those found using the classical EBM when

obtaining the frequency-amplitude relationship. The nonlinear vibration of an

embedded carbon nanotube was also investigated as the third special case. The

results found for this case indicate that MEBM is the best choice to investigate the

nonlinear natural frequency of that system. Finally, the motion of a particle on a

rotating parabola to represent a discrete nonlinear dynamic system was studied. The

solution results reveal that MEBM is a superior choice to analyze this system when

compared with the other two methods of EBM and PEM.
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Chapter 7

Quarter Car Suspension Model with Provision
for Loss of Contact with the Road

Ali Khazaie, Najiullah Hussaini, Hormoz Marzbani, and Reza N. Jazar

7.1 Introduction

Suspension models are mathematical representations of automobile suspensions

which can predict the behaviour of the vehicle suspension in response to a particular

input; they are mainly used for ride analysis applications. Various models may

differ in their detail and complexity depending on the requirements of a particular

application.

7.1.1 Quarter Car Model

A quarter car model is used to model only one corner of the vehicle. It is a simple

and effective tool to investigate basic ride behaviour of the vehicle. However, it

only models the bounce movement of the chassis and the wheel and ignores pitch

and roll. Commonly used quarter car ride models are mostly linear (Jazar 2013,

2014).

Linear quarter car models are the most frequently used ride models; these are

fairly simple models which provide useful insight into the behaviour of a particular

suspension system (Kim and Ro 2000). They are mostly represented in form of a

A. Khazaie (*)

Department of Mechanical Engineering, Kennesaw State University, Kennesaw, GA, USA

N. Hussaini • H. Marzbani

School of Engineering, RMIT University, Melbourne, VIC, Australia

R.N. Jazar

School of Engineering, RMIT University, Melbourne, VIC, Australia

Xiamen University of Technology, Xiamen, China

© Springer International Publishing AG 2018

L. Dai, R.N. Jazar (eds.), Nonlinear Approaches in Engineering Applications,
https://doi.org/10.1007/978-3-319-69480-1_7

167



two-mass model consisting of two point masses connected to each other through a

spring and a damper and connected to the ground through a spring (Milliken and

Milliken 1995).

When using two-mass models, designers may use component specifications to

determine parameters such as sprung mass, unsprung mass and spring stiffness.

Although this might be tempting, as Kim and Ro point out, this may not always lead

to accurate representations of the real system (Kim and Ro 2000, 1999).

It must be noted that in reality, independent suspension for a single wheel

(quarter car) is actually a multi-body system; having compliant rubber bushing

means that the system is not limited to just two degrees of freedom. Approximating

such a system to a simple system with only two point masses may not be very

accurate, and the degree of accuracy may differ for each particular case (Kim and

Ro 1999). Figure 7.1 shows the diagram of a simple two-mass quarter car model.

7.1.1.1 Linear Models

A linear quarter car model assumes that both tire and suspension springs are linear;

this implies that the force acting through the springs is directly proportional to the

vertical extension or compression of the springs. It does not account for variable

motion ratios across the total range of wheel travel; motion ratios are rarely constant

because of the geometry of suspension linkages. Damping in a linear model is

assumed to be viscous (linear) with a constant damping coefficient across the range

of wheel travel (Marzbani and Jazar 2014).

Tire damping is often ignored in linear models; however, some linear models

may add viscous damping to the tire with very small damping ratios. A linear model

also ignores any discontinuities such as asymmetric damping (different coefficients

Fig. 7.1 Quarter car model

(Jazar 2014)
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in bump and rebound) or the case of tire losing contact with the ground or bump

stops.

Maher and Young’s study investigates the accuracy of linear models by com-

paring results of a linear model with experimental results and those of their own

nonlinear model. They found that a linear quarter car model produced reasonably

accurate results for unsprung mass acceleration over a wide frequency band;

however it over-predicted acceleration of sprung mass. They developed their

nonlinear model by using a trilinear damper model, a nonlinear tire model and

inclusion of tire damping. Using their nonlinear model, Maher and Young found

noticeable improvement in accuracy (Young and Maher 2011).

7.1.1.2 Nonlinear Models

A linear quarter car model is just an approximation of a real vehicle and is not an

accurate representation of the real vehicle. The assumptions made to make the

model linear are known to be untrue for a real car.

Major sources of nonlinearity in a quarter car suspension are:

• Geometric effects resulting in not linear effective springs

• Asymmetric damping

• Tire separation

• Bump stops

In actual cars the spring is often not mounted exactly vertically and often is

mounted at some offset from the centre of the tire; moreover they are usually

actuated by a set of suspension arms or linkages which rotate about a pivot and do

not move in an exactly linear manner. All of this means that the motion ratio of

spring and the wheel centre does not remain constant across the full range of wheel

travel, and therefore the effective spring stiffness is not constant, and a linear spring

model would be inaccurate.

Most automotive suspension dampers are not symmetric; this means the

damping coefficient in bump is different to that in rebound. The damping coeffi-

cient also changes with speed; this can usually be approximated as a bilinear

relation switching to a lower damping coefficient at a particular speed known as

“knee speed”. Figure 7.2 shows the characteristics of a typical automotive damper.

The continuous contact assumption for the tire is also untrue for a real car. The

tire only rests on the road and is not held by the surface as such; therefore it cannot

stretch beyond its geometric radius. This phenomenon is not very rare and can often

be experienced when driving on rough road surfaces at high speeds. Maurice Olley

refers to this phenomenon as “wheel hop” (Milliken and Milliken 2002), and Wong

has also discussed the phenomenon in his book (Wong 2008). This will be discussed

in detail in subsequent sections.

Bump stops are rubber blocks installed to restrict the wheel travel within safe

limits. Although bump stops are placed beyond the normal operating range of the

suspension, suspensions may hit bump stops under extreme conditions, such as
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when carrying heavy loads or navigating uneven roads. Bump stops are signifi-

cantly stiffer than the suspension spring; as the suspension impacts the bump stop,

the stiffness of the system increases manifolds which may have significant effects

on the behaviour of the suspension (Marzbani et al. 2013). Svahn, Jerrelind and

Dankowicz have investigated the bump stop discontinuities in considerable detail in

their work (Svahn et al. 2010).

7.1.2 Tire Separation

One major nonlinearity in vehicle ride behaviour is the possible separation of tire

and the road. Physical observation suggests that this may occur at high frequencies

or very large amplitudes of road undulations.

As the solution to the tire-road discontinuity results in piecewise functions for

the system equations of motion and may require computer simulation to evaluate

the response, therefore, many older texts chose to ignore this such as those by

Gillespie and Giugianni (Gillespie 1992; Giugianni 2014).

Jazar mentions this shortcoming in his book while discussing limitations of

popular linear quarter car models (Jazar 2014; Marzbani et al. 2012). Wong points

out that the condition where tire leaves the road is significant from a roadholding

point of view; the normal force through the contact patch governs the forces acting

in the ground plane, i.e. tractive, braking and lateral forces; loss of contact implies

that the normal force reduces to zero, and therefore the tire would not produce any

forces in the ground plane either. He argues that tire separation is likely to occur

close to the peak dynamic deflection of the tire; this implies that in passenger cars

with low damping ratios, separation may occur close to sprung mass and unsprung

mass natural frequencies; in performance cars with high damping ratios, tire
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separation may occur at frequencies between sprung and unsprung mass natural

frequencies (Wong 2008).

Maurice Olley, in his notes published by Milliken, also identifies this problem;

he observes that the wheel may at times be thrown “clear of the ground”; once off

the ground, it will return to the ground only under the effect of gravity. He also

shows with the help of results from a bump test rig that the wheel may have

different amplitudes at the same frequency depending on its frequency history

(Milliken and Milliken 2002).

7.1.2.1 Separation Conditions

Wong and Olley have both recognized that the tire would cease to be in contact with

the road when unsprung mass is deflected vertically upwards relative to the ground

by a distance equal to the static compression of the tire. In other words the contact

would break once the tire returns to its geometric radius (Wong 2008 ; Milliken and

Milliken 2002). Svahn, Jerrelind and Dankowicz have used the same condition for

transition between states of “contact” and “free flight” (Svahn et al. 2010).

7.1.2.2 Possible Effects of Tire Separation

As discussed previously, one major effect of loss of contact would be the loss of

ground plane forces. This may have profound consequences in certain cases such as

loss of grip during cornering or loss of braking force.

When going over large undulations at high speeds, the tire may actually be able

to “jump” over the troughs resulting in smaller displacements of sprung mass and

therefore a better ride.

As the system transitions between two different dynamic states, it may display

erratic behaviour at certain frequencies (Milliken and Milliken 2002).

7.1.3 Computer Models for Quarter Car Simulation

Equations of motion of a linear quarter car form a system of linear ordinary

differential equations; these can be analytically solved using method of

undetermined coefficients (Jazar 2014; Gillespie 1992). The analytical solution

can then be evaluated at any point of interest. However such an analytical solution

may not be suitable for problems with discontinuities. These equations can also be

solved numerically on MATLAB using one of the available ODE solvers (Young

and Maher 2011).

Traditionally a discontinuous system such as a nonlinear quarter car model may

be simulated using a multistep solution method. The system is evaluated at finite

intervals after fixed time steps. This method is simple from a logical point of view;
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however, it is prone to errors. If the discontinuity lies between two evaluation

points, the solution would only transition once it reaches the end of that interval;

such error may grow if the system is subject to multiple transitions. In order to

minimize the error, smaller time steps may be used, but this improved accuracy

comes at the cost of multiplied computational effort (Thomsen 2010).

7.1.4 Knowledge Gap

Based on the literature reviewed, we find that most authors who have investigated

the subject have acknowledged the occurrence of the tire separation phenomenon

but hold differing views about its effects on the results of ride simulation. We also

find consensus about the conditions under which tire separation may occur. How-

ever, we find that the phenomenon has not been studied individually in isolation

from other nonlinearities. The author believes that the tire separation effect when

applied to an otherwise linear model may provide valuable insight into the tire

separation phenomenon and would be a useful addition to the existing knowledge

on the subject.

7.2 Model

The simulation is based on a model of a lightweight single seat race car. This

vehicle is selected purely due to easy availability of data, and the model is

essentially scalable to any size of vehicle (Table 7.1).

7.2.1 Separation Condition

When the vehicle suspension is subjected to periodic vertical inputs applied through

the contact patch, it may break contact with the ground. Once the tire is no more in

contact with the road, the tire spring becomes redundant, and the system will return

to the ground only under the influence of gravity. Therefore we can describe the

system as being in one of two distinct states, i.e.:

Table 7.1 Vehicle

specifications for model
Sprung mass (quarter car) 49.5 kg

Unsprung mass (quarter car) 5.5 kg

Suspension spring stiffness 15,760 N/m

Tire vertical stiffness 197,900 N/m

Static tire deflection 6 mm

Critical damping 2000 Ns/m
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• Contact

• Free fall

The two states are distinct physically and mathematically; therefore the equa-

tions of motion of the system would be discontinuous or piecewise (Jazar et al.

2007; Christopherson et al. 2005, 2006).

The argument for tire separation is based on the premise that the tire acts as a

spring in compression, only it cannot be extended; it is also supported by intuition

as there is no physical mechanism for the road to be able to “pull” the tire.

Conversely the maximum radius that the tire can achieve is equal to the geometric

radius of that tire when there is no vertical load on it. If the distance between the

wheel centre and the road surface is larger than the geometric radius of unloaded

tire, we can conclude that the tire is no more in contact with the road.

Therefore the “contact” and “free-fall” states are defined by the conditions given

below:

Contact Condition : xu � xr < XT:stat

Free-Fall Condition xu � xr � XT:stat

7.2.2 Governing Equations of Motion

7.2.2.1 Sprung Mass

Figure 7.3 depicts the free-body diagram of sprung mass. It is assumed that

unsprung mass has a larger displacement and velocity than the sprung mass at the

instant when the equations of motion are derived; this is only to help us assign the

appropriate signs to the variables; the resulting equation would be valid for any

other values of these variables as well (Jazar 2011).

Fig. 7.3 Free-body

diagram of sprung mass
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FC ¼ c
�
_x U � _x S

�
FKS ¼ kS xU � xSð Þ

FS:stat ¼ kSXS:stat ¼ mSg

WS ¼ mSg

mS
€́xS ¼ c

�
_x U � _x S

�þ kS xU � xSð Þ þ mSg� mSg

mS
€́xS ¼ �c _x S þ c _x U � kSxS þ kSxU ð7:1Þ

where FC is force across the damper.

FKS is the force across suspension spring.

FS.static is the static spring compressive force at ride height.

XS.stat is the static compression (displacement) at ride height.

WS is the weight of the sprung mass.

mS is the sprung mass.

mU is the unsprung mass.

xS is the displacement of sprung mass.

xU is the displacement of unsprung mass.

kS is the equivalent stiffness of suspension spring.

c is the damping coefficient of the damper.

ωs ¼
ffiffiffiffiffi
ks
ms

r
and ωu ¼

ffiffiffiffiffiffi
kT
mu

r

ks ¼ ω2
sms and kT ¼ ω2

umu

ξ ¼ c

2
ffiffiffiffiffiffiffiffiffi
ksms

p ¼ c

2msωs

c ¼ 2ξωs

E ¼ ms

mu

where

ωs is the sprung mass natural frequency

ωu is the sprung mass natural frequency

ξ is the damping ratio

Substitute in (Eq. 7.1) and divide both sides by ms:

€́xS ¼ �2ξωs _x S þ 2ξωs _x U � ω2
sxS þ ω2

sxU ð7:2Þ

7.2.2.2 Unsprung Mass

Figure 7.4 depicts the free-body diagram of unsprung mass. Here it is assumed that

the displacement of road is greater than the displacement of unsprung mass:
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FKT ¼ kT xr � xUð Þ
FT:stat ¼ kTXT:stat ¼ mS þ mUð Þg

WU ¼ mUg

Contact state:

mU
€́xU ¼ �c

�
_x U � _x S

�� kS xU � xSð Þ þ kT xr � xUð Þ � mSg� mUgþ mS þ mUð Þg
mU

€́xU ¼ �c
�
_x U � _x S

�� kS xU � xSð Þ þ kT xr � xUð Þ
mU

€́xU ¼ c _x S � c _x U þ kSxS � kS þ kTð ÞxU þ kTxr
€́xU ¼ 2ξEωs _x S � 2ξEωs _x U þ Eω2

s xS � Eω2
s þ ω2

u

� �
xU þ ω2

uxr ð7:3Þ
Free-fall state (Fig. 7.4):

Under free-fall state, FT and FT.stat will be zero; therefore the equation of motion

reduces to

mU
€́xU ¼ �c

�
_x U � _x S

�� kS xU � xSð Þ � mSg� mUg

mU
€́xU ¼ c _x S � c _x U þ kSxS � kSxU � mS þ mUð Þg ð7:4Þ

Substitute ωs, ωu and ξ in (Eq. 7.3) and divide both sides by mu:

€́xU ¼ 2ξEωs _x S � 2ξEωs _x U þ Eω2
s xS � Eω2

s xU � Eþ 1ð Þg ð7:5Þ
where FKT is the force across tire spring.

FT.stat is the static compressive force of the tire.

XT.stat is the static compression (displacement) of the tire.

mU is the unsprung mass.

WU is the weight of the unsprung mass.

Fig. 7.4 Free-body

diagram of unsprung mass
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KT is the stiffness of tire spring.

xr is the displacement of the road with respect to reference position (input signal).

When combined in matrix form, the equations can be represented as:

Contact state:

�
€́xS €́xU

� ¼ �2ξωs 2ξωs

2ξEωs �2ξEωs

� �� _x S

_xU

�þ �ω2
s ω2

s

Eω2
s � Eω2

s þω2
u

� �� �
xS
xU

� �
þ 0

ω2
uxr

� �
ð7:6Þ

Free-fall state:

�
€́xS €́xU

� ¼ �2ξωs 2ξωs

2ξEωs �2ξEωs

� �� _x S

_xU

�þ �ω2
s ω2

s

Eω2
s �Eω2

s

� �
xS
xU

� �
þ 0

Eþ1ð Þg
� �

ð7:7Þ

State variables for state space formulation:

xS ¼ y1
xU ¼ y2

_x S ¼ _y 1 ¼ y3
_x U ¼ _y 2 ¼ y4

€́xS ¼ _y 3

€́xU ¼ _y 4

Substituting state variables in (Eq. 7.6) and (Eq. 7.7)

_y 1 ¼ y3
_y 2 ¼ y4

_y 3 ¼ �ω2
sy1 þ ω2

s y2 � 2ξωsy3 þ 2ξωsy4
For Contact _y 4 ¼ Eω2

s y1 � Eω2
s þ ω2

u

� �
y2 þ 2ξEωsy3 � 2ξEωsy4 þ ω2

uxr

For Free-Fall : _y 4 ¼ Eω2
sy1 � Eω2

sy2 þ 2ξEωsy3 � 2ξEωsy4 þ Eþ 1ð Þg
State-space equations in matrix form are given below:

For contact state:

� _y 1

_y 2

_y 3

_y 4

� ¼
0 0 1 0

0 0 0 1

�ω2
s ω2

s �2ξωs 2ξωs

Eω2
s � Eω2

s þ ω2
u

� �
2ξEωs �2ξEωs

2
664

3
775

y1
y2
y3
y4

2
664

3
775þ

0

0

0

ω2
uxr

2
664

3
775 ð7:8Þ

For free-fall state:

� _y 1

_y 2

_y 3

_y 4

� ¼
0 0 1 0

0 0 0 1

�Eω2
s Eω2

s �2ξωs 2ξωs

Eω2
s �Eω2

s 2ξEωs �2ξEωs

2
664

3
775

y1
y2
y3
y4

2
664

3
775þ

0

0

0

Eþ 1ð Þg

2
664

3
775 ð7:9Þ

176 A. Khazaie et al.



7.2.3 Input Function

Input function used for this analysis is a sinusoidal function representing a corru-

gated road of the form:

xr ¼ Xr sin ωtð Þ
where Xr is the amplitude of input signal and ω is the angular frequency in rad/s.

7.2.4 Programme Structure

7.2.4.1 Time Response Programme

In order to compute the time response of the equations of motion presented above,

they must be evaluated over a given time interval. The interval chosen must be long

enough for the system to achieve steady state. The interval chosen for this analysis

is equal to the time taken to complete 15 cycles of the input signal (Jazar 2013).

Because the system is discontinuous, the solution must determine the current

state of the system at every instant. However it is practically impossible to deter-

mine the system state at infinitesimally small intervals. Therefore we need to set

evaluation points at different times across the total time interval.

The programme uses MATLAB “ode45” ordinary differential equation solver to

evaluate the equations of motion. The ode45 solver sets the resolution automati-

cally over the total time interval with variable time steps in order to reduce

computation time without compromising too much on the accuracy. Although

ode45 also accepts a user-defined step size, it is still not straightforward to check

separation condition within the ode45 function.

Therefore, the total time interval is divided into small time steps of 1/1000 s

giving a finite number of evaluation points. The programme utilizes a loop to

evaluate the equations of motion throughout the complete time interval. Each

instance of the loop uses the initial conditions to check the separation condition

and determine which set of equations must be used; the selected equation is then

evaluated across the interval up to the next evaluation point. The end conditions are

passed on to the next instance of the loop as initial conditions and are also saved in

the result matrix.

The programme also has an “indicator” variable; this identifies which state the

system is in at each evaluation point. 0 corresponds to the contact state while

1 corresponds to free-fall state.
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7.2.4.2 Frequency Response Programme

The frequency response programme evaluates the time response over a range of

input frequencies, input amplitudes and damping ratios. Table 7.2 below shows the

conditions at which the response is evaluated.

Frequency response programme uses the same basic code as the time response

programme; it is however evaluated multiple times at different conditions using

loops. The time response is enclosed in the frequency ratio loop, which is enclosed

in a damping ratio loop which in turn is enclosed in the input amplitude loop (Jazar

2013).

The amplitude is extracted from the time response result by first discarding the

transient response. The time intervals used are sufficiently large that the transient

response diminishes within 50% of the total time interval in most cases; therefore

the first half of the time response is discarded as transient. The maximum and

minimum values are then extracted from the steady-state result matrix, and their

difference is calculated to obtain the output amplitude.

The result matrix is a three-dimensional matrix, for ease of manipulating this

data; it is exported to a Microsoft Excel spreadsheet.

7.2.4.3 Model Response

Figure 7.5 shows an example of system response to a sinusoidal input with 0.04 m

amplitude and a 2.5 frequency ratio when using the nonlinear model described

above.

• Point 1 to 2: As the road (input) goes into a trough, the tire loses contact as it is

unable to keep up with the road. Because at point 1 when the contact is lost,

unsprung mass already has a small negative velocity, it continues to fall due to

gravity between point 1 and 2; as it falls the suspension spring extends. As the

road starts to rise, it catches up with the falling masses and contact is regained at

point 2.

• Point 2 to 3: As the road continues to rise beyond after contact is regained, the

tire is compressed which in turn applies a force (negative acceleration) on falling

unsprung mass. Due to compression of tire spring, the unsprung mass decelerates

and eventually turns around and starts rising. As the road reaches its crest at

point 3, the unsprung mass still has a large positive velocity, and thus contact is

lost again.

• Point 3 to 4: At point 3 the unsprung mass still has a positive velocity; as the

contact is lost, it is thrown off the ground like a projectile. Unsprung mass

Table 7.2 Conditions at

which responses are

calculated

Frequency ratios 0.2–5.0 Step size 0.05

Damping ratios 0.2, 0.4, 0.6, 0.8, 1.0

Input amplitudes 0.01, 0.04, 0.07, 0.10
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decelerates due to gravity and starts to fall; the rising road catches up with the

falling mass at point 4 and contact is regained.

• Point 4 to 5: When contact is regained at point 4, the unsprung mass has a

negative velocity while the road is rising; this compresses the tire spring which

causes the unsprung mass to decelerate and eventually turn around. The road

starts to drop before point 5 while the unsprung mass is still rising; as they move

in opposite direction, contact is lost at point 5.

• Point 5 to 6:When the contact is lost at point 5, the vertical velocity of unsprung

mass is almost zero; therefore beyond point 5, it falls due to gravity and

eventually catches up with the rising road at point 6.

7.3 Results and Discussion

7.3.1 Separation Classification

Before the simulation results are analysed in detail, it needs to be established if the

tire separation does mathematically happen and whether it has significant effects on

simulation results.

All input frequencies in this report are shown as a ratio of sprung mass natural

frequency. Frequency ratios are denoted by “r”.
As we increase the input frequency for fixed damping ratio and amplitude

values, we initially see transient separation; the system does change state in the

first few cycles but eventually settles into a state of continuous contact. Figure 7.6

Fig. 7.5 Example of system behaviour (amplitude, 0.04 m; frequency ratio, 2.5; damping ratio, 1.0)
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shows an example of transient separation (amplitude 0.05, zeta 0.1, frequency ratio

0.60).

As the frequency is increased further at any given damping ratio and amplitude

values, the system starts to exhibit repeated separation over a portion of each cycle;

this could be termed as steady-state separation. Figure 7.7 shows an example of

steady-state separation.

At some particular conditions, typically at high damping ratios and high ampli-

tudes, the system exhibits non-uniform separation behaviour; in these cases the

wheel is thrown clear off the ground with large velocities; as it travels back as a

projectile, it passes multiple input cycles while it is airborne. An example of this

case is shown in Fig. 7.8.

7.3.2 Separation Frequency

The frequency at which the tire loses contact with the road may be referred to as the

separation frequency. At this frequency the tire is in the free-fall state for some

interval in each cycle; separation in transient part of the response is ignored. The

separation frequency is found to be a strong function of input amplitude especially

at low amplitudes; it flattens out once the frequency ratio reduces to nearly 1 at

higher amplitudes, which is when the frequency is close to the sprung mass natural

frequency (Fig. 7.9).

Fig. 7.6 Example of transient separation
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Separation frequency is also sensitive to damping ratio, but the effect is less

significant compared to that of input amplitude; the effect diminishes at high

amplitudes. At high damping ratios, the relation between input amplitude and

separation frequency seems to follow a similar trend; however at very low damping

ratios, they seem to deviate from the trend. One possible explanation for this

deviation may be the influence of unsprung mass mode at higher frequencies.

Fig. 7.8 Example of non-uniform separation (amplitude 0.05, zeta 0.2 and frequency ratio 1.5)

Fig. 7.7 Example of steady-state separation (amplitude 0.05, zeta 0.5 and frequency ratio 0.7)
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The separation frequency plot may be considered to define the limits of validity

for a linear model; the linear model would remain valid for conditions below the

separation curve. However it will not be accurate at conditions above the separation

frequency curves; accuracy of a linear model will decrease as we move away from

the separation frequency curves; this is demonstrated in subsequent sections of this

report.

7.3.3 Time Responses

7.3.3.1 No Separation

At conditions under the corresponding separation curve shown in Fig. 7.10, both

sprung and unsprung masses tend to follow the input excitation or road profile.

Frequency of both the masses is same as the input excitation, amplitude of unsprung

mass is close to the road undulation amplitude, and phase difference between

unsprung mass and input is small. Figures 7.10 and 7.12 show time response of

the system under two different sets of conditions with continuous contact.

Since there is no separation, the results are same as those obtained from a linear

model; this implies that a linear model is valid under these conditions as discussed

Fig. 7.9 Separation frequency curves
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above. Figures 7.11 and 7.13 show that the response of nonlinear model is exactly

same as that of the linear model.

7.3.3.2 Transient Separation

Transient separation also occurs at conditions under the corresponding separation

curves. Figures 7.14, 7.16, and 7.18 show examples of transient separation while

Figs. 7.15, 7.17, and 7.19 compare the results at these conditions with a linear

model. Results of the nonlinear model deviate slightly from those of the linear

model as the tire breaks contact; however they do not converge immediately as the

contact is regained. This shows that tire separation affects the entire response and

Fig. 7.10 Example of no separation time response (amplitude 0.01, zeta 0.6 and frequency ratio 2.0)

Fig. 7.11 Comparison with linear model results (amplitude 0.01, zeta 0.6 and frequency ratio 2.0)
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not just the interval in which the tire is not in contact with the ground. However, the

error is very small, and therefore a linear model can still be used under these

conditions to give very accurate predictions of behaviour of a particular suspension.

7.3.3.3 Steady-State Separation

At conditions above the corresponding separation frequency curves, we can observe

steady-state separation. With steady-state separation, the system is not in contact

with the ground (free-fall state) for a certain period in each cycle; this interval of

separation must remain nearly equal for each cycle after the system has settled into

Fig. 7.13 Comparison with linear model results (amplitude 0.1, zeta 0.6 and frequency ratio 0.5)

Fig. 7.12 Example of no separation time response (amplitude 0.1, zeta 0.6 and frequency ratio 0.7)
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steady state after passing through transient vibrations. The duration of separation

may vary depending on frequency, amplitude and damping ratio.

At low frequency, close to sprung mass natural frequency, a linear model pro-

vides a good estimate of unsprung mass displacement; however sprung mass

displacement is overestimated for low damping and underestimated for high

damping scenarios.

At moderately high frequency (r ¼ 4), linear model produces reasonable esti-

mates for both sprung and unsprung mass displacements for systems with low

damping, whereas for systems with high damping ratios, the linear model pre-

dictions are very large and cannot be considered as a useful approximation of the

system behaviour. At this frequency a critically damped system with a high input

Fig. 7.14 Example of transient separation time response (amplitude 0.05, zeta 0.1 and frequency

ratio 0.6)

Fig. 7.15 Comparison with linear model results (amplitude 0.05, zeta 0.1 and frequency ratio 0.6)
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amplitude tends to bounce high off the road; due to the long time taken by the

system to return to surface, the response frequency does not remain the same as the

input frequency, amplitudes are also exceptionally large, and very large forces may

be transmitted to the body when the tire impacts the ground. An example of this

phenomenon is shown in Fig. 7.20.

At very high frequency (r ¼ 7), a system with low damping subjected to low

input amplitude shows a response that is reasonably close to the estimate obtained

from a linear model; with higher damping ratios, the error in linear model increases

significantly. When the system is subjected to higher input, amplitudes at this

frequency sprung mass exhibit a very small amplitude; this behaviour may be

described as “float”; the sprung mass shows very small vertical displacements

Fig. 7.16 Example of transient separation time response (amplitude 0.01, zeta 0.6 and frequency

ratio 2.2)

Fig. 7.17 Comparison with linear model results (amplitude 0.01, zeta 0.6 and frequency ratio 2.2)
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and seems to float over the corrugations. An example of “float” is shown in

Fig. 7.21.

Bounce and float phenomena are important from a ride perspective. Bounce may

produce a very wobbly and soft ride quality which may be far worse than that

predicted by the linear model. Float may produce a much harsher ride due to large

forces transmitted to the body but more level due to smaller body displacements.

7.3.4 Frequency Responses

As observed in the previous section (see Sect. 7.3.3), the response of the system is

sensitive to input frequency, input amplitude and system damping. Unlike linear

Fig. 7.19 Comparison with linear model results (amplitude 0.1, zeta 0.2 and frequency ratio 0.48)

Fig. 7.18 Example of transient separation time response (amplitude 0.1, zeta 0.2 and frequency

ratio 0.48)
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models the output amplitude is not directly proportional to the input amplitude;

therefore the frequency responses cannot be represented as a ratio of input and

output amplitudes. The system behaviour is unique at each different set of condi-

tions; therefore frequency responses are shown at four distinct input amplitudes and

five distinct damping ratios.

At very low amplitude (0.01 m), the response of the system is very similar to that

of a linear model due to the fact that separation only starts at very high frequencies

at this amplitude (see Sect. 7.2), and even when separation does occur, it is for a

relatively short duration, and the response tends to deviate very slightly from the

linear response. Figure 7.22 shows that the responses do not pass through a node at

high frequencies as they would be expected to in a linear system; this can be

Fig. 7.20 Example of bounce phenomenon (amplitude, 0.1 m; frequency ratio, 0.65; damping

ratio, 0.4)

Fig. 7.21 Example of float behaviour (amplitude, 0.1 m; frequency ratio, 3.5; damping ratio, 0.6)
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attributed to the fact that at high frequencies, the system tends to separate as shown

in Fig. 7.9; therefore it starts to deviate from linear behaviour.

In Fig.7.23 we can observe that all the responses have a peak close to a frequency

ratio of 1; this corresponds with resonance; at these frequencies the system may be

separating, but the effect of separation on the overall response is small. As the

frequency is increased, a secondary peak or plateau appears; this is visible in all of

the responses; the top of the plateau corresponds to the bounce behaviour discussed

in Sect. 7.3.3.3. At very high frequencies, all responses exhibit very low amplitudes

which correspond to the float phenomenon discussed in Sect. 7.3.3.3.

Figure 7.26 shows how generic frequency response of a system with separation

can be divided into different “regions” corresponding with the system time

response behaviour. At low frequencies the system tends to follow the road and

exhibits behaviour close to that of a linear system; the system then transitions from

near-linear behaviour to bounce as the response approaches the secondary peak;

following the second peak, the system exhibits pure bounce behaviour until the

amplitude drops sharply and system transitions from bounce to float; at very high

frequencies, the system settles to a consistent low amplitude and exhibits float

behaviour. Figures 7.24, 7.25, 7.26, and 7.27 show examples corresponding to each

of the regions of frequency response.

Fig. 7.22 Frequency response of unsprung mass to 0.01 m input
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Fig. 7.23 Frequency response of unsprung mass to 0.04 m input

Fig. 7.24 Frequency response of unsprung mass to 0.07 m input
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Fig. 7.26 Frequency response of sprung mass to 0.01 m input

Fig. 7.25 Frequency response of unsprung mass to 0.1 m input
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At higher amplitudes this phenomenon can still be observed; however since the

system is very unstable at high amplitudes, the responses show a lot of “noise”,

particularly in the bounce frequency range (Fig. 7.28).

Another noticeable trend is that the secondary peak reduces in height as damping

is reduced from critical damping, but at very low damping ratios, the peak starts rise

again; this indicates an opportunity for optimization of damping ratio to reduce

displacement (Figs. 7.29, 7.30, 7.31, 7.32, 7.35).

7.3.5 Duration of No-Contact Condition

Duration of separation refers to the fraction of the oscillation time period in which

the tire is not in contact with the road, i.e.

Duration of Separation %ð Þ ¼ Time in free fall state

Total time
� 100

Duration of separation is calculated only for the steady-state response; the

transient part is ignored. Cases where the entire response is unsteady appear as

discontinuities or noise in the plots.

Fig. 7.27 Frequency response of sprung mass to 0.04 m input
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Fig. 7.28 Frequency response of sprung mass to 0.07 m input

Fig. 7.29 Frequency response of sprung mass to 0.1 m input

7 Quarter Car Suspension Model with Provision for Loss of Contact with the Road 193



Fig. 7.30 System behaviour in different frequency ranges (zeta 0.8)

Fig. 7.31 Example of near-linear behaviour
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Tire separation duration plot provides some interesting insight into the behav-

iour of the system; this reconfirms the separation frequencies shown in Fig. 7.5; the

projectile motion phenomenon discussed earlier can also be observed in Fig. 7.34 as

the large plateau in the curve for critically damped system between r¼ 2 and r¼ 3.

It may be tempting to consider these plots as a measure of grip or handling

performance; however this may not be entirely accurate as these plots show a ratio

of time and do not show the instantaneous force; it only indicates the fraction of

time when no grip will be available at all.

Figure 7.33 also shows that at low damping ratios the system may re-establish

continuous contact at frequencies beyond the initial separation frequency

(Fig. 7.36).

7.4 Nonlinear Damping

In order to visualize a more realistic response, a nonlinear damping scenario was

also simulated. Actual automotive suspensions employ nonlinear or asymmetric

dampers; in an asymmetric damper, the damping ratio in bump is not equal to that in

rebound. In order to keep the model simple, damping coefficient in bump is zero,

while that in rebound is a constant positive coefficient as shown in Fig. 7.40.

Fig. 7.32 Example of transition from linear to bounce
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7.4.1 Time Response with Nonlinear Damping

Figures 7.37, 7.38, and 7.39 show time response plots for systems with nonlinear

damping as well as linear damping. Unsprung mass displacement for nonlinear

Fig. 7.33 Example of bounce behaviour

Fig. 7.34 Example of transition from bounce to float
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Fig. 7.35 Example of float behaviour

Fig. 7.36 Duration of tire separation in response to 0.01 m input
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Fig. 7.37 Duration of tire separation in response to 0.04 m input

Fig. 7.38 Duration of tire separation in response to 0.07 m input
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damping is similar to that with linear damping at most of the conditions; however,

with nonlinear damping, unsprung mass sticks to the ground better and achieves

steady state quicker in “bounce” conditions. Another phenomenon apparent in the

figures below is that the sprung mass vibrates about a lower “mean” position with

nonlinear damping than it does linear damping; the car hunkers down as it goes over

successive bumps. The sprung mass response also shows a secondary frequency,

much lower than the primary frequency which is equal to the road input frequency.

7.4.2 Frequency Response with Nonlinear Damping

Figure 7.40 shows the separation frequency plot for system with nonlinear

damping; when compared with Fig. 7.9, separation frequencies for nonlinear

damping are lower than those with linear damping throughout the amplitude

range considered. This implies that the likelihood of loss of contact is increased

when using nonlinear damping in a model.

Figures 7.41, 7.42, 7.43, and 7.44 show frequency responses for unsprung mass

with nonlinear damping at different amplitudes; Figs 7.45, 7.46, 7.47, and 7.48

show the corresponding responses for sprung mass.

Fig. 7.39 Duration of tire separation in response to 0.1 m input
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The frequency responses show that the frequency range for “bounce” is much

smaller with nonlinear damping than it is with linear damping and that it is almost

equal for all damping values. The system with nonlinear damping becomes more

stable (less noise) as damping is increased; in contrast the system with linear

damping becomes more unstable as damping is increased. Sprung mass displace-

ment is very low throughout the frequency range and follows the pattern of a linear

(no separation) model except for the small frequency range where “bounce”

phenomenon is seen (Figs. 7.49, 7.50, 7.51, and 7.52).

Fig. 7.40 Damper

characteristic for nonlinear

damper

Fig. 7.41 Comparison between linear and nonlinear damping (amplitude, 0.01 m; frequency ratio,

5; damping ratio, 0.2)
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Fig. 7.42 Comparison between linear and nonlinear damping (amplitude, 0.05 m, frequency ratio,

0.7, damping ratio, 1.0)

Fig. 7.43 Comparison between linear and nonlinear damping (amplitude, 0.05 m; frequency ratio,

2.0; damping ratio, 1.0)
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7.5 Conclusion

The results of this investigation have shown that the tire separation is mathemati-

cally detectable and is likely to occur within the normal range of operating

conditions of common passenger and competition vehicles. Steady-state separation

is initiated at a fixed set of conditions. Transient separation does affect the overall

response of the system, but the deviation from linear response is very small and

therefore insignificant.

Separation frequency curves can be regarded as the limits of accurate application

of linear models; beyond this boundary the linear model may not yield an accurate

approximation of system response. At low damping ratios, the linear model results

may still be reasonable, but with higher damping ratios common in passenger and

performance cars, linear models may produce very misleading results.

Linear models may still be useful for many applications, but this investigation

shows that care should be taken when selecting an appropriate model for a specific

application; the desired operating conditions of the application should be consid-

ered when making this decision.

Fig. 7.44 Separation frequency plot with nonlinear damping
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Fig. 7.45 Frequency response of unsprung mass with nonlinear damping to 0.01 m input

Fig. 7.46 Frequency response of unsprung mass with nonlinear damping to 0.04 m input
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Fig. 7.47 Frequency response of unsprung mass with nonlinear damping to 0.07 m input

Fig. 7.48 Frequency response of unsprung mass with nonlinear damping to 0.1 m input

204 A. Khazaie et al.



Fig. 7.49 Frequency response of sprung mass with nonlinear damping to 0.01 m input

Fig. 7.50 Frequency response of sprung mass with nonlinear damping to 0.04 m input
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Fig. 7.51 Frequency response of sprung mass with nonlinear damping to 0.07 m input

Fig. 7.52 Frequency response of sprung mass with nonlinear damping to 0.1 m input
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Two very peculiar phenomena are seen in the results referred to in this report as

bounce and float; these are important ride behaviours that may completely be absent

in a linear simulation.

Frequency responses do show a certain consistent trend which suggests that

mathematical equations governing frequency response could be defined. However,

at high damping ratios and amplitudes, the frequency responses appear “noisy” as

the system is very unstable; this needs to be further investigated before defining

frequency responses mathematically.

As shown in Sect. 7.3.3, the interaction of separation with nonlinear damping

significantly alters the response of the system; this suggests that the interaction of

separation with other nonlinear phenomena may also alter system behaviour and

therefore need to be investigated.

7.6 Future Work

This is considered a first step in investigation of the tire separation effects; this has

opened new avenues for further research.

Results of this analysis are obtained using simulation; these have not been

confirmed through physical testing or an alternate method of simulation. For

these results to be reliable, they need to be validated through physical testing.

Validation testing must use a rig that mimics the model used for simulation and not

an actual vehicle suspension.

Additionally the results can also be compared to an actual “quarter car” rig with

other nonlinearities involved in order to investigate the significance of the results as

applied to an actual vehicle ride problem.

The possibility of non-dimensionalization of results also needs to be investigated

in more detail as it would help in broadening their applicability to systems with

varied characteristics.

A mathematical relation for separation frequency may also be sought in order to

define the limits of applicability of linear models and provide designers with choice

of models based on their specific application.
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Chapter 8

Friction Coefficient of Pneumatic Tires
and Bitumen Roads

Jenelle C. Hartman, Hormoz Marzbani, Firoz Alam, M. Fard,

and Reza N. Jazar

8.1 Introduction

Road surface friction is a significant factor in the slowing efficiency of a braking or

sliding vehicle. Road authorities apply well-defined procedures in their design and

production of roads in a quest for lower collision rates and safer roads. Globally,

collision reconstructionists and investigators work to determine how and why

motor vehicle collisions occur. A critical element of any analysis is to determine

the friction coefficient of the vehicle tires and the road surface under rolling and

sliding conditions. Due to the unexpected and dynamic nature of road trauma, it is

not possible to determine the road surface friction in conditions identical to those

occurring at the time of the collision. Post-collision skid resistance determination

may be invalid or unreliable if sliding friction coefficient is affected by velocity,

temperature and rainfall, subsequently resulting in fallacious collision analysis.

The effects of inaccurate collision analysis can be detrimental, potentially

leading to prosecution of drivers for offences they did not commit or alternatively

road development and design which is inappropriate or unsuitable for the location

or conditions, making them unsafe or lethal.

Currently collision analysis relies on knowing or estimating the road surface

friction skid resistance levels, which are determined post-incident/collision. If the

conditions at the time of testing are different to those occurring at the time of the

incident/collision, then the results may be inaccurate. This study will examine the

effect of velocity, temperature and rainfall on the friction coefficient of pneumatic

tires and road surfaces.

Where velocity, temperature or rainfall is determined to affect the sliding

friction of pneumatic tires and road surfaces, then models will be developed
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which will facilitate the ability to predict the friction coefficient for a given vehicle

velocity or temperature using a result obtained at another velocity or temperature.

The ability to predict the friction coefficient will significantly improve the

accuracy of collision reconstruction and analysis, and the increased understanding

of road/tire surface friction will ensure that road design and construction become

safer for all road users.

8.1.1 Prior Work

A thorough examination and review of literature related to the friction coefficient of

pneumatic car tires and road surfaces highlighted a number of issues that were

either contradictory or limited in their scope. The laws of friction often do not hold

true for rubber products. Interest in the friction of pneumatic car tires and road

surfaces is only new, and accordingly there are many areas that are simply not

understood. The laws of friction developed by Coulomb told us that friction is

independent of temperature and velocity. In 1952 Schallamach determined that

rubber does not follow this rule. Multiple researchers who have identified that tire/

road friction decreases non-linearly with increasing temperature have supported

Schallamach (1952) and his findings. Heinrichs et al. (2003) and Shah and Henry

(1978) have all performed extensive research specifically looking at the effects of

vehicle velocity on road/tire friction coefficient, but their research is also contra-

dictory (Jazar 2011).

What can be surmised from their work is the road/tire friction is dependent on

vehicle velocity. Common sense would suggest that lubricants such as water would

decrease the friction coefficient between two surfaces. However, in 2001, Claeys

et al. identified that the depth of water is critical to establish what effect water will

have as a lubricant on road/tire friction. Their work and results highlighted the need

for further and more specific research relative to car tires and road surfaces (Jazar

2017). This was further supported using laboratory testing by Blythe in 2013.

Blythe identified a need for real-world testing to validate their findings.

8.1.2 Significance

Essentially there remain two areas, which can be considered as gaps within the

research area: contradiction and specificity. There is literature published which

supports that velocity, temperature and rainfall do affect the friction coefficient of

two surfaces, whilst there is equally published literature which identifies that the

friction coefficient of two surfaces is not affected by velocity, temperature and

rainfall. It is evident that the chemical makeup of the two surfaces in contact is the

most important variable in determining the friction coefficient of any surfaces in

contact. It is clearly apparent that to determine whether velocity, temperature or
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rainfall affects the friction coefficient of pneumatic tires and bitumen road surfaces,

the research must be performed using pneumatic tires and bitumen road surfaces.

Current research by Blythe (2013) and using the two relevant surfaces is laboratory

based, which always increases the risk of peripheral influences.

There is a need for research, which is conducted to determine the friction

coefficient of pneumatic tires and road surfaces using a sliding actual motor vehicle

on a used bitumen road surface to validate the previous findings.

The World Health Organization (WHO) reports that 1.27 million people are

killed globally each year as a direct result of motor vehicle collisions. Motor vehicle

accidents are the number one cause of death for those aged 10–24 years and the

tenth highest cause of death behind natural causes such as heart disease and cancers.

The impact of road safety and road deaths is increasing and is a global problem. An

increased understanding of friction and how it impacts motor vehicle collisions will

enable better understanding of how, when and why collisions occur and that in turn

will assist in road design and road safety strategies aimed at reducing the associated

devastate.

8.2 Literature Review

8.2.1 Friction

Friction is a surface force, which prevents or retards relative tangential interface

motion between two surfaces or bodies studied within the field of tribology.

Tribology is a multidisciplinary field based on fluid and machine dynamics, met-

allurgy, physical and surface chemistry, heat transfer and stress analysis (Quinn

1977). The specifics of a dynamic science devoted to the study of lubrication,

friction and wear only evolved in 1966 when it was accepted by the government, of

the Jost Committee Report and its recommendations (Persson 2001). Simply,

tribology is the science of interacting solid surfaces in relative motion (Dowson

1979). Whilst the term tribology is relatively new, the study of friction is far from

recent. Predominantly the interest in analysis and prediction of mechanisms that

occur between two surfaces in relative motion is driven by industrial sectors, which

is why the new interdisciplinary approach to subjects has become necessary in

recent years. Whilst not called tribology specifically, the study of the subjects has a

history dating back to the turn of the fifteenth century.

The effects of friction on machines and materials have been the source of study

and contemplation for hundreds and even thousands of years, reaching as far back

as Aristotle (384–322 BC) (Dowson 1979). Leonardo da Vinci first developed the

laws of friction during the Renaissance in 1495. Leonardo formulated two basic

laws of friction:

1. Friction is independent of contact area.

2. Friction is proportional to load.
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Da Vinci never published or received credit for his work on friction for many

years. In 1699, Guillaume Amontons rediscovered the two laws of friction earlier

developed by da Vinci. The laws became known as Amontons Laws based on his

reasoning that friction was primarily the result of work done to lift one surface over

the roughness of the other, resulting in deformation and wear of the surfaces. In

1785 Charles Augustin Coulomb refined the concepts of Amontons. Coulomb

redefined the second law of friction commonly referred to as Amontons-Coulomb

Law asserting that the strength due to friction is proportional to compressive force.

Whilst this law holds true for many materials even today, it is not a fundamental

law. Laws of motion as devised by Sir Isaac Newton further considered friction.

Newton asserted that moving friction is not dependent on speed or velocity. This

became known as the third law of friction:

3. Friction is not dependent on velocity.

In recent years, Philip Bowden and David Tabor (1974) further explored the

laws of friction and determined that the true area of contact is a very small

percentage of the apparent area. Bowden and Tabor determined that as the normal

force increases, more asperities come into contact and the area of asperity increases.

As a result, a fourth law of friction was devised:

4. Friction is dependent on the adhesive interactions between contact surfaces.

Friction is a process where kinetic energy is converted into other forms of energy

including heat energy, acoustic energy, optical energy, electric energy and mechan-

ical energy. Eventually, virtually all the frictional work is converted into heat.

However, some of the energy is lost due to adhesion and deformation. Adhesion is

attributed to only a small proportion of the loss and occurs in the thin interface

zones, whilst the great loss is due to deformation and occurs beneath the contact

area in the larger volumes of material. The contact between rubbing surfaces may

have a mechanical (deformation) or atomic (adhesive) nature, although simulta-

neous combination of both is also possible and indeed likely (Glaeser 2012).

Frictional phenomena, which occur at a given moment within a nominal contact

area, constitute the physicochemical characteristics of friction processes which

determine the magnitude of the friction force and the type and intensity of the

resultant wear. Friction is based on three mechanical interactions including the

normal force, tangential force and relative velocity of the two opposing asperities.

The three parameters all alter during the friction phenomenon. There are three

distinguishable stages in the friction phenomenon.

1. The establishment of the micro-contact between surface asperities

2. Physiochemical modifications of the micro-contact and the surrounding material

3. The breaking or rupturing of the micro-contact

Mechanical interactions result in a three-dimensional state of stress, which is

both complex and variable. The state of stress is dependent upon the normal force,

tangential force, relative velocity, the geometry of the micro-contact, the geometry

of the interacting asperities, the material properties, temperature, heat and adhesive
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intersections. The mechanical interactions produce elastic deformations followed

by plastic deformations. Plastic deformation may produce work hardening of the

material, whilst the frictional heat can induce recrystallisation, decrease the hard-

ness and enhance diffusion and chemical interactions between the material and the

surroundings (Persson 2001). In addition, plastic deformations facilitate the crea-

tion of bonds between atoms and molecules and release elastic strains. Due to the

complexity of the mechanical interactions, rigorous analytical assessment is essen-

tially impossible. In 1785 Charles Augustin Coulomb investigated the influence of

five main factors, which affect friction. According to Coulomb the five main factors

include:

• The nature of the materials in contact and their surface coatings

• The extent of the surface area

• The normal pressure

• The length of time that the surfaces remained in stationary contact

• Ambient conditions such as temperature, humidity and even vacuum

Coulomb was one of the first to consider the effects of tangential force on elastic

fibres. In determining the friction law, Coulomb summarised many of his results

using the friction law of

F ¼ μL

where F is the load and L is the normal force. Coulomb surmised that the friction

coefficient μ is usually almost independent of L, but also of the sliding velocity so

long as the velocity is not particularly high or particularly low, the contact area and

the surface roughness (Jazar 2011).

In 1979, Oliver reported that tire friction does not conform to the classical laws

of friction. He identified two major components of tire surface/friction being

adhesion and hysteresis. For a dry road surface, the adhesion component dominates

the friction coefficients. When a road or surface is even moderately damp, the water

prevents the formation of molecular bonds, and the hysteresis component is the

primary source of tire/surface friction.

It is crucial to understand the contact mechanics of tires whilst sliding and to

critically analyse the effects of water and rainfall on the friction coefficient of car

tires and road surfaces. Performed recent research, which analyses the contact

mechanics and the role of adhesion and hysteresis in rubber friction. Heinrich

determined that a tire sliding on wet roads will have a lower friction coefficient

as the contribution of energy dissipation due to tread deformation is smaller than for

dry roads. A pioneer rubber friction researcher, Grosch, has shown that in many

cases rubber friction is directly related to the internal friction of rubber (Grosch

1963). Based on the earlier work of Grosch, in 1997, Persson determined that the

friction force between rubber and hard surfaces such as roads has two contributions

being adhesion and hysteric components, respectively. The hysteric component

comes from the internal friction of the rubber. When a tire is sliding, the asperities

of the road exert oscillating forces on the rubber surface subsequently leading to

8 Friction Coefficient of Pneumatic Tires and Bitumen Roads 213



cyclic deformations of the rubber and energy dissipation due to the internal

damping of the rubber. The friction of a sliding vehicle tire and road surface is

also affected by adhesion. It is adhesion between the two surfaces that results in

deformation of the tire tread, which increases the friction coefficient. If the adhesive

interaction between two surfaces can be reduced, then the friction force will

decrease. Since adhesion is reduced on wet surfaces, it can be concluded from the

work of Persson that the friction coefficient of car tires and road surfaces should

decrease when the road is wet. There is no discussion by Persson as to what the

effect of heavy rainfall or a thick water layer in front of the tire will have on the

friction of the two surfaces in contact.

Rubber is a polymer. Most polymers exhibit a sliding friction, which is much

lower than rubber. Teflon has both a static and kinetic friction, which is typically

below 0.1. Based on this it can be assumed that for most polymers, the internal

friction contributes less to the sliding friction than it does for rubber.

8.2.2 Sliding Friction

W. B. Hardy studied the physics of friction at Cambridge from 1919 to 1933. Hardy

claimed that friction phenomena are equally interesting for the physicist and the

engineer: their investigation belongs to a most difficult field of boundary problem of

physics (Blau 2012). Factors affecting friction vary from one tribosystem to

another, and any modelling must be tailored to each specific circumstance. The

physics of friction and its basic laws still remain elusive in many situations and

simplified models. To accurately predict models for static or kinetic friction, it is

necessary to understand the dominant interfacial processes of friction and its

relative stability, know the size scale at which the processes operate and identify

the rules that translate the external stimulus to the response of the tribosystem. The

only way to accurately model the friction coefficient of motor vehicle tires and road

surfaces is to research the two properties specifically and in relationship to each

other (Jazar 2013).

The dynamics of the transition from static to kinetic friction remains mysterious

although it is readily accepted that static friction varies but reaches maximum

immediately before an object begins to move. Kinetic (sliding friction) is constant

but a lower value than the maximum static friction. Static friction and kinetic

friction are quite different (Fig. 8.1).

There are a number of elementary aspects of sliding friction, which have been

researched and developed by Persson (2001). The work of Persson is particularly

important due to his specific research into sliding car tires. The coefficient of

friction (μ) between two solid objects is determined to be the force normal to the

surface (F) divided by the load (L ) (F/L). When considering sliding friction,

generally the law that states that ‘the coefficient of friction is independent of the

apparent area of contact’ is obeyed. That is, when the load remains the same, the

friction force will be the same no matter what the contact area. According to
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Persson, the coefficient of friction is usually velocity independent, unless the

sliding velocity is very low due to the role of thermal activation (Persson 2001).

Persson supports the theory of friction of Bowden and Tabor. Around 1940,

Bowden and Tabor presented a simple theory for the origin of the sliding friction

for clean surfaces. They assumed that the friction force is the force required to shear

cold-welded junctions formed between the solids (Persson 2001).

8.2.3 Rubber Friction

The vital role of friction in motor vehicle collisions and collision reconstruction and

the applications of rubber tire and road friction have assumed increasing signifi-

cance over the last few decades. John Boyd Dunlop introduced the first pneumatic

rubber tire in 1888; however, it was not until 1947 that radial tires were then fitted to

motor vehicles. The introduction of radial tires on vehicles has provoked a perpet-

ual interest in the friction coefficient of motor vehicle tires and paired road surfaces.

Literature specific to motor vehicle tires is limited. Primarily tire friction research is

relevant to collision reconstruction experts and tire manufacturers with pivotal

interest in vehicle and road safety. Tire manufacturers have a tendency to use

methods and codes, which are kept confidential. Often university research is

conducted in cooperation with tire manufacturers, again resulting in a degree of

confidentiality.

