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Abstract. This paper provides security analysis of lightweight block
cipher Lilliput, which is an instantiation of extended generalized Feis-
tel network (EGFN) developed by Berger et al. at SAC 2013. Its round
function updates a part of the state only linearly, which yields several
security concerns. The first important discovery is that the lower bounds
of the number of active S-boxes provided by the designers are incor-
rect. Then the new bounds are derived by using mixed integer linear
programming (MILP), which shows an interesting fact that the actual
bounds are better than the designers originally expected. Another con-
tribution is the best third-party cryptanalysis. Owing to its unique
computation structure, the designers expected that EGFN efficiently
enhances security against integral cryptanalysis. However, the security
is not enhanced as the designers expect. In fact, division property, which
is a new method to find integral distinguishers, finds a 13-round distin-
guisher which improves the previous distinguisher by 4 rounds. The new
distinguisher is further extended to a 17-round key recovery attack which
improves the previous best attack by 3 rounds.

Keywords: Block-cipher · Lilliput · Extended generalized Feistel
network · Mixed integer linear programming · Division property

1 Introduction

Lightweight cryptography is one of the most actively discussed topics in the cur-
rent symmetric-key community. A huge number of designs have been proposed
especially for the last decade. Here, we omit the list of all the lightweight prim-
itives. Readers may refer to [1] for such a list. An important challenge that is
common for most of those designs is achieving good security without significantly
sacrificing efficiency.

One of the major approaches to design lightweight cipher is using Feistel
network or generalized Feistel network (GFN), which has a property that its
transformation is basically involutive thus the overhead to implement decryption
circuit is minimized. Meanwhile, diffusion speed of the standard Feistel network
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Fig. 1. Comparison of GFN (Left) and EGFN (Right) with four branches.

is often much slower than other design approaches. To overcome this drawback,
several researches have developed new ideas. Suzaki and Minematsu pointed out
that security of GFN can be enhanced by replacing the way of mixing branches
[2]. This is called block-shuffle and TWINE [3] was designed based on this idea.
Zhang and Wu used modified Feistel network to design LBlock [4], which turned
out to be the same network as one in TWINE [3]. The latest approach, which is a
main focus in this paper, is extended GFN (EGFN) proposed by Berger et al. [5],
in which an additional linear diffusion layer is inserted between the application to
F -function and branch network. The comparison of GFN and EGFN is depicted
in Fig. 1. In many designs, the non-linear layer is the most expensive, thus the
linear layer leads to better diffusion speed with a small extra cost.

Berger et al. [5] specified two concrete examples of EGFN with security analy-
sis. Unfortunately, mistakes in the security analysis were pointed out by Zhang
and Wu [6] and very effective differential trails were constructed for those origi-
nal choices of EGFN. To fix this drawback, Berger et al. combined block-shuffle
[2] with EGFN, and proposed a new cipher preventing the attack by Zhang and
Wu. The cipher was named Lilliput [7].

Lilliput is a lightweight block cipher, supporting 64-bit block and 80-bit
key. Lilliput is a 16-branch EGFN with block-shuffle, in which the size of each
branch is 4 bits (nibble) and the non-linear function is an application of a 4-bit
S-box. Those parameter sizes are the same as TWINE and LBlock. The number
of rounds is 30, which is 2 rounds less than TWINE and LBlock. This shows
that the additional linear layer of Lilliput allows to ensure its security with a
smaller number of rounds than TWINE and LBlock. The designers of Lilliput
provided several security analysis, including minimal number of active S-boxes
for every round, impossible differential attack, integral attack, differential/linear
cryptanalysis, related-key attacks and chosen-key attacks. Regarding differential
cryptanalysis, the minimal number of active S-boxes is listed in Table 1. Other
single-key attacks are summarized in Table 2.

Our Contributions. In this paper, we show that the linear layer of EGFN and
Lilliput yields several security concerns to be carefully discussed.

We first study differential cryptanalysis. We show that the linear layer makes
the evaluation of truncated differential very complicated. The linear layer allows
differences to go through the round function without going through S-box.
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Table 1. Lowerbounds of number of active S-boxes for each round. NW and BW
represent nibble-wise model and bit-wise model, respectively.

Approach Rounds Tightness

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Branching [7] 0 1 2 3 5 9 12 14 15 17 21 24 26 28 29 31 Claimed as tight

MILP (NW, basic) 0 1 2 3 5 9 12 14 15 17 19 22 25 27 29 31 Not tight

MILP (NW, advanced) 0 1 2 3 5 9 12 14 15 17 19 23 25 28 30 32 Not tight

MILP (BW) 0 1 2 3 5 9 12 15 17 19 22 ? ? ? ? ? Tight

Table 2. Key recovery attacks in the single-key model against Lilliput. Related-key
attack and chosen-key attacks reach 23 rounds, which are not included in this table.

