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Abstract. The accuracy and the fast convergence of a leakage model
are both essential components for the efficiency of side-channel analysis.
Thus for efficient leakage estimation an evaluator is requested to pick a
Probability Density Function (PDF) that constitutes the optimal trade-
off between both aspects. In the case of parametric estimation, Gaussian
templates are a common choice due to their fast convergence, given that
the actual leakages follow a Gaussian distribution (as in the case of an
unprotected device). In contrast, histograms and kernel-based estima-
tions are examples for non-parametric estimation that are capable to
capture any distribution (even that of a protected device) at a slower
convergence rate.

With this work we aim to enlarge the statistical toolbox of a side-
channel evaluator by introducing new PDF estimation tools that fill
the gap between both extremes. Our tools are designed for paramet-
ric estimation and can efficiently characterize leakages up to the fourth
statistical moment. We show that such an approach is superior to non-
parametric estimators in contexts where key-dependent information in
located in one of those moments of the leakage distribution. Furthermore,
we successfully demonstrate how to apply our tools for the (worst-case)
information-theoretic evaluation on masked implementations with up to
four shares, in a profiled attack scenario. We like to remark that this
flexibility capturing information from different moments of the leakage
PDF can provide very valuable feedback for hardware designers to their
task to evaluate the individual and combined criticality of leakages in
their (protected) implementations.

1 Introduction

Physical attacks are known to pose a major threat to the cryptographic com-
ponents and security services in many embedded devices. An attacker obtaining
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side-channel leakages such as the power consumption or electromagnetic emis-
sions from a cryptographic implementation can extract the secret cryptographic
key by applying suitable statistical tools on the collected data. A number of
reports have demonstrated that such attacks are not just a theoretical con-
cern but that also real-world devices can be compromised [18,28,38,51]. As a
consequence, the seminal Differential Power Analysis (DPA) paper by Kocher et
al. [21] has been followed by a vast literature on solutions for a wide range of con-
texts to mitigate these attacks. For example, the inclusion of random delays [10],
or shuffling [49] are a frequently used heuristic to improve the physical protec-
tion of software implementations. In contrast to this, re-keying strategies, for-
malized under the name of leakage-resilient cryptography, provide theoretical
tools that enable reducing the security of multiple iterations to a single one
(cf. [17] for an early result and [47] for a recent one). In this context, one of the
most investigated and best understood protection against side-channel attacks
is masking [7,13,41] that bridges theory and practice. Its underlying principle
is to encode any sensitive variable in an implementation into d shares, and to
perform the computations on these shares only. Given that the leakage of all
the shares is independent and that the measurements are sufficiently noisy, it
ensures that the smallest key-dependent (mixed) moment in the leakage distrib-
ution is d. Therefore, any adversary trying to extract information from a masked
implementation should (ideally) estimate this (mixed) higher-order moment, a
task of which the complexity increases exponentially in d.

A drawback with all these solutions is the significant performance overhead.
As a result, the development of methodologies enabling a fair assessment of their
security level has evolved in parallel with the development of countermeasures
so that designers can discuss security and performance implications for their
implementations on a sound basis [46]. Since side-channel analysis is essentially
based on the comparison of key-dependent leakage models with actual measure-
ments, these methodological developments have led to a central division between
profiled and non-profiled evaluation tools and attacks [50]. In the first case, the
adversary/evaluator is allowed to build an accurate (yet not perfect [16]) model
for his target device that generally corresponds to an estimation of the leakage
Probability Density Function (PDF)1. As depicted in the upper left part of Fig. 1,
Gaussian Template Attacks (TA) are the most common tool for this purpose [8].
In this (here: exhaustive) approach, one builds a Gaussian model for the leakage
of every target intermediate value in the implementation. The main limitation
of Gaussian templates is that they are bound to the analysis of the first two
moments in a leakage distribution (i.e., unprotected implementations and mask-
ing with d = 2). According to the state-of-the-art, the canonical way to analyze
higher-order masked implementations would be to switch to non-parametric PDF
estimation, e.g., based on histograms and kernels. But this comes at the cost of
two important drawbacks. First, these tools imply a more complex (hence mea-
surement intensive) estimation problem. Second, they estimate all the statistical

1 Profiled attacks can also be referred to when the adversary possesses a device with
a biased randomness source (as masks).
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Fig. 1. Summary of side-channel evaluation tools and attacks.

moments at once, meaning that one loses the detailed intuition that could be
obtained from the separate examination of all moments. Alternatively, one could
use the Moments-Correlating Profiled DPA (MCP-DPA) introduced in [31] that
suffers from the complementary drawback. Namely, since MCP-DPA is essen-
tially a “per moment” approach, the intuitions extracted now only correspond
to moment taken separately, and it is unclear how one could extend these attacks
towards the joint exploitation of multiple moments at the same time.