Rubber products, both natural and synthetic, are elastomers. Elastomers are

polymeric substances that possess elasticity. A material with elasticity has no

permanent deformation or dissipation. Extensive research by Brown has identified

that in general, polymers do not obey the long-standing laws of friction and the

most used friction model is usually referred to as the Coulomb model. Experiments

have supported the work of Brown and often show deviations from the basic

Coulomb friction model. Friction of polymers is associated with their viscoelastic

behaviour. The friction coefficient of polymers increases with sliding velocity until

a maximum value is reached followed by a decrease of the friction coefficient. This

Fig. 8.1 Static and kinetic

friction at work
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is due to the flexibility of polymer chains. Persson (1998) reported that rubber

friction differs in many ways from the frictional properties of most other solids due

to the very low elastic modulus of the rubber and the high internal friction exhibited

in a wide frequency region.

Rubber used in motor vehicle tires is cross-linked polymer matrix, which

typically contains only 10 per cent natural rubber (cis-1, 4-polyisoprene). Most

general road tires are formed from a range of polymers including natural and

synthetic polyisoprene, poly-(styrene-butadiene), polybutadiene and poly-(iso-

prene-isobutylene) which are then blended with reinforcing fillers (carbon black

or silica), sulphur, antioxidants and processing oils. The reinforcing fillers like

carbon black or silica produce two additional effects, the Payne effect and the

Mullins effect, both of which are softening effects.

Friction of rubber is a complex phenomenon comprising two parts, adhesive

friction and hysteresis friction. When a rubber tire slides on a road surface,

molecular bonds between the surfaces are repeatedly broken and reformed. This

is adhesive friction. The dynamic deformation of the rubber as energy is lost during

sliding is hysteresis friction. The hysteric friction component results from the

internal friction of the rubber. Rubber tire and road surface friction is dependent

upon both the coarseness of the road surface and the viscoelastic properties of the

tire rubber. The constitutive laws for large strains cannot be applied to the stress-

strain relative to rubber since rubber does not follow reversible stress-strain rela-

tions. When rubber is dynamically stretched and released, the returned energy is

less than the energy that is put into the rubber.

According to Persson, rubber friction differs in many ways from the frictional

properties of most other solids due to the very low elastic modulus of rubber and the

high internal friction exhibited by the rubber in a wide frequency region (Persson

1998). When an elastomer slides across another surface, true sliding at the interface

will not always occur. Waves of detachment traverse the interface, and relative

displacement will occur where contact is temporarily lost. Briggs and Briscoe

identified that these waves are called Schallamach waves and resemble macro-

dislocations where energy is dissipated by peeling the contact apart as the wave

propagates.

Research into rubber friction changed in 1971 when Schallamach observed that

when rubber moves over a hard surface, true sliding does not occur. Schallamach

determined that the contact area is crossed by waves of detachment and it is only in

this area that contact is lost and that relative motion between the two surfaces

continues to occur.

Schallamach was one of the first researchers to seriously study rubber friction

recognising that in relation to friction, rubber does not act in a way similar to other

compositions such as metals, which form the basis for Amontons and Coulomb’s
laws. According to Rand and Crosby, Schallamach waves are a dominant mecha-

nism in the friction of soft material interfaces. Schallamach waves are essentially

air tunnels, which provide relative displacement between a sliding material and the

substrate (Rand and Crosby 2006). For Schallamach waves to form, it is necessary

that adhesive forces at the interface have enough strength to prevent movement at
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the rear of the interface that subsequently creates a zone of tension. The interface

will then begin to shear which causes compression in the front of the contact area.

Critical compressive stress prior to slip will result in buckling of elastomers. If the

adhesion energy that resists interfacial separation is greater than the stored elastic

energy which causes buckle compression, then the buckle will attach to a slider and

subsequently form a wave providing displacement between the substrate and the

slider. There are three critical aspects relative to Schallamach’s wave phenomenon:

1. How the waves form

2. The interfacial stress required to propagate them

3. Their regime of existence

Briggs and Briscoe took the work of Schallamach further. Schallamach devel-

oped the theory of Schallamach waves from models of rubber and smooth surfaces

such as glass. Briggs and Briscoe then went on to consider the effects a rough

surface had on waves of detachment. Their work determined that waves of detach-

ment are also present when the surface is rough, and therefore, the same explanation

of friction force that applies to smooth surfaces remains relevant. It is well

established that when rubber slides over smooth and rough surfaces, the frictional

force is accounted for in terms of network required to peel rubber away from the

surface and then readhere to it. It is clear that during sliding the viscoelastic

deformations of rubber induced by the adhesional interaction with the substrate

increase the friction force. Therefore, if the adhesional interaction between a

substrate and rubber can be reduced, then friction force will decrease. Persson

(1998) states that if rubber is slid on a substrate covered by a thin layer of water,

then sliding friction is reduced. This is because water is trapped in the surface

cavities of the substrate, thereby leading to reduce viscoelastic deformations of the

rubber.

Briggs and Briscoe also established that adhesion of rubber depends markedly

on the roughness of the surface with which it is in contact. Road/tire friction is a

function of tread depth, water depth and velocity.

8.2.4 Road Surface Texture

Road surface/tire friction is the result of the interaction between both the tire and

the road surface and is not a property of the tire or the road surface individually.

Tire/road surface friction is dominated by the texture of the road surface. Different

road surface textures make different contributions. As discussed, skid resistance

depends on the chemical bonding between the road stones and the tire rubber

(adhesion) and the deformation and recovery of the tire as it passes over the

projections and depressions in the road surface (hysteresis). When water is present

between the road and tire, chemical bonding is affected. In wet conditions, the

ability for chemical bonding to occur depends on the micro-texture.
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8.2.5 Factors Affecting Friction

8.2.5.1 Velocity

In 1780, Coulomb identified a difference between static and dynamic friction

coefficients. As a result of his work, he determined that the friction coefficient is

independent of sliding speed (Schallamach 1952). A number of researchers have

demonstrated that instantaneous tire/road friction decreases non-linearly with

increasing speed (Takadoum 2007). Shah and Henry identified that the most

significant decrease in friction will occur at vehicle speeds up to 30 km/h and

then become more gradual as the speeds continue to increase (Heinrichs et al.

2004b). In 2002, Heinrichs identified that the road/tire friction coefficient was

lower at 20 km/h compared to 40 km/h (Shah and Henry 1978a). Laws established

by Coulomb were substantiated mostly with metals. More recent research has

shown that highly elastic materials such as rubber do not agree with theoretical

predictions relating to velocity. Although researchers generally agree that tire/road

friction is affected by velocity, there is conflict in relation to where maximum and

minimum speed thresholds occur when considering tire/road friction specifically.

8.2.5.2 Temperature

There is no general macroscopic theory of friction, which allows the prediction of

the friction coefficient of two materials, since it is the nature of the two surfaces in

contact, which has the greatest influence on the result (Butt and Kappl 2010).

According to Coulomb’s ‘laws of friction’, the coefficient of friction is independent
of temperature (Wada and Uchiyama 1993). However, this theory has since been

challenged with evidence that the coefficient of friction between pure metals is

independent of temperature, whilst viscoelastic properties of rubber-like materials

are strongly temperature dependent. Polymers do not obey Coulomb’s laws

(Schallamach 1952). The ‘Williams-Landel-Ferry theory’ identifies that rubber

friction is essentially a viscoelastic phenomenon and very sensitive to temperature

(Takadoum 2007). Research theories relating to the effects of temperature suggest

friction coefficient increases as temperature increases, until the surface reaches

maximum softening at which point the friction coefficient will begin to decrease

(Wrobel and Szymiczek, 2008). Investigation into the effects of flash temperature

on the friction coefficient of a rubber block sliding on a rough surface concluded

that as localised temperature of rubber increases, the friction coefficient decreases

(Persson 2006). The research considered the temperature of the rubber block only

and not the temperature of the surfacing upon which it was sliding. Accordingly this

research may not be relevant to the research proposed.
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8.2.5.3 Lubrication

The mechanism of traction under dry conditions involves a complex interlocking

between road surface texture and dynamic rubber properties (Moore 1967). Dry

friction describes the reaction between two solid bodies in contact with each other

when they are in motion and when they are not.

Lubricants will lower friction and reduce wear between two sliding solid bodies.

Persson (1998) determined that a lubricant is used to lower the friction and reduce

wear between two sliding bodies. Most surfaces will be covered with a layer of oil.

Roads are certainly no exception. These oils will act as a lubricant and will lower

the friction coefficient between car tires and road surfaces, but these oils are present

on both dry and wet surfaces. Grease and oil are better lubricants than water as oil

has a much higher viscosity. Fluid with a higher viscosity will reduce friction

coefficient. If the depth of lubrication is sufficient to fully separate the two surfaces

in contact, then the frictional interaction can be effectively modelled using lubri-

cation theories. If despite lubrication the solid bodies remained in contact, then the

characteristics of the bodies, the surface structure and any third bodies play a role.

‘The single most important factor affecting tire friction force in practice is the

presence of water in various forms including water, snow and ice. In most temper-

ature climates on modern roads it has been shown that during a range of rainfall

intensities normally encountered, the water rarely exceeds 2 mm and is typically

1 mm or less’. Experiments have shown that road/tire friction in low water depth

conditions is a complex interaction between the road surfaces, tire construction and

tread depth.

The depth of water on the road greatly influences tire/road friction (Claeys et al.

2001). There is a distinction between the effects of thin water layers and thick water

layers. When there is a thin layer of water only, the contact between the tire and

road is completely lost due to full contamination of the interface – viscous

hydroplaning. When the layer of water becomes thick and extra force is generated

in front of the tire due to the accumulation of water providing hydrodynamic forces,

the water layer depth determines the magnitude of the force. It is important to be

aware that once the tire rises to the top of the water surface then hydroplaning

occurs and the friction force provided by the pushing of water is lost and friction

force is subsequently reduced.

Rubber friction on wet rough substrates at low velocities is typically 20% to 30%

smaller than for the corresponding dry surfaces (Persson et al. 2004). Persson has

conducted extensive studies on sliding friction and suggests that rubber friction on

wet road surfaces cannot be explained by a hydrodynamic effect but rather suggests

that water pools within the road aggregate. As the rubber tire passes over the

surface, the water is trapped within the aggregate fissure forming pools and creating

a smoother surface and subsequently a lower friction coefficient. No matter what

the reason, it is accepted strongly by tribologists and engineers that wet friction is

typically lower than dry friction when comparing the same surfaces. Research

conducted by both Persson and Schallamach does not perform rubber/road friction
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testing on deep water pooling above the level of the aggregate. According to Moore

(1967) at speeds up to 60 km/h, flooded roads consistently give higher sliding

friction values. It was his belief that whilst there was evidence that this consistently

occurs, there is no satisfactory explanation or theory for the phenomenon. Further

investigations identified that wet rear tire friction coefficient is similar to the dry

friction value, but the front tire traction is substantially below the dry value. The dry

values have more variability than the wet results. This is most likely because the dry

values represent variations associated with local differences in surface texture,

whereas the presence of water in the wet tests appears to minimise texture

variations.

Persson (1998) considered both the relevance of lubricant viscosity and depth

when researching sliding friction. According to Persson when two layers separated

by a layer of fluid are pushed together then the fluid will be pushed out. The higher

the liquid viscosity, the longer this process will take. If viscosity of the separating

fluid is low enough, then the fluid will be squeezed out rapidly leading to direct

contact between the two surfaces. This is boundary lubrication and typically results

in a very high sliding friction, which is independent of speed. Rainwater has a low

viscosity.

Friction coefficient on a wet road decreases with increasing vehicle speed. At

low travel speeds, road micro-texture is the primary contributor to friction coeffi-

cient. Macro-texture and water depth influence the extent to which friction

decreases with increasing speed.

Micro-texture corresponds to asperities within a road surface where the individ-

ual pieces of aggregate are less than 0.5 mm. Macro-texture is measured as a texture

depth and relates to the larger aggregate over 0.5 mm.

8.2.6 Hydroplaning

True contact between a vehicle tire and a road surface is established only at the rear

of the nominal contact length. The front region of the contact length works to

displace any fluid forward of the tire. As the amount of fluid to be displaced

increases, the percentage of nominal contact area reduces until it becomes zero

and at which time hydroplaning is said to be occurring. That is, the friction is almost

zero and there is no ability to steer or brake the vehicle. The vehicle is essentially on

top of the water with a complete layer of water between the tire and the road. ‘On a
wet road surface, elastohydrodynamic effects attempt to entrain fluid across the

individual asperities of the road texture thereby destroying intimate tread to surface

contact and rapidly promoting the onset of the hydroplaning phenomenon’(Moore

1967). The mechanism of hydroplaning is characterised by a rapid spread of

interfacial film of liquid from both ends of the contact length towards the centre.

When hydroplaning occurs, the adhesion contribution to friction has been lost, and

the hysteresis contribution is negligibly small. Hydroplaning does not occur instan-

taneously, but it occurs rapidly and seemingly sudden to a vehicle driver.
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8.2.7 Friction and Collision Reconstruction

In Australia, the annual cost of motor vehicle collisions totals more than $17 billion.

Whilst that figure alone is astounding, it does not recognise the emotional cost to

those left grieving the fatally injured or those caring for the 25,000 who are

seriously injured each year. No monetary figure can be put on the real cost of

collisions in this country.

There are two methods used to estimate the cost of an accident: one economic

and the other is comprehensive. Economic costs are a measure of the productivity

lost and expenses incurred because of accidents. Comprehensive costs not only

include the economic costs but also measure the value of lost quality of life

associated with the deaths and injuries, that is, what is society prepared to pay to

prevent them? Comprehensive costs are greater than economic costs.

Valuation of road crash costs involves an estimation of the total number of

crashes and injuries, then quantifying the cost of specific crash components. There

are human costs including loss of life, treatment of injuries and ongoing care of

persons with disability, vehicle damage costs and general costs including insurance

administration and emergency service costs. According to the Bureau of Infrastruc-

ture, Transport and Regional Economics, each fatality costs $2.4 million, each

hospitalisation injury costs $214, 000 and each non-hospitalisation injury costs

around $2100.00.

In road fatalities and collisions, the term collision or crash is typically used

rather than accident as generally vehicle collisions are avoidable and not the result

of chance. Collision reconstruction is the practice of determining the movement,

relative positions and interaction of motor vehicles pre, post and during a collision

event. After critical assessment of the human, environmental and vehicle factors

available at a collision scene, a collision reconstructionist will use scientific and

physics principles to determine how and why a collision has occurred, potentially

also assigning liability. The determination of the friction coefficient of a road-tire

surface is critical in most aspects of motor vehicle collision reconstruction.

According to Warner et al. (1983), tire-road friction values are highly dependent

on numerous physical factors including tire design, side force limitations, road

surface wetness, vehicle speed and load shifting. It is the application of Coulomb’s
friction law

F ¼ μL where L ¼ mg vehicle weightð Þ
This allows the minimum speed of a vehicle to be determined from the length of

a skid. This is a critical factor in collision reconstruction. The application relies

upon the skid distance (d ) being obtained and by the condition that the initial

kinetic energy mv2/2 is completely dissipated by the friction between the road and

the vehicle tires during the skid.
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8.3 Effect of Velocity on Friction

8.3.1 Introduction

Estimation of the friction coefficient of vehicle tires and paired road surfaces is

necessary to determine pre- and postimpact vehicle velocities in motor vehicle

collision reconstruction. Average friction values may be assumed for a range of

surfaces based on previous research. Alternatively, accelerometers can provide

more accurate values when used in testing conducted at the relevant collision site.

Accelerometers require brake tests to be performed in test vehicles. Tests are

usually performed at velocities determined to be safe for the conditions, often

well below the velocities of vehicles being analysed. The use of the friction

coefficient values obtained using accelerometers assumes that the average friction

coefficient is independent of vehicle velocities.

Amontons’ law of friction, which holds true for many material combinations, is

not obeyed by elastomers such as rubber. Average tire/road friction coefficients

have been shown to be dependent on vehicle velocities by a number of researchers

(Heinrichs et al. 2004a; Leu and Henry 1978; Gunaratne et al. 2000). Therefore, the

primary objective of this study is to experimentally determine the effects of vehicle

velocities on the friction coefficient with and without antilock braking systems

(ABS). Tests using actual vehicles not fitted with antilock braking systems (ABS) at

a range of velocities from 20 to 80 km/h identified that as velocity increased,

friction decreased non-linearly.

The most substantial decrease in friction coefficient results occurred in vehicles

travelling up to 30 km/h with little significance in friction coefficient values

recorded for vehicles travelling 60 to 80 km/h (Heinrichs et al. 2004a). ABS will

not work if the vehicle velocity is below 25 km/h (Wu et al. 2010) Consequently

comparison testing with and without ABS can only occur upwards of 30 km/h.

Friction coefficient (μ) is the maximum value of the frictional force divided by

the normal force. An accelerometer calculates the friction coefficient 100 times per

second from the commencement of braking, producing one average result. From the

commencement of braking, friction coefficient increases until it reaches peak

immediately prior to wheel lock-up when it then begins to decrease along the

skid length. A vehicle travelling faster will produce a longer skid and subsequently

a lower average friction coefficient. When emergency braking is applied to a

vehicle, the peak friction coefficient is attained immediately before wheel lock.

When a vehicle is fitted with ABS, the pressure on the hydraulics will reduce as the

wheels begin to lock, aimed at keeping the friction coefficient near to peak. This

will continue to occur up to 15 times per minute and is designed to increase braking

efficiency and reduce the risk of vehicle loss of control (Erjavec, 2003). The friction

coefficient of a vehicle under ABS braking is higher than a vehicle without ABS.

Study of friction relating to viscoelastic properties such as rubber is very new

and research is limited in this area. The additional consideration of ABS further

reduces the extent of research due to this introduction being only recent. It is
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generally suggested in the literature that dry sliding frictional force of a tire

decreases with increasing sliding velocity (Chowdury et al. 2011); however, there

is some data that contradicts this. It is critical that friction coefficient of viscoelastic

properties such as vehicle tires be determined specifically. In 2004, Cross consid-

ered the effect of velocity on the friction coefficient of an elastically soft material of

tennis ball cloth sliding on smooth surfaces. He determined that sliding friction

increases with velocity for the elastic material. Whilst vehicle tires have elastic

properties, there is a stick-slip phenomenon caused when skidding.

According to Cross this will result in a decrease in friction coefficient with an

increase in velocity contradicting other elastic and metal materials. The decrease in

friction coefficient sometimes referred to as the velocity decrement of sliding

friction has a relatively small effect for low and moderate highway velocities

(Warner et al. 1983). Suggests that the variation in friction coefficient due to

velocity is between 0.0017 and 0.005 mph�1.

The objectives of this study were to identify how vehicle velocity affects the tire/

road friction coefficient on dry asphalt roads using vehicles with and without ABS.

We believed that as pre-skid vehicle velocity increases, the tire/road friction

coefficient on dry bitumen would decrease in vehicles without ABS and increase

in vehicles with ABS. The results of this study will increase the accuracy of vehicle

velocity estimates in collision reconstruction for vehicles both with and without

ABS, over a range of velocities. Will friction coefficient remain the same as

velocity is increased? Is this the same for vehicles with and without ABS? This

research will provide collision investigators and reconstruction experts worldwide a

better understanding of the effects vehicle velocity has on the friction coefficient of

the car tires and road surfaces specifically when ascertaining the road/tire friction

coefficient of a collision scene using a vehicle travelling at a velocity considerably

less than the subject vehicle.

8.3.2 Experimental Conditions

All preliminary ABS and non-ABS tests were conducted on 16 June 2011 between

3:03 and 3:56 pm. The road was dry and conditions were clear. No rain had been

recorded in the 7 days prior. The ambient temperature was recorded at 13 �C
(55 �F), which remained constant throughout the test period. Light winds only of

less than 10 km/h were observed.

8.3.2.1 Location

Tests were performed in the service lane on the west side of Dorset Road,

Bayswater, Victoria, Australia, between Allambanan Drive and Huntingdon Ave-

nue. All tests were performed whilst travelling in a northerly direction. The

geographic latitude, longitude and elevation are �37�49041.4900 and

8 Friction Coefficient of Pneumatic Tires and Bitumen Roads 223



+145�17014.9000. The service lane is privately owned and not open to the public.

The road is not used as a thoroughfare and was developed in preparation for future

industrial developments to the west. The road falls under the Roads Corporation

Victoria jurisdiction and has not been resurfaced since 2003. The road is in

excellent condition due to very low levels of vehicle traffic and essentially mild

environmental conditions including temperature and rainfall. The area is well-

drained. The service road in the direction of testing is shown in Fig. 8.2. The

service lane aggregate is depicted in Fig. 8.3.

8.3.2.2 Test Vehicle

Tests were conducted in an Australian-built 2010 General Motors Holden (GMH)

Commodore Omega four-door sedan. The 3.0 l V6 spark ignition direct injection

vehicle was fitted with a six-velocity automatic transmission. Ventilated disc brakes

were fitted to both the front and rear. In the rear wheel drive, the vehicle had

antilock braking system (ABS) fitted as standard. The ABS was disengaged for

non-ABS tests. No performance modifications had been made to the vehicle with all

braking, steering and suspension components fitted by the manufacturer as stan-

dard. The vehicle’s tested mass with two occupants was 1762 kg. The vehicle had

travelled 21,091 km from new at the commencement of the first test. The vehicle

type used in this study is depicted in Fig. 8.4.

8.3.2.3 Tires

The vehicle was fitted with four Bridgestone Turanza ER3HZ tires, which were

fitted to the vehicle at new. The 225/60 R16 tubeless steel-belted radial tires are

considered to be a mid-range touring model by the manufacturer. The minimum tire

tread depth on any tire was 4 mm, and all tires were inflated to 34 PSI (2.3 �
105 Pa) prior to the commencement of testing. The tires have been used for both

country and city driving, and no damage had been recorded or repairs carried out

prior to the tests. Visual inspection showed no evidence of uneven wearing of the

tires (Jazar 2017). Tread pattern of Turanza ER3HZ tire is shown in Fig. 8.5.

8.3.2.4 Brake Test Computer

The VC4000 Vericom brake test system was used on this experiment. The device

has three major components, a crystal clock, an accelerometer and a microcontrol-

ler, which measures the instantaneous G-force 100 times per second and can

measure the difference between ABS and standard brakes. The VC4000 is activated

at a 0.2 g threshold upon initiation of the brake pedal load cell. The device is

attached to the windscreen of the test vehicle and is considered one of the most

modern and reliable test devices to determine G-force. The G-force is measured
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within 0.001 g providing accuracy of 1%. Distance is recorded at an accuracy of 1%

over 400 m, and velocity is accurate within 1% up to 100 km/h. Therefore, the

G-force will not change unless the velocity changes.

Vericom brake test computer is shown in Fig. 8.6.

Fig. 8.2 Service road on west side of Dorset Road, Bayswater, looking north in direction

travelling by vehicle during testing

Fig. 8.3 Aggregate of service lane of Dorset Road, Bayswater, at location of testing
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8.3.2.5 Test Velocity

The series of skid tests, at a range of velocities, were performed in one vehicle. The

friction coefficient of the vehicle tires and the road surface upon which it was

travelling was determined during the tests. Tests were performed at 30 km/h,

40 km/h, 50 km/h, 60 km/h and 80 km/h. A passenger vehicle registered for general

use on a true road with a human driver (author) was used for all tests.

Fig. 8.4 2010 Holden Omega sedan used for preliminary and verification testing

Fig. 8.5 Tread pattern of

Bridgestone Turanza

ER3HZ tire
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8.3.3 Methodology

The test vehicle containing two adults (driver and observer/recorder) was driven in

a northerly direction along Allambanan Drive, Bayswater. Once the vehicle test

velocity was attained, the foot brake was activated with maximum pressure.

Pressure remained 100% until the vehicle came to a complete stop, and the results

were displayed on the Vericom brake testing computer display screen. The first

series of tests were performed with the ABS on. The lowest velocity tests were

conducted first, that is, two tests at 30 km/h were performed, then the velocity was

increased from 10 km/h increments to 40 km/h, and two tests were again performed

with continual velocity increases up to 80 km/h. At the completion of the ABS

testing, removing the ABS fuse disabled the ABS, and the series was again repeated

commencing at 30 km/h and increasing up to 80 km/h. Testing position on the

roadway remained in the same general area but was gradually brought forward to

prevent skids being consistently performed over the top of each other.

8.3.4 Results

8.3.4.1 Antilock Braking System (ABS) Enabled

When the vehicle, travelling at 35.6 and 32.8 km/h, was skidded with the antilock

braking system enabled, the average friction coefficient was calculated at �0.885 g

and �0.930 g. Deceleration experienced by an object is due to the vector sum of

Fig. 8.6 Vericom VC4000PC performance brake test computer with results displayed
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non-gravitational forces acting on an object free to slow. The accelerations that are

not produced by gravity are termed proper acceleration, and it is only these that are

measured in G-force units.

When the tires of a vehicle are locked and sliding, the deceleration of the vehicle

is due wholly to the friction coefficient of the car tires and road surfaces. By

determining the G-force of a slowing vehicle, we know the friction coefficient.

The mean of the two results was �0.907 g. At 42.6 and 41.9 km/h, the average

friction coefficient was calculated at �0.895 g and �0.893 g. The mean average

friction coefficient was �0.894 g showing a decrease of �0.013 g (1.44%) as the

vehicle velocity increased. At 54.3, 52.9 km/h and 52.8 km/h, the average friction

coefficient of the skidding vehicle with ABS enabled was calculated at �0.889,

�0.948 g and �0.953 g.

The mean friction coefficient was �0.930 g. The mean average friction coeffi-

cient increased by�0.036 g from the lower vehicle travelling velocity at 42.2 km/h.

In the vehicle that was skidded whilst the ABS was enabled, the average friction

coefficient increased as the vehicle velocity increased from 42.2 to 83.1 km/h by

�0.061 g (6.4%) as shown in Table 8.1. The lowest average friction coefficient was

recorded at the tests conducted at 41.9 km/h. The highest average friction coeffi-

cient was recorded on the test conducted at 83.1 km/h. The test conducted at

32.8 km/h recorded a higher friction 4coefficient than the test conducted at

41.9 km/h (Fig. 8.7).

With the ABS disabled, the vehicle was skidded at 34.3 and 34.4 km/h. The

average friction coefficient was calculated at �0.852 and �0.834 g. When the

vehicle velocity was increased to 42.2 and 42.4 km/h, the average friction coeffi-

cient was calculated at �0.861 g and �0.834 g. The average friction coefficient

increased by �0.004 g as the vehicle velocity was increased. When the vehicle

velocity was further increased to 52.8 and 52.9 km/h, with the ABS disabled, the

average friction coefficient was calculated to be �0.840 g and �0.823 g. As the

velocity increased from 42 to 52 km/h, the mean average friction coefficient

decreased by �0.063 g (1.89%). As the velocity further increased from 42.2 to

81.4 km/h, the average friction coefficient decreased by �0.070 (8.3%) (see

Table 8.2).

The highest average friction coefficient was recorded in the tests conducted at

42.4 km/h. The lowest average friction coefficient was recorded on the test

conducted at 81.4 km/h. The test conducted at 34.3 km/h recorded a higher friction

coefficient than the test conducted at 42.4 km/h (Figs. 8.8 and 8.9).

8.3.5 Discussion

The velocity of a vehicle at the commencement of sliding will affect the friction

coefficient of the vehicle tires and the road surfaces upon which it is travelling. As

the velocity of the vehicle at commencement of skidding increased, the friction

coefficient decreased when the vehicle ABS was disabled and increased when the
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vehicle ABS was enabled. However, this only occurred above 40 km/h. Below

40 km/h, the friction coefficient increased as velocity increased for vehicles without

ABS and decreased as velocity increased for vehicle without ABS.

At 40 km/h, the difference in friction coefficient between a vehicle with and

without ABS was �0.047 g. The friction coefficient remained higher in the vehicle

with the ABS enabled at 40 km/h although the total stopping distance was equal in

Table 8.1 Average friction coefficient of a vehicle sliding on bitumen with antilock braking

system (ABS) enabled

Velocity (km/h) Time (sec) Distance (m) Average G (g) Mean G (g)

35.6 1.14 6.10 �0.885 �0.907

32.8 1.00 5.00 �0.930

42.6 1.35 8.80 �0.895 �0.894

41.9 1.33 8.40 �0.893

54.3 1.70 13.70 �0.889 �0.930

52.9 1.58 12.30 �0.948

52.8 1.57 12.30 �0.953

64.4 1.88 17.6 �0.970 �0.958

63.1 1.89 17.9 �0.946

79.9 2.30 27.3 �0.955 �0.955

83.1 2.40 29.7 �0.956

Fig. 8.7 Average friction coefficient of a vehicle sliding on bitumen with antilock braking system

(ABS) enabled
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both vehicles. At 80 km/h, the difference in the friction coefficient in the vehicle

with and without ABS was �0.178 g and the average stopping distance of 4.5 m in

the vehicle without ABS.

Table 8.2 Average friction coefficient of a vehicle sliding on bitumen with antilock braking

system (ABS) disabled

Velocity (km/h) Time (sec) Distance (m) Average G (g) Mean G (g)

34.3 1.14 5.9 �0.852 �0.843

34.4 1.17 5.9 �0.834

42.2 1.39 8.5 �0.861 �0.847

42.4 1.44 8.7 �0.834

52.8 1.78 13.2 �0.840 �0.831

52.9 1.82 13.7 �0.823

61.6 2.23 18.9 �0.782 �0.802

61.5 2.12 18.0 �0.822

81.4 2.93 32.5 �0.787 �0.777

81.4 3.00 33.5 �0.786

Fig. 8.8 Average friction coefficient of a vehicle sliding on bitumen with antilock braking system

(ABS) disabled
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The effectiveness of ABS increases as velocity increases above 40 km/h. These

on-road tests did not harmonise with the earlier research of in relation to non-ABS

friction coefficient at lower velocities. Heinrich et al. identified that as velocity

increased, friction decreased non-linearly with the most substantial decrease in

vehicles travelling up to 30 km/h. The most substantial decrease in these results

occurred between 50 and 60 km/h with an increase observed between 20 and

30 km/h.

Both series of tests support a peak at 40 km/h. With ABS enabled, the lowest

friction coefficient between the vehicle tires and the road surface was observed at

40 km/h. With the ABS disabled, the highest friction coefficient between the

vehicle tires and the friction coefficient was observed at 40 km/h. It is not possible

to determine whether the friction coefficient peaks or plateaus at 70–80 km/h with

the ABS enabled and disabled. Further tests need to be conducted at 70 km/h,

80 km/h, 90 km/h and 100 km/h to determine what trend occurs above 60 km/h.

There were only two tests that could be considered to be statistically significant.

The test at 81.4 km/h and the test at 42.2 km/h when the ABS was off were the only

results to fall within the 95% confidence interval range. Of the 11 tests performed

with the ABS enabled, 8 fall within the 75% confidence range. With the ABS

disabled, only half of the tests provided results that fell within the 75% confidence

range.

Fig. 8.9 Comparison of the average friction coefficient of a vehicle sliding on bitumen with and

without ABS between 40 and 80 km/h
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vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2e � 2ad

q

where vi is initial velocity, ve is end velocity, a is acceleration and d is distance.

Using the total braking distance of 33.5 m, it is possible to determine the effect

of using an average g determined from a vehicle travelling at 40 km/h when the

vehicle was travelling at a velocity above 80 km/h.

Friction coefficient determined at 40 km/h:

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 � 2� 9:81��0:834� 33:5ð Þ

q
¼ 84:27 km=h

Friction coefficient determined at 80 km/h:

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 � 2� 9:81��0:768� 33:5ð Þ

q
¼ 80:89 km=h

The Vericom brake test computers record the distance of braking using a

multicontroller. This records braking distance from when the first application of

braking is made by the driver. There is a delay between initial brake application and

tire lock-up. Tire skid marks are rarely visible immediately upon tire lock-up. Test

10 with ABS disabled recorded a total braking distance of 33.5 m; however,

physical measurements taken from the skid marks on the road were 29.1 m.

Using the total braking distance of 29.1 m, it is possible to determine the effect

of using an average g determined from a vehicle travelling at 40 km/h when the

vehicle was travelling at a velocity above 80 km/h. Friction coefficient determined

at 40 km/h:

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 � 2� 9:81��0:847� 29:1ð Þ

q
¼ 79:16 km=h

Friction coefficient determined at 80 km/h:

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 � 2� 9:81��0:777� 29:1ð Þ

q
¼ 75:82 km=h

When using the physical marks left by a skidding vehicle (the evidence most

readily available to collision investigators) rather than the total braking distance

(calculated using a multicontroller), an underestimate of the vehicle travelling

velocity will be made irrespective of what velocity the test vehicle was travelling

to obtain the friction coefficient. All formulas for determining velocity that take into

account braking distance were developed in reference to the total braking distance.

Collision investigators can only rely upon the available physical evidence of

braking such as skid marks which will be somewhat less than the total braking

distance.

Whilst not considered statistically significant, the trend observed in the friction

coefficient as velocity increases is well defined. The results are significant in

relation to collision reconstruction. Based on the tests performed and the data
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obtained, the relevance of the friction coefficient and its effect on vehicle velocity

analysis can be identified. The highest friction coefficient result with the ABS

disabled was recorded at the test performed at 42.2 km/h with an average friction

coefficient of �0.861 g.

This result is below the lowest average friction coefficient obtained when the

ABS was enabled. This result was obtained in a test performed at 35.6 km/h. From

this it can be determined that any friction coefficient that is determined using a

vehicle without ABS or a vehicle which has ABS which is disabled will provide a

value which is below the true velocity for a vehicle with ABS. Using a friction

coefficient obtained in a vehicle without ABS will result in an underestimate of the

skidded vehicle velocity with ABS on.

The velocity at which friction tests are conducted to determine tire/road friction

coefficients is a relevant consideration up to 80 km/h. As vehicle velocity increases,

the significance of the results decreases. When friction coefficient tests are

conducted in a vehicle without ABS to determine the velocity of a vehicle that

does not have ABS, it is important to be aware that tests conducted below the

velocity of the vehicle being analysed may result in an overestimate of vehicle

velocity if using the total braking distance. Using the tests conducted without ABS,

the mean average friction coefficient results at 34 km/h would result in an

overestimate of velocity in the vehicle travelling at 81 km/h. Using the mean

average friction coefficient obtained at 81.4 km/h provides a velocity estimate

result of 81.3 km/h. All mean average friction coefficient results at 30 km/h,

40 km/h, 50 km/h and 60 km/h without ABS produce velocity overestimates of

up to 4.0 km/h above the actual velocity of a vehicle which is travelling faster than

that friction test vehicle velocity, at the commencement of braking. By neglecting

pre-skid braking interval, the pre-braking vehicle velocity is underestimated by

5–15%. If using skid length only, then the velocity at which the friction coefficient

testing occurs is irrelevant up to 80 km/h and will still provide an underestimate of

the true vehicle velocity pre-braking.

Using a regression model it is possible to adjust measured friction coefficient

values to account for the difference in vehicle velocity between the test vehicle

velocity and the assessed vehicle velocity in vehicles without ABS. The Mehegan

prediction model was developed to facilitate the ability to predict friction whilst

accounting for a difference in vehicle velocity:

R2 ¼ 0:964

R ¼ 0:982

To determine the friction coefficient at 81.4 km/h using the friction coefficient

recorded at 42.3 km/h and using the Mehegan prediction model:

μp ¼ �0:982 n�mð Þ=10 � μm

μp ¼ �0:9823:91 � 0:847 ¼ �788
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Vehicle velocity determined using the Mehegan prediction model friction coef-

ficient based upon braking distance of 32.5 m was obtained in tests performed at

81.4 km/h:

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2e � 2ad

q

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 � 2� 9:81��0:788� 32:5ð Þ

q
¼ 80:62 km=h

It was underestimated by 0.71 km/h.

Vehicle velocity determined using the Mehegan prediction model friction coef-

ficient obtained at 42.3 km/h based upon braking distance of 32.5 m was obtained in

tests performed at 81.4 km/h:

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 � 2� 9:81��0:847� 32:5ð Þ

q
¼ 83:66 km=h

It was underestimated by 2.26 km/h.

Using the adjusted friction coefficient, the vehicle velocity calculated was less

than 1.0 km/h under the true velocity of the vehicle. When using the friction

coefficient determined at 42.3 km/h, the calculated velocity overestimated the

true velocity by 2.26 km/h. It should be noted that the calculations were based on

the braking distance during testing not on the physical evidence of braking such as

skid length. However, the adjusted friction coefficient most certainly provides very

accurate results taking into account the difference in test vehicle velocity to

assessment vehicle velocity when considering entire braking distance.

When determining the velocity of a vehicle fitted with ABS during skidding,

care should be taken to ensure the velocity at which test skids are conducted to

determine the friction coefficient is less than the predicted velocity of the vehicle

being analysed. Using the results from these tests, the mean average friction

coefficient obtained in the vehicle with ABS to determine the velocity of the vehicle

that was known to be travelling at 83.1 km/h produced a range of over- and

underestimates when using the total braking distance to determine the vehicle

velocity. The mean average friction coefficient obtained at 30 and 40 km/h both

underestimated the actual velocity. The mean average friction coefficient obtained

at 50 km/h, 60 km/h and 80 km/h all produced overestimates.

The overestimates were not more than 1.91 km/h above the actual velocity and

only occurred based on the total braking distance. When using the skid distance

only, to determine pre-braking velocity, all calculations produced results that

underestimated the true velocity.

8.3.6 Validation

To validate the accuracy of the Mehegan prediction model to predict the likely

friction coefficient of a road surface and various vehicle velocities, we conducted a
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second series of tests. The tests were performed in the same vehicle at a different

location. The tests were conducted in the driveway of Napier Park Nature Reserve,

High Street, Road, Wheelers Hill, Victoria. The same procedure was followed as

for series one with two tests being performed at 40 km/h, 50 km/h, 60 km/h, 70 km/

h and 80 km/h with the ABS deactivated. No tests with ABS were performed

(Tables 8.3 and 8.4).

Skid tests were performed at an average of 41.1 km/h, 50.8 km/h, 60.6 km/h,

70.9 km/h and 80.4 km/h to obtain the average friction coefficient at each velocity.

The distance of each braking section was also recorded, which allows the vehicle

velocity at the commencement of braking to be calculated using the velocity from

skid formula. Using the known braking distance, the velocity at commencement of

braking was calculated using the average friction coefficient obtained at 41.1 km/h.

This was then used to determine the accuracy of this method when using a friction

coefficient obtained at a lower test velocity compared to a subject vehicle velocity.

At 51.8 km/h, 60.6 km/h and 80.4 km/h by using the friction obtained at 41.1 km/h,

the calculated velocity was higher than the vehicle velocity at commencement of

braking. The overestimate ranged between 0.92 and 1.71 km/h. At 70 km/h the

velocity calculated was below the test vehicle velocity. It should be noted that the

velocity from skid formula is based on using the length of a skid rather than braking

distance. Braking distance is calculated using the Vericom brake test computer.

Braking distance is longer than skid length. That is, a vehicle driver will always

have applied braking prior to the commencement of a skid mark becoming visible

on a road. Using the known braking distance, the velocity at commencement of

braking the vehicle velocity was calculated using �0.840 g, the friction coefficient

obtained at 41.1 km/h (Table 8.5).

Using the Mehegan prediction model formula designed and the friction coeffi-

cient �0.840 g obtained at 41.1 km/h, the expected friction coefficient values were

calculated as shown in column 2 for values at 50.8 km/h, 60.6 km/h, 70.9 km/h and

80.4 km/h being the test velocities for which actual values were obtained. The

purpose of using the Mehegan prediction model is to validate the formula for

situations where a friction test cannot safely be conducted at the same velocity

that a vehicle involved in a collision was travelling. For a collision reconstruction

expert, the ability to adjust friction coefficient values obtained at low velocities will

increase the accuracy of such work whilst allowing all testing to be safe. At 50 and

Table 8.3 Predicted friction coefficient using Mehegan prediction model and modified Mehegan

prediction model

Vehicle

velocity

km/h

Predicted result using Mehegan

prediction model

μp¼ � 0.982(n�m)/10� μm

Predicted result using modified Mehegan

prediction model

μp¼ � 0.982(n�m)/10� μm� 0.95

50.8 �0.825 �0.786 – 0.866

60.6 �0.810 �0.771 – 0.851

70.9 �0.797 �0.758 – 0.835

80.4 �0.782 �0.743 – 0.821
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60 km/h, these prediction friction coefficient values resulted in estimated velocity

calculations that were higher than the actual velocity by up to 1.19 km/h. At 70 km/

h and 80 km/h, the estimated velocity calculations using the predicted friction

coefficient values were lower than the actual velocity by up to 2.67 km/h. This

margin of error is likely due to the non-linear decrease in friction coefficient as

vehicle velocity increases, preventing a ‘one-size-fits-all’ approach as it occurs

when one formula is devised using a regression model (Table 8.6).

For a collision reconstruction expert, friction remains an elusive phenomenon

that can be a critical factor to any collision reconstruction. If a friction coefficient

value that is higher than that relative to the subject vehicle is utilised in any

calculation, then the end result will be a velocity that is higher than the actual

velocity.

Preliminary testing identified that when a vehicle that is not fitted with ABS

skids, then the friction coefficient will decrease as vehicle velocity increases above

40 km/h. Often a vehicle involved in a collision is travelling at a velocity that is

dangerous or too high for the environment. This prevents the collision reconstruc-

tion expert from conducting road friction analysis at the relevant velocity. For every

km the test vehicle is below the subject vehicle, the risk of overestimating velocity

is increased.

Initial testing identified that the most significant decrease in friction coefficient

occurred between 40 and 70 km/h. At 40 km/h a friction coefficient obtained at

�0.847 g would result in an overestimate of velocity by 3.4 km/h if then used on a

vehicle travelling at 80 km/h. Using mathematical modelling, the Mehegan predic-

tion model formula was developed to allow predictions of friction coefficient at

higher velocities based on results obtained at lower velocities. In the same series of

Table 8.4 Velocity calculations between 50 km/h and 80 km/h using friction coefficients

obtained at 40 km/h

Velocity

(km/h)

Test

result

Error if using

�0.840 g

Calculated velocity using

�0.840 (km/h)

Error on calculated

velocity (km/h)

50.8 �0.783 +0.057 52.45 +1.65

60.6 �0.786 +0.054 62.31 +1.71

70.9 �0.745 +0.095 70.04 �0.86

80.4 �0.732 +0.108 81.32 +0.92

Table 8.5 Velocity calculations between 50 km/h and 80 km/h using friction coefficient obtained

at 40 km/h

Velocity

(km/h)

Predicted result

Mehegan prediction

(g)

Calculated velocity using Mehegan

prediction model (km/h)

Error on calculated

velocity (km/h)

50.8 �0.825 51.99 +1.19

60.6 �0.810 61.18 +0.58

70.9 �0.797 68.23 �2.67

80.4 �0.782 78.59 �1.81
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testing, the predicted friction at 80 km/h using the devised formula would be

0.788 g. By using the predicted friction coefficient, the calculated velocity would

be �0.13 km/h below the actual vehicle velocity.

A complete second series of testing was then conducted at a second location to

verify the accuracy of the mathematical Mehegan prediction model to predict the

projection of friction coefficient as velocity increases. Determining the friction

coefficient projections for 50 km/h, 60 km/h, 70 km/h and 80 km/h was done using

the mathematical model based on the friction coefficient recorded at 40 km/h. The

projected results were then compared against actual results recorded to verify the

accuracy and validity of the model. At 50 km/h and 60 km/h, the calculated velocity

when using the friction coefficient predicted using the model was between 0.58 and

1.19 km/h above the actual velocity. At 70 km/h and 80 km/h, the calculated

velocity was between 1.81 and 2.67 km/h below the actual velocity, an error of �
3%.

Two different locations were used to verify the model and its validity. There was

a difference of 2% between the friction coefficients obtained at 40 km/h at the two

sites. Taking this into account, the mathematical pro model was varied to incorpo-

rate a margin of error of 5%, which should be sufficient to incorporate the variation

at most sites. Using the modified prediction model and the result obtained from the

verification testing, the projection results are all an underestimate of the actual

friction coefficient for that location. For a collision reconstruction expert, the use of

a friction coefficient, which is lower than the actual friction coefficient, is accept-

able, as it will result in a velocity which is lower than the actual velocity being

analysed. Motor vehicle drivers who are involved in collisions whilst travelling at

high velocity can be liable to both criminal and civil jurisdictions. For this reason it

is not acceptable for a velocity to be calculated higher than the true velocity.

All velocity calculations in this research were based on the distance measured

and recorded by the Vericom brake test computer. The distance is relative to the

distance travelled by the vehicle from the initial application of braking. A collision

reconstructionist is not provided with the total distance of braking but rather works

with the tire marks visible on the road way. Tire marks are not left on the road

immediately that braking is applied. The time from the brake application to the

onset of visible skid marks on a road is defined as the transient period of the braking

process. According to, the transient brake period is generally between 0.082 and

Table 8.6 Velocity calculations between 50 and 80 km/h using friction coefficient obtained at

40 km/h

Velocity

(km/h)

Predicted result

Mehegan prediction

(g)

Calculated velocity using Mehegan

prediction model (km/h)

Error on calculated

velocity (km/h)

50.8 �0.786–0.866 50.74–53.26 �0.06 to +2.46

60.6 �0.771–0.851 59.69–62.34 �0.91 to +1.74

70.9 �0.758–0.835 66.54–69.84 �4.36 to �1.06

80.4 �0.743–0.821 76.48–80.39 �3.92 to �0.01
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0.540 s with a vehicle velocity reduction of between 1% and 25%. This results in a

velocity reduction of between 5% and 15%. Based on this, research using the

friction coefficient obtained at 40 km/h can result in a velocity estimate, which is

over by up to 4%. Therefore, if using visible tire marks to determine the velocity of

a vehicle, the velocity should be an underestimate even if using a friction coeffi-

cient, which is obtained at a velocity lower than the subject vehicle. Using the

mathematical projection model where velocity is being determined from tire marks

would result in an underestimate of true vehicle velocity at the onset of braking at

all velocities between 40 km/h and 80 km/h. The use of the modified projection

model where the velocity is determined from tire marks will result in an estimate

that could likely be between 11% and 21%. Whilst underestimates are acceptable

estimates, up to 21% below are too low.

Where a velocity estimate is being performed using the friction coefficient

values obtained from a test vehicle that is travelling considerably lower than the

subject vehicle, then the projection model should be used in preference to the

modified Mehegan prediction model.

8.3.7 Future Research

The vehicle velocities that were tested in this research limit the validity of the

Mehegan prediction model for use in all collision reconstructions. It appears that a

plateau occurs around 70–80 km/h for both vehicles with and without ABS. For

conclusive validation of this model, testing would need to incorporate velocities up

to 150 km/h. When using registered passenger vehicles and actual road surfaces,

safety becomes paramount for this testing. Safety is compromised as vehicle

velocity increases.

8.4 Effect of Temperature on Friction

8.4.1 Introduction

The friction coefficient of a particular road surface and car tire can be measured

using a test vehicle and an accelerometer. However, the friction coefficient result

can only be relevant to the conditions in which the testing occurred. This assumes

that the friction coefficient of a road surface and paired car tire is not affected by

temperature or otherwise provides nothing more than a ‘good estimate’.
When a motor vehicle collision is being reconstructed, the road surface friction

needs to be either measured or estimated. Where precision is necessary, then tests

should be performed. It is not possible to perform tests in identical weather

conditions to what was occurring at the time of the collision. There will always

be a delay between the collision and the subsequent friction testing. The delay may

238 J.C. Hartman et al.



be hours, days, weeks, months or even years. Despite the many other variables that

may change between the collision and subsequent test due to time delay, consider-

ation must be given to ambient temperature. A collision may occur at 2:00 am when

the ambient temperature is near to 0 �C (32 �F). Due to the necessary scene

examination and evidence preservation, it is reasonable that the friction testing

may not occur until 2:00 pm later that day. The temperature could reasonably

increase by up to 25 �C (77 �F) in that time.

If road surface/tire friction is not affected by temperature, then the temperature

change will not be relevant; however, if it is relevant then it is critical to know what

the effect is, to allow adjustment to friction test results to be made prior to

reconstructing the collision and calculating vehicle velocity.

Early theories suggested that the coefficient of friction is independent of tem-

perature. Coulomb included the nondependent relationship between temperature

and rubber in his laws first published in 1785. However, more recently when

polymers such as rubber have developed and more research has been performed,

researchers now believe that rubber friction is very sensitive to temperature

(Schallamach 1952, Takadoum 2007). The primary objective of this study is to

experimentally determine the effects of ambient temperature on the friction coef-

ficient of motor vehicle tires and road surfaces.

Predominantly, the research looking at the effects of temperature, which has

been conducted, specific to car tires and road surfaces, has looked at extremely cold

temperatures more prevalent in the United States and the United Kingdom.

Australia experiences temperate weather for most of the year. However, due to

the size and its position over the Tropic of Capricorn, the climate can vary

throughout the continent. Typically, the northern states have warm weather

throughout the entire year with the southern states having cooler temperatures in

winter but still warm to hot in summer. Australia is one of the driest continents on

earth with an annual rainfall of less than 600 millimetres. Due to its position in the

southern hemisphere, Australia’s seasons are opposite to the northern hemisphere

where most research has been performed. December to February is summer; March

to May is autumn; June to August is winter and September to November is spring.

The testing for this research was performed over all seasons.

All research was performed in the State of Victoria where the climate is marked

by a range of different climate zones. The northwest of the state has dry regions,

whilst the northeast is covered in alpine snow regions.

Victoria has a reputation of forever changing weather, but as a general rule, the

city has warm to hot summers, mild balmy spring and autumn and cool winters.

Average temperatures are 25 �C in summer and 14 �C in winter. Rainfall is highest

from May to October.

The objectives of this study are to identify how ambient temperature affects the

tire/road friction coefficient on dry bitumen road surface using modern passenger

vehicles. The results of this study will increase the accuracy of motor vehicle

collision reconstruction in a range of environmental conditions worldwide. Will

friction coefficient of car tires and road surfaces remain the same as ambient

temperature increases?
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This research will provide collision investigators and reconstruction experts

worldwide a better understanding of the effects of vehicle velocity on the friction

coefficient of the car tires and road surfaces, specifically when ascertaining the

road/tire friction coefficient of a collision scene when testing is conducted after the

collision is being analysed in substantially different ambient temperatures.

8.4.2 Experimental Conditions

The experimental testing phase was performed randomly between July 2012 and

January 2014. Tests were performed randomly in a range of temperatures between

3 and 43 �C. Time of day was not a factor, and testing was based purely on ambient

temperature with tests being performed both night and day. All tests were

performed in dry conditions with no recent rainfall having been recorded in the

preceding 12 h. All tests were performed with the ABS disabled as a result of fuse

removal.

8.4.2.1 Location

All tests were performed at Attwood Victoria Police Driver Training Facility,

505 Mickleham Road, Attwood, Victoria, Australia (37.666�S 144.887�E). This
is a private police facility, which is not open to the general public and primarily

used to train members of Victoria Police in emergency driving techniques. The road

is privately owned and has not been resurfaced since 2007. There were no

resurfacing or significant repairs carried out on the road surface between July

2012 and January 2014. All tests were performed whilst driving the circuit in an

anticlockwise direction. The dry tests were performed on the northern straight

whilst travelling west. (See Fig. 8.10.) The bitumen road surface is in excellent

condition due to very low levels of vehicle traffic and the high level of maintenance,

due to the high-risk driving that occurs at the location. There were no noticeable

condition changes during the period of testing. The area is well drained.

8.4.2.2 Test Vehicles

Tests were conducted in Australian-built General Motors Holden (GMH) Commo-

dore Omega four-door sedans. There were two different vehicles used over the

3 years of testing. Both vehicles were of the same model having been built in 2010

and 2012 with no noted changes in production. The model, build and specifications

of both vehicles were the same. The 3.0 l V6 spark ignition direct injection vehicles

were fitted with six-velocity automatic transmissions. Ventilated disc brakes were

fitted to both the front and rear. In the rear wheel drive, the vehicle had antilock

braking system (ABS) fitted as standard. The ABS was disengaged for all tests. No
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performance modifications had been made to the vehicle with all braking, steering

and suspension components fitted by the manufacturer as standard. The vehicle’s
tested mass with two occupants was 1762 kg. All vehicles had travelled less than

40,000 km at the time of tests. The vehicle type used in this study is depicted in

Fig. 8.4.

8.4.2.3 Tires

At the time of testing, all vehicles were fitted with four Bridgestone Turanza

ER3HZ tires that were fitted to the vehicle at new. The 225/60 R16 tubeless

steel-belted radial tires were considered to be a mid-range touring model by the

manufacturer. The minimum tire tread depth on any tire was 4 mm, and all tires

were inflated to 34 PSI (2.3 � 105 Pa) prior to the commencement of testing. The

tires on all vehicles had been used for both country and city driving, and no damage

had been recorded or repairs carried out prior to the tests. Visual inspection showed

no evidence of uneven wearing of the tires. Tread pattern of Turanza ER3HZ tire is

shown in Fig. 8.5.

Fig. 8.10 Location of testing at Victoria Police Driver Training Facility, Attwood
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8.4.2.4 Brake Test Computer

The VC4000 Vericom brake test system was used on this primary research testing

phase. The device has three major components, a crystal clock, an accelerometer

and a microcontroller, which measures the instantaneous G-force 100 times per

second and can measure the difference between ABS and standard brakes. The

VC4000 is activated at a 0.2 g threshold upon initiation of the brake pedal load cell.

The device is attached to the windscreen of the test vehicle and is considered one of

the most modern and reliable test devices to determine G-force. The G-force is

measured within 0.001 g providing accuracy of 1%. Distance is recorded at an

accuracy of 1% over 400 m, and velocity is accurate within 1% up to

100 km/h. Therefore, the G-force will not change unless the velocity changes.

Vericom brake test computer is shown in Fig. 8.5.

8.4.2.5 Test Velocity

The series of skid tests were all performed at as close to 60 km/h as possible. When

the ABS fuse has been removed from the vehicle to disable the ABS, the cruise

control function does not work. Once the Vericom brake test computer is activated,

no application of braking can be made prior to the test braking application, or the

Vericom will activate early and provide a false result. It is necessary for the driver

to accelerate whilst observing the speedometer and activate braking as near as

possible to 60 km/h. Due to the process for human velocity estimation and braking,

no tests were conducted where braking was applied at 60.0 km/h precisely. The

velocity ranges at which braking was activated were 47 and 62 km/h.