Approaches Distinguisher Key recovery Data Time Ref

Integral 9 rounds 13 rounds 262 272 [7]

Impossible differential 8 rounds 14 rounds 263 277 [7]

Division property 13 rounds 17 rounds 263 277 Ours

This implies that attackers need to trace the impact of linearly diffused differ-
ence over many rounds. This is quite opposite for SPN-based ciphers, say AES,
in which difference in all cells is randomly updated in every round. To illustrate
this fact, an example of contradicting truncated differential searched by a simple
search is shown in Fig. 3. We search for the lower bounds of the number of active
S-boxes with MILP. The results show that the lower bounds provided by the
designers are incorrect. This is the reason why our bounds are sometimes larger
and sometimes smaller than the original bounds. Then, we derive new bounds
with MILP in two approaches; nibble-wise and bitwise models. The former can
evaluate many rounds while the derived bounds are loose. The latter can derive
tight bounds while its expensive search cost restricts the search range up to 11
rounds. The results are shown in Table 1. Interestingly, our results show that
Lilliput is more secure than the designers have expected, e.g. the designers
reported that the best characteristic could reach 16 rounds while we prove this
is impossible.

We next study integral cryptanalysis. The designers evaluated the security
in [5,7], where the propagation characteristic of the integral property [8] was used
to search for the integral distinguisher. They showed that EGFN and Lilliput
have higher security than GFN with block-shuffle. Actually, while TWINE and
LBlock allow 15-round integral distinguisher, Lilliput only allows the 9-round
integral distinguisher. It implies that the linear layer enhances security against
the integral cryptanalysis by 6(= 15 − 9) rounds. On the other hand, the linear
layer does not increase the algebraic degree. Hence by constructing the inte-
gral characteristic by estimating the algebraic degree, which is often called the
higher order differential cryptanalysis, the attack may be improved drastically.
The division property is a new method to find integral distinguisher, which is a
generalization of the integral property and can exploit low algebraic degree in
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the same time [9]. Thus security contribution of the linear layer can be evaluated
more accurately with the the division property. As a result, we show that the
division property finds a 13-round integral distinguisher, and it implies that the
security is not enhanced as the designers expected. Moreover, the new distin-
guisher leads the attack against 17-round Lilliput (see Table 2), which is the
current best attack against Lilliput.

Paper Outline. Related work and specification are introduced in Sect. 2. High-
level overview of the properties we discuss on EGFN and Lilliput is given in
Sect. 3. In Sect. 4 we search for new bounds of number of active S-boxes using
MILP. In Sect. 5, we improve the previous best attack with division property.
Finally, we conclude this paper in Sect. 6.

2 Related Work

2.1 Extended Generalized Feistel Network (EGFN)

Previous GFN has two computation layers per round; one is applying non-linear
functions to some of branches and xoring the results to other branches (non-
linear layer F), and the other is permuting branches (permutation layer P),
which is often designed as a simple cyclic shift of branches. EGFN [5] adds a
new diffusion layer (linear layer L). In many designs, the non-linear layer F is
the most expensive part, thus the linear layer L helps to increase the diffusion
speed with a small additional cost. Berger et al. showed two concrete choices
of F and L when the number of branches is 8 and 16 along with some security
analysis. It is notable that the permutation P was assumed to be a simple swap
of the left half and right half of the state.

Zhang and Wu [6] pointed out that the security evaluation in [5] was wrong
and presented efficient differential characteristics against concrete examples in
[5]. The attack relies on the choice of P, which is a simple swap of branches.

2.2 LILLIPUT Specification

Lilliput [7] was designed by Berger et al. in 2015. So as to prevent the attack
by Zhang and Wu [6], the designers adopted block-shuffle network [2] proposed
by Suzaki et al. on top of EGFN so as to achieve even faster diffusion.

The block size and the key size of Lilliput are 64 bits and 80 bits, respec-
tively. Its round function consists of 16 branches of size 4 bits. 64-bit plaintext
is first loaded to sixteen 4-bit array X15,X14 . . . , X0. Then, the round function
consisting of three layers F ,L, and P is iterated 30 times. The permutation layer
P is omitted in the last round for involution reasons. An illustration of the round
function is shown in Fig. 2.

The key schedule first expands the 80-bit key to 32-bit round keys for round
j, j = 0, . . . , 29 dented by RKj . Because we do not analyze the key schedule, we
omit its description.
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: 13, 9, 14, 8, 10, 11, 12, 15, 4, 5, 3, 1, 2, 6, 0, 7 

Fig. 2. Round function of Lilliput.

Table 3. S-box.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 4 8 7 1 9 3 2 E 0 B 6 F A 5 D C

Table 4. Nibble permutation.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π(x) 13 9 14 8 10 11 12 15 4 5 3 1 2 6 0 7

Non-linear Layer F . At first, the state input and round key are xored. Then, a
4-bit S-box is applied to each of eight nibbles in the right half of the state, and the
results are xored to the left half of the state. Let RKj

i and Xj
i be the i-th nibble

of the j-th round key RKj and j-th round state Xj , respectively. Then, the
nonlinear layer can be defined as Xj

8+i ← Xj
8+i ⊕S(Xj

7−i ⊕RKj
i ), i = 0, 1, . . . , 7,

where S(·) is a 4-bit to 4-bit S-box defined in Table 3.

Linear Layer L. The idea in L is, along with diffusion by F , having Xj
7

propagate to all nibbles in the left half of the state and having Xj
15 be propagated

from all nibbles from the right half of the state. L is defined as follows.

Xj
15 ← Xj

15 ⊕ Xj
7 ⊕ Xj

6 ⊕ Xj
5 ⊕ Xj

4 ⊕ Xj
3 ⊕ Xj

2 ⊕ Xj
1 ,

Xj
15−i ← Xj

15−i ⊕ Xj
7 for i = 1, 2, . . . , 6.