A comprehensive understanding of how the information leakage of a masked
cryptographic implementation is spread among different statistical moments is
essential to interpret the results of its security evaluation. That is, in general
a (d − 1)th-order secure implementation is defined as an implementation for
which the smallest key-dependent moment in the leakage distribution is d, and
this is ideally expected to occur for d shares. But in practice, it frequently hap-
pens that glitches (i.e., non-independent leakages) contradict this expectation,
leading to informative moments of smaller orders than d, both in hardware and
software case studies [9,26]. Significant research efforts have been dedicated to
the design of glitch-free implementations, e.g., based on multiparty computa-
tion [42] or threshold implementations [30,32]. However, in the latter case the
number of shares is larger than the claimed order. This, however, highlights the
demand for the ability to determine the exact moment that actually leaks [3].
Simple leakage detection tests (e.g., t-test [44]) can be used for this, however
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they provide only limited information and merely show the existence of leakage
(for a more detailed discussion of the limitations of t-test based leakage detec-
tion see [15]). Eventually, the recent results in [14] showed that by quantifying
the informativeness of each statistical moment in a side-channel attack, one can
extrapolate the security level of an implementation in function of the noise in
its measurements (i.e., a parameter that is typically easier to adapt for HW
engineers).

Contribution. Based on this state-of-the art, our contribution is threefold.

First, we extend the evaluation toolbox for profiled side-channel analysis with
three new PDF estimation tools, based on Exponentially Modified Gaussian
(EMG) distributions, Pearson distribution system and Shifted Generalized Log-
normal (SGL) distributions. As illustrated in the upper left part of Fig. 1, they
allow characterizing statistical moments up to the fourth one, which captures all
most relevant masked implementations published so far.

Second, we show that these tools enable the computation of the information
leakage in each statistical moment of a leakage distribution (up to the fourth
one). We further illustrate that based on such computations, we can design effi-
cient attacks that are able to exploit the information in all the leaking moments
jointly, and that the efficiency of these attacks is proportional to the sum of the
information provided by each moment.

Eventually, we observe that our tools also have applications in the con-
text of non-profiled side-channel analysis, where the adversary assumes some
a-priori model for his target implementation (e.g., typically Hamming weights,
Hamming distances). In this context as well, one can divide existing solutions
between “per moment” and “PDF-based” distinguishers (see the middle right
part of Fig. 1). Usual representatives of the first category include Correlation
Power Analysis (CPA) [6] or its equivalents [25] for first-order moments, and
higher-order DPA [37], Correlation-Enhanced Power Analysis Collision Attacks
(CEPACA) [27] or Moments Correlating Collision-DPA (MCC-DPA) [31] for
higher-order moments. The most common representative of the second cate-
gory is Mutual Information Analysis (MIA) [19], which usually relies on (non-
parametric) histograms or kernels [2], although any PDF estimation tool is in
principle eligible2. We show that MIA based on the previously mentioned PDF
estimation tools (EMG, Pearson, SGL) leads to interesting efficiency tradeoffs
for implementations leaking in moments up to four.

The combination of these tools and methods are valuable inputs for the eval-
uation of the masking countermeasure, since they allow a more accurate under-
standing of its implementation weaknesses due to glitches (or any other physi-
cal default). Furthermore, they are not limited to analysis techniques and also
lead to new attacks exploiting a (practically relevant) combination of moments.
Eventually, we remark that our results raise relevant questions regarding the
so-called simplifying distinguishers in the bottom of Fig. 1. In this context, the
adversary/evaluator does not build a model for every target intermediate value

2 Such as cumulants which are used in [22] to estimate the mutual information.
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but for a combination of them (or of their bits). All the published simplify-
ing distinguishers (e.g., linear regression in the profiled case [43], its on-the-
fly extension [12] and stepwise regression [50] in the non-profiled case) mix a
“per moment” approach [11] with simple (typically Gaussian) PDF estimations.
Hence, finding whether one could combine a simplifying distinguisher (that pro-
vides useful intuitions regarding the parts of the computations that leak more)
with more complex PDF estimation tools as in this paper (that provide similarly
useful intuitions regarding which moments are leaking) remains an interesting
open problem.

