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Abstract. Efficient implementations of public-key cryptographic algo-
rithms on general-purpose computing devices, facilitate the applications
of cryptography in communication security. Existing solutions work in
two different directions: implementations on GPUs achieve high through-
put but great latency, while those on CPUs are with low throughput and
small latency. Intel Xeon Phi is the first highly parallel coprocessor of
Many Integrated Core (MIC) architecture, with up to 61 cores and one
512-bit Vector Processing Unit (VPU) in each core, which offers the
potential to achieve both high throughput and small latency. In this
paper, we propose a vector-oriented Montgomery multiplication design
based on vector carry propagation chain (VCPC) method to fully exploit
the computing power of vector instructions on Intel Xeon Phi. Two key
features of our design sharply reduce the number of instructions: (1)
organizing the additions in Montgomery multiplication to be four VCPCs
for saving the overhead of handling carry bits; (2) computing the inter-
mediate scalar variable q in every round without breaking the flow of
VCPCs. Furthermore, we offer the optimal Montgomery multiplication
implementation of our design on Intel Xeon Phi, which make VPUs fully
pipelined and maintain carry bits in vector mask registers. Based on the
above, we implement RSA named PhiRSA and evaluate it on Intel Xeon
Phi 7120P. For 1024, 2048 and 4096-bit RSA, PhiRSA performs 258,370,
41,803 and 5,358 decryptions per second, and the latencies are 0.94, 5.84
and 45.54 ms, respectively. These results achieve 4.1 to 8.5 times perfor-
mance of the existing RSA implementations on Intel Xeon Phi, exhibit
high throughput comparable to those on GPUs but with much less par-
allel tasks, and small latency comparable to those on CPUs.
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1 Introduction

The computing power of general-purpose processors is enhanced by different
parallelism designs. Firstly, single-instruction-multiple-data (SIMD) enables the
elements of a vector to be processed in parallel. General-purpose CPUs are usu-
ally equipped with vector instruction extensions, such as Intel MMX/SSE/AVX,
ARM NEON and AMD 3DNow. Graphics processing units (GPUs) follow a dif-
ferent parallelism structure, single-instruction-multiple-thread (SIMT), where
thousands of independent threads execute the same instructions concurrently.
Finally, simultaneous-multithreading (SMT) is adopted by both CPUs and
GPUs, to enable instructions from multiple threads (in a GPU thread block
or a CPU core) to be executed in any given pipeline stage at a time.

The GPUs’ potential on public-key cryptographic computing has been inves-
tigated for several years. Thread-level parallelism and thousands of scalar stream
processors in GPUs, produce very high throughput on a great number of simulta-
neous tasks, but greater latency than the scalar-instruction cryptographic imple-
mentations in CPUs [22]. Note that the frequency of GPUs is much lower than
that of general-purpose CPUs, for example, Intel Core i7 CPU reaches up to
3.5 GHz while NVIDIA Tesla K20 is only 706 MHz [30]. The deficiency on latency
limits the applications of GPUs as public-key cryptographic engines in many
scenarios.

In 2012 November, Intel announced the first product family of Many Inte-
grated Core (MIC) architectures, named Intel Xeon Phi. Xeon Phi provides an
opportunity to implement public-key algorithms in a high-throughput and low-
latency way. For example, Xeon Phi 7120P consists of 61 cores, and each core
is shipped with (a) 512-bit SIMD unit, 16-way 32-bit vector instructions, and
(b) 4-way SMT unit, 4 hyperthreads on one core for instruction pipelining. Intel
Xeon Phi, with the computing power in tera floating-point operations per second
(FLOPS), has been applied in the fields of supercomputing, such as molecular
dynamics in [25], sparse matrix multiplication in [27] and large integer arith-
metic in [8,16]. In fact, similar 512-bit SIMD units are supported in Intel Xeon
Skylake and Skylake-E CPUs and will be in Intel Cannonlake CPUs.

This paper presents the first implementation of public-key cryptographic
algorithms with 512-bit SIMD instructions on Xeon Phi, called PhiRSA. In
particular, we evaluate 1024-bit, 2048-bit and 4096-bit RSA on vector instruc-
tions. PhiRSA fully exploits the computing power of Xeon Phi 7120P with the
following designs. Firstly, to perform 512-bit Montgomery multiplication (see
Algorithm 1 for details), the most expensive step of RSA, the intermediate prod-
ucts are organized into four 512-bit vectors; then, these vectors are added using
the vector-add-with-carry instruction vpadcd in each round of the Montgomery
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multiplication’s main loop. After n rounds, the corresponding 512-bit vector in
each round composes a vector carry propagation chain (VCPC). This design
exploits the vector mask registers and does not need to handle the carry bits
after each addition in a round. Secondly, we exploit vector instructions to com-
pute q (see Algorithm 3 for details), without breaking the flow of VCPCs. When
a vector is used to compute q, the carry bit takes effect as the write-mask which
is read-only in the operation; therefore, the correct q is obtained in the each
round of VCPCs but does not break the chains.

