
Supporting User Authorization Queries
in RBAC Systems by Role-Permission

Reassignment

Jianfeng Lu(&), Yun Xin, Hao Peng, Jianmin Han, and Feilong Lin

Department of Computer Science and Engineering,
School of Mathematics-Physical and Information Engineering,

Zhejiang Normal University, Jinhua, Zhejiang, China
lujianfeng@zjnu.cn

Abstract. The User Authorization Query (UAQ) Problem is a key issue related
to efficiently handling users’ access requests in RBAC systems. In practice, there
may not exist any solution for the UAQ problem, as missing any requested
permissions may make the failure of this task, while any extra permissions may
bring the intolerable risk to the system. Hence, making a desirable update of the
RBAC system state to support the UAQ problem is desirable. However, this task
is generally complex and challenging as usually the resulting state is expected to
meet various necessary objectives and constraints. In this paper, we study a
fundamental problem of how generate a valid role-permission assignment to
satisfy all objectives and constraints, such as reassignment objectives, prereq-
uisite constraints and permission-capacity constraints. The computational
complexity result shows that it is intractable (NP-complete) in general. We also
propose an approach to reduce it to SAT that benefit from SAT solvers to reduce
the running time. Experiment results show that the proposed approach scales
well in large RBAC systems.

Keywords: RBAC � User authorization query � Computational complexity �
Constraint � SAT solver

1 Introduction

Role based access control (RBAC) has received considerable attention over the past
two decades, and established itself as the predominant model for advanced access
control in many organizations and enterprises [1]. Several beneficial features, such as
policy neutrality, support for least privilege and efficient self-management are associ-
ated with RBAC models. Such features make RBAC better suited for handling access
control requirements of diverse organizations [2]. A fundamental problem in RBAC is
to determine whether there exists an optimum set of roles to be activated to provide a
particular set of permissions requested by a user, which is introduced as the user
authorization query (UAQ) problem by Zhang et al. [3]. UAQ has been the subject of
considerable research in recent years, and is widely accepted as a key issue related to
efficiently handing users’ access requests in RBAC [4–8]. Ideally, the chosen set of
roles to be activated to exactly satisfy a user’s permissions request. However, this is not

© Springer International Publishing AG 2017
S. Wen et al. (Eds.): CSS 2017, LNCS 10581, pp. 468–476, 2017.
https://doi.org/10.1007/978-3-319-69471-9_35

always possible since we cannot find any combination of roles that can activate only
requested permissions in many situations. Hence we have to find a set of roles to
activate a set of permissions that is as close as possible to those requested permissions.
Wickramaarachchi et al. [5] specified the UAQ problem by considering a lower bound
PLB and an upper bound PUB for the set of requested permissions. There are two
possible optimization objectives that should be included in the UAQ problem. One is
prefer to minimize the number of extra permissions beyond the requested permissions,
which is motivated by the principle of least privilege, as too many extra permissions
may bring the intolerable risk to the system. The other is prefer to minimize the number
of missing permissions, as the unavailability of too many of the requested permissions
may make it difficult for a user to carry out the required task. Existing approaches to the
UAQ problem primarily focus on how to design approximate or exhaustive solutions
[5–7]. However, there may not exists any solution for UAQ as we cannot find any
combination of roles that have permissions between PLB and PUB. Hence, a novel
approach for supporting the UAQ problem by making a desirable update of the RBAC
system state is desirable.

An RBAC system state is determined by three types of assignments: user-role
assignment (UA), role-role assignment (RH), and permission-role assignment (PA). To
make the most RBAC benefits, proper considerations should be taken in the entire life
cycle of roles, which includes four stages: role analysis, role design, role management,
and role maintenance. Particularly, the role maintenance stage concerns the changes
related roles in access control system. Hu et al. [9] refer to the updating of UA, RH and
PA in the role maintenance stage as role updating. In our observation, UA is
business-driven, since user’s role memberships are determined by their attributes, such
as jobs, titles, and etc. Hence, in this paper, we focus on the updating of RH and PA,
which we refer to as role-permission reassignment (RPR). It should be noted that role
hierarchy play crucial roles in policy specification and security management in an
organization, by allowing permission-inheritance, role hierarchies reduce overhead
associated with the permission administration. When the role-permission assignments
are renewed, administrators can accomplish the role-role assignments and
permission-role assignments straightforwardly, so do the user-role assignments.