Permutation Layer P. Nibble positions are permuted with permutation π
defined in Table 4. The designers chose π to achieve the highest number of active
S-boxes after 18, 19 and 20 rounds.

3 Difficulties of Analyzing LILLIPUT Round Function

In Sect. 4, we will show that the lower bounds of the number of active S-boxes
provided by the authors are wrong. However, this is not because of careless
mistakes. In Sect. 5, we will present a current best attack against Lilliput using
division property. Before explaining details, in this section, we extract overview
of the essential difficulties of analyzing EGFN and Lilliput with respect to
differential cryptanalysis and division property.
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Differential Cryptanalysis. Evaluating security of EGFN and Lilliput
against differential cryptanalysis is quite difficult owing to their unique compu-
tation structure, L. The previous truncated differential search, both dedicated
search or more structural approach such as wide trail strategy in AES [10], yields
a correct result only if the cipher can be assumed to be Markov cipher [11] with
respect to truncated differential. Namely, the probability to achieve a truncated
differential in round i+1 needs to be determined only depending on a truncated
differential in round i (or possibly in any fixed round before round i + 1).

A main obstacle for EGFN and Lilliput is that this assumption does not
hold after a few rounds because of the linear layer L. Let us discuss the Lilliput
round function (Fig. 2).

– For some round j,Xj
15 easily gets active thanks to L, then Xj

15 moves to Xj+1
7

after P.
– Xj+1

7 duplicates an identical difference to Xj+1
9 to Xj+1

14 , and those will prop-
agate to subsequent rounds.

– In a truncated differential, we only remember active/inactive of each nibble,
thus we lose information that those differences are identical, which with high
probability causes contradiction after a few rounds. (In Markov cipher, dif-
ference in round j + 2 or later rounds should not depend on difference in
round j.)

An example of contradicting truncated differential is shown in Figs. 3 and 4.
The differential is 3 middle rounds of 16-round differential evaluated by the
basic nibble-wise MILP model, which will be explained later. Figure 3 shows
that the truncated differential is valid under the assumption that difference of
all nibbles are reset to be a random difference in every round. Meanwhile, Fig. 4
traces the impact of linear diffusion. It shows that the difference of xi+2

14 , xi+2
13 ,

and xi+2
9 are the same as the one in xi

7, which are denoted by Δ in Fig. 4. Here,
we denote the difference of xi+2

7 by α, Then, the difference of the 9th, 13th, and
14th branches after the linear layer in round i + 2 are denoted by Δ ⊕ α. It is
unknown if Δ ⊕ α is 0 or not, however, differences in those three branches must
be identical. As one can see, Fig. 4 assumes that the 13th and 14th branches are
inactive while the 9th branch is active. Thus this differential is contradicted.

Even with contradiction, it is still possible to provide lower bounds. However,
the derived bounds are not tight as the linear layer L, a source of contradiction,
diffuses many truncated differential at once. Alternative approach is simulat-
ing differential propagation bit-by-bit precisely instead of truncated differential.
However, this approach requires a very expensive search cost, and simulating
all rounds is infeasible. All in all, evaluating security of EGFN and Lilliput
against differential cryptanalysis is challenging work.

Integral Cryptanalysis. The designers of EGFN and Lilliput already
showed the security against the integral cryptanalysis in [5,7], and the prop-
agation characteristic of the integral property [8] was used to search for the inte-
gral distinguisher. When a d-round EGFN reaches the full diffusion, the integral
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Fig. 3. Valid if differential is reset in
every round.

Fig. 4. Contradiction if linear propaga-
tion is considered.

distinguisher of the EGFN covers at most 2d + 2 rounds. Moreover, Lilliput,
which is a specific block cipher based EGFN with d = 4, has the 9-round integral
distinguisher. Compared with 15-round integral distinguishers of TWINE and
LBlock, it implies that the linear layer enhances the security against the integral
cryptanalysis by 6(= 15−9) rounds. On the other hand, if we construct the inte-
gral distinguisher by estimating the algebraic degree, which is often called the
higher order differential cryptanalysis, the security is not likely to dramatically
improve because the linear layer does not increase the algebraic degree.

The division property is a new method to find integral distinguishers, and it is
the generalization of the integral property so that can exploit the algebraic degree
in the same time. Therefore, we can more accurately evaluate the contribution
of the linear layer by using the division property. In Sect. 5, we will show a new
integral distinguisher with the division property, and it covers 13 rounds, which
is beyond 2d + 2 = 10. Very recently, Zhang and Wu showed that TWINE and
LBlock have 16-round integral distinguishers by using the division property [12].
Therefore, the true contribution by the linear layer is 3(= 16 − 13) rounds.
Moreover, this 13-round integral distinguisher leads to a 17-round attack, which
is a current best attack against Lilliput.
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4 New Differential Bounds

We search for lower bounds of number of active S-boxes of Lilliput with MILP.
Section 4.1 explains background of MILP based search. Section 4.2 explains
nibble-wise search and proves the 16-round truncated differential shown by the
designers are incorrect. Section 4.3 explains bit-wise search, which proves better
bounds than the evaluation by the designers up to 11 rounds.

4.1 Background of Mixed Integer Linear Programming (MILP)

An MILP-based search was proposed by Mouha et al. [13]. The approach has
two stages; (1) describing valid active byte/nibble/bit propagation patterns with
a system of linear inequalities, and (2) solving the system with an MILP solver.
Cryptographer’s task is for (1) to efficiently describe active byte/nibble/bit pat-
terns. Regarding stage (2), many softwares are available, some are license-free
and other are in commerce. In this research, we used Gurobi Optimizer [14] for
stage (2). Hereafter we explain stage (1).

