
Interactive and Incremental Business Process
Model Repair

Abel Armas Cervantes1(B), Nick R.T.P. van Beest3, Marcello La Rosa1,
Marlon Dumas2, and Luciano Garćıa-Bañuelos2

1 Queensland University of Technology, Brisbane, Australia
{abel.armascervantes,m.larosa}@qut.edu.au

2 University of Tartu, Tartu, Estonia
{marlon.dumas,luciano.garcia}@ut.ee
3 Data61, CSIRO, Brisbane, Australia

nick.vanbeest@data61.csiro.au

Abstract. It is common for the observed behavior of a business process
to differ from the behavior captured in its corresponding model, as work-
ers devise workarounds to handle special circumstances, which over time
become part of the norm. Process model repair methods help modelers to
realign their models with the observed behavior as recorded in an event
log. Given a process model and an event log, these methods produce a
new process model that more closely matches the log, while resembling
the original model as close as possible. Existing repair methods iden-
tify points in the process where the log deviates from the model, and
fix these deviations by adding behavior to the model locally. In their
quest for automation, these methods often add too much behavior to
the model, resulting in models that over-generalize the behavior in the
log. This paper advocates for an interactive and incremental approach to
process model repair, where differences between the model and the log
are visually displayed to the user, and the user repairs each difference
manually based on the provided visual guidance. An empirical evaluation
shows that the proposed method leads to repaired models that avoid the
over-generalization pitfall of state-of-the-art automated repair methods.

Keywords: Process model repair · Conformance checking · Visual ana-
lytics · Process mining

1 Introduction

Modern information systems maintain detailed data about the execution of the
business processes they support. These data can generally be extracted in the
form of event logs consisting of sets of traces, i.e. sequences of events produced
during the execution of a process case, where each event records the occurrence
of a process activity.

Process mining is a family of methods for analyzing business processes based
on event logs [24]. Among others, process mining methods allow analysts to
c© Springer International Publishing AG 2017
H. Panetto et al. (Eds.): OTM 2017 Conferences, Part I, LNCS 10573, pp. 53–74, 2017.
https://doi.org/10.1007/978-3-319-69462-7_5



54 A. Armas Cervantes et al.

compare the actual execution of a process against its expected execution cap-
tured in a process model. This model-to-log comparison operation is known as
conformance checking. A conformance checking method takes as input a process
model and an event log, and identifies a set of discrepancies between the behav-
ior observed in the log and that allowed by the model. Once an analyst has
identified relevant discrepancies between a process model and an event log via
conformance checking, they may wish to modify the process model in order to
better reflect reality. This operation is known as process model repair. Process
model repair methods take as input a process model, an event log and a set of
discrepancies between the model and the log, and produce a model that resem-
bles the original model as much as possible, but does not have the designated
discrepancies.

The quality of a process model repair method can be captured via three met-
rics: structural similarity (how much the produced model structurally resembles
the original model), fitness (how much behavior observed in the event log is
captured by the repaired process model), and precision (how much behavior is
allowed by the repaired model but never observed in the log). A repaired model
should be as structurally similar as possible to the original model, it should have
a higher fitness than the original model (since the designated discrepancies are
fixed) and it should not degrade precision (i.e. it should not add behavior that
is not observed in the log).

Existing process model repair methods [10,21] identify points in the process
where the log deviates from the model, and determine the model change opera-
tions required to reconcile such deviations. While the aim of [10] is to automati-
cally generate repaired models with higher fitness w.r.t. the original model, [21]
aims solely at finding the change operations to be performed. The latter method
can associate different costs to the change operations and control the model
change via a budget. Further, [21] shows that using only two change operations
(insert and skip a task), which can be automatically applied over the model, it is
possible to obtain a repaired model with higher fitness w.r.t. the original model.
The authors in [21] acknowledge the importance of other metrics in addition to
fitness, though the identification of techniques to improve on such metrics during
repair is left to future work. In their quest for automation, these methods often
add too much behavior to the original model, and thus the repaired model tends
to grossly over-generalize the event log. In other words, these methods focus on
maximizing fitness at the expense of precision.

This paper advocates for an interactive and incremental approach to process
model repair for models in the BPMN language, where differences between the
control-flow of the model and the log are visually displayed to the user and the
user repairs each difference manually, at their discretion, based on visual guid-
ance. In fact, some of these differences may underpin positive deviations, e.g.
workarounds introduced to improve process performance, and as such, the user
may wish to repair the model accordingly, so that these workarounds can become
standard practices. On the other hand, differences that point to negative devia-
tions, e.g. the violation of some compliance rule, should not be incorporated into



Interactive and Incremental Business Process Model Repair 55

Fig. 1. Examples of process model repairs using different approaches

the model. The paper purports that this approach allows users to strike a better
tradeoff between the above metrics by giving them a more ample range of choices
at each step of the repair process. This hypothesis is validated via an empirical
evaluation on a battery of synthetic model-log pairs capturing recurrent change
patterns as well as a real-life model-log pair.

To illustrate the benefits of our approach w.r.t. existing ones we con-
sider the process model in Fig. 1a and the log {〈A,B,C,D,E, F,G,H〉, 〈A,B,
C,D, F,E,G,H〉}. Our approach provides the visual difference feedback to the
user shown in Fig. 1b. Assuming this difference relates to a positive deviation, the
user may repair the model in the way indicated in Fig. 1c. This model is similar
to the original one, fixes the discrepancy shown in the visual feedback and does
not add behavior w.r.t. the original model. Figures 1d and e are the repaired ver-
sions generated by the automatic repair methods in [10,21], respectively.1 Even
though the three models Fig. 1c–e can fully replay the log (perfect fitness), the
models Fig. 1d and e have lower precision. For instance, tasks B,C,E, F,H can
be repeated any number of times in Fig. 1d.

The paper is organized as follows. Section 2 discusses the limitations of exist-
ing process model repair methods. Section 3 introduces the conformance checking
method presented in [12], which we use as a starting point. Next, Sect. 4 presents
the proposed model repair approach, while Sect. 5 discusses the results of the
empirical evaluation. Finally Sect. 6 summarizes the contribution and outlines
future work directions.

