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Abstract. The emerging technique of deep learning has been widely applied in
many different areas. However, when adopted in a certain specific domain, this
technique should be combined with domain knowledge to improve efficiency
and accuracy. In particular, when analyzing the applications of deep learning in
sentiment analysis, we found that the current approaches are suffering from the
following drawbacks: (i) the existing works have not paid much attention to the
importance of different types of sentiment terms, which is an important concept
in this area; and (ii) the loss function currently employed does not well reflect
the degree of error of sentiment misclassification. To overcome such problem,
we propose to combine domain knowledge with deep learning. Our proposal
includes using sentiment scores, learnt by regression, to augment training data;
and introducing penalty matrix for enhancing the loss function of cross entropy.
When experimented, we achieved a significant improvement in classification
results.
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1 Introduction

Opinion was defined by Oxford Dictionary as the feeling or the thought of someone
about something and these thoughts are not necessarily the truth. Therefore, opinion is
always an important reference for making decisions of individuals and organizations.
Before the Internet, opinions were referenced via friends, family or consumer opinion
polls of enterprises. The explosion of information and communication technologies
(ICT) leads to a huge amount of information to be read. Some information is quite
“big” but not containing much useful information. This causes difficulties for indi-
viduals and businesses in consulting, searching, synthesizing information as well as
evaluating and tracking customer comments on the products and services of the
business. Therefore, opinion mining/sentiment analysis has been born and is developed
rapidly, strongly and attracting much attention in research communities. According to
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Liu [1], opinion has a significant role in daily activities of people due to the fact that
important decision is proposed from the consultation of the others.

Research on this topic was conducted at different levels: term level [2], phrase level
[3], sentence level [4] and document level [5, 6]. In terms of methodologies, approaches
related to this problem can be summarized as follows:

– Lexicon approach: sentiments terms are used a lot in sentiment analysis. There are
positive terms and negative terms. Additionally, there are also opinion phrases or
idioms, which can be grouped into Opinion Lexicon [7]. Dictionary-based method
by Hu and Kim [8, 9] shows strategies using dictionary for identifying sentiment
terms.

– Corpus-based methods: This method is based on syntax and pattern analysis to find
sentiment words in a big dataset [10].

Recently, with the introduction of TreeBank, especially Stanford Sentiment Tree-
bank [11], sentiment analysis using deep learning becomes an emerging trend in the
field. Recursive Neural Tensor Network (RNTN) was applied to the treebank and
produced high performance [11]. Formerly, the compositionality idea related to neural
networks has been discussed by Hinton [12], and the idea of feeding a neural network
with inputs through multiple-way interactions, parameterized by a tensor have been
proposed for relation classification [13]. Along with the treebank, the famous Stanford
CoreNLP tool [14] is used widely by the community for sentiment tasks. Besides,
convolution-based method continues to be developed for sentiment analysis on sen-
tences [15, 16]. To store occurrence order relationship between features, recurrent
neural network systems such as Long Short Term Memory (LSTM) was used in
combination with convolution to perform sentiment analysis for short text [17]. Most
recently, a combined architecture using deep learning for sentiment analysis has been
proposed in [18].

However, when deep learning is used with real datasets from different sentiment
domains, we observe that there are some problems arising as follows:

– Each domain has a different set of sentiment terms. For example, for Smartphone,
positive/negative terms can be durable, expensive, well-designed, slim, etc.
Meanwhile, in Airlines, sentiment terms can be delay, slow check-in, good service,
etc. Each term carries a different sentiment score. To date, these aspects seem not
considered much in deep learning approaches.

– Like other neural networks, deep learning uses a loss function to evaluate the error
of the learning process. Currently, for sentiment analysis approaches, the default
loss function assigns the same error rate for different error cases. For example, if a
training sample is expected as a negative case, the loss function will produce the
same error value if this sample is wrongly predicted as positive or neutral cases.
Intuitively, misclassification from negative to positive should be considered more
serious than from negative to neutral. We believe that the loss function should
assign different values for those cases.