The following discussion focuses on nibble-oriented ciphers. The goal is count-
ing the number of active S-boxes, thus truncated differential is analyzed. Each
nibble in each round is represented by a binary variable xi meaning that the
nibble is active when xi = 1 and inactive when xi = 0. Then, we specify an
object to be optimized, called objective function. Our goal is finding a minimal
number of active S-boxes, thus if S-box is applied to all nibbles, the objective
function is “minimize

∑
i xi.” The main task is giving constraint inequalities to

specify valid differential propagations with linear inequalities.

Inequations to Describe XOR by Mouha et al. Suppose that the nibble
corresponding to x3 is computed by other two nibbles corresponding to x1 and
x2, i.e. x1 ⊕ x2 = x3. Mouha et al. describe all possible differential patterns by
introduced a dummy binary variable d as follows.

x1 + x2 + x3 − 2d ≥ 0,

x1 − d ≤ 0,

x2 − d ≤ 0,

x3 − d ≤ 0.

Bit-Wise Model by Sun et al. Several nibble-oriented ciphers cannot be
evaluated with the approach by Mouha et al. An example is PRESENT, in
which 4 bits output from a 4-bit S-box will be input to different S-box in the
next round. Thus, it is necessary to look inside the S-box. Sun et al. proposed
MILP-based search in a bit-wise model to simulate such a case [15], in which each
binary variable xi represents active/inactive of each bit. This approach is more
advantageous for versatility, while it loses efficiency (the number of evaluated
rounds is less).
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A notable technique in [15] is to rule out impossible differential patterns
from a feasible region of MILP. Recall the XOR case explained above, x3 =
x2 ⊕ x1. We need to rule out (x1, x2, x3) = (1, 0, 0), (0, 1, 0), (0, 0, 1) and Sun
et al. showed each impossible pattern can be ruled out with 1 inequality. For
example, (x1, x2, x3) = (1, 0, 0) is ruled out with −x1 + x2 + x3 ≥ 0. Indeed,
any other value of (x1, x2, x3) satisfy this inequality, and thus only (x1, x2, x3) =
(1, 0, 0) is ruled out. (0, 1, 0) and (0, 0, 1) can be ruled out similarly.

4.2 Nibble-Wise Search

We first explain a basic method which assumes that the difference of each active
nibble is reset to a random difference in every round. This assumption is clearly
incorrect for the real specification because the linear layer L diffuses difference
only linearly (difference in round j uniquely determines difference in round j +1
in L). Hence, the derived lower bounds are loose. We then show that equivalently
transforming the cipher’s description helps us to improve the model that can
derive tighter lower bounds.

Constructing Basic Model. We assign a binary variable to each nibble in
every round. Thus we use 16r variables for r rounds; x0, . . . , x15 for round 1,
x16, . . . , x31 for round 2, and so on.

As for the objective function, our goal is minimizing the number of active
S-boxes, thus we minimize the sum of xi in the right half of the state, i.e. “min-
imize

∑
r

∑7
j=0 x16r+j .”

Constraint inequalities can be derived round-by-round. For simplicity, we
explain constraints between x0, . . . , x15 and x16, . . . , x31, which are depicted in
Fig. 5. The other rounds can be modeled just by replacing indices. S-box and key
addition do not impact to truncated differential, thus we omit them in Fig. 5.
First, we list variables before the permutation layer, which are π−1(x16, . . . , x31).
Here the right most one, x29, can be represented by xπ(0)+16. Similarly, the other
15 variables can be represented by xπ(1)+16, xπ(2)+16, . . . , xπ(15)+16. This repre-
sentation is useful to systematically construct MILP models. We then derive con-
straint inequalities between x0, x1, . . . x15 and xπ(0)+16, xπ(1)+16, . . . , xπ(15)+16

dividing them into four types.

Type 1: Right half of the state is not updated. Constraints are xπ(i)+16 = xi

for i = 0, 1, . . . , 7.
Type 2: xπ(8)+16, x8 and x7 must be a valid xor, i.e. (xπ(8)+16, x8, x7) =

(1, 0, 0), (0, 1, 0), (0, 0, 1) are impossible. We rule out those three patterns with
the following three inequalities;

−xπ(8)+16 + x8 + x7 ≥ 0,

xπ(8)+16 − x8 + x7 ≥ 0,

xπ(8)+16 + x8 − x7 ≥ 0.
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Fig. 5. Nibble based MILP model for Lilliput. Fig. 6. Equivalent descriptions.

Type 3: For j = 9, 10, . . . , 14, xπ(j)+16, x8+j , x7−j , x7 must be a valid xor. We
rule out (xπ(j)+16, x8+j , x7−j , x7)=(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1).
Similarly to Type 2, this can be done with four inequalities for each j.

Type 4: xπ(15)+16 and other 9 input variables must be a valid xor. Similarly
to Type 2 and Type 3, differential propagation is impossible if and only if
exactly one variable is active. There are ten impossible patterns, and these
are ruled out with ten inequalities.

In total, we use 8 + 3 + (6 ∗ 4) + 10 = 45 inequalities per round, thus 45r for
r rounds. In addition we use 1 inequalities

∑15
j=0 xi > 0 to ensure at least one

nibble is active in plaintext.