1 Both methods produce Petri nets but for simplicity we present the repaired models
in BPMN.



56 A. Armas Cervantes et al.

2 Related Work

Process model repair methods take as a starting point a set of discrepancies
identified via a conformance checking method such as trace alignment [2,17].
This method computes a set of optimal trace alignments between each trace of
a log and the closest corresponding trace of the model. An alignment is a pair of
traces, which, in addition to symbols representing tasks, may also contain silent
moves. A silent move represents a deviation between the trace of the log and the
trace of the model. It may be a move on log (a task is observed in the log at a
point where it is not allowed in the model) or conversely, a move on model. A
trace alignment is optimal if it requires a minimum amount of moves.

In [10], the authors present a process model repair method based on align-
ments. This method starts by computing the optimal alignments between the
log and the model, then identifies the non-conforming parts between them and,
finally, adds (i) loops, (ii) subprocesses, and (iii) skips of tasks. This approach
guarantees a repaired model that fits the log perfectly. Another method, pre-
sented in [21], is also based on alignments. However, it only has two types of
repair operations: skip a task and insert a new task loop. Unlike [10], this method
seeks to maximize fitness while controlling the amount of changes by assigning
a cost to each repair operation and setting a maximum budget.

Fig. 2. Examples of automatic process model repairs that over-fit (low precision)

The methods in [10,21] are based on change operations that add behav-
ior to the model. While the former adds subprocesses, loops and skips, the
latter adds skips and self-looping tasks. Although these changes have a posi-
tive impact on fitness, they negatively affect precision. Consider for example
the model in Fig. 2a and log {〈I,A,B,X,C,O〉, 〈I,A,B,X,D,O〉, 〈I,B,A,X,
C,O〉, 〈I,B,A,X,D,O〉}. The repaired models produced by [10,21] are shown
in Figs. 2b and c, respectively. Even though both models perfectly fit the log,
they allow additional behavior that is neither allowed in the original model nor
observed in or implied by the log. For example, in Fig. 2b there are two tasks
with label X that can be repeated before and after C, while in Fig. 2c, the same
applies to task A. Furthermore, in both repaired models, tasks C and D can
co-occur, even though this never happens in the log.



Interactive and Incremental Business Process Model Repair 57

The work in [7] proposes a genetic algorithm that given a reference model
and a log, discovers a new model that is similar to the reference model and
more closely fits the log. This method optimizes the result along five dimen-
sions: fitness, precision, simplicity, generalization and structural similarity to
the reference model. The method generates candidate models (represented as
process trees), which are evolved until one of them is found to be optimal w.r.t.
a given threshold on the allowed changes. Unlike process model repair methods,
this method does not update the original model but discovers a new (possibly
very different) one.

The authors of [22] consider the problem of model repair in a context where
the log is not necessarily reliable (i.e. there is missing or incorrect data). Hence
the analyst needs to indicate to what extent they trust the model and to what
extent they trust the log. If the analyst trusts the model but not the log, the
log is fully re-generated so that it matches the original model. If the analyst
trusts the log but not the model, the model is re-discovered from the event log
using an automated process model discovery method, creating a model that can
potentially be very distant from the original one. If the user partially trusts the
model and the log, a new (repaired) model-log pair is generated, such that the
repaired model and log match, and their respective behavior is within a certain
distance of the original model and log.

Finally, process model repair has also been approached in the context of
unsoundness. For example, [11] uses a multi-objective optimization technique to
automatically turn an unsound Petri net into a corresponding sound model in a
minimal number of change operations, in an attempt to keep a high structural
similarity to the original model. In this case, however, the input to the technique
is only an (unsound) model.

3 Behavioral Alignment

Behavioral alignment [12] is a conformance checking method that identifies
events or behavioral relations between tasks occurrences that are observed at
a given point in the log but not allowed in the corresponding state of the model,
and vice-versa. This method operates in four steps. First, it compresses the event
log into a graph of behavioral relations between task occurrences known as an
event structure [19]. Second, it expands the process model into another event
structure. Third, it computes a (partially) synchronized product between these
two event structures. Finally, it extracts a set of difference statements from the
product.

A Prime Event Structure (PES) [19] is a graph of events representing occur-
rences of tasks. Events are linked via three relations: (i) Causality (e < e′)
indicates that event e is a prerequisite for e′; (ii) Conflict (e # e′) implies that
e precludes the execution of e′; and (iii) Concurrency (e ‖ e′) indicates that e
and e′ co-occur in any order. A PES represents the computations of a system
by means of configurations, sets of events that can occur together. Figure 3b
shows the PES extracted from the log shown in Fig. 3a. A label e:A represents



58 A. Armas Cervantes et al.

Fig. 3. Example of an event log and its corresponding PES

an event e signifying an occurrence of task A. For example, e9:H, e10:H, e11:H
and e12:H are events representing different occurrences of task H. A directed
black arc between events represents causality, while a dotted edge represents
conflict. Concurrency is denoted by the lack of any (direct or transitive) link
between two events, e.g. events e1:B and e2:C are concurrent. The PES of a log
represents every trace in the log as a configuration. E.g., the first trace in Fig. 3a
is represented by the configuration {e0:A, e1:B, e2:C, e4:D, e7:E, e11:H}.

Fig. 4. Loan application as BPMN model (a) and PES prefix (b) (Color figure online)

Any BPMN process model can be expanded into a PES using a technique
known as unfolding. In this alternative representation of the behavior of the
model, each event is associated to a single task, thus it is always possible to
determine which task originated a given event. Consider the loan application
process model shown in Fig. 4a, which is unfolded into a corresponding PES in
Fig. 4b. For conciseness, the PES prefix uses short labels A, B, . . . , I (shown
next to each task in the BPMN model) instead of the full task labels. The
PES of a model can also contain cutoff-corresponding event relations, graphically
represented as directed red dotted arrows (see Fig. 4b), to denote “jumps” in the
continuation of the process execution (e.g., in the case of looping behavior).

