
Scalable Conformance Checking of Business
Processes

Daniel Reißner1(B), Raffaele Conforti1, Marlon Dumas2, Marcello La Rosa1,
and Abel Armas-Cervantes1

1 Queensland University of Technology, Brisbane, Australia
{da.reissner,raffaele.conforti,m.larosa,a.armascervantes}@qut.edu.au

2 University of Tartu, Tartu, Estonia
marlon.dumas@ut.ee

Abstract. Given a process model representing the expected behavior
of a business process and an event log recording its actual execution, the
problem of business process conformance checking is that of detecting
and describing the differences between the process model and the log.
A desirable feature is to produce a minimal yet complete set of behav-
ioral differences. Existing conformance checking techniques that achieve
these properties do not scale up to real-life process models and logs. This
paper presents an approach that addresses this shortcoming by exploit-
ing automata-based techniques. A log is converted into a deterministic
automaton in a lossless manner, the input process model is converted
into another minimal automaton, and a minimal error-correcting syn-
chronized product of both automata is calculated using an A* heuristic.
The resulting automaton is used to extract alignments between traces
of the model and traces of the log, or statements describing behavior
observed in the log but not captured in the model. An evaluation on
synthetic and real-life models and logs shows that the proposed app-
roach outperforms a state-of-the-art method for complete conformance
checking.

Keywords: Conformance checking · Process mining · Automata ·
Behavioral alignment

1 Introduction

Modern information systems maintain detailed business process execution trails.
For example, an enterprise resource planning system keeps records of key events
related to a company’s order-to-cash process, such as the receipt and confirma-
tion of purchase orders, the delivery of products, and the creation and payment
of invoices. Such records can be grouped into an event log consisting of sequences
of events (called traces), each consisting of all event records pertaining to one
case of a process.

Conformance checking techniques exploit such event logs in order to deter-
mine if and to what extent the actual behavior of a process conforms to a process
c© Springer International Publishing AG 2017
H. Panetto et al. (Eds.): OTM 2017 Conferences, Part I, LNCS 10573, pp. 607–627, 2017.
https://doi.org/10.1007/978-3-319-69462-7_38

608 D. Reißner et al.

model capturing its expected behavior. A conformance checking technique takes
as input an event log and a process model, and returns a set of differences between
the model and the log. In real-life scenarios, the set of differences between an
event log and a process model can be large. Hence it is necessary to represent
them in a way that is compact and interpretable, yet complete, or as exhaustive
as desired by the user.

State-of-the-art techniques for computing a complete set of differences include
behavioral alignment [15] and (all-optimal) trace alignment [2]. The former com-
putes a set of statements describing behavioral relations that exist in the model
but not in the log. The latter computes minimal alignments between each trace
in the log that cannot be parsed by the model, and a corresponding trace that
can be parsed by the model. These techniques however do not scale up to large
and noisy event logs. For example, our experimental evaluation (reported later)
shows that the all-optimal trace alignment technique in [2] takes more than five
minutes to compute an incomplete set of alignments over real-life and noisy logs
and sometimes does not converge after hours. These execution times make it
impractical to use these techniques in an interactive setting, e.g. when confor-
mance checking is performed multiple times to iteratively repair a process model
so as to better fit the log. Additionally, scalability issues of conformance check-
ing techniques indirectly affect several process mining techniques, such as model
repair [7,25] or process discovery [8,17], which rely on conformance checking to
justify the quality of their outputs.

This paper aims to tackle this scalability issue by proposing an automata-
based technique for conformance checking. In our approach, an event log is
encoded as sequences of words and compressed into a minimal Deterministic
Acyclic Finite State Automaton (DAFSA). Concomitantly, the process model is
transformed into another automaton (its reachability graph). The two automata
are combined into an error-correcting product automaton whose transitions cor-
respond to either a synchronous move (on both automata) or an asynchronous
move (i.e. a move on the automaton of the log that does not exist in the model or
vice-versa). The produced automaton contains a minimal number of asynchro-
nous moves. From this product automaton, we can extract either the optimal
alignments of each trace in the log and a corresponding trace in the model (as
in [2]) or a set of behavioral difference statements (as in [15]). Thus, our app-
roach unifies these two previous approaches, while achieving higher scalability,
as shown by an evaluation on synthetic and real-life process models and logs.

The next section discusses existing conformance checking techniques in more
detail. Section 3 introduces the proposed approach, while Sect. 4 presents its
evaluation. Section 5 summarizes the contributions and discusses improvement
avenues.

2 Related Work

Conformance checking techniques detect two types of discrepancies between a
process model and a log: behavior observed in the log that is disallowed by the

Scalable Conformance Checking of Business Processes 609

model (unfitting behavior), and behavior allowed by the model but not observed
in the log (additional behavior). A simple approach to detect and measure unfit-
ting behavior is token-based replay [26]. The idea is to replay each trace against
the model, represented as a Petri net. The transitions in the model are fired
following the order dictated by a given trace. To fire, a transition needs to be
enabled, i.e. it requires at least one token in each of its incoming places. When a
transition cannot fire because it is not enabled, the technique determines which
tokens need to be added to enable it. Once a trace has been replayed, if there are
any tokens left in a non-sink place of the Petri net, they are labeled as remain-
ing tokens. The fitness between the model and the log is quantified in terms of
the number of added and remaining tokens (replay errors). An extended version
of this approach, namely continuous semantics fitness [4], achieves higher per-
formance at the expense of incompleteness. Another extension [32] decomposes
the model into single-entry single-exit fragments, such that each fragment can
be replayed independently. Other extensions based on model decomposition are
discussed in [23].

Replay fitness methods fail to identify a minimum number of errors required
to explain unfitting log behavior, thus overestimating the magnitude of differ-
ences. Trace alignment fitness [2] addresses this limitation. For each trace in
the log, this technique identifies the closest trace reproducible by the model
and aligns the two traces by highlighting the points where mismatches occur.
This log-model alignment is achieved in several steps. The first step consists in
transforming every trace in the log into a Petri net. The result is a sequence of
transitions, one per event in the trace. Next, a product is computed between the
Petri net of the trace and the Petri net of the model. This is done by pairing tran-
sitions of the two models that have matching labels. The product between the
two Petri nets is used to create a transition system representing all possible align-
ments, i.e. matches and mismatches. This transition system is explored, using
the A∗ search algorithm, to retrieve the alignments with the minimum number
of mismatches. An exhaustive and complete version of this technique, namely
all-optimal alignments, computes all minimal alignments between each log trace
and the model. One-optimal alignment is an alternative technique that achieves
higher scalability at the expense of incompleteness. This technique computes
only one alignment for each log trace, hence missing on some behavioral differ-
ences. Several heuristics-based approaches, such as sequential prefix alignments
[29] or decomposing trace replay technique [27], improve on the scalability for
identifying alignments. Those approaches, however, drop the guarantee to find
the optimal alignments and thus trade accuracy for performance.