2 Background

Generally, density estimation – as a well-studied field in statistics – refers to two
major categories, namely non-parametric and parametric methods. Histograms
and kernels are amongst the well-known non-parametric ones, which do not make
any assumptions about the form of the distribution and use only the sampled
data to estimate the distribution. By contrast, Gaussian density estimation,
which is the most popular parametric PDF estimator, assumes a symmetric
form for the distribution, and characterizes it based on its (sample) mean and
standard deviation only. As mentioned in the introduction, our focus in this
paper is side-channel evaluation, which is commonly based on PDF estimation
for building the leakage models. In this section, we shortly recall some frequently-
applied PDF estimation techniques in the field of side-channel analysis. We only
consider a univariate scenario, which is motivated by our experimental case study
in Sect. 5, that is based on a threshold implementation in which all the shares
are manipulated in parallel.

Notations. The parametric PDF estimators make use of statistical moments
that we specify as follows. Let X be a (univariate) random variable. The
dth-order raw statistical moments are defined as E(Xd), with μ = E(X) the
mean of the distribution and E(.) the expectation operator. The dth-order
central moments are defined as E

(
(X − μ)d

)
, with σ2 = E

(
(X − μ)2

)
the

variance of the distribution. The dth-order standardized moments are defined

as E

((
X−μ

σ

)d
)

, with γ1 = E

((
X−μ

σ

)3
)

the skewness (a measure of the

asymmetry of the distribution, also known as the first shape parameter), and

β2 = E

((
X−μ

σ

)4
)

the kurtosis (a measure of the peakedness of the distribu-

tion, also known as the second shape parameter). Unless otherwise stated, for
simplicity we denote first raw, second central, third (and fourth) standardized
moments by first, second, third (and fourth) moments respectively.

Gaussian Density Estimation. In this case, it is assumed that the leakages
follow a Gaussian (normal) distribution, and the PDF is given by:

F (x) =
1

σ
√

2π
e− (x−μ)2

2σ2 ,
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with μ and σ the estimated mean and standard deviation of the samples. Since a
Gaussian distribution considers only the first two moments, it generally leads to a
more efficient estimation compared to the non-parametric histograms or kernels
(as long as the actual distribution is close enough to a Gaussian one). In other
words, if the higher (>2nd) statistical moments of the underlying distribution of
the samples are negligible, Gaussian density estimation is going to be extremely
efficient. Gaussian Templates and regression-based models are part of the widely-
used tools exploiting such an assumption [16].

Gaussian Mixtures. We mention that yet another approach to PDF estima-
tion for masked implementations would be to consider mixture distributions. As
demonstrated in [48], this solution is especially efficient when the profiling phase
assumes the knowledge of the shares. By contrast, it becomes heuristic – since
based on the Expectation Maximization (EM) algorithm – if they are not [23],
which will be our running scenario in this work. In particular, we will consider
contexts where the different modes of the mixture distributions are well inter-
leaved (i.e. when the noise is large enough for masking to enforce good security
guarantees), which makes the EM algorithm hard(er) to apply and stands in
contrast with contexts where the modes can be trivially identified by the adver-
sary (for example see [29]). That is, our goal is to investigate simple(r) tools that
apply to masking when it delivers its promises and are guaranteed to converge
without any need to guess about the number of shares in the target device.

3 New Proposals

We now describe three alternative parametric distributions that can cover
moments up to the fourth one. We discuss their advantages as well as the chal-
lenges one may face to set the parameters to use them.

3.1 Exponentially Modified Gaussian

Since the Gaussian distribution is symmetric, its skewness is always zero. The
exponentially Modified Gaussian (EMG) is another parametric distribution
which additionally includes this first shape parameter. The PDF of such a dis-
tribution, that covers the first three moments, is defined by [20]:

F (x) =
λ3

2
e

λ3
2 (2λ1+λ3λ2

2−2x)erfc

(
λ1 + λ3λ

2
2 − x√

2λ2

)
, (1)

where λ1, λ2, λ3 are the parameters of the distribution and erfc(.) refers to the
complementary error function defined as:

erfc(x) =
2√
π

∫ ∞

x

e−t2 dt.
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By means of the sample mean μ, standard deviation σ and skewness γ1 of the
data, these three parameters can be estimated as:

λ1 = μ − σ
(γ1

2

)1/3

, λ2
2 = σ2

(
1 −

(γ1
2

)2/3
)

, λ3 =
1

σ
(

γ1
2

)1/3
·

It should be noted that EMG does not cover symmetric distributions, i.e.,
γ1 = 0. However, it usually causes no issue in practice (and in particular for
side-channel attacks) as the estimated skewness is never exactly zero. Neverthe-
less, if the underlying skewness is zero, the estimated skewness might be very
small. These cases can lead to numerical problems, which can be solved by using
libraries for higher precision computations or switching to a distribution which
covers zero skewness (Gaussian, Pearson). Besides, note that for a negative skew-
ness γ1 < 0, the distribution is parametrized with the absolute value |γ1|, and
then mirrored around the mean.