The event structure mirrors the BPMN model: the first event is f0:A and is
followed by concurrent events f1:B and f2:C. A silent event (f3:τ) captures their



Interactive and Incremental Business Process Model Repair 59

synchronization. Subsequently, f4:D is followed by two events in conflict (f5:F
and f6:E). Event f6:E can only be followed by f9:H, while f5:F can be followed
either by event f7:I (itself followed by f10:G) or by a silent event f8:τ which
is in conflict with f7:I. The cutoff-corresponding relation (f10:G, f3:τ) tells us
that the process can jump back to the point just before D is executed, while
(f8:τ, f6:E) captures the jump from F to H.

The event structure of the log and that of the model are compared by com-
puting a partially synchronized product (PSP) [4,12]. A PSP is a state machine
where each state is a triplet 〈Cl, Cr, ξ〉, where Cl is a configuration of the PES
of the log, Cr is a configuration of the PES of the model, and ξ is a partial
mapping between them. The construction of the PSP starts with the empty
configurations. At each step, a pair of events from each PES is matched (added
to ξ) if and only if their labels are the same and their causal relations with the
other matched events coincide. When an event cannot be matched, it is “hidden”
to allow the comparison to proceed. A “hide” edge captures behavior observed
in the log but not allowed in the model (lhide), or behavior allowed in the model
but not observed in the log (rhide). The method relies on an A∗ heuristic to
build a PSP that finds, for each configuration in the log, the most similar con-
figuration in the model (a.k.a. optimal), i.e., the one with the minimum number
of hides.

Fig. 5. Fragment of the PSP for PES from Figs. 3b and 4b

Figure 5 presents an excerpt of the PSP of the events structures in Figs. 3b
and 4b. The topmost box is the state where configurations Cl = {e0, e1} (log
PES) and Cr = {f0, f1} (model PES) have been processed, resulting in the
mapping {(e0, f0)A, (e1, f1)B}. Given the above state, the events {e2:C, e3:D}
from log PES would be enabled, and so is f2:C from the other PES. Under
such conditions, four moves are possible in the PSP: (i) the matching of events
e2 and f2, both carrying the label C, (ii) the (left) hiding of f2:C, and (iii)
the (right) hiding of e2:C and e3:D. Figure 5 presents only the states reached
after operations “match C” and “rhide f2:C”. However, the full PSP will contain
optimal matchings for all runs in the PES of the event log.

The dissimilarities between a model and a log can be of two types, mismatch-
ing behavior and behavior only observed in the model (not observed in the log);
while the former is captured by means of hide operations in the PSP, the lat-
ter is the model behavior not observed in the log. The mismatching behavior
patterns defined in [12] are shown in Fig. 6, while their verbalizations are dis-
played in Table 1. In the verbalizations, the capital letters are placeholders for



60 A. Armas Cervantes et al.

Table 1. Verbalization of mismatch patterns

Pattern Statement

TaskReloc In the log, B occurs after [A] instead of [A,C,D]

ConcConf In the model, after [A], B and C are concurrent, while in the
log they are mutually exclusive

CausConc In the model, after [A], B occurs before C, while in the log
they are concurrent

CausConf In the model, after [A], B occurs before C, while in the log
they are mutually exclusive

TaskSub In the log, after [A], B is substituted by X

TaskAbs/Ins In the log, C occurs after [A,B] instead of [A,C]

UnmRepetition In the log, A is repeated after [B]

TaskSkip In the log, after [A], B is optional

UnobsAcyclicInter In the log, tasks [A,B, . . . ] do(es) not occur after tasks
[D,E, F ]

UnobsCyclicInter In the log, the cycle involving tasks [A,B, . . . ] does not occur
after tasks [D,E, F ]

Fig. 6. Mismatch patterns in the PSP

the activities involved in the differences. Note that UnobsAcyclicInter and Unob-
sCyclicInter in Table 1 refer to the behavior solely contained in the model.

Roughly speaking, given a PSP both the mismatching behavior patterns and
the additional behavior in the model are identified, verbalized and reported. For
instance, the fragment of the PSP shown in Fig. 5 captures the pattern in Fig. 8c
that is verbalized as “In the event log, task C can be skipped, while in the model
it cannot”.



Interactive and Incremental Business Process Model Repair 61

4 Extending Conformance Checking to Process Model
Repair

In this section, we first describe two improvements over the behavioral alignment
method introduced above: four of the existing patterns are redefined to consider
sequences of tasks (also referred to as intervals) instead of individual tasks, and
an order for the detection of differences is established in a way that more specific
patterns are detected before more general ones. Next, we describe a method for
interactive process model repair based on the visualization of the differences
detected by the revised behavioral alignment method.

4.1 Extension, Order and Impact of Differences

The patterns in Table 1 define combinations of hide and match operations to
describe predefined templates expressing behavioral differences. Those patterns
capture differences involving single tasks (TaskSkip, TaskSub, UnmRepetition,
TaskReloc and TaskAbs), pairs of tasks (CausConc, ConcConf and CausConf)
or even sequences of tasks (UnobsAcyclicInter and UnobsCyclicInter). Patterns
involving sequences of tasks can offer condensed dissimilarities, which otherwise
should be spelled out one by one. Thus, as a first contribution, we redefined four
patterns, those displayed in Fig. 8, to consider sequences of tasks instead of single
tasks. In addition, to obtain a more condensed feedback, the new definitions fix
some of the issues of the original definitions. For example, even though the PSP
in Fig. 7 shows the case when tasks B and C are optional (i.e., they occur in both
the model and the log, or only in the model), the original definition considers
only the optionality of a single task.

An interval (Int) is a sequence of tasks that can occur one after the other
either in the model or in the log. For instance, the occurrences of tasks B and
C in Fig. 7 represent an interval, because they occur consecutively in the model
after A. For the sake of brevity, the rhide, lhide or match of an interval Int is
denoted as rhide(Int), lhide(Int) or match(Int), respectively. Thus, given an
interval Int = [B,C], rhide(Int) denotes rhide(B) followed by rhide(C), and
analogously for lhide and match. The modified patterns to consider intervals
instead of single tasks are depicted in Fig. 8. Observe that in the case of Fig. 8b,
Int-1 and Int-2 are two different intervals.