8.4.3 Methodology

Tests were performed randomly over a 21-month period. A total of 111 tests were

conducted with a minimum of three tests at each temperature with less than 10%

variance between the three tests required before results were accepted. Each vehicle

had a driver and observer/recorder.

The author was the driver for most tests, although in one series of continuous

24 h testing, the driver was changed every 8 h due to fatigue considerations. Testing

was conducted on the north side of the lap circuit whilst travelling west. Once the

vehicle test velocity was attained (60 km/h), the foot brake was activated with

maximum pressure. Pressure remained 100% until the vehicle came to a complete

stop, and the results were displayed on the Vericom brake testing computer display

screen. All tests were performed with the ABS off. Testing position on the roadway

remained in the same general area but was gradually brought forward to prevent

skids being consistently performed over the top of each other, particularly in the hot
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weather conditions where considerable scuffing was occurring. Once ABS is

disabled the speedometer in the vehicle does not always display, resulting in

velocity estimation by the driver prior to braking application.

8.4.4 Results

As ambient temperature increased from 3 to 43 �C, the friction coefficient of car

tires on a paired road surface increased from �0.630 g to �0.889 g. The increase

was essentially linear with an average increase of �0.06 g for each increase of

10 �C. When observing the average of three results at each temperature, an

inconsistent spike in results was observed at 26 �C�28 �C. The increase in friction

coefficient from 25 to 26 �C was�0.029 g compared to the expected linear increase

of �0.006 g. Although the three results at 26 �C were within 10% of each other, the

initial test provided a friction coefficient of �0.801 g followed by the two more

expected results of�0.771 g and�0.777 g. The results obtained at 26 and 27 �C are

significantly above the line of best fit but still fell within the standard error

(Fig. 8.11).

In 33 of the 37 series of tests for temperatures at which friction coefficient was

tested, the friction coefficient observed in the third test was lower than the first test.

The strength of the results is high providing clear evidence that for motor vehicle

tires and the paired road surface, as ambient temperature increases, the friction

Fig. 8.11 Average friction

coefficient of a vehicle

sliding on bitumen with

ABS disabled between

3 and 43 �C
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coefficient also increases. There were seven instances where a very small reduction

in the average friction coefficient over three tests was observed when the ambient

temperature increased by 1 �C. However, this reduction was always immediately

followed by an increase in friction coefficient as the ambient temperature was again

increased by 1 �C. Where a decrease in friction coefficient was observed despite an

increase in ambient temperature, the decrease was never less than the friction

coefficient observed in the previous result (Table 8.7).

8.4.5 Discussion

The friction coefficient of motor vehicle tires and paired road surfaces will increase

as the ambient temperature increases. There is a strong positive linear relationship

between the two quantitative variables, temperature and friction coefficient, with

minimal random variation. The correlation coefficient (r ¼ 0.983) supports a high

degree of correlation between the two variables with 1.0 the highest degree of

relationship possible. The coefficient of determination (r2 ¼ 0.968) suggests that

96.8% of the friction coefficient is directly accounted for by ambient temperature.

There is a direct relationship between the independent (ambient temperature) and

dependent (friction coefficient) variables.

The tests were all performed randomly over a 21-month period. At each tem-

perature, the complete series of three tests were conducted in the same session.

There was an unexpected escalation in friction coefficient results observed at 26 and

27 �C. Both these series of tests were conducted on the same day using the same

vehicle and same driver.

The author was not the driver for these tests. These tests were not performed on

the same day as the tests conducted at 25 �C or 28 �C. Whilst the results are not

statistically inconsistent, they are certainly unexpectedly high. It is likely that these

results were high due to a variable other than temperature. In 33 of 37 test series, the

friction coefficient decreased from the first test to the third test despite the fact that

the friction coefficient of the car tires and paired road surface increased as temper-

ature increased. Friction always causes heat. The greater the friction that is required

to stop a vehicle, the greater the amount of heat that is generated during braking.

Therefore, the temperature of the brake components rises as the brakes are applied.

Research has shown that one emergency stop at 96 km/h can raise brake lining

temperatures by more than 70 �C (Friction Brake Theory). Repeated heavy stops

such as that necessary to cause a vehicle to skid can continue to raise the temper-

ature by equal amounts. The results are clear and provide strong evidence that the

friction coefficient of car tires and road surfaces will increase as ambient temper-

atures increase. It is likely that the small decreases observed in most three test series

are due to the increased heating of the braking components not any effects of

ambient temperature.

Heat dissipation is the heat removed from brake friction surfaces by direct

transfer to the surrounding air. Modern brake systems are designed to provide the
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Table 8.7 Average friction coefficient of a vehicle sliding on bitumen with ABS disabled at a

range of temperatures between 3 and 43 �C

Temperature (�C) Average G (g) Mean G (g)

3 �0.630

�0.634

�0.641

�0.635

4 �0.665

�0.663

�0.660

�0.662

5 �0.669

�0.666

�0.660

�0.665

6 �0.672

�0.671

�0.664

�0.669

7 �0.680

�0.677

�0.671

�0.675

9 �0.674

�0.674

�0.671

�0.672

10 �0.684

�0.681

�0.673

�0.680

11 �0.684

�0.684

�0.680

�0.682

12 �0.696

�0.687

�0.694

�0.693

13 �0.696

�0.698

�0.694

�0.696

15 �0.704

�0.701

�0.692

�0.699

16 �0.707

�0.704

�0.707

�0.706

17 �0.711

�0.704

�0.696

�0.703

18 �0.705

�0.704

�0.699

�0.702

19 �0.706

�0.712

�0.706

�0.708

(continued)
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Table 8.7 (continued)

Temperature (�C) Average G (g) Mean G (g)

20 �0.734

�0.723

�0.708

�0.721

21 �0.721

�0.715

�0.708

�0.714

22 �0.745

�0.738

�0.710

�0.731

23 �0.747

�0.741

�0.732

�0.740

24 �0.740

�0.728

�0.725

�0.731

25 �0.748

�0.761

�0.753

�0.754

26 �0.801

�0.771

�0.777

�0.783

27 �0.799

�0.792

�0.761

�0.784

28 �0.782

�0.781

�0.768

�0.777

29 �0.778

�0.759

�0.749

�0.762

30 �0.784

�0.787

�0.778

�0.783

31 �0.774

�0.779

�0.763

�0.772

32 �0.794

�0.786

�0.781

�0.787

33 �0.798

�0.806

�0.787

�0.797

34 �0.815

�0.809

�0.815

�0.813

35 �0.816

�0.816

�0.810

�0.814

(continued)
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best possible heat dissipation aimed to maintain the highest braking efficiency

possible. Despite the design, friction always causes heat. Three heavy brake tests

in fast succession will have an effect on the heat generated within the brakes and

subsequently may be the cause for the reduction in friction coefficient of the car

tires and road surfaces observed in sequential tests, therefore explaining the

decrease in results.

With the results providing evidence of such a strong positive linear relationship

between temperature and friction coefficient, the author believes that friction pre-

dictions for a range of ambient temperatures are possible using the carefully

developed Hartman prediction model.

Based on a total braking distance of 30.0 m, it is possible to determine the effect

of using a friction coefficient obtained at 3 �C compared to 43 �C by establishing the

velocity of a vehicle at the commencement of braking.

1. Velocity of vehicle established using friction coefficient obtained at 3�C based

on 30 m braking:

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 � 2� 9:81��0:635� 30:0ð Þ

q
¼ 69:58 km=h

2. Velocity of vehicle established using friction coefficient obtained at 13�C based

on 30 m braking:

Table 8.7 (continued)

Temperature (�C) Average G (g) Mean G (g)

36 �0.821

�0.828

�0.823

�0.824

38 �0.835

�0.829

�0.829

�0.831

39 �0.833

�0.840

�0.823

�0.832

40 �0.834

�0.835

�0.824

�0.831

41 �0.847

�0.846

�0.830

�0.841

43 �0.889

�0.860

�0.837

�0.862
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vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 � 2� 9:81��0:693� 30:0ð Þ

q
¼ 72:86 km=h

3. Velocity of vehicle established using friction coefficient obtained at 23�C based

on 30 m braking:

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 � 2� 9:81��0:740� 30:0ð Þ

q
¼ 75:13 km=h

4. Velocity of vehicle established using friction coefficient obtained at 33�C based

on 30 m braking:

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 � 2� 9:81��0:797� 30:0ð Þ

q
¼ 77:97 km=h

5. Velocity of vehicle established using friction coefficient obtained at 43�C based

on 30 m braking:

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 � 2� 9:81��0:862� 30:0ð Þ

q
¼ 71:07 km=h

When a collision reconstructionist is performing a collision analysis and velocity

reconstruction, it is generally for a collision which has already occurred. Any type

of test being used to determine the friction coefficient of the motor vehicle tires and

paired road surface relative to the collision cannot be performed in identical

conditions to what occurred at the time of the collision. If there is a substantial

difference in the temperature at the time of the collision compared to the time of

testing the temperature, then the difference must be considered and necessary

adjustments made to the friction coefficient being used for speed determination.

As ambient temperature increases, the relative friction coefficient increases.

A difference in ambient temperature between the time of a collision and the time

of friction coefficient analysis of 10 �C will result in a velocity analysis, which is up

to 3 km/h out. If it is warmer at the time of testing compared to the time of the

collision, then the analysis will give a velocity estimation which is higher than the

true velocity. If it is cooler at the time of testing compared to the time of the

collision, then the velocity analysis will be too low. This is based on a vehicle

analysis at around 70 km/h. As the velocity being analysed increases, then the

margin of error will also increase. A temperature difference of 20 �C will result in a

margin of error of around 5 km/h for a 70 km/h collision, and a 40 �C temperature

difference from the time of the collision to the time of testing will result in a

velocity analysis, which is up to 10 km/h incorrect. A collision analysis for a vehicle

travelling around 120 km/h would be up to 17 km/h out if there was a temperature

difference of up to 40 �C between the collision and subsequent testing.
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In many instances collision reconstruction is being performed to provide critical

evidence of the velocity of a vehicle prior to a collision. This evidence may be

crucial for successful prosecution against drivers who are guilty of criminal

offences, which have resulted in the death or serious injury of other road users. It

is not acceptable for a collision reconstructionist to determine a vehicle travelling

velocity which is either higher than the true velocity or lower. If friction tests are

performed in significantly different temperatures from the temperature when the

collision occurred, it is possible that the velocity determination could be out by

more than 10 km/h. If it was cooler at the time of the collision compared to the tests,

then the velocity analysis will be too high. If it was warmer at the time of the

collision compared to the test time, then the velocity analysis will be too low. It is

not possible to perform the tests in the same conditions as the collision conditions. It

is however possible to determine the temperature at the time of the collision using

recorded weather data. If ambient temperature at the time of the collision can be

determined, then the Hartman prediction model can be used to determine the

friction coefficient of the road surface and car tires relevant to the collision, using

a friction coefficient result obtained at another time.

Hartman prediction model:

μp ¼ μt � 0:007μtΔtð Þ

where μp is the predicted friction coefficient; μt measured friction coefficient,

constant based on regression; and Δt difference in ambient temperature between

the collision under analysis and the friction coefficient test.

Friction coefficient can be predicted for a range of temperatures using the

Hartman prediction model.

6. Determining the friction coefficient at 3�C using a friction coefficient value

obtained at 43�C:

μp ¼ �0:862� 0:007��0:862� 43� 3ð Þ½ � ¼ �0:618 g

7. Vehicle velocity at 3�C determined using the adjusted friction coefficient based

on braking distance of 30.0 m:

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 � 2� 9:81��0:618� 30:0ð Þ

q
¼ 68:66 km=h

8. Vehicle velocity at 3�C determined using the friction coefficient obtained at 3 �C
based on braking distance of 30.0 m:

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 � 2� 9:81��0:635� 30:0ð Þ

q
¼ 69:59 km=h
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9. Vehicle velocity at 3 �C determined using the friction coefficient obtained at

43 �C based on braking distance of 30.0 m:

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 � 2� 9:81��0:862� 30:0ð Þ

q
¼ 71:07 km=h

Using the friction coefficient obtained at 3 �C, the velocity of a vehicle which

leaves 30.0 metres of skids when the ambient temperature is 3 �C can be determined

to be about 69.59 km/h at the commencement of skidding. If the same skid marks of

30.0 metres, which were left in ambient temperature of 3 �C, were being assessed to
determine velocity at the commencement of skid marks and the friction coefficient

was determined using tests at 43 �C, then the velocity of the vehicle at the

commencement of the marks would be calculated at 81.07 km/h. That is more

than 10 km/h higher than the velocity of what the vehicle really would be.

Using the prediction model to determine the likely friction coefficient at 3 �C
based on tests conducted at 43 �C, then the velocity at the commencement of

skidding would be determined to be about 68.66 km/h. This is less than 1 km/h

less than the true velocity of the vehicle.

For a collision reconstructionist, when determining vehicle velocity which is

intended to prove or disprove the commission of a criminal offence, it is critical that

the calculated velocity is not greater than the true velocity. Using the prediction

model to determine the ambient temperature effect of friction coefficient will assist

in ensuring that incorrectly high velocity determinations are not made.

8.4.6 Validation

The Hartman prediction model was used to determine the expected friction coef-

ficient for a range of ambient temperatures. The greatest error was observed where

there was a temperature difference of 37 �C when the observed error was �0.056 g.

This margin of error falls well within acceptable levels of difference across a range

of friction coefficient values for one variable. That is, if three results were recorded

at one temperature, those three results would generally be considered accurate and

reliable if they fell within a range of �0.06 g. This is an accepted difference

between three tests where identical results are unlikely and not expected. When

using the friction coefficient values to determine vehicle velocity, a difference of

0.056 g would affect the calculated velocity by less than 1 km/h. However, this

difference was an underestimate, and therefore, the calculated velocity would be

less than the true velocity by less than 1 km/h. For 6 of the 30 temperatures

analysed, the predicted friction coefficient was identical to the measured friction

coefficient; there was no margin of error. For 13 out of 37 tests, the prediction

friction coefficient was higher than the measurement friction coefficient. The most

significant difference was observed at 31 �C where the prediction friction coeffi-

cient was 0.013 higher than the actual measured friction coefficient (Table 8.8).
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Table 8.8 Measured friction coefficient and predicted friction coefficient using the Hartman

prediction model at a range of ambient temperatures between 3 and 43 �C

Ambient

temperature

(�C)

Friction

coefficient test

result (g)

Predicted friction coefficient using Hartman

prediction model μp¼ μt� (0.0071 � μtΔt)
Calculated

error

3 �0.635 �0.618 �0.017

4 �0.662 �0.624 �0.038

5 �0.665 �0.630 �0.035

6 �0.669 �0.636 �0.056

7 �0.675 �0.642 �0.033

9 �0.672 �0.654 �0.018

10 �0.682 �0.660 �0.020

11 �0.682 �0.667 �0.015

12 �0.693 �0.673 �0.020

13 �0.696 �0.679 �0.017

15 �0.699 �0.691 �0.008

16 �0.706 �0.697 �0.009

17 �0.703 �0.703 0.000

18 �0.702 �0.709 +0.007

19 �0.708 �0.715 +0.007

20 �0.721 �0.721 0.000

21 �0.714 �0.727 +0.013

22 �0.731 �0.734 +0.003

23 �0.740 �0.740 0.000

24 �0.731 �0.746 +0.015

25 �0.754 �0.752 �0.002

26 �0.783 �0.758 �0.025

27 �0.784 �0.764 �0.020

28 �0.777 �0.771 0.000

29 �0.762 �0.777 +0.015

30 �0.783 �0.783 0.000

31 �0.772 �0.789 +0.017

32 �0.787 �0.795 +0.008

33 �0.797 �0.801 +0.004

34 �0.813 �0.807 �0.006

35 �0.814 �0.813 �0.001

36 �0.824 �0.819 �0.005

38 �0.831 �0.832 +0.001

39 �0.832 �0.838 +0.006

40 �0.831 �0.844 +0.013

41 �0.841 �0.850 +0.009

43 �0.862 �0.862 0.000
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This difference is well within an expected range. A difference of 0.013 could

overestimate the velocity by 0.6 km/h. Since it is best practice for collision

reconstruction experts to round all calculations down, it is unlikely that this

would have any effect on the overall result and subsequent collision analysis.

Without the prediction formula, the calculation could be overestimated by more

than 10 km/h if the ambient temperature is not taken into account when measuring

the friction coefficient (Fig. 8.12).

The prediction model provides an ability to predict road/tire friction coefficient

efficiently and reliably. The comparison graph highlights the strength of the for-

mula and its application. The measured friction coefficient for any specific location

and circumstance will vary slightly with identical results repeated rarely and almost

never. The difference seen between the measured friction and predicted friction is

within acceptable difference for two measured tests at all temperatures. That is, the

difference between the measured and predicted friction coefficient is never more

than 10%, which is the accepted difference. In this model the greatest difference

between the measured friction and the predicted friction is less than 5% highlight-

ing the strength of the reliability of this model and its application to friction

coefficient prediction (Fig. 8.13).

Fig. 8.12 Comparison of measured friction coefficient against predicted friction coefficient using

Hartman prediction model
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Vehicle velocity can be determined when a visible braking tire skid is evident.

This is very common in motor vehicle collisions both pre-impact and postimpact.

Whilst the method is regularly used to determine the pre-impact velocity of a

vehicle, the travelling velocity of the vehicle will actually be higher due to the

percentage of slowing which occurs between the initial application of braking and

the subsequent onset of skidding once the wheels become locked. What is really

being calculated is the velocity of the vehicle at the commencement of skidding.

For a collision reconstructionist, the calculated velocity will be less than the

travelling velocity, and therefore, it is a reliable method to be used to determine

vehicle velocity even in criminal prosecution.

Vehicle speed can be determined using the velocity from skid formula:

Speed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
254� d � f

p

where 254 is a constant, d is distance in metres and f is friction (g).

Figure 8.13 depicts the vehicle speed which can be determined for a 30.0-metre

skid using the measured friction coefficient at each temperature range, the predicted

friction coefficient using the Hartman prediction model for temperatures between

3 and 43 �C and the single friction coefficient measured at 43 �C. The effect of using

Fig. 8.13 Calculated velocity using measured, predicted and single-value friction coefficient
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the single measured friction coefficient, irrespective of the difference between the

temperatures at the time the skid was left and the time the subsequent test was

performed, will vary depending on the difference between the two temperatures.

The greater the difference between temperatures, the greater the inaccuracy in the

velocity that is calculated. Figure 8.13 shows the effect of using a single measured

friction coefficient for temperature differences up to 40 �C. If the temperature

difference between the test and the analysed collision/skid is 40 �C, then the

calculated velocity could be incorrect by over 11.4 km/h. If the test to determine

the friction coefficient is performed in conditions, which are cooler than they were

when the skid was left, then the calculated velocity will be an underestimate by up

to 11.4 km/h. If the friction coefficient test is conducted in conditions which are

warmer than they were when the skids were left, then the calculated velocity will be

an overestimate by 11.4 km/h.

When using the Hartman prediction model to predict the friction coefficient at

the time of a collision using a friction coefficient that was obtained at another time,

the use of the velocity from skid formula to determine vehicle velocity is enhanced

significantly. When using the prediction model to determine the likely friction, the

calculated vehicle velocity was within 2 km/h at all temperatures.

Using the prediction model, the prediction friction coefficient was identical to

the measured friction coefficient on 6 of 37 tests. The prediction model

overestimated the friction coefficient in 13 of the 37 samples. Where the friction

coefficient was overestimated, the subsequent vehicle velocity calculation was also

overestimated. However, the overestimation was never more than 0.66 km/h.

Where the friction coefficient was underestimated, the result was an underestimate

of velocity by up to 2 km/h. When compared to the use of a single measured friction

coefficient for all temperature conditions, the prediction model provides an accurate

and very reliable method to determine the friction coefficient of the road surface

and the car tires relevant to ambient temperature.

The use of the prediction model to determine friction coefficient is critical where

the difference between the ambient temperatures at the time of testing is signifi-

cantly different from the time which is being analysed. Where the difference in

ambient temperature is within 5 �C, the difference in velocity calculation would be
less than 2 km/h. If the ambient temperature at the time of testing is less than it was

at the time of the collision/skidding, then the calculated velocity will be below the

actual velocity, and therefore, the use of the prediction model is not so important.

Where the ambient temperature is higher at the time of testing, then the prediction

model should be used to ensure that any subsequent velocity calculation is not

higher than the actual velocity. If the ambient temperature is different by more than

10 �C whether higher or lower, then the Hartman prediction model should be used

to provide a more accurate and reliable friction coefficient and subsequent velocity

determination.
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8.4.7 Future Research

The research performed aspired to provide an analysis of the effect of ambient

temperature on the friction coefficient of motor vehicle tires and paired road

surfaces for an extensive range of temperatures prevalent in Australia and relevant

to Australian conditions.

Based on the determination that the friction coefficient of car tires and road

surfaces is affected by ambient temperature, the effects at below 0 �C temperatures

would be relevant. Friction coefficient research relevant to car tires and road

surfaces has predominantly been conducted in the United States and parts of

Europe. Both regions are able to provide ideal conditions to perform such testing

which most certainly would be relevant.

Further analysis could also be considered in relation to the observation of the

decreasing friction coefficient observed between each series of tests. Based on this

research, we know that as ambient temperature increases, the friction coefficient

increases. However, in 30 of the 37 series of tests, the friction coefficient decreased

from test one to test three. Ideally analysis could be performed to determine

whether the reduction in friction coefficient is due to the heating of the rubber

between tests or alternatively heating of braking components of the vehicle.

8.5 Effect of Rainfall on Friction

8.5.1 Introduction

Simplistic understanding of the friction phenomenon suggests that lubricants

including water will lower the friction and reduce the wear between two sliding

solid bodies. When considering roads, there is an expectation that most surfaces

will be covered with a layer of oil deposited by both moving and stationary

vehicles. The oil will act as a lubricant and lower the friction coefficient of car

tires and road surfaces in both wet and dry conditions. But when combined with

water in rainfall-type situations, the expectation is that the friction coefficient will

be reduced significantly.

It is believed that the single most important factor effecting road-tire friction is

the presence of water in various forms. Previous research suggests that it is the

depth of the water that is crucial in determining the extent of the effect that the

water has on the friction coefficient between car tires and road surfaces. There is

clear distinction between the effects of thin water layers in comparison to thick

water layers. During rainfall the depth of water rarely exceeds 2 mm and is typically

1 mm or less.

Dissipation of the water is facilitated by both the road and tire design. Until

recent years, there has been an accepted belief that water as a lubricant reduces the

friction coefficient of car tires and road surfaces. In 2001, Claeys identified that

8 Friction Coefficient of Pneumatic Tires and Bitumen Roads 255



specific to road-tire friction, the depth of the water layer is critical. Thin water

layers most certainly reduce the friction coefficient by causing a complete loss in

contact between the two surfaces. However, as the layer of water becomes thick,

extra force is generated forward of the tire due to an accumulation of water. This

increases the forces acting against the tire and subsequently increases the friction

coefficient. This will occur until either the vehicle slows enough that the rate of

dissipation increases or hydroplaning occurs. If hydroplaning does not occur, then

the friction coefficient will increase as water depth increases.

It has been an expectation and a practice for a collision reconstructionist to

reduce the measured friction coefficient obtained in dry conditions by �0.1 to

�0.2 g if the collision being assessed had occurred in wet or raining conditions.

The heavier the rain was reported to be, the greater the reduction in friction

coefficient when adjusting dry result values. In 2013, since this research was

conducted, a paper was published in SAE International. The paper titled Friction,
Tread Depth and Water:

Laboratory Investigations of Passenger Car Tire Cornering Performance under
Minimally – Wet Conditions (Blythe, Seguin) considered the effects of water depth
on the friction coefficient of car tires and road surfaces.

The research was performed in laboratory conditions using three-dimensional

dynamic vehicle simulations. The work concentrated on tread depth primarily but

in addition did consider water depth. The work reported that at 64 km/h, with water

depths greater than 1.27 mm, the friction coefficient of the car tire on the road

surface was similar to dry friction results.

This research supports the work of Blythe and Seguin and relates the laboratory

tire test results to real-world highway conditions as recommended in their paper

published in 2013. The paper does suggest that as vehicle velocity increases, the

friction coefficient will decrease even in deep water conditions. The effects of

velocity in rainfall testing were not covered in this work.

The objectives of this study were to identify how rainfall affects the friction

coefficient of motor vehicle tires and paired road surfaces without ABS. Simplistic

approaches suggest that water, as a lubricant, will result in a reduction in friction

coefficient. However, to the surprise of many, more recent and specific work

suggests that in heavy rainfall, when water depths are greater than 1 mm above

the level of asperities of the road surface, the friction coefficient may increase. The

results of this study will increase the accuracy of vehicle velocity estimates in

collision reconstruction for vehicles in raining and wet conditions. Will friction

coefficient increase, decrease or remain the same in heavy rainfall conditions?

This research will provide collision investigators and reconstruction experts world-

wide a better understanding of the effects of rainfall and water on the friction

coefficient of car tires and road surfaces specifically when a collision occurred in a

period of heavy rainfall or post-rainfall.
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8.5.2 Experimental Conditions

The experimental testing phase was performed on 12 August 2012. The entire test

phase involved three series of tests with each series comprising a total of 20 tests.

The three series of tests included pre-rainfall (dry), rainfall (rain) and post-rainfall

(wet) tests. The ambient temperature was 13 �C with diminutive variation only. The

entire testing phase was complete within 3 h between 9:40 am and 12:40 pm. The

dry phase was completed first and was performed in an area with no rainfall

recorded in the preceding 3 days. The rain phase was completed next using artificial

rainfall. The wet phase was completed last on the area previously used for dry and

rain testing. There was no notable wind recorded, and conditions were essentially

mild to cool. Spatial cloud cover was evident.

8.5.2.1 Location

The test phase was performed at the Country Fire Authority (CFA) Training

College, 4549 Geelong-Ballan Road, Fiskville, Victoria, Australia (37.683812�S
144.218707�E). This is a private training college for members of the CFA. The

CFA is predominantly a volunteer fire and emergency service that has legislative

responsibility for fire and emergencies in regional Victoria. The CFA, Fiskville, is

used for general training including driver training. The road is privately owned and

has not been resurfaced since 2001. The bitumen aggregate is in good condition

with no obvious faults or defects. The area of testing is utilised as a thoroughfare

with low-volume, low-speed traffic. The road runs in a general north-south direc-

tion with all tests performed whilst travelling in a northerly direction (Fig. 8.14).

Fig. 8.14 CFA Training College, Fiskville
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8.5.2.2 Test Vehicle

Tests were conducted in an Australian-built General Motors Holden (GMH) Com-

modore Omega four-door sedan. One vehicle was used for the three series of tests.

The vehicle was built in 2010 and first registered in 2011. The 3.0 l V6 spark

ignition direct injection vehicle was fitted with a six-speed automatic transmission.

Ventilated disc brakes were fitted to both the front and rear. In the rear wheel drive,

the vehicle had antilock braking system (ABS) fitted as standard. The ABS was

disengaged for all tests. No performance modifications had been made to the

vehicle with all braking, steering and suspension components fitted by the manu-

facturer as standard. The vehicle’s tested mass with two occupants was 1762 kg.

The vehicle had travelled 12,755 km at the time of tests. The vehicle type used in

this study is depicted in Fig. 8.15.

8.5.2.3 Tires

At the time of testing, the vehicle was fitted with four Bridgestone Turanza ER3HZ

tires, which were fitted to the vehicle at new. The 225/60 R16 tubeless steel-belted

radial tires were considered to be a mid-range touring model by the manufacturer.

The minimum tire tread depth on any tire was 6 mm, and all tires were inflated to

34 PSI (2.3 � 105 Pa) prior to the commencement of testing. The tires had been

used for both country and city driving, and no damage had been recorded or repairs

carried out on any tire prior to the tests. Visual inspection showed no evidence of

uneven wearing of the tires. The tires were all aged equally. The tires had travelled

12,755 km from new at the time of testing.

Fig. 8.15 Holden Omega sedan used for dry, raining and wet friction testing (not actual vehicle)
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8.5.2.4 Brake Test Computer

All tests within this primary research testing phase were performed using a VC4000

Vericom brake test system. The device has three major components, a crystal clock,

an accelerometer and a microcontroller which measures the instantaneous G-force

100 times per second and can measure the difference between ABS and standard

brakes. The VC4000 is activated at a 0.2 g threshold upon initiation of the brake

pedal load cell. The device is attached to the windscreen of the test vehicle and is

considered one of the most modern and reliable test devices to determine G-force.

The G-force is measured within 0.001 g providing accuracy of 1%. Distance is

recorded at an accuracy of 1% over 400 m, and velocity is accurate within 1% up to

100 km/h. Therefore, the G-force will not change unless the velocity changes. The

brake test computer was calibrated prior to each series of tests.

8.5.2.5 Test Velocity

The series of skid tests were all performed at as close to 60 km/h as possible. When

the ABS fuse has been removed from the vehicle to disable the ABS, the cruise

control function and speedometer display do not work. Once the Vericom brake test

computer is activated, no application of braking can be made prior to the test

braking application, or the Vericom will activate early and provide a false result.

It is necessary for the driver to accelerate whilst estimating the vehicle speed and

then activate braking as near as possible to 60 km/h. Due to the process for human

velocity estimation and brake application timing, no tests were conducted where

braking was applied at 60.0 km/h precisely. The velocity ranges at which braking

was activated were 54 and 64 km/h.

8.5.3 Methodology

The testing phase to examine the effect of rainfall and wet roads on the friction

coefficient of car tires and road surfaces was performed in one single session. All

tests were performed at the same location in essentially the same conditions over a

3 h period. The first series of tests were performed on a dry road (Fig. 8.16). Twenty

tests were performed over a 1 h period with approximately 3 min between tests to

allow cooling of the vehicle braking system. All tests were performed whilst

travelling north. The ABS was disabled.

The rainfall testing series was performed following the dry testing. Twenty tests

were performed whilst travelling north in the same location as the dry testing.

Rainfall was artificially replicated using the high-pressure hoses and recycled water

from two firefighting Scania pumpers from either side of the roadway. Each pumper

was capable of pumping 4000 litres of water per minute. The hoses pumped water
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continuously for the entire testing period (Figs. 8.17, 8.18, 8.19, 8.20 and 8.21). The

testing period was performed over a 1 h period with approximately one test every

3 min providing a stationary period of at least 2 min to facilitate cooling of the

braking system. The pumping of water replicated periods of very heavy rainfall. A

thick layer of water was evident on the travelling path of the vehicle and in the

braking location.

Fig. 8.16 CFA Training Facility, Fiskville, looking north on testing field

Fig. 8.17 Fire hose pumping water to simulate heavy rainfall conditions
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The third and final series of tests were performed in the same location following

straight after the simulated rainfall testing. The hoses were turned off, and 20 con-

secutive tests were performed in the same location as the dry and rainfall testing.

The series of 20 tests were performed over 1 h with the surface being lightly

sprayed at 20 and 40 min to maintain a wet surface similar to what would be

expected immediately following rainfall. There was a rest period of up to 3 min

after each test to allow cooling of the braking components.

Fig. 8.18 Simulated rainfall direction and vehicle during braking

Fig. 8.19 Vehicle during braking throughout simulated rainfall testing
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8.5.4 Result

The average friction coefficient was calculated for 20 tests before, during and after

rainfall. All tests were conducted consecutively for each series in the order of before

(dry), during (rainfall) and after (wet) simulated rainfall. The average friction

coefficient during rainfall over 20 tests was �0.816 g compared to �0.791 g in

dry conditions and �0.709 g on the wet surface after rain. There were no results on

Fig. 8.20 Closer view of vehicle during braking in simulated rainfall testing

Fig. 8.21 Vehicle during skid resistance test on wet surface
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the wet road, which had a higher friction coefficient to any result that was obtained

during the simulated rainfall. That is, the highest friction coefficient recorded on the

wet road was lower than the lowest friction coefficient recorded during rainfall. In

three of the tests conducted in the wet, the results were higher than the three lowest

results obtained in the dry. Eight of the results obtained in the simulated rain

conditions were higher than the highest results obtained in the dry conditions

(Table 8.9; Figs. 8.22, 8.23 and 8.24).

There were five results, which occurred, in the dry conditions, which were lower

than the lowest result obtained in the raining conditions. When comparing the

average of the full 20 results, the average friction coefficient measured in the

raining conditions was 3.1% higher in the raining conditions compared to the dry

conditions and 13.2% higher in the raining conditions compared to the wet condi-

tions. The average friction coefficient in the dry conditions was 10.4% higher than

the wet conditions. In the raining conditions the average g was more than �0.1 g

higher compared to the wet conditions. The average g was �0.025 g more in the

raining conditions compared to the dry.

Table 8.9 Average friction coefficient before, during and after simulated rainfall

Test

no.

Average friction coefficient

rainfall (g)

Average friction

coefficient dry (g)

Average friction

coefficient wet (g)

1 �0.824 �0.788 �0.659

2 �0.834 �0.807 �0.731

3 �0.804 �0.823 �0.759

4 �0.784 �0.775 �0.74

5 �0.778 �0.796 �0.746

6 �0.835 �0.823 �0.679

7 �0.794 �0.773 �0.72

8 �0.844 �0.791 �0.726

9 �0.801 �0.807 �0.672

10 �0.823 �0.807 �0.699

11 �0.824 �0.794 �0.72

12 �0.814 �0.771 �0.751

13 �0.789 �0.799 �0.663

14 �0.827 �0.819 �0.668

15 �0.852 �0.752 �0.666

16 �0.811 �0.78 �0.734

17 �0.791 �0.784 �0.689

18 �0.83 �0.747 �0.72

19 �0.821 �0.806 �0.635

20 �0.810 �0.789 �0.644

8 Friction Coefficient of Pneumatic Tires and Bitumen Roads 263



8.5.5 Discussion

Contrary to significant volumes of research, the friction coefficient of a skidding

vehicle tire on a road surface is not reduced during periods of high rainfall.

Compared to a dry road, the friction coefficient is likely to be around 3% higher

in heavy rain in a vehicle travelling at around 60 km/h. Consistent with previous

research, the friction coefficient decreases significantly when the road is simply wet

and there is no depth to the layer of water on the road. If the layer of water is below

the level of asperity, then the road is regarded as wet.

The author believes the depth of the water is the critical factor in determining the

effect of rainfall on the friction coefficient of car tires and road surfaces. Once the

water in front of the sliding tire becomes so deep that dissipation does not occur at a

rate fast enough to remove a build-up of water in the path ahead of the tire, a wedge

occurs which increases the resistance against the tire as it slides. (See Fig. 8.25.) At

very low water depths, the water between the tire and the road surface reduces the

friction coefficient between the two solid surfaces by acting as a lubricant.
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Fig. 8.22 Friction coefficient before, during and after simulated rainfall
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Once the layer becomes too deep to dissipate, the wedge will occur. Theoreti-

cally, if the friction coefficient is increased due to a wedge forming ahead of the tire

as a result of an inability for the water to dissipate, then road design and tire tread

also play key roles in determining whether the friction coefficient will increase or

decrease in periods of rainfall. The water depth at which the friction coefficient

increases is likely to be affected by these factors. Therefore, it is unlikely that

simply determining a depth at which the friction coefficient will begin to increase

would be possible. That is, a quality tire with good tread depth and good dissipation

properties is likely to be more efficient in keeping the path ahead clear of water, and

without the formation of the wedge, the friction coefficient will decrease in the

same rainfall that another tire may fail to dissipate. As opposed to temperature

where the temperature at the time of a collision can reasonably be estimated, it is

not possible to estimate water depth. Apart from knowing the rate of rainfall, each

road and each tire may vary the effect of the water build-up to some degree. The

macro- and micro-textures of the road in addition to cross fall and gradient will

further affect this. Prediction of friction coefficient of car tires and road surfaces

based on the depth of water simply cannot possibly be used in collision

reconstruction.

Fig. 8.23 Average of friction coefficient results before, during and after simulated rainfall
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If analysing a collision, which has already occurred, quantifying the rainfall at

the time of the collision in the exact location and the exact time is virtually

impossible. Even if the quantity of rain could be determined, then it is basically

impossible to determine what the dissipation properties of the tire and the road

surface were, and therefore, it is very difficult to determine whether the wedge of

water formed forward of the tire and if so what effect that wedge had (Fig. 8.26).

Fig. 8.24 Average of friction coefficient results before, during and after simulated rainfall in

ascending order

Fig. 8.25 Water wedge

opposing direction of

sliding tire
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It should be possible in controlled laboratory testing to determine the effect of a

water wedge and a range of depths for a range of tires and aggregate types and

known velocities. It is unlikely that the findings could ever be used to validate

friction coefficient prediction formulas for use in collision reconstruction based on

the influence of rainfall on a skidding vehicle.

Based on the results of this research, the effect of using the friction coefficient

obtained on a wet surface, for a tire that was locked and sliding on a road surface in

heavy rainfall conditions, it is likely that a collision reconstructionist will underes-

timate the true speed of the vehicle by applying the friction coefficient obtained

during testing on a wet surface.

Without knowing whether a wedge of water formed forward of the tire, it is not

possible to know whether the friction coefficient will be affected by the rainfall, and

therefore, the wet friction must be used. Based on a sliding distance of 30.0 m, the

effect of using a friction coefficient obtained on a wet road to determine the velocity

of vehicle sliding in heavy rain, if in fact the friction coefficient actually increased

due to the wedge, could be up to 5 km/h.

Speed of vehicle sliding for 30.0 m on wet road:

Speed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
254� d � f

p

Speed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
254� 30��0:709

p
¼ 73:5 km=h

Speed of vehicle sliding for 30.0 m in heavy rainfall:

Fig. 8.26 Opposing forces

in dry, wet and raining

conditions
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Speed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
254� 30��0:816

p
¼ 78:8 km=h

If the sliding distance was double at 60.0 m, then the effect of using a friction

coefficient obtained in wet conditions when it would be likely that friction coeffi-

cient was increased due to heavy rainfall could be as much as 8 km/h. In comparison

to the effects of temperature, the effect is small, and whilst using the friction

coefficient, which has been obtained on a wet road, a collision reconstructionist

can be sure that the velocity, which is being analysed, is not an overestimate. That

is, any calculated velocity would not be higher than the true speed that the vehicle

was travelling. When a vehicle velocity is being presented in a court of law to prove

or disprove the commission of a criminal offence, the most important consideration

is that any vehicle velocity estimate is not higher than the true velocity. Although

using a friction coefficient obtained on a wet surface to calculate the velocity of a

vehicle sliding in a period of heavy rain is likely to result in an underestimate of

speed, the margin of error is likely to be less than 7%. Given that it is impossible to

determine the exact friction coefficient relative to any raining period with confi-

dence, it is advisable to use wet friction rather than dry friction to ensure there is no

possibility of providing an overestimate.

It is evident that the depth of any lubricant layer is the most relevant factor in

determining whether the friction coefficient between car tires and road surfaces

may actually be higher in periods of rainfall compared to dry friction. In periods of

heavy rain, the friction coefficient between car tires and road surfaces is likely to

increase. These results are surface specific to pneumatic tires and bitumen road

surfaces, and without further research with other surfaces specifically, these results

cannot be attributed to give similar results for other surfaces or objects. The

viscoelastic properties of rubber make this substance unique, and any behaviours

observed cannot reasonably be connected to other substances without further

research.

Furthermore, when considering wet friction relative to car tires and road sur-

faces, consideration must be given to the fact that both tires and road surfaces are

designed to dissipate water. The results observed in this research are surface

specific.

In heavy rain the friction coefficient between car tires and road surfaces

increased when the vehicle was travelling at about 60 km/h at the commencement

of sliding. The phenomenon of hydroplaning is more likely to occur as speed

increases, tire tread depth decreases and water depth increases. Hydroplaning is

defined as friction coefficients at or below approximately �0.10 g, and essentially

the surface of the tire loses complete contact with the surface of the road due to the

layer of water between the two. Essentially the wedge of water, which has failed to

dissipate and increases the force against the tire, provides a ramp upon which the

tire can ride before continuing on top of the water (Fig. 8.27).

Wheel lock-up typically occurs as a result of severe braking. During wheel lock-

up, a driver may lose steering control, and the friction coefficient is greatly reduced.

A moving vehicle usually has a vehicle velocity which is equal to wheel velocity.
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The speed of a vehicle can be calculated by measuring the speed of the wheel

rotating and multiplying it by the nominal wheel radius. When a wheel becomes

locked and slips, the vehicle velocity and wheel velocity will no longer be equal.

Slip is a term commonly used to indicate the difference between wheel velocity and

vehicle velocity:

Slip ¼ v� ωR

v

where v is vehicle velocity, ω is wheel velocity and R is radius of wheel and tire.

When a wheel is not locked or under braking, then slip ¼ 0. In the incidence of

severe braking likely to result in lock-up, ω ¼ 0 whilst slip ¼ 1. There will be an

optimum slip value between 0 and 1. That is a value where the friction coefficient is

at maximum. Maximum or peak friction coefficient during braking is typically

recorded immediately prior to lock-up.

It is likely that when a vehicle is sliding in deep water, peak friction is likely to

be observed immediately prior to hydroplaning. Whilst assuming a friction coeffi-

cient of �0.1 or less when a vehicle is hydroplaning, it is likely that deceleration

will have occurred prior to hydroplaning.

The friction theories of Amontons, Coulomb, Bowden and Tabor have domi-

nated all others for many decades. However, the large variations in experimental

values suggest that adhesion theory does not fully account for the phenomenon. In

1981 Suh suggested that there are three mechanisms involved in friction, namely,

adhesion, asperity deformation and ploughing. According to Suh, frictional force is

largely dependent upon ploughing of surface asperities.

Ploughing friction may be relevant to a soft wheel or tire which can be easily

deformed or alternatively when the ground upon which it is sliding is relatively soft.

When a wheel sinks into the soft material and pushes or ploughs its way through,

this becomes the major source of friction. Ploughing is the likely explanation for the

increase in friction coefficient when a vehicle slides across a road in heavy rainfall.

This further supports the theory that the maximum of peak friction will occur

immediately prior to hydroplaning. Whilst ploughing force can be calculated, it is

necessary to know the depth of the soft surface, which is simply not possible when

analysing a collision, which has already occurred.

When a tire slides on a road surface in heavy rain, the friction coefficient will be

higher compared to a dry or wet surface. It is not possible to quantify the effect

without determining the depth of the water, the tread depth of the tire and the road

surface composition. When analysing a motor vehicle collision, which has occurred

in periods of heavy rain, it is recommended that a ‘wet’ friction coefficient test is

Fig. 8.27 Water wedge

providing a ramp for tire to

commence hydroplane
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performed to determine the friction coefficient relevant to the collision. However,

this will certainly result in an underestimate of velocity. Although the friction

coefficient in heavy rain may be higher than dry friction, it is possible that

efficiency of dissipation may have been high and any ploughing effect minimal.

The rate of dissipation cannot be quantified. By using a friction coefficient deter-

mined on a ‘wet’ but not raining road, there should be no risk of overestimating the

velocity of a vehicle at the time of a collision. A friction coefficient determined on a

wet road should not be lowered further to account for periods of heavy rainfall.

8.5.6 Future Research

Based on the earlier related laboratory research by Blythe and Seguin, which

studied the effect of water depth on the friction coefficient of car tires and road

surfaces, it would be beneficial to research the effect of vehicle velocity in heavy

rainfall conditions in real-world environments. The work of Blythe would suggest

that despite the friction coefficient being higher in rainfall, ideally knowing the

water depth could also strengthen the validation of these results. However, it is

difficult to determine such measurement in moving vehicles whilst maintaining

conditions expected in periods of high rainfall. The ability to determine the actual

water depth would be advantageous and may be an area of consideration for future

research.

8.6 Conclusion

The study was set out to explore the effects of vehicle velocity, temperature and

rainfall on the friction coefficient of pneumatic tires and bitumen road surfaces and

has identified that all three elements will impact the friction coefficient between the

two surfaces. The study also sought to identify whether friction coefficient of

pneumatic tires and road surfaces could be predicted to account for the effects of

the three variables. The general theoretical literature on the subject area of friction

and how it is affected by velocity, temperature and rainfall, specifically in relation

to pneumatic tires, is inconclusive within the diversification discourse.

8.6.1 Experimental Findings

Vehicle velocity, ambient temperature and rainfall were all determined to affect the

friction coefficient of pneumatic tires and bitumen road surfaces.
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1. Is the friction coefficient of pneumatic tires and bitumen road surfaces affected

by velocity?

The velocity that a vehicle is travelling when it commences to slide on a bitumen

road surface will affect the friction coefficient between the tires and the road

surface. The effect will depend upon whether the vehicle is sliding with or without

ABS braking. When a vehicle is sliding under the effects of ABS braking, the

friction coefficient will decrease between 30 and 40 km/h and then increase from

40 km/h to where it begins to plateau around 80 km/h. When a vehicle is sliding

without ABS, the friction coefficient will increase if the vehicle is travelling

between 30 and 40 km/h before and then commence to decrease until around

80 km/h where it begins to plateau.

2. Is the friction coefficient of pneumatic tires and bitumen road surfaces affected

by temperature?

The ambient temperature will affect the friction coefficient of pneumatic tires

sliding on bitumen road surfaces. As the ambient temperature increases, the friction

coefficient of the two sliding surfaces will increase. Between 3 and 43 �C, the effect
is positive and linear with a very strong correlation. No plateau was observed

between the experimental temperature ranges.

3. Is the friction coefficient of pneumatic tires and bitumen road surfaces affected

by rainfall?

When a vehicle slides on a wet road, the friction coefficient between the

pneumatic tires and the bitumen road surface will be lower when compared to the

same tires sliding on the same road surface when dry. However, when the same

vehicle slides during a period of rainfall, the friction coefficient of the tires sliding

on the road surfaces will be higher compared to both the wet and dry road surfaces.

The extent of the effect will be affected by the depth of the water layer forward of

the sliding tire.

The volume of rainfall and the ability of both the tires and the road surface to

dissipate the water will affect the depth of the water. The greater the depth of the

water layers, the higher the friction coefficient between the tire and the road surface.

4. Can friction coefficient of pneumatic tires and bitumen road surfaces be

predicted to account for any effect due to velocity, temperature or rainfall?

The friction coefficient of pneumatic tires and bitumen road surfaces can be

predicted using the Mehegan prediction model to account for the effects of vehicle

velocity. When the friction coefficient of a sliding tire on a road surface is

determined using a vehicle which is travelling at a speed higher or lower than the

speed of a vehicle being analysed, then the Mehegan prediction model can be used

to predict the friction coefficient relevant to the vehicle being analysed using the

friction coefficient determined at a different velocity. This allows skid resistance

tests to be conducted and safe speeds even when analysing the travelling velocity of

vehicles involved in collisions or incidents and much higher speeds.
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The friction coefficient of pneumatic tires and bitumen road surfaces can also be

predicted using the Hartman prediction model to account for the effects of ambient

temperature. When there is a change in temperature between the time of a collision

and the time of subsequent skid resistance temperature, then it is likely that there

will be a change in ambient velocity.

The Hartman prediction model can be used to predict the friction coefficient of

pneumatic tires sliding on bitumen road surfaces for any ambient temperatures

higher or lower. Using experimental testing of actual cars sliding on road surfaces,

it is not possible to quantify the depth of water forward of the sliding tire.

Therefore it is not possible to develop a model to facilitate the prediction of

friction coefficient based on water depth. Whilst the experimental results identify

that the greater the depth of water layer the higher the friction coefficient between

the two sliding surfaces, it is not possible to quantify the effect.

8.6.2 Theoretical Implication

The theoretical cases for modification need to be reconsidered to further appreciate

and recognise the effect of vehicle velocity, ambient temperature and rainfall on the

friction coefficient of pneumatic tires and road surfaces.

The laws of friction are not relevant to the friction coefficient of pneumatic tires

and bitumen road surfaces. The experimental result of a sliding tire without ABS is

generally consistent with the suggestions of Takadoum (2010) in that the friction

coefficient decreases with increasing speed. The velocity thresholds contradict the

work of Heinrichs et al. (2004b). Whilst the pattern is consistent with most work

presented since 2000, there is a need for further examination of minimum and

maximum thresholds.

The framework suggests strongly that friction coefficient of pneumatic tires and

bitumen road surfaces will decrease with increasing velocity. The Williams-

Landel-Ferry theory already suggested that the friction coefficient of rubber and

bitumen surfaces is affected by temperature which is supported by the experimental

data. As recent as 2007, Takadoum indicated that as temperature increased, the

friction coefficient of the two surfaces would increase only if the surface reaches

maximum softening at which point the surface friction coefficient will begin to

decrease. The research considered ambient temperatures up to 43 �C, and no

decrease in friction was observed. It is noted from the study that in Australian

conditions, there is no evidence to support the likelihood that there will be ambient

temperatures observed which would result in maximum softening resulting in a

decrease in friction coefficient. Whilst conditions above 43 �C do occur, it is not a

common phenomenon over a sustained period of time and occurs seldom. There is

no evidence to suggest when maximum softening will occur for pneumatic tires and

bitumen road surfaces. There was evidence that skid resistance tests performed in

quick succession will result in a reduction in friction coefficient. This is likely the
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result of heating of the vehicle braking components as opposed to a reduction of

friction coefficient between the tire and the road surface.

The experimental findings relating to rainfall are significant when considered in

conduction with the laboratory research of Blythe (2013). The outline of the work

of Blythe is that as water depth in the path of a sliding tire on a road surface the

friction coefficient will increase. The empirical findings of Blythe are essentially

the same as this study, and the research was performed over a similar time period,

each without the knowledge of the other. The work of Blythe was performed in

controlled laboratory circumstances and yielded the same findings as this study in

real-world testing. Both these two studies highlight the necessity for the realisation

that the simple presence of a lubricant is not sufficient to confirm a reduction in

friction coefficient. This work supports significant early research that dry friction is

higher than wet friction where there is no substantial depth to the lubricant layer.

8.6.3 Implication of Prediction Model

The use of the Mehegan prediction model to predict the friction coefficient is a valid

method for prediction friction between pneumatic tires and bitumen road surface.

This model was developed surface specific. It is reliable for predicting friction for

any vehicle velocity using a known vehicle velocity between 40 and 80 km/h.

Whilst the method is both valid and reliable, the effect when the friction coefficient

is being determined for use in vehicle speed reconstruction is very minor and not

necessary when the speed being analysed is higher than the speed at which the test

skid was performed. Any speed determination is likely to result in a further

underestimation of the true speed of the vehicle. This is due to any speed calculation

being based upon physical evidence of tire marks which will already result in a

speed underestimation.

The use of the Hartman prediction model to predict friction coefficient is both a

valid and important model to be considered when contemplating the friction

coefficient of pneumatic tires and bitumen road surfaces at a range of ambient

temperatures. The effect of temperature on the friction coefficient of pneumatic

tires and bitumen road surfaces is significant.

Where a vehicle speed is being analysed using a friction coefficient determined

in different temperature conditions, the Hartman prediction model should be used to

predict the actual friction relevant to the conditions which were occurring at the

time which is being analysed. All collision reconstructionists should consider the

use of the Hartman prediction model in any speed analysis. The model is validated

for ambient temperatures between 3 and 43 �C.
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8.6.4 Recommendation for Future Research

The scale of debate relating to this research and findings is complicated and

multifaceted. To further validate the findings of this research and achieve solid

understanding of the effects of velocity, temperature and rainfall, more case studies

and research need to be performed specifically relating to pneumatic tires and

bitumen road surfaces in controlled laboratory conditions.

The effect of ambient temperature was examined extensively but did not extend

to temperatures below zero. Whilst it would be expected that friction coefficient

will continue to decrease as the ambient temperature continues to decrease, it is not

possible to validate the use of the Hartman prediction model without such research.

Development of a prediction model to account for the effects of rainfall would

require an ability to measure rainfall and quantify water depth. There are a

multitude of parameters, and it would be difficult to perform in real-world testing.

Whilst laboratory testing should be able to identify the minimum and maximum

thresholds in relation to water depth, it is likely to be difficult to attribute this

relationship to rainfall due to the inability to quantify the exact rainfall conditions

that were occurring at the time of a collision.

8.6.5 Deduction

In spite of what is often reported in relation to the phenomenon of friction, it is

possible to predict friction. The friction coefficient of two surfaces is specific to the

two surfaces in contact, and conclusions cannot be drawn from the results of two

sliding surfaces and attributed to two different sliding surfaces. The friction coef-

ficient of pneumatic tires and bitumen road surfaces is affected by velocity,

temperature and rainfall. Using a known friction coefficient for a specific tire and

road surface, it is possible to accurately predict the friction coefficient of the same

tire and road surface for a range of velocities and temperatures.

Dedication This chapter is dedicated to all who have lost their lives or been seriously injured in

motor vehicle collisions and their families and friends who live with the physical and emotional

pain of their loss, every day. . .. . .. Jenelle C. Hartman.
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Chapter 9

Solutions for Path Planning Using Spline

Parameterization

M. Elbanhawi, M. Simic, and Reza N. Jazar

9.1 Introduction

Human drivers display remarkable abilities when controlling vehicles in a highly

reactive manner and with impeccable precision. Even more impressive is the

implicit consideration of the vehicle and road parameters. Researchers have

shown that humans use specific visual cues to identify road curvature and endeavor

to match it. Analysis that drew inspiration from the steering commands, used by

operators of varying driving experience, is attempted to generate likewise natural

paths. This approach can be combined with a path planning algorithm to generate

paths with natural smooth trajectories for autonomous vehicles. This will circum-

vent the need to rely on computationally intensive planning algorithms that are

based on forward model integration. Humans have been controlling the steering

wheel for the past century. Currently self-driving is emerging as technology that

promises to improve our lives greatly. Cars are underactuated systems designed to

facilitate their control for operators. This simplification of actuation has adverse

effects when attempting to automate such systems, leading to the appearance of

nonholonomic constraints (Jazar 2008). Researchers have shown that drivers rely

on certain visual landmarks to assess the path curvature prior to attempting to steer

toward it (Land and Lee 1994; Land and Horwood 1995). The majority of studies,

conducted on human steering, focus on modeling and predicating it, using control

system theories (Donges 1978; MacAdam 1981; Prokop 2001). The aim of this

chapter is to employ an efficient spline parameterization method to synthesize paths
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that mimic human steering controls, in order to generate motions that feel natural

and familiar to human passengers. It is not uncommon for robotics researchers to

draw inspiration by observing natural behavior (Donghyun et al. 2014; Lentink

2014). We hope that the results, presented in this chapter, can be employed in

robotics to efficiently plan spline-based paths, similar to Yang et al. (2014), in

addition to mimicking human steering, improving passenger comfort, and explicitly

considering the limitations of the car.