3.2 Pearson Distribution System

The Pearson distribution system is a collection of probability distributions that
can be parametrized using the first four moments. In total twelve different distri-
butions (cf. [33–35]) are defined in such a way that depending on the estimated
moments one type is preferred, and the corresponding PDF estimation technique
is applied. In our experiments we noticed that types I, IV and VI (which are
presented in detail below) are the only necessary ones. For further descriptions of
the other types, the interested reader is referred to the original articles [33–35].

Cautionary Note. Distribution systems like Pearson’s are in general very flex-
ible as they allow characterizing a broad range of combinations of moments.
However, they require the estimation of several PDFs, and may face stability
problems at the transitions between the different types of distributions (which
may occur, e.g., by increasing the number of side-channel samples). Hence, in
these cases, it is preferable to rely on a single distribution.

3.3 Shifted Generalized Lognormal

In [24], Low introduced the Shifted Generalized Lognormal distribution (SGL).
It can be parametrized with the first four moments and covers a large inter-
val of possible combinations of skewness and kurtosis. Both of these properties
are desirable in side-channel evaluations, and therefore this distribution can be
an interesting alternative to the Pearson’s distribution system. The realm cov-
ered by the SGL is vast and we found it to be sufficient for all our practical
experiments.

Concretely, the PDF of the SGL is given by:

F (x) =
1

2λ
1/λ3
3 λ4Γ (1 + 1/λ3)(x − λ1)

e
− 1

λ3λ
λ3
4

∣
∣
∣ln
(

x−λ1
λ2

)∣
∣
∣

λ3

, (2)
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for λ1 < x < ∞, where λ1, λ2, λ3, and λ4 are the distribution parameters and
Γ (.) denotes the gamma function. These parameters can be estimated using the
first four moments. For conciseness, we only give a brief overview of the resulting
estimation problem in the full version of the paper [45], and refer the interested
readers to [24].

3.4 Computational Complexity

The presented parametric methods have all different PDFs with different com-
putation complexities. For SGL, the computation of the parameters from the
first four moments takes considerably longer than for all other discussed distri-
butions. To present some intuitions on the run time of the different PDFs, we
performed experiments using 100 randomly generated sets of moments and run
each PDF3 100 times for each of these sets. Then we computed the average over
all 1000 executions of each PDF. The Gaussian distribution is used as a reference
value and has an average of 0.0034 s on an Intel i5-4200M CPU. The averages
increase with the number of moments considered in the distribution: 0.0082 s
(EMG), 0.029 s (Pearson), 1.70 s (SGL).

4 Simulated Experiments

In order to better understand the interest of the tools proposed in Sect. 3 in the
context of side-channel analysis, we present a couple of simulated experiments.
In the following we use mathematically-generated leakages derived from:

l = HW(s ⊕ c1 ⊕ c2) + HW(c1) + HW(c2), (3)

where HW(.) denotes the Hamming weight function, s a sensitive (secret) 4-bit
variable, and c1 and c2 uniformly distributed random masks in {0, 1}4. Note that
this example is related to any nibble-oriented cipher, e.g., PRESENT [4], and
the basic evaluation procedure presented in this paper does not change for larger
bit sizes. The only adjustment is the number of possible different classifications,
i.e., 2n instead of 24 for n-bit variables. In this simulation it is supposed that the
target is a hardware design where the shares are processed at the same time. This
scenario essentially emulates a second-order Boolean masking scheme, where we
only focus on the encoding of a single variable s in a noise-free situation. In this
context, the first and second moments of the leakage distribution are expected to
be independent of s. For each s ∈ {0, 1}4, we estimate the PDF using both non-
parametric (kernels) and parametric (Gaussian, EMG, Pearson, SGL) tools. The
first four moments for each s, plotted in Fig. 2(a), reveal that there is indeed no
dependency between s and the first two moments (i.e., they remain constant for
all s). Hence, the only way that s can be distinguished is by observing the third
moment. Since kernel-based density estimation considers all possible moments,
it can be used to distinguish s as shown in Fig. 2(b).
3 We implemented three distributions in MATLAB and used the publicly available

pearspdf [5].
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(a) Estimated moments.
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(b) Kernel-based PDF.

