
A Framework for Integrating Real-World Events
and Business Processes in an IoT Environment

Sankalita Mandal(B), Marcin Hewelt, and Mathias Weske

Business Process Technology Group, Hasso Plattner Institute,
University of Potsdam, Potsdam, Germany

{sankalita.mandal,marcin.hewelt,mathias.weske}@hpi.de

Abstract. Business process management is essential for companies
to document, execute, monitor, and optimize their business processes.
These processes are often influenced by external events occurring in the
process context, especially when considering Internet of Things (IoT)
scenarios. Modeling constructs for different types of events are part of
the Business Process Model and Notation (BPMN) standard. However,
when the integration of external events needs to be supported by process-
oriented information systems, the gap between conceptual process model
and its implementation needs to be bridged. We elicited the require-
ments for this integration using an use case from the IoT domain. Based
on them, we propose a framework that outsources the management of
events to an event processing platform that the process engine subscribes
to. The BPMN process model is extended with annotations to specify the
type of expected events. Further, we implement a system that realizes
the proposed integration..

Keywords: Process execution · Event processing · BPMN

1 Introduction

Business processes are omnipresent in companies. In today’s digital age, huge
amount of data is being produced every moment and processes try to take advan-
tage of those streams of dynamic event data. In an Internet of Things (IoT) sce-
nario, sources like smart devices and sensors generate tons of events, which can
be filtered, combined, and aggregated to trigger and drive business processes.
Proper aggregation and analysis of the events makes the processes more flexible,
robust, and efficient. BPMN 2.0 (Business Process Model and Notation) offers
a rich variety of constructs to model different types of events, e.g. start, inter-
mediate, and end events that can be further differentiated into throwing and
catching events

To support a business process with IT, e.g. by enacting it in a process engine,
the gap between the conceptual level of the model and the detailed, technical
level required for running the process needs to be bridged. For catching events,
which represent that a process instance waits and reacts to some environmental

c© Springer International Publishing AG 2017
H. Panetto et al. (Eds.): OTM 2017 Conferences, Part I, LNCS 10573, pp. 194–212, 2017.
https://doi.org/10.1007/978-3-319-69462-7_13



A Framework for Integrating Real-World Events and Business Processes 195

occurring, this means to specify how this event can be detected by the process
engine, how its information is extracted and mapped to process variables, and
how it is correlated to the correct process instance. Throwing events are produced
by the process instance, hence they do not need to be detected and correlated.
However, process variables have to be packaged into the produced event. The
gap between process model and its implementation hinders the fast deployment
and subsequent optimization of business processes in a company.

Our contribution aims at bridging this gap by (a) providing a conceptual
framework for the integration of events and processes and (b) implementing the
proposed framework in the process engine Chimera [8]. We gather the require-
ments to come up with the framework with reference to a use case from IoT
scenario. Namely, we address the following major aspects in our framework:

• Separation of concerns between process behavior and event processing
• Aggregation of events and representation of event hierarchies
• Execution of event integration into business processes

Complex event processing and business process management are individually
well explored fields. But the integration of these two worlds is still in its early
stage. Our framework establishes the required steps for enabling the communi-
cation between events and processes. The prototypical implementation offers an
end-to-end solution that encompasses (a) the modeling of processes, data, and
event types, (b) the deployment of process models into the process engine and of
event types and event annotation into the event platform, and (c) the execution
of process models integrated with external events.

We suggest to outsource detection and correlation of catching events to a
dedicated event processing platform, in our case Unicorn [19]. This supports
separation of concerns and hides the complexity of dealing with external events,
especially event adapters and aggregation, from the process engine. High-level
events [6] aggregated from primitive events encapsulate complexity and serve
as interface for the process model. When modeling event nodes, modelers can
refer to the expected high-level event, e.g. a positive market trend, instead of
having to deal with hundreds of individual stock tick events, because the event
platform takes care of aggregating those into a higher-level event. This eases
process modeling and keeps the annotations required for process execution sim-
ple. Also, the separation of process control and event processing logic improves
maintainability, in case there is a change in event aggregation rules.

The paper is structured as following. Section 2 illustrates the fundamentals
of business process management and complex event processing as the ground of
our framework. Section 3 elicits the requirements using a motivational use case.
The related works in both the fields relevant to our requirements are described in
Sect. 4. Section 5 presents the conceptual framework for using events in processes
and describes how we address the elicited requirements in the proposed frame-
work. The prototypical implementation is detailed in Sect. 6. Finally, Sect. 7
concludes the paper and mentions the future research possibilities.



196 S. Mandal et al.

2 Foundations

In this section, we present the fundamental knowledge required to build our
framework. There are two main domains addressed in the work, namely, business
process management and complex event processing. The basic concepts from
those two fields are discussed below.

2.1 Business Process Management

A business process is a sequence of activities performed in an organizational
context. These activities collectively achieve a business goal [21]. The activities
and their orchestration are represented with business process models. BPMN
2.0 is the de facto standard for modeling business processes. A business process
model can be considered as a blueprint for multiple process instances. Similarly,
an activity model can be instantiated for a set of activity instances.