RPR is demanded not only for the UAQ problem when there doesn’t exist any
solution for it, but also needed in many access control scenarios, such as misconfig-
uration repair, proper satisfaction and role hierarchy transformation. However, RPR is
generally complex and challenging, especially for large-scale RBAC systems. This is
because the resulting state usually is expected to meet a variety of constraints, which
makes it impossible to assign permissions to roles. For example, an objective of RPR
may require that the chosen set R of roles can activate permissions between a lower
bound PLB and an upper bound PUB. Obviously, such an objective states an overall
request that must be satisfied, the set R of selected roles together activate the requested
permissions, rather than restrict which roles are allowed to activate the individual
permissions. Moreover, a prerequisite constraints require that the permissions can be
activated by a role set R must also be activated by some other roles, can be used in
cases, where a number of responsibilities are prerequisites for a certain task [10]. In
addition, a permission-capacity constraint is satisfied in an RBAC system if and only if
all the permission in Z can be activated by the set RLB of roles, and any role not

Supporting User Authorization Queries in RBAC Systems 469

included in RUB cannot activate any permission in Z. Here, RLB and RUB are the lower
bound and the upper bound role sets of Z, such that RLB�RUB [11].

To help system managers understand and manage RBAC policies, various RBAC
policy analysis tools have been developed [10, 11], which focus on whether the given
state-change rules can be satisfied, and do not care what the resulting states look like. In
addition, they focus on user-role assignments rather than role-permission assignments.
Meanwhile, there also exists a wealth of literature on role engineering [12]. However,
RAR has two main differences from role engineering. First, role engineering focus on
how to generate an appropriate set of roles, whereas RAR aims to determine whether an
update can achieve with the request without violating any security constraints. Second,
RAR works when RBAC states have been defined and possibly deployed, whereas role
engineering usually define roles from scratch. The most similar work with RAR is
RBAC updating. Ni et al. [13] studied the role adjustment problem (RAP) in the
context of role-based provisioning based on machine learning algorithms. The main
difference between our work to Ni’s is that, RAR is request-driven, whereas RAP is a
learning process. Specially, the administrator submits a specific reassignment objective,
which tries to find the expected update. On the contrary, RAP is supplied by admin-
istrators with provisioning data and output a set of mappings from roles to entitlements.
Hu et al. [9] proposed an approach for assistanting administrators with the updating of
user-role, role-role, and permission-role relations. They also presented a tool, named
RoleUpdater, which answers administrator’s high-level update request for role-based
access control systems. However, it is worth observing that there appears to be no good
reason to assume that user’s privilege escalation is forbidden, that is, the update will
make the user’s permission sets remain the same or deplete. In addition, they made sure
that users’ permission set varies from a lower bound to former, did not consider any
security constraint.

In the above work, the system manager may change the system configuration in a
trial-and-error way, which is effort-consuming, inefficient, and most importantly
counter productive to security. Therefore, in this paper, we advocate for an automatic
approach to RPR. The system manager needs only to specify the objectives and con-
straints: an RPR solution, if any, is automatically generated so that the system man-
agers can follow to accomplish reassignment. In order to achieve this aim, we reduce
the RPR to SAT that benefit from several decades of research in designing SAT solvers
to reduce the running time. In general, if a truth assignment is found for the SAT
instance, we can construct a valid role-permission (RP) assignment for the system
configuration. We propose an approach for RGP by reducing RGP to the Boolean
satisfiability (SAT) that to resolve it, which enables us benefit from several decades of
research in designing SAT solvers to reduce the running time. Experiment results show
the effective of our proposed approach.

2 Definition of the Reassignment Generation Problem

An RBAC state determines the set of permissions for which a role is assigned and the
user can acquire the associate permissions via roles to take the associated tasks [1]. We
assume that an RBAC state builds upon three countable infinite sets: U (the set of all

470 J. Lu et al.

possible users), R (the set of all possible roles) and P (the set of all possible permis-
sions). The formal definition of an RBAC state is defined as follows.

Definition 1 (RBAC State). An RBAC state c is a tuple U;R;P;UR;RPh i, where U, R,
P denote the set of all users, the set of all roles, the set of all permissions, respectively.
UR � U�R associates users with roles, RP � R�P associates roles with permissions.