Fig. 2. The estimated moments for each possible s ∈ {0, 1}4 (a) and kernel-estimated
PDFs (b) for mathematically-generated leakages corresponding to a 2nd-order masking.
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(a) Gaussian.
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(b) EMG.
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(c) Pearson.
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(d) SGL.

Fig. 3. The estimated PDFs for mathematically-generated leakages corresponding to
a 2nd-order masking, obtained with various parametric tools from Sects. 2 and 3.

By contrast, the third moment is not used to parametrize the Gaussian dis-
tribution and thus each s results in the same distribution in this case (as per
Fig. 3(a)). This example shows why Gaussian density estimation cannot be used
to analyze the leakages that reside in an order higher than two. Eventually, our
newly proposed estimators consider moments up to the fourth one, and therefore
they can be used to quantify the information leakage of our simulated masking
experiment (this can be seen in the remaining part of Fig. 3).

5 Practical Case Studies

To examine the application and efficiency of the above-mentioned solutions, we
consider a threshold implementation of the PRESENT cipher [4] on an FPGA
platform. More precisely, the target design is the Profile 2 presented in [36]
that follows a serialized architecture, i.e., using one instance of the S-box for
the whole SLayer. Such a masked hardware implementation has been selected
for the practical investigations due to its second- and third-order univariate
leakages which allow us to examine our proposed tools. If we would have no
leakage at order three and higher, examining the difference between our tools
and Gaussian would not be possible.
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In the target implementation, the data state is represented by d = 3 Boolean
shares, and the SLayer is based on the 2-stage masked S-box described in [32].
In other words, each S-box on a 4-bit data is implemented in a pipeline fashion
and needs two clock cycles to be computed. For more details on the design
architecture we refer the interested reader to [31,36].

The leakage traces are collected from a Xilinx Virtex-II Pro FPGA embedded
on SASEBO [1]. The sampling rate was set to 1GS/s and the target FPGA clock
was driven at a frequency of 3MHz.

We collected 100,000,000 traces to be used in our experiments. During the
measurements, the PRNG that provides random data (masks) for the sharing
of the plaintext was kept active. We also examined and confirmed the uniform
distribution of the masks.

A former analysis of MCP-DPA by Moradi and Standaert in [31] on the
same implementation revealed that the first pipeline stage of the target S-box
exhibits the most informative leakages. It confirms that no first-order leakage can
be exploited from this implementation, whereas the second and third moments
are indeed informative. It also suggests that second-order leakages are more
informative than third ones. By contrast, and as exhaustively discussed in the
introduction, two important questions remain open. First, can we quantify the
informativeness of the different moments on a (somewhat) more formal basis?
Second, and given that more than a single moment provides information, can we
design an attack that jointly exploits these moments? (which is in contrast with
MCP-DPA that only exploits moments one by one).

Both questions can be answered in the affirmative by the following discussion.
In order to make our results comparable with [31], we focus on the same parts of
the leakage traces. Namely, we analyze the most informative clock cycle in the
S-box execution. Based on this case study, we show that the newly introduced
PDF estimation tools are powerful ingredients for the information theoretic
analysis of a threshold implementation. First, they are able to extract an amount
of information from the traces comparable to a kernel density estimation. Second,
they are useful to estimate the informativeness of each moment, and to perform
attacks based on the best combination of moments carrying significant informa-
tion. Eventually, they can naturally and efficiently be embedded in PDF-based
non-profiled attacks such as MIA.

5.1 Profiled Evaluations and Attacks

First, we examine the information leakage of the target device using an informa-
tion theoretic approach. The idea to use Mutual Information (MI) as an eval-
uation metric was introduced in [46]. It was later refined in [39] to incorporate
the fact that the leakage distribution is only estimated, which can potentially
bias the estimation of the MI. The so-called Perceived Information (PI) is used
to reflect this bias and can be computed as:

P̂ I(S;L) = H[S] −
∑
s∈S

Pr[s]
∑
l∈L

Prchip[l|s] · log2P̂ rmodel[s|l], (4)
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Fig. 4. Kernel-, Gaussian-, EMG-, Pearson- and SGL-based PI estimation with all
covered moments (a) using 100,000,000 meas., (b) over the number of meas.

where Prchip denotes the chip’s true distribution (which is unknown but can be
sampled) and P̂ rmodel refers to the adversary’s estimated model (for which we
have an analytical formula). Computing the PI essentially requires an estimated
P̂ rmodel, which is exactly what our PDF estimation tools provide. In our experi-
ments, we followed the procedure presented in [16] for computing this metric. In
particular, we used 10-fold cross-validation and report the mean of the resulting
PI estimates. We start by looking at the information extracted using all the
moments enabled by each PDF estimation tool. We then analyze (subsets of)
these moments separately.