The features of SIMD are fully exploited in PhiRSA, as our design magnifies
the advantages of vector instruction extensions of Xeon Phi. Our method outper-
forms greatly the commonly-used redundant representation method in [3,5,10–
12,21]. To avoid handling the carry bits after large-integer addition during Mont-
gomery multiplication, redundant representation stores only 29-bit operands in
each 64-bit element of vectors; then, every product of two elements multiplica-
tion is 58-bit and the additional 6 bits are used to hold addition carries without
overflow. So, it requires extra instructions and vectors to finish the computations.

We implement 1024/2048-bit Montgomery multiplication (and then
2048/4096-bit RSA) based on 512-bit vectors. Two (or four) 512-bit vectors
compose a 1024-bit (or 2048-bit) large integer, and the specific vector instruc-
tion valignd is used to right shift multiple 512-bit vectors of the large integer
during the main loop of Montgomery multiplication. The operations of right shift
and assignment are performed in only one vector instruction, for each 512-bit
vector.

Meanwhile, the benefit of SMT is also kept in PhiRSA. The execution order
of vector instructions is manually optimized to fully activate the pipeline of
vector processing units (VPUs). When 4 threads are launched to perform RSA
computations, the VPU utilization exceeds 90%, that is, almost one instruction
is executed in each cycle.

Our contributions are as follows. Firstly, the vector-oriented designs are pro-
posed to fully exploit the computing power of vector instructions for RSA. Sec-
ondly, we implement these designs on Intel Xeon Phi 7120P efficiently. To the
best of our knowledge, this is the first implementation of public-key cryptogra-
phy on Intel Xeon Phi. The experimental results exhibit both high throughput
and low latency: for 1024-bit, 2048-bit and 4096-bit RSA, PhiRSA achieves the
throughput of 258370, 41803 and 5358 decryptions per second with 244 paral-
lel tasks, and the latency of 0.94 ms, 5.84 ms and 45.54 ms, respectively. This
throughput is about 40 times of OpenSSL [23] on a single core of Intel Haswell
i7-4770R, and the latency is about 5 times. Our throughput is higher than the
best implementation [32] on GPUs [32], and the latency is reduced to about 25%
only.

The rest of the paper is organized as follows. Section 2 is the related work. The
preliminaries about Intel Xeon Phi and Montgomery multiplication are presented
in Sect. 3. Section 4 describes the design of our Montgomery multiplication. In
Sect. 5, we show how to implement Montgomery multiplication and RSA on Intel
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Xeon Phi. In Sect. 6, performance results of our Montgomery multiplication and
RSA implementations are given and compared with other works. We conclude
in Sect. 7.

2 Related Work

There have been amount of studies using vector instructions to implement large
integer multiplication, Montgomery multiplication and public-key cryptography.
These works can be classified into three groups. The first group and also the main
choice is storing the large integers in vectors horizontally for fine-grained paral-
lel. Intel SSE2 instruction set has been exploited for large integer multiplication
in [21] and cryptographic pairing computation in [11]. Redundant representation
method proposed in [21] is widely used in vector implementations to help delay
the carry propagation. Intel AVX2 instruction set is also applied to modular expo-
nentiation in [12] and Curve25519 implementation in [10]. ARM NEON instruc-
tion set is explored to implement Montgomery multiplication in [28], Curve41417
in [3] and RSA in [29]. On Cell platform, an approach to implement Montgomery
multiplication is described in [5]. The second group is splitting the Montgomery
multiplication into two parts to compute in parallel. This approach is studied in
[6] for 2-way vector instruction sets like Intel SSE2 and ARM NEON. The third
group is using the vector instructions to carry out multiple tasks in parallel. Com-
puting multiple Montgomery multiplications simultaneously in vector elements is
investigated on Intel SSE2 instruction set in [24] and the Cell processor in [4].

Many previous studies have proved that GPUs are suitable for asymmetric
cryptography. Most of them are based on the integer computing power of GPU,
such as [1,31]. The floating-pointing power is also explored in [2,32]. For 2048-bit
RSA GPU implementation, the highest throughput is reported in [32] and the
lowest latency is obtained by [31].

Intel Xeon Phi is launched as a brand-new high performance computing plat-
form, which performance has been evaluated in [9]. Large integer multiplication
is firstly evaluated on Intel Xeon Phi in [16]. This work implements multiplication
by using the usual redundant representation method described in [12]. While the
study in [7] firstly implements multiplication and RSA based on the idea of carry
propagation and endeavors to minimize memory footprints for reducing memory
accesses. However, the results of these two studies are barely satisfactory and
the computing power of Intel Xeon Phi has not been fully exploited.

3 Preliminaries

3.1 Overview of Intel Xeon Phi

Intel Xeon Phi comprises of up to 61 cores and every core possesses arithmetic
logic units (ALUs) and one 512-bit VPU which provides the major computing
power. The cores are in-order and pipelined. Each core supports four hyper-
threads to keep the execution units busy and hide memory access latencies.
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If the instructions are fully pipelined, the throughput of VPUs gets up to one
vector instruction per cycle. There are L1 cache and L2 cache in each core and
GDDR5 memory on board. The coprocessor communicates with the host through
Peripheral Component Interconnect Express (PCIe) interface. The coprocessor
OS based on an open-source Linux kernel runs on the coprocessor to manage
resources and process applications. There are two predominant programming
models for Intel Xeon Phi, offload execution mode and native execution mode.
In native execution mode, the application is cross-compiled and runs directly on
the coprocessor OS.

