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Abstract. Today, smart meters are being used worldwide. As a matter
of fact smart meters produce large volumes of data. Thus, it is impor-
tant for smart meter data management and analytics systems to process
petabytes of data. Benchmarking and testing of these systems require
scalable data, however, it can be challenging to get large data sets due
to privacy and/or data protection regulations. This paper presents a scal-
able smart meter data generator using Spark that can generate realistic
data sets. The proposed data generator is based on a supervised machine
learning method that can generate data of any size by using small data
sets as seed. Moreover, the generator can preserve the characteristics of
data with respect to consumption patterns and user groups. This paper
evaluates the proposed data generator in a cluster based environment in
order to validate its effectiveness and scalability.

Keywords: Smart meter - Scalable - Synthetic data generator - Time
series

1 Introduction

Nowadays, with the popularity of Internet of Things (IoT) and cloud computing,
the size of data grows exponentially, posing new challenges to data analysis and
management systems, such as the ability to handle petabytes of data. Tradi-
tionally, simple benchmarks have been largely used for evaluating the systems
in order to prevent unnecessary complexity. On the other hand, we believe that
benchmarking should meet a certain diversity and workload requirement for
obtaining meaningful results. In addition, it is preferable to use realistic data,
however, it is quite challenging to obtain a considerable size of domain depen-
dent data for benchmarking and experimentation purposes. For example, limited
public data sets are available in the energy sector. Often, it is difficult to obtain
a truthful data source, primarily due to data privacy laws or high data stor-
age cost. Storing petabytes of data is still fairly expensive, although it is much
cheaper than before. For example, one TB standard hard drive costs about $80,
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approximately $0.08 per GB. Similarly, the price for one PB of disk space approx-
imately costs about $80, 000. Hence, it is meaningless to store petabyte data only
for testing purposes. In addition to data storage, it is also costly to transport
large amounts of data over the network, which may consume bandwidth and
time. For that reason, scalable data should be produced and used as needed.
In the energy sector, smart meter data management and analysis have
received considerable effort in recent years, due to the widespread deployment
of smart meters. A smart meter reads energy consumption at a regular time
interval, typically every 15 min and sends readings back to an energy data man-
agement system for monitoring and billing purposes [1]. Thus, it is essential to
evaluate the performance, robustness of energy data management systems and to
investigate suitable technologies and algorithms for smart meter data analytics
[2-4]. In order to test these systems, it is feasible to generate scalable data sets
that should reflect the characteristics of real-world energy consumption patterns.
For example, residential energy consumption usually follows a regular pattern
based on the consumption habits of a household. Figure 1, illustrates a typical
weekly electricity consumption time series from Irish open data [5]. It can be
observed that this household have roughly a fixed consumption pattern. The
time series has a morning peak roughly at 7-8 o’clock during the workdays. Fur-
ther, the morning peak delays to around 10 o’clock during the weekend. In the
evening, there is a considerable evening peak between 18:00 and 23:00, when all
the family members are home and the electric appliances might be turned on,
such as dish washer, cooking range, washing machine, television and so on.

Monday Tuesday %Wednesday% Thursday Friday Saturday Sunday

Electricity consumption in kWh

0 24 48 72 96 120 144 168

Fig. 1. Weekly consumption pattern of a typical private household

In this paper, we present a scalable data generator that can generate huge
volume of realistic synthetic data. The data generator takes as input a real-world
energy consumption time series as seed and generates synthetic time series based
on historical consumption patterns. In doing so, the generator first creates an
adjusted time series using a moving average time series model. The moving aver-
age reduces the periodic variations from the actual time series by smoothing the
peak periods. Then, it uses autoregressive time series model to predict meter
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readings. In the end, the periodic variations are added back to the newly pre-
dicted meter readings to reflect the pattern and variance of the real-world energy
consumption. The data generator is implemented by using the memory-based
distributed computing framework, Spark, which can generate scalable data sets
on a cluster based environment.