Given a UAQ problem, ideally, the chosen set of roles should activate the per-
missions not beyond the scope of [PLB;PUB]. However, this is not always possible
when any combinations of roles fail to active any permission set P0 such that
PLB�P0�PUB. In this case, it is necessary to change the RP assignments that make sure
there exists at least a solution for the UAQ problem. Given a requested permission
region [PLB;PUB], and a set R�R of roles, we write RO R;PLB;PUBh i to express the
RPR objective that we can find at least a combination of roles that have permissions
between PLB and PUB. In the following, we give the definition of the reassignment
objective, which determines whether the reassignment achieves the request.

Definition 2 (Reassignment Objective). A reassignment objective is represented as
RO R;PLB;PUBh i, where R�R is a role set, and PLB, PUB (PLB�PUB�P) are called
the lower bound and upper bound for the set of requested permissions.

A reassignment objective RO R;PLB;PUBh i is satisfied if and only if PLB�PermðRÞ
�PUB. In other words, every permission in PLB must be assigned to at least one role in
R, and any permission in PnPUB can not be assigned to any role in R. In the remainder
of this section, we introduce two types of security constraints, such as prerequisite and
permission-capacity. These two constraints (or their special forms) have been con-
sidered in existing literature [9–11].

Definition 3 (Prerequisite constraint). A prerequisite constraint is represented as
PRE cond;Rh i, where R�R is a role set, cond is called prerequisite condition on R that
it is an expression consisting of roles, conjunctive operator ^, disjunctive operator _,
and negation operator :.

A prerequisite constraint PRE cond;Rh i is satisfied if and only if for any member
p of roles in R, the role membership of p satisfies cond. Prerequisite constraints state
that if a role takes a certain responsibility, she is also required to take some other
responsibilities. In particular, role hierarchy can be represented and enforced using
prerequisite constraints.

Definition 4 (Permission-Capacity Constraint). A permission-capacity constraint is
represented as PC Z;RLB;RUBh i, where Z is a permission set, and RLB�RUB�R are
called the lower bound and the upper bound role sets of all the permissions in Z is a
member of, respectively.

PC Z;RLB;RUBh i is satisfied if and only if Z�PermðRLBÞ and 8r 62 RUB such that
Perm rð Þ \Z ¼ ;. In practice, many permissions are related to security or privacy
focus, these permissions should be assigned to a few key roles. In contrast, we require a
set of permissions be assigned to at least a certain number of roles so as to meet
workload or resiliency requirement. When RLB ¼ ;, there is no limitation on the
minimum roles that the permissions in Z must be a member of, and RUB ¼ R means
there is no limitation on the maximum roles that should be assigned to.

Supporting User Authorization Queries in RBAC Systems 471

Definition 5 (Reassignment Configuration). Given an RBAC state c, an RPR con-
figuration is denoted as a 3-tuple c;C;Oh i, where c is an RBAC state, C is a set of
constraints where each constraint takes one of the form of prerequisite and
permission-capacity constraint, and O is a set of reassignment objectives.

When the reassignment configuration c;C;Oh i is given, a interesting problems
arise, such as “How to generate a valid RP assignment under c;C;Oh i?”. We define it
as and Reassignment Generation Problem (RGP) as follows.

Definition 6 (RGP). Given an reassignment configuration c;C;Oh i, the Reassignment
Generation Problem (RGP) returns a valid role-permission assignment relation RP
under c;C;Oh i.

3 The Complexity of the Reassignment Generation Problem

Theorem 1. RGP is NP-complete

Proof. On one hand, we show that it is efficient to check whether the returned RP
relation is valid under the reassignment configuration c;C;Oh i. We only need to check
two things: (1) each reassignment objective in O is satisfied; (2) no constraint in C is
violated. It is obvious that there exist many efficient algorithms to check them, and
hence RGP is in NP.
On the other hand, we show that RGP is NP-hard by reducing the NP-complete
monotone SAT problem to its subcase that determines whether such a valid
role-permission assignment exists. In monotone SAT, given an expression / in con-
junctive normal form (CNF) and ask whether there exists a truth assignment for
variables appeared in / such that / is evaluated to true. Let / ¼ /1 ^ � � � ^ /m, where
/i ¼ li1 _ � � � _ lil is a clause and lij is a literal, each clause contains either only positive
literal or only negative literal. Let fv1; � � � ; vng be the set of variables appeared in /.
Without loss of generality, assume that no clause contains both v and :v. Given a
monotone SAT instance, we call a clause with only positive literals a positive clause,
denoted as /þ , and otherwise a negative clause, denoted as /�, and construct an
reassignment configuration R;P;C;Oh i as follows: For each clause /þ 2 /, create a
permission p/þ ; for each clause /� 2 /, create a permission p/� . Denote
Pþ ¼ S