The detection of differences consists of traversing the PSP and once a pattern
is found, all the involved hide operations are discarded. As such, a hide operation
cannot be reported as part of two differences. However, a single hide operation
can be explained by various patterns. For example, given the PSP in Fig. 7, it is
possible to identify two TaskAbs patterns (i.e., “In the model, B occurs after [A]
and before [D]” and “In the model, C occurs after [A] and before [D]”) or a single
TaskSkip pattern (i.e., “In the model, after [A], the interval [B, C] is optional”).
The latter offers a deeper insight into the difference, in a more compact manner,
and is thus preferred. Therefore, as a second contribution, we define a specific
order on the detection of the differences, such that those involving intervals are
identified first, then differences involving pairs of tasks are identified, and finally



62 A. Armas Cervantes et al.

Fig. 7. Interval skip Fig. 8. Patterns extended to consider intervals

those involving only single tasks. The order for each of the patterns is shown in
the first column of Tables 2, 3 and 4.

The proposed repair approach starts from the premise that not all existing
differences shall be reconciled but only those pointing to positive deviations,
and among them, some may have higher priority than others. For example,
differences involving critical tasks, or differences that refer to a particular type
of mismatch pattern (e.g., TaskAbs), or affecting a larger number of traces in
the log, may be given higher priority. In this regard, as a third contribution we
propose a notion of impact for each mismatch pattern. We define this notion
based on the frequency of the events in the log, such that differences with higher
impact shall be reconciled first.2 The construction of the PES enriched with
information about the frequency of the events, can be found in [23]. Consider
the patterns in Fig. 6 and a log with X amount of traces. The impact of a given
pattern is defined as Y /X, where Y is (i) the frequency of the event (or the
minimum frequency of the events in an interval) involved in the operation op
for the pattern TaskReloc, TaskSub, TaskAbs/Ins, UnmRepetition and
TaskSkip; (ii) the minimum frequency of the event in op1 and in op2 for the
patterns CausConf and CausConc; and (iii) the frequency of the event in op1
plus the frequency of the event in op2 for the pattern ConcConf. Intuitively,
this notion represents the proportion of traces involving the events in a given
difference. This simple impact measure can be replaced with a more sophisticated
notion, e.g. one that depends on factors that are exogenous to the log such as
the cost of rectifying the model according to a given difference.

4.2 Visualization of Differences

The cornerstone of our interactive and incremental model repair approach is the
visualization of the differences. It exploits the fact that diagrams are powerful
tools for presenting information in a more concise and precise manner than
text [18]. Thus, the visualization of differences can be easier to understand than
2 The same rationale of reconciling changes with higher impact first is proposed in [21].



Interactive and Incremental Business Process Model Repair 63

the textual description generated by the conformance checker. Intuitively, every
mismatch pattern is translated into a graphical representation, which can be
overlaid on the model, and suggests the change to be done for reconciling a
given difference. This alternative representation uses standard BPMN notation,
so no new symbols are added, and uses a color code to represent the suggested
changes. Variations in color are easily distinguishable, more than changes in
shapes [18], and can help coping with potential model complexity. This idea
incarnates the principle of graphical highlighting, which have been shown in [15]
to lead to more understandable process models.

Some techniques that have approached the problem of representing differ-
ences between graphs and/or models can be broadly categorized into two groups:
those that use color-coding of differences in a merged graph for the visualization
of differences (see e.g. [6,13,14,20]), and those that overlay the two compared
models, such that both models are visible in the same picture [3]. In the visualiza-
tion proposed in this paper, however, the differences are not directly represented
as such to the user. Rather, the required change is shown, indicating what needs
to be changed in order to repair the model such that it matches the behavior
observed in the log.

The color code used for the representation of the differences is as follows.
An element in the BPMN model – task, sequence flow (i.e. arc) or gateway –
involved in a difference can either be grey (element to be removed) or red with
thicker lines (element to be inserted or task affected by the difference); whereas
the elements that are not involved in the difference are left unchanged. The
proposed visualizations for all mismatch patterns are displayed in Tables 2, 3
and 4. For instance, consider the fourth pattern in Table 2, where task b has
to be relocated after o. As a result, task b in the model is grayed out (along
with its incoming and outgoing arcs), while a new task b is inserted after o. The
background of the new task is colored white, so that it is easier to distinguish new
tasks from those already present in the model (those with a yellow background).

The differences are classified with respect to two criteria, scope and type of
change. The scope can be local or cross-context. Local changes occur in a single
part of the model, e.g., TaskAbs denotes the case when a task does not occur
in the log, and thus it has to be removed from the model; whereas, cross-context
changes involve two different parts in the model, e.g., TaskReloc represents
the case when an interval of tasks has to be relocated in the model. The second
criterion is the type of change: tasks modification, sequence flows modification, or
gateways modification. In our context, a modification implies either the removal,
or the removal and insertion of elements.

A local change can be further subdivided into two classes: interval and binary.
A local-interval change can be formally defined as a triplet 〈I1, I2, C〉, such that
I1 is an interval of tasks in the model, I2 is an interval of tasks to be inserted
and C is a configuration. A local-binary change is a triplet 〈e1, e2, C〉, where
e1 and e2 are tasks in the model, and C is a configuration. Finally, a cross
context change is defined as 〈I, C1, C2〉, where I is an interval, and C1 and C2

are configurations. C1 is the source of the difference and C2 is the target of the



64 A. Armas Cervantes et al.

Table 2. Tasks modification patterns

modification. We refer to the start (resp. end) of a difference as the element in the
model that precedes (resp. follows) the tasks in I1, I2, {e1, e2} and I, depending
on the scope of the change. In order to build the visualization of a difference, we
take as input the triplets generated by the conformance checker, and obtain the
elements in the model involved in such differences. Subsequently, we generate a
triplet 〈Y,H,A〉, such that Y contains the elements to be grayed out, H contains
the elements to be highlighted and A contains the elements to be added. Each
set of patterns, grouped by the type of change in the model, is presented below.