This paper is a significant extension of the previous work [6]. In the pre-
vious work, the concept of prediction-based smart meter data generation was
introduced, however, it remains to prove that the single machine based data
processing platform introduced in [6] also works for cluster-based platform. A
scalable data generator is the next step. In this paper, the single machine based
technique is extended by introducing the cluster-based technique.

Our main contributions in this paper are as follows:

— We propose a scalable smart meter data generator using Spark.

— We propose a novel method of generating realistic data sets that can preserve
the characteristics of real-world energy consumption time series, including
patterns and user-groups.

— We evaluate the data generator in terms of effectiveness and scalability of
generating scalable data sets, with relatively small data as seed.

The paper is structured as follows. Section2 describes the methodology
used by the proposed data generator. Section 3 describes the implementation
on Spark. Section 4 evaluates the generator. Section 5 presents the related work.
Section 6 concludes the paper and points out the future research directions.

2 Methodology

2.1 Overview

We now describe the rationale of the proposed data generation solution. The
solution uses a quantitative model, expressed in mathematical notation. The
quantitative model is further divided into a causal model and a time-series
model, where the latter is chosen for modeling the consumption time series.
The time series model produces predictions according to historical consumption
patterns. The time series of residential energy consumption normally comprises
the following patterns: trend, cyclic and seasonal/periodic. The periodic pattern
is usually resulted from the periodical factors such as the days, which have a
fixed and known period [7], e.g., 24-hour. Therefore, it is possible to generate
consumption time series with these pattern characteristics.

Further, Fig.2 gives an overview of the data generation process. The data
generation is seeded by a small real-world data set. First, the seed data is desea-
sonalized in order to flatten the periodic variations. Next, a regression model is
trained using the flattened time series. This model is then used to predict new
consumption values. In the end, the generated time series is reseasonalized, in
other words, the periodic variations are added back. The rationale of using the
adjusted periodic variations is that the data that does not have or has reduced
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Actual seasonalized data Actual de-seasonalized data
(without periodic variations)

1
0 Monday 24 Tuesday 48 Wednesday 72 0 Monday 24 Tuesday 48 Wednesday 72
2
. ) Extended regression line

Predicted re-seasonalized data

(with periodic variations)

Predicted data
3

Predicted data
> WAl .J\A AN AL
Actual data
72 Thursday 96 0 Monday 24 Tuesday 48 Wednesday 72 Thursday 96

Fig. 2. Data generation overview [6]

periodic variations can lead to more accurate predictions than with variations
[8]. The time series with reduced periodic variations also allows us to determine
the best regression model for the prediction.

Furthermore, there are two ways of representing energy consumption. First,
a smart energy meter measures a cumulative consumption, i.e., the consumption
always increases. Second, a smart meter measures consumption in a given (fixed)
interval. i.e., an aggregated value in a time window, e.g., 30 min. The generator
proposed in this paper is based on the second approach.

2.2 Algorithm Description

We now describe the data generation process and the algorithms used. The
data generation process comprises of two methods: training process and genera-
tion process. The training process includes flattening of time series fluctuations,
deseasonalization and generation of data models, while the generation process
includes generating data using the model and reseasonalization. Both of the
processes are described in the following subsections.

Training Process. For the proposed data generator, we consider generat-
ing data based on daily consumption profiles. During the training process (see
Algorithm 1), each time series from the seed data set will be transformed into a
key-value pair, of which meterID is the key, and the list of meter readings is the
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Algorithm 1. Training process

1. Transform a time series into a key-value pair.
2. Process the key-value pair:
(i) Flatten fluctuations by centered moving averaging method.
(ii) Deseasonalize time series by periodic indexing method.
(iii) Train autoregressive (AR) model for predictions using the deseasonalized time
series.
(iv) Write the output: meterIDs, periodic-indices, AR-coefficients and flatten-time-
series.

value. The readings in the list are sorted in an ascending order according to the
timestamps.