Approaches for identifying additional behavior include negative-events preci-
sion [31] and ETC precision [22]. The former adds negative events to the traces
in the log. Given a trace, an event is negative if it is never observed after a given
trace prefix. Additional behavior is identified by replaying these extended traces
over the model. Whenever a negative-event is successfully replayed, the approach
marks it as additional behavior. ETC precision generates a prefix automaton
from the log, where each state corresponds to a distinct trace prefix in the log.
The states of the prefix automaton are matched with the states of the model.
When a state in the model enables a transition that it is not enabled in the

610 D. Reißner et al.

matching state of the automaton, it is marked as additional behavior. The app-
roach has been extended in [1] to handle tasks with duplicate labels and unfitting
traces by means of trace alignment. The technique proposed in this paper is com-
plementary the above ones, since it computes trace alignments that can be used
for example to speed up the technique in [1].

An approach for fast approximate computation of fitness and precision met-
rics is presented in [18]. This technique computes these metrics over subsets of
process tasks and aggregates the results at a process level. This technique has
been shown to be highly scalable, however, it does not identify the behavioral
differences between the model and the log, but it merely computes the fitness
and precision metrics. As part of this paper, we are interested in a complete list
of exact differences, hence a comparison with the approach presented in [18] is
out of scope.

Another conformance checking technique, namely behavioral alignment [15],
addresses the problems of detecting unfitting behavior and additional behavior
in a unified setting. In this technique, both the input event log and the process
model are transformed into event structures. A minimal error-correcting product
of these two event structures is then computed. Based on this product, a set of
statements are derived, which characterize all behavioral relations between tasks
captured in the model but not observed in the log and vice-versa. While produc-
ing a complete set of differences, which is smaller in number than the number of
trace alignments, this technique suffers from similar scalability requirements as
the all-optimal alignment.

The approach herein presented uses automata as novel and memory-efficient
representation for event logs and process models. By mapping the problem of
conformance checking to that of synchronizing a DAFSA representing the event
log, and a finite state machine (FSM) representing the model, the proposal unifies
the techniques proposed in [2,15]. This allows us to extract both a set of optimal
trace alignments and a set of difference statements. Thus, the paper aims at
improving the efficiency of state of the art conformance checking techniques
leveraging automata and memoization techniques. Unlike [15] though, we only
focus on detecting unfitting behavior.

3 Approach

Figure 1 outlines the steps of the proposed method and their respective inputs
and outputs. First, the input process model is expanded into a reachability
graph (1). In parallel, the event log is compressed into a minimal DAFSA (2).
The resulting reachability graph and DAFSA are then compared (3) to cre-
ate an error-correcting synchronized product automaton (herein called a Partial
Synchronized Product or PSP), wherein each state is a pair of a state in the
reachability graph and a state in the DAFSA. From this result, we can directly
enumerate a set of optimal trace alignments or derive a set of behavioral differ-
ence statements via further analysis (4). The rest of this section introduces some
preliminary definitions, followed by a description of each of the steps.

Scalable Conformance Checking of Business Processes 611

Fig. 1. Overview of the approach.

For illustration purposes, we will use the loan application process model
displayed in Fig. 2. The process starts when a credit application is received, then
the credit history and the income sources are checked. Then, once the application
is assessed, either a credit offer is made, the application is rejected or additional
information is requested (the latter leading to a re-assessment).

Fig. 2. Example loan application process model adapted from [15].

3.1 Preliminaries

Our approach relies on the notion of finite state machine defined as follows.

Definition 1 (Finite State Machine (FSM)). Let L be a finite non-empty
set of labels. A finite state machine is a directed graph F = (N ,A, s,R), where
N is a finite non-empty set of states, A ⊆ N × L × N is a set of arcs, s ∈ N is
an initial state, and R ⊆ N is a set of final states.

An arc in a FSM is a triplet (ns, l, nt), where ns is the source state, nt is
the target state and l is the label associated to the arc. The set of incoming and
outgoing arcs of a state n is defined as �n = {(ns, l, nt) ∈ A | n = nt} and
n� = {(ns, l, nt) ∈ A | n = ns}, respectively. Finally, a sequence of (contiguous)
arcs in a FSM is called a path.

3.2 From Event Log to DAFSA

Logs recording the execution of activities in a business process are called
event logs. These logs represent the executions of process instances as traces

612 D. Reißner et al.

– sequences of activity occurrences (a.k.a. events). A trace can be represented
as a sequence of labels, such that each label signifies an event. Generally speak-
ing an event log is a multiset of traces containing several occurrences of the
same trace. However, in the context of this paper, we are only interested in the
distinct executions of a business process and, therefore, we define a log as a set
of traces.

Definition 2 (Trace and event log). Let L be a finite set of labels. A trace
is a finite sequence of labels 〈l1, ..., ln〉 ∈ L∗, such that li ∈ L for any 1 ≤ i ≤ n.
An event log L is a set of traces.

Event logs can be represented as Deterministic Acyclic Finite State Automata
(DAFSA), which are acyclic and deterministic FSMs. A DAFSA can represent
words, in our context traces, in a compact manner by exploiting prefix and suffix
compression.

Definition 3 (DAFSA). A DAFSA is an acyclic and deterministic finite state
machine D = (ND ,AD , sD ,RD), where ND is a finite non-empty set of states,
AD ⊆ ND × L × ND is a set of arcs, sD ∈ ND is the initial state, RD ⊆ ND is a
set of final states.

Daciuk et al. [11] presents an efficient algorithm for constructing a DAFSA
from a set of words, such that every word is a path from the initial state to a
final state. Conversely it holds, that every path from an initial state to a final
state represents a word present in the given set of words. We reuse this algorithm
to construct a DAFSA from an event log, where every trace in the log represents
a word. The complexity of building the DAFSA is O(|L| · log n), where L is the
set of distinct event labels, and n is the number of states in the DAFSA.

Given a path from the initial state to a state n ∈ ND , we refer to the labels
associated to the arcs in the path as the prefix of n, and, analogously, given a
path from n to a final state, we refer to the labels associated to such path as a
suffix of n. Note that the prefix of the initial state is {〈〉}. By abuse of notation,
the set of prefixes of a state n is represented by pref (n) =

⋃
(ns,l,nt)∈�n{x ⊕ l |

x ∈ pref (ns)}, where ⊕ denotes the concatenation operator. Similarly, the set
of suffixes of n is represented by suff (n) =

⋃
(ns,l,nt)∈n�{l ⊕ x | x ∈ suff (nt)},

and if n is a final state then {〈〉} ∈ suff (n). Prefixes and suffixes are said to be
common iff they are shared by more than one trace.