Results of Basic Model. Execution time is reasonably short. The system for
16 rounds was solved in a few minutes by a standard PC. The results are shown
in Table 1. At first glance, the derived bounds are worse than the designers’
evaluation. However this is not right. The designers claimed that the best 16-
round characteristic activates 31 S-boxes [7, Sect. 7].

we provide here the best truncated differential and linear masks we found
for 16 rounds of LILLIPUT with 31 active S-boxes · The best truncated dif-
ferential path is given by an input of the form (α0, 0, α0, α0, α0, α0, α0, α1,
α0, 0, 0, 0, 0, 0, 0, 0, ) that gives after 16 rounds an output of the form
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β, 0) · · ·

We tested their input and output differential masks. We obtained that the (loose)
lower bound for those masks is 34 for 16 rounds, thus their claim is wrong.1

1 We communicated to the designers and asked to provide more details, in particular
differential masks for every round. The designers have not provide us the details.
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Fig. 7. Equivalently Transformed Round Function Analyzed in Advanced MILP Model.

Constructing Advanced Model. The drawback in the basic model is that
the truncated differential is assumed to be reset in every round, while it is not in
the actual specification. Indeed, we manually verified several optimal solutions
returned by a solver, but they always include contradiction. Namely, the bound is
not tight (though 30 rounds seem sufficient to resist differential cryptanalysis).
Let us analyze more details. We divide the linear layer L into two layers L1

and L2, in which L1 is the diffusion from X1,X2, . . . , X7 to X15 and L2 is the
diffusion from X7 to X9,X10, . . . , X15 defined below (illustrated in Fig. 7).

L1 : X15 ← X15 ⊕ X7 ⊕ X6 ⊕ X5 ⊕ X4 ⊕ X3 ⊕ X2 ⊕ X1,

L2 : X15−i ← X15−i ⊕ X7 for i = 1, 2, . . . , 6.

Our observation is that the impact of linear diffusion with L1 and L2 never
interact within one round. X15 is (easily) activated through L1, and this moves
to x7 after P, and in the next round, x7 diffuses with L2. In the basic MILP
model, the above combination effect via L1 and L2 over two rounds cannot be
captured due to the difference reset in every round.

Our improving idea is moving the position of the linear layer L2 so that the
cancellation through L1 and L2 can be simulated within one round. In details,
we move L2 for round i (diffusion from X7 in round i) to round i − 1 (diffusion
from π−1(X7) = X15 in round i − 1). The converted computation structure is
shown in the right-half of Fig. 6. Note that the original L2 in the first round can
be regarded as a preprocessing and L2 in the last round is removed.

Results of Advanced Model. Execution time of the advanced model is almost
the same as the basic one. The results are shown in Table 1. Compared to the
basic model, the lower bounds are improved when the number of rounds is 12,
14, 15 and 16. Compared to the designers’ original expectation, the lower bounds
are improved, meaning that Lilliput is more secure than it was expected. In
particular, proving 32 active S-boxes for 16 rounds is important owing to the
64-bit block size and the maximum differential probability of the S-box, 2−2.

Even with the advanced model, contradiction via L over 3 rounds cannot be
simulated, thus the bounds are not tight. This motivates us to generate tight
bounds in the next section.
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4.3 Bit-Wise Search

The bit-wise model traces active/inactive of each bit. The main advantage is that
the cancellation by the xor operation, which is the main cause of the contradic-
tion in the nibble-wise model, can be simulated precisely and solving the system
becomes equivalent to finding the best characteristic. Meanwhile, S-box is not
bit-wise thus cannot be ignored as the nibble-wise model, which requires a large
number of constraint inequalities to describe valid differential propagations.

Variables in One Round. We assign a binary variable xi bit by bit. To
reduce a total number of variables, we introduce new variables only for updated
32 bits (right half of the state) in every round. Besides, active/inactive of each
bit changes through S-box, thus we introduce a binary variable yi to describe
active/inactive of each bit of S-box output.

Permutation π needs to be adjusted to be bitwise, πbw. The conversion is
straightforward, thus we omit it.

Number of Active S-Boxes in Bitwise Model. We need to convert active-
bit information into active-nibble one to count the number of active S-boxes.
Here, we introduce a dummy binary variable, n. Suppose that n4i is a nibble
whose corresponding 4 input bits are xi, xi+1, xi+2, xi+3. We set constrains so
that n4i becomes 1 when at least one of xi, . . . , xi+3 are active and n4i = 0 if all
of xi, . . . , xi+3 are inactive. This can be done by borrowing the idea of simulating
XOR by Mouha et al. [13], and we set the following five inequalities;

xi + xi+1 + xi+2 + xi+3 − n4i ≥ 0,

n4i − xi ≥ 0,

n4i − xi+1 ≥ 0,

n4i − xi+2 ≥ 0,

n4i − xi+3 ≥ 0.

If all of xi, xi+1, xi+2, xi+3 are inactive (= 0), n4i becomes 0. If at least one
of xi, xi+1, xi+2, xi+3 is active (= 1), n4i becomes 1. Thus, n4i represents
active/inactive of the S-box.

Each round computes 8 S-boxes. The objective function for r rounds is
“minimize

∑8r−1
i=0 ni.”

Constraints for S-Box. We first generate differential distribution table
(DDT). DDT consists of 150 zero entries (impossible propagations). With the
approach by Sun et al. [15], we can rule out each impossible propagation with
one inequality.

