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Preface

The Conference on Selected Areas in Cryptography (SAC) series started as a workshop
in 1994, when it first was held at Queen’s University in Kingston. SAC has been held
annually since 1994 in several Canadian provinces and it is the only international
conference series on cryptography that is held annually in Canada. Since 2006, the
conference has been organized in co-operation with the International Association for
Cryptologic Research (IACR).

During the past 23 years, SAC has established itself as an internationally reputed
venue for researchers in cryptography to present and discuss new work on selected
areas of current interest in a relaxed and friendly atmosphere. This past year, SAC was
held at Memorial University of Newfoundland (MUN), in St. John’s, Newfoundland,
Canada. This was the second time that SAC was hosted in St. John’s, and the fourth
time in an Atlantic Canadian province.

To keep the SAC conference series focused, each year presents papers in four
selected areas, of which three are fixed, and the fourth one is specially chosen every
year. The areas for SAC 2016 were:

1. Design and analysis of symmetric key primitives and cryptosystems including block
and stream ciphers, hash functions, MAC algorithms, and authenticated encryption
schemes

2. Efficient implementations of symmetric and public key algorithms
3. Mathematical and algorithmic aspects of applied cryptology
4. Side channel, fault and related attacks on symmetric and asymmetric cryptographic

primitives and their countermeasures

A total of 100 submissions were reviewed for SAC 2016, with the Program Com-
mittee and the chairs selecting 28 papers for presentation. In addition to these 28 papers,
two speakers were invited to give presentations at the conference. Douglas Stebila
presented the Stafford Tavares Lecture on “Post-Quantum Key Exchange for the
Internet” and Francesco Regazzoni talked on “Physical Attacks and Beyond.”

The Program Committee for SAC 2016 comprised a total of 46 members. The
review process was thorough – each submission received the attention of at least three
reviewers, with almost all accepted papers being reviewed by four. Submissions
involving a Program Committee member required at least five reviews. A total of 441
reviews were uploaded, of which 154 were written by 115 external subreviewers. The
reviews were then followed by in-depth discussions on the papers, which contributed in
a decisive way to the quality of the final selection. Despite the huge amount of work,
and the occasional difference in opinion, the atmosphere in the Program Committee
was always friendly and cooperative. For us, it was an honor to work with these
Program Committee members, and we thank them sincerely for their engagement.

For the second time, the SAC Summer School (S3) took place just before the
conference. In line with the selected topics of the latter, the overall theme of the



Summer School was “Secure and Efficient Implementation of Cryptographic
Algorithms” and comprised the following talks and speakers:

– “Hardware Implementation of Public Key Cryptography”
Tim Güneysu, University of Bremen and DFKI, Germany

– “Software Implementation of Public Key Cryptography”
Patrick Longa, Microsoft Research, USA

– “Secure Hardware Implementation of Symmetric Key Ciphers (Including Side
Channel Resistance)”
Francesco Regazzoni, ALaRI–USI, Lugano, Switzerland

– “Implementation and Analysis of Cryptographic Protocols”
Douglas Stebila, McMaster University, Canada

We thank the speakers for accepting our invitation to present and for providing a
coherent yet varied program for the Summer School.

Further, we would like to thank Saeed Samet (eHealth Research Unit, Faculty of
Medicine, MUN), Jonathan Anderson and Jiming Xu (both with the Department of
Electrical and Computer Engineering, MUN), and Mary Garnier (MUN Conference
Services) for assistance with the local organization.

Lastly, we are very appreciative of the sponsorship provided to SAC 2016 from
Microsoft Research, the Atlantic Association for Research in Mathematical Sciences
(AARMS), MUN Faculty of Engineering, MUN Department of Electrical and Com-
puter Engineering, and Memorial University of Newfoundland.

August 2017 Roberto Avanzi
Howard Heys
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Physical Attacks and Beyond

Francesco Regazzoni(B)

ALaRI - USI, Lugano, Switzerland
regazzoni@alari.ch

Abstract. Physical attacks have been subject of extensive research
since more than twenty years. Nevertheless, several problems still have to
be solved. This paper, after recalling the most popular physical attacks,
introduces three (of the many) possible research directions in the area:
the methodological study of the interaction between countermeasures
against one type of attack and the resistance against another attack, the
development of automated techniques for applying and verifying the cor-
rect application of countermeasures, and the study of physical attacks in
the novel and changed scenario of cyber-physical systems.