To tackle these problems, we propose the following approaches:
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– We use regression to learn sentiment scores for sentiment terms. Then, we use these
sentiment scores to perform augmentation of the dataset to train deep learning
models.

– We improve the loss function of the deep learning model by applying a penalty
matrix so that the system can learn more accurately from errors of different mis-
classification cases.

The rest of this paper is organized as follows. In Sect. 2, we recall some back-
ground on convolution neural networks (CNN) and sentiment analysis. A general
architecture of using CNN for sentiment analysis is presented in Sect. 3. Section 4
shows the contribution of our study about learning sentiment scores using regression
and how this score is used for data augmentation. Section 5 discusses the idea of using
a penalty matrix to improve the loss function. Section 6 presents the results of our
experiments. Finally, Sect. 7 concludes the paper.

2 Background

2.1 Convolution Neural Networks (CNN) for Sentiment Analysis

Convolution Neural Network (CNN) is one of the most popular deep learning models.
Given in Fig. 1 is the general architecture of such CNN system. The first layer builds
the vector from the words in the sentence. Input documents are transformed into a
matrix, each row of which corresponds a word in a sentence. For example, if we have a
sentence with 10 words, each word was represented as a word-embedding [19] vector
of 100 dimensions, the matrix will have the size of 10 � 100. This is similar to an
image with 10 � 100 pixels. The next layer will perform convolution on these vectors
with different filter sets and then max-pooling is performed for the set of filtered
features to retain the most important features. Then, these features are passed to a fully
connected layer with softmax function to produce the final probability output. Dropout
[20] technique is used to prevent overfitting.

In [16], basic steps of using a CNN in sentiment analysis was detailed in the
process by which one feature is extracted from one filter as follows.

Fig. 1. Using CNN for text processing [16]
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Given a sentence with n words, let xi 2 Rk be e k-dimensional word vector cor-
responding to the i-th word in the sentence. The sentence can be represented as:

xi:n ¼ x1 þ x2 þ . . .xn

Here, + denotes vector concatenation. Generally, xi:iþ j represents the vector from
index i to i + j. A convolution operator with filter w 2 Rhxk for h words will produce
the feature:

ci ¼ f ðW � xi:iþ h�1 þ bÞ;

Here, b is the bias and f is a non-linear function. By applying the filter on all
windows of the sentence, we will obtain the feature map:

c ¼ ½c1; c2; . . .; cn�hþ 1�:

The max-pooling is applied over the feature map and get the maximum value
ĉ ¼ maxfcg as the feature corresponding to this filter.

2.2 Using Domain Knowledge for Sentiment Analysis

In general, when one performs sentiment analysis for a particular domain, the domain
knowledge can be applied as shown in Fig. 2.

Fig. 2. Applying domain knowledge for sentiment analysis.
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Thus, a general system [21] will rely on a Sentiment Engine to perform sentiment
analysis on a user’s comment expressing his opinion. This Sentiment Engine will
operate based on a Knowledge Base consisting of the following components:

– A sentiment dictionary, including the positive and negative sentiment terms. In
particular, those sentiment words will be assigned numerical scores indicating their
sentiment levels.

– Linguistic patterns used to identify different phrase samples.
– A Sentiment Ontology to manage semantic relationships between sentiment terms

and domain concepts. For more detail of Sentiment Ontology, please refer to [21].

Obviously, determining the sentiment scores for those sentiment terms is an
important task to let such a system operate efficiently. We will present this work in the
later part of the paper.