/þ 2/
p/þ , P� ¼ S

/�2/
p/� , and P ¼ Pþ S

P�. For each variable v 2 V , create a

corresponding role rv, let R ¼ S

v2V
rv. Let ðrv; p/þ Þ 2 RP if and only if /þ contains the

variable v, and ðrv; p/�Þ 2 RP if and only if /� contains the variable :v. For each /þ ,
let R/þ ¼ frvj/þ contains the variable vg, and construct an RO objectives

RO R/þ ;Pþ
LB;P

þ
UB

D E
, where Pþ

LB ¼ Pþ
UB ¼ S

rv2R/þ
PermðrvÞ \Pþ . For each /�, let

R/� ¼ frvj/� contains the variable :vg, and construct an RC constraint
RO R/� ;P�

LB;P
�
UB

� �
, where P�

LB ¼ P�
UB ¼ S

rv2R/�
PermðrvÞnPþ . We construct a PC

constraint PC Z;RLB;RUBh i as follows: let RLB ¼ R/þ , RUB ¼ R, and Z ¼ Pþ . Now,

472 J. Lu et al.

we prove that / is satisfiable if and only if there exists a valid role-permission
assignment RP under c;C;Oh i.

For the “only if” part, suppose that s is a truth assignment that makes / true. Then
RP consists of: removing all ðrv; pÞ from RP where s vð Þ ¼ 1 and p 2 P�, or s vð Þ ¼ 0
and p 2 Pþ . Since / is true, all /þ is true. For each /þ , there must exists a variable v
such that sðvÞ ¼ 1. Then frvjs vð Þ ¼ 1g is a role in R/þ whose permission set is exactly

Pþ . Thus PC Z;RLB;RUBh i is fulfilled. For each RO R/� ;P�
LB;P

�
UB

� �
, and for each

r 2 R/þ and any permission p 2 P� that ðr; pÞ has been removed from RP, and any

permission p 2 Pþ , ðr; pÞ is still unchanged. Hence, RO R/þ ;Pþ
LB;P

þ
UB

D E
is satisfied.

Similarly, for each RO R/� ;P�
LB;P

�
UB

� �
, for each r 2 R/� and any permission p 2 Pþ

that ðr; pÞ has been removed from RP, that means Pþ \PermðR/�Þ ¼ ;, hence,
RO R/� ;P�

LB;P
�
UB

� �
is also satisfied. For the “if” part, suppose RP is valid under

hc;C;Oi. We construct a truth assignment s over fv1; � � � ; vng that makes / be eval-
uated to true as follows: sðvÞ ¼ 1 if and only if PermðrvÞ �Z, otherwise, sðvÞ = 0. We
now show that s is a truth assignment that makes / true as follows. Suppose, for the
sake of contradiction, that there exists /þ ¼ v1 _ � � � _ vk is false under s, it means that
sðviÞ ¼ 0 (1� i� k), by the above constructions, PermðrviÞˆZ(1� i� k).

RO R/þ ;Pþ
LB;P

þ
UB

D E
requires that PermðR/þ Þ ¼ S

1� i� k
PermðrviÞ�Pþ

UB�Z, Thus, we

reach a contradiction. On the other hand, suppose there exists /� ¼ :v1 _ � � � _ :vl is
false under s, that means sðviÞ ¼ 1 (1� i� l), hence PermðrviÞ �Z(1� i� l) by the
above constructions. However, RO R/� ;P�

LB;P
�
UB

� �
requires that PermðR/�Þ ¼

S

1� i� l
PermðrviÞ �P�

UBnZ, that means PermðrviÞˆZ(1� i� l), which reachs a contra-

diction, and hence RGP is NP-hard. □

4 An Approach for the Reassignment Generation Problem

In this section, we describe an approach for RGP by reducing the RGP to SAT, that is,
we can benefit from several decades of research on the design of SAT solvers to reduce
the running time. For each ðri; pjÞ 2 RP, we specify a variable vij in our SAT instance.
Variable vij being set to true indicates that ðri; pjÞ 2 RP. If no satisfying truth assign-
ment is found, then / is unsatisfiable. Otherwise, we get a truth assignment A, we can
construct a valid RP for c;C;Oh i in the following way: RP ¼ f ri; pj

� �jðvij ¼
trueÞ 2 Ag. Given a fixed RP ðri; pjÞ 2 RP, we just need to specify a clause vij, which
forces any truth assignment that satisfies ðri; pjÞ 2 RP.