Combined Moments. In order to compare our proposed solutions (EMG,
Pearson, SGL) with the established ones (kernels, Gaussian), we first compute
the PI using all the covered moments. We estimate P̂ rmodel using the different
estimators and compare the results. As previously mentioned, this experiment
only covers 100 sample points corresponding to the power peak of the targeted
clock cycle. The 100,000,000 traces are divided into 10 sets. For each of the
10 runs we use one of these 10 sets (each with 10,000,000 measurements) as
samples of the chip’s true distributions, and the remaining 9 sets (90,000,000
measurements) to estimate the model distribution (P̂ rmodel). Figure 4(a) contains
the results.

At the first glance, it can be observed that the achieved PI using the Gaussian
distribution to estimate P̂ rmodel is the lowest. This implies that not all available
information is contained in the first two moments (that are the only ones cap-
tured by a Gaussian distribution). More interestingly, kernel-based density esti-
mation is non-parametric and therefore is expected to provide the highest PI if
its bandwidth is well adapted and enough samples are available. Yet, we observe
that this is not exactly the case in our experiments. As depicted in Fig. 4(a)
(where we focus on the most informative sample 719), this is most likely due
to an estimation issue (i.e., a lack of samples). As expected, the non-parametric
kernel density estimation is the slowest to converge in this case. This suggests
an interesting feature of our new parametric tools. Namely, whereas Gaussian
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estimation is very fast but limited to the exploitation of two moments (hence
leads to less efficient attacks, as will be discussed next), EMG-, Pearson- and
SGL-based estimations combine a faster convergence than kernels with a similar
informativeness.

Summarizing, we can conclude that PDFs covering the right combination of
moments lead to the best tradeoff between a fast convergence towards a well
estimated model, and a well-informative model once properly estimated (i.e., a
model for which the PI should be close to the MI [16]). By contrast, the previous
results do not allow to deduce about the relative informativeness of each moment
(which could possibly be used to further speed up the model estimation and
attacks), which motivates the following analysis.

Separate Moments. An interesting property of the parametric estimators is
the ability to consider only selected moments instead of trying to characterize
any possible moment (as in non-parametric estimations). Using the Gaussian
distribution as an example, we can compute the information contained exclu-
sively in the first two moments, as this distribution only considers the mean
and variance. Similarly, it is also possible to compute the PI for the first three
moments (with EMG distributions) and the first four moments (with Pearson’s
distribution system and SGL distributions). In the following, we present an app-
roach that enables us to compute the PI both for each moment taken separately
and for any combination of those.

For this purpose, and taking the case where we focus on a single moment,
we simply have to set all but one of the moments to a fixed value. For example,
suppose that we want to consider the information contained in the first moments
of a Gaussian distribution only. We achieve this by considering a Gaussian model
where the means are estimated as in the previous section, but the variances are
set to a fixed value, which essentially removes any secret-dependent information
they could carry from the templates through the second moments. Since chang-
ing the variances affects the shape of the distributions, the fixed value can be
chosen as the average of the variances (over the 16 templates) to minimize the
distance between the original distributions and the ones with a fixed variance4.
A similar technique actually works for any of our parametric estimators, and for
any (combination of) moments.

As an illustration, let us first recall the influence of the first four statistical
moments on the shape of the resulting distribution. The third moment, called
skewness, measures the asymmetry of the distribution. Therefore, distributions
with positive skewness tend to left while distributions with a negative skewness
tend to the right. The fourth moment, called kurtosis, measures the “peakedness”
(sharpness) of the distribution. As a consequence, the higher the kurtosis, the
sharper is the distribution. Note that we consider only the first four moments in
our analysis, hence we omitted definitions for moments of any further orders.

4 Instead, one can also consider the variance of whole trace set. Here we need only a
fixed value which is not too different from the variance of each template. Such an
approach is not valid in case of Gaussian mixtures as stated in Sect. 2.
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Fig. 5. The PDFs of the six distributions from Tables 1 and 2.

Table 1. The first four statistical moments of four distributions at sample point 719.