An activity instance goes through several state transitions as shown in Fig. 1.
Each activity in the process is initialized and is in state init as soon as a process
instance is started. When the incoming flow of an activity is triggered, the
instance is in state ready. The state changes to running once the activity starts
execution. Finally, the activity ends and goes to terminated state. If the activity
instance is not started but before it starts the process instance follows a differ-
ent path, then it directly goes to skipped state. The occurrence of an attached
boundary event can change the state of a running activity instance to canceled.

Fig. 1. Activity instance life cycle

The process flow can be enriched by information about the occurrences in
the environment represented as events. BPMN describes different usage of events
based on the position of the event in the process, namely, start, intermediate or
end events. Start events are used to trigger a process instance. Intermediate
events are produced or consumed by the process to use the information for
further execution. If the event is received in the process, then it is called a
catching event. The event produced by a process is named as throwing event
in contrast. We will focus on the catching events as they are generated in the
environment and used in the process.



A Framework for Integrating Real-World Events and Business Processes 197

Intermediate events such as boundary events or event-based gateways can
be used to determine the process flow. Boundary events are associated with
an activity and they can be interrupting or non-interrupting. If the event occurs
after the activity is started and before it finishes, then an exceptional path is trig-
gered. In case of interrupting boundary event, the ongoing activity is canceled.
An event-based gateway is a decision gateway that depends on event occurring
instead of data. The first occurrence among the events after the gateway causes
that branch to be executed further.

2.2 Complex Event Processing

Using BPMN, one can model processes with catching events that are needed
in the course of process execution. But BPMN does not talk about the source
of these events, the information carried by the events or how to receive these
events. On the other hand, such concepts are well explored in the event process-
ing field [15]. Events are the environmental occurrences that can be relevant for
a process. Event objects represent these occurrences in a computing system [12].
While an event can be a road accident or a sudden temperature fall, the rep-
resentative event objects can be a traffic update from traffic API or a weather
update from a sensor, respectively. The terms event and event object are often
used interchangeably. Atomic events do not take time to occur, e.g., events gen-
erated by sensors. Atomic events can be aggregated to generate higher-level
or complex events. A set of temporally totally ordered associated events form
an event stream. Operations can be performed on single events (Simple Event
Processing), multiple events in a single event stream (Event Stream Processing)
or multiple events in multiple event streams (Complex Event Processing).

It is important to distinguish among three different kinds of events, which are
denoted by the same term, although they are largely different. First, the term
event can refer to the modeling construct of BPMN that is used to model catch-
ing or throwing events. We will use the term BPMN event for disambiguation.
Second, it can refer to state transitions in lifecycles, e.g. the event begin that
puts an activity instance into state running (see Fig. 1). In the remainder, we
will use the term lifecycle transition to denote this meaning. Finally, event can
mean an external event object that is present in the event processing platform
and thus represents some real-world happening. Hence, these events are already
abstractions of real-world happenings represented in an IT system. We will be
using the term external event to refer to this kind of events.

3 Requirements Analysis

The goal of this contribution is to find an end-to-end solution for integrating real-
world events into business process execution. Now, to come up with the frame-
work it was necessary to elicit the requirements for the integration. Therefore,
we explored the state-of-the-art of standard process engines as well as complex
event processing techniques. The BPMN specification [17] built the foundations



198 S. Mandal et al.

Fig. 2. Use case from logistics domain

for usage of activities and events in a process model. On the other hand, the liter-
ature survey discussed in Sect. 4 gave us insight about several concepts needed to
be considered while integrating external events into processes. The project part-
ners and domain experts from both academia and industry contributed vastly
to extract use cases in IoT environment.

The process model in Fig. 2 represents one of those use cases from logistics
domain. The process starts when the truck driver receives the transport plan
from the logistics company. Then she drives to the warehouse to load goods. After
the goods are loaded, the driver follows the shortest route to the destination.
While the driving activity is ongoing, the driver gets notified if there is a long
delay caused by an accident or traffic congestion. If the notification for long delay
is received then the driver stops following the same route. Rather, she calculates
alternate routes which might be faster and follows the best of those. Once the
destination is reached the goods are delivered and the process ends. Based on
the above scenario, the requirements for using events in processes are identified
and described in the rest of this section.

Requirement 1: Separation of Concerns

Using external events in business processes is essentially connecting the two fields
of business process management and complex event processing. As seen in the
use case, event information can improve the process execution with respect to
flexibility, monitoring and efficiency by reacting on occurrences in the environ-
ment in a timely manner. Process engines could directly connect to event sources
by querying their interfaces, listening to event queues, or issuing subscriptions.
However, from a software design perspective this design decision would dramat-
ically increase the complexity of the engine and violate established principles
like single responsibility and modularity. Therefore, we consider separation of
concerns between process behavior and event processing as major requirement.