Definition 4 (Common prefixes and suffixes). Let D = (ND ,AD , sD ,RD)
be a DAFSA. The set of common prefixes of D is the set P = {pref (n) | n ∈
ND ∧ |n�| > 1}. The set of common suffixes of D is the set S = {suff (n) | n ∈
ND ∧ |�n| > 1}.

Figure 3 depicts an example of an log containing activities of the loan appli-
cation process in Fig. 2 and its corresponding DAFSA representation. For the
sake of readability, Fig. 3 uses the letters next to the each of the tasks in Fig. 2
as task labels. In this example there is only one final state fD, and all traces in
the log are paths from s to fD. For instance, the trace 〈B,D,E〉 is represented
by the path 〈(s,B, n1), (n1,D, n2), (n2, E, fD)〉. In this example, the prefixes of
state n2 and the suffixes of state n1 are common for all the traces.

Scalable Conformance Checking of Business Processes 613

Fig. 3. Example log for our loan application process, and its DAFSA representation.

3.3 From a Process Model to a FSM

Process models are normative descriptions of business processes and define the
expected behavior of the process. Over the years, several business process mod-
elling languages have been proposed, such as Petri nets, BPMN and EPC. In the
context of this work, business processes are modelled as (labelled) Petri nets.

Definition 5 (Labelled Petri net). A (labelled) Petri net is the tuple N =
(P, T, F, λ), where P and T are disjoint sets of places and transitions, respec-
tively, F ⊆ (P × T) ∪ (T × P) is the flow relation, and λ : T → L ∪ {τ} is a
labelling function mapping transitions to the set of task labels L and to a special
label τ .

Note that τ is a special label and it is used to represent invisible transitions,
i.e. actions not recorded in the event log when executed. Places and transitions
are conjointly referred to as nodes. A node x is in the preset of a node y if
there is a transition from x to y and, conversely, a node z is in the postset
of y if there is a transition from y to z. Then, the preset of a node y is the
set •y = {x ∈ P ∪ T |(x, y) ∈ F} and the postset of y is the set y• = {z ∈
P ∪ T |(y, z) ∈ F}. A marking m is a multiset of places representing a state
during the execution of a system. A transition t ∈ T is enabled at a marking m
iff •t ⊆ m. An enabled transition t can fire and yield a new marking m′ = m −
•t+ t•. The reachability graph [21] of a Petri net N with an initial marking m0

contains all possible markings of N – denoted as M . Intuitively, a reachability
graph is a deterministic FSM where states denote markings, and arcs denote
the transitions fired to go from one marking to another. The complexity of
constructing a reachability graph is at worst exponential on the size of the Petri
net [19], i.e. O(2|P∪T |).

Definition 6 (Reachability graph). The reachability graph of a Petri net N
is a deterministic finite state machine R = (M ,AR,m0 ,Mf), where M is the set
of reachable markings, AR is the set of arcs AR = {(m1, λ(t),m2) ∈ M ×L×M |
m2 = m1 − •t + t•} and Mf = {m ∈ M | �t ∈ T , such that • t ⊆ m}.

614 D. Reißner et al.

Algorithm 1. Remove Tau Transitions
input: Reachability Graph R

1 σ ← 〈m0 〉;
2 Ω ← {m0 };
3 while σ
= 〈〉 do
4 m ← head σ a;

5 σ ← tail σ b;
6 Ψ ← {a = (m1, l, m) ∈ �m | l = τ ∧ m /∈ Mf };
7 for a ∈ Ψ do replaceTau(a, m, {m}) ;
8 AR ← AR \ Ψ ;
9 for (m, l, m2) ∈ m� | m2 /∈ Ω do

10 σ ← σ ⊕ m2;
11 Ω ← Ω ∪ {m2};

12 Ξ ← {m ∈ M | (�m = ∅ ∧ m
= m0) ∨ (m� = ∅ ∧ m /∈ Mf)};
13 while Ξ
= ∅ do
14 for m ∈ Ξ do A ← A \ (�m ∪ m�) ;
15 M ← M \ Ξ;
16 Ξ ← {m ∈ M | (�m = ∅ ∧ m
= m0) ∨ (m� = ∅ ∧ m /∈ Mf)};

17 return R;

18 Function replaceTau((m1, τ, mt) ∈ A, m ∈ M , Θ ∈ 2M)
19 for (m, l, m2) ∈ m� do
20 if l
= τ ∨ m2 ∈ Mf then AR ← AR ∪ {(m1, l, m2)} ;
21 else if m2 /∈ Θ then
22 Θ ← Θ ∪ {m2};
23 replaceTau((m1, τ, mt), m2, Θ);

a head in Z notation [14] to obtain the first element of a sequence.
b tail in Z notation [14] to obtain a subsequence after the first element of a
sequence.

A large amount of τ -transitions in a Petri net can lead to large reachabil-
ity graphs. In principle, we assume that the Petri nets have a minimal number
of τ -transitions, e.g., resulting from the application of reduction rules in [24].
However, oftentimes some τ -transitions cannot be removed because they rep-
resent the “skip” or parallel execution of transitions. In this regard, we pro-
pose a further τ -reduction over the reachability graph that does not modify the
underlying behavior. Algorithm 1 shows the top-down approach for the proposed
reduction. Intuitively, for each arc a = (m1, τ,m2) referring to a τ -transition,
the algorithm replaces a with a′ = (m1, l,m3) for each outgoing arc of m2, such
that (m2, l,m3) ∈ AR. This replacement is repeated until all arcs referring to
τ -transitions are removed. If all incoming arcs of a state m are replaced, then
m and its outgoing arcs are removed. The algorithm refrains from removing
τ transitions targeting final markings to ensure proper completion. Figure 4
shows the τ -less reachability graph of the loan application process aside. Observe
that the arc [p5, p4] → [p6] is replaced by [p5, p4] → [p7] with label D, and the
state [p3, p2] is removed.

3.4 Error-Correcting Synchronised Product

The computation of similar and deviant behavior between an event log and
a process model is based on an error-correcting synchronized product (a.k.a.

Scalable Conformance Checking of Business Processes 615

Fig. 4. Petri net obtained from the BPMN model in Fig. 2, and its tau-less reachability
graph.

PSP) [5]. Intuitively, the traces represented in the DAFSA are “aligned” with
the executions of the model by means of three operations: (1) synchronized move
(match), the process model and the event log can execute the same task/event
w.r.t. label; (2) log operation (lhide), an event observed in the log cannot occur
in the model; and (3) model operation (rhide), a task in the model can occur,
but the corresponding event is missing in the log.