Next, the key-value pair is processed through the following four steps
(Algorithm 1) that include flattening of periodic fluctuations, deseasonalization,
autoregression and writing the output:

(i) Flatten Periodic Fluctuations: We use the centered moving averaging (CMA)
method to reduce the impact of periodic fluctuations [9]. CMA replaces the
original time series with a new flatten time series where each point is centered
at the middle of the data values being averaged.

For the daily profile (24-hour), the CMA of an even period is defined as:

, Yi—12 + ..+ yi+ ..+ Yit11
A(i) = 3 ( . )

1
1 (%‘—11 + .yt +yi+12> )
T3

24

where y; is the i-th observation in a time series of the seed data set.

(ii) Deseasonalization: To deseasonalize a time series, we first need to compute
the raw-index or Ratio-to-Moving-Average, which is computed as below:

R(i) = — 2)

We then compute the periodic indices by using the resulting raw index values
(see Eq. 3). For each hour of the day, a corresponding periodic index is computed,
which is the mean value of all the raw index values at that particular hour. For
example, P(0) represents the mean of all R values at 0 o’clock in all days for a
given time series. Therefore, the total number of resulting periodic indices will
be 24.

1 n—1
P(h)=— i
(h) = — Z R(h + 24i) (3)
=0
where, n represents the total number of days for each meter in the time series,
and h is the hour of the day, i.e., 0-23. Since there are some chances to encounter

data precision problems, e.g., due to the floating point, we need to adjust the
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computed P value [10]. Equation 4 normalizes the periodic indices, which ensures
that the sum of the adjusted P’ values is 1.0.

sy 24xP(h)
P =S ) W

In the end, we use this adjusted periodic indice to deseasonalize a time series,
which simply divides each data point of the time series (see Eq.5).

r Y

where h = i mod 24 and P’ is the normalized periodic indices.

(#i) Training Autogressive Model and (i) Writing Output. In the end, we use
the flatten (deseasonlized) time series to train an autoregressive model and this
model will be used to generate new values by prediction. The resulting coef-
ficients of AR model, the periodic indices and the flatten-time-series, {y;|i =
0,..,n — 1}, will be written to the Hadoop distributed file system (HDFS).
The results are stored into two separate files, with the formats of (meterID,
periodic-indices) and (meterID, (AR-coefficients, flatten-time-series)). The rea-
son to save the results for the same meterID into two separate files is to make
the data generation model flexible enough to generate synthetic time series with
different variances. In this case, the periodic indices could be from a separate
time series within the same cluster. In the data generation process, these two
files will served as input.

Generation Process. Algorithm 2, describes the data generation process. The
data generator uses the files (generated from the preprocessing process) as input.
The data from the two files are read as two Resilient Distributed Datasets
(RDDs), PZ and AR in Spark. The theta join [11] will apply on the two tables
(RDDs) at the condition that the meterIDs are not equal. For each record of the
join results, we apply the following three steps to generate a new time series:

Algorithm 2. Data generation

1. Read the data from the two input files and create Spark tables (RDDs):
PI=(meterID, peridoc-indices) and AR = (meterID, AR-coefficients, flatten-time-
series).

2. Perform the Theta join on PZ and AR where PZ.meterID # AR.meterID.

3. For-each query results:

(i) Predict a new reading by using the AR model and the flatten time series
values.
(ii) Reseasonalize the new reading.
(iii) Add base load and white noise to the reseasonalised reading in order to sim-
ulate reality.
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(i) Generate New Reading: We use the AR model and the values from flatten
time series (with the order of p) to generate a new value, which is expressed in
the following equation:

P
vl =c+ Y i, (6)
A=1

where ¢ is the intercept with the y-axis (a constant), « is the AR coefficient and
y; are the last values from the flatten time series of (with p consecutive values
before ).

(i1) Reseasonalization and (iii) Add Base Load and White Noise: The final result-
ing time series is expressed in Eq. 7.

y!" =y’ x P'(h) + baseLoad + ¢; (7)

where h = i mod 24 and © =0, ..., n.