Tasks Modification. This set of differences covers three cases: tasks need to
be removed from the model, tasks need to be relocated and tasks need to be sub-
stituted. Table 2 presents the patterns in this category and shows an example of
both their visualization and their verbalization. The graphical representation of
these differences consists in graying out the tasks (and their arcs) in the interval
I1 for the local-interval changes, and the tasks in the interval I for the cross-
context changes. New arcs, and tasks in the case of task substitution, are inserted
to connect the start with the end of each difference (i.e., the tasks around the
grayed out elements). Finally, for the last two cross-context changes, new tasks
and arcs are inserted representing the relocation of the intervals to the target
of the modification. For instance, the fourth pattern – TaskReloc in Table 2
suggests to relocate task b after {i, a, o}. Thus, task b and its incoming/outgoing
arcs are grayed out, a new arc is inserted to connect a with o, and a new task b
is added after o.

Sequence Flows Modification. The differences in this category cover the
cases when existing arcs need to be removed, and new gateways and/or arcs
need to be inserted. Thus, no task needs to be grayed out or highlighted. The
patterns in this category are presented in Table 3. The arcs to be grayed out
are the incoming and outgoing arcs of the tasks in I for cross-context changes,



Interactive and Incremental Business Process Model Repair 65

Table 3. Sequence flows modification patterns

in I1 for local-interval changes, and in {e1, e2} for local-binary changes. Finally,
depending on the pattern, new gateways have to be inserted with corresponding
arcs for connecting the elements involved by the difference. For instance, the
second pattern (TaskSkip) in Table 3 suggests that task b should be optional.
The incoming and outgoing arcs of b are grayed out, and new XOR gateways
are added to allow the skip of b after a.

Gateways Modification. The last set of differences are changes that affect the
gateways present in the model, i.e. a gateway needs to be deleted or replaced by
another gateway (e.g. an XOR gateway is replaced by an AND gateway). The
patterns in this category are shown in Table 4. The elements to be highlighted
are the tasks in the interval I and I1 in the case of TaskSkip and Unob-
sCyclic, respectively, and tasks e1 and e2 for the rest of the differences. The
elements grayed out are the relevant gateways (AND gateways for the first two
patterns and XOR gateways for the last four), and their outgoing and incoming
arcs. Finally, depending on the pattern, new gateways and arcs are inserted to
connect the elements involved in the pattern. For example, the first and third
patterns in Table 4 suggest to remove the gateways and to define a causality
order between a and b. In these two patterns, a (the task occurring first) is con-
nected to i, and b (occurring last) is connected to o. In the case of the second
and the fourth patterns in Table 4, the existing gateways have to be substituted
by another type, thus changing the parallel behavior between tasks a and b to
exclusive, or vice versa. The substitution is as follows: existing gateways and
their incoming and outgoing arcs are grayed out, and new gateways and arcs are
inserted. Specifically, in both ConcConf patterns, the fork gateway is connected
to i, a and b, emulating the connections of the fork gateway to substitute, while
the join gateway is connected to a, b and o.



66 A. Armas Cervantes et al.

Table 4. Gateways modification patterns

5 Evaluation

We implemented our approach as part of the OSGi plugin Compare [5] for the
Apromore online process analytics platform.3 This plugin takes as input a BPMN
process model and a log in MXML or XES format. Its output is a set of textual
differences according to the mismatch patterns described in this paper. When
selected, a difference is also represented graphically on top of the input process
model. The user can apply a difference at a time to repair the model accordingly.
At each application, the differences between the model and the log are recom-
puted. Once a difference has been selected, it can be automatically applied by
the tool. Users can apply differences until the model and the log capture the
same behavior, or until desired.4 An example of the graphical representation of
a difference, i.e., TaskSkip pattern, over a model is depicted in Fig. 9.

Using this tool, we conducted a two-pronged evaluation to compare our app-
roach to the two existing baseline approaches in [21] (hereafter called Base1)
and [10] (Base2). First, we applied each approach on a battery of synthetic event
logs generated from a real-like model of a loan origination process, to assess how
each of them performs in identifying and repairing elementary changes. Next,
we applied each approach on a real-life model-log pair for a road traffic fines
management process.

3 Available at http://www.apromore.org.
4 A screencast of the tool can be found at https://youtu.be/3d00pORc9X8.

http://www.apromore.org
https://youtu.be/3d00pORc9X8


Interactive and Incremental Business Process Model Repair 67

Fig. 9. Example of the visualization of a difference in Compare

We compared the quality of the repaired models produced by the three
approaches in terms of their fitness, precision and F-Score (the harmonic mean
of fitness and precision) w.r.t. the event log, as well as in terms of their struc-
tural similarity w.r.t. the original model. We used fitness and precision based on
trace alignment [1,2], as these metrics can be computed reasonably quickly, and
because the two baseline methods were designed to optimize the fitness mea-
sure based on trace alignments. Trace alignment-based fitness [2] measures the
degree to which every trace in the log can be aligned with a trace produced
by the model, while trace alignment-based precision [1] measures how often the
model escapes these aligned traces by adding extra behavior not recorded in the
log. We computed model similarity as one minus the graph-edit distance between
the two models. The graph-edit distance measures the number of node and edge
insertions, removals and substitutions to transform one graph into the other. We
used the measure in [8] (with a greedy matching strategy), as it has been shown
to provide a good compromise between matching accuracy and performance.

5.1 Experiment with Synthetic Datasets

In the first experiment, we used a battery of 17 synthetic model-log pairs. Start-
ing from a textbook example of a process for assessing loan applications [9] (see
Fig. 10), we generated 17 altered versions of this base model by applying differ-
ent change operations. Next, we used the BIMP simulator5 to generate an event
log from each altered process model. By pairing the base model with these logs,
we obtained 17 model-log pairs.