Both a trace in a log and an execution represented in a reachability graph are
totally ordered sets of events (sequences). Then, an alignment aims at matching
events from both sequences that represent the same tasks w.r.t. their labels, such
that the order between the matched events is preserved. For example, given a
trace in a log 〈B,D,E〉 and an execution in a model 〈D,B,E〉, it is possible to
match the events with label E, and either the events with label B or the events
with label D, but not both. An event that is not matched has to be hidden using
the operation lhide if it belongs to the log, or rhide if it belongs to an execution
in the model.

In our context, the alignments are computed over a pair of finite state
machines, a DAFSA and a reachability graph, therefore the three operations:
match, lhide and rhide, are applied over the arcs of both FSMs. An operation
applied over a pair of arcs (one in the DAFSA and one in the reachability graph)
is called a synchronization. Note that lhide and rhide are applied only over one
arc, thus we use ⊥ to denote the absence of the other element in the triplet.

Definition 7 (Synchronization). Let AD and AR be the arcs in the DAFSA
and in the reachability graph, respectively. A synchronization β is a triplet β ⊆
op ×AD ×AR, where op ∈ {match, lhide, rhide}. The set of all synchronizations
is denoted as S.

616 D. Reißner et al.

All possible alignments between the traces represented in a DAFSA and the
executions represented in a reachability graph can be computed inductively as
follows. The construction starts by pairing the initial states of both FSMs and
then applying the three defined operations over the events that can occur in the
DAFSA and in the reachability graph – each application of the operations (syn-
chronization) yield a new pairing of states. Note that the alignments between
(partial) traces and executions are implicitly computed as sequences of synchro-
nizations. Then, an alignment is defined as follows.

Definition 8 (Alignment). Given a set of synchronizations S, an alignment
is defined as ε = 〈β1, ..., βn〉 with βi ∈ S , 1 ≤ i ≤ n. All the possible alignments
are denoted as C .

Given an alignment ε = 〈β1, β2, . . . , βm〉, we use ε̂ to denote the aligned trace
in the log, i.e., ε̂ = 〈l1, l2, . . . , ln〉, such that for any li, lj , where 1 ≤ i < j ≤ n,
there exist βx = (opx, (bs, li, bt), a2) and βy = (opy, (bv, lj , bw), a3) in ε, where
1 ≤ x < y ≤ m, opx ∈ {match, lhide} and opy ∈ {match, lhide}. In case there
exists βx but no βy, ε̂ = 〈lx〉, and in case there exists no βx, ε̂ is the empty
sequence 〈〉. Thus, ε̂ is a sequence of log task labels, that have been aligned in ε
with match or lhide operations.

All alignments can be collected in a finite state machine called PSP [5]. Every
state in the PSP is a triplet (n,m, ε), where n is a state in the DAFSA, m is
a state in the reachability graph and ε is the (partial) alignment of the events
occurred at n and m; every arc is a synchronization; the pairing of the initial
states is the initial state; and the finial states are those with no outgoing arcs.

Definition 9 (PSP). Given a DAFSA D and a reachability graph R, their PSP
P is a finite state machine P = (NP ,AP , sP ,RP), where NP ⊆ ND×M×C is
the set of nodes, AP = NP ×S ×NP is the set of arcs, sP = (sD ,m0 , 〈〉) ∈ NP

is the initial node, and RP = {f ∈ NP | f � = ∅} is the set of final nodes.

The PSP contains all possible alignments, however we are interested in those
containing the minimum amount of hides for each trace in the log. These align-
ments are called optimal. The computation of all optimal alignments can become
infeasible when the search space is too large. Thus, we use an A∗ algorithm [16]
to consider the most promising paths in the PSP first, i.e., those minimizing
the number of hides. Given an event log L , the resulting PSP is complete and
minimal, since it contains only the optimal alignments for every trace c ∈ L .
The cost function for our A∗ algorithm is ρ(x, c) = g(x) + h(x, c), where x is a
node in the PSP and c is a trace in the log.

Scalable Conformance Checking of Business Processes 617

Algorithm 2. Construct the PSP
input: Event Log L , DAFSA D , Reachability Graph R

1 for c ∈ L do
2 σ ← {(sP, ρ(sP, c))};
3 ρmax ←| c | + minModelSkips;
4 while σ �= ∅ do
5 choose a tuple (nact = (nD , m, ε), ρ) ∈ σ, such that

�(n′
P, ρ′) ∈ σ : ρ > ρ′;

6 σ ← σ \ {(nact , ρ)};
7 if nD ∈ RD ∧ m ∈ RR ∧ ε̂ = c then
8 if ρ(nact , c) < ρmax then
9 ρmax ← ρ(nact , c);

10 Opt ← ∅;
11 σ ← {(n, ρ(n, c)) ∈ σ | ρ(n, c) ≤ ρmax}
12 Opt ← Opt ∪ {nact};

13 else
14 nnew ← ∅;
15 for αD = (nD , lD , nt) ∈ nD� | lD =

c(|{β = (op, aD , aR) ∈ ε | op �= rhide}| + 1)a do
16 nnew ← nnew ∪ {(nt, m, ε ⊕ (lhide, αD , ⊥))};
17 for αR = (m, lR, mt) ∈ m� | lR = lD do
18 nnew ← nnew ∪ {(nt, mt, ε ⊕ (match, αD , αR))}
19 for αR = (m, lR, mt) ∈ m� do

nnew ← nnew ∪ {nD , mt, ε ⊕ (rhide, ⊥, αR))} ;
20 σ ← σ ∪ {(nnext , ρ(nnext , c)) | nnext ∈ nnew ∧ ρ(nnext , c) ≤ ρmax};

21 for f ∈ Opt do InsertIntoPSP(f, c,P) ;

22 return P;

a c(i) is the operator in Z notation [14] to obtain the ith element in a sequence.

The current cost function of a state x = (n,m, ε) is g(x) = |{(op, a1, a2) ∈
ε | op �= match} \ {(rhide,⊥, (bs, l, bt)) ∈ ε | l = τ}|, i.e., the number of hide
operations in an alignment without the operations over the τs. The heuristics
function h(x, c) = min{|FLog(x, c) \ fModel| + |fModel \ FLog(x, c)|}, such that
fModel ∈ FModel(x), gives an optimistic approximation of the least amount of
hide operations required to match the remaining labels in a trace c. In this
formula FLog(x, c) represents the future task labels of a trace, such that given
x = (n,m, ε), then FLog(x, c) = MultiSet(c)\MultiSet(ε̂), i.e., the multiset repre-
sentation of c minus the labels of the trace matched or hidden so far.1 The future
labels in the model FModel(n) are computed with a bottom-up traversal on the
strongly connected components of the reachability graph, where the multisets of
task labels are collected and stored in each node of the graph. Observe that h
assumes that all events with the same label in FLog and fModel are matched, this

1 MultiSet retrieves the multiset representing the labels in a trace or the labels of a
set of arcs.

618 D. Reißner et al.

is clearly an optimistic approximation, since some of the those matches might
not be possible; then the optimistic approximation computed by h signifies an
admissible heuristics for the A∗-search, which guarantees the optimality of the
computed alignments.