Different event sources produce events in different formats, e.g., XML, CSV,
JSON, plain text, and over different channels, e.g. REST, web service, or a
messaging system. In the example scenario, the probable event sources are the
logistics company, the GPS sensor in the vehicle, the traffic API and each of
them might have their own format of producing events. If the process engine
were directly connected with event sources, it would need to be extended with
adapters for each of the sources to parse the events. On the other hand, certain
events can be interesting for more than one consumer. For example, the long



A Framework for Integrating Real-World Events and Business Processes 199

delay event might be relevant not only for the specific truck driver, but also
for other cars following the same route. CEP platforms are able to connect
to different event sources as well as they can perform further operations on
event streams [13]. Single event streams can be filtered based on certain time
window, specific number of event occurrences or attribute values of the events.
Also, multiple events from multiple event streams can be aggregated based on
predefined transformation rules to create complex events relevant for a process.

To include all these functionalities in a process engine will increase the com-
plexity and redundancy of the engine to a great extent. Instead, it is more effi-
cient to use a separate event platform for complex event processing. The event
consumers can then subscribe to the event platform for being notified of the
relevant events. This separation of event processing logic is also efficient from
the maintenance perspective. If there is a need to change the event source or the
aggregation logic, then the process model does not need to be touched.

Requirement 2: Representation of Event Hierarchies

Simple event streams generated from multiple event sources can be aggregated
to create complex or higher-level events. One could argue to use BPMN paral-
lel multiple events to represent the event hierarchy, at least to show the con-
nection among simple and complex events. However, using that approach one
cannot express the different dimensions of event aggregation such as sequence,
time period, count of events or the attribute values. Different patterns of event
sequences are thoroughly discussed in [15] whereas a structured classification
for composite events can be found in [3]. Moreover, this would complicate the
process model and defeat their purpose to give an overview of business processes
for business users. As an user of BPM, one would be interested to see the higher-
level event that influences the process, rather than the source or the structure
of the event. For example, the driver is only interested to know if there is a long
delay that might impact her journey, but she does not care what caused the
delay.

Using event hierarchies, the process model includes only the high-level busi-
ness events relevant for the process and easily understandable by business users.
The model is not burdened with details of event sources and aggregations, which
instead are dealt with by event hierarchies in the event platform. Event hierar-
chies also improve maintainability, because the process model need to be adapted
whenever event sources or the format of events changes. Therefore, we consider
event hierarchies represented through event processing techniques as requirement
for successful integration.

Requirement 3: Execution of Event Integration

Incorporating the above two requirements, the logical distribution is made from
the architectural point of view as well as the representations of event processing
and process execution. But the technical requirements from the implementation



200 S. Mandal et al.

aspects are still remaining. We define following three technical requirements to
realize the integration of events and processes.

R3.1: Binding Events. The higher-level events modeled in the process model
needs to be mapped with the event hierarchy defined in the CEP platform to
make sure that the correct event information is fed to the process. E.g., the
driver should be informed only about the delay in the route she is following.

R3.2: Receiving Events. The process engine should listen to specific event occur-
rences relevant for the process execution. In other words, the driver must sub-
scribe for the Long delay event to get notification, as modeled in Fig. 2.

R3.3: Reacting on Events. The driver needs to decide if the alternate route is
faster than the current one and for that she needs to know the duration of the
delay. Therefore, information carried by the events should be stored for later use
in the process.

4 Related Work

Over the last decade, the BPM community adopted concepts from the field of
complex event processing (CEP) and event-driven architectures (EDA). Several
approaches were presented aiming to extend BPMN with modeling constructs
for concepts of CEP [1,3,11]. Some of those approaches provide execution sup-
port in the form of an engine. Decker and Mendling [9] present a conceptual
framework for process instantiation based on external events. Other approaches
use external events to monitor running business processes [2,5,13], predict devi-
ations [6], check compliance to the process model [20], and calculate KPIs [11].
In this section we describe these related approaches and check them against the
requirements.

Barros et al. [3] discuss events in business processes and touch on many of
the topics we consider in our contribution, like event subscription, occurrence,
matching, and unsubscription. The authors present a catalog of event patterns
used in real-world business processes and find that most of those patterns are
neither supported by BPEL nor BPMN. Similar to Requirement 2, they identify
support for event hierarchies, i.e. aggregation of low-level events into high-level
business events, as important but yet unsupported. They suggest to integrate
descriptions of event patterns into process modeling languages and consequently
extend engines to handle such patterns.

This contradicts Requirement 1 to separate concerns between process execu-
tion and event processing, but can be understood in light of the limited types
of events supported by BPEL (only message receive and timer events). Related
concepts to Requirement 3 are discussed in this work. The causal ordering among
event subscription, event occurrence and event consumption proposed by them
is shown in Fig. 3. According to it, an event can be consumed only if there exists
a subscription and the event has already occurred. Though we have followed the
same ordering in our implementation, the authors in [3] did not implement the
suggested engine.