Intel Xeon Phi Instruction Set Architecture [13] introduces 512-bit vector
instructions operating on thirty-two 512-bit vector registers (zmm0-zmm31),
and offers eight 16-bit vector mask registers (k0-k7) for conditional operations
on data elements within vector registers. One vector register consists on either
sixteen 32-bit elements or eight 64-bit elements while the vector instructions
executive operations on each element. The vector mask registers have many
applications, the major is playing as write-mask to protect elements in the des-
tination from updates during the execution of any operations. If a write mask
bit is zero, the corresponding destination element is not modified. Vector mask
registers can also be used for keeping carry bits, borrow bits and comparison
results. Intel Xeon Phi does not support MMX, SSE and AVX instruction set,
but introduces amount of novel vector instructions. For example, the vector-
add-with-carry instruction vpadcd is extremely useful in large integer arithmetic,
presented as follows.

vpadcd (zmm2/memory), k2, zmm1{k1}

This instruction performs an element-by-element three-input addition between
int32 vector zmm1, a int32 vector in memory or int32 vector zmm2, and the
carry bits in k2. The result is written into zmm1, and the carry bits produced
by the addition are written into k2. The instruction performing is controlled by
the write-mask k1. Some other vector instructions are used in this paper. The
instruction vpmulhud and vpmulld perform element-by-element multiplications
between int32 vectors and store the high 32-bit result or the low 32-bit result
respectively. The instruction vpermd performs an element permutation by using
int32 vector elements as source indices. The instruction valignd concatenates
and shifts right several 32-bit elements from two vectors.

3.2 Montgomery Multiplication

The major computations of RSA are modular multiplication. The modular reduc-
tion would be very costly if performing division operations. Montgomery multi-
plication [20] is proposed to replace division operations by cheaper multiplication
and shifting operations. Let M be an odd modulus, R = 2n and M < R, Mont-
gomery multiplication is defined as MontMul(A, B) = A · B · R−1 (mod M).
The process of calculating A ·B (mod M) based on Montgomery multiplication
can be computed as follows: ˜A = MontMul(A, R2), ˜B = MontMul(B, R2),
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then ˜C = MontMul( ˜A, ˜B), finally C = MontMul( ˜C, 1), C is the result. If
executing a sequence of modular multiplications, such as the modular expo-
nentiation, one modular multiplication only needs to perform one Montgomery
multiplication. Koḑ et al. proposed an interleaved Montgomery multiplication,

Algorithm 1. Montgomery multiplication CIOS method [19]
Input: Modulus M , R = 2nw, R > M , gcd(M, R) = 1, 2w is radix, n is digits number

0 � A,B < M , B =
∑n−1

i=0 bi2
iw, µ = −M−1 mod 2w

Output: S = A · B · R−1 (mod M), 0 � S < M .
1: S ← 0
2: for i from 0 to n − 1 do
3: S ← S + A · bi
4: q ← S[0] · µ mod 2w

5: S ← S + M · q
6: S ← S/2w

7: end for
8: if S � M then
9: S ← S − M

10: end if
11: return S

named Coarsely Integrated Operand Scanning (CIOS) method [19] described in
Algorithm 1. This method interleaves multiplication and Montgomery reduction,
which is suitable to be implemented by vector instructions.

4 Montgomery Multiplication Design

In this section, we describes Montgomery multiplication design based on vector
carry propagation chain (VCPC) method and the computation the intermedi-
ate scalar variable q. Then, we analyse the expected performance of our design
and compare with the redundant representation method in [12]. Especially, we
give out the vector length Montgomery multiplication (Algorithm 3) in Section
Appendix as an example.

4.1 Vector Carry Propagation Chain Method

(1) Four VCPCs. As described in Algorithm 1, the main computations of
Montgomery Multiplication CIOS Method are S ← S +A · bi and S ← (S +M ·
q). Note that, this two formulas perform the same computation with different
operands. The computing process is to multiply a vector with an element, then
add the multiplication product to the sum vector S. We exploit Intel Xeon Phi
vector instructions to carry out this computation. The logic instructions are
used in this section for better clarification. We use Mullow, Mulhigh and Vadc
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standing for vpmulhud, vpmulld and vpadcd. We assume that the length of S is
equal to one vector. The formula S ← S + A · bi is computed in the following
steps.