The reseasonalization is simply multiplying the adjusted periodic index. In
the generated time series, we add a base load, which is a constant value greater
or equal to zero. A base load typically represents the energy consumed by the
appliance that is always on, e.g., refrigerator. And, we add a Gaussian white
noise, € ~ N (0,1.0), to simulate slight variations.

2.3 Optimization

We now optimize our data generator in order to better simulate the real-world
data. As mentioned in Sect. 1, energy consumption data follows a certain pat-
tern, due to the daily routine of a household, e.g., having a daily pattern with
morning and evening peaks. Moreover, the time series of different households
may have similar patterns, which can be identified by grouping/clustering. This
technique is often used by utilities to segment the customers in order to offer
personalized energy-efficiency services. In order not to lose this information, we
optimize data generation by adding the pre-processing process (see Fig. 3). The
pre-processing will first cluster the seed, then uses the clustered data for training
the models. Recall that in the data generation process, we use the theta join on
the resulting models to create data generators. If the models were not gener-
ated by the clustered seed, the resulting synthetic data may lose the clustering
information.

Moreover, clustering the seed time series according to daily patterns is a two
step process: First, we find the typical daily load pattern for each time series,
which is done by averaging the consumption of each hour for all days. This
results the following averaging load of daily profile for the i-th time series:

TS, ={rio,7i1,.,Ti23} (8)

where r represents the average consumption of a meter at each hour of the day, h.
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Fig. 3. Optimize data generation with the pre-processing of the seed

Second, we cluster the daily load patterns of all time series using k-means
clustering algorithm [12]. In general, k-means clustering algorithm uses Euclid-
ean distance, e.g., [13,14], which is defined as follow. Suppose there are two daily
load profiles of 7S; and 7S}, the distance is

23
euclDist (TS;,TS;) = Z (rin — erL)Q (9)
h=0

However, using the Euclidean distance may still not the best to reflect similar-
ity of two load patterns. For example, Fig. 4(a) and (b) both have the Euclidean
distance of /3, however, the patterns in Fig. 4(b) are totally different.

O = N W
O == N W

(a) (b)

Fig. 4. The two patterns with the same Euclidean distance of v/3

To further optimize, we adopt the Pearson correlation distance [15], which
measures the distance based on the correlation between two patterns. The cor-
relation is defined as follow:

Z}L (rin — pi) (rjn — 115) (10)
\/Zhorzh 14:) \/ZhOrJh MJ)

where p represents the daily average consumption for each meter.
The correlation distance is defined as:

corr (TS;,TS;)

corrDist (TS;,TS;) =1—corr (TS;,TS;) (11)
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The distance of zero represents perfectly correlated (correlation=1) time
series. The distance of less than approximately 0.5 indicates that there is a
good similarity between two patterns, while the distance of 2 (correlation =—1)
indicates having an opposite pattern.

3 Implementation on Spark

The proposed data generator is implemented into two modules, training mod-
ule and data generation module, which are both implemented using Spark for
generating scalable data. The implementations are described as follows.

The seed data have been processed by grouping/clustering. The training
process will take a clustered seed data as the input to create the models.
Listing 1.1 shows the code snippet of training process, which takes the para-
meters of inputPath, outputPath and frequency (line 1). The input path locates
a clustered seed data that comprise a set of time series with similar daily con-
sumption patterns. The output path denotes the location of saving the resulting
models in HDFS and the frequency indicates the number of occurrences of a
meter reading per unit time. For example, frequency = 48 represents the reading
frequency per day, since the meter is read every 30 min. The input files are the
CSV files with the format of (meterID, timestamp, reading), where meterID is
taken as the key and (timestamp, reading) is taken as the value. The function
(line 3) will sort and group the readings based on meter id and time as well as
cache the data in memory for iterative processing. Second, the periodic indices
are computed for each time series, and the seed is deseasonalized (lines 6-7).
Third, the AR model is trained (by using the spark-timeseries library) using
the deseasonalized time series (line 8). Fourth, three deseasonalized lagged (past
period) readings are extracted (with order = 3), which will be used for forecast-
ing the new value in the data generation process (line 9). Fifth, the results are
mapped as periodic indices, coefficients and lagged readings (line 10). Sixth, the
results with undefined coeflicients are filtered out (line 12). Last, the results are
stored to HDF'S directly (lines 14-15).