For example, xi+3‖xi+2‖xi+1‖xi = 0010 and yi+3‖yi+2‖yi+1‖yi = 0011 is an
impossible propagation and this can be ruled out by

xi+3 + xi+2 − xi+1 + xi + yi+3 + yi+2 − yi+1 − yi ≥ −2.
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All the impossible differential propagations can be ruled out with at most 150
inequalities. Sun et al. showed that several impossible propagations may be ruled
out with 1 inequality.

For example, xi+3‖xi+2‖xi+1‖xi‖yi+3‖yi+2‖yi+1‖yi = *00**101 is impossi-
ble for any choice of * ∈ {0, 1}. Those 8 patterns are ruled out by

xi+2 + xi+1 − yi+2 + yi+1 − yi ≥ −1.

We exhaustively searched for such compact representations. The number of
total constraint inequalities should be minimized. We followed the approach by
Sun et al. [16] using the greedy algorithm to choose constraint inequalities. In
the end, we rule out all 150 impossible differential patterns with 46 inequalities.

Constraints Other Than S-Box. Update on 28 bits, from bit positions 32 to
59, is rather simple. If the computation is the 2-input xor, e.g. a⊕b = c, the num-
ber of impossible propagations is 4; (a, b, c) = (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1),
which can be ruled out with 4 inequalities. Note that differently from nibble-wise
search, (a, b, c) = (1, 1, 1) is impossible in the bitwise computation. Similarly, for
3-input xor, e.g. a ⊕ b ⊕ c = d, there are 8 impossible patterns, and we can rule
them out with 8 inequalities.

The last 4 bits are updated with 9-input xor, thus the number of impossible
propagations is 29 = 512 per bit. Using 512 inequalities is too expensive. Here,
we focus on the property that the sum of involved variables must be even. We
introduce an integer dummy variable e, where e ∈ {0, 1, 2, 3, 4}. Let 9 input
bits be y0, x4, x8, . . . , x28 and 1 output bit be xπbw(60). We set the following
constraint;

y0 + x4 + x8 + x12 + x16 + x20 + x24 + x28 − xπbw(60) = 2e.

Result of Bitwise Model. Owing to the expensive computational cost, the
machine performance is an important factor for this research. We executed
Gurobi Optimizer with Xeon Processor E5-2699 (18 cores) in 128 GB RAM.
The results are shown in Table 1. It provides the best bound from 8 rounds
and we confirmed the tightness. Namely the optimal solutions can be used for
attacks. The running time for 8, 9, 10, and 11 rounds is 2746 s, 5512 s, 53099 s
(≈14 h), and about 1 week, respectively. Because of the complicated algorithm
of the MILP solver, it is difficult to predict the running time for more rounds.

5 Attacks Based on Division Property

5.1 Background of Division Property

The division property proposed in [9] is a new method to find integral dis-
tinguishers. This section briefly shows the definition and propagation rules to
understand this paper. Please refer to [9] for details.
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The division property of a multiset is evaluated by using the bit product
function defined as follows. Let πu : (Fn

2 )m → F2 be a bit product function for
any u ∈ (Fn

2 )m. Let x ∈ (Fn
2 )m be the input, and πu(x) is defined as

πu(x) :=
m∏

i=1

⎛

⎝
n∏

j=1

xi[j]ui[j]

⎞

⎠ .

Notice that xi[j]1 = xi[j] and xi[j]0 = 1.

Definition 1 (Division Property [9]). Let X be a multiset whose elements
take a value of (Fn

2 )m. When the multiset X has the division property Dnm

K
, where

K denotes a set of m-dimensional vectors whose elements take a value between
0 and n, it fulfills the following conditions:

⊕

x∈X

πu(x) =

{
unknown if there are k ∈ K s.t. W (u) � k,

0 otherwise,

where W (u) = (w(um), . . . , w(u1)) ∈ Z
m and w(uj) =

∑n
i=1 uj [i]. Moreover,

k � k′ denotes ki ≥ k′
i for all i ∈ {1, 2, . . . ,m}.

If there are k ∈ K and k′ ∈ K satisfying k � k′ in the division property Dnm

K
,k

can be removed from K because the vector k is redundant. Let X be the set
of texts encrypted by r rounds, and ei ∈ Z

m denotes an unit vector whose ith
element is one and the others are zero. Assuming that X fulfills the division
property Dnm

K
and ei does not belong to K, the cipher has the r-round integral

distinguisher, where the ith element is balanced.
We summarize propagation rules that we use in this paper as follows.

Rule 1 (Substitution). Let F be a function that consists of m S-boxes, where
the bit length and the algebraic degree of S-boxes is n bits and d, respec-
tively. The input and the output take a value of (Fn

2 )m and X and Y denote
the input multiset and the output multiset, respectively. Assuming that the
multiset X has the division property Dnm

K
, the multiset Y has the division

property Dnm

K′ , where K
′ is calculated as follows: First, K′ is initialized to φ.

Then, for all k ∈ K,

K
′ = K

′ ∪
[ ⌈

k1
d

⌉

,

⌈
k2
d

⌉

, . . . ,

⌈
km

d

⌉ ]

,

is calculated. Here, when the ith S-box is bijective and ki = n, the ith element
of the propagated property becomes n not 
n/d�.