T ← Broadcast(bi)
L ← Mullow(A, T )
H ← Mulhigh(A, T )
S ← S + L

S ← S + H

The step 1 and step 2 are easy to be carried out, but the products L and
H are not the final multiplication product and the least significant element of
H is aligned with the 2nd less significant element of L. The step 3 and step 4
must be computed by using Vadc instruction. We focus on L and S, extract the
corresponding computations from Montgomery multiplication in Algorithm 1.
As the integer L in i-th loop is higher one element than the integer L in (i-1)-th
loop, and also S shift to the right for a element, so L is aligned to S at all times.
We use Vadc instruction to overwrite the upper computing process 1 and will
demonstrate computing process 2 completes the same calculation as computing
process 1:

for i from 0 to n − 1
T ← Broadcast(bi)
L ← Mullow(A, T )
S ← V adc(S, k1, L)
S ← Rshift(Zero, S, 1)

k1 is a vector mask register for storing carry. Rshift is used to stand for valignd
which concatenates two vector and shifts the whole long vector to the right in
32-bit elements, stores the lower vector to the destination register. We observe
that in each loop before performing Vadc, S, k1 and L are all aligned, so they
can be add together by using Vadc directly. After performing Vadc, the carry
bits in k1 are propagated forward in a element. While after performing Rshift
in this loop and Mullow in the next loop, L and S are also higher a element
than before. So when it is to perform Vadc in the next loop, L, S and k1 are all
aligned, and can be add together by using Vadc directly. So computing process
2 has completed the calculation in computing process 1, except has not added
the carry k1 back to S after the last round of the loop.

Based on all the above observation, we propose the notion Vector Carry
Propagation Chain (VCPC), which describes a process: a group of vectors like
S, L and a carry like k1 are added together in a chain to propagate k1 forward in
a element after each round. Propagating carry k1 only need one Vadc instruction
in a round of VCPC and adding k1 back to S is only performed at the end of
VCPC (also known as handing carry). So VCPC very efficiently works out the
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carry propagation problem (the carry needs to propagate to the higher element).
The strategy of VCPC is just propagating carry forward, delaying to handle it.

We propose a design as named VCPC method to overwrite major computa-
tions of Algorithm 1 by using VCPC.

The computing process 3 comprises four VCPCs. The VCPC 1 is Vadc(S,
k0, L), L is the product of Mullow(A, bi). The VCPC 2 is Vadc(S, k1, L), L is
the product of Mullow(M, q). The VCPC 3 is Vadc(S, k2, H), H is the product of
Mulhigh(A, bi). The VCPC 4 isVadc(S, k3, H), H is the product ofMulhigh(M, q).
4 VCPCs uses 4 vector mask registers k0, k1, k2 and k3 to propagating 4 carries
respectively.

for i from 0 to n − 1
L ← Mullow(A, bi)
S ← Vadc(S, k0, L)
L ← Mullow(M, q)
S ← Vadc(S, k1, L)
S ← Rshift(Zero, S, 1)
H ← Mulhigh(A, bi)
S ← Vadc(S, k2, H)
H ← Mulhigh(M, q)
S ← Vadc(S, k3, H)

VCPC 1 and VCPC 2 are performed before S shifting to the right, because
the L computed in two VCPCs are aligned to S before shift. While H computed
in VCPC 3 and VCPC 4 are aligned to S after shift, so VCPC 3 and VCPC 4
are performed after S shifting to the right. At the start of each round, there are
vector S and four carries k0, k1, k2 and k3, and k0 and k1 are aligned to S, the
lowest bit of k2 and k3 are aligned to the second less significant element of S.
In the end of each round, S and carries k0, k1, k2 and k3 are all move to more
significant position in a element, and also maintain that k0 and k1 are aligned
to S, the lowest bit of k2 and k3 are aligned to the 2nd less significant element
of S. So the four VCPCs in computing process 3 can be maintained to end of
the loop.

(2) Handling Tail. At the end of our Montgomery multiplication design, han-
dling tail must be performed, which includes two steps: handling carry and reduc-
ing S. Handling carry is used to add all the carry vectors produced by VCPCs
to the sum vectors S. First, we add carry vectors to a vector which initial value
is zero. Then, we add this vector to S. As Intel Xeon Phi does not have the
instruction to shift vector mask register, we use the LMove to copy the carry to
the general purpose register and perform left shift, then copy the carry back to
the vector mask register. In the worst case, it will need to perform s− 1 rounds
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move-shift-move operations, but usually only need one round. As presented in
Algorithm 1, reducing S is used to ensure the output of Montgomery multipli-
cation is smaller than modulus M. For the constant running time, reducing S
is always performed. We use vector-sub-with-borrow instruction vpsbbd to per-
form subtraction just like addition. Handling borrow requires s − 1 rounds in
the worst case, and performs two rounds in a greater chance. For performance
reasons, the rounds of move-shift-move are not constant. While attackers can
hardly get useful information from the running time of move-shift-move.

4.2 Computing q

The intermediate scalar variable q is produced and used for multiplications in
Algorithm 1. q is computed as q ← S[0] · µ mod 2w, which is very easy to be
computed in other Montgomery multiplication design, such as redundant repre-
sentation method. But in our Montgomery multiplication design, computing q
is not easy as the carries are maintaining for propagation.