Algorithm 2 shows the procedure to build the PSP, where an A∗ search is
applied to find the optimal alignments for each trace in a log. The algorithm
chooses a node with minimal cost ρ, such that if it represents the alignment of
a complete trace and the pairing of two final states (one in the DAFSA and one in
the reachability graph), then it is marked as an optimal alignment. Otherwise, the
search continues by applying lhide, rhide and match. As shown in [15], the com-
plexity for constructing the PSP is in the order of O(3|ND |·|M |) where ND is the set
of states in the DAFSA and M is the set of reachable markings of the Petri net.

In order to cope with the complexity of the computation of the PSP, we pro-
pose an optimization based on two memoization tables: prefix and suffix memo-
ization tables. Both tables store a set of partial trace alignments for common pre-
fixes and suffixes that have been aligned previously. The tables are constructed
incrementally by identifying common prefixes/suffixes after the alignment of each
trace and storing the corresponding partial trace alignments. The integration of
these tables requires the modification of Algorithm 2, as shown in Algorithm 3.
For each trace c, the algorithm starts by checking if there is a common prefix
for c in the prefix memoization table. If this is the case, the A∗ starts from the
nodes after all partial trace alignments for this common prefix instead of the
initial node. In the case of common suffix memoization, the algorithm checks at
each iteration whether the current pair of nodes and the current suffix is stored
in the suffix memoization table. If this is the case, the algorithm appends nodes
to the A∗ search for each pair of memoized final nodes and appends all par-
tial suffix alignments to the current alignment instead of continuing the regular
search procedure. By reusing the information stored in these tables, the search
space for the A∗ is reduced.

Algorithm 3. Construct the PSP with Prefix- and Suffix Memoization

� replace line 2 with the following block:

� Reuse common prefix alignments
for i = 1 → |c| do σ ← σ ∪ {(nnext , ρ(nnext , c)) | nnext ∈ PrefixTable(c for i)}a

;
if σ = ∅ then σ ← σ ∪ {(sP , ρ(sP , c)} ;

� replace line 14 with the following block:

� Reuse common suffix alignments
suff act ← c after |{β = (op, aD , aR) ∈ ε | op
= rhide}| b;
nnew ← {(fD , fR, ε ⊕ gsuff) | (fD , fR, gsuff) ∈ SuffixTable(nD , m, suff act)};
σ ← σ ∪ {(nnext , ρ(nnext , c)) | nnext ∈ nnew};
if nnew
= ∅ then continue ;

a for in Z notation [14] to obtain the first i elements of a sequence.
b after in Z notation [14] to obtain the elements after the first ith elements of a
sequence.

Scalable Conformance Checking of Business Processes 619

The approach illustrated so far produces a PSP containing all optimal align-
ments. Nevertheless, if only one optimal alignment is required, then the algorithm
can be easily modified to stop as soon as the first alignment is found. Overall, the
complexity of the proposed approach consists of the construction of the DAFSA,
the construction of the reachability graph and the computation of the PSP, there-
fore it is exponential in the worst case, i.e. O(|L| · log n + 2|P∪T | + 3|ND |·|M |).
The technique presented in this paper does not intend to lower the complexity
class for the problem of trace alignment, but rather to implement a more efficient
solution within the same complexity class.

Fig. 5. The PSP for our loan application process example.

Figure 5 shows the PSP obtained by synchronizing the DAFSA of the loan
application process in Fig. 3 and the τ -less reachability graph of Fig. 4, we remind
the reader that a PSP represents the synchronization of the whole log. To
understand its construction let us consider the sample trace 〈B,D,E〉. Start-
ing from the source node we have g(n) = 0, FLog(n, c) = {B1,D1, E1}, and
FModel(n) = {B1, C1,D1, E1}. The A∗ will compute the cost of performing
the following possible synchronizations: (match, B), (lhide, B) (rhide, B), and
(rhide, C). Out of these four possibilities it will only explore (match, B)2 and
(rhide, C) which have a cost of one. Both (rhide, B)3 and (lhide, B) will never

2 In case of (match, B) we have a current cost of zero since it is a match (i.e.
g(n) = 0), and a future cost of one (i.e. h(n, c) =

∣
∣{D1, E1} \ {C1, D1, E1}∣∣ +

∣
∣{C1, D1, E1} \ {D1, E1}∣∣ = 1).

3 In case of (rhide, B) we have a current cost of one since it is a hide (i.e.
g(n) = 1), and a future cost of two (i.e. h(n, c) =

∣
∣{B1, D1, E1} \ {C1, D1, E1}∣∣ +

∣
∣{C1, D1, E1} \ {B1, D1, E1}∣∣ = 2).

620 D. Reißner et al.

be explored since they have a cost of three and there exist nodes with a lower
cost. The A∗ will continue exploring the possible synchronizations until all opti-
mal alignments are discovered, which are found in nodes f3 and f5 for the trace
〈B,D,E〉 .

3.5 Extracting Behavioral Mismatch Statements

In the previous section, we presented a scalable approach to discover a complete
set of optimal alignments between an event log and a Petri net. While it is
general practice to assess these alignments one-by-one or to aggregate them into
a single metric [2], Garćıa-Bañuelos et al. [15] showed that practitioners prefer
to reason in terms of natural language statements when investigating behavioral
issues.

Garćıa-Bañuelos et al. [15] defined nine mismatch patterns over the PSP
for the generation of natural language statements, which characterize behavior
present in the log and missing in the model and vice versa. Out of these nine
mismatch patterns we only support the seven patterns related to unfitting behav-
ior. The detection of patterns related to additional model behavior is out of the
scope of this paper.

Differences related to unfitting behavior can be divided into relation mismatch
patterns and event mismatch patterns. On the one hand, relation mismatch
patterns comprise cases when a pair of events in the log has a different behavior
relation (sequence, concurrency, conflict) than the corresponding events in the
model. E.g., it is possible to obtain statements such as: In the log, after “A”, “B”
occurs before “C”, while in the model they are concurrent or In the model, after
“A”, “B” occurs before “C”, while in the log they are mutually exclusive”. On
the other hand, event mismatch patterns characterize all other cases of unfitting
behavior; e.g., In the log, after “A”, “B” is optional or In the model, “A” occurs
after “B” instead of “C”. In the running example, we return the statement In
the model, “C” occurs after “B” and before “D”. A detailed description of each
pattern and their verbalization can be found in [15].