The training process is run only once for each clustered data set from the
seed. The two resulting files have the following format: <meter identifier, periodic
indices> and <meter identifier, AR-coefficients, flatten-time-series>. An exam-
ple of the rows are <1460, 1.619, 1.353, 1.208, 0.982,..., 1.776> and <1460,
0.224, 0.584, —0.111, 0.095, 0.180, 0.184, 0.195>. The first row represents that
a meter (with meterID = 1460) has 48 periodic indices (as the number of occur-
rences of a meter reading is per half-hour). The second row represents that
the meter (with meterID =1406) has an intercept, three AR coefficients (with
order =3), and last three lagged readings of the deseasonalized seed data set.
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1 train (inputPath, outputPath, frequency)

> {

3 seed = getReadingsForEachMeterID (inputPath).cache ()

4

5 output = seed.mapValues(readings => {

6 PI = getPeriodicIndices (readings, frequency)

7 DS = getDeseasonalizedSeed (readings , PI)

8 coefficients = ARIMA. fitModel (3, 0, 0, DS, true).coefficients

9 lagged = Vectors.dense (DS. takeRight (3))

10 (PI, coefficients , lagged)})

11

12 .filter (! coefficients (0).isNaN)

13

14 output.map(tuple => (meterID, PI)).save(outputPath+4”/PI")

15 output.map(tuple => (meterID, (coefficients , lagged))).save(
outputPath+” /AR”)

16}

Listing 1.1. The code snippet of training

The implementation of data generation is shown in Listing 1.2, which takes
the resulting models as the input (indicated by inputPath) as well as other
parameters including the outputPath, the frequency, the number of time series
to generate, the number of days and base load. The program first reads the
period indices (PI) and Autogressive models (AR) from the input files into the
memory (line 3-4). Then, it does the theta join and returns the desired number
of rows (equal to the number of generated time series) (line 6). Third, it does the
forecasting using the AR model (line 8-9) and the resulting predicted value is
reseasonlized. In addition, the base load and the white noise is also added in the
predicted value to simulate reality (line 11). Last, the generated data is written
to HDFS (line 15).

The synthetic data has the format of <meter identifier, timestamp, reading>
and an example of the rows is <100, 201706041900,0.389>, representing that a
meter (with meterID =100) has used 0.3kWh electricity in the previous half an
hour.

1 generate (inputPath, outputPath, frequency, nTimeSeries, nDays,

baseLoad)
> |
3 PI = readPI(inputPath+” /PI”)
1 AR = readAR (inputPath+4” /AR")

6 results = thetaJoin(PI, AR).get(nTimeSeries)

7 .map (( meterld, (coefficients , lagged, PI)) = {

8 newValues = new ARIMAModel(3, 0, 0, coefficients , true)

9 .forecast (lagged , frequency # nDays)

10 .map(x => {

11 reading = x * PI(hour) + baseLoad + Random.nextGaussian ()
12 reading })

13 (meterId, newValues)})

15 results .save (outputPath)

16}
Listing 1.2. The code snippet of data generation

4 Evaluation

In this section, we evaluate the data generator in terms of effectiveness and scal-
ability. The effectiveness will be evaluated by comparing the patterns between
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the real-world and synthetic data. The scalability will be evaluated by measuring
the execution performance. The Irish electricity consumption will be used as the
seed for training the models.

The experiments are conducted on a 4-node cluster: all the nodes act as
slave, and one of them also acts as master. All the machines have the same
settings: Intel(R) Xeon(R) CPU E5-2650 (3.40 GHz, 4 Cores, hyper-threading
is enabled, two hyper-threads per core), 8 GB RAM, and a Seagate Hard driver
(1TB, 6 GB/s, 32MB Cache and 7200 RPM), running 64 bit-Ubuntu 12.04 LTS
with Linux 3.19.0 kernel.