A Framework for Integrating Real-World Events and Business Processes 201

Fig. 3. Causal ordering between event subscription, occurrence and consumption

Estruch and lvaro [11] propose an IT solution architecture for the manufac-
turing domain that integrates concepts of SOA, EDA, business activity mon-
itoring (BAM), and CEP. They suggest to embed event processing and KPI
calculation logic directly into process models and execute them in an extended
BPMN engine. This complicates the understanding of process models and con-
tradicts Requirement 1. The authors sketch such an engine for executing their
extended process models, but refrain from giving technical details, like handling
of subscriptions or event format, thus failing to meet Requirement 3. However,
they suggest that some processes collect simple events, evaluate and transform
them, and provide high-level events for use in other process instances, realizing
an event hierarchy (Requirement 2 ).

Processes from the logistics domain, which contain long-running activities,
e.g. a task ‘shipment by truck’, needs continuous monitoring. In these scenar-
ios external events, e.g. GPS locations sent by a tracking device inside the
truck, can provide insight into when the shipment task will be completed. Appel
et al. [1] integrate complex event processing into process models by means of
event stream processing tasks that can consume and produce event streams.
These are used to monitor the progress of shipments and terminate either explic-
itly via a signal event or when a condition is fulfilled, e.g. the shipment reached
the target address. While these tasks are active, they can trigger additional
flows if the event stream contains some specified patterns. The authors pro-
vide an implementation by mapping the process model to BPEL and connecting
the execution to a component called eventlet manager that takes care of event
processing. Thus Requirement 1 and 3 are fulfilled, however, Requirement 2 is
not supported. Authors in [16] facilitate an integrated architecture for using
events to monitor and predict process execution. The butterfly architecture ana-
lyzes the need of external event input in the process and generates CEP rules
from historical data. But they do not talk about the conceptual and technical
challenges of the integration.

For processes, in which some tasks are not handled by the POIS, monitoring
of events can be used to determine the state of these tasks, e.g. to detect that
an user task terminated. When a process is not supported by a POIS at all,
monitoring can still capture and display the state of the process by means of
events. For example, Herzberg et al. [13] introduce Process Event Monitoring
Points (PEMPs), which map external events, e.g. a change in the database, to
expected state changes in the process model, e.g. termination of a task. Whenever
the specified event occurs, it is assumed that the task terminated, thus allowing



202 S. Mandal et al.

to monitor the current state of the process. The authors separate the process
model from the event processing and allow the monitored events to be complex,
high-level events thus fulfilling Requirements 1 and 2. The approach has been
implemented, however the event data is not used by and does not influence the
process activities. Rather the engine uses them to determine the current state of
the process instance. Therefore, we consider Requirement 3.3 to be unfulfilled.

A framework for predictive monitoring of such continuous tasks in processes
is presented in the work by Cabanillas et al. [6]. The framework defines mon-
itoring points and expected behavior for a task before enactment. Then event
information from multiple event streams are captured and aggregated to have a
meaningful interpretation. These aggregated events are then used to train the
classifier and later the classifier can analyze the event stream during execution
of the task to specify whether the task is following a safe path or not. [20] derive
event queries from the control flow of a process model, deploy them to a event
engine and use them to find violations of the control flow. A similar derivation of
event queries from the process model is done by [2]. These work have in common
that they use external event processing (Requirement 1 ) and are implemented.
However, just like [13], the events are not used to drive the process instance, but
rather to find out something about it.

On the other hand, Decker and Mendling [9] conceptually analyze how
processes are instantiated by events. They propose a framework named CASU
which specifies when to create new process instances (C), which control threads
are activated due to this instantiation (A), which are the remaining start events
that the process instance should still subscribe to (S), and when should the
process instance unsubscribe from these events (U). Because of its conceptual
nature, Requirement 3 is not fulfilled and we cannot judge Requirement 1, as
the paper does not mention an architecture. However, the CASU framework
satisfies Requirement 2, although partially. They focus on process instantiation
and therefore, concentrates only on single or composite start events. On the
other hand, we consider not only the start events, but also the intermediate or
boundary events as well as the event based gateway.

Finally, we consider the state-of-the-art for implementing a process engine
that supports event integration. Namely, we look into the popular open source
process engine Camunda [7]. Using events for executing processes is also an
area which has gained a lot of interest in past few years. The standard process
engines like Camunda support BPMN events for starting a process instance or to
choose between alternative paths following a gateway. However, Camunda does
not care about the receiving part of the message event. The engine has interfaces
that can be connected to a JMS queue or a REST interface but the reception
of messages is not implemented. Also, there is no existing process engine that
supports complex event processing. On the other hand, the event processing
platforms do not have any engine to implement the generated events. Moreover,
the mapping between external events and BPMN events is not there.



A Framework for Integrating Real-World Events and Business Processes 203

5 Conceptual Framework

This section presents the conceptual framework for integrating events into
processes. Keeping in mind the requirements specified in Sect. 3, we discuss the
aspects to be considered. Also, the proposed solutions that we came up with for
each aspect are mentioned in the context of the use case presented before.