Note that, q computation is carried out by Q ← Mullow(S,U), U =
Broadcast(µ), q = Q[0]. But if we only perform this operation, q may be not
correct. As we analyse the relations between q, four VCPCs and four carries,
we can see that VCPC 2 and VCPC 4 need q to compute multiplications, and
VCPC 2 propagates k1. If k1 has not be added to S (k1 propagates forward),
the S[0] may not be right since without being added carry bit k1[0]. So there is
a contradiction that computing q requires k1 propagation forward, while prop-
agating k1 (VCPC2) requires computing q first. If we add zero vector, k1 to S
to obtain the right S, the k1 would propagate forward without adding with the
product of Mullow(M, q), which will break the VCPC 2, also destruct the VCPC
method.

The obvious solution is trial addition which performs an addition to acquire
the right S[0] and does not modify k1. As depicted in Sect. 3, vpadcd is a three-
operand instruction, carry k2 (see Sect. 3) is the source operand also the des-
tination operand which means that the old value in k2 will be destructed by
the new value. So k1 in VCPC2 must be copied for trial addition which need
two operations copying of k1 and adding the new carry register to S. The draw-
backs of trial addition are requiring an extra copy instruction, what’s worse, an
additional vector mask register (only 8 vector mask registers in a core [26]).

We propose an artistic method to compute q by using write-mask vector.
The right counting process of q in VCPC method is q ← (S[0] + k1[0]) · µ, we
rewrite it as q ← S[0] · µ + k1[0] · µ. We implements this formula by following
two instructions:

Q ← Mullow(S, U)
Q ← Vadd(Q, U){k1}

Vadd is a normal vector addition instruction without carry. We use k1 as write-
mask for Vadd. if k1[0] is 1, Q[0] will add a µ; if k1[0] is 0, Q[0] will not be
modified, so the value of q is correct. As the write mask is read-only, it would
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not be modified. Our method does not require an extra move instruction, also no
need for an extra vector mask register. The most interesting idea of our method
is using the carry vector as write-mask vector.

4.3 Performance Analysis

In this section, we analyse the performance of our Montgomery multiplication
design (VCPC method) and compare with Redundant Representation (RR)
method which is presented in [12].

We assume the length of element is w, the number of elements in a vector is
n, the length of a vector is s (s = w ∗n) and the length of arguments is l. So the
number of rounds in our design is �l/w�. And the number of vectors is �l/s�. So
in every rounds, it needs to perform 2 ∗ �l/s� Mullow, 2 ∗ �l/s� Mulhigh, 4 ∗ �l/s�
Vadc, �l/s� RShift, 2 operations to compute the intermediate scalar variable q
and 2 Broadcast (bi and q), which is equal to 9∗ �l/s�+4. Therefore, for VCPC
method, the total number of instructions is about �l/w� ∗ (9 ∗ �l/s� + 4) (not
including handling tail, which does not need many instructions).

RR method has two drawbacks: the first is need double spaces to store all
the arguments and temporal variables, the second is the several high bits needed
to be reserved for storing carries which can not involve in multiplications. For
example, for 1024-bit Montgomery multiplication, RR method divides all the
arguments and temporal variables into 29-bit parts for remaining high 6-bit (in
64-bit element) to maintain carries. So RR method need more than double vec-
tors to store the arguments and variables than VCPC method. For RR method,
we assume the number of reserve bits is t (in 32-bit element), which generally
meets 2 ∗ �l/w� � 2t, otherwise it needs to perform cleanup operation during
Montgomery multiplication. The number of rounds in RR method is �l/(w− t)�.
The number of vectors is 2 ∗ �l/((w − t) ∗ n)� = 2 ∗ �l/(s − t ∗ n)�. So in every
rounds, it need to carry out 4 ∗ �l/(s− t ∗ n)� multiplications, 4 ∗ �l/(s− t ∗ n)�
additions, 2 ∗ �l/(s− t ∗n)� RShift, 2 operations to compute q and 2 Broadcast,
which is equal to 10∗�l/(s− t∗n)�+4. Hence, for RR method, the total number
of instructions is �l/(w − t)� ∗ (10 ∗ �l/(s − t ∗ n)� + 4).

Table 1. Comparison with redundant representation method

RR method VCPC method

Vector number 2 ∗ �l/(s − t ∗ n)� �l/s�
Instructions/round 10 ∗ �l/(s − t ∗ n)� + 4 9 ∗ �l/s� + 4

Round �l/(w − t)� �l/w�
Instructions �l/(w − t)� ∗ (10 ∗ �l/(s − t ∗ n)� + 4) �l/w� ∗ (9 ∗ �l/s� + 4)

As presented in Table 1, compared with RR method, VCPC method needs
less rounds and less instructions in each round. Consequently, VCPC method
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needs less instructions than RR method. For example, we want to compute
1024-bit Montgomery multiplication on Intel Xeon Phi. The element length w
is 32, element number in a vector n is 16, the vector length s is 512, the length
of arguments l is 1024, the number of reserve bit t is 3 (in 32-bit element). So
VCPC method requires 32 rounds, 22 instructions in each round, so that requires
about 704 instructions. RR method requires 36 rounds, 34 instructions in each
round, so that requires about 1224 instructions. VCPC method only needs a
factor of 0.58 instructions than RR method.