4.1 Effectiveness

We now evaluate the effectiveness of the proposed smart meter data generator. As
mentioned in Sect. 2.3, the data generator first, uses clustered data as the seed to
generate the models, then it generates time series. We use the correlation distance
metric for the clustering in the pre-processing of the seed. Before validating the
generated time series, we would like to further explain by demonstrating a real
example.

TS1 e TS2

TS3 f == TS4

Electricity consumption (kWh)

Hour of
the day
24

Fig. 5. Daily activity load profile time series

Figure 5, demonstrates four daily load profiles from different households. TSy
represents a medium energy use household; 7'Ss represents a low energy use
household, whereas, T'Ss represents a high energy use household. Visually, we
could observe that T'Sy, T'Ss and T'S3 have a similar pattern, e.g., with morning
and evening peaks almost at the same range of the time, although they are within
different consumption categories. In contrast, T'S, is showing a quite different
pattern, without morning peak. Hence, according to the consumption patterns,
TS1, TSy and T'S3 should be assigned to the same group regardless of their
consumption amount, while 7'S4 should belong to a different group.

In order to assign the time series to the desired cluster based on the simi-
larity, we compute the distance function. Euclidean function is commonly used
as a distance function when performing the clustering. In Sect.2.3, we have
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Fig. 6. Comparison of the pattern preservation with and without reprocessing of the
seed

mentioned that Euclidean function may not give accurate results and we have
recommended to use correlation based distance function instead.

Table 1, shows the comparison between the two distance functions. If we
observe the distances, the correlation distances between (7'Sy, T'S3) and (T'Sy,
TS3) are smaller than the distance between (T'Sy, T'Sy). The reason that T'Sj,
TS5 and T'S3 have smaller correlation distances is due to the fact that they have
similar patterns, whereas, T'S; has a larger distance for the reason that it has
a different pattern with respect to T'Sy, T'Ss and T'S3 (note that the distance
of zero means perfectly correlated). In contrast, the Euclidean distance between
(T'Sy, T'S4) is the smallest, which may result in wrongly assigning 7'Sy to the
same group as T'S,. Thus, it is more preferable to choose the correlation distance.

We now demonstrate the importance of preprocessing the seed in order to
preserve the information of customer segmentation. We compare the clustering
information of the resulting synthetic data sets when we use the seed with and
without being preprocessed. We cluster the daily patterns into 20 clusters for

Table 1. Comparison of the two distance metrics

(T'S1,TS2) | (T'S1,TS3) | (T'S1,TSa) | (T'S2,TS3) | (T'S2,TS4) | (T'S3,TS4)
euclDist | 6.13 9.12 9.64 11.5 4.73 12.4
corrDist | 0.12 0.13 1.06 0.12 0.76 1.10
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the two data sets using the adaptive clustering method [16] and compare the top
three clusters shown in Fig. 6(a) and (b). According to the top three clusters, we
could observe that the patterns are more visible in Fig. 6(a) (where the seed is
preprocessed) as compared to Fig. 6(b) (where seed is not preprocessed). Based
on these observation, we can conclude that the data generator trained with
preprocessed seed can achieve better pattern preservation.

Further, we evaluate the effectiveness by comparing the patterns of the real-
world and synthetic data. Figure 7(a) and (b), show the daily and weekly patterns
generated from a typical household, respectively. We compare the patterns of the
actual and synthetic data. The synthetic data is generated by the data generators
trained by clustered seed using corrDist and euclDist. The actual pattern in
Fig. 7(a) shows that there is a morning peak (6-9) and a evening peak (16-21)
in the pattern. The pattern of synthetic (corrDist) indicates a good matching to
the actual pattern, with slight drift. In contrast, the synthetic (euclDist) does
not show a perfect fit, for example, having a peak at 1-2 o’clock but there is
no peak for the actual pattern. Figure 7(b) shows the weekly patterns, where
synthetic (corrDist) also shows better than the synthetic (euclDist) to fit the
actual data pattern.