Advances in sensing technology, computer vision, communications, and com-

putational power have contributed toward the development of autonomous agents

in a wide range of fields. Self-driving ground vehicles are used in military, urban

transportation, and industrial and agricultural applications. Unmanned aerial vehi-

cles (UAVs) and micro aerial vehicles (MAVs) are considered as a cost-effective,

safe, and efficient choice for several military and civil applications. Robotic

platforms are currently equipped with multiple sensors, which enable them to

sense their surroundings and localize themselves in reference to their environment,

goals, and obstacles. Path planning is a widely studied, fundamental task for mobile

robots. Robot navigation mandates a strategy that steers it from its current location,

through the environment while avoiding obstacles toward its goal.

Classical planning algorithms, such as A* algorithm (Hart et al. 1968), Voronoi

diagrams (Canny 1985), visibility graphs (Asano et al. 1985), and cell decomposi-

tions (Brooks and Lozano-Perez 1985) produce piecewise linear paths. These paths

consist of subsequent waypoints joined by straight lines. Potential field methods

guide the robot toward its goal by applying attractive forces, toward the goal, and

repulsive, away from obstacles (Khatib 1986). Potential field methods tend to

produce oscillating paths in narrow passages (Koren and Borenstein 1991).

Sampling-based motion planning algorithms, such as rapidly exploring random

trees (RRT) (LaValle 2000) and probabilistic roadmap method (PRM) (Kavraki

et al. 1996), rely on stochastic sampling to efficiently explore the search space.

Resulting paths from randomization are suboptimal and require post-processing to

improve their quality (Elbanhawi and Simic 2014c). Motion planning using state

lattices is disadvantaged by discretization (Pivtoraiko et al. 2009; Pivtoraiko and

Kelly 2011). Coarse discretization leads to loss of completeness, while high-fidelity

subdivision increases the computational time of the planner, especially in highly

dimensional scenarios. Homotopy class optimization of trajectories is proposed

(Zucker et al. 2013). These methods do not discuss curvature continuity, and the

performance is dependent on the optimization algorithm. Optimization methods are

not immune from local minima and are not guaranteed to converge.

Agile robots, such as omnidirectional, differential-drive robots and quadrotors,

are capable of traversing piecewise linear paths. Such paths require stationary turns,

at every waypoint, to change heading toward the subsequent waypoint. This

approach is inefficient with regard to time, energy, and jerk considerations. The

motion of some robots, such as car-like vehicles and fixed-wing UAVs, is highly

constrained. Nonholonomic robots must be considered in the planning procedure,

as they cannot follow piecewise linear paths. Minimum turning radius constraints
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impose further limitations on the path, which is often represented by maximum

curvature restrictions.

Traditionally, Dubins paths or Reed’s and Shepp’s (Xuan-Nam et al. 1994;

Reeds and Shepp 1990) are used in path smoothing for vehicles with minimum

turning radius constraint in a two-dimensional space. Configurations are joined by

sets of primitives consisting of circular arcs and straight lines. The amalgamation of

circular arcs and lines results in discontinuities in curvature. Clothoids may appear

to be suitable for path smoothing, as they are characterized by continuous curvature

(Fraichard and Scheuer 2004). However, clothoid generation is challenging, as they

have no closed-form expression. High-order splines (11th order) and polynomials

(26th order) have been proposed for clothoid approximation (Wang et al. 2001;

Meek and Walton 2004; Walton and Meek 2005; McCrae and Singh 2009; Montes

et al. 2008). Recent work has enabled the real-time approximation of clothoids

under bounded length and orientation limitations (Brezak and Petrovic 2013).

Consequently, they are still not suited for real-time replanning and highly dimen-

sional scenarios.

Curvature discontinuities result in overactuation, slipping, localization errors

(Magid et al. 2006), passenger discomfort (Gulati and Kuipers 2008), mechanical

wear and failure (Berglund et al. 2010; Maekawa et al. 2010), and control instability

(Lau et al. 2009; Roth and Batavia 2002). Subsequently, achieving continuous

curvature is advantageous in applications that involve carrying sensitive cargos

such as human passengers (Gulati and Kuipers 2008) or heavy loads in mining

applications (Berglund et al. 2010; Maekawa et al. 2010) and those which require

precise localization such as agricultural applications to minimize the impact of the

vehicle on crops (McPhee and Aird 2013; Sabelhaus et al. 2013; Alshaer et al.

2013) or energy loss minimization for MAVs with battery-size restrictions (Myung

et al. 2007).

In our earlier work, we proposed an evaluating and bounding B-spline paths

approximate solution. We show that humans control vehicles with continuous

commands and generate paths that obey the vehicles kinematic constraints. We

propose the premise of using a single B-spline curve to generate paths that resemble

human driving and obey the vehicle’s constraints. This is achieved by defining the

curvature of a B-spline segment in terms of the parameters of its corresponding

control polygon, which in this case is assumed to be a linear path generated by a

path planning algorithm.

In this work we improve B-spline-based motion planning by proposing efficient

methods for segment curvature evaluation and analytical bounding. The character-

istics of B-splines are exploited to present two solutions for continuous curvature

bounding, which can be combined together or used separately. The novelty of our

proposal is that it is not limited to a plane or a dimension; it is not subject to

orientation, length, or control polygon restrictions. It guarantees continuity

throughout the path while preserving real-time performance. We also show that it

is possible to plan the trajectory of a robot with nonholonomic constraints and

maintain parametric continuity.
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This chapter is organized as follows: Sect. 9.2 lists the current related research in

path smoothing. The problem is formally described in Sect. 9.3. B-spline curve

synthesis is introduced in Sect. 9.4. We address curvature continuity, segment

curvature formulation, and curvature bounding in 2D in Sect. 9.5. Our findings

are validated and compared with previous work using simulation experiments, as

given in Sect. 9.6. The chapter is concluded in Sect. 9.7.

9.2 Related Work

There are two separate problems addressed in this chapter: firstly, planning a

geometric curve with curvature bounds given in Sect. 9.4 and, secondly,

maintaining parametric continuity of the generated trajectory. The authors could

not ascertain any literature that combined these two problems. There are only

approaches that address each issue separately. The benefits of synthesizing

kinodynamically feasible and continuous paths are well studied in robotics

(McPhee and Aird 2013; Magid et al. 2006; Gulati et al. 2009; Gulati and Kuipers

2008; Maekawa et al. 2010; Lau et al. 2009; Myung et al. 2007; Sabelhaus et al.

2013; Alshaer et al. 2013). However, current solutions given in the literature fail to

guarantee C2 continuity with curvature bounds for nonholonomic mobile robots.

Similarly, in trajectory generation literature, there are multiple solutions to

optimally generate bounded trajectories for given geometric curves with regard to

time (Balkcom and Mason 2002; Wu et al. 2000) and jerk considerations (Guarino

Lo Bianco 2013). Other approaches considered curvature and acceleration bounds

as parameters in optimization problems (Johnson and Hauser 2012; Kunz and

Stilman 2013; Sachin et al. 2014). However these methods, adversely, provided

no discussion on the parametric continuity problem and often led to C1 continuity

only. The approach developed by Velenis and Tsiotras (2008) for vehicles is limited

to velocity continuity and acceleration bounds and ignored acceleration continuity

which will undoubtedly lead to a jerky and uncomfortable ride (Gulati and Kuipers

2008; Guarino Lo Bianco 2013). Control laws proposed for unicycle robots ignored

acceleration and curvature bounds (Lapierre et al. 2007; Sgorbissa and Zaccaria

2010; Morro et al. 2011).

Dubins paths and circular arcs were commonly used for robot planning despite

their curvature discontinuity. Dubins paths were generated under the assumption

that the vehicle maintains constant linear velocity. Multiple circular segments have

been proposed for UAV path smoothing (Anderson et al. 2005). This approach was

limited to planar scenarios and produces discontinuous paths. Bézier curves were

commonly used for path smoothing. The order of Bézier is dependent on the

number of control points, which resulted in limiting them to maintain a low-order

curve (Jolly et al. 2009; Lau et al. 2009; Kwangjin and Sukkarieh 2010). A

comparative navigational-based analysis showed that Bézier curves poorly inter-

polate a linear path as opposed to B-splines, (Elbanhawi et al. 2014). Limiting the
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number of control points of Bézier curves results in the need to join multiple curve

segments. Discontinuities arise at the joint of two Bézier segments.

A condition for Bézier curve geometric, G2, continuity was presented in (Walton

et al. 2003). However, this condition had no closed-form solution. Kwangjin et al.

(Kwangjin and Sukkarieh 2010; Kwangjin et al. 2013) provided a solution for a

particular case of the G2 planar condition. This approach was used for upper-

bounded curvature smoothing algorithms. It is still limited to a plane and, in fact,

incapable of considering different curvature bounds in horizontal and vertical

planes. Fixed-wing UAVs have different turning angle (horizontal plane) and

climbing angle (vertical plane) limitations. Barsky and Derose (1990) proposed

geometric continuity, Gk, as condition for ensuring that curve endpoints had the

same directions, not the values. The work in (Kwangjin and Sukkarieh 2010;

Kwangjin et al. 2013) fails to guarantee velocity and acceleration continuity,

which are more realistic for robotics than geometric continuity. Pan et al. (2012)

have shown that only C2 parametric continuities of acceleration and velocity are

suitable for real robots and provided a shortcutting algorithm that guarantees

continuity in most scenarios but fails to address the maximum curvature constraint.

Recent studies investigated trajectory planning for trailer cars with continuous

velocities (Ghilardelli et al. 2014).

The advantages of B-splines for real-time planning have been shown (Dyllong

and Visioli 2003; Elbanhawi and Simic 2012). A genetic algorithm was employed

to select the location of a fixed number of control points, for a single B-spline curve

(Nikolos et al. 2003). This guaranteed the continuity of the curve. However, having

a constant number of control points reduced the robustness of the generated path.

B-splines were used for generating smooth paths for passenger transporting robots

(Gulati and Kuipers 2008). That approach is limited to a 2D setting and robots with

no curvature bounds. Similarly, a 3D B-spline smoothing algorithm was presented

that did not consider curvature continuity or upper bounds (Koyuncu and Inalhan

2008). Several optimization algorithms are limited to 2D offline B-spline smooth-

ing and curvature bounding (Berglund et al. 2010; Maekawa et al. 2010). A

B-spline shortcutting algorithm was proposed, which used multiple segments;

however, it did not guarantee continuity in all segments and did not consider the

maximum curvature (Pan et al. 2012). In our earlier work, we provided an approx-

imate B-spline-based approach to the presented problem and did not consider

acceleration and velocity bounds (Elbanhawi et al. 2014). Research findings were

implemented, in real time, on experimental vehicle (Elbanhawi and Simic 2014b).

On the other hand, in here we present solution of the problem analytically and

consider kinodynamic constraints.
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9.3 Problem Statement

We consider front wheel-steered vehicles, referred to as car-like robots. It is

common to model the vehicle using the bicycle model, which assumes identical

steering angles on both sides (Jazar 2008), as shown in Fig. 9.1. This model has

been shown to be adequate for modeling the global kinematic motion of front

wheel-steered vehicles (Campion et al. 1996). The advantage of our approach is in

solving two closely related problems simultaneously, which are generally

decoupled in robotic literature. We aim to synthesize a curve that satisfies condi-

tions given by Eqs. (9.1, 9.2, 9.3, and 9.4) and maintain parametric continuity. The

vehicle’s Cartesian coordinates (x, y) and heading angle θ are measured from the

center of the rear axle relative to a global frame. The length between the front and

back wheel is referred to as wheel base,W. The two actuation commands are linear

velocity, v, and steering angleΦ. It is clear that the vehicle is underactuated as it has
two controls and three degrees of freedom, i.e., it is not fully controllable (Ogata

2010). The velocity components in the x and y directions, vx and vy, are constrained
as given in Eq. 9.1. This nonholonomic condition is often referred to as the rolling

without slipping constraint.

vx sin θð Þ � vy cos θð Þ ¼ 0 ð9:1Þ
Consider a planning algorithm that produces a path consisting of, n�1, straight

lines joining successive, n, waypoints, P¼ [P1, P2. . .Pn], where Pi ¼ (Pxi, Pyi, Pzi)

for i¼ [1, 2, ..,n�1, n]. It is required to generate a curve, c(u), which closely follows
straight-line path, where u is the normalized path length parameter. It is an

independent variable in the range of [0,1] for any curve, c(u). Parameter u takes

the value u ¼ 0 at the beginning of the segment and reached the value u ¼ 1 at the

end. The generated curve must satisfy the following imposed constraints.

Path continuity at the endpoints of two curve segments must be addressed; such a

situation is illustrated in Fig. 9.1. For two consecutive curve segments cj(u) and
cj + 1(u), C

k parametric continuity could be then defined as shown in Eq. 9.2,

according to Farin (2002), where k is a positive integer denoting the order of the

parametric continuity.

Fig. 9.1 Joining two path

segments
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∂i
cjþ1 0ð Þ
∂ui

¼ ∂i
cj 1ð Þ
∂ui

,8i ¼ 1, 2, 3::k ð9:2Þ

The curvature of the path must not exceed the maximum curvature, Kmax, at any

point. The curvature, k(u), along a path is defined as Eq. 9.3, where c(u) ¼ [x(u), y
(u)] and the first- and second-order derivatives with respect to u are c’(u) ¼ [x’(u),
y’(u)] and c”(u) ¼ [x”(u), y”(u)].

k uð Þ ¼ x0 uð Þy00 uð Þ � x00 uð Þy0 uð Þ
x0 uð Þ2 þ y0 uð Þ2

� �3=2
ð9:3Þ

The minimum radius of curvature, rmin, in a plane restricts the curvature of the

path to Kmax in that plane. For car-like robots, the curvature constraint is a result of

the maximum steering Φmax angle due to the mechanical construction of the

vehicle, as shown in Eq. 9.4. In three-dimensional scenarios for aerial vehicles,

the maximum yaw and pitch angles in the horizontal and vertical planes must be

considered separately (Fig. 9.2).

kmax ¼ 1

rmin

¼ tan ϕmaxð Þ
W

ð9:4Þ

Fig. 9.2 Bicycle model for front wheel-steered vehicles
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9.4 Spline Primitives

B-splines are vector-valued parametric curves, initially proposed by Schoenberg

(1946). B-splines and nonuniform rational B-splines (NURBs) are commonly used

for computer-aided design (CAD) applications as a result of their efficient synthesis

and robustness (Farin 1992). In addition to CAD, they have been utilized in reverse

engineering (Ma and Kruth 1998; Piegl and Tiller 2001), finite element analysis

(Hughes et al. 2008), machining (Cheng et al. 2002; Sungchul and Taehoon 2003),

medical imaging (Zhang et al. 2007), computer vision (Biswas and Lovell 2008),

bio-inspired data fitting (Jones and Adamatzky 2014), and signal processing (Unser

et al. 1993). As discussed in earlier sections, their use in robotics is fairly recent.

A p-th degree B-spline curve, c(u), is defined by n control points and a knot

vector û, evaluated by Eq. 9.5. The length of the one-dimensional knot vector, m, is
equal to n + p + 1. Normalized path length parameter, u, is simply referred to as the

path parameter (Farin 2002).

c uð Þ ¼
Xn
i¼0

Ni,p uð ÞPi ð9:5Þ

Pi is the i-th control point, which is in turn influenced by a corresponding basis

functions. The number of basis functions therefore mirrors the number of control

points, n. Nn,i (u) is the i-th B-spline basis function, which is defined using the Cox-
de Boor recursive algorithm (De Boor 1972). First-order basis functions are eval-

uated using Eq. 9.6 based on the predefined knot vector. Higher-order functions are

computed by the recursive substitution in Eq. 9.7.

Ni, 0 uð Þ ¼ 1 u2�
ûi; ûiþ1

�
0 else

�
ð9:6Þ

Ni,p uð Þ ¼ u� ûi
ûiþp � ûi

Ni,p�1 uð Þ þ ûiþpþ1 � u

ûiþpþ1 � ûiþ1

Niþ1,p�1 uð Þ ð9:7Þ

We have previously shown B-spline properties that render them as superior to

other parametric curves, for the task of robot navigation (Elbanhawi et al. 2014).

The curve’s degree, p, is independent of the number of control points, n. This allows
the possibility of using a single curve for the entire path smoothing without

imposing limitations on the number of control points. It is in contrast to Bézier

curve methods (Jolly et al. 2009; Kwangjin and Sukkarieh 2010; Lau et al. 2009;

Kwangjin et al. 2013) where the number of control points is predefined. Modifica-

tion of control points affects the curve shape locally and does not change the rest of

the path. This enables the local control of the path for smoothing or obstacle

avoidance purposes. A clamped B-spline curve follows its control polygon more

closely in comparison to a Bézier curve of the same order. Clamping is achieved by

having (p + 1) multiplicity of the initial and final knots, û (Farin 2002). Knot

multiplicity ensures that the curve passes through the initial and final control points.
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Despite the beneficial properties that characterize B-splines, maintaining path

continuity and controlling its curvature are nontrivial issues. They continue to

challenge the use of B-splines in robotic path planning applications (Lau et al.

2009; Elbanhawi and Simic 2014a; Pan et al. 2012). It must be noted that both

Beziers and B-spline are essentially combinations of polynomials. In principal,

there should exist control laws, or conditions, that are capable of generating

parametrically continuous trajectories using Bezier curves as well. The authors

could not identify such methods in literature. Consequently, we have utilized the

existing benefits of B-splines for motion planning.

9.5 Curvature Bounding

9.5.1 Parametric Continuity

The challenge of path continuity stemmed from the linking of two separate path

segments. Primitives such as circular arcs, polynomials, and clothoids were not

flexible enough to represent a path using a single segment. The number of control

points, which were usually predefined prior to smoothing, governs the order of a

Bézier curve. Consequently, multiple Bézier curves must be linked for smoothing a

single piecewise linear path.

The order of a B-spline curve is independent of the number of control points in

the path, as already mentioned. In theory, it is possible to smooth a path using a

single curve of a predefined order. The single B-spline curve approach was adopted

for UAV planning; however, the number of control points was fixed (Nikolos et al.

2003). The region in which planning is conducted and path shape robustness are

significantly limited by fixing the number of control points. The work by Jolly et al.

(2009) is based on rapid replanning with a short planning horizon and relies on four

control points. We did not pose any restrictions on the number of control points,

apart from that the number of control points must exceed the degree of the curve, p.
The local control property of B-spline enables the modification of a curve segment

without changing the entire path. The necessity for rerouting commonly results

from obstacle detection or smoothing purposes.

Despite the superiority of B-splines over a Bézier curve of the same order, in

closely following the shape of a path, they still deviate from the original path

(control polygon). Ideally, the curve would follow the original linear path and

smoothly cut corners when turning is needed. It is desired to maintain proximity

to the originally planned straight-line path as it is more likely to be collision-free.

This was achieved by forcing the tangency of the curve to the sides of the control

polygon. B-spline tangency to collinear control points is leveraged to ensure the

close following of the original path. Systematic midpoint insertion, between every

two successive points, effectively transformed control polygon edges into lines

connecting three control points, thus forcing the curve’s tangency to the edges. The
effect of midpoint insertion is illustrated in Fig. 9.3. It is worth highlighting that in
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both cases, a single curve segment was used for smoothing. That guarantees

continuity along the path. This avoids the need to address parametric continuity

at union points, as illustrated in Fig. 9.1. The curvature and higher-order derivatives

do not exhibit any abrupt changes after adding midpoints. This can be validated by

comparing the resulting trajectories given in Fig. 9.4.
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Fig. 9.3 Midpoint insertion improves the path proximity of B-splines without compromising

parametric continuity. It forces the curve (blue) tangency to the edge of the control polygon (black)
unlike the unmodified B-spline curve (red)
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Fig. 9.4 Parametric continuity was maintained before (left) and after (right) midpoint insertion as

a result of using a single B-spline segment
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9.5.2 Curvature Evaluation

9.5.2.1 Path Segmentation

Our aim was to control the curvature, k, of a B-spline curve. Specifically, it was

required to maintain the curvature below the maximum curvature bound, Kmax.

Systematic midpoint insertion allowed for the definition of a repeated segment

throughout the path (see for Fig. 9.5(a) illustration). The segment consists of two

intersecting control edges and a total of five control points (including two mid-

points). It was required to define B-spline paths curvature in terms of their

corresponding segment parameters. This enabled the isolation of each segment

and local modifications of its parameters by leveraging the local support property

of B-splines. Smoothing modifications will be proposed to ensure maximum cur-

vature bounds are obeyed.

The parameters of the reoccurring control segment are the side length, L, the
angle between segment sides, α, and the length ratio of both sides, r, as illustrated in
Fig. 9.5(b). In our earlier work (Elbanhawi et al. 2014), segments of equal sides

were assumed, r ¼ 1, which overestimated the curvature of the path and resulted in

attaining approximate solutions. The use of the length ratio parameter, r, is

presented to enable a more precise evaluation of the curvature. Position vectors

describing the five control points of the segment can be defined with respect to the

parameters of the same segment and are given in Eq. 9.8.

P
Px

Py

� �
¼

L,
L

2
, 0, r

L

2
cos αð Þ, rL cos αð Þ

0, 0, 0, r
L

2
sin αð Þ, rL sin αð Þ

0
B@

1
CA ð9:8Þ

The cubic B-spline curve, p¼ 3, has five control points, n¼ 5, and, m¼ 9, knots
with four initial and final multiplicity for clamping, û ¼ [0,0,0,0,0.5,1,1,1,1]. Initial

order basis functions were evaluated using Eq. 9.6. Following that, basis functions,

N(u), were computed, using the Cox-de Boor algorithm by recursive evaluation of

Fig. 9.5 (a) The notion of a reoccurring control segment through the path. A segment consists of

two intersecting straight lines and five control points. (b) The parameters of a single segment
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Eq. 9.7. The following third-order basis functions can be defined as given in the set

of Eq. 9.9.

N0,3 ¼ 1� 2uð Þ3
2

ð9:9aÞ
N1,3 ¼ 6u3 � 6u2 þ 1 ð9:9bÞ
N2,3 ¼ �6u2 þ 6u� 1 ð9:9cÞ

N3,3 ¼ �6u3 þ 12u2 � 6uþ 1 ð9:9dÞ
N4,3 ¼ 2u� 1ð Þ3

2
ð9:9eÞ

In order to define the curvature of a segment in terms of its parameters, k¼ f(r, L,
α)¸ the position vectors of the segment, Eq. 9.8, and basis functions, Eq. 9.9, were

substituted in the curve Eq. 9.5. The curve was defined as a function of its

corresponding segment parameters, c uð Þ ¼ x uð Þ
y uð Þ

	 

¼ x r; L;/ð Þ

y r; L;/ð Þ
	 


; x(u) and y(u)

are given in Eq. 9.10.

x uð Þ ¼ 1�2uð Þ3
2

∗
Lþ 6u3 � 6u2 þ 1ð Þ∗L

2

þ �6u3 þ 12u2 � 6uþ 1ð Þ∗ rL cos αð Þ
2

2u� 1ð Þ3
2

∗

rL cos αð Þ
ð9:10aÞ

y uð Þ ¼ �6u3 þ 12u2 � 6uþ 1
� �∗ rL sin αð Þ

2
þ 2u� 1ð Þ3

2

∗

rL sin αð Þ ð9:10bÞ

For a given segment, its parameters, r, L, and α, are constant and known prior to
a curvature query. The first- and second-order derivatives with respect to the path

parameter, u, are derived below from equations set (Eq. 9.11).

x0 uð Þ ¼ 3L u2 r cos αð Þ � 1ð Þ þ 2uþ 1
� � ð9:11aÞ

x00 uð Þ ¼ 6L u r cos αð Þ � 1ð Þ þ 1ð Þ ð9:11bÞ
y0 uð Þ ¼ 3Lr sin αð Þu2 ð9:11cÞ
y00 uð Þ ¼ 6Lr sin αð Þu ð9:11dÞ

The curvature expression, k¼ f(r, L, α), in Eq. 9.12 was obtained by substituting
the curve and its first- and second-order derivatives from Eq. 9.11 into Eq. 9.3. It

can be noted that when substituting by r¼ 1, in Eq. 9.12 we get the same expression

derived in Elbanhawi et al. (2014). Prior to introducing the parameter, r, curvature
evaluations were approximate, and the accuracy of the maneuvers could not be

ascertained.

k uð Þ¼ 2ru u�1ð Þsin αð Þ
3L u4 r2�2rcos αð Þþ1ð Þþ4u3 rcos αð Þ�1ð Þ�2u2 rcos αð Þ�3�4uþ1ð Þð Þ3=2 ð9:12Þ

288 M. Elbanhawi et al.



9.5.2.2 Segment Curvature Evaluation

Midpoint insertion ensured the curve’s tangency to the polygon edges, which

resembled paths generated by human operators in the experiments conducted by

Elbanhawi et al. (2014). Subsequently, the curvature of the path started at u¼ 0 and
finished at u ¼ 1, with k ¼ 0. Curvature peaked to kpeak at some point, upeak, in
between, u ¼ [0,1]. In order to limit path curvature to the maximum value of Kmax,

the peak curvature, kpeak, of the segments must be evaluated first. The point, upeak,
along the parametric path length, u, where the curvature peaks, was found by

solving Eq. 9.13. Then kpeak was computed by substituting upeak in Eq. 9.12.

dk uð Þ
du

¼ 0 ð9:13Þ

For every path segment, there exists a singular curvature peak, as shown in

Fig. 9.6. The red profiles show the influence of changing the segment angle while

maintaining fixed length and ratio. The location of the peak curvature was entirely

dependent on the length and ratio. For a large angle (blue) and fixed length, the ratio

changed both the position and value of the peak curvature. Similarly, for a much

smaller segment angle (gray), the length ratio was still influential on both the peak

value and position.

Solving Eq. 9.13 for upeak can prove to be a computationally intensive task,

particularly when kpeak had to be evaluated multiple times during each query of the

path planning procedure. One useful observation is that the location of upeak is

dependent on the segment angle, α, and length ratio, r, as highlighted in Fig. 9.7.

We note that, while upeak is dependent on r and α only, the peak curvature value,

kpeak, is still dependent on r, α, and L. It was possible to store upeak values in a

lookup table of equal intervals from r¼ 1 to 10 and α ¼ 0 to π. The required values
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Fig. 9.6 Changing segment parameters shifts the position of the curvature peaks. In all cases,

curvature profile is continuous with a singular peak
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can be interpolated. To maintain a sparse lookup table, we use the property in

Eq. 9.14, which can be observed from Fig. 9.7. In our case, retaining a lookup table

(less than 10kB in size) produced curvature values of 10�3 accuracy.

If 0 < r < 1, thenupeak r;αð Þ ¼ 1� upeak 1=r;αð Þ ð9:14Þ

9.5.3 Curvature Bounding

In this section, two analytical solutions for curvature bounding are presented. They

ensured peak segment curvature does not exceed the maximum curvature,

kpeak � Kmax. This confirms that the path is feasible, having shown in the previous

section that each path segment has a single peak. The first solution was relaxed

ensuring a smooth curvature. The second solution was strict to minimize deviation

from the original control polygon. It was possible to combine both conditions in

different segments, on account of B-spline local support property, with minimal

effect on other segments. Both conditions were designed to make certain that the

path was contained within the convex hull of the original control polygon to reduce

the probability of the obstacle collision. Both solutions are essential homotopy class

transformation to ensure feasibility. Nonetheless, the guarantee that the path is

collision-free was not addressed in this work. We assume that this work will

eventually be combined within a planning framework and will not be restricted to

path smoothing.
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Fig. 9.7 Parametric length location, upeak, of the peak curvature, kpeak, is dependent on the

segment angle, α, and the length ratio, r. It can be noted that when length ratio is 0 < r < 1,
upeak > 0.5 and when r > 1, upeak < 0.5. This results from the observation that upeak is shifted
toward the shorter segment edge
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9.5.3.1 Single-Peak Solution

Consider the single control segment, shown in Fig. 9.8, whose corresponding

B-spline curvature violates the maximum curvature condition. The segment con-

sists of two lines ln,n + 2, joining point (n) and point (n + 2), and ln + 2, n + 4, joining

point (n + 2) and point (n + 4), shown as solid black lines. Point (o) is the

intersection point between ln, n + 4 (thin gray line) and line lo,n + 2 (dotted blue

line) which is passing through point (n + 2) and is orthogonal to ln, n + 4.

The current curvature, kn + 2, and segment angle, αn + 2, are known, and

kn + 2 > Kmax. Assume that point (n + 2) is shifted toward point (o), along the

line, lo,n + 2, while points (n) and (n + 4) are unchanged and the midpoints (n + 1)
and (n + 3) are recomputed accordingly. Finally at αn + 2 ¼ π, ko ¼ 0. It is required

to find the nearest point ( p), at which kp ¼ Kmax, as point (n + 2) is being shifted

toward (o) along lo,n + 2. The minimum angle αp lies between αo ¼ π and αn + 2 as

given by Eq. 9.15. We define li, j as the Euclidean distance between two points

(i) and (j) whose Cartesian coordinates are known.

Assuming line lo,n + 2 is parameterized between Pn + 2 and Po using l̂ ¼[0,1], the

value of l̂ is required where the point ( p) satisfies the curvature requirement. Firstly,

Pp is given as follows:

Pp ¼ Pnþ2

�
1� l̂

�þ P0 l̂ ð9:15Þ
In every iteration, the curvature is evaluated until the kp ¼ Kmax condition is

satisfied. To optimize the search, we can estimate the initial point where the

curvature may be equal to Kmax. This is achieved by knowing that, at l̂ ¼
0, k ¼ kp and, at l̂ ¼ 1, k ¼ 0.

Fig. 9.8 First smoothing

solution; it is required to

find the point (P) along the

line (dotted blue line),

joining point (n + 2) and
point (o), that ensures the
curvature, kpeak, does not
exceed Kmax
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l̂init ¼ 1� Kmax

Kp

����
���� ð9:16Þ

An example of curvature bounding is shown in Fig. 9.9 using this solution. The

resulting curvature has a single segment as shown in Fig. 9.10 and was bound to

0.14 m�1. Curvature continuity was maintained in both cases.

9.5.3.2 Double-Peak Solution

In this section we proposed a different approach for the same problem considered in

the previous section. The curvature of a control segment, P1, P0, P5 and their
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Fig. 9.9 Bounding using

single-peak solution. The

original path is blue and
new path is red
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midpoints in Fig. 9.1 exceeds Kmax. Segment P1, P0, P5 is decomposed into two

segments, P1, P2, P4 (segment 1) and P2, P4, P5 (segment 2). Line segment P2P4 is

constructed to be parallel to edge P1P5 . As a result, triangles ΔP1P0P5 and

ΔP2P0P4 are similar, and the ratio between their side lengths is (1-β), where
0 < β < 1 (Fig. 9.11). Segment 1 and 2 parameters can be described in terms of

β, where segment angles are constant, as given in Table 9.1.

By substituting the segment parameters, given in Table 9.2, in Eq. 9.12, it is

possible to find a range for β, subset of set [0,1), in which both segment curvatures

are less than Kmax. Firstly, we compute a separate range for each segment 1 and

2 [βmin1, βmax1] and [βmin2, βmax2]. These computations are efficient by virtue

of using the lookup table in the previous section. The allowable range for β is [max

(βmin1, βmin2), min(βmax1, βmax2)].

Fig. 9.11 Second

smoothing solution; it is

required to find the value of

β that ensures curvature

bounding in both segments

and minimizes the total path

length

Table 9.1 Comparing related methods

Method Curvature bounds Curve Path Continuity

Nikolos et al. (2003) Yes B-spline 3D C2

Anderson et al. (2005) Yes Arcs/line 2D No

Gulati and Kuipers (2008) No B-spline 2D No

Koyuncu and Inalhan (2008) No B-spline 3D No

Jolly et al. (2009) No Bézier 2D C2

Lau et al. (2009) No Bézier 2D No

Berglund et al. (2010) Yes B-spline 2D No

Maekawa et al. (2010) Yes B-spline 2D No

Pan et al. (2012) No B-spline 3D/2D C2/C1

Kwangjin (2013) Yes Bézier 2D G2

Huh and Chang (2014) No Polynomial 2D G2

Proposed Yes B-spline 2D/3D C2
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We nominate the β value that minimizes the total length. Now, new segment

control points P2, P3, P4 can be computed, where for any control point we have

Pi ¼ (xi, yi).

β ¼ argmin β L1 þ L2 � L0ð Þ þ L0ð Þ, β E βmin; βmax½ � ð9:17Þ
P2 ¼ βP1 þ 1� βð ÞP0 ð9:18Þ
P4 ¼ βP5 þ 1� βð ÞP0 ð9:19Þ

A midpoint is inserted between the two added points based on the ratio between

the lengths of both, such that if both lines are equal, r ¼ 1; the midpoint is

equidistant between them.

P3 ¼ r

r þ 1
P4 � P2ð Þ þ P2 ð9:20Þ

An example of curvature bounding is shown in Fig. 9.12 using this solution. The

resulting curvature has two segments as shown in Fig. 9.13 and was bound to 0.14 m
�1. Curvature continuity was maintained in both cases.

Table 9.2 Segment

parameter
Parameter Symbol Segment 1 Segment 2

Length ratio r 1�βð ÞL0
βL1

1�βð ÞL0
βL2

Edge length L βL1 βL2
Segment angle α γ1 γ2

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

x

y

Fig. 9.12 Bounding using

double-peak solution. The

original path is blue and the

feasible path is red
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9.6 Results

9.6.1 Curvature Evaluation

To efficiently evaluate a segment’s curvature, we proposed storing the peak curva-

ture position upeak in a sparse lookup table and evaluating the curvature using the

segment parameters. We conducted 1000 queries, for a range of segment parame-

ters where r and L¼ [1 m, 10 m] in steps of 1 m and α was ¼ [30�, 180�] in steps of
15�. The time performance of this evaluation method was compared with solving

Eq. 9.13. From the results, given in Table 9.3, it is clear that this method is more

efficient. Comparing with previously published research results Elbanhawi et al.

(2014), which assumed equal segment length, we show that this approach has better

accuracy. The results are illustrated in Fig. 9.14 and given in Table 9.4.

9.6.2 Curvature Bounding

In this section we compared the presented bounding solutions to our earlier work in

Elbanhawi et al. (2014). Two different examples were used as shown in Figs. 9.15

and 9.18. The linear reference paths are assumed to result from a planning
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Fig. 9.13 Resulting
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Table 9.3 Curvature evaluation time performance for 1000 queries

Query time Analytical solution Lookup table

Mean (ms) 122.16 0.91

Standard deviation (ms) 6.95 0.34
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Fig. 9.14 Curvature evaluation errors of proposed lookup table compared to Elbanhawi et al. (2014)

Table 9.4 Curvature

evaluation errors
Error [mm�1] Proposed Elbanhawi et al. (2014)

Mean 0.87 384.25

Standard deviation 1.738 788.45

Maximum 19.34 6592.10
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Fig. 9.15 Example 1: Bounding paths using different methods

296 M. Elbanhawi et al.



algorithm. It can be noted that the proposed solutions maintain the curve within the

convex hull of the original reference path. In both cases, the curvature is success-

fully bounded to 0.2 and 0.15 m�1 successively, and its continuity is maintained as

shown in Figs. 9.16, 9.17, and 9.18. The proposed solutions reduce the deviation

from the original path and the total path length, outperforming our earlier work as

detailed in Tables 9.5 and 9.6. Solution (1) results in a low-frequency single-peak

curvature profile as opposed to solution (2), which may have a better impact on

passenger comfort in autonomous cars, as suggested in (Gulati and Kuipers 2008;

Turner and Griffin 1999). On the other hand, solution (2) minimizes deviation from

the reference paths and as a consequence minimizing the risk of collision.

Example (3) highlights the ability of the proposed method to generate a feasible

path among obstacles. The benefit of maintaining the curve within the convex hull

of the path is apparent in this example. The linear path was generated from a rapidly

exploring random tree (RRT) algorithm (Elbanhawi and Simic 2014b). The

resulting B-spline path among obstacles is illustrated in Fig. 9.19. Post-processing

RRT algorithms have been shown to improve path quality and produce fairly

consistent results. Nonetheless these methods do not guarantee that the path is

collision-free. The resulting trajectory is given in Fig. 9.20. It is clear that the multi-

segment path maintains curvature and parametric continuity.

9.7 Conclusion

An approach to continuous curvature robot path smoothing that satisfies the max-

imum curvature bounds and parametric continuity is presented here. B-spline

curves have been proposed for this task. In this chapter we offer the following

contributions:
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Fig. 9.16 Example 1: Resulting curvature profiles
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• Maintaining path parametric C2 continuity, by using a single B-spline curve

segment with midpoint insertion, to generate more realistic robot paths (Pan

et al. 2012). No limitations were posed on the number of control points, for the

B-spline curve, enabling a more robust representation of the path, unlike the

work in (Nikolos et al. 2003; Jolly et al. 2009).

• Two analytical solutions are offered, formulating the path curvature in terms of a

predefined path segment’s parameters. They modify the path to limit its curva-

ture to the maximum kinodynamic curvature and satisfy the vehicle’s con-

straints. Our previous publications presented an introduction to the more

advanced solutions (Elbanhawi et al. 2014; Elbanhawi and Simic 2014b).

Table 9.5 Example 1: Resulting path lengths and deviation

Path Length [m] Deviation mean [m] Deviation maximum [m]

Linear path 94.33 – –

Reference B-spline 92.28 – –

Elbanhawi et al. (2014) 112.59 12.48 17.19

Solution (1) 71.78 8.58 12.89

Solution (2) 84.42 2.94 5.50

Table 9.6 Example 2: Resulting path lengths and deviation

Path Length [m] Deviation mean [m] Deviation maximum [m]

Linear path 579.88 – –

Reference B-spline 507.35 – –

Elbanhawi et al. (2014) 535.28 20.15 45.04

Solution (1) 464.47 6.48 27.03

Solution (2) 506.27 6.04 23.99
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Based on the presented numerical and experimental results, we show that this

approach:

• Improved accuracy of segment curvature evaluation

• Accelerated segment curvature evaluation

• Decreased path length compared to reference spline and linear path

• Decreased deviation from reference path

• Bounded curvature to desired value while maintaining parametric continuity

The proposed method results in paths that lie within the convex hull of the linear

path, with no undesirable oscillations in the path. This produced realistic commands

with continuous velocity and acceleration.

This approach relies on smoothing a path defined by successive waypoints,

which are generated by a planning algorithm. As presented here, smoothing is

considered as a post-planning procedure. Consequently, obtaining an obstacle-free

smooth path cannot be guaranteed. In many cases, when collision is detected,

replanning is required (Koyuncu and Inalhan 2008). Several researchers examine

collision detection for parametric curves (Kwangjin and Sukkarieh 2010; Pan et al.

2012). Circumventing the need for replanning can be achieved by incorporating the
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smoothing process within the planning framework. The benefits of guiding the

search by the reachability of the robot have been revealed (Shkolnik et al. 2009;

Jaillet et al. 2011). In this context, the reachable set can be computed using the

efficient curvature evaluation method presented here. Several comments have to be

made regarding the presented contributions.

The benefit of solving C2 parametric continuity problem with maximum curva-

ture constraint and employing the results to mimic human steering is the possibility

to combine this parameterization, within any planning framework, such as an RRT

or A* algorithm for autonomous vehicles. We predict improvements in human

comfort as a result of mimicking human steering, in addition to other claims made

by researchers, with regard to continuous curvature paths.

The proposed midpoint insertion algorithm is used to simplify the smoothing

algorithm; a more generalized approach would include the location of the inserted

point, as a function of the segment angle, but the benefits of doing that are not clear.

That could be the subject of other investigation.

In the practical implementation through experiments, we demonstrated that the

closely following control polygon method is advantageous over the other algo-

rithms. This benefit comes from the assumption that the path planning algorithm

generates a collision-free piecewise linear path, which is then used by our smooth-

ing algorithm, as shown in (Elbanhawi and Simic 2014b).The results can be

developed within the context of a recently developed sampling-based algorithm

(Elbanhawi and Simic 2014c), which employs efficient collision-checking

procedures.

We expect that the outcomes of presented research can be integrated within an

efficient planning framework, in which the spline-parameterized motions feel

natural to passengers and improve their comfort. Passenger comfort and natural

paths are obviously subjective terms that require a large sample of human volun-

teers for validation. The promising simulations’ results, presented here, will be

followed by field tests using prototype ground vehicles and UAVs. We plan to

validate the concept of graceful motions and curvature continuity, with regard to

passenger comfort, by conducting full-scale field experiments.
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Part III

Modern Engineering Applications



Chapter 10

An Exact Solution Technique for Impact

Oscillators

A. Banerjee, R. Das, and E.P. Calius

10.1 Introduction

In the real-life applications, vibrating systems with clearance between the two

moving parts are very abundant due to its versatile applications. The impact occurs

when either two nearby oscillators or an oscillator and a rigid obstacle come in

contact. The physical process of impact is very complex and highly nonlinear. The

velocity response of the impact event is discontinuous in nature; therefore, a multi-

periodic response or a chaotic response generates during impact process. Due to the

energy dissipation through the impact and the counteraction of the external excita-

tion by the resulting impulsive force, the impacting system dissipates energy and

subsequently attenuates the vibration of the main structure. In case of the realistic

inelastic collision, the kinetic energy losses because the magnitude of the

postimpact velocity gets reduced. On the other hand, the counteraction of the

external excitation by the resulting impulsive force is not so straightforward to

realize and depends on the natural and excitation frequency, amplitude of excitation

and duration between two successive impacts.

Dated back to 1945, impact oscillators attract the attention of the researchers.

The state of the art of the impacting oscillator can be subdivided into four main

classes based on the studied system. These different classes of impacting oscillators
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are illustrated in Fig. 10.1. The different forms of the impacting oscillators can be

classified as:

Type A, impact oscillation of one free and one spring mass system (no coupling

spring between auxiliary mass and main mass), having two-sided fenders (Masri

and Caughey 1966; Warburton 1957; Grubin 1956; Viana et al. 2009; Masri

1970; Egle 1967; Popplewell et al. 1983) and one-sided stopper (Ding et al.

2004), which is shown in Fig. 10.1a.

Type B, two uncoupled spring mass systems impact with each other (Dongping and

Haiyan 1997) as illustrated in Fig. 10.1b.

Type C, coupled multi-degree-of-freedom system (Pun et al. 1998) or two-degree-

of-freedom system (Aidanpää and Gupta 1993; Blazejczyk-Okolewska et al.

2009; Luo 1999; Luo et al. 2001, 2006, 2007, 2008) where impact occurs at the

only one mass with some external fixed obstacles as shown in Fig. 10.1c.

Type D, two coupled systems where impact occurs after closing the gap between

them, as shown in Fig. 10.1d.

In type A system, internal mass is free; therefore, estimation of the impacting

instance and the pre- and postimpact velocity at that moment is comparatively

easier to determine than all the other cases. Type B system has two uncoupled

vibrating components; thus computation of impacting instance and pre-impact

velocity needs more computational efforts than the previous. In the contrary, type

C system is coupled with an internal spring; thus, the conversion to the principal

coordinate is essential to estimate the modal damping and to get an analytical
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Fig. 10.1 Different sets of possible impacting oscillators. (a) Type A, one free oscillator is

impacting with periodically exited forced limiter. (b) 2DOF structurally uncoupled but impacting

coupled system. (c) 2DOF structurally coupled but impacting uncoupled system, (d) 2DOF all way

coupled system
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equation, which adds complexity in the equations due to shifting of coordinate

system. On the other hand, the relative position of the impacting mass can be

estimated with computationally much lower cost compared to all the other systems,

because it is measured from the fixed rigid support, and postimpact velocity of the

impacting mass depends only on the pre-impact velocity of the impacting mass and

coefficient of restitution. However, in other cases, the postimpact velocity of each

mass depends on the pre-impact velocity of that mass and the other mass as well;

therefore, instead of a direct 1:1 relationship, there is a 2:2 relationship that exists

which makes type C system computationally easier. From this discussion, it is

evitable that the solution of the type D system is most complex among all other

cases as shown in Fig. 10.1, because systems are coupled by an internal spring as

well as the relative distance is not measured from a fixed support and the postimpact

velocity also depends on the pre-impact velocity of each mass.

The main challenges lie in the prediction of duration between two successive

impacts, frequency of the impacting response and the initial conditions after each

impact for an impacting oscillator. Dynamics of impacting oscillator of type D was

first analysed by Masri (1972), with the assumption of two equi-spaced impacts per

cycle, which signifies that within a single time period of external force, internal

mass hits successively at the outer and inner side of the main vibrating system. This

consideration of equi-spaced impacts was overcome by Nigm and Shabana (1983),

but the assumption of two impacts per cycles still remains which limits the solution

capability of those solver to a certain ranges. Actually, in complete analytical

solution, assumptions of periodic motion after a certain number of cycles help to

reduce the equations of motion in realistic shape; otherwise, it is almost impossible

to solve. Peterka (1998, 2005) solves the type D system considering damping and

friction and finds out various types of n-pmotions, where n is the number of forcing

cycle and p is the number of impacts numerically. Phase portrait and bifurcation

map for different excitation frequency motions for type D system is shown in Yue

et al. (2012). Most recently, Yue (2016) identified period doubling bifurcation and

torus bifurcation for the symmetric quasi-periodic motion of type D system.

From the application point of view, 2DOF impacting system, as shown in

Fig. 10.1d, can be very effectively used as a unit of resonating metamaterial

which is used as a mechanical filter or wave insulator or acoustic shield due to

amazing damping property of impacting oscillators. Natural materials have their

own excitation-independent mechanical properties, whereas the metamaterials

(Banerjee 2011) can exhibit exotic behaviours, such as negative effective mass

(Huang and Sun 2009, 2010, 2012; Yao et al. 2008; Sheng et al. 2003; Sun et al.

2011a, b, 2013; Pope and Laalej 2014; Calius et al. 2009; Huang et al. 2009; Lu

et al. 2009; Hu et al. 2016), negative Poisson’s ratio (Baughman et al. 1998; Friis

et al. 1988; Kocer et al. 2009; Lakes 1987; 1993; Larsen et al. 1996) and negative

stiffness (Huang and Sun 2012), in a certain range of frequencies due to the out-of-

phase response of the multiple resonating units inside it. In fact, the presence of a

resonating mass, inside each unit of a metamaterial, changes the effective dynamic

mass of the full system. As the mass of a system has a considerable effect on the

wave propagation, the transmission of a wave through the metamaterial becomes
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frequency dependent. Each block of metamaterial exerts frequency-dependent

impedance to the medium and confines energy from the transmitted wave at the

resonating frequency range, which actually controls the wave propagation through

the metamaterials (Huang and Sun 2010, 2012; Yao et al. 2008). However, the

attenuation bandwidth is mostly independent of the number of repetitive units of the

metamaterial, although the transmissibility decreases for higher number of units

(Lei 2008; Banerjee et al. 2016a, 2017a).

In general, transmittance is used to quantify the wave transmission through the

metamaterial (Hu et al. 2016; Banerjee et al. 2016a, b, 2017a, b). Experimental

evidence of this concept is given by Yao et al. (2008); thus, in this chapter, the

transmittance is plotted in the frequency domain to identify the attenuation and

transmission bandwidth of the metamaterial.

The main challenges associated with the impact modelling are estimation of an

exact postimpact velocity and computation of the energy loss due to impact for a

specific coefficient of restitution. In this paper, the system is one dimensional;

therefore, only the normal directional impact is considered. Normal directional

impact can be modelled using Kelvin element (Brogliato 1999), nonlinear Hertz

damped (Jankowski 2005) or undamped (Hertz 1881, 1882) model and stereo-

mechanical (Newton 1999) or non-smooth unilateral model (Pfeiffer and Glocker

2000; Banerjee et al. 2016c, 2017c). Based on the critical review on various normal

directional impacting models by Banerjee et al. (2016d), stereo-mechanical model

is most accurate in terms of postimpact velocity estimation and computationally

easiest among all other available impacting models; therefore, in this paper, stereo-

mechanical model is adopted to compute the dynamic response of the system. The

velocity response becomes discontinuous at the time of impact because the impact

phenomenon is modelled as an instantaneous event in the stereo-mechanical model.

In this paper, an analytical solution of the type D system is developed considering

the modal damping after transforming the system to principal coordinate. Based on

that analytical solution, a numerical scheme is developed to identify the impacting

situation and then compute the postimpact initial conditions for the next impacting

cycle. In general, during forced vibration, a linear system vibrates in the same

frequency of the excitation, whereas, in case of impacting system, this phenomenon

is no longer present. In some frequency range, the impacting motion becomes

periodic after p numbers of impact, as described in the Sect. 10.2.1. To analyse

this complex dynamic phenomena, (Zhang and Fu 2015) and Luo et al. (2006) used

Peterka coefficient (z¼ p/n), positive real number, which is the ratio of the number

of impact ( p) and number of excitation force period (n) in the excitation time

period. For complete analytical solution, such as z ¼ 1 n= where n2 I, Peterka
coefficient is very effective, but for all the irrational values and rational values,

where p and n are quite high, of z, the complexity of the solution increases; thus, the

analytical solution of this becomes next to impossible; therefore, to compute all the

possible solutions, a similar type of periodicity coefficient (λ) is proposed by

Banerjee et al. (2017b). Using this proposed periodicity coefficient, the presented

solver can detect all the types of impacting oscillations, namely, no impact, multi-

periodic impact and chaotic impact. After that, transmittance for an excitation
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frequency range is computed and compared with the equivalent linear system to

elucidate the attenuation bandwidth increment of the metamaterial unit due to

internal impact. Finally, a complete parametric study is carried out to get the best

possible design of these systems for a specific requirement of bandwidth and

excitation frequency.

10.2 An Exact Solution Scheme for Impacting Systems

The amplitude spectrum cannot be computed analytically for an impact oscillator;

therefore, Banerjee et al. (2017b) developed a semi-analytical solution procedure to

solve the impacting response and compute the periodicity. Mass and stiffness of the

system, modal damping for the system, gap between the two fenders (or the

impacting conditions), excitation amplitude and frequency are its input parameters.

The displacement and velocity histories in time domain and the periodicity coeffi-

cient are the main output from this impacting simulation. The full solution scheme

is illustrated in Fig. 10.2.

The algorithm flow chart of Fig. 10.2 can be summarized as follows:

1. From eigenvalue solution, natural frequencies and mode shapes of the system

are computed from the model parameters, i.e. mass and stiffness.

2. The system is translated into the principal coordinate system for more than

single degree of freedom, to uncouple the system and to introduce the modal

damping into it.

3. The analytical solution of the system in principal coordinate can be obtained

from which it is possible to identify whether impact is feasible or not. The instant

of impact can also have computed from that.

4. The postimpact state in the principal coordinate system can be evaluated from

Eq. (10.29) and use those as the initial condition for the next impacting cycle.

5. The check for identifying the chaos as described in Sect. 10.2.1 is implemented

after that, and the periodicity of the impact oscillator is also computed.

6. The output of this scheme can be:

(a) No impact occurs, because the relative displacement is less than the gap

between the object and the fenders. The periodicity coefficient is one in this

case, and the periodic solution of displacement and velocity is the two other

outputs.

(b) Impact occurs and steady state is also achieved. In this case, the solver yields

the periodicity coefficient and response of the system.

(c) The last case is chaos, in which impact occurs but steady-state response is

not achieved; therefore, solution is not converged to a specific attractor.
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10.2.1 Identification of Different Periodic Motion, Chaos
and Stopping Criteria

Most of the time after a few impacting cycles, the response of the impact system

becomes steady, and the solution should stop to reduce computational cost. Besides

that, identification of the various types of periodic response is also essential to

estimate the effect of sub- and super-harmonic responses and chaos on the overall

system dynamics. Along the time domain, several parallel planes which contain

both the displacements and velocities of the impact oscillator, analogous to

Poincare’s plane, are chosen at the impacting time. Each plane contains both the

post- and pre-impact velocities because impact is assumed to be instantaneous.

Now, if the displacement and velocity response at plane after jth impact is identical

with that of after mth impact, then it can be concluded that after p ¼ j � m numbers

of impact, the response repeats or becomes periodic. The time differences between

p numbers of consecutive planes (Tp) are checked, and when the last 20 values of Tp
become equal, then it is assumed that the steady state is achieved and solution

terminated. Otherwise, in case of the chaotic response, solution will not be
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repeated; thus, it should continue up to a certain maximum number, for example,

5000 numbers of impacting cycles.

10.2.2 Periodicity Coefficient

Due to the counteraction of the external excitation by the resulting impulsive force,

impact oscillators demonstrate discontinuous rich dynamics which is mostly multi-

periodic or chaotic because of the presence of sub- and super-harmonics. In general,

during the steady state of a forced vibration, a linear system vibrates in the external

frequency, whereas, in the case of impact system, this phenomenon is no longer

present. In some frequency range, the impacting motion becomes periodic after

p numbers of impact; thus, the time period of the impact system changes to the time

duration for the p steady-state impacts which can be assumed to be Tp. To encounter
this issue, Banerjee et al. (2017b) defined periodicity as the ratio of the system’s
response frequency (ωp) with excitation frequency

�
ω
�
, which can be further

simplified as

λ ¼ ωp

ω
¼ 2π

ωTp
ð10:1Þ

This periodicity coefficient (λ) can help to identify the characteristics of the motion.