Rule 2 (Copy). Let F be a copy function, where the input x takes a value of Fn
2

and the output is calculated as (y1, y2) = (x, x). Let X and Y be the input mul-
tiset and output multiset, respectively. Assuming that the multiset X has the
division property Dn

k , the multiset Y has the division property Dn,n
K′ , where K′

is calculated as follows: First, K′ is initialized to φ. Then, for all i (0 ≤ i ≤ k),

K
′ = K

′ ∪ [k − i, i],

is calculated.
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Rule 3 (Compression by XOR). Let F be a function compressed by an
XOR, where the input (x1, x2) takes a value of (Fn

2 × F
n
2 ) and the output

is calculated as y = x1 ⊕ x2. Let X and Y be the input multiset and output
multiset, respectively. Assuming that the multiset X has the division property
Dn,n

K
, the division property of the multiset Y is Dn

k′ as

k′ = min
[k1,k2]∈K

{k1 + k2}.

Here, if the minimum value of k′ is larger than n, the propagation character-
istic of the division property is aborted. Namely, a value of ⊕y∈Yπv(y) is 0
for all v ∈ F

n
2 .

These propagation rules are proven in [9,17].

5.2 Integral Distinguisher on LILLIPUT

The state of Lilliput is represented as sixteen 4-bit values, and the use of the
division property D416

K
is appropriate. Let |K| be the number of elements in K,

and the upper bound of |K| is 516 ≈ 237.15. Since we can reduce |K| by remov-
ing redundant vectors in general, we can practically evaluate the propagation
characteristic of D416

K
.

Propagation Characteristic. The round function of EGFN consists of three
layers: the non-linear layer, the linear layer, and the permutation layer. In the
non-linear layer of EGFN, the core operation is

xi = xi ⊕ F (xj)

for appropriate i and j. We only focus on the case that F is permutation because
the most important instantiation Lilliput uses a bijective S-box. Let D4

k and
D4

k′ be the input and output division property for the S-box, respectively. As
the algebraic degree of F is at most three, it holds

k′ = DS(k) =

⎧
⎪⎨

⎪⎩

4 if k = 4,

1 if k = 1, 2, 3,

0 if k = 0.

Assuming D42

(ki,kj)
be the input division property of the Feistel structure, the

output division property D42

K
is

K = {(ki + DS(x), kj − x) | 0 ≤ x ≤ kj ,DS(x) ≤ 4 − ki}.

The propagation characteristic for the non-linear layer is shown in nonLinear
of Algorithm 1.
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Algorithm 1. Propagation from D416

K
for the round function of Lilliput

1: procedure nonLinear(K, i, j)
2: K

′ ⇐ φ
3: for all k ∈ K do
4: k′ ⇐ k
5: for x = 0 to kj do
6: k′

i ⇐ ki + DS(x)
7: k′

j ⇐ kj − x
8: if k′

i ≤ 4 then
9: K

′ ⇐ K
′ ∪ {k′}

10: end if
11: end for
12: end for
13: remove redundant vectors from K

′

14: return K
′

15: end procedure

1: procedure linear(K, i, j)
2: K

′ ⇐ φ
3: for all k ∈ K do
4: k′ ⇐ k
5: for x = 0 to kj do
6: k′

j ⇐ kj − x
7: k′

i ⇐ ki + x
8: if k′

i ≤ 4 then
9: K

′ ⇐ K
′ ∪ {k′}

10: end if
11: end for
12: end for
13: remove redundant vectors from K

′

14: return K
′

15: end procedure

The linear layer of EGFN consists of the iteration of XORs as

xi = xi ⊕ xj

for appropriate i and j. Therefore, assuming D42

(ki,kj)
be the input division prop-

erty of the Feistel structure, the output division property D42

K
is

K = {(ki + x, kj − x) | 0 ≤ x ≤ min{kj , 4 − ki}}.
The propagation characteristic for the linear layer is shown in linear of
Algorithm 1.

About the permutation layer, the propagation characteristic is the only
modification of the corresponding index. The entire algorithm to evaluate the
propagation characteristic of the round function is shown in roundFunction of
Algorithm 2.

New Integral Distinguisher. As the number of exploiting chosen plaintexts
increases, the integral distinguisher can analyze more rounds in general. There-
fore, we evaluate all integral distinguishers with 263 chosen plaintexts where only
one bit in the right half is constant. Note that these distinguishers are always
better than distinguishers whose only one bit in the left half is constant. We
choose one 4-bit value from X0 to X7, and we prepare chosen plaintexts such
that any one bit in the chosen value is constant and the others are active.

We implemented Algorithm 2 and searched non-trivial integral distinguishers.
Let D416

k be the plaintext division property. When we choose one-bit constant
from Xp, we use k as

ki =

{
4 if i �= p

3 if i = p
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Algorithm 2. Propagation from D416

K
for the round function of Lilliput

1: procedure roundFunction(K)
2: for all (i, j) ∈ {(8, 7), (9, 6), (10, 5), (11, 4), (12, 3), (13, 2), (14, 1), (15, 0)} do
3: K = nonLinear(K, i, j)
4: end for
5: for all (i, j) ∈ {(15, 1), (15, 2), (15, 3), (15, 4), (15, 5), (15, 6), (15, 7)} do
6: K = linear(K, i, j)
7: end for
8: for all (i, j) ∈ {(14, 7), (13, 7), (12, 7), (11, 7), (10, 7), (9, 7)} do
9: K = linear(K, i, j)