To avoid bias towards any of the evaluated approaches, we selected the change
operations to apply from an independent taxonomy of simple change patterns
[25], which constitute solutions for realizing commonly occurring control-flow
changes in information systems. As such, this taxonomy of changes is different
from the mismatch patterns presented in this paper, which are based on the
difference as observed in the PSP. However, each pattern in one taxonomy can
be expressed by one or more patterns in the other taxonomy.

The simple change patterns from [25], summarized in Table 5, capture ele-
mentary ways of modifying a process model, such as adding/removing a frag-

5 http://bimp.cs.ut.ee.

http://bimp.cs.ut.ee


68 A. Armas Cervantes et al.

Fig. 10. BPMN model of a loan origination process (source: [9])

ment, putting a fragment in a loop, swapping two fragments, or parallelizing
two sequential fragments. Non-applicable patterns such as changing branching
frequency or inlining a subprocess were excluded, resulting in eleven change pat-
terns. These patterns can be grouped into three categories based on their type:
Insertion (“I”), Resequentialization (“R”) and Optionalization (“O”). From
these categories, following the same method as in [16,23], we constructed six
composite change patterns by subsequently nesting simple change patterns from
each category within each other: “IOR”, “IRO”, “OIR”, “ORI”, “RIO”, and
“ROI”. For example, the composite pattern “IRO” can be obtained by adding
a fragment (“I”), putting it in parallel with an existing fragment (“R”), and
skipping the latter (“O”). As a result, we obtained a total of 17 change patterns.

Table 5. Simple control-flow change patterns from [25]

Simple pattern Explanation Category

Add/remove Add/remove fragment I

Cond./Seq. Make two fragments conditional/sequential R

Conc./Seq. Make two fragments concurrent/sequential R

Loop Make fragment loopable/non-loopable O

Skip Make fragment skippable/non-skippable O

Cond. move Move fragment into/out of conditional branch I

Conc. move Move fragment into/out of concurrent branch I

Synchronize Synchronize two parallel fragments R

Duplicate Duplicate fragment I

Replace Substitute fragment I

Swap Swap two fragments I

In order to use our approach without user input, we automatically selected
the difference retrieved from our tool that has the highest impact in terms of
involved log traces, applied that to the original model to obtain a repaired model,



Interactive and Incremental Business Process Model Repair 69

recomputed the differences and picked again the most impactful difference, until
no more differences existed or five differences had been selected. This mechanized
version of our approach only removes the interaction with the user but preserves
its incremental nature. However, given the limit to maximum five differences,
there is no guarantee that all the discrepancies between model and log would be
repaired.

Table 6 reports the results of the first experiment, where for each bidirec-
tional pattern (e.g. Add/Remove), we applied the pattern in both directions and
reported the average measurements. Our approach always achieves the highest
structural similarity w.r.t. the original model (on average 0.92, with values rang-
ing from 0.86 to 0.97). This is substantially higher than the similarity obtained by
Base1 (avg = 0.72, min = 0.60, max = 0.88) and by Base2 (avg = 0.79, min = 0.71,
max = 0.88). Despite the higher similarity, the models repaired by our approach
have the highest F-Score in all but one case. In fact, while both baselines aim to
maximize fitness, obtaining a perfect fitness in most cases, our approach keeps
the fitness high while improving precision, often substantially (avg = 0.97 against
0.68 for Base1 and 0.94 for Base2), hence striking a better balance between the
two accuracy measures. The only exception is the synchronization pattern, where
our F-Score is 0.95 against 0.97 for the two baselines. The repair introduced in
this case was more specific than the behavioral difference reported by our app-
roach, resulting in a lower fitness compared to the two baselines (0.94 instead of
1.00), despite having a slightly higher precision (0.97 instead of 0.95).

In summary, despite the relative simplicity of the introduced changes, the
two baseline approaches generate models that are much more distant from the
original model, yet less accurate in capturing the log behavior, than the models
produced by our approach.

5.2 Experiment with Real-Life Dataset

In the second experiment, we used a real-life model-log pair of a process for
managing road traffic fines in Italy. The normative process model, available as
a Petri net (see Fig. 11), is obtained from a textual description of this process
[17]. The log6 is extracted from the information system of a municipality. It
contains 150,370 traces of which 231 are distinct and a total of 561,470 events.
This log contains a number of anomalies, presumably due to noise and other
factors. Examples are traces 〈Create fine → End〉 and 〈Create Fine → Send
Fine → End〉, which cannot be replayed in the model.

Covering all log behavior will naturally increase fitness, but at the same time
will result in a highly complex and over-fitting model. From the results reported
in Table 7, we can see that both baselines cover all log behavior (perfect fitness),
but result in a very low precision and hence F-Score, and a repaired model that
is very different from the original one. In this table, we also report model size as
the sum of the number of places and transitions in the Petri net.

6 http://dx.doi.org/10.4121.

http://dx.doi.org/10.4121


70 A. Armas Cervantes et al.

T
a
b
le

6
.
E

va
lu

a
ti

o
n

re
su

lt
s

o
n

th
e

sy
n
th

et
ic

d
a
ta

se
ts

A
d
d
/
R
e
m
o
v
e

C
o
n
d
./
S
e
q
.

C
o
n
c
./
S
e
q
.