Reassignment objectivests: given a reassignment objective RO R;PLB;PUBh i, we can
reduce it to Conjunctive Normal Form (CNF) in efficiently. (1) For every permission pj
in PLB, and every role ri in R, we specify a clause / ¼ W

rj2Rvij; (2) For every

permission pj in PnPUB, and every role ri in R, we specify a clause / ¼ V
rj2PnPUB

:vij.

Supporting User Authorization Queries in RBAC Systems 473

PRE constraints: given a prerequisite constraint PRE cond;Rh i, such a constraint
essentially states that R ! cond, which can be equivalently written as :R _ cond. For
every permission pj in P, we construct a clause / ¼ f ð:R _ condÞ, where the function
f constructs a clause from :R _ cond by replacing every role with a variable: any role
ri in :R _ cond is replaced with vij.

PC constraints: given a permission-capacity constraint PC Z;RLB;RUBh i, we can
reduce it to CNF in efficiently: (1) For every role ri in RLB, and every permission pj in
R, we specify a clause / ¼ W

rj2RLB
vij; (2) For every role ri in RnRUB, and every

permission pj in R, we specify a clause / ¼ V
pj2PPC

:vij.
We have prototyped the proposed approach and performed some experiments using

randomly generated instances. Our prototype is written in Java and use sat4j [14]. To
generate the reassignment configuration c;C;Oh i, we adapt data generation algorithm
motivated by [7]. In order to compare our experimental results in different cases in
convenient, we set the ratio of Rj j : jPj is 1:2 and 1:10 in each test case. All the
experiments are carried out on a standard desktop PC with an Intel Core i7-4790
running at 3.6 GHz, and with DDR3 8 GB 1600 MHz, running the 64-bit Windows 7
operating system.

The following experimental results show the CPU time taken by each test case.
Figure 1(a) shows our performance for different number of roles (i.e., no.R). We
observe that our approach is highly resilient to an increase in no.R. On the one hand,
the running time will increase as the number of roles increases. The main reason behind
this phenomenon is that the computational complexity increase with the number of
roles, and the larger range of optional collections, such as R, RLB, RUB. On the other
hand, the running time increases with the ratio of permissions and roles. The reason is
that the larger of the ratio, the larger number of permissions, that the optional scope of
the sets such as PLB, PUB, Z will get larger to increase the computational complexity.
Figure 1(b) shows the performance for different number of RO constraints (i.e., no.
RO). The time taken is almost polynomial to no.RO. We tried for up to no.RO = 20
and our approach goes only up to fewer than 0.22 s when Rj j : jPj equals 1:10 and
0.13 s when Rj j : jPj equals 1:2. Figure 1(c) shows the performance of different
number of PRE constraints (i.e., no.PRE). The CPU time taken is almost polynomial to
no.PRE. We tried for up to no.PRE = 20 and our approach goes only up to fewer than
0.25 s when Rj j : jPj = 1:10, and 0.14 s when Rj j : jPj is 1:2. The higher ratio of
permissions to roles, the more running time will be spent. This is due to fact that the
more no. RO or no.PRE, the larger size and the higher complexity of the problem is,
thereby, increasing the CPU time. Figure 1(d) shows the performance of different
number of PC constraints (i.e., no.PC). The CPU time increases as no.PC increases in
both of the two cases. Our approach is also resilient with the increasing of no.PC. The
major difference is that the increasing range is smaller than the former three cases
obviously. Our experimental results show that our approach scales reasonably well
with the larger RBAC system when no.R, no.P, no.RC,no.PC and no.PRE is large. In
particular, our approach turns more effective when the ratio of permissions to roles is
small.

474 J. Lu et al.

5 Conclusion

We have introduced reassignment objective, prerequisite constraint, and
permission-capacity constraint to role-permission reassignment, formally defined,
studied the computational complexity, and proposed an approach for RGP. Our work
will assistant administrators to answer whether the rule updates can achieve the request.