5.1 Event Generation and Aggregation

In our use case, we need two events for the process execution, a catching start
event and a catching interrupting boundary event. The start event is created
based on the input from the logistics company. The transport plan contains
the location of warehouse to load goods, the destination for delivery and the
deadline for delivery. This is an example of simple event which might be sent to
the truck driver via email or even as a text message directly from the logistics
company. The boundary event, on the other hand is definitely a higher-level
event. Considering Requirement 1: Separation of Concerns this complex event
is created in the event processing platform. Since we did not have access to
real “truck positions”, we used the sensor unit Bosch XDK developer kit1, a
package with multiple integrated sensors for prototyping of IoT applications.
The unit sends measurement values over wireless network to a gateway. The
gateway then parses the proprietary format of the received data and forwards it
to Unicorn using the REST API. The traffic updates was received from Tomtom
Traffic Information2. If there is a delay above a threshold and the location of
the source of delay is ahead of the current GPS location of the truck, then a
LongDelay event is produced.

In Unicorn, event aggregation rules are written accordingly to generate the
high-level event LongDelay. Since Unicorn has the Esper engine at its core, we
used Esper Event Processing Language (EPL) [10] for writing event aggregation
rules. The event types can be registered in Unicorn as following:

CREATE schema Disruption
(latitude float, longitude float,
reason string, delay double);
CREATE schema CurrentLocation
(latitude float, longitude float, destination string);
CREATE schema LongDelay
(reason string, delay double, destination string);

1 see http://xdk.bosch-connectivity.com.
2 see https://www.tomtom.com/en gb/sat-nav/tomtom-traffic/.

http://xdk.bosch-connectivity.com
https://www.tomtom.com/en_gb/sat-nav/tomtom-traffic/


204 S. Mandal et al.

The aggregation rule for creating LongDelay may look like the following. The
function distance() is not defined in EPL though. We implemented it to find
out if the disruption is ahead of the truck or not.

INSERT INTO LongDelay
SELECT d.reason as reason,
d.delay as delay,
l.destination as destination
FROM pattern[every d=Disruption-> l=CurrentLocation
WHERE distance(d.latitude, d.longitude, destination)
< distance(l.latitude, l.longitude, destination)];

5.2 Event Binding Points

Event binding points are those elements of process model where events with
different properties (see Sect. 2) are mapped to each other. For example, the
external event LongDelay is needed to be mapped to the BPMN event Long
delay that has been modeled in the process. To enable that, process models
have to be extended by event annotations that are used as event binding points.
These event binding points specify which events to listen to at what point in the
model. In BPMN, external events are usually modeled with the help of catching
message events (see Fig. 2). To receive these events, we need to make sure that
subscriptions for the events are made. Therefore, a subscription query for each
event is added to the process model in design time. Receiving the subscribed
events allows to create new process instances, similarly to process instantia-
tion in [9], and to react on the intermediate events from external event sources.
To simplify the annotation language, simple queries are added in the model to
subscribe to the aggregated high-level events. More complex event queries to
produce these high-level events are generated by aggregation rules inside the
event processing platform, as per Requirement 2: Representation of Event Hier-
archies. For example, the annotation for the start event looks like SELECT *
FROM LongDelay which abstracts from the complexity of event queries dealt in
CEP platform. Figure 4 shows an example of modeling event queries represented
as event annotation.

On the other hand, lifecycle transitions, like terminate in the activity life-
cycle, also provide event binding points [21]. These event binding points are
required to automatically change the state of an activity instance, thus enabling
their monitoring [5]. The start and end of each activity like Load goods or
Deliver goods are required to monitor the status of the shipment. Whereas,
the cancellation of the activity Drive to destination suggests that the previ-
ously calculated delivery time might be postponed due to delay on the way.



A Framework for Integrating Real-World Events and Business Processes 205

Fig. 4. Modeling of event queries

5.3 Event Subscription and Correlation

Before they can be executed, process models have to be deployed from the model-
ing component to the process engine. During the deployment, event annotations,
like the other information in the process model, are parsed and stored in a data-
base. Once the queries are registered to the CEP platform, whenever a matching
event occurs, the platform notifies all the subscribers.

When it comes to registering event queries the lifespan of event annotation
plays a central role. By lifespan we mean the time between registering an event
query at the event processing platform and removing the subscription. A process
model works as a blueprint for several process instances [21] and subscription can
be done by a process model or a process instance. The annotation of the start
event binding point needs to be registered right after deployment, as it is needed
for process instantiation. So, subscription for Transport plan received is done
at process deployment. In our case, the truck driver might register to the mailing
list of the logistics company to receive transport plans. Other annotations, e.g.,
annotation for event binding point of Long delay is registered later for each
process instance separately.

Often, event queries have a limited lifespan during a process execution. For
example, we no longer need to listen to a boundary event that might occur after
the activity it was attached to has terminated and can unregister the query. In
our use case, the driver stops listening to Long delay once she changes the route
or reaches the destination. On the other hand, process trigger queries can only
be unregistered when the process model is undeployed from the engine.