3 The Proposed Deep Architecture

Figure 3 presents an overview of our proposed deep architecture for sentiment analysis.
The system includes the following modules:

Word Embedding Module: This is a three-layer neural network W. The input layer
consists of M words where M is the number of words in the dictionary. The hidden
layer consists of K nodes with K being quite small compared to N. The output layer also
includes M nodes. This network will be trained from an M-word dictionary. Each word
w in the dictionary is passed to the input layer of W as a one-hot vector corresponding
to w. The W network will be trained to recognize the words w’ close to w, to be

Fig. 3. The overall deep architecture.
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activated by the corresponding nodes in the output layer. w’ words can be determined
from a predefined domain ontology built by the expert or learned from a co-occurrence
between (w, w’) in a large corpus in the domain being handled. After W is trained, the
wij weights from the input node i to the intermediate node j will form a word
embedding matrix WM�K.

Training Dataset: A set of collected documents. Each of these documents has been
labeled {positive, neutral, negative} w.r.t to an object that needs to be sentiment-rated.
A document with N words will be represented as matrix DN�M, in which the ith row is
the one-hot vector corresponding to the ith word in the document. When performing the
matrix multiplication D � W, we can obtain an embedded matrix EN�K. Matrix E will
be used as the input for next Convolution Neural Network module.

Convolution Neural Network: At this stage, the matrix E will be collapsed with a
convolutional window, which is a matrix Fd�K. The meaning of this matrix F is to
extract an abstract feature from the d-gram analysis of the original text. The system
will use f matrices Fd�K as an attempt to learn f abstract features. With the convolution
between two matrices E and F being a N � 1 column matrix, we will obtain the last
matrix CN�f by concatenating these column matrices together.

Next, matrix C will be fed into a pooling layer by a window p � f. The meaning of
this process is to keep the important d-gram sets in consecutive p d-gram. Finally, we
obtain the matrix Qq�f with q = N/p.

Finally, a fully connected layer will be implemented to aggregate the results and
from there conducted back-propagation process.

4 Sentiment Scores Learning

4.1 Problem Definition

In this section, we discuss on learning sentiment score. In a general sentiment system,
an adverb is used to modify or qualify a sentiment word. Mathematically, each sen-
timent word is associated with a sentiment score. If this sentiment word is associated
with an adverb, the sentiment score would be scaled by the adverb’s score. For
example, consider the text “S5 is very beautiful”. The final score of the entity S5
(1.125) is calculated by multiplying the score of the sentiment word “beautiful” (0.75)
with the adverb “very” (1.5). Since it is a positive number, one can conclude that this
text is a positive mention to the product S5.

In general, the final score of a mention is a linear combination of all pair of
sentiment word and its associated adverb as follows:

f ¼
Xn

i¼1

aisi ¼ aTs ð1Þ

where (ai, si) is a pair of (adverb-sentiment word) in the text; ai is set as 1 for every
sentiment word si that does not have any associated adverb.
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4.2 Sentiment Score Learning

4.2.1 Adverb Score Learning
For each mention in a training set of M mentions, let t(m) be the score of the mth

mention, s(m) the vector form of the sentiment words, and b(m) the bias (calculated by

sum of all sentiment words sðmÞi that do not have any associated adverb). We would like
to find the set of adverb’s scores w that minimizes the error:

argw minEðwÞ ¼
XM

m¼1

½ðwTsðmÞ þ bðmÞ � tðmÞ�2 ð2Þ

The above equation leads to a traditional least square problem. In the context of
sentiment analysis, in addition to minimizing the error function E, we also do not want
wi to take a negative value. Furthermore, the norm of w should not to be large (which
leads to an overfitting). So, the optimization problem for adverb score learning is
formulated as:

argw min
PM

m¼1
½ðwTsðmÞ þ bðmÞ � tðmÞ�2 þ kwTw

subject tow� 0
ð3Þ

where k is the regularization parameter which stands for the trade-off between error
minimization purpose and the overfitting avoidance.