The value of λ can be any positive real number, rational or irrational. For chaotic

response, λ is assumed to be 0 as the chaotic system has no periodicity, and for the

non-impacting case, it is assumed to be unity as the system vibrates in the excitation

frequency during non-impacting linear motion.

To demonstrate how the solver works, a single-degree-of-freedom system and a

mass-in-mass 2DOF system of type D are solved.

10.3 Single-Degree-of-Freedom System

Single-degree-of-freedom system with stopper can be considered as a piecewise

linear system. The equation of motion can be written as

m€uþ c _u þ ku ¼ kug sinωt ð10:2Þ
The natural frequency isω ¼ ffiffiffiffiffiffiffiffiffi

k=m
p

and viscous damping is c¼ 2ξω. As Eq. (10.2)
is a single equation, therefore conversion to the principal coordinate is not required.

Now the transient part can be expressed as
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tu ¼ e�ξωt sin ωdtð ÞAþ cos ωdtð ÞB½ �
t _u ¼ ωde

�ξωt cos ωdtð ÞA� sin ωdtð ÞB½ � � ξωe�ξωt sin ωdtð ÞAþ cos ωdtð ÞB½ �
ð10:3Þ

where A and B are two unknowns based on the initial condition and damped natural

frequency ωd ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

p
. On the other hand, the steady-state part can be written

as

su ¼ Z sin
�
ωt� γ þ φ

�
s _u ¼ ωZ cos

�
ωt� γ þ φ

� ð10:4Þ

where Z ¼ kug=ω2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�η2ð Þ2þ 2ξηð Þ2

p , γ ¼ tan �1 �2ξη
1�η2

� �
, η ¼ ω

ω
and φ are an unknown phase

angle due to the impact, which represents the state when the impact occurs.

Therefore, the displacement and the velocity of the system in the principal coordi-

nate system can be expressed as

u ¼ e�ξωt sin ωdtð ÞAþ cos ωdtð ÞB½ � þ Z sin
�
ωt� γ þ φ

�
_u

¼ ωde
�ξωt cos ωdtð ÞA� sin ωdtð ÞB½ � � ξωe�ξωt sin ωdtð ÞAþ cos ωdtð ÞB½ �

þωZ cos
�
ωt� γ þ φ

�
¼ e�ξωt ωd cos ωdtð Þ � ξω sin ωdtð Þ½ �A� ωd sin ωdtð Þ þ ξω cos ωdtð Þ½ �Bgþf
�ωZ cos

�
ωt� γ þ φ

�
ð10:5Þ

Assigning the initial conditions, u 0ð Þ, _u 0ð Þ, for the complete solution of Eq. (10.5),

it can be derived that:

u 0ð Þ ¼ Bþ Z sin φ� γð Þ
_u 0ð Þ ¼ ωdA� ξωBþ ωZ cos φ� γð Þ

!
B ¼ u 0ð Þ � Z sin φ� γð Þ

A ¼ _u 0ð Þ
ωd

þ ξω

ωd

u 0ð Þ � ξω

ωd

Z sin φ� γð Þ � ωZ

ωd

cos φ� γð Þ

8><>:
ð10:6Þ

Therefore, Eq. (10.5) can be rewritten in terms of the initial conditions by substitut-

ing the values of unknown A and B from Eq. (10.22) into Eq. (10.19):
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u ¼ e�ξωt cos ωdtð Þ þ ξω

ωd

sin ωdtð Þ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Sdd tð Þ

u 0ð Þ

þ e�ξωt sin ωdtð Þ
ωd|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Sdv tð Þ

_u 0ð Þ � Sdd tð ÞZ sin φ� γð Þ�

Sdv tð ÞωZ cos φ� γð Þ þ Z sin
�
ωtþ φ� γ

�
_u ¼ e�ξωt � ξω

ξω

ωd

þ ωd


 �
sin ωdtð Þ


 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Svd tð Þ

u 0ð Þ

þ e�ξωt cos ωdtð Þ � ξω

ωd

sin ωdtð Þ

 �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Svv tð Þ

_u 0ð Þ�

Svd tð ÞZ sin φ� γð Þ � Svv tð ÞωZ cos φ� γð Þþ
ωZ cos

�
ωtþ φ� γ

�

ð10:7Þ

Thus, the total response of the single-degree-of-freedom system can be expressed

by summation of the transient and the steady-state part, in the following manner:

u ¼ Sdd tð Þu 0ð Þ þ Sdv tð Þ _u 0ð Þ � Sdd tð ÞZ sin φ� γð Þ
�Sdv tð ÞωZ cos φ� γð Þ þ Z sin

�
ωtþ φ� γ

�
_u ¼ Svd tð Þu 0ð Þ þ Svv tð Þ _u 0ð Þ � Svd tð ÞZ sin φ� γð Þ

�Svv tð ÞωZ cos φ� γð Þ þ ωZ cos
�
ωtþ φ� γ

� ð10:8Þ

In Eq. (10.8), d and v, which are used as the suffix of S, stand for displacement and

velocity, respectively. Therefore, Sdd(t) represents the coefficient of the displace-

ment of the initial displacement of it.

The unknown phase is needed when the initial condition within an impacting

cycle is unknown; however, in this case, the initial condition before an impacting

cycle is known either from the postimpact velocity and displacement from the result

of the previous cycle or from the assigned initial displacement and velocity if it is

the first cycle. Therefore, the unknown phase of Eq. (10.7) can be eliminated which

yields the modified form of Eq. (10.8):

u ¼ Sdd tð Þu 0ð Þ þ Sdv tð Þ _u 0ð Þ þ Sdd tð ÞZ sin γð Þ
�Sdv tð ÞωZ cos γð Þ þ Z sin

�
ωt� γ

�
_u ¼ Svd tð Þu 0ð Þ þ Svv tð Þ _u 0ð Þ þ Svd tð ÞZ sin γð Þ � Svv tð ÞωZ cos γð Þ

þωZ cos
�
ωt� γ

� ð10:9Þ

Now, if the gap between the fender and the initial position of the resonator isΔ, then
impact occurs when
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u� Δ ¼ 0 ð10:10Þ
The first instant of impact (τ1) can be estimated by substituting Eq. (10.9) into

Eq. (10.10). Therefore, pre-impact velocity
�
_u �� can be calculated from Eq. (10.9)

as

_u �
1 ¼ �Svdu 0ð Þ þ �Svv _u 0ð Þ þ �SvdZ sin γð Þ � �SvvωZ cos γð Þ þ ωZ cos

�
ωτ1 � γ

�
ð10:11Þ

where �Sxx ¼ Sxx τj
� �

. Postimpact velocity can be calculated according to Newton’s
law of impact:

_u þ
j ¼ �ε _u �

j ð10:12Þ

After each impact, the initial conditions of the equation of motion need to be

updated. After jth impact, the pre-impact displacement and velocity would be��Δ; _uþj
�
which acts as the initial condition for the equation of motion.

Fig. 10.3 Left and right columns show the transmittance spectrum at top row and periodicity

number at the bottom row for gap ¼ 5.0 and 0.5, respectively
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10.4 Case Studies for Impacting SDOF System

A SDOF impacting system having unit mass and stiffness with 1% modal damping

is analysed to illustrate how the transmittance and periodicity number can vary

throughout the frequency domain for two different gap ratios.

10.4.1 Response Spectrum

The transmittance and periodicity coefficient spectra for two different gaps are

plotted in Fig. 10.3.

Transmittance diagram shows that impact occurs near the resonating frequency

and impact band increases with the decreasing gap ratio. The amplitude of the

impacting oscillation is limited to a specific value depending on the gap ratio. As

the impacting amplitude is always less compared to the linear amplitude, thus

transmittance reduces. Higher value of λ represents that the frequency of the

impacting system increases. Lower gap ratio increases the numbers of impact in a

specific time duration, and slowly the motion starts dominated by the impacting

response. For higher gap ratio, super-harmonic motion, having λ< 1, can be

perceived in some frequencies.

10.4.2 Time-Domain Data

To understand the multi-periodic response, time-domain response and the phase

portrait are plotted for various frequencies.
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Fig. 10.4 (a) Time-domain displacement response of the system, (b) phase portrait of the velocity

and displacement response of the single-degree-of-freedom system having mass 1, stiffness 1 and

gap ratio 0.5
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Figure 10.4 illustrates that after few impacts, the response becomes steady and

the phase portrait starts converging. In this case, the frequency of the response

increases.

On the other hand, for gap ratio 5, the frequency of the system sometime

decreases during impact. Time-domain plot of the displacement reveals the reason

behind the frequency decrement as shown in Fig. 10.5a.

Figure 10.5 illustrates that the response repeats after 11 numbers of impacts in

steady state and the total time for the 11 impacts is much more than the time period

of the excitation.

10.5 Mass-in-Mass Impacting System

Banerjee et al. (2017b) has derived the full impact oscillation for mass-in-mass unit

as shown in Fig. 10.1d. The analytical procedure is as follows:

The equation of motion of the linear system which is shown in Fig. 10.1d can be

written as

m1 0

0 m2

� 
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

m½ �

€u1
€u2

� �
|fflfflffl{zfflfflffl}

€x

þ c1 þ c2 �c2
�c2 c2

� 
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

c½ �

_u1
_u2

� �
|fflfflffl{zfflfflffl}

_x

þ k1 þ k2 �k2
�k2 k2

� 
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

k½ �

u1
u2

� �
|fflfflffl{zfflfflffl}

x

¼ k1ug sinωt
0

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

f

ð10:13Þ

where [m], [k] are, respectively, mass and stiffness matrix of the system and suffix

1 and 2 stand for the main and resonating unit, respectively. [c] denotes the damping

matrix, which cannot be predicted directly as there is no extra dampers attached to

the system. Based on the concept that damping is proportional to the frequency,

damping matrix [c] can be calculated from the modal damping, according to
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Fig. 10.5 (a) Time-domain displacement response and (b) phase portrait of the single-degree-of-

freedom system having mass and stiffness unity and gap ratio of 5.0
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Felippa (2015). u1, u2 stand for the displacement of main and resonating units,

respectively, and the dot denotes the time derivate. f is the force matrix, andω is the

excitation frequency in rad/s.

The natural frequencies of the two-degree-of-freedom system can be expressed as

ω2
1,2 ¼

k2
2m2

þ k1 þ k2
2m1


 �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k2
m2

k1
m1

þ 1

4

k1 þ k2
m1

þ k2
m2


 �2
s

ð10:14Þ

and the modal matrix, which contains the mode shapes for each natural frequency,

can be expressed as

eΦ ¼ a1 a2
1 1

� 
; an ¼ �m2

k2
ω2
n þ 1 ð10:15Þ

Now, Eq. (10.13) is a coupled second-order differential equation. To uncouple

Eq. (10.13), the system {x} is transferred to the principal coordinate {q}, by
coordinate transformation, after assuming

u1
u2

� �
|fflfflffl{zfflfflffl}

x

¼

a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1a21 þ m2

p a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1a22 þ m2

p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1a21 þ m2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1a22 þ m2

p
2664

3775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Φ

q1
q2

� �
|fflfflffl{zfflfflffl}

q

ð10:16Þ

where Φ is the mass normalized modal matrix. After shifting the coordinate system

to principal coordinate, the mass, damping, stiffness and force matrix change to

M ¼ ΦTmΦ ¼ 1 0

0 1

" #
; K ¼ ΦTkΦ ¼ ω2

1 0

0 ω2
2

" #

C ¼ ΦTcΦ ¼ 2ξω1 0

0 2ξω2

" #
; P ¼ ΦTf

ð10:17Þ

where ξ is the modal damping coefficient and M, C, K and P are modal mass,

damping, stiffness matrix and force vector, respectively. Actually, the unknown

damping matrix of Eq. (10.13) can be calculated as c¼Φ�TCΦ according to

Felippa (2015). Therefore, Eq. (10.13) can be solved in two different modes as

two uncoupled single-degree-of-freedom systems, and the equations of motion of

the metamaterial unit in the principal coordinate system are

1 0

0 1

� 
€q1
€q2

� �
þ 2ξω1 0

0 2ξω2

� 
_q 1

_q 2

� �
þ ω2

1 0

0 ω2
2

� 
q1
q2

� �
¼ P1

P2

� �
sinωt

! €qi þ 2ξωi _q i þ ω2
i qi ¼ Pi sinωt i ¼ 1, 2

ð10:18Þ
where the force vector in principal coordinate system can be evaluated as
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P1

P2

� �
¼

a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1a21 þ m2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1a21 þ m2

p
a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1a22 þ m2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1a22 þ m2

p
2664

3775 k1ug
0

� �

¼
a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1a21 þ m2

p
a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1a22 þ m2

p
8>><>>:

9>>=>>;k1ug ð10:19Þ

The solution of the ith mode in Eq. (10.18) can be written as the summation of the

transient and steady-state part. Now the transient part can be expressed as

tqi ¼ e�ξωi t sin ωditð ÞAi þ cos ωditð ÞBi½ �
t _q i ¼ ωdie

�ξωit cos ωditð ÞAi � sin ωditð ÞBi½ �
�ξωie

�ξωit sin ωditð ÞAi þ cos ωditð ÞBi½ �
ð10:20Þ

where A and B are two 2 � 1 unknown vectors based on the initial condition and

damped natural frequency ωdi ¼ ωi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

p
. On the other hand, the steady-state

part can be written as

sqi ¼ Zi sin
�
ωt� γi þ φ

�
s _q i ¼ ωZi cos

�
ωt� γi þ φ

� ð10:21Þ

where Zi ¼ Pi=ω2
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� η2i
� �2 þ 2ξηið Þ2

q , γi ¼ tan �1 �2ξηi
1� η2i


 �
, ηi ¼

ω

ωi
and φ are an

unknown phase angle due to the impact, which represents the state when the impact

occurs.

Therefore, the displacement and the velocity of the system in the principal coordi-

nate system can be expressed as

qi ¼ e�ξωit sin ωditð ÞAi þ cos ωditð ÞBi½ � þ Zi sin
�
ωt� γi þ φ

�
_q i ¼ ωdie

�ξωi t cos ωditð ÞAi � sin ωditð ÞBi½ ��
ξωie

�ξωit sin ωditð ÞAi þ cos ωditð ÞBi½ � þ ωZi cos
�
ωt� γi þ φ

�
¼ e�ξωit ωdi cos ωditð Þ � ξωi sin ωditð Þ½ �Ai�f
ωdi sin ωditð Þ þ ξωi cos ωditð Þ½ �Big þ ωZi cos

�
ωt� γi þ φ

�
ð10:22Þ

Assigning the initial conditions, qi 0ð Þ, _q i 0ð Þ, for the complete solution of

Eq. (10.22), it can be derived that
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qi 0ð Þ ¼ Bi þ Zi sin φ� γið Þ
_q i 0ð Þ ¼ ωdiAi � ξωiBi þ ωZi cos φ� γið Þ

!
Bi ¼ qi 0ð Þ � Zi sin φ� γið Þ

Ai ¼ _q i 0ð Þ
ωdi

þ ξωi

ωdi
qi 0ð Þ � ξωi

ωdi
Zi sin φ� γið Þ � ωZi

ωdi
cos φ� γið Þ

8><>:
ð10:23Þ

Therefore, Eq. (10.20) can be rewritten in terms of the initial conditions by

substituting the values of unknown A and B from Eq. (10.23) into Eq. (10.20):

qi ¼ e�ξωit cos ωditð Þ þ ξωi

ωdi
sin ωditð Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Sidd tð Þ

qi 0ð Þ

þ e�ξωit
sin ωditð Þ

ωdi|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Sidv tð Þ

_q i 0ð Þ � Sidd tð ÞZi sin φ� γið Þ

�Sidv tð ÞωZi cos φ� γið Þ þ Zi sin
�
ωtþ φ� γi

�
_q i ¼ e�ξωit � ξωi

ξωi

ωdi
þ ωdi


 �
sin ωditð Þ


 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Sivd tð Þ

qi 0ð Þ

þ e�ξωit cos ωditð Þ � ξωi

ωdi
sin ωditð Þ


 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Sivv tð Þ

_q i 0ð Þ

�Sivd tð ÞZi sin φ� γið Þ � Sivv tð ÞωZi cos φ� γið Þ
þωZi cos

�
ωtþ φ� γi

�

ð10:24Þ

Thus, the total response in the principal coordinate can be expressed by summation

of transient and the steady-state part, in the following manner:

qi ¼ Sidd tð Þqi 0ð Þ þ Sidv tð Þ _q i 0ð Þ � Sidd tð ÞZi sin φ� γið Þ
� Sidv tð ÞωZi cos φ� γið Þ þ Zi sin

�
ωtþ φ� γi

�
_q i ¼ Sivd tð Þqi 0ð Þ þ Sivv tð Þ _q i 0ð Þ � Sivd tð ÞZi sin φ� γið Þ

� Sivv tð ÞωZi cos φ� γið Þ þ ωZi cos
�
ωtþ φ� γi

� ð10:25Þ

In Eq. (10.25), d and v, which are used as the suffix of S, stand for displacement and

velocity, respectively, and i represents the index of the mode, which can be 1 or

2. Therefore, S1dd(t) represents the coefficient of the displacement of the 1st mode

with the initial displacement of it in principal coordinate system.
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The unknown phase is needed when the initial condition within an impacting

cycle is unknown; however, in this case, the initial condition before an impacting

cycle is known either from the postimpact velocity and displacement from the result

of the previous cycle or from the assigned initial displacement and velocity if it is

the first cycle. Therefore, the unknown phase of Eq. (10.25) can be eliminated

which yields the modified form of Eq. (10.25):

qi ¼ Sidd tð Þqi 0ð Þ þ Sidv tð Þ _q i 0ð Þ þ Sidd tð ÞZi sin γið Þ
� Sidv tð ÞωZi cos γið Þ þ Zi sin

�
ωt� γi

�
_q i ¼ Sivd tð Þqi 0ð Þ þ Sivv tð Þ _q i 0ð Þ þ Sivd tð ÞZi sin γið Þ

� Sivv tð ÞωZi cos γið Þ þ ωZi cos
�
ωt� γi

� ð10:26Þ

10.5.1 Identification of the Impact

As the gap between the two vibrating masses comes together, the impact can be

described as follows:

u2 � Δ� u1 ¼ 0

Φ2iqi � Δ�Φ1iqi ¼ 0

Φ21 �Φ11ð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
δ1

q1 þ Φ22 �Φ12ð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
δ2

q2 � Δ ¼ 0

δ1q1 τj
� �þ δ2q2 τj

� �� Δ ¼ 0

q2 τj
� � ¼ �Δ

δ2
� δ1q1 τj

� �
δ2

ð10:27Þ

The solution of Eq. (10.27) produces impacting time τj, and the substitution of τj in
Eq. (10.26) yields the point of impact and the pre-impact velocity. Impact happens

for a real-valued solution of τj; otherwise, when there is no real solution of τj, there
is no impact, and the situation is purely linear.

10.5.2 Postimpact Velocity in Principal Coordinate System

When two approaching bodies come in contact, then impact occurs, and the

velocity of both bodies changed to keep the total momentum constant. Assuming

the resonating mass and the main mass are comparable, the postimpact velocity can

be calculated as follows, from the stereo-mechanical model:
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_u þ
1

_uþ2

� �
|fflfflffl{zfflfflffl}

_x þ

¼ 1

m1 þ m2

m1 � m2ε m2 1þ εð Þ
m1 1þ εð Þ m2 � m1ε

� 
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

G

_u �
1

_u�2

� �
|fflfflffl{zfflfflffl}

_x �

ð10:28Þ

where + and – superscripts represent the post- and pre-impact cases, respectively,

and ε denotes the coefficient of restitution. The postimpact velocity conversion

factor in principal coordinate can be estimated as follows:

x ¼ Φq ! _x ¼ Φ _q
_x þ ¼ G _x � ! Φ _q þ ¼ GΦ _q � ! _q þ ¼ Φ�1GΦ|fflfflfflffl{zfflfflfflffl}

Gp

_q �

_q þ
i ¼ Gpi1 _q

�
1 þ Gpi2 _q

�
2

ð10:29Þ

where

Gp ¼ Φ�1GΦ

Gp ¼ c
R11om1 þ R11im2 ρ a2R12om1 þ R12om2f g

ρ �R11om1 � R11im2f g R22om1 þ R22im2

" #
ð10:30Þ

where R11o¼ a1� a2(a1 + εa2� ε), R11i¼ 1 + ε� εa1� a2, R12o¼ 1 + ε� εa2� a2,
R22o¼ a2 + a1(a2 + εa2� ε), R22i¼ a1 + 1� ε� εa2 and c¼ (a1� a2)

�1(m2 +m1)
�1.

10.5.3 Postimpact Equation of Motion

To evaluate the complete time-domain response, it is essential to determine the

postimpact equation of motion of the 2DOF system. After impact the velocity

suddenly jumps, which induced discontinuity. The displacements and pre-impact

velocities of the two-degree-of freedom system in principal coordinate can be

determined from Eq. (10.26), after substituting the time of impact calculated from

Eq. (10.27), as

Qij ¼ �Siddqi τj
� �þ �Sidv _q i τj

� �þ �SiddZi sin γið Þ
� �SidvωZi cos γið Þ þ Zi sin

�
ωτj � γi

�
_Q �
ij ¼ �Sivdqi τj

� �þ �Sivv _q i τj
� �þ �SivdZi sin γið Þ

� �SivvωZi cos γið Þ þ ωZi cos
�
ωτj � γi

�
ð10:31Þ

where �Sxyz ¼ Sxyz τj
� �

. As the displacement response is continuous, the pre-impact

displacement acts as postimpact displacement, whereas the postimpact velocity

changes based on Eqs. (10.29) and (10.30) as
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Fig. 10.6 Frequency

domain plots of (a)

transmittance for impacting

and non-impacting systems

and (b) periodicity number

for an impacting system

with elastic collisions

(Banerjee et al. 2017b)

Fig. 10.7 Response of an impacting system in the presence of chaos. (a) Overall time-domain

displacement response also showing the mean and RMS values, (b) phase portrait of the relative

velocity and displacement for last 40 cycles (Banerjee et al. 2017b)
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qij 0ð Þ ¼ Qij

_q þ
ij 0ð Þ ¼ Gp

_Q �
ij

ð10:32Þ

The postimpact state acts as an initial condition for the postimpact equation of

motion generation. The time scale also starts from zero for each impact, and the

previous impacting time is stored and cumulated to get the final time-domain

response. Therefore, the equation of motion after jth impact can be derived from

Eq. (10.26) just by substituting the initial conditions qi 0ð Þ, _q i 0ð Þ with qij 0ð Þ, _q ij 0ð Þ.

Fig. 10.8 Response of impacting system at ηr¼ 0.6. (a) Non-dimensional displacement as a

function of non-dimensional time, (b) last seven impacting cycles of steady-state part of the full

displacement response, (c) phase portrait of the inner and outer velocity and displacement of the

steady-state part (Banerjee et al. 2017b)
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10.6 Case Studies for Impact Mass-in-Mass System

10.6.1 Response Spectrum

A case study is performed in this section to illustrate the transmittance for a specific

system, having ηs¼ 1, θ¼ 0.5, and a specific gap ratio of Δ/ug¼ 0.5. In this section,

the time histories of three different types of response categories, namely, no impact,

periodic after impact and chaotic response, are elucidated.

Figure 10.6 illustrates the transmittance spectrum of the impact system in

frequency domain in comparison with the linear oscillator. The transmittance in

case of the impact oscillator is considerably less compared to an equivalent linear

system. In the case of the linear oscillator, the existence of the two transmittance

peaks limits the attenuation bandwidth, which is the most commonly encountered

problem in the state of the art. Most interestingly, the two transmittance peaks drop

due to the presence of impact; therefore, the attenuation band increases to a great

extent.

10.6.2 Time Domain

The chaotic time-domain response of the system at ηr¼ 2.0 is illustrated in

Fig. 10.7.

At frequency ratio ηr¼ 2.0, the vibration of the inner resonating mass is in out of

phase with the external mass when the impact is not considered, and also the

relative displacement can cross the boundary of the stoppers. From the time-

domain response, as shown in Fig. 10.7a, it can be easily visualized that the

response is shifted to the negative side; therefore, first the mean of the motion is

computed, and then the RMS is calculated over the shifted coordinate system. The

value of the mean is �0.3267, and the RMS is 0.2396 in non-dimensional displace-

ment. The zoomed view of the chaotic response is depicted in Fig. 10.7b, which

shows that the inner mass hits successively the fenders. The phase portrait of the

chaotic response is shown in Fig. 10.6c which is not repeating in nature.

A time history response of the system at ηr¼ 0.6 is illustrated in Fig. 10.8, which

gives a periodic response.

The amplitude of the inner mass of the equivalent linear system crosses the limit

of the two fenders; therefore, an impact occurs. The impacting case is solved in the

time domain using the proposed algorithm. In Fig. 10.8a, it can be found that the

response gets stable and steady after few transient impacts, and this steady-state

part is shown in Fig. 10.8b. Figure 10.8c depicts the phase portrait of the steady-

state part. The steady-state response elucidates the following properties:

1. Two impacts, one with side A and another with side B, occur successively within

a single period of the impacting motion.
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2. The consecutive impacting events are not equi-spaced, which also supports the

finding of Nigm and Shabana (1983). The time between two consecutive

impacts, in this case, is 1.4524 s and 1.2160 s; therefore, the total duration of

two-steady state impacts is Tp ¼ 2.6684 s. Now, the excitation time period is

Te ¼ 2π=ω ¼ 10:4720s. Thus, the periodicity coefficient is

λ ¼ ωp

ω
¼ Te

Tp

¼ 3:9245.

3. The response of the resonating unit is out of phase with the main unit although

the linear response corresponding to that case is in the same phase. This out-of-

phase phenomenon is very interesting from the perspective of wave propagation

through these units.

The amplitude of the displacement of the outer unit is less in case of impact

system compared to that of the linear response of non-impacting case.

10.7 Conclusions

This chapter presents an algorithm and associated numerical scheme to categorize

all the discontinuous, non-smooth responses present in a mass-in mass impact

system and compute its displacement transmittance spectrum. A periodicity coef-

ficient (λ), which represents the ratio of impact frequency to the excitation, is

proposed in this paper to identify and categorize the different types of

non-smooth response. The presented algorithm can compute the response for

every real positive value of λ, which explores the full frequency domain. Depending

on the amplitude and frequency of excitation, coefficient of restitution, gap ratio,

mass ratio and structural frequency ratio, the successive internal impact between

the inner mass and the external cavity results in either multi-periodic, chaotic or

sticking types of responses.

In case of SDOF system, multi-periodic response occurs due to the successive

impact for small gap ratio, but for large gap ratio, chaotic response may occur. For

small gap ratio, successive impacts dominate the response, whereas, in case of

higher gap ratio, a coupling can be perceived between the forced vibration and

impacting response. Therefore, the chance of going into chaotic state is more for

high gap ratio.

For mass-in-mass impacting unit, the inner and outer masses are out of phase

with each other irrespective of the phase of their linear responses, and the frequency

of resulting motion increases during multi-periodic responses. As a result, the

vibration of the main structure can be attenuated over a large range of excitation

frequencies. The RMS value of the chaotic response is also less than that of the

equivalent linear response.

It can then be concluded that the impact oscillator is attractive as vibration

insulator because it has the potential to reduce the two transmittance peak charac-

teristics of linear mass-in-mass resonant units. Multi-periodic motion necessarily
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reduces the amplitude of the vibration of the outer mass; for some range, the chaotic

vibration response is also less than the equivalent linear response. Sticking type of

motion is undesirable for excitation frequencies below the first eigenfrequency of

the system because in that range it increases the transmittance.
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Chapter 11

A Semi-analytical Solution for Bending

of Nonlinear Magnetostrictive Beams

S.A. Sheikholeslami and M.M. Aghdam

11.1 Introduction

Magnetostrictive materials are a type of smart materials which produce strain when

subjected to a magnetic field. This specification gives them a great importance to be

used as sensors or actuators in various industries. Magnetostrictive materials are

utilized for these purposes in some structural elements like rods, thin films, and

beams. Although all magnetostrictive materials elongate in magnetic fields, some

specific ones are of great importance. Terfenol-D (Tb0.3Dy0.7Fe2) is one of these

materials which produces strains of about 1500 ppm in a magnetic field intensity of

200 kA/m (Aboudi et al. 2014). Due to this high amount of strain, the material is

called giant magnetostrictive material (GMM).

Many papers in the literature show the magnetization process in the magneto-

strictive materials and prove the effects of stress on magnetization. Some notable

works are the ones done by Bozorth and Williams (1945), Jiles and Atherton

(1986), Sablik and Jiles (1993), Jiles (1995), and Smith et al. (2003). Experiments

have shown that for giant magnetostrictive materials, such as Terfenol-D, the

constitutive relations are nonlinear, coupled, and prestress sensitive (Clark et al.

1988; Moffett et al. 1991; Schatz et al. 1994; Liang and Zheng 2007). In order to

model and analyze the magnetostriction phenomena, some nonlinear constitutive

relations which account for magnetomechanical couplings have been presented in

the literature. Carman and Mitrovic (1995) have proposed the standard square

(SS) model and applied the model to 1-D problems. Wan et al. (2003) showed

that the SS model is accurate for low and moderate magnetic fields, but the error

increases in the high-field region. They also proposed two 1-D nonlinear models

which describe the magnetic saturation trend. The first one is called the hyperbolic
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tangent (HT) model, and the second one is based on density of domain switching

(DDS). Comparing the results of the HT and DDS models with experiments, it has

been shown that these two models can accurately predict the magnetostrictive

strains for Terfenol-D in high magnetic fields, although they have still large

deviations from experimental results in the region of high fields (with the error of

about 30–40% for the compressive prestress of 65.4 MPa (Wan et al. 2003)).

Another nonlinear coupled model called the D-H model is presented by Duenas

et al. (1996). The D-H model can adequately predict the magnetostrictive strains in

low and moderate fields, and likewise the HT and DDS models, can follow the

saturation trend in high-field region, but fails to match the experimental results in

this region. This is because in this model, the magnetostrictive strain is proportional

to the square of the magnetization but is independent of the stress. Some other

models which consider the hysteresis effects of magnetostrictive materials are

proposed by Zheng et al. (2009) and Linnemann et al. (2009).

Based on the Gibbs free energy function, Liu and Zheng (2005) presented a

multiaxial constitutive relation for magnetostrictive materials and showed that the

model can accurately predict the magnetostrictive strains for low, moderate, and

high values of magnetic field intensity under different prestresses. However, due to

the simplification made in this model, a condition on the range of applied prestress

must also be considered. Jin et al. (2012a, b) have generalized this model to

consider the thermal effects.

There exist a large number of articles dealing with natural vibration and vibra-

tion suppression of homogeneous and laminated beam/plate structures in the

literature, whereas few works are done on flexural bending of homogeneous

magnetostrictive beams. In this paper, based on the model of Liu and Zheng

(2005), a semi-analytical approach is used to analyze the bending of magnetostric-

tive beams under applied magnetomechanical loading. In the present work, the

effects of mechanical bending moments and magnetic field intensities on deflection

of homogeneous and isotropic nonlinear magnetostrictive beams are considered.

For a given magnetic field intensity and bending moment, an algorithm is devel-

oped for computation of the magnetization, stress, and deflection for simply

supported and cantilever beams. Due to the nonlinearity of constitutive relations,

the magnetization values are found iteratively, and an analytic relation is derived

for obtaining the deflection.

11.2 Formulation of the Problem

Figure 11.1 shows an isotropic and homogeneous magnetostrictive beam which is

subjected to both mechanical and magnetic loadings.

Based on the Liu and Zheng (2005) model, the triaxial coupled constitutive

relations for a magnetostrictive material can be written as
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εij ¼ 1

E
1þ νð Þσij � νσkkδij

� �þ λs
σs

eσ ij þ 1

M2
s

3

2
λsMiMj �MkMk

λs
2
δij þ λseσ ij

σs

� �� �

ð11:1aÞ

Hi ¼ 1

k �M
L�1

�M

Ms

� �
Mi � λs

μ0M
2
s

2eσ ij � ðI2σ � 3JσÞδij
σs

#
Mj , i, j, k ¼ 1, 2, 3

"

ð11:1bÞ
where δij is the Kronecker delta; εij, σij,E, and ν are the strain components, stress

components, Young modulus, and Poisson ratio, respectively; and

~σ ij ¼ 3σij � σkkδij
� 	

=2. In addition, Hi,Mi,Ms, λs, and σs denote the magnetic

field intensity components, magnetization components, saturation magnetization,

saturation magnetostriction, and a stress parameter, respectively.

�M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 þM2
2 þM2

3

q
, Iσ ¼ σkk, Jσ ¼ I2σ � σijσij

� 	
=2, and L�1 represents the

inverse of Langevin function L(x)¼ coth(x)� 1/x. Finally, μ0¼ 4π� 10�7 is the

vacuum permeability, and k¼ 3χm/Ms, where χm stands for the magnetic suscepti-

bility of the material.

For the beam shown in Fig. 11.1, if the magnetic field intensity is applied in the

beam longitudinal direction, Eqs. (11.1a) and (11.1b) can be simplified to

εx ¼ 1

E
þ λs
σs

� �
σx þ λs

M2
x

M2
s

� λsσx
σs

M2
x

M2
s

ð11:2aÞ

Hx ¼ 1

k
L�1 Mx

Ms

� �
� λs
μ0

2σx � σ2x
σs

� �
Mx

M2
s

ð11:2bÞ

The second of Maxwell’s equations of electromagnetism (called the Gauss law for

magnetism) states that

Fig. 11.1 Magnetostrictive

beam and

magnetomechanical loading
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Hx,x þMx,x ¼ 0 ð11:3Þ
According to Eq. (11.3), for a magnetostrictive material in a constant magnetic

field, the magnetization component in the direction of the field should also be

constant. Therefore, the magnetization is a function of z only.
In the absence of any external longitudinal mechanical force, the force and

moment resultants – which can be found in any mechanics of materials textbooks

– are

ðh
2

�h
2

σxdz ¼ 0 ð11:4aÞ
ðh

2

�h
2

σxbzdz ¼ M ð11:4bÞ

whereM is the external mechanical bending moment about the y-axis. For an Euler-

Bernoulli beam with the coordinate system shown in Fig. 11.1, the total strain can

be written as

εx ¼ ε0 � κz ð11:5Þ
where ε0 and κ denote the strain of the beam middle axis and the curvature of the

beam, respectively. Rewriting Eq. (11.2a) and substituting in Eqs. (11.4a) and

(11.4b) and using Eq. (11.5) yields

ðh
2

�h
2

ε0 � κz� λs
M2

x

M2
s

� λsσx
σs

M2
x

M2
s

� �
dz ¼ 0 ð11:6aÞ

b

1
E þ λs

σs

� �
ðh

2

�h
2

ε0z� κz2 � λs
M2

x

M2
s

z� λsσx
σs

M2
x

M2
s

z

� �
dz ¼ M ð11:6bÞ

Equations (11.6a) and (11.6b) can be integrated and rearranged to get

ε0 ¼ λs
hM2

s

ðh
2

�h
2

M2
x 1� σx

σs

� �
dz ð11:7aÞ

κ ¼ 12

h3

� � M 1
E þ λs

σs

� �
b

�
ðh

2

�h
2

M2
x 1� σx

σs

� �
zdz

2
4

3
5 ð11:7bÞ

Equation (11.2b) shows that the relation of magnetic field intensity with the

corresponding component of magnetization is highly nonlinear. So the magnetiza-

tion must be obtained numerically. For the case of pure bending, M is constant

along the beam and, as a consequence, κ becomes constant. Therefore, the strain εx
will be a function of z only. For this case, the deflection is obtained analytically with
two successive integrations. The boundary conditions for a simply supported
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(SS) or cantilever (C) beam can be found in any mechanics of materials book. Thus,

the deflection can be written as

w xð Þ ¼
κ

2
x2 � lx
� 	

, for SS

κx2

2
, for C

8><
>: ð11:8Þ

where l is the length of the beam and the cantilever beam is supposed to be clamped

at x ¼ 0. For the general loading case (bending due to transverse mechanical

loading), the function κ(x) can be determined, and two successive integrations

yield the equation of the beam elastic curve.

11.3 Solution Algorithm

The following algorithm is utilized for solving the problem. First, with a given

mechanical moment, an initial guess for σx(z) is considered in the thickness

direction. With a prescribed magnetic field intensity Hx, the magnetization compo-

nent Mx can be obtained iteratively in each point through the thickness using

Eq. (11.2b). The total strain profile εx(z) is then achieved using Eqs. (11.7a),

(11.7b), and (11.5). Then, using the obtained strain profile, the stress profile can

be calculated using the rearranged form of Eq. (11.2a), which is a better estimation

for the stress profile. The iteration follows up until a desired value of convergence is

reached. The beam deflection is then found with twice integration of the curvature

κ, along with application of the boundary conditions. This method is illustrated with

a flowchart in Fig. 11.2.

11.4 Verification, Numerical Results, and Discussions

In order to validate the present method and obtain numerical results, the following

values are considered for a Terfenol-D beam with a 10 cm � 10 cm rectangular

cross section: l¼ 1m, E¼ 110 GPa, Ms¼ 796 kA/m, χm¼ 25, σs¼ 200 MPa, and

λs¼ 1550 ppm. Since there is no direct experimental work in the literature for

bending of homogeneous magnetostrictive beams and because of the fact that for

small deformations, a beam can be considered as several rods bonding together, it is

possible to compare the results of a certain point in the thickness direction (e.g., the

top point z¼ 5 cm) with those of a rod. Figure 11.3 shows the comparison of present

results with the experimental results of Liang and Zheng (2007). The data used in

this figure is tabulated in Table 11.1. The magnetostrictive strain (the contribution

of magnetization to strain, denoted by λ) is plotted versus the longitudinal magnetic

field intensity. As it can be observed, the present results match well with

11 A Semi-analytical Solution for Bending of Nonlinear Magnetostrictive Beams 337



Fig. 11.2 Flowchart of the

solution algorithm for

bending of a

magnetostrictive beam in

longitudinal magnetic field
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experimental data in low, moderate, and high fields, which implies effectiveness of

the model used in the present work for magnetostrictive beams.

In order to investigate the effect of pure magnetic field on the Terfenol-D beam,

the magnetostrictive strain is plotted versus the magnetic field intensity in Fig. 11.4.

In this case, the beam acts like a rod, and no deflection occurs due to the absence of

prestress. It can be seen that the longitudinal magnetization tends to stretch the

beam. This phenomenon happens due to the rotation of small magnetic domains and

is discussed in detail in the literature.

The variation of maximum deflection with magnetic field for a cantilever beam

subjected to a constant bending moment (M ¼ 5 kN.m) is plotted in Fig. 11.5. As it

can be seen, in the region of low fields, the maximum beam deflection increases

rapidly due to magnetic domain anisotropy. As the magnetic field intensity grows,

the magnetostriction effect dominates the deflection variations and the magnetic

domains rotate almost uniformly in the thickness direction, which in turn decrease

the curvature of the beam and, as a consequence, the deflection. In the high-field

region, the deflection becomes less sensible to the magnetic field variations due to

the magnetic saturation phenomena. It should be noted that the bending moment

Fig. 11.3 Comparison of

the present results (solid

lines) with the experimental

results (dashed lines) of

Liang and Zheng (2007)

using the data of Table 11.1

Table 11.1 The data corresponding to Fig. 11.3

Line number Prestress (MPa) Corresponding bending moment (kN.m)

1 �15.3 2.55

2 �32 5.33

3 �48.7 8.12

4 �65.4 10.9
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must be chosen in such a way that the condition�σs/2� σx � σs holds for prestress
throughout the beam thickness. Otherwise, some enormous errors and physically

impossible results may occur (Liu and Zheng 2005).

One of the most important properties of magnetostrictive materials is their

change in magnetic domain alignment. The stress tends to align the magnetic

domains perpendicular to the axis of the beam, and thus, a pre-strain is produced

in the material before the beam is magnetized. This property is reported and

discussed in some references (Liu and Zheng 2005; Jin et al. 2012a, b; Zheng and

Sun 2007). In order to show this effect on beam deflections, two plots are presented

in Fig. 11.6 for simply supported and cantilever beams. It can be seen that the

Fig. 11.4 Magnetostrictive

strain versus magnetic field

intensity for a cantilever

beam, M ¼ 0

Fig. 11.5 Variation of

maximum deflection with

magnetic field intensity for

a cantilever

magnetostrictive beam,

M ¼ 5 kN.m
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maximum deflection of a magnetostrictive beam is about two times larger than the

same beam made of conventional materials (with the same elastic modulus).

Solid lines represent λs ¼ 1700 ppm and dashed lines represent λs ¼ 0.

Figure 11.7 shows the variation of magnetization through the thickness of the

beam in a constant magnetic field intensity. Although the magnetic field is constant,

the magnetization varies nonlinearly through the thickness. This is because of the

stress-magnetization coupling of magnetostrictive materials. When a beam is

subjected to bending, the stress varies in the thickness direction and, as a conse-

quence, the magnetization varies in that direction. This fact can be seen from the

Fig. 11.6 Deflection of (a)

simply supported and (b)

cantilever beam for M ¼ 10

kN.m and H ¼ 0
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Langevin function in Eq. (11.1b). When the bending moment is low (under 1.5 kN.

m), the variation of magnetization through the thickness is approximately linear,

but in higher bending moments, due to the effect of stress in either Eqs. (11.2b) or

(11.3), the variation becomes nonlinear.

Both Eqs. (11.2a) and (11.2b) show that while the total strain is assumed to vary

linear in z-direction, the stress varies nonlinearly due to the magnetization. Thus,

the stress neutral axis will not coincide with the strain neutral axis. As an example,

the variation of stress through the beam thickness is plotted in Fig. 11.8 for a beam

subjected to uniform longitudinal magnetic field.

Fig. 11.7 Variation of

magnetization through the

thickness of the beam for

Hx ¼ 300 kA/m

Fig. 11.8 Variation of

stress through the thickness

of the beam for

Hx ¼ 300 kA/m
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11.5 Conclusions

In the present chapter, a semi-analytical solution was proposed for bending analysis

of magnetostrictive materials, based on the Liu and Zheng nonlinear constitutive

model. Through the mechanical loading, a linear prestress was introduced to the

beam. A longitudinal magnetic field intensity was applied to the beam uniformly. In

this model, the Langevin function is used to relate the magnetic field intensity and

magnetization, so the magnetization components were obtained iteratively through

the well-known Newton-Raphson method. The middle axis strain and the curvature

were next computed to obtain the linear strain profile. Next, a better estimation for

stress profile was found using the rearranged form of the constitutive relation. The

procedure then continued until a desired value of convergence was reached. As a

special case, the magnetostrictive beam subjected to pure bending was considered,

and the numerical results were obtained for two cases of simply supported and

cantilever beams. In order to validate the present results, a comparison was done

between the magnetostrictive strains obtained in the present work and those of

experimental analysis of magnetostrictive rods. In order to do the comparison, the

beam was considered to consist of several rods bonding together. So, one of these

rods was compared with experimental rod analysis in various loading conditions.

Next, the nonlinear stress and magnetization profiles and the variation of beam

deflection versus magnetic field intensity were plotted and discussed as the results.

It has been discussed that with the increase in magnetic field intensity, the beam

deflection firstly increases in the range of low to moderate fields and then decreases

smoothly until the saturation value in high-field region. It has been shown that the

Liu and Zheng nonlinear model can accurately catch the experimental results and is

suitable in one-dimensional form for beam analysis as well as rod analysis. This

method can be extended to thermal analysis of nonlinear magnetostrictive beams,

plates, and shells either in homogeneous forms or composites.
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Chapter 12

Limited Data Modelling Approaches
for Engineering Applications

Hamid Khayyam, Gelayol Golkarnarenji, and Reza N. Jazar

12.1 Introduction

Over the past several years, the study of various complex systems has been of great

interest to researchers and scientists. Complex systems and problems are very

pervasive and appear in different application areas including education, healthcare,

medicine, finance, marketing, homeland security, defense, and environmental man-

agement, among others. In these systems, many components are involved with

nonlinear interactions. Forecasting the future state of a complex system and design-

ing such a system are very costly, time consuming, and compute intensive due to

project times and technical constraints in industry. To overcome these complexities

and save considerable amount of cost, time, and energy, modelling can be utilized.

Modelling is generally defined as mathematical realization and computerized

analysis of abstract representation of real systems. It helps achieve comprehensive

insight into the functionality of the modelled systems, investigate the performance

and behavior of processes, and finally optimize the process control. Mathematical

modelling is an inexpensive and a powerful paradigm to deal with real-world

complex problems. It comprises a wide range of computational methods. This

technique can lower the costs by reducing the number of experiments and increas-

ing the safety by forecasting the events, the results of laboratory tests, or the

industrial data (Dobre and Sanchez Marcano 2007; Pham 1998; Rodrigues and

Minceva 2005).

H. Khayyam (*) • R.N. Jazar

School of Engieering, RMIT University, Melbourne, VIC, Australia

e-mail: hamid.khayyam@rmit.edu.au

G. Golkarnarenji

Institute for Frontier Materials, Carbon Nexus, Deakin University, Waurn Ponds, VIC,

Australia

© Springer International Publishing AG 2018

L. Dai, R.N. Jazar (eds.), Nonlinear Approaches in Engineering Applications,
https://doi.org/10.1007/978-3-319-69480-1_12

345

mailto:hamid.khayyam@rmit.edu.au


It is difficult to classify mathematical modelling. Any classifications depend

directly on the subject of the study. According to Rasmuson et al. (2014a), math-

ematical modelling is divided into two main categories: deterministic (based on

physical and chemical structure of the problem) and heuristic (based on experi-

mental results). Deterministic mathematical models are based on physical and

chemical theories and equations including rate of chemical reactions, mass balance,

heat balance, and momentum-energy balance (Navier-Stokes equations). This

model is constructed entirely from the prior knowledge and physical insight.

Since there are not sufficient theoretical support and experiments by deterministic

models to especially analyze complex systems, this type of problems can be solved

by heuristic modelling techniques. In cases when little is known about the actual

system process and no or some physical insight is available, these techniques are

solutions to obtain models. These models are used when the system is very

complicated; time, resources, and theory are limited; and developing analytical

models is very difficult and even impossible. Although the development of these

models may require less effort and is simpler, they are the only relevant methods for

restricted range of operation and scale-up. These techniques are highly developed

technologies and effective modelling tools that can be used to deal with complexity

and vague parts of a system process. Heuristic modelling is to predict the proba-

bility of a result. To build an accurate data model, sufficient amount of data is

needed. The number of data depends on the nature of the problem, the quality of the

data, and the proportion between the numbers of instances and the number of

attributes. One of the basic principles in classical statistics is the law of large

numbers. Based on this principle, the empirical distribution function Fl(x) con-
verges to the distribution of F(x) when the number of data tends to infinity. In other

words, in order to get a reliable mathematical model using machine learning

methods, the training set should include infinite number of samples. Algorithms

use data to find the patterns and the more data advances the accuracy of the model.

In many situations in real world, however, it is not possible to have so many

samples for training and mathematical modelling. In these situations, the enter-

prises must deal with a small number of data, such as dealing with pilot production

of a new product in the early stages of a system, small number of customers, and

some rare diseases when a few medical records are available (Ruparel et al. n.d.).

Small data set conditions exist in many fields, such as fault diagnosis, disease

diagnosis, or deficiency detection in manufacturing industry, mechanics, aviation,

and many more (Mao et al. 2006; Li and Wen 2014a). One main problem with small

data set is overfitting in model development which gives good results on training

data and poor performance on testing data (Ali 2009).

There are various definitions regarding small sample size. According to one

study, small data is rarely less than 5, sometimes between 5 and 20, often between

30 and 50 or 50 and 100, and some cases between 1000 and 3000. Small data are

rows of observations and columns of variables which do not include statistical

outliers and influential points (Ratner 2011). Based on central limit theorem

(Ross 2009) which is one of the basic theories in statistics, when the size of a

sample is large (�25 or 30), the x-bar distribution is almost normal without the
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population distribution being considered. Hence, the sample size less than

25 (or 30) is considered as small. According to Huang (2002), the definition of

concept “small” is as follows.

Suppose X ¼ {xi| i ¼ 1, 2, . . ., n} is employed as a sample from a population. In

order to determine a relationship R defined on Ω, X is employed. Γ is defined as the

operator space, which can be used to estimate R with a given sample. To indicate

the value of R at a point x 2 Ω, r(x) is used. r γx xð Þ is the estimate with X by γ, and
r γx xð Þ � r xð Þ�� �� is the estimate bias, 8 γ 2 Γ, ∃ x 2 Ω.
X is called small if and only if its size n is too small to obtain the required

accuracy which is the similarity between r γx xð Þand r(x) for identifying a relationship
of the population from which X is employed. Hence, based on different applica-

tions, the definition of sample size varies due to the level of required accuracy.

In order to describe or explain the establishment of validity, statistical reliability,

and replicability to deal with real-world applications for small sample size, design

of experiment (DOE) methods including factorial, response surface, and Taguchi

are used (Davim 2015). Researchers and engineers construct the suitable DOE

methods that are best for predicting the outcome data.

Some developed DOE based on Taguchi method to reduce experimental tests

and useful for data modelling have been constructed (Khayyam et al. 2015a, 2017).

Developing an appropriate forecasting model with smaller variance of forecasting

error and good accuracy based on small data sets will boost the management

effectiveness and help the enterprises to meet the competitive environment

(Li et al. 2012). In data modelling, the most prevailing categories of machine

learning techniques and different types of prediction for system identification are

classification and regression. These methods are supervised learning problems,

where a system is presented with input and outputs, and the aim is to map inputs

to outputs through learning a function. Classification is one of the most commonly

used prediction methods. In this method, an observation needs to be assigned to a

predefined class or group. Many industrial problems are recognized as classical

problems which can be solved mathematically in a nonlinear method. A regression

problem is a type of classification except when the output variable is a real value

instead of a category (Ali and Smith 2006). In addition, it is used to understand and

explore the forms of the relationships between independent variables that are

related to the dependent variable.

These techniques and methods have been described in the following sections. It

must be noted that the categorization of these techniques is barely based on their

ubiquity in industry. Many of the methods mentioned below can be applied to both

classification and regression problems. This section is organized as follows. Sec-

tions 12.2 and 12.3 present the data modelling techniques including classification

and regression. Section 12.4 describes the resampling techniques used in these

modelling techniques for data modelling. Section 12.5 presents some of the appli-

cations of these methods for limited data. Conclusion remarks are given in the last

section.
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12.2 Classification Techniques

Classification is one of the most used machine learning methods. Classification is

the prediction of categorical (discrete or unordered) class labels for unlabeled

patterns based on the observations. Models or classifiers are constructed to describe

important data classes in classification. Classification assists in better understanding

of the data (Han et al. 2011). Let {(x1, y1), . . ., (xN, yN} be training set of

q-dimensional patterns X¼ xf gN
i¼1 � Rq and a corresponding set of lables Y¼

yf gN
i¼1 � R. The aim of classification is to predict the class label y0 for an unseen

pattern x0 by constructing a model f. The classifier should be able to assign patterns

without labels to labels of patterns with identified assignment that are alike.

12.2.1 LDA and QDA and PCA

In order to improve the generalization ability and robustness of a classifier, various

methods can be used. Principal component analysis (PCA) and linear discriminant

analysis (LDA) are two frequently used feature extraction methods. LDA is a

supervised technique. In discriminant analysis, various classes belong to a known

probability density function. The covariance matrix and mean of classes are esti-

mated, and the new sample belongs to the class with the highest probability. In

LDA, the covariance matrix and mean of the distribution of class models are the

same. However, in quadratic discriminant analysis (QDA), the covariance and

mean of various classes are different (Sharma and Paliwal 2015). PCA is an

efficient unsupervised technique to analyze the data of high dimension and to find

a smaller number of unrelated variables called principal components from a large

set of correlated variables without loss of information. The aim of this method is to

describe the maximum amount of variance with the fewest number of principal

components. In general, in terms of classification performance, LDA outperforms

PCA (Ilin and Raiko 2010).

LDA method for limited data can be found in many application areas including

bioinformatics, text and face recognition, etc. The PCAmethod can also be found in

many application fields including petroleum, nano-material manufacturing, and

nuclear power plant industries.

12.2.2 K-Nearest Neighbor Algorithm (K-NN)

One of the famous classification methods which is simple yet powerful is K-NN

classifier. It can be used for both classification and regression problems. However, it

is more widely used in classification problems in the industry. Based on the idea

behind the K-NN classifier, useful label information can be obtained from the
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nearest patterns to a target pattern x0. The class labels of most of the K-nearest

patterns in data space are predicted with this class (Fig. 12.1).

A similarity measure should be defined in data space, and Minkowski metric is

employed for this purpose:

X0 � Xj

�� ��p ¼ Xq

i¼1
xið Þ0 � xið Þj
��� ���p� �1=p

ð12:1Þ

which is the Euclidean distance when p ¼ 2. In the case of binary classification,

{1,�1} are used as labels, and K-NN is as follows:

fK�NN x0ð Þ ¼ 1 if
P

i2NK x0ð Þyi � 0

�1 if
P

i2NK x
0ð Þyi < 0

(
ð12:2Þ

where K is the neighbor size and NK(x
0) is the set of indices of the K-nearest

patterns.

In the case of multi-class classification, K-NN gives the class label of most of the

K-nearest patterns in data space for an unseen pattern x0:

fK�NN X
0

� �
¼ arg max y ¼ Y

X
i2NK x

0ð ÞL yi ¼ yð Þ ð12:3Þ

When the argument of indicator function L(•) is true, it returns 1; else it

returns zero.

The selection of value of k which determines the locality of K-NN is of myriad

importance. Smoother decision regions and probabilistic information are obtained

by large K values. However, it has a damaging effect when too large values of K are

selected due to destroying the locality of the estimation. Odd numbers are usually

chosen for values of K. The value of K can be grid searched by determining the

classification error rate using a test set (Peng et al. 2017). K-NN has been used in

many fields of application including computer vision, pattern recognition, image

classification, intrusion, and fraud detection.