To handle the subscription, we extend the execute-method of the event nodes.
When the process execution flow reaches this event node, the subscription query
and a notification path is sent to Unicorn. Unicorn sends an UUID in response
which is then stored in Chimera as a correlation key. When an event occurs, Uni-
corn checks if there is an existing subscription for this event. If a matching query
is found, then Unicorn sends the notification to the provided path along with
the UUID. Chimera matches this UUID to the one stored before and correlates



206 S. Mandal et al.

Fig. 5. Event subscription and correlation using Chimera and Unicorn

the event to the process instance. Once the event is consumed, the leave-method
of the event node performs a DELETE operation for unsubscription. The above
sequence is depicted in Fig. 5.

The attribute values of events can be used to filter out events irrelevant for
the current process instance. For example, only events that occur in the same
route as the truck is following might be interesting for that particular trans-
port. Therefore, the annotated event queries may contain expressions referring
to event attribute values. These expressions follow the dot-notation known from
object oriented programming, e.g. Disruption.route. In some cases, however,
the correlation is less direct and the filter criterion is either not available or not
restricted inside the scope of the process instance. In such cases we assume that
the event processing platform provides a correlation key, as described above.

5.4 Reaction on Events

In many cases, receiving an event notification from the event processing plat-
form simply causes an BPMN event to occur. The further reaction follows the
BPMN execution semantics [17]. The notification of a start event can start a
new instance of a process. For example, each customer complaint can start one
handling process for a manufacturer. Again, a notification of a boundary error
event causes the abortion of the associated running activity and enables error
handling, as discussed in our example process.

While in these cases only the fact that the event occurred is relevant, in
other cases the content of the event is also of interest. E.g., the Long delay
event certainly abides by the BPMN behavior for boundary events, but the
driver might look into the information carried by the event to know how much
delay has been caused and whether the alternate route will be faster or not.
Therefore, notifications need to have a defined structure that allows to access
the contained data for further use in the process.

To use event data in the further execution, we suggest to map the data
contained in the notification to the attributes of a data object. This data object



A Framework for Integrating Real-World Events and Business Processes 207

Fig. 6. Event data is written into newly created data object

might already exist at the time the event notification is received, or it can be
created anew. The mapping is specified in the outgoing data object, which for
each of its attributes has an expression specifying how to derive the attribute
value from the notification. This is depicted in Fig. 6 which shows the boundary
event and the property editor for the data object. Technically, this mapping is
achieved by representing event notifications in the JSON notation3 and giving
a path expression for each attribute of the target data object that defines how
the value can be derived from the notification.

An alternative would have been to directly use the event object to reuse data
later on in the process, instead of mapping it to a data object. We decided against
this option, because events are singular occurrences, whereas data objects have
a lifecycle and can be changed again. For example, each temperature measure-
ment of the sensor is an unique event that might cause the sending of an event
notification when a matching query is registered. However, for the duration of a
process instance execution we would like to have one data object that holds the
current temperature, which of course changes, when new notification arrives for
sensor events.

The third kind of reaction that the engine can perform upon receiving an
event notification is to conduct a lifecycle transition. In context of our use case,
the GPS location of the truck is checked against the coordinates of the desti-
nation. When the locations match, a higher-level event is generated to notify
the process engine that the driver has reached the destination. The engine
then changes the state of the activity Drive to destination from running to
terminated.

6 Implementation

This section briefly describes the implemented systems used to realize the inte-
gration of processes and events, and their interplay. A coarse architecture is

3 see http://goessner.net/articles/JsonPath/.

http://goessner.net/articles/JsonPath/


208 S. Mandal et al.

Fig. 7. Architecture

depicted in Fig. 7 with a sensor gateway as one specific example of an event
source (left side).

6.1 Unicorn Event Processing Platform

Unicorn, first described in [13], is the event processing platform of choice for the
implementation of our approach. It is build around Esper4 and manages event
types, event queries, and notifications both via a web-based UI and a REST
API. Notifications are delivered via email, the Java Message Service (JMS), by
calling back registered REST endpoints, or viewed in the UI.

There are different ways to connect Unicorn to external event sources. Event
sources can simply use Unicorn’s REST API to send events or publish them to a
specific JMS channel to which Unicorn listens. This is feasible if the code of the
event source can be changed or an intermediary gateway is used, which collects
events, for example from sensors, and forwards them to Unicorn.

Unicorn also supports active pulling of events by means of adapters, which
periodically call webservices. Adapters have to be configured programmatically
for each event source that should be accessed. However, Unicorn offers a frame-
work to easily extend existing adapters.

Historic events available as comma-separated values (csv) or spreadsheets
(xls) can also be parsed and imported as event stream into Unicorn. Replaying
such events keeps their order and time-lag, which allows to test pattern detecting
queries and aggregation rules. Finally, Unicorn has a built-in event generator that
uses value ranges and distributions to generate realistic events that can be used
for testing event-driven applications.

Creation of high-level events is handled by aggregation rules, i.e. event queries
that transform a pattern of events into another, higher-level event. These aggre-
gation rules are defined by domain experts for each business scenario.