5 Implementation

In this section, we describe the implementations of Montgomery multiplication
and RSA on Intel Xeon Phi. We choose assembly language instead of intrinsics
in C language to implement Montgomery multiplication for fully controlling
registers. Besides, we choose native execution mode [26] for our implementations
as the ultimate performance can be evaluated in this mode.

5.1 Montgomery Multiplication Implementation

We implement 512-bit, 1024-bit and 2048-bit Montgomery multiplication on Intel
Xeon Phi. Although our design provides the scheme with minimal instruction
number, the implementation must be optimized to make the execution cycle
approach to the instruction number. Two implementation issues are mainly con-
cerned: making VPUs fully pipelined and maintaining carry bits in vector mask
registers.

(1) Making VPUs Fully Pipelined. Data-dependencies in the instruction
flow may cause pipeline stalls of VPUs. If an instruction about to be executed has
to wait for the operands written by the previous instruction for several cycles,
in the meantime no other instructions enter the pipeline, the cycles of VPUs
will be wasted and performance will be compromised. First of all, we need to
investigate the latency of instructions we used. As presented in [15], most vector
instructions are four-cycle latency. We measure vector instruction latency by
ourselves. The assessment results are presented in Table 2.

Table 2. The latencies of vector instructions on Intel Xeon Phi

Instruction vpmulhud vpmulld vpadcd vpermd valignd

Cycles 4 4 4 6 7

As every core of Intel Xeon Phi has four hyperthreads, the four-cycle instruc-
tions (vpmulhud, vpmulld and vpadcd) can be fully pipelined, even though the
instructions are data-dependent. But data-dependent vpermd and valignd are
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not easily pipelined. We observe that if vpermd and valignd do not use the data
produced by the prior instruction, they can be fully pipelined. As the cores of
Intel Xeon Phi are in-order, every vector instruction will be performed in terms
of the sequence in the assembly code. So we manually adjust the sequence of
instructions in our Montgomery multiplication implementation. The assembly
code of one round in 512-bit Montgomery multiplication is presented in ASM
Code 1. We insert the data-independent instructions (green ones) into the posi-
tions of pipeline stalls (red ones). Then we carry out four threads on one core
as each thread executes ASM Code 1 repetitively, the result shows that the exe-
cution only requires 12.2 cycles per round which means the utilization of VPUs
reaches 98%.

ASM Code 1 Adjusted
1: vpmulld %zmm2{aaaa}, %zmm1, %zmm10
2: vpadcd %zmm10, %k0, %zmm0
3: vpmulld %zmm0, %zmm4, %zmm6
4: vpaddd %zmm6, %zmm4, %zmm6{%k2}
5: vpmulhud %zmm2{aaaa}, %zmm1, %zmm11
6: vpermd %zmm6, %zmm5, %zmm6
7: vpmulld %zmm6, %zmm3, %zmm12
8: vpadcd %zmm12, %k2, %zmm0
9: vpmulhud %zmm6, %zmm3, %zmm13

10: valignd $1, %zmm0, %zmm5, %zmm0
11: vpadcd %zmm11, %k1, %zmm0
12: vpadcd %zmm13, %k3, %zmm0

(2) Maintaining Carry Bits in Vector Mask Registers. As 2048-bit Mont-
gomery multiplication has sixteen VCPCs, it will produce sixteen carry vector
every round. However, each core of Intel Xeon Phi has only eight vector mask reg-
isters. Although the instruction kmov can move data between vector mask regis-
ters and general purpose registers, frequent exchanging data will rouse gigantic
performance loss. So maintaining carry bits in vector mask registers is essential.
We split 2048-bit Montgomery multiplication implementation into four parts and
every parts is similar to 1024-bit Montgomery multiplication implementation but
without handling tail phase. Outside of these four parts, we need to handle carry
bits two times. As every parts have eight VCPCs and the computation of scalar
variable q will not break the flow of VCPCs, all carry bits in every round can be
kept in vector mask registers.

5.2 RSA Implementation

We apply our Montgomery multiplication implementation to realize PhiRSA
based on CRT method [18], which computes m-bit RSA by performing two
(m/2)-bit Montgomery exponentiations. We also utilize m-ary method [17] to
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accelerate Montgomery exponentiations with the precomputed table. 25-ary
method is applied for 1024-bit RSA and 26-ary method is applied for 2048-
bit RSA and 4096-bit RSA. To complete CRT method, we implement a school-
book multiplication, addition and subtraction on Intel Xeon Phi. The differences
between implementations of multiplication and Montgomery multiplication are
that the multiplication implementation has only two VCPCs, don’t need to shift
right every round and must save the double size product. Our multiplication
implementation is very efficient as it also make VPUs fully pipelined.

6 Experimental Results

In this section, we conduct the experiments to evaluate our Montgomery multi-
plication implementations and RSA implementations on Intel Xeon Phi 7120P
processor (1.33 GHz), and compare with the other studies on Xeon Phi, CPUs
and GPUs. The configurations of our evaluation platform are described as fol-
lows: the coprocessor is Intel Xeon Phi 7120P, the host CPU is Intel Xeon E5
2697v2, the operating system is RedHat 6.4, and the compiler is Intel Composer
XE 2013.