4.2.2 Sentiment Word Score Learning
This process is similar to the adverb score learning problem, but we consider the set of
adverb scores w as fixed. We denote h(m) as scale parameters which are associated with

the sentiment word set s; and set hðmÞi ¼ 1 if the sentiment word si does not pair with

any adverb in the mth mention, otherwise hðmÞi ¼ wðmÞ
i . Moreover, to model two types of

sentiment word (positive and negative), we constrain si > 0 or si < 0 depending on
whether the ith sentiment word is positive or negative. The optimal set of sentiment
words s is the solution of the following optimization problem:

args min
PM

m¼1
ðhðmÞTs� tðmÞÞ2 þ ksTs

subject toAs\0
ð4Þ

where A is the diagonal matrix such that Ai;i ¼ �1, indicating whether si is positive or
negative sentiment word.

4.2.3 Iterative Learning
In this section, we combine the learning process in Sects 4.2.1 and 4.2.2 together to
form a dictionary learning algorithm that iteratively trains both the adverbs a and the
sentiment word s.
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4.2.4 Using Learned Sentiment Scores for Data Augmentation
Data augmentation is a technique commonly used in learning systems to increase the
size of training data sets as well as to control generalization error for the learning model
by creating different variations from the original data. For example, for image pro-
cessing, one can re-size an image to generate different variants from this image. In our
case, from a dataset of labeled samples, we will generate variants by replacing the
sentiment terms in the original data by the other sentiment terms that have similar
absolute scores.

For example, let us consider an emotional sentence “Company A is better than
Company B. Company B is horrible”, with the object that needs to be analyzed being
Company B, the system will first preprocess the sentence as “Company A is better than
Target. Target is horrible.” Obviously, this sentence will be labeled as negative, w.r.t
Target.

In this example, we assume that the words such as horrible, poor, terrible have
similar negative scores after our learning process. In addition, the words great and
amazing have similar absolute values of opposite sign (i.e. these words have positive
scores). Thus, from this sample, we will generate other augmented training samples as
follows.

# Training Data Label

1 Company A is better than Target. Target is poor Negative
2 Company A is better than Target. Target is terrible Negative
3 Company A is worse than Target. Target is great Positive
4 Company A is worse than Target. Target is amazing Positive

In our learning system, the generation of augmented positive samples from the
original negative samples is important, as this will help the system recognize that the
word Company A does not play any role in identifying emotions since it appears in both
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positive and negative samples. Conversely, sentiment orientation will be determined by
the sentiment words, including the original words and newly replaced words.

5 Using Penalty Matrix for the Loss Function

In neural network systems, one of the common methods for evaluating the loss
functions is cross entropy [22]. Generally, a mention sample will be labeled with a
3-dimensional vector y. Each dimension respectively represents a value in [positive,
negative, neutral]. For example, if a mention is labeled as negative, the corresponding
y vector of this mention is (0, 1, 0). After the learning process, a vector of probability
distribution over labels of 3-dimensional y will be generated, corresponding to the
learning outcome of the system. The loss function is then calculated by the cross
entropy formula as follows:

Hðy; yÞ ¼ �
X

yi lnðyÞ ð5Þ

However, unlike standard classification task, the importance of each label in sen-
timent analysis (positive, negative, neutral) is different. Generally, in this domain, the
data is unbalanced. That is, the number of neutral mentions are very large, as compared
to other labels. Therefore, if a mention is classified as neutral, the probability that it is a
misclassified case is lower than the case it is classified as positive/negative. Moreover,
positive and negative are two distinctly opposite cases. Thus, the error punished when a
mention, expected as neutral, is misclassified as positive, should be less than that of the
case where a negative-expected mention is misclassified as positive. The loss function
is calculated by the default cross entropy function does not reflect those issues. Thus,
we introduce a custom loss function, known as weighted cross entropy in which the
cross entropy loss is multiplied by a corresponding penalty weight specified in a
penalty matrix:

According to the penalty matrix in Table 1, one can observe that if a mention is
expected to be negative but is predicted as positive or vice versa, the corresponding
penalty weight is 4. Meanwhile, for the case that a mention is expected to be positive or
negative and predicted as neutral, the penalty weight is 2. In other words, the former
case is considered more serious than the latter. Also, if a mention is expected to be
neutral and predicted as positive or negative, the penalty weight is 3. It is obvious that
if the prediction and the expectation match to each other, the loss is not weighted as the
penalty weight value is 1 (i.e. the loss function will be minimized in this case).