Fig. 12.1 K-nearest neighbor algorithm for (a) k ¼ 1, (b) k ¼ 2, and (c) k ¼ 3 (Ertekin 2012)
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12.2.3 Support Vector Machine (SVM)

SVM is a fairly new powerful intelligent and flexible supervised learning algorithm

used classification problems and pattern recognition. It was developed by Vapnik

(Kulkarni and Harman 2011; Vapnik 1999; Burges 1998) and is based on structural

risk minimization. Global optimal points can be reached using this method, and it

does not have the local minimum problem. SVM can be used for both regression

and classification. In problems of small data sets, it has special generalization

ability (Chen 2004).

Support vector machine (SVM) forms hyperplanes in a multidimensional space

that draws a boundary between cases of different class labels (Chapelle et al. 2002).

SVM builds an optimal hyperplane by minimizing an error function using an

iterative training algorithm. SVM models can be divided into four different cate-

gories based on the error function (Abd and Abd 2017):

• Classification SVM Type 1 (C-SVM classification)

• Classification SVM Type 2 (nu-SVM classification)

• Regression SVM Type 1 (epsilon-SVM regression)

• Regression SVM Type 2 (nu-SVM regression)

SVM is part of maximum margin classifiers which define a boundary hypersur-

face with maximum distance from the training points of the two classes (Fig. 12.2).

A traditional SVM boundary is a vector w 2 Rq and an offset b which constructs

a hyperplane (w,b) in Rq:

WTZþ b ¼ 0 Z2Rq ð12:4Þ
Space Rq is divided into two regions and by the hyperplane (w,b):

Fig. 12.2 A separating

hypersurface with

maximum distance from the

training points of the two

classes (Leopold and

J. Kindermann 2006)
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However, only plane boundaries are constructed with this hyperplane which

makes it inadequate for many highly nonlinear engineering problems f(x) ¼ V0.

This problem can be solved by selecting a suitable nonlinear transformation

Z ¼ ϕ(x) : Rs ! Rq which makes it possible to define curved boundaries in Rs by

using the same approach. The separation of Rs is performed based on the sign of the

decision value d(x) in this case.

d xð Þ ¼ TWϕ xð Þ þ b ð12:6Þ
Classes X� and X+ can be predicted as follows:

Ĉþ ¼ X2Rq :f WTϕ xð Þ þ b < 0
�

Ĉ�¼ Z2Rq : WTϕ xð Þ þ b > 0
� � ð12:7Þ

SVM parameters for a good approximation of the boundary B must be selected

to separate the sets C� and C+ (defined by the sign of f(x) � V0) and Ĉþ and Ĉ�
(defined by the decision value d(x)). The SVM boundary B can then approximate

the limit hypersurface:

B̂ ¼ z : d zð Þ ¼ 0f g
The optimal values of w and b can be obtained using the training set DN

defined as

D ¼ xi; cið Þf g with ci ¼ c xið Þ, i ¼ 1, 2, ::,N

and the optimization problem:

argminw,b,ξ ¼ 1

2
wk k2 þ C

XN

i¼1
ξi

Subject to ¼ ci w
Tϕ xið Þ þ b

� 	 � 1� ξi ¼ ξi � 0, i ¼ 1, :: . . . ,N ð12:8Þ
A minimum of w is the classification margin (maximum distance between the

boundaries and the separated classes). The combination of the other term with the

first constraint is the classification error for the training set (xi 2 Ĉ� and xi =2 C�, or
xi 2 Ĉþ and xi =2C+). Hence, the conflicting objectives of minimizing the

misclassification error and maximizing the classification margin are defined by

Eq. (12.8). In order to find a favorable trade-off between these two objectives,

parameter C should be tuned. High C will increase the misclassification error and

decrease the classification margin. A low value of C decreases the misclassification

error and increases the classification margin. The optimal value ofw depends on the

weighted sum of the transform of the training setϕ(xi ):
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w ¼
XN

i¼1
ciαiϕ xið Þ ð12:9Þ

The sign of ci ¼ � 1 and the magnitude of the Lagrange multipliers αi �0 in the

first constraint of Eq. (12.8) define the weighting coefficients of each summation

term in Eq. (12.9). By combining Eqs. (12.6) and (12.9), the kernel-based SVM is

presented as

d xð Þ ¼
XN

i¼1
ciαik x; xið Þ þ b ð12:10Þ

where the kernel function is k(x, y) ¼ ϕT(x)ϕ(y).
Typically, αi > 0 only for a subset of the N training data points, adequately close

to the boundary. The points in this subset V � D are support vectors, and the

summation of Eq. (12.8) is limited to less than N terms due to their definition:

d xð Þ ¼
X

xicið Þ2vciαik x; xið Þ þ b ð12:11Þ

C has a great effect on the number of support vector set. The number of support

vectors increases with high C and results in high-curvature sections in the bound-

ary; however, low C decreases the number of the support vectors and smooths the

surface. Many kernel functions can be used for k(x, y). The most frequently used

one is radial basis function kernel which is defined as

k x; yð Þ ¼ e�γ x�yk k2 ð12:12Þ
SVM has been used in many fields of applications, including image classification

and recognition, fraud detection, and text categorization (Cholette et al. 2017).

12.2.4 Decision Tree (DT)

A decision tree is a flowchart-like tree structure with many branches and nodes. It is

a very fast and easy method to be used. Trees can be used for both classification and

regression problems. However, it is widely used in classification problems. Large

dimensional data can be handled by decision trees. The non-leaf nodes (internal

nodes) are tests on an attribute, the branches denote the result of the test, and each

leaf node (or terminal node) represents label of a class and the predictions. The root

node is the attribute that performs the best classification on data. To split the data,

the second best attribute is used. The issue at each node is to choose the variable and

how to split. The decision tree algorithms are due to the method of attribute

selection used to test the instances at each node. In order to improve accuracy of

the classification on unknown data, many branches which are outliers or noise

should be removed by tree pruning (Han et al. 2011) (Fig. 12.3).
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Decision tree generation algorithm is as follows:

Input:

• Data partition, D, the training sets and their class labels

• Attribute list, the candidate attribute sets
• Attribute selection method, a method which best divides the data sets into

separate classes by a splitting criterion. Split point or splitting subset and

splitting attribute are parts of this criterion. The common method used is

information gain or Gini index. Gini index method results in binary trees.

Information gain allows growth of two or more branches from a tree.

Output Decision tree

Method

Generate node N

If all the tuples in D belong to class C,

N is a leaf node with label of class C.

If attribute-list is empty then

Assign N as a leaf node with the label of the majority class in D

Apply attribute-selection-method to find the best splitting-criterion and label

node N

If splitting-attribute has a separate value and it is not just a binary tree then

Attribute-list ¼ attribute-list-splitting –attribute

For each result j from splitting–criterion

Assign the set of data in D which satisfy the outcome j as Dj

If Dj is empty

Let node N be a leaf labeled with the label of majority class in D

YES

L1
Y1

L3
Y3

L4
Y4

L5
Y5

L2
Y2

YES

X1 £ T1

X2 £ T2 X1 £ T3

X2 £ T4

YES

YES

NO

NO

NO

NO

Fig. 12.3 An example

of a decision tree

(Ghiasi and Mohammadi

n.d.)
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Else let node N be the node returned by generate–decision tree (Dj, attribute list)

End for

Return N

Decision tree has been used in different application areas such as financial

analysis, manufacturing and production, astronomy, and many more (Rokach and

Maimon 2014).

12.2.5 Bayesian Approaches

Bayesian classification is a probabilistic model which learns the distribution of the

instances with different class values to solve the classification problem.

12.2.5.1 Bayesian (Naive Bayes)

Naive Bayesian (simple Bayesian) classification is one of the most easy and

efficient classification methods. Let X be a sample of data without any labels. H

is a hypothesis that X is a part of a specified class, C. The aim is to determine

P(H|X) showing our confidence in the hypothesis after X is given. To calculate the

posterior probability P(H j X) using P(H ), P(X), and P(X|H), Bayesian theorem is

used. The posterior probability is calculated as follows (Shatovskaya et al. 2006):

P HjXð Þ ¼ P XjHð Þ:P Hð Þ
P Xð Þ ð12:13Þ

Assume that we have a set of m samples S¼ {S1, S2, . . ., Sm}. Each sample is an

n-dimensional feature vector {X1,X2, . . .,Xn} which is the training data set. Xi
values are related to attributes A1, A2, . . ., An, respectively. Suppose that c1, c2, . . .,
ck are k existed classes and each sample belongs to one of these classes. The aim is

to predict the class for sample X with an unlabeled class. This is possible by using

the highest conditional probability P(Ci|X), i ¼ 1, 2. . ., k.
The naive Bayesian theorem is calculated as given below:

P CijXð Þ ¼ P xjCið Þ:P Cið Þ
P Xð Þ ð12:14Þ

In order to maximize P (Ci|X), P(X|Ci). P(Ci) should be maximized as P(X) is
constant for all the classes.

P(Ci) is calculated as follows:

P Cið Þ ¼ number of trainning samples in class Ci

m
ð12:15Þ

where m is the total number of training samples.
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As there is a conditional independence between attributes, we can calculate

P (Ci|X) as follows:

P Ci j Xð Þ ¼
Yn
t¼1

P Xtj Cið Þ ð12:16Þ

where Xt are attribute values in sample X.
The probabilities P(Xt|Ci) can be estimated from the training data set calculating

for each attribute columns. In order to calculate P(Xt|Ci), density functions such as

Gauss, lognormal, gamma, and Poisson distributions can be used. P(Xt|Ci) is

calculated as follows with the assumption of Gauss distribution for data:

P XtjCið Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2i

p e
� xt�μið Þ2

2σ2
i ð12:17Þ

where μ is the mean and�1 < μ< +1 and σ is the standard deviation and σ > 0

(Catal et al. 2011).

Naive Bayes has been used in many fields of application including text classi-

fication, anomaly, fraud, and fault detection in engineering.

12.2.5.2 Bayesian Belief Network (BBN)

This method is a probabilistic graphical model which finds the dependencies among

variables (Pearl 2014). BBN is used when available data is incomplete, uncertain,

and inaccurate. It is based on directed acyclic graph (DAG) with nodes denoting the

variables and directed links presenting the probabilistic conditional dependence. In

this method, the variables are related in a family relationship. Suppose x1 and x2 are
the parents and y is a child. x1 is a parent of y if a link connects x1 to y. Mutual

excusive states define the variables, and conditional probabilities quantify their

relations for each feasible combination of these states.

For Nmutually exclusive hypotheses (i¼ 1, 2, . . ., n), Bayes theorem determines

the unknown parameter as follows:

p HijEð Þ ¼ p EjHið Þ∗p Hið ÞPn
i¼1

p EjHið Þ∗p Hið Þ
ð12:18Þ

where p(Hj|E) is the posterior probability for the hypothesis H( j ¼ 1, 2, . . ., n)
based on the acquired evidence E. p(Hi) is the prior probability. p(E|Hj) shows

conditional probability. When Hj is true, the denominator which is a constant value

shows the total probability. Unconditional or prior probability is the likelihood of

an event before any evidence is given. Posterior probability is the likelihood after

the observation. This equation is used in BBN (Janssens et al. 2006).
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BBN is created as follows:

1. Identifying variables that have effect on the response variable.

2. The conditional dependence of the variables is shown by arrows. It is important

that the connection of variables is based on cause-effect assumption and not on

the correlation.

3. By determining prior probability of each state, the mutually exclusive and

collectively exhaustive states are given to parent variables. Unknown apriority

is for the unconditional probability of variables with no parent nodes. In this case

for each state 1/n probability is assigned where n is the total number of states of

variables.

BBN has been used in many fields of application including accident modelling

and risk analysis in chemical and process industry, fault diagnosis, pattern recog-

nition, and knowledge discovery.

12.2.6 Ensemble Method

Ensemble method is a combination of multiple models such as classifiers to create

an improved learning method which is high in performance. In this method, the

unseen data is passed to each base classifier which returns a vote. The ensemble

method returns the final class prediction based on the majority of the votes of the

classification models. This method is suitable when there is not enough data

available to present the distribution of the data. This method is chosen when there

is uncertainty of choosing the computational model to solve the problem. This

method is also used when the given classifier is not capable of solving the problem

due to the complexity of the method. The ensemble methods such as bagging,

boosting, and random forests are to process the multiple votes to reach the final

prediction (Cosma et al. 2017) (Fig. 12.4).

Fig. 12.4 An example of ensemble learning (Xu et al. 2015)
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This method has been used in many application areas such as malware fraud and

intrusion detection, remote sensing, speech, person recognition, and many more.

12.2.6.1 Random Forest (RF)

RF is an efficient ensemble method and is a cluster (ensemble) of many decision

trees where each tree is built by bootstrap sampling (sampling with replacement)

(Breiman 2001; Datla 2015). It can be used for both classification and regression

problems. However, it is extensively used in classification problems. It was derived

from concepts of bagging (bootstrap aggregating) introduced by Breiman (1996).

RF adds randomness to bagging. In a traditional tree, best split among all variables

is selected to split each node. In a random forest, the split occurs by randomly

choosing the best among a subset of predictors. This approach is very user-friendly,

performs well, and avoids overfitting. Two parameters are involved in this method:

the number of trees in the forest and the number of variables in the random subset at

each node (Fig. 12.5).

The algorithm of random forests is given below:

• Select ntree bootstrap samples from the data set.

• Construct an unpruned tree for each bootstrap sample as follows: at each node,

the best split is chosen among randomly sampled mtry of the predictors. Predict

the unknown data by combining the predictions (majority votes for classifica-

tion, average votes for regression) of the ntree trees (Liaw and Wiener n.d.).

This method has been used in many application areas such as fault detection,

remote sensing, wind power prediction, mineral processing, and many more.

Fig. 12.5 An example of random forest (Stenger n.d.)

12 Limited Data Modelling Approaches for Engineering Applications 357



12.2.6.2 Adaptive Boosting (AdaBoost)

In order to improve the classification accuracy of classification problems, boosting

method is used. A weak learning algorithm is converted into a strong learning

algorithm with good classification performance. The original boosting approach is

boosting by filtering which requires a large amount of training data. AdaBoost has

solved this problem. AdaBoost is an ensemble method boosting algorithm that can

be used for classification or regression problems. Nonetheless, it is usually used in

classification problems. In this method, the misclassified training samples are given

high weights in the next iteration.

The generic algorithm of AdaBoost for classification problems is given below

(Freund and Schapire 1997; Zhang et al. 2008; Schapire 2003):

Set of training samples: (x1, y1), . . ., (xm, ym); xi 2 X,yi 2 {�1, +1}

Initial weights D1 ið Þ ¼ 1
m

For t ¼ 1, 2, . . ., T,

Find ht ¼ argminhj2H εj ¼
Xm

i¼1
Dt ið Þyi 6¼ hj xið Þ ð12:19Þ

If εt � 1/2 then stop

Set αt ¼ 1

2
log

1� εt
εt

� �
ð12:20Þ

Assign Dtþ1 ið Þ ¼ Dt ið Þexp �αtyiht xið Þð Þ
zt

ð12:21Þ

where zt is the normalization factor.

Result of the ultimate classifier

H xð Þ ¼ sign
XT

t¼1
αtht xð Þ

� �
ð12:22Þ

This method is widely used in many application areas including computer

vision, image retrieval, facial recognition, and many more.

12.2.7 Kernel Logistic Regression (KLR)

KLR is the kernel and nonlinear form of logistic regression, which is a recognized

classifier in the field of statistic leaning. The KLR algorithm is a method which

reduces the dimension and is used for data with high dimensionality and small data

sets. KLR overcomes the limitation of logistic regression with nonlinear boundaries

by using kernel trick. Kernel trick maps original data of X into high-dimensional

feature space of F. Then it detects the relations by using linear pattern analysis.
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Let D ¼ xi; tið Þf g l
i¼1, xi2X2Rd , ti2 0; 1½ � is the labeled data training set.

A kernel function K:X � X- > R defines the feature space F(ϕ:X- > F). In the

feature space, the kernel function defines the inner product of the images of input

vectors. The most common kernel function is the radial basis function (RBF),

k x; x
0

� �
¼ exp γ k x� x

0 k2
n o

ð12:23Þ

A typical logistic regression model is built in the feature space as follows:

logit y xð Þf g ¼ w:ϕ xð Þ þ b logit pð Þ ¼ log
p

1� p
ð12:24Þ

By minimizing a cost function signifying the regularized negative log likelihood

of the data, the optimal model parameter (w, b) is determined as follows:

L ¼ λ wk k2 �
X l

i¼1
tilogμi þ 1� tið Þlog 1� μið Þ ð12:25Þ

where λ (regularization parameter) is controlling the bias-variance trade-off. The

optimization problem can be written as

w ¼
X l

i¼1
αiϕ xið Þ ) logit y xð Þf g ¼

X l

i¼1
αik xi; xð Þ þ b ð12:26Þ

By using Newton method or a least-square procedure, the optimal model param-

eter (α,b) can be found (Cawley and Talbot 2004).

This method has many applications in aerospace, pattern recognition, signal

processing, and many more.

12.3 Regression Techniques

The regression method is similar to classification methods. The only difference is

that instead of finding patterns that determine a class, it finds patterns that determine

numerical values.

The aim of regression is modelling the effect of independent variables x1,. . ., xk
on a response or dependent variable y. In regression modelling, the aim is to

develop a model in order to make predictions about the response variables, based

on independent variables.

12.3.1 Linear Regression

It is one of the most widely known modelling techniques. This method is massively

used for fitting a quantitative response variable as a function of one or more

predicator variables. One of the most common methods used for fitting a regression
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line is the least-square regression (Powell 1965; Motulsky and Ransnas 1987;

Rasmuson et al. 2014b). This method is called least square as it minimizes the

sum of the square of the distances of the training data points to the prediction curve.

The problem should be solved iteratively for nonlinear systems. In order to do this,

the parameters should be initiated (i.e., best guess values should be provided). The

nonlinear regression then improves the initial parameter values until the iteration

does not further improve the fit.

To perform these iterations at low computational cost, many algorithms can be

used. The most common algorithms include the steepest descent, GNA, and

Levenberg-Marquardt algorithm (LMA) (Rasmuson et al. 2014b).

12.3.2 Artificial Neural Network (ANN)

Artificial neural network is considered as a highly developed technology extended

to all kinds of areas in prediction, control, and process identification (Li and Pengfei

2013). ANNs are being increasingly used for nonlinear regression and classification

problems. Nonetheless, it is massively used in regression problems in the industry.

When a complex nonlinear relationship exists in given data sets, ANN may provide

a more competitive model than the conventional least-square methods (Hunter et al.

2012). It can compute values from inputs, and due to its adaptive nature, it is

capable of machine learning.

The ANN consists of neurons connected to each other with a collection of links

called synapses. Neurons are positioned in layers and each layer’s neurons work in

parallel. It consists of an input layer, hidden layers, and an output layer (Davim

2012) (Fig. 12.6). This method provides poor insight into the modelled relationship

and significance of many inputs due to the black box nature (Lawal 2011).

The interconnection of different neuron layers, updating the weights of the

interconnections, and the activation function are the three types of parameters in

ANN. In addition, the training algorithms are the key parameters in neural network

applications. The training is to find appropriate weights such that the neural

network not only fits the known data but also predicts new inputs. A good artificial

network should be able to minimize both the learning error and the prediction error.

Most of the algorithms used in training ANNs employ some form of gradient

descent, using backpropagation to calculate the gradients. The training algorithms

for ANN are scaled conjugate gradient (SCG), Bayesian regularization (BR), and

LM (Kermani et al. 2005; Cherkassky and Mulier 2007). SCG algorithm takes less

memory; however, it has good generalization for noisy data sets. Training auto-

matically stops in relation to adaptive weight minimization (regularization). BR

typically takes more time. According to several researchers (Kermani et al. 2005;

Hagan and Menhaj 1994), LM algorithm has good convergence properties. It takes

more memory but less time. When the generalization is no longer improved, the

training automatically stops. The amount of oscillation in learning procedure is

360 H. Khayyam et al.



reduced by this method. It can fit any practical functions since it is the fastest

backpropagation algorithm for training and prediction purposes.

Artificial neural networks have been applied successfully to many manufactur-

ing and engineering areas including image processing, information retrieval,

remote sensing, energy cost prediction, and chemistry-related problems.

12.3.3 Support Vector Regression (SVR)

SVR is a specific class of SVM. In this method, we embed the data into a higher-

dimensional feature space, and the data is fitted to a linear function with minimum

complexity to the feature space (Gunn 1998; Vapnik et al. 1996). In other words, a

nonlinear regression problem is mapped into a linear regression problem. This is

done by applying the kernel functions. Three common kernel functions are the

polynomial sigmoid and the Gaussian radial basis function (RBF) kernel. The

Gaussian kernel is perhaps the most frequently used kernel function due to its

excellent prediction performance and less free variables to be adjusted (Keerthi and

Lin 2003).

Given train data set {(x1,y1), (x2,y2), ..., (xn,yn)}, SVR method finds a function

which describes the relationship between x and y. Equation (12.27) presents the

function:

Fig. 12.6 An example of

neural network
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f xð Þ ¼
Xn

i¼1
wφ xð Þ þ b ð12:27Þ

where φ(x) maps x to a new space when the relations between x and y are nonlinear.
The relationship of φ(x) and y is linear in the new space. A linear hyperplane is

determined by the variables w and b that can fit the training data set.

The aim of SVR is to lower the expected risk. This has been shown in

Eq. (12.28):

Remp ¼ 1

n

Xn

i¼1
Lε yi; f xið Þð Þ ð12:28Þ

where Lε is the ε-insensitive loss function in Eq. (12.29).

Lε y; f xð Þð Þ ¼ 0, if y� f xð Þj j � ε
y� f xð Þj j � ε, Otherwise


ð12:29Þ

In order to minimize the expected risk using ε-insensitive loss function, SVR

uses linear regression and minimizes kw2k to decrease the complexity of the model.

This has been shown in Eq. (12.30):

minw,b,ξ,ξ∗
1

2
w2
�� ��þ C

Xn

i¼1
ξi þ ξ∗i
� 	

Subject to:

wϕ xið Þ þ b� yi � εþ ξi ,

yi � wϕ xið Þ � b � εþ ξ∗i ,

ξ∗i , ξi � 0, i ¼ 1, 2, . . . , n:

8><>: ð12:30Þ

where ξi, ξ∗i (i ¼ 1,. . . .,n) are the slack variables which are nonnegative and show

the difference between the real value and f(x) of training data.

This optimization problem can be changed to a dual problem and can be solved

using Eq. (12.31):

f xð Þ ¼
Xn

i¼1
a∗i � ai
� 	

K xi; xð Þ þ b ð12:31Þ

Subject to:

0 � a∗i � C, 0 � ai < C

where ai and a
∗
i are the Lagrange multipliers obtained from the dual problem. The

inner product of φ (xi) and φ (xj) determines k(xi, xj) which is the kernel function.
In this study RBF was selected as the kernel function which is represented by

Eq. (12.32):
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k x; zð Þ ¼ exp
k x� zk2

2γ2

� �
ð12:32Þ

where γ should be set correctly as well as C and ε in Eqs. (12.26) and (12.27)

(Hu et al. 2016). The general ability of SVR method is highly affected by fitting

parameters. Inappropriate selection of parameters in SVR causes under-fitting or

overfitting (Cai et al. 2009). The main parameters that should be carefully tuned are

the C which is the trade-off between error minimization and margin maximization,

the value of ε to build the regression function by managing the number of support

vectors, and the parameter γ in RBF (Eq. 12.28). However, no common rules are

presented to determine these parameters (Vapnik and Vapnik 1998).

SVR has been applied successfully to many application areas including signal

processing, aerospace, environment and urban systems, petroleum science, and

many more.

12.3.4 Gaussian Process Regression (GPR)

GPR models are kernel-based probabilistic and nonparametric models. It can

produce a stochastic function with probability distribution as the output (Rasmus-

sen 2004). The properties of a Gaussian process model are controlled by the

covariance function. A Gaussian process is defined by mean function m(x) and its

covariance function k (x, x’) of a real f(x) as follows:

m xð Þ ¼  f xð Þ½ � ð12:33Þ
where is the expectation.

k x; x0ð Þ ¼  f xð Þ � m xð Þð Þ f x0ð Þ � m x0ð Þð Þ½ � ð12:34Þ
and Gaussian process will be

f xð Þ 	 GP m xð Þ; k x; x
0

� �� �
ð12:35Þ

Commonly used covariance functions are the following equations:

Constant : kC x; x0ð Þ ¼ C ð12:36Þ

Linear : kL x; x0ð Þ ¼ xTx0 ð12:37Þ

Squared exponential : kSE x; x0ð Þ ¼ exp � dj jj j2
2l2

 !
ð12:38Þ
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Matern : kMatern x; x0ð Þ ¼ 21�υ

Γ νð Þ

ffiffiffiffiffi
2ν

p j x� x0 j
l

� �ν

kν

ffiffiffiffiffi
2ν

p j x� x0 j
l

� �
ð12:39Þ

Periodic : kP x; x0ð Þ ¼ exp � 2 sin 2 d
2

� 	
l2

� �
ð12:40Þ

Polynomial : kPoly x; x0ð Þ ¼ σ2 xTx0 þ C
� 	d ð12:41Þ

where d ¼ x � x0 and σ2 is the variance. The parameter l is the characteristic length
scale of the process. kν is the modified Bessel function of order ν and Γ(ν) is the
gamma function evaluated at ν. Moreover, different combinations of covariance

functions can be defined in order to include various understanding about the data set

(Rasmussen 2004). Several types of GPs can be applied in order to find the most

appropriate covariance and mean functions based on negative log likelihood and

root-mean-square error (RMSE) results.

Gaussian process has been applied successfully to many engineering areas such

as wind speed prediction, modelling, and control in process engineering.

12.3.5 Thin-Plate Spline (TPS)

TPS is a popular technique used in data fitting and prediction as it is insensitive to

noise (Bookstein 1989). These splines are the generalization of the natural cubic

splines in 1D. The term “thin-plate spline” is based on choosing a function that

minimizes an integral that represents the bending energy of a surface (Bookstein

1989):

1

n

Xn

i¼1
f
�
xi � yi

�� ��2� �
þ λBendingEnergy ð12:42Þ

where

Bending Energy 2D ¼
ZZ

∂2
f

∂x2

 !2

þ 2
∂2

f

∂x∂y

 !2

þ ∂2
f

∂y2

 !2
0@ 1Adxdy ð12:43Þ

Any radial basis function can be the choice of the above function f(xi), but a
common choice is as follows:

f xð Þ ¼
Xn

i¼1
αiki xð Þ þ

Xm

j¼1
αnþjφj xð Þ ð12:44Þ

ki xð Þ ¼ x� xik k2 ln x� xik kð Þ ð12:45Þ
where x ¼ [x, y, z] and ϕ(x) ¼ [1, x, y, z].
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The spline parameters (vector a) can be assessed by solving the linear equations

below:

Aa ¼ y ð12:46Þ

A ¼ k � α2 λI nð Þ p
p

0
0

� �
ð12:47Þ

a ¼ a1 . . . ::anþ3½ �0; y ¼ y1 . . . . . . :yn 01�m½ �0 ð12:48Þ

k ¼
k1 x1ð Þ . . . kn x1ð Þ
. . . . . . . . .

k1 xnð Þ . . . kn xnð Þ

24 35; p ¼ 1 . . . x1
1 . . . xn

� �
ð12:49Þ

α ¼ mean k :ð Þð Þ
and I(n) is the n by n identity matrix.

TPS has been used in many application areas such as remote sensing, compos-

ites, pattern recognition, environmental modelling, and many more.

12.3.6 Taylor Polynomial (TP)

Another method for data modelling in which nonlinear models are to be fitted to

data is Taylor polynomials.

Taylor polynomial is a suitable method in interpolation curve fitting. Supposing

f is a function which is differentiable at 0, the nth Taylor polynomial of f at 0, shown
as pn, is defined as

pn xð Þ ¼
Xn

k¼0

f k 0ð Þ
k!

xk ð12:50Þ

where fk(0) shows the kth derivative of f at 0. In particular, f0(0) is the value of f at
0. Explicitly

pn xð Þ ¼ f 0ð Þ þ f 0 0ð Þxþ f
0 0
0ð Þ
2

x2 þ f
0 0 0
0ð Þ

6
x3 þ . . .þ f nð Þ 0ð Þ

n!
xn ð12:51Þ

Taylor polynomials have been used in many application areas such as compu-

tational and physical science, control engineering, heat and mass transfer, pattern

recognition, and many more.
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12.3.7 Deep Learning (DL)

Deep learning is a method in which the representations of data with many levels of

abstractions are learned by computational models with several processing layers

(LeCun et al. 2015). As the definition of sample size varies depending on the

application, deep learning has been mentioned here. It is being used for nonlinear

regression and classification problems. Nonetheless, it is used in regression prob-

lems in the industry. Deep learning is comparable with artificial neural network

with more complex training structure and architecture. An ordinary neural network

comprises of three layers: one input layer, one hidden layer, and one output layer.

However, deep learning models may have many hidden layers with various func-

tions performing convolution operations or nonlinear transformations. In order to

ensure the robustness of these models, new parameters such as dropout have been

defined which determine the part of the neurons not to be considered randomly

during the training. This method overcomes the limitations of conventional

methods which is the lack of ability to process raw data (Fan et al. 2017). The

nonlinear relationship between parameters hl and hl + 1 is specified by neural

network through a function which is defined as below:

hlþ1 ¼ δ Whl þ bð Þ ð12:52Þ
where δ is the activation function and vector b and matrixW are model parameters.

When there is one layer between the variables, hl and hl + 1 form one layer called

a single-layer neural network. Deep neural network (DNN) is a multilayer neural

network with advanced learning methods. To construct DNN for y ¼ f(u), the
network functions are serially stacked as follows:

h1 ¼ δ1 W1uþ b1ð Þ ð12:53Þ

h2 ¼ δ2 W2h1 þ b2ð Þ ð12:54Þ
⋮

y ¼ δL WLhL�1 þ bLð Þ ð12:55Þ
where L is the number of layers.

Assume un; τnf gN
n¼1 is the data set of inputs and outputs and ε (y

n, τn) is the error
function that estimates the difference between the output of yn¼ f(un) and the target
Tn. The model parameters for the whole network, θ ¼ {W1, . . .,WL, b1, . . ., bL}, can
be selected to minimize the sum of the errors:

minθ J ¼
XN

n¼1
ε yn; τnð Þ

h i
ð12:56Þ

The minimization problem above can be solved analytically through its gradient

being acquired through error backpropagation if suitable choice of E(.) is given

(Chong et al. 2017).

Deep learning has many applications in computer vision, image classification,

pattern recognition, robotics, and many more.
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12.3.8 Kernel Ridge Regression (KRR)

KRR method is the combination of ridge regression and ordinary least-square

(OLS) regression. This method employs a set of nonlinear prediction functions

and uses penalization to avoid overfitting. This is performed through mapping

predictors into a high-dimensional space of nonlinear functions of the predictors.

The overfitting then is avoided by estimating a linear forecast equation in this high-

dimensional space, using a penalty (ridge or shrinkage). This method is very

flexible in model development. However, the researchers should decide regarding

the choice of kernel. Moreover, parameters should be tuned in this method, and

their interpretation is not always clear (Exterkate 2013). This method includes in

many application areas including pattern recognition, signal processing, aerospace,

and many more.

In order to obtain more accuracy and lower error, some resampling methods can

be applied before using above methods.

12.3.9 Model Performance

Model performance is the comparison of predictions from a mathematical model

and new experimental tests. It shows whether the computer model is an accurate

representation of the real system. Model validation (goodness of fit) is determined

by coefficient of determination (R2), adjusted-R2, RMSE, sum of squared errors

(SSE), mean squared error (MSE), and standard error of prediction (SEP). R2

should be close to 1; however, it does not always indicate that the model is a

good one. It has been shown that by adding new variables to the model regardless of

whether the variable is statistically significant or not, R2 always increases. Hence,

adjusted-R2 is preferred to be calculated as it is adjusted for the number of terms in

the model. The adjusted-R2 should be over 90% to show the strong synergy between

the observed and predicted values. SSE, MSE, and SEP are also used for model

validation. Values closer to 0 are desirable. In addition, analysis of variance

(ANOVA) helps to find the significant factors affecting the objective function.

ANOVA is used to measure the F-ratio which helps to calculate the probability

(the p-value). When p-value is less than 0.05, the controlling factor has a significant

effect on the dependent variable. If the p-value is greater than 0.05, the factor has no
significant effect on the dependent variable. The controlling factors are significant

at a 95% confidence level (Montgomery 2008; Barrett 2007).

Statistically, the performance of the models was assessed by measuring R2, SEP,

adjusted- R2, MSE, and SSE from the following equations:

R2 ¼ 1�
P

yexp � ypred

� �2
P

yexp � ym

� �2 ð12:57Þ
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Adjusted R2 ¼ 1� 1� R2
� 	

N � 1ð Þ
N � P� 1

ð12:58Þ

SEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
yexp � ypred

� �2
� N

P
yexp � ypred

� �� �2
N � 1

vuut
ð12:59Þ

MSE ¼
P

yexp � ypred

� �2
N

ð12:60Þ

SSE ¼
Xn

i¼1
ypred � yexp

� �2
ð12:61Þ

where yexp, ypred, and ym show the experimental, predicted, and the mean of

dependent variable, respectively. P is the number of predicators (coefficients) in

the model and N is the total size of the sample.

12.4 Resampling and Virtual Data Generation

Resampling methods are very popular due to their robustness, accuracy, great

generalizability, and simplicity. Resampling happens when a data generating tech-

nique is used to generate new data without being related to a theoretical distribu-

tion. Resampling is used when the distribution of the data is unknown or the data set

is too small to use the standard methods (Hoffman 2015). Resampling can be used

to make comparison such as median or ratios which cannot be answered with

traditional parametric or nonparametric methods. The samples can be generated

many times with or without replacement. Randomization is an example of sampling

without replacement. Bootstrapping is a resampling method with replacement.

Resampling method is related to Monte Carlo simulation in which the data is

produced, and based on many possible scenarios, the final decision is made. In

resampling, all possible combination can be used. However, it is compute intensive

and time consuming. The main resampling techniques are bootstrapping, jackknife,

Monte Carlo, and exact test method. With these techniques thousands of samples

can be generated rapidly.

12.4.1 Monte Carlo Simulation (MCS)

MCS makes random sampling repeatedly from populations with known character-

istics and test statistics calculated in each case. With this multiple resampling,

sampling distributions for the statistics of interest can be constructed. The p-value is
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then found from this distribution. Randomization and bootstrap tests are special

cases of Monte Carlo tests.

The procedure of MCS can be summarized as follows (Crowley 1992):

• Observation simulation based on a hypothetical distribution.

• Multiple calculation of the statistic of interest to generate the distribution of the

statistic.

• Find the p-value or other necessary values based on the distribution of the

statistic.

12.4.2 Randomization Exact Test (Permutation Test)

Permutation test is a resampling test without replacement and it is a nonparametric

method. Exact test simulates all possible permutations. In this method, the sampling

distribution can be constructed for any statistic of interest without any assumptions

regarding the shape and other parameters of the population distributions due to

randomization. It can be used without normal assumption of distribution of data

under the null hypothesis. In this method, the observations will be rearranged, and

the corresponding statistic of interest will be calculated for each permutation. After

permuting all the possibilities, all the statistics of interest can be put together, to

construct the distribution curve under null hypothesis (Curran-Everett 2012). The

null hypothesis is rejected if the observed result belongs to a relatively higher

probability under the alternative hypothesis. With small samples, we can construct

the sampling distribution by estimating the statistic of interest for each possible

order.

12.4.3 Cross-Validation (CV)

CV is a method of performance evaluation of a model on an unknown data set. In a

k-fold cross-validation method, the training data set is divided into k equally sized

subsets, and one of the subsets is kept for testing and the rest are used for training

purpose. This process is done k-times with each k subsets being used just once as the
testing data set. The final estimation of the accuracy is performed by averaging the

results of each k subset. The size of k varies from 2 to 10. The most common k-fold
cross-validation methods are leave-one-out and stratified cross-validation. In leave-

one-out cross-validation, n-1 out of the n training vectors is selected as a training

set, and one vector which is left out is treated as the testing data. This applies to

every fold. In a stratified cross-validation method, the training set is divided into

homogeneous groups, and the folds contain approximately the same proportions as

the training data set (Kohavi n.d.).
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12.4.4 Jackknife Method (JK)

JK technique is used when the distribution of the parameter is unknown and difficult

to compute or has no analytic distribution. The JK (delete-1) is to leave out one

observation at a time from the data set and calculate the parameter of interest (e.g.,

variance or bias) for the remaining n-1 observations and repeat the process until

each of the n observations is deleted. All the results obtained from the n different

observations will be averaged. The procedure is able to remove bias. This method is

a limited version of the bootstrap. The effect on a statistical estimate is quantified

when each observation is left out one at a time. If the parameter of interest is

discontinuous such as median, this method does not work (Efron 1992).

Suppose bθ is the calculated estimator of the parameter of interest based on all

n observations.

Letbθ :ð Þ ¼ 1

n

Xn

i¼1
bθ ið Þ ð12:62Þ

where bθ ið Þ is the estimate of interest based on the sample when the ith observation is

removed, and bθ :ð Þis the average of all the estimates.

Variance is calculated as follows:

Var
�bθ 	

Jack
¼ n� 1

n

Xn

i¼1
bθ ið Þ � bθ :ð Þ
� �2

ð12:63Þ

The estimate of the bias of bθ is

dBias Jackð Þ ¼ n� 1ð Þ bθ :ð Þ � bθ� �
ð12:64Þ

12.4.5 Bootstrap

The bootstrap is another nonparametric resampling method for estimating the

sampling distribution of an estimator. It is for evaluating the variance of the

estimator. It was described by Bradley Efron (1992). It uses Monte Carlo method

for the resampling process which consists of randomly sampling a data set with

replacement. The bootstrap estimator is the average of all parameter estimates

obtained from different samples (Efron and Tibshirani 1994; Davison and Hinkley

1997). Robust estimates of point variables (e.g., median, mean, regression coeffi-

cient) with their standard errors and confidence limits can be obtained using this

method with no limits to the number of resampling runs.

The algorithm is given below:

• Suppose data set X ¼ {X1. . .Xn}.

• Calculate function bθ(X) that estimates parameter θ of the model.
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• For i ¼ 1 to s (s is the generated number of bootstrap samples):

– By sampling with replacement, produce a bootstrap sample Xl ¼ {x1
i . . . xn

i}

from the data set.

– Calculate bθ i ¼ bθ i�Xi) similar to the original estimate bθ.
• Calculate the sample mean and sample variance of the θis:

bθ ¼ 1

s

X
i
bθ i and b ¼ 1

s� 1

X
i

�bθ i � bθ	2 ð12:65Þ

• bθ is the estimate of θ and
ffiffiffi
b

p
is bootstrap estimate of its standard error.

Bootstrap method has this advantage of modelling the effects of the real sample

size compared to other methods as every resampling has the same number of

observations as the real data set. Bootstrapping method considers a small sample

size as a virtual population to produce more data (Fan and Wang 1996).

When data do not follow the prerequisite for parametric regression analysis, the

bootstrapping method can also be used to determine the regression coefficients.

When there is no correlation between X and Y, any xi can be related to any yi . In this
way, bootstrapping method can be used to randomly select all possible combination

of X and Y (Hoffman 2015).

12.4.6 Subsampling

In order to estimate the sampling distribution of an estimator, an alternative to

bootstrapping is subsampling. Two fundamental differences between bootstrapping

and subsampling are that in subsampling the sample size is bigger than the resample

size and the resampling occurs without replacement. In subsampling, the rate of

convergence of the estimator is known and the distribution is continuous. Hence,

subsampling is used when the rate of convergence is not the square root of the

sample size and when the distribution is not normal. It can also be used for time

series data as well (Politis et al. 1999).

12.4.7 Virtual Sample Generation (VSG)

Another way of solving the problem of small sample size is to produce virtual

samples to increase the robustness of the learning algorithm and improve the

learning accuracy and prediction.

One way to generate virtual samples is to use prior knowledge regarding the

target function to enlarge the data set. VSG fills in the information gaps in sparse

data to make learning methods perform well (Niyogi et al. 1998).
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Another approach to deal with small data sets is using virtual attributes. The data

is extended into a high-dimensional space in this method to get a better performance

in classification (Li and Wen 2014a).

12.5 Engineering Approaches and Applications

Heuristic techniques have been applied successfully to many manufacturing and

engineering areas. In this section some of the applications of these methods have

been mentioned.

12.5.1 Mechanical and Industrial Engineering

In one study, a support vector model and an optimization method were presented for

microwave filter manufacturing. Due to the scarcity of the collected data set, the

data was expanded using obtained experiments from physical knowledge available,

and a support vector machine was developed (Zhou and Huang 2012).

In 2006, Li et al. (2006) used a data fuzzification method (mega-fuzzification)

with a data trend estimation procedure to increase the amount of data in the early

stages of manufacturing. The adaptive-network-based fuzzy inference system

(ANFIS) was applied to neuro-fuzzy learning in this study to improve the accuracy

of learning. In another study, a new method of virtual sample generation named

genetic algorithm-based virtual sample generation (GABVSG) was used in multi-

layer ceramic capacitors (MLCC) which are passive components in modern elec-

tronics with costly pilot runs. The results of BPNN (backpropagation neural

network), SVR model, and mega trend diffusion (MTD) methods were compared.

The result showed that the proposed method had good performance in BPNN and

SVR and was better than that of MTD method. The average error in SVR using

GABVSG is less than that of BPNN (Li and Wen 2014b).

In another study, bootstrapping method was used to generate virtual data in

multilayer ceramic capacitors (MLCC) using ANN method. The results revealed

better performance with the proposed procedure. Using the combination of ANN

and bootstrapping method reveals lower and stable learning errors (Tsai and Li

2008).

12.5.2 Chemical and Process Engineering

In one study, SVM was used for pattern recognition based on a small data set to

predict corrosion rate of injecting water pipeline. This study in Shengli Oil Field

showed that SVM had a greater accuracy in prediction of corrosion rate than the
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neural network and is reliable and easy to be used in petroleum engineering. All

absolute errors were less than 5% in model testing. This indicates that SVM can be

used in many applications due to high precision and generalization (Zhen et al.

2010). In another study, the skin-core morphology was studied by optical micro-

scopic (OM) images and Fourier transform infrared attenuated total reflectance

mapping (FTIR-ATR mapping) and modelled with limited data set using Gaussian

process model and polynomial equations (Golkarnarenji et al. 2017).

In another paper, the carbon fiber thermal stabilization process was studied and

analyzed using various dynamic models to predict the process using small data sets.

The Levenberg-Marquardt algorithm (LMA)-neural network (LMA-NN), Gauss-

Newton (GN)-curve fitting, Taylor polynomial method, and a genetic algorithm

were employed in the study. The results showed that the Taylor polynomial method

performs significantly better with higher accuracy than other methods in small data

sets (Khayyam et al. 2015b).

12.5.3 Material and Textile Engineering

SVM and BPNN models were compared in a study to predict the yarn properties.

The parameters of SVM model were optimized using genetic algorithm. The mean

error (%) of two predictive indices was 22.80% and 13.67% for ANN model and

12.71% and 5.52% for SVM. The result showed that SVM had stability of predic-

tive accuracy when compared to BP neural network in small and noisy data sets

(Lu et al. 2015).

12.5.4 Electrical Engineering

To analyze faulty analogue circuits, a bagging ensemble system was proposed and

employed. Cross-validation technique was also used to improve the accuracy and

generalization ability of the circuit (Liu et al. 2009). Fault diagnosis results of radial

basis function (RBF) and radial basis function artificial neural network (RBFNN)

without and with cross-validation showed that the ensemble system combined with

cross-validation improved the diagnosis correction rate (%). An integration of

particle swarm optimization (PSO) and virtual sample generation was also pro-

posed in MLCC and purified terephthalic acid (PTA) to improve the accuracy of the

developed forecasting model. The accuracy and performance of foresting model

improved with the proposed tool (Chen et al. 2017).
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12.5.5 Civil and Environmental Engineering

In one study, SVM was used for image classification with limited remotely sensed

data sets. This method was compared to relevance vector machine (RVM) and

sparse multinomial logistic regression (SMLR). For these data, RVM and SMLR

were able to classify data with similar accuracy to SVM using less training data sets

(Pal and Foody 2012).

In another study, the groundwater pollution sensitivity was estimated using

decision tree and rule induction method using small data sets. The training data

was collected from the Woosan Industrial Complex, Korea. The result showed that

the decision tree and rule induction methods show better consistency and prediction

accuracy than the other methods with small data sets (Yoo et al. 2016).

Landslide susceptibility mapping was studied in Hendek region in Turkey

comparing neural network and logistic regression using small data sets. Comparing

two methods, neural network predicted higher percentages of landslides than

logistic regression method in high and very high zones (Yesilnacar and Topal

2005).

In order to use ANN for small data sets, a diffusion neural network (DNN) was

developed by Huang and Moraga (2004) which is a combination of ANN and the

principle of information diffusion. This method improved the prediction accuracy

of ANN by generating new samples via applying fuzzy theories. The error was

reduced about 48% in this case.

In another study, two wood pulp applications were used with small data sets.

Various methods based on feed-forward neural network (FFNN) and RBFNN were

tested. Data sets were obtained using D-optimal design and random selection and

compared for their ability to develop a suitable model. The result showed improve-

ment using D-optimal design when compared to a randomly selected training data

set (Lanouette et al. 1999). This study also reveals that the RBFNN performs better

than FFNN. The thin-plate spline activation function performed better than the

Gaussian activation function in this study.

12.6 Conclusion

Developing a reliable model using limited and small data is a challenging task

specially when the process to be modelled is highly nonlinear and many inputs and

outputs are involved.

Although machine learning from small data sets makes the modelling procedure

difficult and prone to overfitting, in real world, there are many situations when

organization must work with small data sets.

Hence, the study of different techniques and methods suitable for small data sets

is of myriad importance and was reviewed and described here.
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According to the “no free lunch” theorem (Wolpert and Macready 1997), no

model exists that works best for every problem, and it is impossible to develop a

data model that is universally better than all others. As a result, it is usual in

machine learning to try to use many models and find the best method for a particular

problem (Khayyam et al. 2015b; Balabin and Lomakina 2011). However, generally,

it can be concluded that data models such as SVM and SVR have high precision and

accuracy in small and noisy data sets. In addition, ensemble methods combined

with cross-validation improve the error rate. Combination of data models such as

ANN with methods such as principle of information diffusion can also reduce the

error significantly. Finally, we recommend the use of more than one method for

classification and regression problems in different engineering areas, so that the

best technique can be chosen to be a strong support for these problems.
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Chapter 13

Theoretical and Numerical Investigation
of the Elastic-Plastic Behavior of Thick-Walled
Cylinders

Monir Takla

13.1 Introduction

Extremely loaded cylindrical pressure vessels used in nuclear power plants as well

as in chemical and oil-related industries have to sustain reliably the design loads,

keeping in mind the potentially dangerous consequences of overloading nuclear

reactors. As a result, it became necessary to investigate the behavior of extremely

loaded pressure vessels undergoing plastic or elastic-plastic deformations.

13.1.1 Background

Accurate calculation of the distribution of stresses and large strains leads to

improved accuracy when calculating the maximum sustainable loads, as well as

bifurcation limits, which mark the onset of irregular deformations. Therefore, the

correctness of failure analysis is based on the validity and accuracy of the funda-

mental solution, which describes the development of the regular stable unique

deformations.

Available literature does not provide accurate prediction for the distribution of

stresses and strains in metallic pressure vessels under excessive combined radial

and axial loading when the elastic limit is exceeded and large elastic-plastic

deformations occur.

Inspired by the desire to enhance the safety of pressure vessels, a reliable

solution, adequately addressing the nonhomogeneous stress, strain, and velocity

fields in thick-walled cylindrical pressure vessels, is needed to be investigated.
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13.1.2 Historical Overview

A first closed solution was provided by Lame (1852) for small elastic deformations

of a closed cylinder under internal and external pressure. Small elastic-plastic

deformations of thick-walled cylinders were first investigated by Turner (1909),

adopting the Tresca yield criterion. Other researchers followed the same approach

to provide solutions for various boundary conditions, materials, etc. Their works,

however, were limited to the theory of small deformations.

The first solution that used the von Mises yield criterion was provided by

Belayev et al. (1938) and Sokolovskij (1955). MacGregor et al. (1948) and

Hodge et al. (1950) provided some solutions for special cases considering small

deformations.

Celep (1971) described the large deformations of a cylinder constrained in the

axial direction and obtained a numerical solution by applying the von Mises yield

criterion with linear material hardening. Fischer (1977) applied the Tresca yield

criterion together with the normality rule to a state of plane strain, taking linear

material hardening into consideration. Oeynhausen (1981) also adopted the same

approach for cylinders loaded by internal pressure and small axial force, consider-

ing nonlinear hardening. The validity of the analysis was limited to small axial

loads due to the singularities resulting from applying the Tresca yield criterion

together with the normality rule.

Imaninejad and Subhash (2005) investigated small plastic deformations of thick-

walled cylinders subjected to internal pressure and proportional axial loading,

assuming constant strain ratios throughout the cylinder wall. This assumption

violates the basic principle that the axial strain is independent of the radial location,

in contrast with the other two strain components. Accordingly, it resulted in an

inaccurate solution including singularity. In a correct solution, the strain ratios

should be treated as functions of the radial location and cannot be assumed constant.

13.1.3 Assumptions

The material is elastic-plastic, with small elastic and large plastic, constant volume

deformations. The material is assumed homogeneous and isotropic with isotropic

plastic hardening, excluding time, temperature, and inertia effects. The deformation

is axially symmetric and is merely a function of the radial coordinates. Stresses and

strains are uniquely defined in the deformed state and are functions of the radial

location.
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13.2 Theoretical Analysis

A theoretical solution is generally based on substituting a constitutive law into the

equilibrium equations, taking into consideration that the geometric compatibility is

maintained. In the developed solution, large elastic-plastic deformations are con-

sidered, while a thick-walled cylinder is loaded by combined large hydrostatic

pressure and axial force, considering nonlinear isotropic hardening. The adopted

constitutive law is based on applying the von Mises yield criterion in association

with its normality rule. An algorithm for calculating the stress and strain distribu-

tions is developed, and the applied loads are calculated for prescribed states of large

deformation.

13.2.1 Geometric Relations

The large deformations of the cylinder are described using spatial and material

cylindrical coordinate systems. Deformations are assumed to remain independent

of the axial position. The developed geometric expressions provide the relation-

ships between the geometric variables in the initial configuration and those in the

deformed configuration.

13.2.1.1 Coordinate Systems

The initial undeformed configuration is selected as the reference configuration. A

cylindrical coordinate system is selected for both spatial and material coordinate

systems. The coordinates are respectively defined by

xj ¼ r;ϕ; zð Þ ð13:1Þ
Xα ¼ R;Φ; Zð Þ ð13:2Þ

The metric tensors of the curvilinear coordinate system are

gik ¼
1 0 0

0 r2 0

0 0 1

24 35 ð13:3Þ

gik ¼
1 0 0

0
1

r2
0

0 0 1

264
375 ð13:4Þ
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13.2.1.2 Basic Deformations

The derivatives with respect to the reference coordinates are denoted by

�ð Þ0 ¼ ∂
∂R

�ð Þ , �ð Þ∗ ¼ ∂
∂Φ

�ð Þ , �ð Þþ ¼ ∂
∂Z

�ð Þ ð13:5Þ

The material points move only in the radial and axial directions. However, defor-

mations are only a function of the radial coordinate (Fig. 13.1), i.e.,

ϕ ¼ Φ , �ð Þ∗ ¼ 0, ð13:6Þ

zþ ¼ l

lo
, _z ¼

_l

lo
,

_z þ

zþ
¼

_l

l
, ð13:7Þ

where

l toð Þ ¼ lo ð13:8Þ
Accordingly, plane cross sections remain plane, and the circular cylindrical lateral

surfaces remain circular cylindrical. Since the deformations contain no rotations,

the strain rate tensor in the deformed state is directly obtained as

d i
k ¼ vi

��
k
¼

_r
0

r0
0 0

0
_r

r
0

0 0
_l

l

2666664

3777775 ð13:9Þ

The assumption of incompressibility results in the condition:

d s
s ¼

_r
0

r0
þ _r

r
þ

_l

l
¼ 0, ð13:10Þ

Fig. 13.1 Fundamental Deformations
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the integration of which leads to the relationship

R2 ¼ l

lo
r2 � C1

� � ð13:11Þ

where the initial conditions at t¼ to are given by

r toð Þ ¼ R ð13:12Þ
The integration constant C1 in (13.11) and the homogeneous axial strain are

independent of the loading or the material properties.

The components of the strain rate tensor are obtained from

d11 ¼
1

2r2
_C 1 � 1

2
1þ C1

r2

� � _l

l
, ð13:13Þ

d22 ¼
1

2r2
_C 1 � 1

2
1� C1

r2

� � _l

l
, ð13:14Þ

d33 ¼
_l

l
ð13:15Þ

The time integration of the components of the strain rate tensor results in the

components of the HENCKY (logarithmic) strain tensor:

ε11 ¼ �1

2
ln

l

lo

� �
þ 1

2
ln 1� C1

r2

� �
, ð13:16Þ

ε22 ¼ �1

2
ln

l

lo

� �
� 1

2
ln 1� C1

r2

� �
, ð13:17Þ

ε33 ¼ ln
l

lo

� �
ð13:18Þ

The strains and strain rates are functions of the radial location, independent of the

cylinder geometry. The inner radius in the deformed state is designated as a, and the
outer radius as b. The radius of middle surface is

rm ¼ aþ b

2
ð13:19Þ

In the initial state (t¼ to),

a toð Þ ¼ ao ð13:20Þ
b toð Þ ¼ bo ð13:21Þ
rm toð Þ ¼ Rm ð13:22Þ
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The following geometric expression provides the relationships between the geo-

metric variables in the initial state and those in the deformed state:

bo
ao

¼ b=að Þ2 � L1
1� L1

" #1
2

ð13:23Þ

L1 ¼ C1

a2
ð13:24Þ

The dimensionless quantity L1 is identified as the “radial loading parameter” and

will be used as a measure of the radial deformation.