6.1 Implementation Result

We execute 244 threads running on 61 cores and bind four threads to each core
for 4-way hyper-threading to avoid the performance loss of the thread migra-
tion. Vector Instruction Number in table indicates the number of assembly
instructions and Execution Cycles denotes the real execution time. If VPUs
reach the maximum performance that one instruction per cycle, VPU Uti-
lization is 100%. We also evaluate the throughput and the latency. Through-
put/Thread denotes the performance of one thread, which is equal to Through-
put/244. Table 3 summarizes the performance of 512-bit, 1024-bit and 2048-
bit Montgomery multiplication implementations. It shows that VPU Utiliza-
tions of all the implementations are above 92%. Note that, Execution Cycles
are almost four times of Vector Instruction Number which dues to four
threads performing on one core for pipelining. So VPU Utilization are equal
to 4(V ectorInstructionNumber)/(ExecutionCycles). Table 4 shows evaluation
results of 1024-bit, 2048-bit and 4096-bit RSA. VPU Utilizations of RSA imple-
mentations are also above 90%.

6.2 Comparisons with the Previous Works on Intel Xeon Phi

(1) Comparison with the Implementation of Redundant Representa-
tion. The work in [16] applies redundant representation method to implement
multiplication, which only provides the number of instructions. As the compu-
tation of the schoolbook multiplication is about one half of Montgomery mul-
tiplication, we double the instruction number in [16] for a rough comparison.
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Table 5 shows that our implementation needs no more than one tenth of instruc-
tions compared with their implementation. The major reason is that our Mont-
gomery multiplication design requires less instructions than redundant repre-
sentation method inherently. Another reason is this generation Intel Xeon Phi
(Knights Corner, KNC) does not support the multiplication instruction like
vpmuludq in AVX2 [14] which needed in redundant representation method. So
our design is not only better than redundant representation method but more
suitable for Intel Xeon Phi (KNC).

Table 3. Performance of Montgomery multiplication on Intel Xeon Phi

Montgomery multiplication

512-bit 1024-bit 2048-bit

Thread number 244 244 244

Core number 61 61 61

Vector instruction number 218 724 2797

Execution cycles 948 3076 12211

VPU utilization 92% 94% 92%

Throughput (106/s) 343.78 105.73 26.64

Throughput/thread (106/s) 1.41 0.43 0.11

Latency (µs) 0.71 2.31 9.16

Table 4. Performance of RSA decryption on Intel Xeon Phi

RSA decryption

1024-bit 2048-bit 4096-bit

Window size: 5 Window size: 6 Window size: 6

Thread number 1 244 1 244 1 244

Core number 1 61 1 61 1 61

Vector instruction number
(106/op)

0.28 0.28 1.82 1.82 13.7 13.7

Execution cycles (106/op) 0.91 1.26 3.97 7.78 29.71 60.66

VPU utilization 31% 90% 46% 94% 46% 90%

Throughput (/s) 1466 258370 336 41803 45 5358

Throughput/thread (/s) 1466 1059 336 171 45 22

Latency (ms) 0.68 0.94 2.98 5.84 22.29 45.54
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Table 5. Comparisons with the implementation of redundant representation on Intel
Xeon Phi

512-bit MontMul
(instructions)

1024-bit
MontMul
(instructions)

2048-bit
MontMul
(instructions)

Keliris et al. [12] (Scaled) 3846 9498 28776

Our VCPC method 218 724 2797

(2) Comparison with the Implementation of Carry Propagation.
The work in [7] firstly uses carry propagation to implement multiplication

and RSA on Intel Xeon Phi 5110P. As described in Table 6, the throughput in
[7] is scaled to Intel Xeon Phi 7120P. Our implementations achieve 4.1 to 8.5
times performance of the scaled results. There are three possible reasons: (1) the
Extract and Store operations are very cost; (2) using multiplication to compute
Montgomery multiplication is not the best way; (3) intrinsics in C language can
not fully control registers.

Table 6. Comparison with the implementation of carry propagation on Intel Xeon Phi

512-bit RSA-1024
throughput (/s)

1024-bit
RSA-2048
throughput (/s)

2048-bit
RSA-4096
throughput (/s)

Chang et al. [7] (Scaled) 1310 7217 30282

Our VCPC method 5358 41803 258370

6.3 Comparisons with the Implementations on CPUs and GPUs

Table 7 shows the comparisons with the best implementations on CPUs and
GPUs. Compared with CPU implementation in OpenSSL [23] which evaluated
on Intel i7 4770R, the throughput of our implementation is about 40 times
of a single CPU core, and the latency is about 5 times. The throughput of
one core on Intel Xeon Phi is about a factor of 0.6 compared with one CPU
core, which is due to the higher frequency of CPU core (3.2 GHz). On GPU
platform, the integer implementation in [31] has the lowest latency so far which
evaluated on NVIDIA GT 750m, and the floating-pointing implementation in [32]
has the highest throughput until now which evaluated on NVIDIA GTX Titan.
Compared with [31], the throughput of our implementation is about 7 times, and
the latency is no more than 90%. And compared with [32], the throughput of our
implementation is about 1.07 times, and the latency is only 26%. So PhiRSA has
the advantage on achieving high throughput and small latency simultaneously.
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Table 7. Comparisons with the implementations on CPUs and GPUs