4.2 Scalability

In this section, we evaluate the scalability of the proposed data generator. Note
that this study will not measure the execution time of the preprocessing and
the training process for the reason that they are performed only once, thus their
results can be reused during the data generation process. Figure8, shows the
execution time of generating the data scaled from 50 to 300 GB using all nodes
(a total of 16 cores). The results show that the execution time increases almost
linearly with the size of the data generated.

Figure9, shows the speedup of generating a fixed size of data set (100 GB)
by varying the number of cores. The speedup is calculated as follow: speedup =
t4/t,, where t4 is the execution time with 4 parallel cores, and ¢, is the execution
time with n parallel cores (n with the values of 4,8,12 and 16). According to
the results, the data generator can achieve a good speedup, when the number of
cores increased to 16.
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Fig. 8. Scale-up Fig. 9. Speedup of generating 100 GB
data

To summarize, the proposed data generator has the ability to generate real-
istic time series data with a good performance and the generated data has com-
parable characteristics with the actual data, in terms of patterns and groups/-
clusters.

5 Related Work

Synthetic data generation has been studied extensively across several disciplines.
DBGEN is a well-known data generation tool that can generate up to 10 TB of
data for the TPC-H/R database schema [17]. Similarly, synthetic weather data
generation has also been extensively studied by [18-22]. The weather generators
typically use stochastic models to simulate synthetic weather data. Furthermore,
a vehicle crash data generator uses actual vehicle crash data as seed to produce
new realistic data using Fourier transformation [23]. The generated data contains
different acceleration peaks to test and verify crash management components in a
car without running actual crash tests. Time series forecasting has also attracted
much research attention in recent years. A hybrid time series forecasting model
based on autoregressive integrated moving average (ARIMA) and neural net-
works is proposed by [24]. Likewise, a periodic autoregressive moving average
model (PARMA) for time series forecasting is also suggested by [25]. PARMA
model can explicitly describe seasonal/periodic fluctuations in terms of mean,
standard deviation and autocorrelation. Based on that, PARMA derives more
realistic time series forecasting models and simulations. In addition, a template-
based time series generation tool (loom) that utilizes ARIMA as the underlying
forecasting model is presented by [26]. Additionally, a survey is conducted on
the forecasting models by [27]. It has reported that ARIMA and neural networks
are heavily used in time series forecasting. Based on all these works, it can be
concluded that models such as stochastic, ARIMA, PARMA, neural networks
play a crucial role in time series forecasting. In resemblance with these works, the
foundation of the proposed data generator is based on autoregressive centered
moving average (ARCMA) model.
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Smart metering, as an emerging technology has gained widespread attention
recently. A lot of work has been reported in the area of smart meter data ana-
lytics, however, to the best of our knowledge, the smart meter synthetic data
generation still needs to be extensively studied. Some literature has been found
with respect to smart meter synthetic data generation by [2,4,28]. The work by
[28], uses Markov chain model, while [2,4] use periodic auto-regression (PAR) to
generate synthetic time series in order to benchmark Internet of Things (IoT)
and smart meter analytics systems. In contrast to all these works, the focus of the
current work is to generate time series based on energy consumption patterns,
in a distributed data processing environment.

6 Conclusions and Future Work

Smart meter data management and analytics systems require a large amount of
data for benchmarking and testing purposes. In this paper, we have presented a
scalable smart meter data generator using the Spark framework. We have used
the supervised machine learning method to create the models for generating
synthetic data. In addition, we have introduced an optimization method that
preserves user-groups/clusters information, i.e., using clustered seeds. We have
comprehensively evaluated the data generator by comparing its effectiveness and
scalability. The results have demonstrated that the data generator can generate
scalable smart meter data that can simulates well to the reality.

For the future work, we could consider to add more features to the data gen-
eration models, for example, seasonality (winter, spring, summer and autumn).
In addition, the current generator could be extended or modified to generate
other types of meter data, such as water, gas and heating.
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