13.2.2 Stress Distribution in the Elastic Range

Due to elastic incompressibility, Hooke’s law for small elastic deformations

becomes

t ij ¼ 2G ε ij , ð13:25Þ

a linear relationship between the components of the Hencky strain tensor (13.16,

13.17, and 13.18) and those of the stress deviator. Accordingly, the stress differ-

ences become

σ22 � σ11 ¼ �2G ln 1� C1

r2

� �
, ð13:26Þ

σ22 � σ33 ¼ �G 3 ln
l

lo

� �
þ ln 1� C1

r2

� �� �
, ð13:27Þ

σ33 � σ11 ¼ G 3 ln
l

lo

� �
� ln 1� C1

r2

� �� �
ð13:28Þ

13.2.3 Stresses in the Elastic-Plastic Range

Due to the applied nonlinear constitutive law, which is based on the von Mises

yield criterion, a fast iterative algorithm is developed to calculate the stress distri-

bution throughout the cylinder wall. Incompressible small elastic but large plastic

deformations together with an almost-proportional load path are assumed in the

analysis. Radial and tangential stresses are calculated as functions of the radial

position.
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13.2.3.1 Application of Nonlinear Constitutive Law

Applying the von Mises yield criterion with the normality rule necessitates utilizing

an iterative approach to the solution, based on assuming incompressible small

elastic and large plastic deformations together with an almost-proportional load

path. Also, the state of stress depends not only on the state of strain but also on the

state of the strain rate.

13.2.3.2 Basic Equations

For the Hencky strain tensor ε�,

ε
�e ¼ D� , ð13:29Þ

and accordingly

ε� ¼
Z t

to

D� dτ if ε�

������
to

¼ 0� ð13:30Þ

The equivalent stress and strain rates are scalar quantities defined by

σ ¼ 3

2
Tr T�

2

� �� �1
2

, ð13:31Þ

_ε ¼ 2

3
Tr D�

2

� �� �1
2

, ð13:32Þ

where T� is the Cauchy stress deviator and D� is the strain rate tensor.

It should be noted that the Cauchy stress tensor coincides with the symmetric

Kirchhoff stress tensor for incompressible material behavior. The value of the

equivalent strain is obtained by the integration:

ε ¼
Z t

to

_ε dτ ð13:33Þ

For proportional loading, this leads to

ε ¼ 2

3
Tr ε�

2

� �� �1
2

ð13:34Þ
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Dividing the strain rate tensor into elastic and plastic components results in

D� ¼ D� e
þ D� p

, ð13:35Þ

where

D� e
¼ 1

2G
_T� , ð13:36Þ

D� p
¼ δ

Tr T� D�

	 

Tr T�

2
	 
 T� ¼ δ

Tr T� D� e
	 


Tr T�
2

	 
 þ
Tr T�D� p

	 

Tr T�

2
	 


24 35 T� ð13:37Þ

The hardening parameter δ is a dimensionless material property function of the

tangent modulus:

δ Wp

� � ¼ 1� Et

E
ð13:38Þ

13.2.3.3 Material Model

The selected material characteristic law is similar to that of RAMBERG-OSGOOD

(Bruhns 1974).

ε ¼ σ

E
þ σo

B

σ

σo
� 1

� �n

σ � σo, ð13:39Þ

ε ¼ σ

E
σ � σo, ð13:40Þ

where σ and ε are the axial true stress and the HENCKY (logarithmic) strain,

respectively, obtained from a uniaxial tension or compression test. The true stress at

the transition from the linear elastic into the nonlinear plastic range is given by σo,
resulting in the tangent modulus

Et ¼ dσ

dε
¼ E

1þ E
Bn

σ
σo
� 1

	 
n�1
σ � σo, ð13:41Þ

Et ¼ dσ

dε
¼ E σ � σo ð13:42Þ

and the curvature

dEt

dε
¼ d2σ

dε2
¼

E3n n� 1ð Þ σ
σo
� 1

	 
n�2

σoB 1þ E
Bn

σ
σo
� 1

	 
n�1
� �3 σ � σo ð13:43Þ
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dEt

dε
¼ d2σ

dε2
¼ 0 σ � σo ð13:44Þ

Such material model implies continuous transition and provides a continuous

tangent modulus at the elastic-plastic interface.

13.2.3.4 First Iteration

Due to the assumption of elastic incompressibility,

E ¼ 3G ¼ σ

εe
ð13:45Þ

As a first iteration, the elastic component of the strain rate tensor is

D� e
¼ 3

2

εe
σ

_T� ð13:46Þ

Integration leads to

ε� e
¼ 3

2

εe
σ

T� ð13:47Þ

Along the entire load path, it is valid that

D� e
¼

_ε e

εe
ε� e

ð13:48Þ

and

εe ¼ 2

3
Tr ε� e

2

� �� �1
2

ð13:49Þ

This leads for elastic and plastic incompressible material behavior to

D� ¼
Tr D2

�

	 

Tr T2

�

	 

24 35

1
2

T� , ð13:50Þ

a simple linear constitutive law, which also describes accurately rigid plastic

material behavior. For a proportional loading path, Eq. (13.50) contains no approx-

imations. However, when there are deviations from proportionality, it implies an

approximation to the elastic part of the strain rate tensor.
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13.2.3.5 Second Iteration

For deformations without rotation, a special nonlinear constitutive law can be

given by

T� ¼ 1

δ

Tr T�
2

	 

Tr T�D�

	 
 D� � 1

2G
_T�

" #
ð13:51Þ

From the first iteration (13.50),

T� ¼
2
3
σ
_ε

D� ¼ T�
1ð Þ

ð13:52Þ

The material time derivative provides

_T� ¼ 2

3
D� Et þ σ

�D

ε

� �� �
ð13:53Þ

The second term depends merely on the change of the strain rate tensor but does not

exist for proportional deformations. Substituting (13.53) in the constitutive law

(13.51),

T�
2ð Þ

¼ T�
1ð Þ
� 2

9Gδ
σ2

1

_ε

D�
_ε

" #�0B@
1CA ð13:54Þ

The second term can only be calculated if a specific load path is defined.

The outcome of the first iteration is very accurate for small deformations with

small deviations from proportionality. However, an improvement by the second

iteration becomes impossible as the second term in (13.54) becomes very large.

This is because the hardening parameter δ is reduced to zero at the elastic-plastic

transition point in the adopted material model. In this case, the second iteration

cannot improve the results. Therefore, the influence of this term is needed to be

modified, e.g., through multiplying it by a factor “η” defined by

η ¼ εp
ε

� �2

, ð13:55Þ

so that

T�
2ð Þ

¼ T�
1ð Þ
� 2

9Gδ
σ2

1

_ε

_
D�
_ε

� ��0B@
1CA:η ð13:56Þ

This factor maintains the validity of the solution for small plastic deformations in

the elastic-plastic transition zone.

390 M. Takla



13.2.4 Description of the Load Path

According to Eq. (13.54), it is necessary to specify a load path in the calculation of

the second approximation.

Radial and tangential stresses and strains are both functions of the radial

position, while the axial strain remains constant throughout the wall thickness.

Therefore, while it may be theoretically possible to keep constant strain ratios at

one radial position, it is impossible to keep the same strain ratios throughout the

cylinder wall. Accordingly, an exactly proportional relationship, between the

applied pressure and the axial force, would not lead to consistent strain ratios

throughout the cylinder.

Also, enforcing an exactly proportional loading path leads to unnecessarily

significant complications. Therefore, an alternative approach is introduced, in

which the description of the loading path is implicitly expressed through the

description of the deformation path.

The dimensionless geometrical quantity γ is introduced at an arbitrarily selected
material point, which has the radius r¼m in the deformed configuration, defined by

γ ¼ m

a
ð13:57Þ

This material point is located at the position “R¼mo,” in the reference configura-

tion. It has to be noted, however, that

γo ¼
mo

ao
6¼ γ ð13:58Þ

The integrated strain component in the circumferential direction for the radius m is

calculated directly from (13.17):

ε2m ¼ ε2j r¼mð Þ ¼ ln 1� C1

m2

� �
eε3

� ��1
2

ð13:59Þ

The following geometric relationship

_ε 2m ¼ 3

4ψ
e2ε2m � 1

2

� �
_ε 3 ð13:60Þ

is proposed to remain satisfied along the loading path at the selected position r¼m,
where the parameter ψ remains constant. It provides an exactly proportional

relationship between the applied pressure and the externally applied axial force

when m is selected to be the middle radius of a rigid plastic, closed thin-walled tube.

For thick-walled cylinders or for large elastic deformations, the resulting load path

becomes approximately proportional.
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Integration results in

ε3 ¼ ln
3 e2ε2m � 2ψ

3� 2ψ

� �
� 2 ε2m ð13:61Þ

The initial conditions were utilized to determine the integration constants; the

expression for ψ can be expressed as

ψ ¼ 3m2

2C1

1� e�ε3ð Þ ð13:62Þ

The relationship between the components of the velocity field is directly obtained

from

_ε 2 ¼ m2

r2
_ε 3

2
- _ε m

� �
� _ε 3

2
ð13:63Þ

The second term of Eqs. (13.54) and (13.56), needed for the second iteration, is

obtained after short calculation as

_ε2
_ε

� ��
¼ �3

8

1þ 2 _ε3
_ε2

	 
h i
1þ _ε3

_ε2

	 

þ _ε3

_ε2

	 
2
� �2 _ε

_ε2

� �
_ε3
_ε2

� ��
, ð13:64Þ

_ε3
_ε

� ��
¼ �3

8

1þ 2 _ε2
_ε3

	 
h i
1þ _ε2

_ε3

	 

þ _ε2

_ε3

	 
2
� �2 _ε

_ε3

� �
_ε2
_ε3

� ��
ð13:65Þ

The third component can be obtained from the incompressibility condition.

Consequently, further material time derivatives of the velocity field components

are necessary. They are obtained from

_ε2
_ε3

� �̇
¼ A2 _ε2 þ A3 _ε3, ð13:66Þ

with

A2 ¼ 2AoM, ð13:67Þ

A3 ¼ AoM
r2 � C1ð Þ

r2
�M

r2
γ2, ð13:68Þ

where

Ao ¼ 2 1� γo
2

� �þ m2γo
2

m2 � C1

� m2

r2
1� ro

2

ao2

� �
, ð13:69Þ
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M ¼ 1

2
þ �

_ε 2= _ε 3

�
m

ð13:70Þ

The time derivative of the inverse of the left side of (13-66) is obtained from

��
_ε3= _ε2

� ¼ �
_ε3= _ε2

�2 ��
_ε2= _ε3

� ð13:71Þ

Substituting from (13.71) into (13.64) and (13.65), the required expression of

Eqs. (13.52) and (13.54) can be obtained, so that the stress tensor can be

determined.

13.2.5 Equilibrium Condition

The equilibrium condition is given by

∂σ11
∂r

þ 1

r
σ11 � σ22
� � ¼ 0 ð13:72Þ

Integration leads directly to

σ11 ¼
Zr

a

σ22 � σ11
� � dr

r
� p ð13:73Þ

where p is the internal pressure. The integration constants are determined from the

boundary conditions at the inner and outer boundaries. The values of the other

components of the stresses are obtained by utilizing the expressions of the stress

differences.

13.2.6 External Loads in the Fundamental State

With the obtained stress distribution across the tube wall, it becomes possible to

determine the external loads. From the boundary conditions in conjunction with

Eq. (13.73), the expression for the internal pressure can be given as

p ¼
Zb

a

σ22 � σ11
� � dr

r
ð13:74Þ

An expression for the axial force is reached by integrating the axial stresses over the

tube cross section:
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N ¼ 2π

Zb

a

σ33 r dr ð13:75Þ

Taking into consideration the axial stress component resulting from the internal

pressure, the expression for the externally applied force F is obtained as

F ¼ 2π

Zb

a

σ33 r dr � π a2p ð13:76Þ

Since the stresses are available only numerically, numerical integration is therefore

necessary to determine the external loads (13.74 and 13.76).

13.3 Results and Validation

A cylinder with an initial diameter ratio of 1.6 is considered thick enough to

represent reasonably the thick-walled cylinder, which would expose any inaccura-

cies in the theoretical analysis when validating the results.

13.3.1 Material Properties

The material model presented in Sect. 13.2.3.3 is used in the analysis. The arbi-

trarily selected material is an aluminum alloy AlMgCuPb (Zander 1981). The

characteristic material values defined in Eq. (13.39) are given by

σo ¼ 240 N=mm2

E ¼ 59500 N=mm2

B ¼ 4875:5 N=mm2

n ¼ 2:79865

The characteristic material curve is shown in Fig. 13.2, which is used in all

theoretical calculations and numerical validations.

13.3.2 Approach to the Presentation of Results

The load path to any combined load can be fully defined through the selection of the

parameter “γ,” defined in Eq. (13.57), which can be determined from
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γ ¼ bo
ao

� �j

ð13:77Þ

For an almost-proportional relationship between the applied radial pressure and the

integrated axial force, the value of j is selected as 0.5.

In the theoretical analysis, a state of deformation is defined by the radial loading

parameter and the axial strain. Therefore, it is appropriate to represent the loading

via the deformations. In a “deformation diagram,” the axial strain “ε3” is plotted

against the radial loading parameter “L1,” while in a “load diagram,” the internal

pressure is plotted against the external axial force.

To standardize the results, the internal pressure and the axial force are normal-

ized into dimensionless stress variables defined as

Fn ¼ F

πσo bo
2 � ao2

� � , ð13:78Þ

pn ¼ p ao
σo bo � aoð Þ ð13:79Þ

13.3.3 Loading by an Almost-Proportional Load Path

In the presented case study, a load combination of L1 ¼ 0.2 and ε3¼ 0.1 is reached

through an almost-proportional load path along which j¼ 0.5 (Eq. 13.77). The load

path is represented in Fig. 13.3 for the selected cylinder geometry. The selected

loading parameters resulted in a normalized pressure of 1.1947 (Eq. 13.78) and a
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Fig. 13.2 Characteristic material curve
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normalized axial force of 1.66 (Eq. 13.79). Figure 13.4 shows the resulting load

path represented on the load diagram.

13.3.4 Validation Using Finite Element Analysis

The theoretical analysis is validated by comparing the theoretically obtained results

with those obtained numerically using nonlinear finite element simulation, which

takes into consideration elastic-plastic material behavior with nonlinear hardening.

The nonlinear FEA program ABAQUS V. 6–14 was utilized as the platform for the

Fig. 13.3 Load path – deformation diagram

Fig. 13.4 Load path – load diagram
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numerical FEM analysis. The program is adequately equipped with the tools needed

to model large elastic-plastic deformations.

13.3.4.1 Model Setup

The arbitrarily selected dimensions of the cylinder are 10 mm for the internal

diameter and 16 mm for the external diameter. The end boundary conditions are

modeled so that they result in axially homogeneous fundamental deformation

conforming to the theoretical assumptions.

In order to minimize computational cost, an axisymmetric modeling technique

has been adopted, in which only a cross section of the cylinder is modeled. Also,

due to the axial symmetry of geometry, loading, and boundary conditions, a

symmetry boundary condition was introduced at the middle plane of the cylinder

so that only half the cylinder is needed to be modeled. These simplifications

provided significant improvements to the computational efficiency without any

sacrifice of the accuracy of the results. Figure 13.5 shows a comparison between

the theoretical model and the actual FEA model. The material model presented in

Sect. 13.2.3.3 and the material characteristics presented in Sect. 13.3.1 have been

used in the numerical simulation. The material characteristic curve used in the

theoretical analysis is discretized and introduced as an array to the model.

13.3.4.2 Element Selection

Axisymmetric solid elements are utilized. In order to avoid shear locking and

hourglass effects, second-order quadratic elements were selected for the analysis,

which provides parabolic distribution of the deformations and results in high degree

of accuracy of the model stiffness. Mesh sensitivity analysis was conducted to

ensure that the selected mesh size is adequate for providing high degree of

accuracy.

Fig. 13.5 Finite element

model
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13.3.4.3 Load Application

Hydrostatic pressure was applied to both the cylinder walls and the closed ends of

the tube. The pressure is applied so that it acts on the deformed configuration, i.e.,

not limited to the initial configuration.

In order to validate the theory, the values of the theoretically calculated, nor-

malized loading components were used with Eqs. (13.78) and (13.79) to calculate

the loads. An internal pressure of 172.0 MPa and an externally applied force of

195.333 kN are applied simultaneously, which provides an exact ratio between the

applied pressure and the axial force in the incremental finite element analysis. This

is close to having j ¼ 0.5 (Eq. 13.77) in the theoretical analysis. The external axial

load is applied to the cylinder end so that it does not cause any localized stresses or

deformations.

13.3.4.4 Analysis Techniques

The nonlinear incremental static analysis takes into consideration large deforma-

tions and material nonlinearities. The Newton-Raphson method was adopted for the

analysis.

13.3.5 Numerical Validation

The stress and strain distributions calculated in Sect. 13.2 are compared with those

from finite element simulations. Figure 13.6 shows comparison of the distribution

of the radial, hoop, and axial strain components obtained from the developed theory

with those calculated independently from the finite element analysis for the same

loading combination, following the load path presented in Sect. 13.3.3.

The results show outstanding agreement between all strain components obtained

by adopting both theoretical and FEM approaches as they effectively coincide. This

agreement represents validation of both the completely different approaches.

The results show clearly that the ratios between the strain components vary

considerably throughout the cylinder wall. This explains the incorrect outcome

presented in literature (Imaninejad et al. 2005) when constant strain ratios were

assumed throughout the cylinder.

The distribution of the von Mises equivalent strain is displayed in Fig. 13.7. The

corresponding von Mises equivalent stress distribution is presented in Fig. 13.8.

Both theoretical and numerical FEM results are presented showing, again, out-

standing agreement.

The deviatoric stress components, which are solely responsible of distortion,

yielding, and plastic deformations, are presented in Fig. 13.9. Once again, the

agreement between theoretical and numerical FEM results is outstanding.
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Fig. 13.6 Strain components

Fig. 13.7 Von Mises equivalent strain

Fig. 13.8 Von Mises equivalent stress
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Comparing the deviatoric stress distributions (Fig. 13.9) with the distribution of

the strain components (Fig. 13.6) shows that the ratios between the deviatoric stress

components are effectively the same as those of the strain components. These

ratios, however, vary throughout the cylinder wall.

The finite element simulations are completely numerical, and the results

obtained from the theoretical solution are also calculated through numerical inte-

gration using a Runge-Kutta algorithm. Therefore, such outstanding agreement

between the solution obtained from the developed theory and that obtained from

finite element analysis, utilizing a completely independent commercial program,

actually exceeds accuracy expectations and proves beyond doubt the correctness of

the developed theory.

The results also show a smooth continuous distribution of stresses and strains,

which confirms resolving the long-standing, persisting issues cited in literature

(Oeynhausen 1981; Imaninejad and Subhash 2005), where the presented solutions

contained either singularity or discontinuity in the resulting stress and strain fields.

Therefore, the outcome of this research represents an achievement and a large step

forward in the safety analysis of pressure vessels.

13.4 Conclusion

A general theory was developed for large elastic-plastic deformations of thick-

walled cylindrical pressure vessels loaded by combined large hydrostatic pressure

and axial force, considering nonlinear isotropic hardening. The adopted constitutive

law is based on applying the von Mises yield criterion in association with its

normality rule. The deformation of the cylinder is assumed to remain axially

symmetric, i.e., deformations are independent of the axial position. Stress and

strain distributions are obtained and presented for a case study of combined internal

pressure and axial tensile load.

Fig. 13.9 Deviatoric stress components
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The theoretical analysis is validated by comparing the theoretically obtained

results with those obtained numerically using nonlinear finite element simulation,

which satisfies the theoretical boundary conditions.

The nonlinear incremental finite element simulation takes into consideration

large elastic-plastic material behavior with nonlinear isotropic hardening. An

almost-proportional load path is assumed in the theoretical analysis, while exactly

proportional loading is adopted in the finite element simulations.

The numerical results obtained from the finite element simulations effectively

coincide with those obtained from the theoretically developed solutions, although

the theoretically assumed load path is not exactly proportional. This validates both

the developed theory and the finite element simulation and confirms the viability of

all assumptions.

This investigation addressed and resolved a persisting unresolved problem,

presented a novel approach, and provided a validated accurate solution to the

problem, which results in continuous and accurate stress and strain fields through-

out the cylinder wall. It rectifies outcomes from earlier attempts cited in literature

over decades, which contained inaccuracies, discontinuities, and singularities due

to invalid assumptions and/or inadequate selection of the yield criterion.

The findings provide valuable information in the safety design of extremely

loaded pressure vessels. The presented approach also establishes the basis for

further research in the stability investigations and bifurcation analysis of thick-

walled pressure vessels.
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Chapter 14

A Complex Variable Method to Predict

an Aerodynamics of Arbitrary Shape Ballistic

Projectiles

Sayavur I. Bakhtiyarov, Jimmie C. Oxley, James L. Smith,

and Philipp M. Baldovi

14.1 Introduction

Explosive ballistic projectiles (EBPs) can be described as fragments of various

sizes, masses, compositions, and shapes that formed from explosive devices. They

follow almost parabolic trajectories before they impact the targets. EBPs represent

a significant hazard that can potentially cause damage to natural and man-made

structures, fatal injury to people, and damage to the environment. These hazardous

effects originate from the high-impact energy and elevated temperature of the

EBPs. EBPs are capable of penetrating all building materials. The studies show

that they reach initial (detonation) velocities up to several kilometers per second.

When an explosive detonates the expansion of the extremely pressurized gas

products (the Taylor wave) fragment any casing the charge may have had. The

resulting fragments have different masses, shapes, and velocities. Understanding

their distributions is key to evaluating the level of resultant damage. After achieving

their initial velocity, the fragments continue their lethal ballistic trajectory through

the air. Their final velocities necessarily are less than their initial velocities due to

gravity and drag forces.
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14.1.1 Gurney Equations

When a cased explosive detonates, the outer shell is accelerated due to the initial

shock wave and the expansion of the gaseous products. Ronald Gurney (1943) first

modeled the energy distributed between the solid (metal) shell and the detonation

gases and developed a set of mathematical equations to define (i) the detonation

velocities of fragments generated by the explosive, (ii) the explosives forces, and

(iii) the accelerations of shaped charge explosives. In his models, which are based

on the principle of energy conservation, Gurney made simplifying assumptions that

the velocity gradient (e.g., particle velocity distribution) in the explosive detonation

product gases was linear and that the density was uniform throughout the explosive

product. These assumptions simplify integration of the kinetic energy of the

explosive and that of the internal energy over the explosive. The Gurney model

assumes that the change in the internal energy is equal to the kinetic energy of the

metal liner and produced explosive gases:

CE0 �
Z
gas

EdC ¼ 1

2
MV2

0 þ
1

2

Z
gas

V2dC ð14:1Þ

where M and C are the masses of the metal liner and the charge, respectively, E is

the internal energy of explosive, E0 is the initial value of the explosive’s internal
energy, V0 is the velocity of the metal liner, and V is the particle velocity within the

explosive products. Gurney suggested that the explosive products expand adiabat-

ically according to the ideal gas law. Then the following energy-density relation-

ship can be used:

E ¼ E0

ρ

ρ0

� �γ�1

, ð14:2Þ

where ρ and ρ0 are the current and initial explosive densities.

The fragment velocities determined in many experimental studies showed a

good agreement with Gurney’s formula (Bola et al. 1992). An analytical method

for the evaluation of the detonation velocity of fragments was proposed by Zhang

et al. (2003). The latter method was based on the equation of motion of the fragment

and the gas pressure inside the casing. Another analytical formula for the detonation

velocity (cylindrical metal casing) was proposed by Elek et al. (2013). In their

studies, the casing was treated as a deforming body. Pearson (1990) divided the

dynamics of the fragment motion into the following phases:

• Phase 1: the case expansion is considered as elastic-plastic.

• Phase 2: the plastic expansion continues with further development of fractures.

• Phase 3: the fragmentation process starts.

• Phase 4: each fragment continues its terminal movement.
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Pearson calculated the velocity in each phase and compared it with Gurney’s
velocity. Velocities in phases 3 and 4 were lower than Gurney velocity by 4% and

9%, respectively.

Gurney equations have been used successfully in many applications (Nystrom

and Gylltoft 2009). However, the assumptions used in the Gurney formulae (uni-

form density and linear velocity distribution in the products) are over simplifica-

tions. Over the years, various improvements have been offered. A simple model

suggested by Thomas (1944) assumed that, once the liner expanded to a certain

multiple of its initial radius, it was no longer accelerated; any internal energy

remaining in the products did not contribute to the final velocity of the liner. Hirsch

(1986, 1995) showed that when the total energy partitioned between the flyer plate

and gases exceeded unity, the Gurney assumptions failed. Hirsch established a

range of M
C values where the Gurney assumptions would not work (anomalous

region). Hydrocode simulations have been conducted by Flis (1996) to take into the

account both density nonuniformity and velocity nonlinearity distributions.

The equations proposed by Gurney to calculate the velocity of an accelerated

flyer after detonation (V ) for simple charge geometries is as follows:

Vffiffiffiffiffiffi
2E

p ¼ a
M

C
þ b

� ��1
2

: ð14:3Þ

Here,
ffiffiffiffiffiffiffi
2E

p
is an empirical Gurney velocity constant of the explosive charge. The

values of the empirical constants a and b depend on the charge geometry and can be

found in Table 14.1.

An approximate technique was proposed by Kamlet and Jacobs (1968) to

calculate the Gurney velocity as a function of the detonation velocity and the

pressure. The initial density of the explosives ρ0 and a parameter Φ was used to

correlate detonation velocity and the pressure. The introduced parameter Φ was

considered as a function of the released energy and the amount of the produced

gases.

Hardesty and Kennedy (1977) showed that the internal energy remaining in the

product gases late in their expansion does not contribute to the acceleration of the

casing. Therefore, the effective specific energy of an explosive is less than that

measured by detonation calorimetry. The authors proposed an expression for

Gurney velocity using parameter Φ and density ρ0:ffiffiffiffiffiffi
2E

p
¼ 0:6þ 0:54

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:44 ρ0Φ

p
: ð14:4Þ

Another correlation using parameters Φ and ρ0 was proposed by Kamlet and

Fioger (1979):

Table 14.1 Empirical

constants in Gurney equation

for different charge

geometries

Charge geometry a b

Cylindrical 1 0.5

Spherical 1 0.6

Symmetrical sandwich 2 0.33
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ffiffiffiffiffiffi
2E

p
¼ 0:887 Φ0:5ρ0:4: ð14:5Þ

Some of the proposed correlations used only the detonation velocity. For exam-

ple, the following expression for the Gurney velocity was proposed by Cooper

(1996):

ffiffiffiffiffiffi
2E

p
¼ vD

2:97
: ð14:6Þ

Based on gas dynamic analysis another formula for the Gurney velocity has been

proposed (Kennedy, 1998):

ffiffiffiffiffiffi
2E

p
¼ 0:605 vD

γ � 1
ð14:7Þ

where γ is a Poisson constant (a ratio of the heat capacity at constant pressure to the
heat capacity at constant volume) at the detonation.

In contrast to the assumptions of the Gurney equations and other analytical

models described above, Cullis et al. (2014) and Predebon et al. (1977) showed

that the velocity distribution along the longitudinal axis of a cylinder is not

constant. Experimental results obtained by Charron (1979), Li et al. (2015), and

Huang et al. (2015) showed a nonuniform reduced velocity distribution near the

edges of the cylindrical casing. Therefore, an introduction of the reduction factors

to the Gurney equations has been recommended. To find a nonuniform velocity

distribution, Szmelter et al. (2007) proposed to substitute complex shapes of casing

with sphere. The maximum velocity was in good agreement with the experiments;

however, the overall distribution did not agree well. Resolving fragment velocity

into the radial and the axial components and using empirical constants, Smit et al.

(2001) proposed a multidimensional model with equivalent masses in radial and

axial directions. A nonuniform velocity distribution predicted by the 2D finite

difference code HEMP (Anderson et al. 1985; Karpp and Predebon 1975) was in

good agreement with experimental results. Some researchers tried to introduce

correction factors into the Gurney equation to account for the reduced velocity at

the cylindrical casing edges (Zulkonski 1976; Charron 1979; Mock and Holt 1983;

Wang et al. 2013; Xiangshao et al. 2013). The proposed correction formulae yield

zero velocity at the detonated edge which does not agree with experimental results.

Huang et al. (2010, 2015) proposed another empirical formula which was calibrated

with experimental results and did not yield zero velocity at the detonation end.

Grisaro and Dancygier (2015) developed 2D and 3D models to predict a

nonuniform velocity distribution (normalized by shape function) along the longi-

tudinal axis of the cylinder and near its edges. The simulation results were in good

agreement with available experimental data.
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14.1.2 Projectile Initial Launch Angle (Projection Angle)

One of the assumptions of the Gurney equations is the liners (fragments) which

move perpendicular to the surface of the casing (initial angle of launch θ ¼ 0
�
).

However, in a real situation, the direction of the fragment motion depends on the

approaching angle of the detonation to the fragment. If the detonation propagates

parallel to the metal surface, the metal fragment will move in the direction of

detonation propagation under the angle of projection θ ¼ α
2
, where α is the angle

between the normal to the initial position of the plate and the normal to the

deflection angle of the plate (Taylor 1963). Thus, the projection angle can be

estimated by the following equation (Taylor 1963):

θ ¼ sin �1 v

2vD

� �
ð14:8Þ

where vD and v are the detonation velocity and the velocity of the fragment,

respectively. This formula is valid also for the oblique shock waves relative to

the metal surface. In this case, the phase velocity of detonation along the plate

surface will be considered as vD.
For the unsteady motion where the liner did not reach the final velocity, Chou

et al. (1983) proposed the following equation for the launch angle:

θ ¼ v

vD
� t

2

dv

ds
þ v

4

dt

ds
ð14:9Þ

where v is the final velocity of the liner, vD is the phase velocity of the detonation

wave along the metal surface, t is the acceleration time, and s is the position along

the liner. Eq. (14.8) can be obtained as a special case (steady motion case) from

Eq. (14.9) dv
ds ¼ dt

ds ¼ 0
� �

.

The analysis of the witness panels used during the fragment recovery field tests

showed that the initial launch angles of the fragments are small (Oxley et al. 2001;

Oxley, 2003).

14.1.3 Fragment Size

Detonation fragments the casing of an explosive as the rapid expansion of product

gases reaches the ductility limit of the casing material (up to 50% expansion in

some cases). Observations show that for steel casings, fractures occur due to the

cracks developed parallel to the axis of the cylindrical casing. A model for breakup

of the cylindrical metal case was proposed by Mott (1947). This model predicted

the length of the average fragment as a function of the mechanical properties of the

case material, its breakup radius, and velocity.
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Grady (1981) analyzed fragmentation of one-dimensional bodies due to the

dynamic stress loading and proposed analytic functions for the fragment size

distribution for both ductile and brittle fractures. He showed that the fragment

distribution is a function of the stress-loading conditions and the material proper-

ties. The predicted fragment distribution curve was compared to the experimental

data obtained by Wesenberg and Sagartz (1977) for aluminum rings, and a good

agreement was found.

14.1.4 Fragment Range

Several studies have been conducted to predict the dynamics of the motion of the

primary fragments. Since an exact analytical solution of the motion of the projectile

including gravity, drag, and lift forces is not possible, several approximations were

made to solve the problem. Davis (2003) proposed the following formula to

calculate the fragment velocity with the assumption that a drag coefficient is the

velocity independent:

V ¼ V0e
�x

L ð14:10Þ
where V is the velocity of the fragment, V0 is the initial (detonation) velocity, x ¼ n
L is a number in L multiples, and L is the characteristic length defined as:

L ¼ hρm
1
2
CDρa

ð14:11Þ

where h is the thickness of the fragment in the direction of motion, ρm and ρa are
densities of metal casing and air, respectively, and CD is the drag coefficient.

Bishop (1958) proposed a chart to estimate maximum fragment range as a

function of the fragment thickness for steel and aluminum cubes. Due to the density

variations, the chart shows a significant difference in maximum ranges for steel and

aluminum fragments. Using Bishop’s chart and converting the fragment thickness

to the function of density and maximum fragment weight, Kelleher (2002) proposed

the following equation to estimate the maximum fragment range (in meters):

Rmax ¼ 190 ρ�0:112W þ 52 ρ0:858 ð14:12Þ
where ρ is the fragment density in gcm�3 andW is the maximum fragment weight in

kg. However, the proposed equation does not account for the explosive type and the

charge amount and the wind speed and direction. Figure 14.1 shows a variation of

the horizontal range vs. maximum fragment weight predicted by Kelleher (2002)

for steel (ρ ¼ 7.86 kg m�3), aluminum (ρ ¼ 2.70 kg m�3), and plastic (ρ ¼ 0.80 kg

m�3) casings. As seen in Fig. 14.1, for fragments of small weight, there is a

horizontal range which depends on the casing density. It is almost independent of

the casing density for large mass fragments. As in non-drag case, the maximum

horizontal range takes place when an initial launch angle θ ¼ 45
�
.

408 S.I. Bakhtiyarov et al.



Davis (1978) proposed a critical length of the fragment (in meters) in the

direction of flight:

L ¼ 2hρm
CDρa

∙ h, ð14:13Þ

where ρm and ρa are densities of metal and air (in g cm�3), respectively, CD is the

drag coefficient, and h is the thickness of the fragment (in mm). The safe distances

for the equipment and personnel are recommended as 5 L and 8 L, respectively. The
critical length of the fragment can be used to calculate a horizontal range of the

fragment. Neglecting the gravity and the lift forces, it can be determined as:

R ¼ Lln
V0

V
: ð14:14Þ

The problem of the fragment motion was numerically solved by Baker et al.

(1983) for different lift-to-drag coefficient ratios. The maximum ranges of the

fragments were obtained as a result of their simulations.

Kinney and Graham (1985) proposed another empirical formula for the fragment

range as a function of the TNT equivalent (e.g., energy released in the detonation of

1000 kg of TNT) of the explosive mass:

R ¼ am
1
3

TNT ð14:15Þ
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Fig. 14.1 Variation of maximum horizontal range with fragment weights predicted by Kelleher

(2002)
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where mTNT is the TNT equivalent mass of explosive (kg) and a ¼ 45. The ratio R

m
1
3

is called a “scaled distance” (e.g., fragments are expected to be thrown 45 m per

cube root kg TNT). However, according to the standard bomb disposal (SBD)

practice, for a safety distance from the detonation center, the coefficient a should

be a¼ 120 (Lenz 1965).

14.2 Objectives and Goals

The objective of this study was to develop an engineering method to predict the

aerodynamics of explosive ballistic projectiles (EBPs) of arbitrary shapes. The

approach was to combine a complex variable method (“linearization of single-

bonded area”) with the numerical analysis of the projectile motion dynamics in

order to predict the motion of EBPs of arbitrary shapes, sizes, and masses.

14.3 Methods

14.3.1 Projectile Motion with Quadratic Air Resistance

Consider a projectile of mass m that is launched with an initial (detonation)

velocity v0 at an initial launch angle of θ to the horizon in the uniform gravitational

field g (Fig. 14.2.).

The equation of the projectile motion can be written as:

m
d~v

dt
¼ ~Gþ ~FD þ ~FL ð14:16Þ

where m is the mass of the projectile, ~v is the projectile velocity, ~G is the force of

gravity (projectile weight), ~FD is the drag force, ~FL is the lift force,
d~v

dt
¼ ~a is an

acceleration of the projectile, and t is a time. Drag and lift are two components of

the aerodynamic force FA.

y

x

FD
v0

v

O

H
G

FLFA

q

Fig. 14.2 Projectile motion
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A drag force is the most important physical parameter in aerodynamic analysis.

Drag force consists of two force components: friction (viscous) drag (Ff or Fv)

acting tangent to the surface and pressure drag (Fp) acting normal to the surface.

These components are determined by the following formula:

Fp ¼
Z
S

dA p� p0ð Þ and Ff ¼
Z
S

dAτw ð14:17Þ

where p and p0 are pressures at the surface and away from the surface, respectively,

and τw is a wall shear stress. The shape of the object and its angle of attack

determine which drag is dominant. Depending on domination of a friction or a

pressure drag, the objects are called streamlined or blunt, respectively. Drag

coefficient is a function of flow velocity and direction, object position, object

size, and fluid density and viscosity. The flow velocity and fluid properties (density

and viscosity) can be incorporated into the nondimensional criterion called Reyn-

olds number (Re), which defines the ratio of inertial forces to viscous forces. If we

assume that the drag force is approximately proportional to the square of the speed

of the projectile relative to the air, then we can write:

~FD ¼ �CDAFρ

2
v~v ð14:18Þ

where CD is the drag coefficient, ρ is the mass density of the fluid, and A is the

reference area (usually the face area AF).

Lift force is the component of the aerodynamic force which is perpendicular to

the approaching flow direction. It can be estimated using the following formula:

~FL ¼ CLAρ

2
v~v ð14:19Þ

where A is the area normal to the lift force and CL is the lift coefficient which is a

function of the angle of attack, which is an angle between the fragment reference

line (chord) and the oncoming flow, Mach number, and Reynolds number. The

analyses showed that the maximum lift coefficient would be at 15� angle of attack.
Some studies show relationship between drag and lift forces. For example,

Küchemann (2012) proposed the following empirical relationship for predicting a

lift force to drag force ratio:

FL

FD

¼ 4 M þ 3ð Þ
M

ð14:20Þ

where M is the Mach number. The formula (20) was verified by wind tunnel tests,

and it is considered a quite accurate.

The analysis of the shapes and sizes of the fragments recovered from field test

conducted by Oxley et al. (2001) showed that there is asymmetry between the top

and bottom surfaces of the explosive fragments and their thicknesses are up to

50 times less than their lengths. This would suggest these fragments could be

14 A Complex Variable Method to Predict an Aerodynamics of Arbitrary Shape. . . 411



considered as cambered airfoils; thus, lift force must be taken into the consider-

ation. Eq. (14.16) can be written in algebraic form in 2D Cartesian coordinate

system as:

m
dvx
dt

¼ �FDx þ FLx, ð14:21Þ

m
dvy
dt

¼ �G� FDy þ FLy: ð14:22Þ

Substituting Eq. (14.18) in Eqs. (14.21) and (14.22), we obtain:

dvx
dt

¼ � CDAF � CLAð Þρ
2mg

vvx, ð14:23Þ
dvy
dt

¼ �g� CDAF � CLAð Þρ
2mg

vvy: ð14:24Þ

14.3.2 Complex Variable Method Analysis

Generally, ballistic projectile motion must be considered as a motion with six

degrees of freedom (6DoF). Pitch, roll, and yaw are three dynamic parameters

which characterize the angles of rotation of ballistic projectile motion in three

dimensions about its center of mass (Fig. 14.3.). They define the rotations about the

corresponding axes relative to the steady equilibrium state. These rotational

motions are caused by forces (or moments) applied in different directions from

the center of the projectile.

To measure the ability of ballistic projectiles to overcome air resistance in flight,

the ballistic coefficient, which is inversely proportional to the negative acceleration,

is usually used. The ballistic coefficient is related to the drag coefficient as:

CB ¼ m

CDA
¼ ρl

CD

ð14:25Þ

Roll

Yaw

Pitch

Trajectory

Fig. 14.3 Angles of rotation of ballistic projectile motion
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where l is the length of the projectile. A ballistic coefficient for the projectiles by

action of explosive can be defined as:

CB ¼ m

D2
e i

ð14:26Þ

where De is the effective diameter of the projectile and i is a coefficient of form.

There are different formulae to determine a coefficient of form. Theoretical studies

of projectile motion traditionally focus on regularly shaped object such as uniform

spheres or cylinders. The dynamics of more asymmetric objects subjected to both

force and torque is more complicated as it usually includes coupling between

translational and rotational motions. The problem is more complicated if we do

not know the orientation alignment of asymmetric objects under external forces. In

most calculations, the reference area is the projected frontal area of the object (e.g.,

A ¼ π r2 for spherical shape object). If the area of contact of the fluid with the

surface area of the object is bigger than the frontal area (e.g., airfoils), the reference

area will be the nominal area of the object. Volumetric drag coefficient (CV ¼
ffiffiffiffiffi
823

p
)

is used for objects of revolution (where 8 is the volume of the object). Some

calculations use a wetted surface area, which is applicable for submerged stream-

lined objects. However, 3D motion of the projectile about its center of mass with six

degrees of freedom (6DoF) requires a different approach to estimate both the drag

coefficient CD and the reference area A. Bakhtiyarov (2013, 2017) proposed a

complex variable method (“linearization of single-bonded area”) which can be

used in developing a universal formula for the velocities of the projectiles of

arbitrary shapes, sizes, and masses. This method introduces a function:

ψ ¼ uþ Δp
4μl

x2 þ y2
� �

, ð14:27Þ

which can be transformed to a Laplace equation with the boundary condition

ψ ¼ Δp
4μl x2 þ y2ð Þ, on the stream contours. The proposed technique has the following

hydrodynamic interpretation: The problem of determination of the projectile veloc-

ities in the viscous fluid medium (in our case, it is air) is reduced to the problem of

determination of the fluid flow around a prism with the same cross-section area

rotating with the angular velocity ω ¼ Δp
2μl. In order to find the function ψ (x, y) for

arbitrary cross-section area, an interior of this area in z-plane (z¼ x + iy) is reflected
into the interior of the unique circle ξ� plane (ζ¼ ξ+ iη¼ ρeiθ) using the following
power series:

z ¼ a0 þ a1ζ þ a2ζ
2 þ . . .þ anζ

n þ . . . : ð14:28Þ
Using Schwarz’s integral, the function f(ζ) will be determined in a unit circle by

the given real part on the contour. Taking into the account the boundary conditions,

both the function f(ζ) and the flow function ψ ¼ 1

2
ωz ∙ �z can be determined:
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ψ ¼ ω
1

2

X1
k¼0

a2k þ
X1

k¼1
ρk cos kθ

X1
s¼0

asasþk

� �
: ð14:29Þ

Combining (14.27) and (14.29), we can find the projectile velocities in the

ζ-plane:

ψ ¼ Δp

2μl

1

2

X1
k¼0

a2k 1�ρ2k
� �þX1

k¼1
ρk coskθ

X1
s¼0

asasþk 1�ρ2s
� �� �

: ð14:30Þ

The distribution of velocities u(x, y) in z-plane will be constructed according to

the method proposed by Lavrentyev and Shabat (1973):

x ¼
X1

k¼0
akρ

k, ð14:31Þ

y ¼
X1

k¼1
akρ

k sin kθ: ð14:32Þ

The results of numerical calculations of ψ for the ballistic projectiles with

various cross sections are validated by formula for geometrical shapes given in

literature. The equivalent radius of the object of arbitrary shape will be defined by

the method suggested by Polya and Szego (1962):

r0e ¼
S3

4π2J0rH
¼ 2rH

ξ0
, ð14:33Þ

where ξ0 ¼ 8π2J0
Sχ2 is the shape coefficient and I0 is the moment of inertia. As an

example, for the right n-angle shape object:

ξ0 ¼ π2

3n2
1þ 3 cot 2

180
�

n

� �
: ð14:34Þ

In the proposed method, the linear size characteristics of the cross section of the

arbitrary shape objects could be determined by different ways, such as an exact

solution of the Eq. (14.30), based on Boussinesq’s equation, using a conform
representation method, etc. A conform representation method was applied in

these simulations. The turbulent flow of air was studied using a model of superpo-

sition of the molecular and turbulent viscosities (Schiller 1936):

τw 1� yð Þ ¼ μþ μtð Þdu
dy

: ð14:35Þ

It is assumed that the turbulent flow occurs by the two-layered Prandtl-Taylor

structure model. The equivalent viscosity of fluid is determined as

μ ¼ μequiv ¼ τw= _γ st, where τw is the shear stress at the wall and _γ st is the shear

rate. The flow resistance is estimated by the Blasius formula (Loitsyansky 1973).

The following parameters were used to describe the ballistic projectile resulting
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from the case breakup: mass, shape, dimensions, projected areas, ballistic coeffi-

cient (subsonic, supersonic) vs. Mach number, drag coefficient, lift-to-drag force

ratio FL

FD

	 

, and imparted velocity (speed, direction, etc.).

14.3.3 Numerical Analysis

Since an exact solution to Eqs. (14.23) and (14.24) cannot be found analytically, we

will solve them numerically. As we know, the acceleration components ax and ay
are continuously changing as the velocity components vx and vy change. A basic

concept of the numerical simulation is that over an adequately short time interval

Δt, we can consider the acceleration as a constant. If we know the initial coordi-

nates and velocity components of the projectile at some time t ¼ t0 (usually t0 ¼ 0),

we can find their values at a time t + Δt using the formulae for the constant

acceleration. During a time interval Δt, the average changes of the x and

y components of the acceleration and the velocity of the projectile will be:

ax ¼ Δvx
Δt

, ay ¼ Δvy
Δt

,Δvx ¼ axΔt,Δvy ¼ ayΔt: ð14:36Þ

The values of x and y components of the velocity at a time t + Δt will be:

vx þ Δvx ¼ vx þ axΔt and vy þ Δvy ¼ vy þ ayΔt: ð14:37Þ
The average of the velocity components during the time interval Δt will be:

vx þ Δvx
2

and vy þ Δvy
2

:

Then, during a time interval Δt, the coordinates x and y change as:

Δx ¼ vx þ Δvx
2

� �
Δt ¼ vxΔtþ axΔt2

2
andΔy ¼ vy þ Δvy

2

� �
Δt

¼ vyΔtþ ayΔt2

2
: ð14:38Þ

The initial conditions can be stated as:

At t ¼ 0 : x ¼ 0, y ¼ 0, vx ¼ v0 cos θ, vy ¼ v0 sin θ: ð14:39Þ
Using Eqs. (14.37) and (14.38), we can find the position and the velocity of the

projectile at the end of each interval in terms of their values at the beginning. A

general algorithm of the simulations is presented in Fig. 14.4.
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14.4 Results

Projectile trajectories were numerically simulated according to the algorithm of

simulations shown in Fig. 14.4. Simulations were performed with time interval

Δt¼ 1 s for the fragments recovered from previous pipe bomb tests by Oxley et al.

(2001). The recovered masses of the randomly selected fragments for these ana-

lyses varied between 5 g and 115 g, and the surface areas varied between 0.5 and

100 cm2. Preliminary simulations were performed to define a qualitative impact of

each parameter on the fragment range. As an example, Figs. 14.5, 14.6, 14.7,

and 14.8 are provided to show a variation of numerically simulated projectile

trajectories for different variables. Figure 14.5 shows projectile trajectories

simulated at different drag coefficients (CD) and parameter k ¼
ffiffiffiffiffiffiffiffi
2mg
CDAρ

q
at

m ¼ 11 g, v0 ¼ 1; 000m
s
, and θ ¼ 45

�
. Figure 14.6 shows the predicted

projectile trajectories for different launch velocities at m¼ 11 g,CD¼ 0.7, k¼ 33,

and θ¼ 45
�
. Figure 14.7 depicts projectile trajectories simulated at different launch

angles at m¼ 11 g, v0¼ 1,000 m/s,CD¼ 0.7, k¼ 33. The projectile trajectories

simulated at different masses of the fragments at θ¼ 45
�
, v0¼ 1,000 m/s,

and CD¼ 0.7, k¼ 33 are shown in Fig. 14.8.

Iden�fy the parameters, m, A, CD , CL and r

Choose the �me interval Δt and the 
ini�al values of x, y, vx, vy and t

Choose the maximum number of intervals 
N. The maximum �me will be tmax = NΔt

Calculate the 
accelera�on 
components 

ax and ay

Plot x, y, vx, vy, ax and ay

Calculate the new velocity 
components vx and vy

using Eqns. 13

Calculate the new coordinates 
x and y using Eqns. 14

Increment the �me by Δt

Stop

Iterate these steps 
while  n < N or t < tmax

Find flow func�on for 
arbitrary cross sec�on area

Transform func�on to 
Laplace equa�on with the boundary 

condi�on on the stream contours

Using a Schwarz's integral 
calculate func�on 

Find u(x, y) by Lavrentyev-
Shabat method 

Find equivalent radius 
by Polya-Szego method

Describe turbulent flow of air 
by 2-layered Prandtle -Taylor 

structure model

Fig. 14.4 General algorithm of complex variable method incorporated with numerical analysis
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14.5 Discussions

The analyses of the simulations show that the fragment range decreases as the drag

coefficient (CD) increases (or parameter k decreases) (e.g., see Fig. 14.5). One

would expect the fragment range increases as the launch velocity increases (e.g.,

see Fig. 14.6) and the launch angle decreases (e.g., see Fig. 14.7). The fragment

range decreases as the fragment mass increases for the same face areas (e.g., see

Fig. 14.8).

The projectile ranges were numerically simulated for the fragments recovered

during the pipe bomb tests conducted by Oxley et al. 2001), and the results were

compared to those predicted by the models proposed by Kelleher (2002), Kinney

and Graham (1985), Lenz (1965), and Bomb Disposal Guide (BDG). To find the

initial launch angles (θ), we numerically simulated the variation of this angle

vs. maximum projectile range using Eqs. (14.8) and (14.9) for the fragments

recovered from the pipe bomb tests. The results of the comparison as an example

are shown in Fig. 14.9 for m ¼ 5:28 g, v0 ¼ 1; 237m
s
,CD ¼ 0:7. The simulations

for all selected fragments along with the predictions made by prior proposed

models are shown in Table 14.2. The percent and the standard deviations of the

projectile ranges calculated by various models for fragments recovered during the

pipe bomb tests (Oxley et al. 2001) are depicted in Figs. 14.10 and 14.11,

respectively. It is worthwhile to mention that most of those models neglected

the drag and lift forces. As seen from these figures, the numerical model devel-

oped in this study is the best to describe the actual test results obtained during the

field pipe bomb tests.
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Fig. 14.9 A comparison of the maximum fragment range (in meters) determined from the

fragment recovery tests (FRT) conducted at the University of Rhode Island (URI) with simulated

predictions (m ¼ 5.28 g)
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14.6 Conclusions

An engineering method to predict aerodynamics of explosive ballistic projectiles

(EBPs) of arbitrary shapes has been developed. Incorporating the numerical solu-

tion of the equations of the dynamic motion of projectile with a complex variable

method (“linearization of single-bonded area”), the velocities and the trajectories of
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arbitrary shape EBPs have been determined. The developed simulation technique

was applied to predict the trajectories and velocities of the fragments recovered

during a previous pipe bomb tests. The results of the simulations were compared to

prior developed model predictions. It appears that the developed numerical model

is the best to describe the actual test results if compared to other model predictions.
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Chapter 15

Extension of Substructuring Technique
in the Nonlinear Domain

Mladenko Kajtaz

Conventional finite element models based on substructures allow only linear

analysis. Some load-bearing structures such as energy absorbers and impact atten-

uators are designed to perform their useful functions in the nonlinear domain.

Evaluating engineering design concepts of those structures objectively and with a

certain rigour is challenging. Finite element analysis (FEA) as a potentially suitable

tool for the evaluation typically is not computationally efficient and affordable in

the conceptual design phase. An idea of extending the substructuring technique to

be used for the concept evaluation by allowing substructures to exhibit a nonlinear

response and use them in finite element models to reduce the computational cost is

investigated in this chapter. For this reason, it was necessary to introduce a new

algorithm capable of substructuring nonlinear structural models with sufficient

accuracy. The main requirement for successful application of substructuring to

this class of design problems is the definition of structural stiffness within an

engineering design concept, which is, in fact, the minimal requirement for FEA

functionality as well. In this work, the expansion of the substructuring technique

beyond the linear response expectancy application is achieved by employing a

scalar qualifier to economically modify original substructure matrix for substruc-

tures to exhibit a nonlinear response. This extension and integration of

substructuring are crucial in allowing FEA to become more computationally effi-

cient and affordable in the conceptual design phase. This chapter provides a

comprehensive overview of the traditional substructuring process, followed by a

detailed description of the developed method that extends substructures beyond the

linearity domain. The implementation of the extended substructures within a

commercial FEA code (ABAQUS) is then presented.
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15.1 Substructuring

Structural alternations as a result of an engineering design search imply modifica-

tions to their finite element models which are usually reflected as changes in

member size, material, and general modifications of the finite element mesh.

However, the loads on the structure are unaffected by the alternations and as they

remain unchanged. The situation can symbolically be described as:

Initial system : KU ¼ F ð15:1Þ
Altered system : K∗U∗ ¼ F ð15:2Þ

where K∗ ¼ Kþ ΔK ð15:3Þ
U∗ ¼ Uþ ΔU ð15:4Þ

In order to obtain desired unknowns U*, an obvious approach is a complete

resolution of the altered system or alternatively to obtain U* with less computa-

tional effort than complete resolution by utilising information available from the

initial system. The alternative, called reanalysis approach, was a very attractive

solution approach in the infancy of computational engineering because of then

limited computational resources. Arora (Arora 1976) in his comprehensive review

of reanalysis approaches lists over 80 references describing the reanalysis methods.

The reanalysis approaches continued to intrigue researchers for decades later, and

many new approaches have been proposed (Abu Kassim and Topping 1987;

Barthelemy and Haftka 1993). The various approaches may be categorised as

follows (Kirsch 2008):

1. Direct methods, giving exact closed-form solutions and applicable to situations

where a relatively small part of the structure is changed. They are usually based

on the Sherman-Morrison (Sherman and Morrison 1949) and Woodbury (Wood-

bury 1950) formulas for the update of the inverse of a matrix.

2. Iterative methods, based on convergence from U towards U* at a rate that is case

dependent. The iterative methods work best when alterations are small since

large differences betweenK andK*make the iterations converge slowly or even

diverge.