4 see http://www.espertech.com/products/esper.php.

http://www.espertech.com/products/esper.php


A Framework for Integrating Real-World Events and Business Processes 209

6.2 Gryphon Case Modeler

The second component is Gryphon, a web-based modeler for process models.
Additionally, it allows to create a data model, i.e. a specification of data classes
and attributes used in process model. Each data class defines possible states and
valid state transitions for their instances, i.e. data objects, at runtime, called
object life cycle. Process models can be directly deployed to a running Chimera
instance. Gryphon builds on a node5 stack and uses bpmn.io6 which is an open-
source BPMN modeler implemented in Javascript, while the other components
are developed by our team.

For this contribution we extended Gryphon with the functionalities to anno-
tate process elements with event annotations and model event types. The data
model editor distinguishes between event types and data classes. While both are
named sets of typed attributes, the former need to be registered with the event
processing platform Unicorn when the model is deployed. Event annotations can
be attached to certain elements in process fragments models, corresponding to
the event binding points defined in Sect. 5.2. We decided to reuse the symbol
for catching message events to model waiting for external events, because event
notifications can be considered messages. For lifecycle binding points, the anno-
tations are stored as property of the transitions in the lifecycle diagram, and
for model-level binding points they can be specified in the model overview. As
we use the event processing platform Unicorn that builds atop of Esper, event
annotations have to use the EPL query language.

6.3 Chimera Case Engine

The final component is Chimera, a process engine that can also execute case
models according to the fragment-based case management approach (fCM) [14].
It supports user activities with forms for data entry, as well as automatically
executed email and web-service tasks. Attributes of data objects can be used
as variables in email text, web-service calls, and gateway conditions. Variables
are substituted by attribute values when sending email, calling web-service, or
checking which sequence flow to enable.

The front-end displays all available process models and allows users to start
new cases or work on running cases. Chimera follows the common worklist app-
roach, displaying enabled activities to knowledge workers who can select and
start them. Enablement of activities depends on sequence flow, i.e. preceding
activities need to have terminated. Also, the data flow i.e. required data objects
need to be available in the state as specified by the data input set of an activity.
When terminating a running activity, knowledge workers can enter data stored
in data objects. However, the resulting state of the data object needs to conform
to the data output set specified in the model.

Discussion. As the architecture was developed as an academic prototype high-
lighting research challenges, we abstained from implementing well-understood
5 see http://node.js.
6 see http://bpmn.io.

http://node.js
http://bpmn.io


210 S. Mandal et al.

features required for business use, like user and role management, or database
accessors.

Fig. 8. Interaction sequence of components

The interaction sequence among the above described components is depicted
in Fig. 8. We used the implemented architecture and depicted communication
sequence between events and processes to realize several use cases from dif-
ferent application domains to evaluate the practicality of our framework. As
already mentioned, Chimera supports case management along with process exe-
cution. Therefore, the catching start event functionality has been tested to trig-
ger process instances as well as cases and fragments7. Different use cases had
different usage of events such as boundary events or event-based gateways. Our
architecture was able to handle all of them efficiently. To connect the event
processing platform to different event sources we used sensors as well as Web
API or live RSS Feeds8. The aggregation rules were specified according to the
input extracted from the corresponding domain experts for each use case.

7 Conclusion and Future Work

The work presented here addresses a relevant situation of the current business
world, as web services and IoT increase the amount of external events relevant

7 see screencast: https://bpt.hpi.uni-potsdam.de/Chimera.
8 e.g., http://www.eurotunnelfreight.com/uk/contact-us/travel-information/.

https://bpt.hpi.uni-potsdam.de/Chimera
http://www.eurotunnelfreight.com/uk/contact-us/travel-information/


A Framework for Integrating Real-World Events and Business Processes 211

for business processes. Our work focuses on integrating such external events into
business processes and making use of them for process execution. To bridge the
gap between the conceptual level of the process model and the technical details
necessary to execute it, certain aspects need to be considered as shown by our
use case driven requirement elicitation. Based on those requirements, we present
a conceptual framework for the integration of external events, defining event
binding points, event annotations, as well as subscription and correlation mech-
anisms. These concepts are implemented into a system consisting of a modeling
component (Gryphon), a process engine (Chimera), and an event platform (Uni-
corn), thus enabling the integration of real-world events into business processes.

Although our solution architecture handles the basic BPMN event constructs
such as message or timer events, boundary events and event-based gateways,
other event constructs like signal or error events have not been considered and
are left to be implemented. Along with the events, decisions also play a big
role in business processes [4]. The explicit use of decisions in processes becomes
more popular with the recently released standard Decision Model and Notation
(DMN) [18]. As discussed in the motivating example, the truck driver can check
the duration of the delay caused by the disruption and decide whether to take an
alternative route or not. Therefore, the next logical extension of our framework
is to integrate decision management.