10: end for
11: K

′ ⇐ φ
12: for all k ∈ K do
13: for i = 0 to 16 do
14: k′

π(i) ⇐ ki

15: end for
16: K

′ ⇐ K
′ ∪ {k′}

17: end for
18: return K

′

19: end procedure

Table 5. Propagation from D416

{[4,4,...,4,3]}

#rounds 0 1 2 3 4 5 6 �

|K| 1 1 3 14 377 33948 5513237

maxw(K) 63 63 63 63 63 55 ≤57

minw(K) 63 63 61 59 55 19 35

#rounds 7 � 8 � 9 � 10 11 12 13

|K| 266813452 70804820 1385951 16960 572 52 16

maxw(K) ≤51 ≤43 ≤25 13 6 4 2

minw(K) 22 9 6 3 2 1 1

In rounds labeled �, the set K includes redundant vectors.

for i ∈ {0, 1, . . . , 16}. We coded our algorithm with C++, and we executed it in
Xeon Processor E5-2699 (18 cores) in 128 GB RAM. As a result, our algorithm
found 13-round integral distinguishers for p = 0 and p = 6. For other p, our
algorithm found 12-round integral distinguishers.

When p = 0 i.e., k = [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3], we find a 13-round
integral distinguisher, and the position X13

9 is balanced. Table 5 shows the prop-
agation characteristic, where minw(K) and maxw(K) are calculated as

minw(K) = min
k∈K

{
16∑

i=1

ki

}

, maxw(K) = max
k∈K

{
16∑

i=1

ki

}

.

Round 0 denotes the division property of the plaintext set, and we perfectly
remove redundant vectors except for 6, 7, 8, and 9 rounds.
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5.3 Key Recovery

Let Xj
i be the j-round nibble value in Xi, where the plaintext is represented as

(X0
15, . . . , X

0
0 ). Moreover, let Y j

i be the output of the S-box as Y j
i = S(Xj

i ⊕
RKj

i ). We prepare 263 chosen plaintexts such that any one bit of X0
0 is constant

and the other 63 bits are active. Then, it holds
⊕

X13
9 = 0, and we can attack

17-round Lilliput by using the 13-round integral distinguisher. In our attack,
let c = (c15, . . . , c0) be the ciphertext, where the linear layer of the last round is
removed. Note that the last round of Lilliput has the linear layer but this c is
equivalent with the ciphertext of 17-round Lilliput because the linear layer is
public.

Since Lilliput has many XORs in the round function, the procedure of the
key recovery is very complicating. For simplicity, we use the following strategy.
We first decompose four rounds of Lilliput into five subfunctions denoted by
f13, f14, f15, f16, and L. Here the output of fi is the XOR of Y i involved in X13

9 ,
and the output of L is the linear part to compute X13

9 from ciphertext. Then

X13
9 = f13(c,K13) ⊕ f14(c,K14) ⊕ f15(c,K15) ⊕ f16(c,K16) ⊕ L(c),

where Ki is the set of round keys involved in fi. The bit sizes of K13,K14,K15,
and K16 are 44, 16, 48, and 28 bits, respectively. Then,

f13(c,K13) = Y 13
6 ,

f14(c,K14) = Y 14
0 ,

f15(c,K15) = Y 15
0 ⊕ Y 15

1 ⊕ Y 15
3 ⊕ Y 15

5 ⊕ Y 15
6 ⊕ Y 15

7 ,

f16(c,K16) = Y 15
0 ⊕ Y 15

1 ⊕ Y 15
3 ⊕ Y 15

4 ⊕ Y 15
5 ⊕ Y 15

6 ⊕ Y 15
7 .

We compute the sum of fi(c,Ki) by guessing Ki independently of i. Then, we
compute keys satisfying

⊕

X0

f13(c,K13) ⊕ f14(c,K14) ⊕ f16(c,K16) =
⊕

X0

f15(c,K15) ⊕ L(c) (1)

Note that we do not need to guess round keys to compute the sum of L(c). Note
that K13 ∪ K14 ∪ K15 ∪ K16 is 72 bits, and the probability that Eq. (1) holds
randomly is 2−4. Therefore, we reduce the space of key candidates from 272 to
268. Finally, we recover the correct key by additionally guessing the remaining
8 bits. It is enough to determine the correct key by using two known plaintexts.
Thus, the total time complexity is 276 × 2 = 277.

Note that the time complexity that we evaluate whether Eq. (1) holds or not
is less than 261 and it is negligible because of [18,19]. Due to the limited space,
we omit the detailed procedure.

6 Concluding Remarks

In this paper, we showed security evaluation of Lilliput. The linear layer L,
which is the main feature introduced by EGFN, gives several security concerns to
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be carefully discussed. By using MILP, we proved that the lower bounds of num-
ber of active S-boxes provided by the designers were incorrect. Then, we derived
new bounds in two approaches; nibble-wise and bitwise models. Interestingly, it
turned out that security of Lilliput is better than the original expectation. Fur-
ther improving the lower bounds and deriving tight bounds for more rounds will
be interesting future research directions. Meanwhile, we showed that the secu-
rity enhance by the linear layer L, which applies many xors without increasing
S-box, is not so strong against division property, and improved the previous best
key recovery attacks by three rounds. EGFN is a relatively new design approach.
We believe that this paper leads to better understanding of EGFN.
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