Given that our technique uses the same PSP as in [15], we adapt their algo-
rithm for the generation of behavioral mismatch statements. Similar to the origi-
nal approach, we rely on an oracle for the computation of concurrency relations
between events in a log. We use the local concurrency oracle presented in [6],
however other oracles can be used, e.g., α+ relations [13]. The approach in [6]
helps to alleviate the generalisation of the behavior while computing potential
concurrent behavior from a log. Roughly speaking, the local concurrency oracle
delimits the scope of a concurrency relation between pairs of events to a pair of
execution states. Thus, during the generation of statements, the oracle requires
a pair of events, as well as an execution state, and outputs true if the given
events can occur concurrently at that particular state, or false otherwise.

Scalable Conformance Checking of Business Processes 621

4 Evaluation

The presented approach was implemented as a standalone tool.4 Given a log
in XES or MXML format and a model in BPMN or PNML format, the tool
returns a list of one or all-optimal alignments, and the list of behavioral mismatch
statements. Other structures, such as the DAFSA, reachability graph and PSP,
can be also retrieved.

The conducted set of experiments measure the quality and time performance
of our approach in comparison with the trace alignment approach. Our approach
was compared against the ProM [33] plugin “Replay a Log on Petri Net for Con-
formance Checking”5 [3] for one-optimal trace alignment, and against “Replay
a Log on Petri Net for All Optimal Alignments” [3] for the case of all-optimal.
This latter plugin relies on different baseline algorithms, but only the “Tree-
based state space replay for all optimal alignments” algorithm actually aims at
generating all-optimal alignments; however it also returns non-optimal results.
Therefore, non-optimal results were filtered out in a post-processing step, i.e.,
those with bigger cost than the optimal computed by the one-optimal trace align-
ment (this step was not included in the performance measure). The behavioral
alignment approach based on event structures was not included in the evaluation,
since this approach showed to be generally slower than trace alignment [15].

The performance was measured in terms of execution time (ms) and quality
of the results (number of optimal alignments). The alignments are considered
optimal when they have the same cost as one optimal trace alignment. Given
that the computation of all-optimal trace alignments oftentimes ran for hours
before running out of memory, we use two bounds in the experiments: a time
bound of 5 min (after 10 min the alignment will also continue for 12 h [23]) and
a state exploration bound of 100,000 states. Hence, we report on all optimal
alignments found for each approach until one of the bounds is reached or until
termination. The experiments were conducted on a 6-core Xeon E5-1650 3.50 Ghz
with 128 GB of RAM running JVM 8.

4.1 Datasets

The experiments use three model-log pairs. The first pair is a (publicly avail-
able) dataset of a real-life Italian road fines management process (hereafter
RTFMP) [12], its normative description is presented in [20], whereas its model
is presented in [15].

The second dataset is the real-life log “closed problems” of the BPI Chal-
lenge 2013 (hereafter BPIC13 cp.) [28] This log originates from an IT incident
and problem management system used at Volvo. From this log, the model was
discovered using Structured Miner [8]. The log was preprocessed with a noise

4 Available from http://apromore.org/tools.
5 “A* Cost-based Fitness Express with ILP, assuming at most 32,767 tokens in each

place”.

http://apromore.org/tools

622 D. Reißner et al.

filter [9]. The resulting model is sound (a requirement for both approaches6). In
this case the model generated by the Structured Miner has high precision, in con-
trast to the model discovered by other techniques, such as Inductive Miner [17]
that generates an over-generalized model, causing state space explosion when
computing all alignments.

The third dataset is the SAP R/3 collection [10], a repository of 604 EPCs
documenting the reference model to customize the R/3 ERP product. The mod-
els were converted into Petri nets and those with behavioral issues (i.e. unsound
models) were filtered out. The event logs were generated from the remaining
models using the ProM plugin “Generate Event Log from Petri Net” [30]. This
plugin produces unique traces for each possible execution in the model. Next,
we filtered out all logs with less than ten unique traces, since such small logs
are not useful to measure scalability. This resulted in 120 pairs of real-life mod-
els and logs. Additional event logs were created with different levels of noise
(2.5%, 5%, 7.5%, 10%). For that, we duplicated each unique trace in the logs
tenfold to maintain the original behavior and used the noise generator tool in
[9] to create the noisy logs. This tool inserts events into randomly chosen traces,
such that new directly-follows dependencies are created until the noise threshold
is reached. The reason for inserting noise is because otherwise there is a perfect
fit between the log and the model, and hence the output of the conformance
checking is empty, which does not help to test for scalability.

Table 1 provides descriptive statistics of the datasets. The size of the models
and of their reachability graphs (R) correspond to the number of places and
transitions, and nodes and arcs, respectively. For the SAP R/3 collection, we
report the average and standard deviation for the event logs and models, for each
noise level. The last column reports on the time required for constructing the
reachability graph plus that for removing tau transitions for the given models.

Table 1. Descriptive statistics of the event logs and models.

Dataset Events Unique events Traces Unique traces Model size R size R time (ms)

RTFMP 561,470 12 150,370 231 35 33 16

BPIC13 cp 6,660 5 1,487 183 28 9 96

SAP R/3 2.5% 37,580(±116,515) 15(±5) 2,795(±7,897) 1,062(±3,192) 49(±16) 128(±79) 4(±3)

SAP R/3 5% 38,569(±119,581) 15(±5) 2,795(±7,897) 1,551(±4,830) 49(±16) 128(±79) 4(±3)

SAP R/3 7.5% 39,612(±122,813) 15(±5) 2,795(±7,897) 2,075(±6,147) 49(±16) 128(±79) 4(±3)

SAP R/3 10% 40,712(±126,225) 15(±5) 2,795(±7,897) 2,342(±6,966) 49(±16) 128(±79) 4(±3)

4.2 Results

Table 2 reports the number of optimal alignments and execution times for each
conformance checking approach (for the SAP R/3 datasets, we report on the

6 Strictly speaking, trace alignment requires easy-soundness while our approach
requires safeness. However both requirements are satisfied by soundness.

Scalable Conformance Checking of Business Processes 623

average and the upper bound of the 95% confidence interval for these measure-
ments). To ensure comparability of the results we only count the alignments for
our approach (shortened as DAFSA in the table) with the same cost as trace
alignment, i.e. the same number of asynchronous moves. However, our approach
did not detect any additional non-optimal alignments.