Dist. 1 Dist. 2 Dist. 3 Dist. 4 Average

Mean −27.9734310 −27.9811494 −27.9827913 −27.9782609 −27.9789082

Variance 22.3624316 21.9979663 22.2165081 22.2660171 22.2107308

Skewness 0.0075083 0.0053184 0.0131009 −0.0000767 0.0064627

Kurtosis 3.0177549 3.0202503 3.0219293 3.0183596 3.0195735

When we set specific higher-order moments (as in our approach) to specific
values, we actually fix the width of the distributions (i.e., variance), or their right-
left tendency (i.e., skewness) or their sharpness (i.e., kurtosis). Hence, informa-
tion sitting in the corresponding moments does not contribute in the information-
theoretic-based evaluation, e.g., mutual information. We like to emphasize that
the estimated higher-order moments in real side-channel measurements (catego-
rized, for example, based on the processed data) are very slightly different. Con-
sider for example the PDFs of four exemplary distributions shown in Fig. 5(a),
taken from the most leaking point of the measurements of our case study (see
Fig. 4(a)). The first four moments of each distribution are given in Table 1. All
moments of the four distributions are very similar to each other, e.g., the skew-
ness of all these four distributions is only slightly different. Hence, fixing the
skewness of all of them to a specific value (e.g., the average of all skewnesses
given by 0.0064627) does not significantly change the shape of the distributions.

Here we consider four different cases:

1. All moments except the first are fixed to their average (evaluation through
means).

2. All moments except the second are fixed to their average (evaluation through
variances).

3. All moments except the third are fixed to their average (evaluation through
skewnesses)

4. All moments except the fourth are fixed to their average (evaluation through
kurtoses).
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Table 2. The first four statistical moments of two simulated distributions.

Dist. 5 Dist. 6 Average

Mean 4.9997939 7.400773 6.2002834

Variance 10.0032941 149.017440 79.5103671

Skewness 1.7063003 0.377136 1.0417184

Kurtosis 7.8417563 3.648649 5.7452030

For each case, the shape of the resulting distributions is very close to the original
shape in Fig. 5(a). The resulting PDFs of the modified distributions for each case
is provided in the full version of the paper [45].

It should be noted that in case of simulated data with significantly different
moments for each distribution the resulting shapes of each distribution would
be also dramatically different to each other. Therefore in this case, setting the
corresponding moments to a fixed (average) value does not make the distri-
butions to roughly follow the same shape. If such a huge difference between
the moments of the (categorized) distributions exists in practice by any (rare)
chance, the corresponding implementation is significantly vulnerable to certain
attacks. Obviously, this makes the necessity of performing per-moment evalua-
tions questionable. As an example, we show in Fig. 5(b) two simulated distri-
butions formed by the moments from Table 2. It is obvious that the shape of
the distribution with fixed moments is considerably different than that of the
original two distributions. In this case, a per-moment approach would not be
easily possible with an information-theoretic evaluation tool.

We analyze this moment-based investigation based on the same case study
as for the previous information theoretic analysis. Hence, we repeat the previous
experiments (of Fig. 4(a)) with the same parametric estimators (Gaussian, EMG,
Pearson, SGL), but this time we consider each possible moment separately. The
results are depicted in Fig. 6 where the PI curves are categorized based on the
employed estimator. Each part of the figure contains the PI curves obtained for
each moment separately. For example, in Fig. 6(a) the curve labeled Gaussian
(1st) shows the PI achieved for the first moments (and the curve Gaussian (2nd)
depicts the same for the second moments, etc.). Further, we included the PI curve
of the combined moments (taken from Fig. 4(a)) and the sum of the PI curves
of the separate moments (e.g., Gaussian Sum as the sum of the PI curves of
Gaussian (1st) and Gaussian (2nd)).

As expected, the first moment does not contain any exploitable information
as the implementation is first-order secure. It is also noticeable that the chosen
estimator does not affect the PI for the first moment. The second moment leads
to the highest PI, and therefore is the most informative moment. As similarly
indicated by MCP-DPA, the third moment is informative but not as much as the
second one. Furthermore, using two estimators (Pearson, SGL) that also cover
the fourth moment, we are not able to detect any significant information leakage
in the fourth moment. Therefore, a combination of the second and third moments
should suffice to capture most of the available information in the underlying
measurements.
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Fig. 6. PI estimates for the separate moments.

Most interestingly, we observe that the sum of the PI values obtained for
the separate moments is actually close to the PI estimated with the combined
moments. Although informal, this observation is particularly interesting in view
of the recent results by Duc et al. in [14] where the PI values are connected with
the success rate of a (worst-case) template attack using the same model. Indeed,
since the sum of the PI values obtained per moment is essentially the same as
the PI value obtained with the non-parametric kernel method, it implies that in
our case study, the separation between moments did not lead to any significant
information loss. This suggests that a (simple and intuitive) moment-based side-
channel evaluation could be well-founded, at least in certain contexts that would
be worth formalizing. And very concretely, it also means that an attack exploiting
out two informative (i.e., second and third) moments will be close to optimal in
our case.