References

1. Appel, S., Frischbier, S., Freudenreich, T., Buchmann, A.: Event stream process-
ing units in business processes. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM
2013. LNCS, vol. 8094, pp. 187–202. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40176-3 15

2. Backmann, M., Baumgrass, A., Herzberg, N., Meyer, A., Weske, M.: Model-driven
event query generation for business process monitoring. In: Lomuscio, A.R., Nepal,
S., Patrizi, F., Benatallah, B., Brandić, I. (eds.) ICSOC 2013. LNCS, vol. 8377,
pp. 406–418. Springer, Cham (2014). doi:10.1007/978-3-319-06859-6 36

3. Barros, A., Decker, G., Grosskopf, A.: Complex events in business processes. In:
Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 29–40. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-72035-5 3

4. Batoulis, K., Meyer, A., Bazhenova, E., Decker, G., Weske, M.: Extracting deci-
sion logic from process models. In: Advanced Information Systems Engineering -
Proceedings of 27th International Conference, CAiSE 2015, Stockholm, Sweden,
8–12 June 2015, pp. 349–366 (2015)

5. Baumgrass, A., Herzberg, N., Meyer, A., Weske, M.: BPMN extension for business
process monitoring. In: EMISA, pp. 85–98 (2014)

6. Cabanillas, C., Di Ciccio, C., Mendling, J., Baumgrass, A.: Predictive task
monitoring for business processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.)
BPM 2014. LNCS, vol. 8659, pp. 424–432. Springer, Cham (2014). doi:10.1007/
978-3-319-10172-9 31

7. Camunda: Camunda BPM platform. https://www.camunda.org/
8. Chimera: Case engine. https://bpt.hpi.uni-potsdam.de/Chimera
9. Decker, G., Mendling, J.: Process instantiation. Data Knowl. Eng. 68(9), 777–792

(2009). http://dx.doi.org/10.1016/j.datak.2009.02.013

http://dx.doi.org/10.1007/978-3-642-40176-3_15
http://dx.doi.org/10.1007/978-3-642-40176-3_15
http://dx.doi.org/10.1007/978-3-319-06859-6_36
http://dx.doi.org/10.1007/978-3-540-72035-5_3
http://dx.doi.org/10.1007/978-3-319-10172-9_31
http://dx.doi.org/10.1007/978-3-319-10172-9_31
https://www.camunda.org/
https://bpt.hpi.uni-potsdam.de/Chimera
http://dx.doi.org/10.1016/j.datak.2009.02.013


212 S. Mandal et al.

10. EsperTech: Esper Event Processing Language EPL. http://www.espertech.com/
esper/release-5.4.0/esper-reference/html/

11. Estruch, A., Heredia Álvaro, J.A.: Event-driven manufacturing process manage-
ment approach. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol.
7481, pp. 120–133. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32885-5 9

12. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co.,
Greenwich (2010)

13. Herzberg, N., Meyer, A., Weske, M.: An event processing platform for business
process management. In: EDOC. IEEE (2013)

14. Hewelt, M., Weske, M.: A hybrid approach for flexible case modeling and execution.
In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNBIP, vol. 260, pp. 38–54.
Springer, Cham (2016). doi:10.1007/978-3-319-45468-9 3

15. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley, Boston (2010)

16. Mousheimish, R., Taher, Y., Zeitouni, K.: The butterfly: An intelligent frame-
work for violation prediction within business processes. In: Proceedings of the 20th
International Database Engineering & Applications Symposium, IDEAS 2016, pp.
302–307. ACM, New York (2016). http://doi.acm.org/10.1145/2938503.2938541

17. OMG: Business Process Model and Notation (BPMN), Version 2.0., January 2011
18. OMG: Decision Model and Notation (DMN), Version 1.1., June 2016
19. UNICORN: Complex event processing platform. https://bpt.hpi.uni-potsdam.de/

UNICORN/WebHome
20. Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., Desai, N.: Event-

based monitoring of process execution violations. In: Rinderle-Ma, S., Toumani,
F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 182–198. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-23059-2 16

21. Weske, M.: Business Process Management: Concepts, Languages, Architectures,
2nd edn. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28616-2

http://www.espertech.com/esper/release-5.4.0/esper-reference/html/
http://www.espertech.com/esper/release-5.4.0/esper-reference/html/
http://dx.doi.org/10.1007/978-3-642-32885-5_9
http://dx.doi.org/10.1007/978-3-319-45468-9_3
http://doi.acm.org/10.1145/2938503.2938541
https://bpt.hpi.uni-potsdam.de/UNICORN/WebHome
https://bpt.hpi.uni-potsdam.de/UNICORN/WebHome
http://dx.doi.org/10.1007/978-3-642-23059-2_16
http://dx.doi.org/10.1007/978-3-642-28616-2

	A Framework for Integrating Real-World Events and Business Processes in an IoT Environment
	1 Introduction
	2 Foundations
	2.1 Business Process Management
	2.2 Complex Event Processing

	3 Requirements Analysis
	4 Related Work
	5 Conceptual Framework
	5.1 Event Generation and Aggregation
	5.2 Event Binding Points
	5.3 Event Subscription and Correlation
	5.4 Reaction on Events

	6 Implementation
	6.1 Unicorn Event Processing Platform
	6.2 Gryphon Case Modeler
	6.3 Chimera Case Engine

	7 Conclusion and Future Work
	References