In the case of one-optimal, our approach always returned the same number of
alignments as trace alignment. Both approaches are expected to find one-optimal
alignment per unique trace of an event log, thus the number of alignments and
the number of unique traces is the same. However, there is no intuitive expecta-
tion for all-optimal alignments. In this regard, our approach found many more
optimal alignments than trace alignment within the same state space and time
bounds. For example, on the RTFMP log, our approach found 467 alignments
instead of 338 returned by trace alignment. This difference increases substantially
in the other datasets: in logs with high noise levels (SAP R/3 7.5 and 10%), our
approach returned up to five times the number of all-optimal alignments than
trace alignment. This is due to the reuse of partial trace alignments (prefix and
suffix memoization). Our approach scaled well to the number of unique traces
and to the amount of unfitting behavior observed in the logs. Additionally, (all-
optimal) trace alignment suffers from reporting non-optimal results that have
to be filtered in a preprocessing step7 (unfiltered results are reported in square
brackets). Thus, our approach was capable of finding a more complete set of
alignments.

Comparing the execution times for the all-optimal variants, our approach
outperforms the tree-based trace alignment approach by 1–2 orders of magni-
tude. For example, our approach took 125 ms to compute all alignments for the
RTFMP dataset, as opposed to 52 s for trace alignment. Additionally, trace align-
ment times out in 207 out of 480 cases for the SAP dataset, while our approach
only timed out in two cases (trace alignment also timed out in these two cases).
Our one-optimal variant performs 1.5 to nearly 40 times faster (trace alignment
timed out in 2 cases for the SAP datasets, while our approach never timed out).
Only in the BPIC13 cp. dataset the trace alignment outperformed our approach
by nearly a factor two. The process model in this dataset contains a large state
space due to the presence of nested loops, which can lead to a combinatorial
state space to be explored by the A∗ algorithm. Thus, when the estimation of
our heuristics is imprecise due to complex loop structures, the memory and time
requirements increase. Conversely, trace alignment uses a more accurate heuristic
function, which leads to outperforms our approach in the BPIC13 cp. dataset. In
short, the execution times positively correlate with the number of unique traces
in a log, both approaches, DAFSA and trace alignment, apply an A∗ algorithm
for each unique trace. Our approach scales better in the case of more complex
SAP R/3 logs, which exhibit a very high number of unique traces compared
to the RTFMP and BPIC13 cp., as per Table 1. Our approach calculates all

7 An alignment was filtered if it had a higher cost than that computed by one-optimal
alignment or if it represented the swap of the label of an invisible task with that of
a visible one.

624 D. Reißner et al.

optimal alignments in less than ten seconds, while trace alignment reaches the
time bound of five minutes on average in every second model-log pair for the
same dataset.

Table 2. Evaluation results.

Optimal alignments (upper bound of 95%
confidence interval)

Execution time (ms) (upper bound of 95%
confidence interval)

All optimal One optimal All optimal One optimal

Dataset DAFSA Trace align.
[#unfiltered]

DAFSA Trace
align.

DAFSA Trace align. DAFSA Trace align.

RTFMP 467 338 [1,898,182] 231 231 125 52,041 56 1,844

BPIC13 cp. 28,656 22,259 [1,904,057] 183 183 5,360 50,160 453 260

SAP R/3 2.5% 4,253
(22,675)

1,233 [1,067,533]
(6,470 [1,929,629])

1,062
(7,319)

1,062
(7,319)

1,102

(7,778)
127,013
(300,000)

814

(6,132)
1,800
(12,891)

SAP R/3 5% 7,672
(41,133)

1,751 [1,224,079]
(9,178 [2,199,248])

1,551
(11,019)

1,551
(11,019)

2,832

(28,040)
150,017
(300,000)

1,718

(18,696)
3,415
(25,857)

SAP R/3 7.5% 11,652
(61,504)

2,154 [1,283,583]
(14,207 [3,039,240])

2,075
(14,122)

2,075
(14,122)

3,208

(19,502)
163,593
(300,000)

2,083

(12,912)
4,967
(58,961)

SAP R/3 10% 15,754
(84,167)

2,809 [1,286,568]
(22,883 [3,302,068])

2,342
(15,996)

2,342
(15,996)

8,204

(75,643)
173,438
(300,000)

3,480

(25,371)
7,365
(66,003)

In our approach, a trade-off between the execution time and number of align-
ments is observed from the comparison of the results of one-optimal versus all-
optimal. It is more obvious when the amount of unfitting behavior increases.
E.g., in the logs SAP R/3 with 10% noise level, our approach took, on average,
five seconds longer for computing all-optimal alignments than one-optimal, but
returns ten times more alignments.

The extraction of behavioral mismatch statements shows that a large number
of alignments can be represented by a significantly smaller, yet interpretable,
number of statements. E.g., 3,295 all-optimal alignments in the BPIC13 cp.
dataset can be summarized with only 14 statements, and reduced to eight
statements in the case of one-optimal alignment. In the RTFMP dataset, 120
statements were computed from 467 all-optimal alignments, whereas only 69
statements were computed for the one-optimal variant. Some example state-
ments are:

– In the log, after “Insert Fine Notification”, “Payment” occurs before task
“Add penalty”, while in the model they are mutually exclusive.

– In the log, after “Add penalty”, “Payment” is substituted by “Send Appeal to
Prefecture”.

5 Conclusion

We showed that the problem of conformance checking can be mapped to that
of computing a minimal error-correcting product between an automaton repre-
senting the event log (its minimal DAFSA) and an automaton representing the
process model (its reachability graph). The resulting product automaton can be
used to produce sets of optimal alignments between each trace in the log and a

Scalable Conformance Checking of Business Processes 625

corresponding trace in the model, or even statements capturing behavioral rela-
tions (e.g. conflict relations) observed in a state of the DAFSA but not captured
in the corresponding state in the model.

The use of a DAFSA to represent the event log allows us to benefit from both
prefix and suffix compression of the traces in the log. This is a distinctive feature
of the proposal with respect to trace alignment, which computes an alignment
between each trace in the log and the model, without any reuse across traces.
Due to this distinctive feature, our approach addresses some of the scalability
issues of existing conformance checking techniques allowing more interactivity
in redesigning process models with conformance issues. The approach can be
employed to assess the quality of automated process model discovery techniques,
as well as used as the cornerstone technique for process model repair.

The empirical results show that the execution times of our approach are one
to two orders of magnitude faster than those of the all-optimal trace alignment
method. When restricted to the problem of computing one alignment per trace
(one-optimal alignment), our approach generally but not always outperforms the
baseline [2]. This is attributable to the fact that the latter uses a tight heuristic
function, whereas the heuristic function we use over-approximates in some cases.
Designing a better heuristic function is a direction for future work. The ideas
in [2] are not directly transposable as the heuristic function in our approach
needs to compute a bound starting from a state of the whole log (the DAFSA),
while [2] does so for one trace at a time.

In this paper, we focused on the problem of identifying unfitting log behavior.
A possible avenue for future work is to extend the approach to detect additional
model behavior, by adapting the ideas proposed in [15] in the context of event
structures.