RSA decryption OpenSSL 1.0.1f
[23]

Yang et al. [31] Zheng et al. [32] Our native
implementa-
tions

Platform Intel Haswell NVIDIA GT NVIDIA GTX Intel Xeon Phi

i7 4770R 750m Titan 7120P

Core number 4 384 2688 61

Frequency
(GHz)

3.2 0.967 0.836 1.33

Computing
power (SP
GFLOPS)

410 743 4500 2600

RSA-1024
throughput (/s)

25850 34981 - 234981

RSA-2048
throughput (/s)

3427 5244 38975 41803

RSA-4096
throughput (/s)

485 - - 5358

RSA-1024
latency (ms)

0.16 2.6 - 1.04

RSA-2048
latency (ms)

1.17 6.5 22.47 5.84

RSA-4096
latency (ms)

8.26 - - 45.54

7 Conclusions

In this contribution, we propose a novel vector-oriented Montgomery multiplica-
tion design and implementation to fully exploit the computing power of vector
instructions on Intel Xeon Phi. Based on the above, we implement RSA named
PhiRSA. PhiRSA is much better than the existing RSA implementations on
Intel Xeon Phi which attains 4.1 to 8.5 times performance. Our results also
demonstrate that Intel Xeon Phi can be used to achieve both high throughput
and small latency for RSA. On Intel Xeon Phi 7120P, PhiRSA achieves high
throughput comparable to the implementations on GPUs but with much less
parallel tasks, and small latency comparable to the implementations on CPU.
PhiRSA and our Montgomery multiplication implementation can be applied to
implement other cryptographic algorithms as primitives. We will also integrate
PhiRSA into OpenSSL in the future.

A Appendix

Algorithm 3 is vector length Montgomery multiplication.
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Algorithm 3. Vector length Montgomery multiplication
Input: 2w is radix, n is element number, vector size is s = n ∗ w

R = 2s, Modulus M is s-bit number, M < R,

gcd(M, R) = 1, µ = −M−1 mod 2w

A, B are s-bit number, 0 � A,B < M , B =
∑n−1

i=0 bi2
iw

Output: S = A · B · R−1 (mod M), 0 � S < M

1: k0 ← 0, k1 ← 0, k2 ← 0, k3 ← 0

2: S ← 0, Zero ← 0,

3: U ← Broadcast(µ)

/* VCPC Phase */

4: for i from 0 to n − 1 do

5: T ← Broadcast(bi)

/* VCPC 1: S + k0 = S + k0 + Low(A · bi) */

6: L ← Mullow(A, T )

7: (S, k0) ← Vadc(S, k0, L)

/* q ← (S[0] + k1[0]) · µ */

8: Q ← Mullow(S, U)

9: Q ← Vadd(Q, U){k1}
10: Q ← Broadcast(Q[0])

/* VCPC 2: S + k1 = S + k1 + Low(M · q) */

11: L ← Mullow(M, Q)

12: (S, k1) ← Vadc(S, k1, L)

/* Right Shift: S = S � 1 element */

13: S ← RShift(Zero, S, 1)

/* VCPC 3: S + k2 = S + k2 + High(A · bi) */

14: H ← Mulhigh(A, T )

15: (S, k2) ← Vadc(S, k2, H)

/* VCPC 4: S + k3 = S + k3 + High(M · q) */

16: H ← Mulhigh(M, Q)

17: (S, k3) ← Vadc(S, k3, H)

18: end for

/* Tail Phase */

/* Handling carry */

19: (T, k0) ← Vadc(Zero, k0, Zero)

20: (S, k1) ← Vadc(S, k1, T )

21: (T, k1) ← Vadc(Zero, k1, Zero)

22: (T, k2) ← Vadc(T, k2, Zero)

23: H ← Rshift(Zero, S, 1)

24: (H, k3) ← Vadc(H, k3, T )

25: for i from 0 to n − 2 do

26: if k3 = 0 then

27: BREAK

28: end if

29: (H, k3) ← Vadc(H, k3, Zero)

30: k3 ← Lmove(k3)

31: end for

32: S ← Rshift(S, zero, 1)

33: S ← Rshift(H, S, n − 1)

/* Reducing */

34: if H[n − 1] = 1 then

35: (S, k0) ← Vsbb(S, k0, M)

36: H ← Rshift(Zero, H, n − 1)

37: H ← Rshift(H, S, 1)

38: for i from 0 to n-2 do

39: if k0 = 0 then

40: BREAK

41: end if

42: (H, k0) ← Vsbb(H, k0, Zero)

43: k0 ← Lmove(k0)

44: end for

45: end if

46: S ← Rshift(S, zero, 1)

47: S ← Rshift(H, S, n − 1)

48: return S.
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