L
o
o
p

S
k
ip

C
o
n
d
.

m
o
v
e

C
o
n
c
.

m
o
v
e

S
y
n
c
h
ro

n
iz
e

D
u
p
li
c
a
te

R
e
p
la
c
e

S
w
a
p

IO
R

IR
O

O
IR

O
R
I

R
IO

R
O
I

B
a
se

1
[2
1
]

S
im

il
a
ri
ty

0
.7
4

0
.6
8

0
.8
8

0
.5
7

0
.8
2

0
.7
2

0
.7
0

0
.8
8

0
.6
7

0
.7
3

0
.6
3

0
.6
0

0
.7
0

0
.6
2

0
.8
2

0
.8
0

0
.7
2

F
it
n
e
ss

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0

P
re

c
is
io
n

0
.6
8

0
.9
4

0
.9
2

0
.3
6

0
.8
7

0
.7
0

0
.7
2

0
.9
5

0
.5
2

0
.6
4

0
.5
5

0
.5
9

0
.4
5

0
.4
6

0
.9
2

0
.8
4

0
.5
0

F
-S

c
o
re

0
.8
1

0
.9
7

0
.9

6
0
.5
3

0
.9
3

0
.8
2

0
.8
4

0
.9

7
0
.6
9

0
.7
8

0
.7
1

0
.7
4

0
.6
2

0
.6
3

0
.9
6

0
.9
1

0
.6
7

B
a
se

2
[1
0
]

S
im

il
a
ri
ty

0
.7
9

0
.7
9

0
.8
8

0
.7
8

0
.7
7

0
.7
5

0
.7
4

0
.8
8

0
.8
2

0
.7
9

0
.7
1

0
.8
2

0
.8
8

0
.7
1

0
.7
9

0
.8
3

0
.7
4

F
it
n
e
ss

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9
5

1
.0

0
0
.9
5

0
.8
1

0
.7
6

1
.0

0
1
.0

0
0
.8

P
re

c
is
io
n

0
.9

7
0
.9

8
0
.9
2

0
.9
5

0
.8
5

0
.9
3

0
.9
3

0
.9
5

0
.9

8
0
.9

7
0
.9
3

0
.9

7
0
.9

7
0
.8
8

0
.9

5
0
.9
4

0
.8
3

F
-S

c
o
re

0
.9

9
0
.9

9
0
.9

6
0
.9

8
0
.9
2

0
.9
7

0
.9
6

0
.9

7
0
.9

9
0
.9
6

0
.9
7

0
.9
6

0
.8
8

0
.8
2

0
.9

8
0
.9
7

0
.8
6

O
u
rs

S
im

il
a
ri
ty

0
.8

6
0
.9

2
0
.9

7
0
.9

5
0
.9

3
0
.9

0
0
.8

8
0
.9

2
0
.9

4
0
.9

3
0
.9

5
0
.8

6
0
.9

0
0
.8

7
0
.9

1
0
.9

7
0
.9

1

F
it
n
e
ss

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9
4

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0

P
re

c
is
io
n

0
.9

7
0
.9

8
0
.9

2
0
.9

6
0
.9

7
0
.9

8
0
.9

8
0
.9

7
0
.9

8
0
.9

7
0
.9

7
0
.9
5

0
.9

7
0
.9

6
0
.9

5
0
.9

8
0
.9

5

F
-S

c
o
re

0
.9

9
0
.9

9
0
.9

6
0
.9

8
0
.9

9
0
.9

9
0
.9

9
0
.9
5

0
.9

9
0
.9

9
0
.9

9
0
.9

8
0
.9

8
0
.9

8
0
.9

8
0
.9

9
0
.9

8



Interactive and Incremental Business Process Model Repair 71

These results exacerbate the differences between the three approaches already
exposed in Table 6, clearly demonstrating the advantages of our approach over
the two baselines. Our approach reduces the fitness of the original model by
0.07, but dramatically increases the precision and, thus the F-score. In addition,
it produces a much more readable model (the size is almost half of that of the
baselines) which is very close to the original model (the similarity is 0.90 vs. 0.46
for Base1 and 0.55 for Base2). Figure 12 shows the repaired model obtained by
our approach, while Fig. 13 shows the model obtained by Base2 (for the sake of
comparison, we show the model in Petri nets).

Table 7. Evaluation results on the real-life dataset

Similarity Fitness Precision F-score Size

Original model – 0.99 0.77 0.87 28

Base1 [21] 0.46 1.00 0.45 0.62 46

Base2 [10] 0.55 1.00 0.49 0.65 50

Ours 0.90 0.92 0.90 0.91 29

Fig. 11. Normative model of the road traffic fines management process (source: [17])

In this second experiment, we only applied the top two differences in terms of
number of affected traces, as identified by our tool. Next, we tried a subsequent
repair iteration: this increased the precision to 0.93 and the F-Score to 0.92 at the
cost of reducing the similarity to 0.86 and increasing the size to 31 nodes. Given
that in this dataset the original model is a normative specification, it is up to the
user to select which model-log discrepancies to repair based on domain knowl-
edge. In fact, unfitting behavior could be the result of non-compliance, and as
such related discrepancies should not be applied to the model, but rather provide
opportunities to rectify current practices. Alternatively, they may expose prac-
tical workarounds to improve performance, which could in principle be imported



72 A. Armas Cervantes et al.

Fig. 12. Our repaired model of the road traffic fines management process

Fig. 13. Process model for the road traffic fines management process repaired by Base2

into the normative model. In turn, additional model behavior may point to norms
that are ignored in practice, again providing opportunities for rectifying current
practices.

6 Conclusion

This paper presented a process model repair approach that differs from previous
proposals in that it does not seek to fix each discrepancy automatically by adding
behavior, but rather, it overlays each discrepancy on top of the model, and lets
the user decide incrementally which discrepancies to fix and how, based on the
provided visual guidance. Further, the fixes suggested through visual guidance
are more accurate (in the sense that they do not add behavior w.r.t. the log), than
those provided by state-of-the-art model repair methods. This characteristic is
confirmed by the empirical evaluation, which showed that our approach leads to
repaired models with a higher F-Score and higher structural similarity relative
to two state-of-the-art process model repair methods. The empirical evaluation
is limited to a collection of synthetically modified model-log pairs, and one real-
life model-log pair. This restricted dataset is a potential threat to the validity of
the findings. Conducting a more comprehensive evaluation with further real-life
model-log pairs is thus an avenue for future work.



Interactive and Incremental Business Process Model Repair 73

While interactivity is a strength of our approach, it is also a potential limi-
tation insofar as the effort required to repair model-log pairs with many discrep-
ancies may be prohibitive. Another avenue for future work is to automatically
identify sets of compatible discrepancies that affect the same model fragment,
which can be repaired together in a way that leads to a very similar model with
higher F-Score.