Finally, the empirical evaluation, while based on synthetic and real-life mod-
els and logs, is limited in that it only covers models with sizes of up to 50 tasks
and logs with up to ca. 2.5K distinct traces. Conducting a more thorough evalu-
ation with even larger process models and event logs is another avenue for future
work.

Acknowledgments. This research is partly funded by the Australian Research Coun-
cil (grant DP150103356) and the Estonian Research Council (grant IUT20-55).

References

1. Adriansyah, A., Muñoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Measuring precision of modeled behavior. IseB 13(1), 37–67 (2015)

2. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking
using cost-based fitness analysis. In: Proceeding of EDOC, pp. 55–64. IEEE (2011)

3. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Memory-efficient align-
ment of observed and modeled behavior. BPM Center Report (2013)

4. Alves de Medeiros, A.K.: Genetic Process Mining. PhD thesis, TU/e (2006)
5. Armas-Cervantes, A., Baldan, P., Dumas, M., Garćıa-Bañuelos, L.: Diagnosing

behavioral differences between business process models: An approach based on
event structures. Inf. Syst. 56, 304–325 (2016)

626 D. Reißner et al.

6. Armas-Cervantes, A., Dumas, M., La Rosa, M.: Discovering local concurrency rela-
tions in business process event logs. eprint # 102438, QUT (2016)

7. Armas-Cervantes, A., La Rosa, M., Dumas Menjivar, M., Garćıa-Bañuelos, L., van
Beest, N.R.: Interactive and incremental business process model repair. eprint #
106611, QUT (2017)

8. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Bruno, G.: Automated dis-
covery of structured process models: discover structured vs. discover and struc-
ture. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M.
(eds.) ER 2016. LNCS, vol. 9974, pp. 313–329. Springer, Cham (2016). doi:10.
1007/978-3-319-46397-1 25

9. Conforti, R., La Rosa, M., ter Hofstede, A.H.M.: Filtering out infrequent behavior
from business process event logs. IEEE TKDE 29(2), 300–314 (2016)

10. Curran, T., Keller, G.: SAP R/3 Business Blueprint: Understanding the Business
Process Reference Model. Upper Saddle River (1997)

11. Daciuk, J., Mihov, S., Watson, B.W., Watson, R.E.: Incremental construction of
minimal acyclic finite-state automata. Comput. Linguist. 26(1), 3–16 (2000)

12. de Leoni, M., Mannhardt, F.: Road traffic fine management process (2015)
13. de Medeiros, A.K.A., van der Aalst, W.M.P., Weijters, A.J.M.M.: Workflow min-

ing: current status and future directions. In: Meersman, R., Tari, Z., Schmidt,
D.C. (eds.) OTM 2003. LNCS, vol. 2888, pp. 389–406. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-39964-3 25

14. Diller, A.: Z: An Introduction to Formal Methods. Wiley, New York (1990)
15. Garćıa-Bañuelos, L., van Beest, N.R.T.P., Dumas, M., La Rosa, M.: Complete and

interpretable conformance checking of business processes. IEEE Trans. Softw. Eng.
(2017, to appear). doi:10.1109/TSE.2017.2668418. IEEE Computer Society

16. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE TSSC 4(2), 100–107 (1968)

17. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38697-8 17

18. Leemans, S.J., Fahland, D., van der Aalst, W.M.: Scalable process discovery and
conformance checking. Softw. Syst. Model. 16, 1–33 (2016)

19. Lipton, R.: The reachability problem requires exponential space. Research Report
62, Department of Computer Science, Yale University, New Haven, Connecticut
(1976)

20. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-
perspective checking of process conformance. Computing 98, 407–437 (2016)

21. Mayr, E.W.: An algorithm for the general petri net reachability problem. SIAM J.
Comput. 13(3), 441–460 (1984)

22. Muñoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance.
In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211–226.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15618-2 16

23. Muñoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit
decomposed conformance checking. Inf. Syst. 46, 102–122 (2014)

24. Murata, T.: Petri nets: Properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

25. Polyvyanyy, A., Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Wynn, M.T.:
Impact-driven process model repair. ACM Trans. Softw. Eng. Methodol. (TOSEM)
25(4), 28 (2016)

http://dx.doi.org/10.1007/978-3-319-46397-1_25
http://dx.doi.org/10.1007/978-3-319-46397-1_25
http://dx.doi.org/10.1007/978-3-540-39964-3_25
http://dx.doi.org/10.1109/TSE.2017.2668418
http://dx.doi.org/10.1007/978-3-642-38697-8_17
http://dx.doi.org/10.1007/978-3-642-15618-2_16

Scalable Conformance Checking of Business Processes 627

26. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

27. Song, W., Xia, X., Jacobsen, H.A., Zhang, P., Hu, H.: Efficient alignment between
event logs and process models. IEEE Trans. Serv. Comput. 10(1), 136–149 (2017)

28. Steeman, W.: Bpi challenge 2013, closed problems (2013)
29. van Dongen, B., Carmona, J., Chatain, T., Taymouri, F.: Aligning modeled and

observed behavior: a compromise between computation complexity and quality. In:
Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 94–109. Springer,
Cham (2017). doi:10.1007/978-3-319-59536-8 7

30. vanden Broucke, S., De Weerdt, J., Vanthienen, J., Baesens, B.: An improved
process event log artificial negative event generator. Technical Report KBI 1216,
KU Leuven (2012)

31. vanden Broucke, S.K.L.M., De Weerdt, J., Vanthienen, J., Baesens, B.: Determin-
ing process model precision and generalization with weighted artificial negative
events. IEEE TKDE 26(8), 1877–1889 (2014)

32. vanden Broucke, S.K.L.M., Munoz-Gama, J., Carmona, J., Baesens, B., Van-
thienen, J.: Event-based real-time decomposed conformance analysis. In: Meers-
man, R., Panetto, H., Dillon, T., Missikoff, M., Liu, L., Pastor, O., Cuzzocrea, A.,
Sellis, T. (eds.) OTM 2014. LNCS, vol. 8841, pp. 345–363. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-45563-0 20

33. Verbeek, H.M.W., Buijs, J.C.A.M., Van Dongen, B.F., Van der Aalst, W.M.P.:
Prom 6: The process mining toolkit. Proc. BPM Demonstr. Track 615, 34–39
(2010)

http://dx.doi.org/10.1007/978-3-319-59536-8_7
http://dx.doi.org/10.1007/978-3-662-45563-0_20

	Scalable Conformance Checking of Business Processes
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Preliminaries
	3.2 From Event Log to DAFSA
	3.3 From a Process Model to a FSM
	3.4 Error-Correcting Synchronised Product
	3.5 Extracting Behavioral Mismatch Statements

	4 Evaluation
	4.1 Datasets
	4.2 Results

	5 Conclusion
	References