Table 1. The penalty matrix

Predicted/expected Positive Negative Neutral

Positive 1 4 3
Negative 4 1 3
Neutral 2 2 1
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Example 1. If y is [0, 1, 0] (negative), y = [0.2, 0.3, 0.5] (neutral), then the default
cross entropy will result in 1.204, while the result of weighted cross entropy is 2.408.

Example 2. If y is [1, 0, 0] (positive), y = [0.2, 0.7, 0.1] (negative), the default cross
entropy will also result in 1.609, while the result of weighted cross entropy is 6.436.

Examples 1 and 2 show that the weighted cross entropy function gives different loss
values to different misclassification cases. Currently, we develop our penalty matrix
based on observable intuition. However, in the future, we can rely on the distribution of
data to construct this penalty matrix.

6 Experimental Results

We have applied our enhancement on basic deep learning model for sentiment analysis.
The data we collected included 1 million social network discussions with labeled
sentiment. This dataset is provided by YouNet Media1, a company that analyzes data
on social media channels. The company also provides a set of initial sentiment dic-
tionary that includes positive and negative terms. However, these sentiment terms are
manually assigned by sentiment scores of only 4 values in (1, 0.5, −0.5, −1).

Initially, the data were represented as one-hot vectors consisting of 65000
dimensions. After performing the word embedding technique, these vectors were
reduced to 320 dimensions. In the Convolution Neural Network, we then used 128
filters. For training, we applied k-fold cross validation strategy with k = 5. Since our
data is unbalanced between positive, neutral and neutral samples, we use the SMOTE
[23] sampling method to balance data.

Besides CNN network model, we also employ the traditional SVM classification
method using a bag-of-word approach for testing. In our experiment, we enhance the
original CNN model with our improvements. In the CNN-reg method, we use
regression to learn sentiment scores, instead of using default values in the sentiment
dictionary. In the CNN-cross method, we use weighted cross entropy to calculate the
loss function. Finally, the CNN-total method combines two enhancement of regression-
based data augmentation and weighted cross entropy (Table 2).

Table 2. Experimental results.

Recall Precision F-measure

SVM 81.49% 75.49% 78.38%
CNN 88.32% 85.46% 86.87%
CNN-reg 91.07% 90.18% 90.62%
CNN-cross 87.17% 93.55% 90.25%
CNN-total 90.33% 95.26% 92.73%

1 http://www.younetmedia.com/.
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We use the metrics in information retrieval, including recall, precision, and
F-measure to evaluate performance. The results showed that CNN-based methods
achieved better performance than the traditional SVM method. One can also observe
that using regression to calculate sentiment scores for data augmentation has signifi-
cantly increased recall and precision.

Finally, the use of weighted cross entropy slightly reduces recall, but it makes
precision increased significantly, as the system learns better from serious misclassifi-
cation such as from negative to positive (and vice versa). Finally, the combined CNN-
total method yields the best results, in terms of F-measure. This demonstrates the
advantage of our approach.

7 Conclusion

This paper proposed an approach to improve the accuracy of deep learning for senti-
ment analysis by incorporating domain knowledge. We introduce two improvements,
including using regression to learn the sentiment score for data augmentation and using
weighted cross entropy with penalty matrix as an enhanced loss function. When
experimented with real datasets, our proposed approach demonstrated significant
improvement on the F-measure metric.

Acknowledgments. We are grateful to YouNet Media for supporting real datasets for our
experiment.
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