Acknowledgment. This work is supported by National Natural Science Foundation of China
under Grant 61402418, 61503342, 61672468, 61602418, Social development project of Zhejiang
provincial public technology research under Grant 2017C33054, 2016C3316.

References

1. ANSI.: American national standard for information technology-role based access control,
ANSI INCITS 359-2004 (2004)

2. Xu, D., Kent, M., Thomas, L., et al.: Automated model-based testing of role-based access
control using predicate/transition nets. IEEE Trans. Comput. 64(9), 2490–2505 (2015)

3. Zhang, Y., Joshi, J.B.D.: UAQ: a framework for user authorization query processing in
RBAC extended with hybrid hierarchy and constraints. In: 13th ACM Symposium on
Access Control Models and Technologies, New York, USA, pp. 83–92 (2008)

4. Lu, J., Joshi, J.B.D., Jin, L., Liu, Y.: Towards complexity analysis of user authorization
query problem in RBAC. Comput. Secur. 48C, 116–130 (2015)

5. Wickramaarachchi, G.T., Wahbeh, H.Q., Li, N.: An efficient framework for user
authorization queries in RBAC systems. In: 14th ACM Symposium on Access Control
Models and Technologies, Stresa, Italy, pp. 23–32 (2009)

6. Armando, A., Ranise, S., Turkmen, F., Crispo, B.: Efficient run-time solving of RBAC user
authorization queries: pushing the envelope. In: 17th ACM Conference on Data and
Application Security and Privacy, San Antonio, Texas, USA, pp. 241–248 (2012)

7. Mousavi, N., Tripunitara, Mahesh V.: Mitigating the intractability of the user authorization
query problem in role-based access control (RBAC). In: Xu, L., Bertino, E., Mu, Y. (eds.)
NSS 2012. LNCS, vol. 7645, pp. 516–529. Springer, Heidelberg (2012). doi:10.1007/978-3-
642-34601-9_39

8. Chen, L., Crampton, J.: Set covering problems in role-based access control. In: Backes, M.,
Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 689–704. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-04444-1_42

(a) (b) (c) (d)

Fig. 1. Performance for different number of (a) roles (i.e., no.R); (b) RO constraints (i.e., no.
RO); (c) PRE constraints (i.e., no.PRE); (d) PC objectives (i.e., no.PC).

Supporting User Authorization Queries in RBAC Systems 475

http://dx.doi.org/10.1007/978-3-642-34601-9_39
http://dx.doi.org/10.1007/978-3-642-34601-9_39
http://dx.doi.org/10.1007/978-3-642-04444-1_42

9. Hu, J., Khan, K. M., Zhang, Y., Bai, Y., Li, R.: Role updating in information systems using
model checking. Knowl. Inf. Syst. (2016). doi:10.1007/s10115-016-0974-4

10. Sun, Y., Wang, Q., Li, N., et al.: On the complexity of authorization in RBAC under
qualification and security constraints. IEEE Trans. Dependable Secure Comput. 8(6), 883–
897 (2011)

11. Lu, J., Xu, D., Jin, L., Han, J., Peng, H.: On the complexity of role updating feasibility
problem in RBAC. Inf. Process. Lett. 114(11), 597–602 (2014)

12. Verde, N.V., Vaidya, J., Atluri, V., Colantonio, A.: Role engineering: from theory to
practice. In: 2nd ACM Conference on Data and Application Security and Privacy, San
Antonio, Texas, USA, pp. 181–192 (2012)

13. Ni, Q., Lobo, J., Calo, S.B., Rohatgi, P., Bertino, E.: Automating role-based provisioning by
learning from examples. In: 14th ACM Symposium on Access Control Models and
Technologies, Stresa, Italy, pp. 75–84 (2009)

14. SAT4 J: A satisfiability library for Java, January 2006, http://www.sat4j.org/

476 J. Lu et al.

http://dx.doi.org/10.1007/s10115-016-0974-4
http://www.sat4j.org/

	Supporting User Authorization Queries in RBAC Systems by Role-Permission Reassignment
	Abstract
	1 Introduction
	2 Definition of the Reassignment Generation Problem
	3 The Complexity of the Reassignment Generation Problem
	4 An Approach for the Reassignment Generation Problem
	5 Conclusion
	Acknowledgment
	References