Profiled Attacks. The results in [14] prove that (under sufficiently noisy leak-
ages) the success rate of a profiled template attack is inversely proportional to
the PI value estimated with the same model. In view of the previous discussions,
it means that our proposed estimation tools (EMG, Pearson, SGL) should lead to
more effective profiled attacks than their counterparts with Gaussian estimation
(because of modeling errors) and kernels (because of assumption errors). Further-
more, the attacks exploiting the second moment should lead to a higher success
rate than attacks exploiting the other three moments. Eventually, the best attack
should exploit the combination of second and third moments. For completeness,
we ran experiments to confirm these expectations. We built univariate templates
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Fig. 7. Success rate of several univariate template attacks exploiting separate and
combined moments, for the most informative sample point 719 in our traces.

(for the most informative sample point 719) from 90,000,000 measurements and,
for each given number of measurements, repeated an attack 1000 times for dif-
ferent measurements (excluding those used for profiling) to compute a subkey
recovery success rate. The results of this last experiment are depicted in Fig. 7
and are well in line with theoretical predictions. In this respect, the most inter-
esting curves are the ones corresponding to the combination of second and third
moments, since they correspond to the best tradeoff between model complexity
and attack efficiency, and could not have been reached with existing side-channel
evaluation tools.

Non-profiled Attacks. A detailed discussion with experimental results is pro-
vided in the full version of the paper [45].

5.2 Selection of Tools

We have discussed multiple parametric tools, each with its own advantages and
disadvantages. Compared to the traditional non-parametric tools, they offer a
higher flexibility and convergence. Therefore, they should be preferred if the
number of samples is too small or a special case (e.g., only two moments) should
be evaluated. The PDF of EMG can be computed very efficiently compared
SGL and Pearson. However, it considers only the first three moments instead
of four. The Pearson distribution system includes the kurtosis and its PDF is
still relatively efficient compared to SGL. Nevertheless, it is made up of multiple
different distributions which can be problematic in certain cases as pointed out
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in Sect. 3.2. Therefore, in scenarios where the computation time of the PDF can
be ignored and the leakages are covered by SGL, it is the preferable tool.

However, the computation time is often a limiting factor and it can be sig-
nificantly reduced in certain cases by choosing a more limited distribution which
is still sufficient to capture all relevant leakage. If the type of implementation
and leakage is known, this choice is easily possible. Gaussian (resp. EMG) is
the preferred choice for leakage which is exclusive in the first two (resp. three)
moments due to its very efficient PDF. Leakage in the fourth moment can be
also efficiently captured with the Pearson distribution system, assuming that the
aforementioned problems do not arise. If the type of masked implementation, i.e.,
the order of masking, is unknown, then this choice of distribution cannot be that
easily made. SGL is the best approach, if the distribution is inside the plane of
existence of SGL.

6 Conclusions

This paper introduced a variety of PDF estimation tools to improve the eval-
uation of leaking devices, both in the profiled and non-profiled settings. Their
main interest is their flexibility: our proposals can indeed capture information
lying in different moments of the leakage PDF. As a result, we can easily analyze
masked implementations and extract useful feedback to hardware designers, i.e.
in terms of how much information is lying in every moment and how to combine
it. This brings a concrete and more founded counterpart the recent evaluations
of implementations with non-independent leakages in [14], where this quantity
of information “per moment” is required. More generally, our findings provide
efficient tradeoffs between the cost of profiling and the efficiency of the resulting
attacks, since they allow adversaries and evaluators to build models that are tai-
lored to their implementations. These results naturally open various interesting
research challenges for future work. As mentioned in introduction, combining
an analysis of moments as in this work with simplifying approaches to leakage
modeling (e.g. based on linear regression) would be even more convenient to
evaluators. Besides, investigating the “summing rule” of Sect. 5.1 more formally
is certainly worth further efforts as well. Eventually, our current tools are lim-
ited to univariate leakages. While this was sufficient to analyze our hardware
case study, it naturally suggests the extension to multivariate case studies as
yet another important question. This is especially interesting given that even
hardware designs with univariate d-order security may include a multivariate
vulnerability for which less than d points are combined [40]. A starting point
for this purpose would be to exploit some popular “combining” functions from
the side-channel literature (which would allow us to exploit our univariate tools
directly).
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