3. Approximate methods, giving approximate solutions, with the accuracy being

dependent on the type of changes. They are usually based on a truncated series

expansion or on a reduced set of structural equations, and they are generally

suitable for situations where changes occur for large parts of the structure. The

common approximations can be further divided into local approximations (the

Taylor series expansion or the binomial series expansion), global approxima-

tions (polynomial fitting, response surface or reduced basis methods) and com-

bined approximation ((Kirsch and Rubinstein 1972) improvements of the

iterative method).

The reanalysis approach presented here is referred to as substructuring tech-

nique, and it is categorised as a direct method of reanalysis. Mathematically,
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substructuring is considered as a partial solution of the complete set of structural

equations. Physically, substructuring is considered as a division of a structure or a

finite element mesh into multiple nonoverlapping domains (Fig. 15.1). In other

contexts, substructuring is also known as blocking or dissection (numerical analy-

sis) and diakoptics or tearing (electrical engineering). The substructuring process

includes the following steps (Cook et al. 2001):

• Condensation of degrees of freedom (DOF) and the loads of a substructure to the

retained nodes. The substructure is then treated as a traditional finite element

connected to other elements via the retained nodes.

• Assembly of the stiffness and nodal force contributions from the substructure

into the global stiffness matrix and the force vector.

• Evaluation of the system’s equilibrium equations.

• Recovery of displacements of the condensed nodes from the retained nodes and

followed by an evaluation of strains and stresses for the substructure.

15.1.1 Nodal Condensation

A nodal condensation, or a reduction of the number of element degrees of freedom

(DOF), is utilised to perform a partial evaluation of the total finite element system

equilibrium equations prior to assembling the structure stiffness and force matrices.

Fig. 15.1 Schematics of substructures
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Originally, it was used to eliminate the internal degrees of freedom in a quadrilat-

eral finite element constructed from four triangles (Wilson 1965). The process

consists of employing Gauss elimination to eliminating DOF associated with the

condensed, also known as slave, nodes until only DOF associated with the retained,

or master, nodes remain. As the global stiffness matrix is obtained by direct

addition of the element stiffness matrices, the nodal condensation implies that

some of the total Gauss solution is already accomplished on the element level

which reduces the overall size and bandwidth of the global stiffness matrix.

In order to establish the equations used in the nodal condensation and further

illustrate this technique, let ku ¼ f be a linear problem of a substructure under

consideration requiring a solution (Wilson 1974). Let m be the set of all indices of

DOF associated with the retained (master) nodes. Grouping DOF corresponding to

m in the vector um and those corresponding to the slave nodes, s, in us, the original

problem expression is partitioned into the form:

kmm kms
ksm kss

� �
� um

us

� �
¼ fm

fs

� �
ð15:5Þ

By mimicking Gauss elimination, which is assuming that kss is invertible, vector

us is obtained using the second row of Eq. (15.1) as:

us ¼ �k�1
ss ksmum � fs ð15:6Þ

Substituting this into the first row of Eq. (15.1) yields:

�kmmum ¼ �fm ð15:7Þ
where

�kmm ¼ kmm � kmsk
�1
ss ksm

�fm ¼ fm � kmsk
�1
ss fs

In mathematics, the stiffness matrix �kmm from Eq. (15.7) is referred to as the

Schur complement of the matrix kmm in k, and it inherits all properties of k (Fuzhen

2005). This important quality enables a substitution of an unreduced matrix with a

condensed matrix, thus allowing all consequent matrix operations to

uninterruptedly execute. Therefore, the condensed matrices are treated as ordinary

matrices of any traditional finite element, and they are assembled into the global

stiffness matrix and the equivalent nodal force vector in the standard manner. If

required, the condensed DOF, us, are recovered using Eq. (15.6) which may be

further simplified if the loads act on the master nodes only, then fs ¼ 0, and

Eq. (15.6) simplifies to:

us ¼ �k�1
ss ksmum ¼ Lum ð15:8Þ
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where matrix L is a linear transformation between the master and the slave DOF of

a substructure (Guyan 1965; Vorob’ev et al. 1994). The stresses at any point are

computed from the retained displacements um as follows:

Given the stress vector:

σ ¼ Sm Ss½ � um us½ �T � Cε0 þ σ0 ð15:9Þ
where

Sm ¼ CBm

Ss ¼ CBm

with

B ¼ Bm Bs½ �
B – strain-displacement matrix that transforms nodal displacements to strains at

any point in the substructure

C – constitutive matrix that transforms effective strains to stresses at any point in

the substructure

Substituting us from Eq. (15.6) into Eq. (15.9) yields:

σ ¼ S∗um þ τ∗ ð15:10Þ
where

S∗ ¼ Sm � SsQ
t∗ ¼ Cε0 þ σ0 þ SmR
Q ¼ k�1

ss ksm
R ¼ k�1

ss fs

In a special case when us contains a single DOF, the described condensation

process coincides with the standard Gauss elimination technique for solving system

of algebraic equations (Bathe and Wilson 1976), implying that the technique can be

interpreted as the partial solution of the global assembled system KU ¼ F.

15.1.2 Benefits and Limitations of Substructures

Substructuring is a computationally efficient way of handling complex finite ele-

ment models because it reduces the total number of DOF by at least 10 percent and

even more than 30 percent depending on a problem, without compromising analysis

accuracy (Chandrupatla and Belegundu 2002; Kajtaz et al. 2010). These benefits

originate from their generation which is based on the standard Gauss elimination

technique whereby the nodal condensation performs part of the solution of the total

finite element system equilibrium equations on the element level (Bathe 1996). This

partial solution of the global system of equilibrium equation is external and
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independent from the remaining equilibrium equations, which can be figuratively

interpreted as a reuse of the computational time and effort invested in generating a

substructure at every inclusion of the substructure in a finite element model. The

benefits of this type are most evident in the case of modelling repetitive geometries

as the condensed DOF are processed only once. Consequently, the reduced model

size leads to a more efficient allocation of computational resources due to benefits

in shorter computational time and smaller storage requirements per analysis step.

There is also a more pragmatic advantage in breaking a large problem into smaller

and more tractable parts allowing for different substructures to be studied simulta-

neously by different design groups.

Failing to utilise a substructure more than once also fails to produce the desired

computational savings as the total effort of producing substructures would be equal

to that of using uncondensed elements. Hence, the potential computational benefits

are only attainable by problems that repeatedly employ a single substructure. From

the perspective of accuracy, in a static linear analysis, substructuring is strictly a

manipulation of stiffness matrices based on the Gauss elimination and therefore

introduces no approximations. Consequently, as indicated in Eq. (15.7), the

response within a substructure is always linear, which is one of the crucial limita-

tions of the traditional substructuring technique – hence their behaviour as

predefined constant stiffness and their traditional application in practice (Postnov

and Rodionov 1982; Singh et al. 1989; Kammer and Flanigan 1991; Wu et al. 1991;

Burton 1997; Yiu 1997; Palekar et al. 2003).

15.1.3 Application of Substructures

In the early days of FEA, utilisation of substructures was more frequent, whereby

their primary purpose was to overcome computer memory limitations by dividing a

complex elastic structure into a multiple of more manageable smaller sections

(Araldsen 1974; Petersson and Popov 1977; Gurujee 1978). Substructuring as a

parallel computing technique was very attractive for distributed computing in

networks of workstations working in parallel, as well as in shared memory parallel

computers. Today, when the computer memory is more abundant and less of a

performance critical issue, their application shifted to speeding up natural fre-

quency extraction, frequency response and eigenvalue analyses (Bennighof et al.

2000; Gibson 2000; Elssel and Voss 2006; Swenson and Bennighof 2006;

Floersheim et al. 2009; Thomas et al. 2009). In these areas of the application, the

substructuring was established as an unavoidable and dominant technique. In

particular, Bennighof and Lehoucq (Bennighof and Lehoucq 2004) developed

automated multilevel substructuring (AMLS) method which was successfully fur-

ther generalised and commercialised by Voss (Elssel and Voss 2005, 2006; CDH

AG 2012) to become a part of many major FEA software packages capable of

performing a frequency response and eigenvalue analysis. On the other hand, the

application of substructuring in the other FEA areas is very marginal and, if present,
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always tied to an analysis of elastic structures due to their mentioned limitation. The

literature review revealed that there were no prior attempts to expand substructures

in the nonlinear domain as proposed in this research. For particular nonlinear

problems which require the application of substructures, a roundabout approach

was devised whereby linearly responding parts of a structure were converted to

substructures and the nonlinearly responding parts remained meshed by traditional

finite elements (Dodds and Lopez 1980; Bathe and Gracewski 1981; Owen and

Goncalves 1983; Wu et al. 1991; Burton 1997; Palekar et al. 2003; Labeas and

Belesis 2011). This hybrid solution was widely accepted as the main approach for

solving such rare problems as there was no strong demand to develop a better

solution. However, in the context of the engineering design concept evaluation,

design concept alternatives of complex load-bearing structures frequently exhibit

nonlinear stiffness responses, and hence, neither substructuring technique in its

original formulation nor the mentioned workaround approach would be a viable

solution.

15.2 Extending Substructures

In general, nonlinearity involves stiffness or load dependences on displacements

which adds complexity that the traditional substructures are incapable of managing.

In order to improve this limitation and expand the substructuring technique beyond

the linear response expectancy application, the substructuring technique requires an

adaptation to the principles of nonlinearity and an incremental numerical analysis.

This section summarises the fundamental principles of the nonlinear finite element

analysis and presents the theory behind the novel concept of expanding the

substructuring technique into nonlinearity adopted here.

15.2.1 Nonlinearity and Incremental Solutions

In linearity, it is assumed that displacements and rotations are small, stress is

directly proportional to strain, the loads maintain their original direction as the

structure deforms and supports remain unchanged (Bathe 1996). With these

assumptions, the response is directly proportional to load, and the solution to the

finite element equilibrium equation, KU ¼ F, is obtained in a single step of

equation solving as U ¼ K�1 F. Linearity may be a good representation of reality

or a result of the assumptions made for analysis purposes, but with this not being the

case, a problem becomes nonlinear. Based on a disagreement with a particular basic

assumption used in linearity, nonlinearity in structures can be classed as (Bathe

1996):
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(i) Material nonlinearity – associated with changes in material properties: mate-

rial not being linearly elastic.

(ii) Geometric nonlinearity – associated with changes in configuration: displace-

ments of the finite elements not being infinitesimally small.

(iii) Boundary condition nonlinearity – associated with changes in boundary

conditions: DOF become free or restrained at certain load level.

In general, a problem is nonlinear if stiffness or load depends on the displace-

ments which adds complexity as equations that describe the solution must incor-

porate conditions not fully known until the solution is known. For a time-

independent problem described by the finite element equilibrium equation,KU¼ F,

K and/or F is regarded as functions of U in which, unlike in linearity, the solution

cannot be obtained explicitly nor in a single step of an analysis. Therefore, the

solution is obtained iteratively in a number of incremental linear steps whereby the

tentative solution is updated after each step until a convergence test is satisfied

(Bathe et al. 1973, 1978; Bathe and Wilson 1976; Bathe 1979). Crisfield (2000)

exhaustively reviews many such solution procedures, but the most commonly

applied implicit procedure in structural analysis is Euler’s method of solving first-

order differential equations (Butcher 2003) as the underlying incremental method

coupled with the Newton-Raphson method for the equilibrium iterations (Bathe and

Cimento 1980; Kojic and Bathe 2005; Strang 2010). The Newton-Raphson method

solves the governing equations by applying the unbalanced forces of externally

applied nodal loads and nodal point forces that are equivalent to the element

stresses. The method is summarised by the following sequence of equations

(Bathe 1996):

Gi�1 ¼ F�
Z
v

B Ui�1
� �T

σ Ui�1
� �

dV ¼ 0 ð15:11Þ

K Ui�1
� �

ΔU ¼ Gi�1 ð15:12Þ
Ui ¼ Ui�1 þ ΔU ð15:13Þ

where Gi–1, σ, B, K, and Ui–1 are, respectively, the unbalanced forces, stresses,

strain-displacement matrix, tangential stiffness and displacements at the start of the

ith iteration, F are the external forces at the end of the current load increment and

ΔUi are the iterative displacements for the ith iteration. Tangential stiffness being a
function of displacement is iteration specific and therefore computed and assembled

repeatedly.

15.2.1.1 Principal Theory of Extended Substructuring Technique

One of the essential aspects of the finite element theory is the calculation of finite

element matrices. For that purpose, the most practical traditional finite element is

the isoparametric finite element which defines both element geometry and the
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unknown field variables directly through the application of the interpolation or

shape functions. The unknown field variable in structural mechanics is the dis-

placement field. The strain vector is defined in terms of derivatives of the element

displacements with respect to the coordinates, and a transformation of the effective

strains to the stresses at any point in the element is performed through the consti-

tutive matrix, which is constant in linear elasticity, whereas in nonlinearity, it is the

consistent tangent matrix defined as:

Ctan ¼ ∂σ
∂ε

����
uið Þ

ð15:14Þ

The strain-displacement matrix, including the shape function matrix, and the

constitutive matrix are required for construction of the element stiffness matrix

which is defined from the principle of virtual work for an individual element to be:

ke ¼
Z
V

BTCB
� �

dV ð15:15Þ

As the equation indicates, the nature of k depends on the material property

matrix, and it is governed by the element’s shape functions. In linearity, in order for
the basic assumptions of linearity to remain valid, both of these entities are constant

and independent of the element displacements. In nonlinearity, this stiffness for-

mulation also allows for the stiffness adjustments at every increment of the iterative

process in order to capture variations in matrices B andC as a result of the nonlinear

changes.

By contrast, traditional substructures have an explicitly defined stiffness matrix,

shown in Eq. (15.16), as a result of Gauss elimination which prevents any modifi-

cations during an incremental analysis. In order to extend substructuring into the

nonlinearity, a scalar qualifier is employed to economically modify the original

substructure matrix at every increment and, thus, allows substructures to exhibit a

nonlinear response. The expression in Eq. (15.17) for stiffness matrix of the

extended substructure is therefore a modification of Eq. (15.16):

�kmm ¼
a11 . . . a1n
⋮ ⋱ ⋮
an1 � � � ann

2
4

3
5 ð15:16Þ

kxss ¼ mi
�kmm ¼ mi

a11 . . . a1n
⋮ ⋱ ⋮
an1 � � � ann

2
4

3
5 ð15:17Þ

The scalar qualifiers mi are determined at the substructure generation level or in

an intermediate phase between the generation and their usage. An approach and

effort required for a successful evaluation of the qualifiers depend on availability of

the numerical code and accessibility to the main procedure of a finite element

solver. In the case when a full access to a finite element solver is available, the
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qualifiers may theoretically be incorporated into the incremental solution in a form

of the modified incremental equation (Eq. 15.18), which is shown in Eq. (15.13);

however, a more detail study and validation are required:

mi
�kmmΔu ¼ Fext � mi

�kmmui�1 ð15:18Þ
On the other hand in cases of commercial and proprietary finite element solvers

when access to their code is limited, determining the qualifiers may be more

challenging, and that is the focus of this research with the goal of producing a

practical and user-friendly approach. The following sections of this chapter are

concerned with the detailed development of this approach.

15.2.2 Determining the Qualifiers

Theoretically, as Eq. (15.18) indicates, there would be one qualifier m for each

analysis increment step. This ideal solution becomes feasible and practical only if

the qualifiers could be determined in an analytical or in an economically viable

empirical approach. Unfortunately, none of the approaches are possible when using

commercial finite element solvers. It is impossible to obtain a single parameter from

the information produced after a substructure generation to analytically predict

nonlinear response of all elements condensed into the substructure. By contrast, the

empirical approach would be possible, but due to prohibitively high associated

computational costs, which may exceed the computational cost of running a finite

model without substructures, this approach is not practical.

In order to produce a practically feasible empirical solution, the ideal theoretical

proposition needs to be approximated. Therefore, instead of having a qualifier for

every incremental step of the analysis, the solution is approximated by assigning a

qualifier for multiple incremental steps. In this research, a concept of bilinear

stiffness was utilised to mimic the linear and nonlinear behaviour, analogous to

elastic and plastic material properties. Therefore, Eq. (15.17) becomes:

kxss ¼
�kmm
m�kmm

�
a � t
a > t

ð15:19Þ

where a is a timing feedback variable such as the total strain energy.

As Eq. (15.19) indicates, there would only be one qualifier for the entire analysis,

that is, assuming all nonlinearity to occur at a uniform gradient. The nonlinear

behaviour is, then, defined by setting two parameters: (1) m, the scalar qualifier

itself, and (2) t, timing of the modification occurrence. Hence, a complex and

nonlinear force-displacement curve degenerates into a pair of straight lines meeting

at the point defined by the parameter t. While the first part of Eq. (15.19), that is,

describing the liner response, remained accurate and without further approxima-

tions, the second part, that is, describing the nonlinear response, introduces
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approximations. The approximations are observed to be within 80 percent of the

accuracy for most of the test cases because the developed approach is based on an

interpolation principle whereby three test runs with different combinations of the

qualifier m and its timing t are used as the basis of the interpolation. The resulting

expression is then used to correlate the qualifier m with the desired stiffness slope.

Similarly, the timing t is correlated with the desired timing of the stiffness change.

15.2.2.1 Parameters, Feedback Variables and their Correlations

Prior to developing the interpolation method to determine the parameters m and t, a
correlation study was undertaken to determine the influence of the qualifier m on

stiffness manifested as a gradient of a force-displacement chart. A power law-like

relationship between the parameter m and the gradient S was determined in a

mathematical form as follows:

m ¼ aSb ð15:20Þ
where a and b are problem specific and unknown values and S gradient (stiffness

slope) as a feedback variable.

In order to find the unknowns in Eq. (15.20), the power law is expanded using the

natural logarithm:

ln mð Þ ¼ b ln Sð Þ þ ln að Þ ð15:21Þ
Equation (15.20) is modelled using the linear regression approach by fitting a

straight line through a set of data produced by three calibration runs with different

values for the qualifier m. Given that the qualifier m is in the range between 0 and

1, suggested calibration values would be the extremes and the median. However, in

a few rare occasions, the natural log relationship may not always be linear

(Fig. 15.2), which may lead to incorrect predictions of the qualifier m if the test

case values are not carefully chosen. With reference to the problem shown in

Fig. 15.2, a percentage for a correct prediction would decrease if all three calibra-

tion values for m are not higher or lower than 0.1. Having a wide range that covers

values on either side of this boundary will significantly reduce the chance for a

correct prediction. This suggests that although a wide range is possible, it may not

always be suitable. A successfully obtained relationship between the qualifierm and

the gradient provides means for determining a qualifier m for any desired gradient.

The same approach is also used to determine the timing of the stiffness modification

for any desired force or displacement value used as an indicator for change. With an

aim to analytically correlate the parameters with their respective feedback vari-

ables, a methodology based on an interpolation of these values was developed. The

complete interpolation process of determining m and t is fully automated and

programmed into a programming routine, which requires a limited user interaction

that does not go beyond providing of required inputs. The inputs are usually
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associated with defining environment variables and specifying expected ranges for

the parameters m and t. Details of the computer programme and the underlying

methodology are presented in the following sections.

15.2.2.2 Interpolation Method for Determining M and T

Two preparatory activities are required in order to commence with the interpola-

tion. The first consists of determining the desired values for the interpolation, and

the second involves determining suitable ranges of values for the parameters. The

former is used as the input for the software, whereas the latter is fully concealed

from the end user by the software. In order to determine the desired values, the

overall response of the finite element model that was previously traditionally

meshed using standard finite elements needs to be divided into linear segments.

The number of segments is generally optional and depends on complexity of the

nonlinear response. However, the maximum number of segments is determined by a

number of present substructures plus the initial linear segment. Any method can be

used for this linearisation, and the method that has been built into the computer

programme is based on the principle of the linear regression with the objective to

concurrently maximise the determination coefficients (the R2 values) of all linear

segments. Through a search process driven by a genetic algorithm, the best end

points of the linear segments and their respective gradients (slopes) are determined,

whereby they represent the desired values for the subsequent interpolation.

-3

-2

-1

0

ln
 (

m
)

8.28.07.87.67.4

ln (S) [mm]

R2
 =  0.9337

log(m) =  3.3903 log( S ) - 28.652

Fig. 15.2 Linear regression
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Although the suitable ranges for the parameters are user-specified inputs, there is a

suggested procedure that ensures an effective choice of the values. As discussed

before, the widest range for the parameter m is from 0 to 1, but narrowing of the

range is also possible, and it may depend on amounts of observed deformation and

nonlinearity. On the other hand, determining the range for the timing parameter t is
more involving due to the nature of the parameter itself. Since the strain energy has

been used here as the timing parameter, the suitable range for this parameter was

determined from an aggregation of the total strain energies in all elements of the

traditionally meshed model. The following code sample shows commands for a

total strain energy output request in ABAQUS:

*OUTPUT, HISTORY
*ELEMENT OUTPUT, ELSET=COMPONENT_SET
ELSE, 

A careful examination of the produced output reveals the required range. As the

interpolation operates in the natural log space, the third value that is used in the

interpolation is the average of the min and max logarithmic values as per

Eq. (15.22). The third value for the parameter m is obtained in the same fashion:

ln thirdð Þ ¼ ln minð Þ þ ln maxð Þ
2

ð15:22Þ

Once the preparatory activities are completed, the interpolation process com-

mences. This is analytically performed, and it is concealed from the end user by the

developed software.
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Algorithm 1 – Determining the parameters m and t algorithm 

1: Knowing: environment variables; ranges of the parameters m and t 
2: Step 1. Initialise parameters and variables 
3: Step 2. Plot the nonlinear response of the finite element model that had been 
  traditionally meshed using standard finite elements 
4: Step 3. Linearise the nonlinear force-displacement plot by utilising Genetic 
5  do while the fittest individual is not found 
6:  Step 3a. Segment the nonlinear plot with the desired number of linear 
7:  Step 3b. Create a population of individuals consisting of data points 
          representing the beginnings and ends of the linear segments 
8:  Step 3c. Grade the individuals by the objective function which is defined as 
       maximisation of all coefficients of determination (R2) values of the 
       simple linear regression model (Montgomery et al. 2012) 
9:  Step 3d. Produce a new population from the fittest individuals by crossover 
      mutation 
10:  end do while 
11: Step 4. Output the fittest individual as the result of linearisation 
12: Step 5. Obtain desired values for the feedback variables slope and knee. 
13: Step 6. Obtain the correlations via a calibration 
14:  for each segment / UEL: 
15:   for each calibration run corresponding to different combinations of the 
   parameters m and t: 
16:    Create relevant UEL by generating a FORTRAN file 
17:    Run ABAQUS analysis 
18:    Obtain corresponding feedback variable values 
19:   end for each 
20:   Obtain relationship between the parameters and their feedback 
21:   Use the desired values as inputs to the relationship to obtain the 
   candidate parameter values 
22:   Run ABAQUS to validate the values and setup the next segment 
23:  end for each 
24: Step 7. Graph the history 

15.2.3 Algorithm of the Interpolation Method

The complete automation of the interpolation process for determining m and t is
summarised in the flowchart shown in Fig. 15.3. It is based on establishing

correlations between the parameters and their feedback variables which are readily

obtainable. Although the algorithm is presented in a sequential order, its imple-

mentation is parallelised. In particular, the steps of establishing the correlation

between the parameters and their feedback variables are performed concurrently

with the linearisation (see Fig. 15.3).
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15.3 Implementation Within a Commercial Finite Element
Code

Although a more thorough implementation of the extended substructures would be

possible if a custom FEA code was to be developed, there are also some advantages

of implementing them within a commercial code as a subroutine. From the pro-

gramming and development perspective, the most important advantage is the ease

of maintaining and porting subroutines in comparison with maintaining and porting

a complete finite element programme. However, from the perspective of an end

user, the most important advantage is convenience and familiarity with the existing

commercial codes whereby the extended substructuring is only a complementary

implement to a spectrum of the existing features, rather than a separate and diverse

product. Finally, from the perspective of the author, this strategy has been selected

in order to satisfy the projected outcome of this research which requires the

practical and user-friendly application of the proposed methodology to an efficient

and effective evaluation of load-bearing engineering concepts. In this research, the

commercial finite element solver ABAQUS was used. To obtain the required access

and customisation of the stiffness matrix, the substructure extension was

implemented using the user element definition subroutines called UEL whereby

the extended substructure was defined as a multi-node finite element with a fully

customised element formulation. The ABAQUS user subroutine UEL needs to be

coded to define the contribution of the element to the model, and depending on its

purpose, the subroutine must define the contribution of the element to the residual

force vector and the global stiffness matrix, update the solution-dependent state

variables associated with the element, form the mass matrix and so on. Often,

several of these functions must be performed in a single call to the subroutine. The

element principal contributions to the model during general analysis steps are

contribution to the residual force vector and the global stiffness matrix. The

contribution to the global stiffness matrix is the actual element stiffness matrix as

defined in Eq. (15.16). Modifying it by an appropriate qualifier mwill actually yield

a desired extended substructure. The actual process can be summarised by the

following steps:

1. Generate a traditional substructure

2. Output a stiffness matrix

3. Store the stiffness matrix in primary or secondary memory storage

4. Multiply each matrix value with a qualifier m
5. Use the result as the extended substructure stiffness matrix
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15.3.1 ABAQUS User Element Subroutine

In order for a UEL to be imported into ABAQUS, it must be written in a separate

FORTRAN file. The UEL subroutine interface is given as follows:

SUBROUTINE UEL(RHS,AMATRX,SVARS,ENERGY,NDOFEL,NRHS,NSVARS,
1 PROPS,NPROPS,COORDS,MCRD,NNODE,U,DU,V,A,JTYPE,TIME,DTIME,
2 KSTEP,KINC,JELEM,PARAMS,NDLOAD,JDLTYP,ADLMAG,PREDEF,
3 NPREDF,LFLAGS,MLVARX,DDLMAG,MDLOAD,PNEWDT,JPROPS,NJPROP,
4 PERIOD)

Quantities such as coordinates, displacements, increments, element properties,

load types, procedure type, etc. are contained in the interface parameters which are

fully detailed in the ABAQUS manual (Simulia 2009). However, for coherence,

some are mentioned here:

COORDS Array in which the original coordinates of the elements are stored

U Array that contains the total values of all variables (DOFs)

DU Incremental values of all variables

DTIME Increment of time

PROPS Material properties like Young’s modulus

NNODE Numbers of nodes and in element

NDOFEL Numbers of degrees of freedom element

LFLAGS An array containing the flags that define the current solution procedure and

requirements for element calculations

For static analyses, indicated by LFLAGS(1)¼ 1,2, the stiffness matrixK of the

element and the residual vector f must be returned to Abaqus in AMATRX and

RHS, respectively. In SVARS, user-defined variables like stresses, temperature,

damage, etc. can be stored and returned to Abaqus; and PNEWDT can be used to set

a new time increment. This variable, PNEWDT, allows for an input to be provided

to the automatic time incrementation algorithms in Abaqus by specifying a ratio of

a new time increment to the time increment currently being used (DTIME).

The user element behaviour is defined by its main contribution to the finite

element model during an analysis that is reflected as loads F at the element nodes

which depend on the displacement values u at the element nodes. In nonlinear user

elements, the forces are also dependant on the internal state variables, H, which
must be updated at the end of each increment through SVARS parameter. There-

fore, the solution of the nonlinear system of equations requires that the stiffness

matrixK includes all direct and indirect dependencies of the load and displacement,

which may be expressed as manipulated in Eq. (15.8) in the form:

K ¼ � ∂F
∂H

∂H
∂u

ð15:23Þ

where
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∂F ¼ ∂Fext – ∂Fint is an incremental residual quantity similar to G in

Eq. (15.12).

To define a user element, an instruction through the command ∗USER ELE-

MENT is given in the preprocessing stage. This command must appear in the input

file before the user element is invoked with the ∗ELEMENT option. For the

purpose of a unique identification, the command ∗USER ELEMENT assigns an

element type key to a user-defined element which is in the form Un. The unique

identifier n needs to be a positive integer smaller than 10,000 because of the

limitation on the number of user elements. Since each user element can have any

number of nodes, their number needs to be declared through this command too.

Furthermore, the number of the activated degrees of freedom associated with each

node must also be declared. If the system variable array is to be used, this is where

its size is declared too. In the current UEL implementation, the size of the system

variable array is dependent on the number of degrees of freedom and the total

number of element nodes; thus, it is defined according to the following relation:

VAR¼ 2*(DOF*NODESþ 1). The user element is then introduced to the model as

any other ABAQUS element by specifying the Un type identification. Unlike the

traditional ABAQUS elements that get their properties assigned through the section
command, the user elements get their properties through *UEL PROPERTY

command. The following code sample shows a simple example of the user element

usage in ABAQUS:

*USER ELEMENT, TYPE=U100, NODES=5, COORDINATES=6, VAR=32
1,2,3,4,5,6

*ELEMENT, TYPE=U100, ELSET=MY_UEL
100,
1000, 1001, 1002, 1003, 1004, 1005

*UEL PROPERTY, ELSET=MY_UEL

In order to compile and include user subroutines in an analysis, the name of a file

with the user definitions needs to be included in the ABAQUS execution command:

abaqus job¼my_analysis user¼my_subroutine.for

15.3.2 Extended Substructure as ABAQUS User Element

The unique implementation of extended substructures as an ABAQUS user element

via UEL subroutine is summarised in algorithm 2. The algorithm is based on the

mandatory requirements for a definition of the element behaviour whereby the

stiffness contribution is provided by modifying the original substructure stiffness

matrix by an appropriate qualifier at applicable time; and the force contribution is

adjusted with a force correction to ensure continuity at any point of the applied load

history profile. In particular, the modified stiffness of the underlying substructure

unbalances the governing constitutive equilibrium equation whereby the externally
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applied loads also require adjustments to return the system to an equilibrium.

Unless a force correction is implemented, the analysis would result in an undesir-

able abrupt load change. The essential code snippets are addressed and briefly

explained now.

Algorithm 2 – Implementation of extended substructuring in ABAQUS 

1: Knowing: stiffness matrix of a traditional substructure; parameter m and parameter t 
2: Step 1. Initialise parameters and variables 
3: Step 2. Read in the stiffness matrix of a traditional substructure from a file and store 
  AMATRX[] 
4: Step 3. Define UEL contribution to stiffness: 
5:  if total strain energy greater than parameter t then: 
6:   if nodal force correction is required now then: 
7:    Calculate the nodal force correction to ensure the continuity by 
     by multiplying the force residual of the previous 
     increment with the difference of the parameters m 
8:    Store the nodal force correction for each node in in SVARS[] at 
     locations starting from NDOFEL+1 
9:    Set a flag indicating the nodal force correction was evaluated 
10:  else: 
11:   Recall the nodal force correction from SVARS[] and store in a new 
12: Step 4. Modify AMATRX[]: AMATRX[] = m * AMATRX[] 
13: Step 5. Calculate UEL contribution to force residual and store in SVARS[] 
14: Step 6. Update the total strain energy and store in SVARS[] 
15: Step 7. Reduce increment size if the gradient change is surpassed in the current 
  increment and repeat the increment with the new increment size 
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Snippet 1 ABAQUS subroutines do not transfer variable values between incre-

ments unless they are stored in the system variable array, SVARS[]. Therefore, for

the purpose of determining if the change of the stiffness is required, a value of the

total strain energy is stored at the particular location in the array. The total strain

energy is the parameter a in Eq. (15.19).

Snippet 2 A force correction per a degree of freedom is calculated to ensure

continuity and a smooth transition between two modes of the stiffness as per

Eq. (15.19).

Snippet 3 The original substructure stiffness is modified which represents the

implementation of the second part of Eq. (15.19) that describes the nonlinear

response.

Snippet 4 The contributions to the residual force vector and the global stiffness

matrix are defined and updated.

Snippet 5 The total strain energy as the timing parameter is calculated for the

updated state of the system with purpose of progress tracking and safekeeping.

Snippet 6 The state variable array is updated with the new total strain energy value

to allow for a continuous transition to the next increment.
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15.4 Summary

The substructuring technique as a reanalysis approach has been introduced in this

chapter, and a comprehensive discussion on development of the method which

allows the substructures to exhibit a nonlinear response has been given. The

principal theory of the novel idea whereby a scalar qualifier has been employed

to economically modify original substructure matrix to enable substructures to

exhibit a nonlinear response has been described, and its unique integration into

the algorithm has been documented. Furthermore, the insight into implementation

of the extended substructures as an integral part of a commercial finite element

solver was also provided. A methodology for establishing a scalar qualifier to

economically modify the original substructure matrix has been presented as an

algorithm, and its implementation as a computer programme was demonstrated.

References

Abu Kassim, A. M., & Topping, B. H. V. (1987). Static reanalysis: A review. Journal of Structural
Division, 113(5), 1029–1045.

Araldsen, P. O. (1974). An example of large-scale structural analysis of an oil tanker. International
Journal of Computational Structures, 4(1), 69–93.

Arora, J. S. (1976). Survey of structural reanalysis techniques. Journal of Structural Division, 102
(4), 783–802.

Barthelemy, J. F. M., & Haftka, R. T. (1993). Approximation concepts for optimum structural

design — a review. Structural optimization, 5(3), 129–144.
Bathe, K.-J., & Gracewski, S. (1981). On nonlinear dynamic analysis using substructuring and

mode superposition. Computers & Structures, 13(5–6), 699–707.
Bathe, K. J. (1979). Finite element formulation, modelling and solution of nonlinear dynamic

problems. In K. J. Bathe (Ed.), Numerical methods for partial differential equations (pp. 1–40).
Cambridge MA: Academic Press.

Bathe, K. J. (1996). Finite element procedures. Upper Saddle River: Prentice-Hall.
Bathe, K. J., Bolourchi, S., Ramaswamy, S., & Snyder, M. D. (1978). Some computational

capabilities for nonlinear finite element analysis. Journal of Nuclear Engineering and Design,
46, 429–455.

Bathe, K. J., & Cimento, A. P. (1980). Some practical procedures for the solution of nonlinear

finite element equations. Computer Methods in Applied Mechanics and Engineering, 22(1),
59–85.

Bathe, K. J., Ramm, E., & Wilson, E. L. (1973). Finite element formulations for large deformation

dynamic analysis. International Journal for Numerical Methods in Engineering, 9, 353–386.
Bathe, K. J., & Wilson, E. L. (1976). Numerical methods in finite element analysis. Englewood

Cliffs: Prentice-Hall.

Bennighof, J. K., Kaplan, M. K., & Muller, M. B. (2000). Extending the frequency response

capabilities of automate multi-level substructuring. AIAA AIAA-2000-1574.
Bennighof, J. K., & Lehoucq, R. B. (2004). An automated multilevel substructuring method for

eigenspace computation in linear elastodynamics. Journal on Scientific Computing, 25(6),
2084–2106.

Burton, T. D. (1997). Reduced models of structural systems with isolated nonlinearities. AIAA
AIAA-1997-787-293.

15 Extension of Substructuring Technique in the Nonlinear Domain 445



Butcher, J. C. (2003). Numerical methods for ordinary differential equations. New York: Wiley.

CDH AG. (2012). CDH AG. Retrieved 12 Sept 2012, from http://www.cdh-ag.com

Chandrupatla, T. R., & Belegundu, A. D. (2002). Introduction to finite elements in engineering.
Upper Saddle River: Prentice Hall.

Cook, R. D., Malkus, D. S., Plesha, M. E., &Witt, E. J. (2001). Concepts and applications of finite
element analysis. New Jersey: Wiley.

Crisfield, M. A. (2000). Non-linear finite element analysis of solids and structures. Chichester:
Wiley.

Dodds, R. H., & Lopez, L. A. (1980). Substructuring in linear and nonlinear analysis. International
Journal for Numerical Methods in Engineering, 15(4), 583–597.

Elssel, K., & Voss, H. (2005). Solving nonlinear eigenproblems by AMLS. Proceedings in Applied
Mathematics and Mechanics, 5, 765–766.

Elssel, K., & Voss, H. (2006). An a priori bound for eigenvalue computation by AMLS. Pro-
ceedings in Applied Mathematics and Mechanics, 6, 715–716.

Floersheim, R. B., Hou, G. J.-W., & Thornburgh, R. P. (2009). Predictive analysis with random

variables in a bolted helicopter tailcone substructure. AIAA AIAA-2009-2272.
Fuzhen, Z. (2005). The schur complement and its applications. Numerical methods and algo-

rithms. Boston: Springer.
Gibson, T. L. (2000). Life cycle assessment of advanced materials for automotive applications.

Society of Automotive Engineers (SAE) 2000–01-1486.
Gurujee, C. S. (1978). An improved method of substructure analysis. Computers & Structures, 8,

147–152.

Guyan, R. J. (1965). Reduction of stiffness and mass matrices. AIAA, 3, 380.
Kajtaz, M., Subic, A., & Takla, M. (2010). A collaborative FEA platform for rapid design of

lightweight vehicle structures. International Journal of Vehicle Design, 53(1/2), 110–131.
Kammer, D. C., & Flanigan, C. C. (1991). Development of test-analysis models for large space

structures using substructure representations. Journal of Spacecraft, 28(2), 244–250.
Kirsch, U., & Rubinstein, M. F. (1972). Structural reanalysis by iteration. Computers & Structures,

2(4), 497–510.
Kirsch, U. (2008). Reanalysis of structures: A unified approach for linear, nonlinear, static, and

dynamic systems. New York: Springer.

Kojic, M., & Bathe, K. J. (2005). Inelastic analysis of solids and structures. New York: Springer.

Labeas, G. N., & Belesis, S. D. (2011). Efficient analysis of large-scale structural problems with

geometrical non-linearity. International Journal of Non-Linear Mechanics, 46, 1283–1292.
Owen, D. R. J., & Goncalves, O. J. A. (1983). Substructuring techniques in material nonlinear

analysis. Computers & Structures, 15(3), 205–213.
Palekar, S. M., Subramanian, K. V., & Bavare, M. S. (2003). Super-Elements – A remedy for

non-linear analyses of large-sized models. In 17th international conference on structural
mechanics in reactor technology (SMiRT 17), Prague, Czech Republic.

Petersson, H., & Popov, E. P. (1977). Substructuring and equation system solutions in finite

element analysis. Computers & Structures, 7, 197–206.
Postnov, V. A., & Rodionov, A. A. (1982). Using the superelement method to solve elastoplastic

problems. International Applied Mechanics, 18(2), 149–153.
Sherman, J., & Morrison, W. J. (1949). Adjustment of an inverse matrix corresponding to changes

in the elements of a given column or a given row of the original matrix. Annals of Mathemat-
ical Statistics, 20, 124–127.

Simulia. (2009). Simulia Products – Abaqus FEA. From http://www.simulia.com/products/

abaqus_fea

Singh, Y. P., Ball, J. H., Rouch, K. E., & Sheth, P. N. (1989). A finite element approach for

analysis and design of pumps. Finite Elements in Analysis and Design, 6, 45–58.
Strang, G. (2010). Calculus. Cambridge, MA: Wellesley-Cambridge Press.

Swenson, E. D., & Bennighof, J. K. (2006). Efficient frequency response analysis of structures

with viscoelastic materials. AIAA AIAA-2006-2236.

446 M. Kajtaz

http://www.cdh-ag.com
http://www.simulia.com/products/abaqus_fea
http://www.simulia.com/products/abaqus_fea


Thomas, H., Mandal, D., & Pagaldipti, N. (2009). Structural-acoustic optimisation using CMS

super elements. AIAA AIAA-2009-2209.
Vorob’ev, Y. S., Kanilo, S. P., Shepel, A. I., & Sapelkina, Z. V. (1994). Evaluation of static

condensation method effectiveness in calculating natural vibrations of turbomachine blades.

Strength of Materials, 26(1), 73–78.
Wilson, E. L. (1965). Structural analysis of axisymmetric solids. AIAA Journal, 3(12), 2269–2274.
Wilson, E. L. (1974). The static condensation algorithm. International Journal for Numerical

Methods in Engineering, 8(1), 198–203.
Woodbury, M. A. (1950). Inverting modified matrices, Technical Report 42. Princeton: Statistical

Research Group, Princeton University.

Wu, H. T., Diep, S. Q., & Gupta, V. K. (1991). Nonlinear static analysis of McDonnell Douglas
MD90 aircraft using MSC/NASTRAN superelement database. MSC 1991 World Users’
Conference.

Yiu, Y. C. (1997). Substructure and finite element formulation for linear viscoelastic materials.

AIAA AIAA-97-1517-CP.

15 Extension of Substructuring Technique in the Nonlinear Domain 447



Index

A
ABAQUS User Element

subroutine, 441–442
substructure, extended, 442–444

Acoustic array, 87–88
Active slider, 64, 65, 75
Adaptive Boosting (AdaBoost), 358
Adaptive-network-based fuzzy inference

system (ANFIS), 372
Aerodynamics, 410, 421
Agile robots, 278
Amontons’ law of friction, 222
Analysis of variance (ANOVA), 367
Antilock braking system (ABS), 227–230, 240
Artificial neural network (ANN), 360, 361,

372–375
Attribute list, 353
Attribute selection method, 353
Automated multilevel substructuring

(AMLS), 430
Average friction coefficient, 243, 245
Axial stress component, 394

B
Back propagation neural network

(BPNN), 372
Ballistic projectile motion, 412
Bayesian belief network (BBN), 355
Bayesian classification

BBN, 355–356
naive Bayesian, 354–355

Bayesian regularization (BR), 360
Bézier curves, 280, 281, 284
Bézier segments, 281

Blade vibrations
CPU time, 31
description, 22
fourth-order Runge-Kutta method, 22
Lyapunov exponent method, 27
nonlinear behaviour region diagram, 25
phase diagram, 22–26, 29
poincare map, 23–25, 28, 30
quasi-periodic motions., 26

Bootstrapping, 368, 370
Boundary condition nonlinearity, 432
Boundary Layer Theory, 119–121
Boussinesq’s equation, 414
Brake Test Computer, 224, 225, 242
Bridgestone Turanza ER3HZ tires, 224
B-spline segment, 279
Bump stops, 169

C
Calorimetry, 405
Carbon fiber thermal stabilization process, 373
Casimir force, 109
Chaos

Lyapunov exponent, 19
phase diagram and Poincare map, 27

Characteristic material curve, 395
Chemical and process engineering, 372, 373
Civil and environmental engineering, 374
Classical planning algorithms, 278
Classification techniques, 359, 368

Bayesian, 354–356
chemical and process engineering, 372, 373
civil and environmental engineering, 374
DT, 352–354

© Springer International Publishing AG 2018
L. Dai, R.N. Jazar (eds.), Nonlinear Approaches in Engineering Applications,
https://doi.org/10.1007/978-3-319-69480-1

449

https://doi.org/10.1007/978-3-319-69480-1


Classification techniques (cont.)
electrical engineering, 373
ensemble method, 356–358
KLR, 358–359
K-NN classifier, 348, 349
margin, 351
material and textile engineering, 373
mechanical and industrial engineering, 372
PCA, 348
plane boundaries, 351
QDA, 348
regression method (see Regression

techniques)
resampling methods (see Resampling

methods)
SVM, 350–352

Clothoid generation, 279
Collision analysis, 209
Collision reconstruction, 221
Combined cycle gas turbine (CCGT) plant, 42
Commercial Finite Element Code, 440–444
Comparing related methods, 293
Complex variable method analysis, 412–415
Concentrated solar power (CSP) systems

CCGT plant, 42
CSP SPT facility, 43
description, 42
direct use of water/steam, 42
Ivanpah CSP SPT facility, 43
MS circuit, 42
PT and SPT, 42
receiver and different peak temperatures, 42
SPT technology, 43
TES, 42

Conform representation method, 414
Constitutive matrix, 429
Coulomb’s friction law, 221
Country Fire Authority (CFA), 257
Cox-de Boor recursive algorithm, 284
C2 parametric continuity problem, 301
Cross-linked polymer matrix, 216
Cross-validation (CV) method, 369
C-SVM classification, 350

D
Damper force plot, 170
Data fuzzification method

(mega-fuzzification), 372
Data partition, 353
Decision tree generation algorithm, 352–354
Deep learning (DL) method, 366
Deep neural network (DNN), 366

Degrees of freedom (DOF), 427
Denoising process, 71
Density of domain switching (DDS), 334
Design of experiment (DOE) methods, 347
Deterministic mathematical models, 346
Detonation fragments, 407
Deviatoric stress components, 400
D-H model, 334
Differential-drive model, 79
Diffusion neural network (DNN), 374
Directed acyclic graph (DAG), 355
Dorset Road, 223, 225
Drag coefficient, 411
Dubins paths, 280
Duffing-harmonic oscillators, 148

E
Elastic-plastic range, 386–390
Elasto hydrodynamic effects, 220
Electrical engineering, 373
Energy balance method (EBM), 151

MEBM, 156
PEM, 154
Petrov-Galerkin method, 153
residual function, 152

Ensemble method
AdaBoost, 358
application areas, 357
classification models, 356
RF, 357

Epsilon-SVM regression, 350
Explosive ballistic projectiles (EBPs), 403, 410
Exponential shear deformation theory, 111

F
Feed-forward neural network (FFNN), 374
Follower Control Law, 84–85
Fourier expansion method, 155
Fourier transform infrared attenuated total

reflectance mapping (FTIR-ATR
mapping), 373

Fourth capacity factor, 47
Fragment range, 408–410
Fragment recovery tests (FRT), 420
Free-body diagram, 173
Frequency-amplitude relationship, 159, 163
Frequency response programme, 178
Frictional phenomena, 211, 212
Friction and collision reconstruction, 221
Friction coefficient, 220
Friction factors

450 Index



hydrodynamic effect, 219
hydroplaning, 220
lubrication, 219–220
tire-road friction values, 221
velocity, 218

Fuzzy media-mean (FMM) filter, 72
Fuzzy membership function, 69
Fuzzy variables, 68–69

G
Gamma function, 155
Gauss elimination, 433
Gaussian kernel, 361
Gaussian noise, 68, 71
Gaussian process regression (GPR) models,

363, 373
Gauss law for magnetism, 335
Gauss-Newton (GN)-curve fitting, 373
General Motors Holden (GMH), 240, 258
Generalized duffing equation, 151
Generalized nonlinear differential equation, 148
Generalized nonlinear oscillatory systems, 148
Genetic algorithm-based virtual sample

generation (GABVSG), 372
Geometric nonlinearity, 148, 432
Global Wind Energy Council (GWEC), 4
Gurney equations

density variations, 408
detonation velocity, 405
energy-density relationship, 404
fragment range, 408–410
fragment size, 407–408
fragment velocities, 404
HEMP, 406
internal energy, 405
nonuniform velocity distribution, 406
numerical calculations, 414
phases, 404
TNT equivalent, 410
velocity nonlinearity distributions, 405

H
Hamiltonian function, 152
Hartman prediction model, 249, 250
Head-disk interface (HDI), 64
Heat dissipation, 244
Hencky strain tensor, 386, 387
Heuristic modelling techniques, 346
Homotopy perturbation method, 147
Horizontal-axis wind turbines (HAWTs), 7

aerodynamic principle, 10
blade of turbine, 9
calculation, 11, 12

description, 5
dimensionless parameters, 14
evolution of, 5
Galerkin method, 14
GWEC, 4
interrelated formulas, 13
Lyapunov exponent, 18–20
model of beam after deformation, 10
Newton’s law, 12 (see also Nonlinear

dynamics)
nonlinear vibrations (see Nonlinear

vibrations)
single wind turbine and arrays, 6
sketch of, 9
Taylor series expansion, 12
third-order nonlinear and inertia, 13
transportation, 5, 6
wind speed, 9

Hybrid FGM nanoshells
axial compression, 123
boundary conditions, 121
dimensionless periodicity condition, 121
hydrostatic pressure, 137
load-deflection response, 129
load-shortening response, 130
nonlocal load-deflection equilibrium

paths, 124
nonlocal nonlinear instability, 124
perturbation parameter, 122, 123
physical neutral plane, 116
piezoelectricity property, 110
piezoelectric layers, 113
size-dependent load-shortening equilibrium

curves, 127
strain components, 117

Hydroplaning, 220, 268
Hydrostatic pressure, 398
Hyperbolic tangent (HT) model, 333

I
Inextensible cantilever beam, 158
Interface–viscous hydroplaning, 219
Interpolation method, 439
Ivanpah Solar Electric Generating System

(ISEGS), 43, 48–53

J
Jackknife (JK) method, 370

K
Kernel-based SVM, 352
Kernel logistic regression (KLR), 358–359

Index 451



Kernel ridge regression (KRR) method, 367
Kinematical strain-displacement equations, 111
Kinematic model, 79
K-nearest neighbor algorithm (K-NN)

classifier, 348, 349

L
Large-amplitude free-vibration equation, 161
Leader-follower configuration, 78, 86
Leader-follower formation controller, 77–78
Leaf/terminal node, 352
Least square, 360
Levenberg-Marquardt algorithm (LMA)-neural

network (LMA-NN), 373
Lightweight single seat race car, 172
Lindstedt-Poincaré method, 148
Linear discriminant analysis (LDA), 348
Linear quarter car model, 168
Linear regression, 359, 360, 436
Load-deflection response, 129
Local and nonlocal load-shortening equilibrium

paths, 131
Logistic regression model, 359
Lubrication, 219–220
Lyapunov exponent, 18–22

M
Magnetostrictive beams

beam and magnetomechanical loading, 335
constant magnetic field, 336
D-H model, 334
Euler-Bernoulli beam, 336
force and moment resultants, 336
Gibbs free energy function, 334
homogeneous and laminated beam/plate

structures, 334
HT and DDS models, 334
magnetic field intensity, 335
nonlinear constitutive relations, 333
nonlinearity, constitutive relations, 334
simply supported/cantilever beams, 336
smart materials, 333
solution algorithm, 337
stress effect, 333
structural elements, 333
terfenol-D, 333
verification and numerical results, 337–342

Material and textile engineering, 373
Material nonlinearity, 432
Material property gradient index, 129
Mathematical modelling, 345, 346

Mean squared error (MSE), 367
Mechanical and industrial engineering, 372
Mechanical interactions, 212
Mega trend diffusion (MTD) methods, 372
Mehegan prediction model, 233, 235, 236,

271, 273
Micro aerial vehicles (MAVs), 278
Microphones, 88, 96
Minkowski metrics, 349
Mixed noise environment, 71
Model performance, 367–368
Modified energy balance method (MEBM),

153, 156, 162, 164
Molten salt (MS), 42, 58
Monte Carlo simulation (MCS), 368, 369
Multilayer ceramic capacitors (MLCC), 372
Multi-periodic motion, 329

N
Naive Bayesian theorem, 354
Natural gas (NG)

capacity factors, 47, 48
CSP plants, 47
electricity generation profile, 47
energy inputs, 47
fourth capacity factor, 47

Neuro-fuzzy learning, 372
Newton-Raphson method, 343, 432
Noise properties

filtering, 71–75
FMM, 74
fuzzy rule base, 69, 71
PES RRO, 72
position error signal, 68
signal processing, 71
SNR, 73

Nonholonomic mobile robots
acoustic array, 89, 92, 94
angular velocity, 81
control laws, 85
kinematic model, 79
position sensor, 80
positive control, 84
pseudo-feedback-linearization, 85
sensor model, 79

Non-leaf nodes (internal nodes), 352
Nonlinear Constitutive Law, 387
Nonlinear constitutive model, 343
Nonlinear damping, 195–200
Nonlinear stochastic dynamics

HDD, 64
noise properties, 66–68

452 Index



PES, 64
P-R method, 15, 16
TFC, 64

Nonlinear vibrations
Bernoulli-Euler beam, 7
centrifugal stiffening effect, 7
cubic nonlinearities, 7
degrees-of-freedom model, 8
description, 7
high efficiency and controllability, 8
non-rotating cantilever Timoshenko

beams, 7
P-R method, 8

Nonlocal load-deflection equilibrium paths, 124
Nonuniform rational B-splines (NURBs), 284
Numerical analysis, 415
Numerical validation, 398–400
nu-SVM classification, 350

O
Optimization methods, 278
Oscillation time period, 192
Oscillators

chaotic time-domain response, 328
classification, 310
equi-spaced impacts, 311
impacting cycles, 314
normal directional impact, 312
postimpact equation of motion, 325
RMS, 328
SDOF system, 329
single-degree-of-freedom system, 317
solution scheme, 313
stereo-mechanical model, 312
time-domain response, 319
transmittance spectrum, 312, 328
vibration insulator, 329

P
Parabolic trough (PT), 42

CSP PT with TES, 46
linear parabolic reflector, 45
reference PT specifications, 46
shaped mirrors, 45
supercritical carbon dioxide power

cycles, 46
working fluid, 45

Parameter-expansion method (PEM), 154, 160
Particle swarm optimization (PSO), 373
Periodicity coefficient, 315
Periodicity-ratio (P-R) method, 8, 15–18

Permutation test, 369
Perturbation-based solution methodology,

122–124
Perturbation parameter, 122
Petrov-Galerkin method, 153
Phase-plane trajectories, 158
Photovoltaics (PV) solar panels, 44
Piezoelectricity, 107
Piezoelectric nanoshell, 122
Ploughing, 269
Pneumatic tires, 210
Polynomial equations, 373
Position error signal (PES), 64, 67
Position sensor, 80
Postbuckling, 107, 109, 124, 125, 127, 129, 131
Pressure vessels

ABAQUS V, 396
Cauchy stress tensor, 387
configuration, 383
cylindrical, 381
deformations, 384
derivatives, 384
equilibrium condition, 393
FEM approaches, 398
geometric relationship, 391
integrated strain component, 391
load combination, 395
load path–deformation, 391, 396
material characteristic law, 382, 388
material model, 394
nonlinear hardening, 382
nonlinear isotropic hardening, 383
solid elements, 397
stress deviator, 387
stresses, 381

Principal component analysis (PCA), 348
Principal coordinate system, 324–325
Probabilistic roadmap method (PRM), 278
Projectile motion, 410–412
Projection angle, 407
Pseudo-feedback-linearization, 85
Purified terephthalic acid (PTA), 373

Q
Quadratic discriminant analysis (QDA), 348
Quarter car model

computer models, 171–172
dynamic states, 171
frequency response programme, 178
input function, 177
linear, 167
model response, 178–179

Index 453



Quarter car model (cont.)
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