Acknowledgments. We thank Artem Polyvyanyy and Raffaele Conforti for their
feedback on earlier versions of this work. This research is funded by the Australian
Research Council (grant DP150103356) and the Estonian Research Council (grant
IUT20-55).

References

1. Adriansyah, A., Muñoz-Gama, J., Carmona, J., van Dongen, B., van der Aalst,
W.: Measuring precision of modeled behavior. ISeB 13(1), 37–67 (2015)

2. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking
using cost-based fitness analysis. In: Proceedings of the EDOC. IEEE Computer
Society (2011)

3. Andrews, K., Wohlfahrt, M., Wurzinger, G.: Visual graph comparison. In: 2009
13th International Conference on Information Visualisation, pp. 62–67. IEEE
(2009)

4. Armas-Cervantes, A., Baldan, P., Dumas, M., Garćıa-Bañuelos, L.: Diagnosing
behavioral differences between business process models: an approach based on event
structures. Inf. Syst. 56, 304–325 (2016)

5. Armas-Cervantes, A., van Beest, N.R.T.P., La Rosa, M., Dumas, M., Raboczi,
S.: Incremental and interactive business process model repair in apromore. In:
Proceedings of the BPM Demos. CRC Press (2017, to appear)

6. van den Brand, M., Protić, Z., Verhoeff, T.: Generic tool for visualization of model
differences. In: Proceedings of the 1st International Workshop on Model Compar-
ison in Practice, pp. 66–75. ACM (2010)

7. Buijs, J.C.A.M., La Rosa, M., Reijers, H.A., van Dongen, B.F., van der Aalst,
W.M.P.: Improving business process models using observed behavior. In: Cudre-
Mauroux, P., Ceravolo, P., Gašević, D. (eds.) SIMPDA 2012. LNBIP, vol. 162, pp.
44–59. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40919-6 3

8. Dijkman, R., Dumas, M., Garćıa-Bañuelos, L.: Graph matching algorithms for
business process model similarity search. In: Dayal, U., Eder, J., Koehler,
J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03848-8 5

9. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013). doi:10.1007/978-3-642-33143-5

10. Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process models to
reality. Inf. Syst. 47, 220–243 (2015)

11. Gambini, M., La Rosa, M., Migliorini, S., Ter Hofstede, A.H.M.: Automated error
correction of business process models. In: Rinderle-Ma, S., Toumani, F., Wolf,
K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 148–165. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-23059-2 14

http://dx.doi.org/10.1007/978-3-642-40919-6_3
http://dx.doi.org/10.1007/978-3-642-03848-8_5
http://dx.doi.org/10.1007/978-3-642-33143-5
http://dx.doi.org/10.1007/978-3-642-23059-2_14


74 A. Armas Cervantes et al.

12. Garćıa-Bañuelos, L., van Beest, N.R., Dumas, M., La Rosa, M.: Complete and
interpretable conformance checking of business processes. IEEE Trans. Softw. Eng.
(2017, to appear)

13. Geyer, M., Kaufmann, M., Krug, R.: Visualizing differences between two large
graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 393–
394. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18469-7 38

14. Kriglstein, S., Wallner, G., Rinderle-Ma, S.: A visualization approach for difference
analysis of process models and instance traffic. In: Daniel, F., Wang, J., Weber,
B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 219–226. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40176-3 18

15. La Rosa, M., ter Hofstede, A.H.M., Wohed, P., Reijers, H.A., Mendling, J., van
der Aalst, W.M.P.: Managing process model complexity via concrete syntax mod-
ifications. IEEE Trans. Ind. Inform. 7(2), 255–265 (2011)

16. Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Fast and accurate business
process drift detection. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.)
BPM 2015. LNCS, vol. 9253, pp. 406–422. Springer, Cham (2015). doi:10.1007/
978-3-319-23063-4 27

17. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-
perspective checking of process conformance. Computing 98(4), 407–437 (2016)

18. Moody, D.: The “physics” of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779
(2009)

19. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part I. Theoret. Comput. Sci. 13, 85–108 (1981)

20. Ohst, D., Welle, M., Kelter, U.: Differences between versions of UML diagrams. In:
ACM SIGSOFT Software Engineering Notes, vol. 28, pp. 227–236. ACM (2003)

21. Polyvyanyy, A., van der Aalst, W.M.P., ter Hofstede, A.H.M., Wynn, M.T.:
Impact-driven process model repair. ACM Trans. Softw. Eng. Methodol. 25(4),
28:1–28:60 (2016)

22. Rogge-Solti, A., Senderovich, A., Weidlich, M., Mendling, J., Gal, A.: In log and
model we trust? A generalized conformance checking framework. In: La Rosa, M.,
Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 179–196. Springer,
Cham (2016). doi:10.1007/978-3-319-45348-4 11

23. van Beest, N.R.T.P., Dumas, M., Garćıa-Bañuelos, L., La Rosa, M.: Log delta
analysis: interpretable differencing of business process event logs. In: Motahari-
Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp.
386–405. Springer, Cham (2015). doi:10.1007/978-3-319-23063-4 26

24. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidel-
berg (2016). doi:10.1007/978-3-662-49851-4

25. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features: enhancing flexibility in process-aware information systems. Data Knowl.
Eng. 66(3), 438–466 (2008)

http://dx.doi.org/10.1007/978-3-642-18469-7_38
http://dx.doi.org/10.1007/978-3-642-40176-3_18
http://dx.doi.org/10.1007/978-3-319-23063-4_27
http://dx.doi.org/10.1007/978-3-319-23063-4_27
http://dx.doi.org/10.1007/978-3-319-45348-4_11
http://dx.doi.org/10.1007/978-3-319-23063-4_26
http://dx.doi.org/10.1007/978-3-662-49851-4

	Interactive and Incremental Business Process Model Repair
	1 Introduction
	2 Related Work
	3 Behavioral Alignment
	4 Extending Conformance Checking to Process Model Repair
	4.1 Extension, Order and Impact of Differences
	4.2 Visualization of Differences

	5 Evaluation
	5.1 Experiment with Synthetic Datasets
	5.2 Experiment with Real-Life Dataset

	6 Conclusion
	References