1 Introduction

Physical attacks exploit weaknesses of an implementation to reveal the secret
information. These attacks are possible since very often an adversary has phys-
ical access to the target device and can easily record its activity. Among the
physical attacks, side channel attacks have been demonstrated to be extremely
powerful, since they allow to e.g., extract the secret key from a cryptographic
circuit with minimal efforts. In a nutshell, side-channel attacks collect informa-
tion leaked from the target device while data is being processed, and exploit the
dependence between this leakage and the processed data. Information can leak
through several “channels”, including power consumption [15], the time needed
to complete an operation [14], and the chip’s electromagnetic emissions [1].

Researchers dedicated significant efforts to defeat these attacks. However,
developing general, reliable and effective countermeasures against physical
attacks remains an extremely challenging task. Countermeasures are often con-
sidered only in the later stages of the full design flow, and applied manually by
designers with strong security expertise. Very little is known about the inter-
action between different physical attacks and about the role which a counter-
measure against one physical attack would play on the robustness of the device
against another attack. The problem will be further complicated in the near
future when cyber-physical systems will pervade several areas of our daily lives,
including numerous safety-critical or privacy-relevant ones. These devices will
have to provide strong security, but they should also often provide safety, real
time computation capabilities, and achieve an extremely little energy footprint.

In view of this increasingly relevant problem, it is crucial to have the complete
awareness of the security threats which cyber-physical system will have to face
and to address the design challenges associated with the deployment of systems
c© Springer International Publishing AG 2017
R. Avanzi and H. Heys (Eds.): SAC 2016, LNCS 10532, pp. 3–13, 2017.
https://doi.org/10.1007/978-3-319-69453-5_1



4 F. Regazzoni

secure against physical attacks. This paper summarizes the main physical attacks
and discusses three possible future research direction in the area.

2 Overview of Physical Attacks

In cryptography, a physical attack is an attack where the adversary, instead
of focussing on the mathematical structure of a cryptographic routine, tries to
extract secret information by exploiting the weaknesses of its implementation.
Physical attacks are usually divided in two groups: active attacks and passive
attacks. During an active attack, the adversary has to actively manipulate the
device, by modifying its inputs or its operating environment, to force it to behave
abnormally. This abnormal behavior is then exploited to perform the attack.
During a passive attack, the adversary observes the normal behavior of a device
and analyzes some side effects to gain information of the secret key.

Side channel attacks are very powerful passive attacks. Informally, a side
channel is an information (often unintentionally leaked) which, indirectly, allows
to infer knowledge about a different, and often more interesting, event. Side
channels have been used and are used in several fields. For instance, the amount
of pizza delivery over night in offices was used to infer if some important activity
was under planning, the use of electric power was used to determine if a person
was actually residing in the declared house. A field where side channels are deeply
used is biology. Biological tests and medical exams often do not check directly
the presence of a particular virus or of a specific disease, but they examine a side
consequence which indicates with good approximation if the searched disease is
present (for instance, positron emission tomography checks the concentration of
light emitted by radioactive sugar, to infer, in a less invasive way, the possible
presence of cancer).

Side channel have been also used in security for several years. A well known
example of of the use of side channel for security application is the opening of
safes. The mechanical locks of the safes which were used in past centuries were
producing a slightly different noise when the pin of the combination was aligned
to the correct digit. Exploiting this difference in noise, bank robbers were able
to infer the secret combination and open the safe without trying all possible
combinations of the lock. Nowadays, most of our security systems are controlled
by electronic components. Instead of mechanical noise, attackers exploit other
side information, such as power consumption or time needed for computation,
but the principle is the same: use some side information to extract the secret
data.

To take advantage of physical vulnerabilities however, the adversary needs
to have physical access to the device. Such access was not always available.
At the beginning of the digital era, when the computation was carried out in
insulated mainframes, it was almost impossible to access the devices. As a result,
physical attacks were not possible. Years later, with the diffusion of personal
computers, it became easier to have physical access to the devices. However,
personal computers are usually located in a rather safe environment (inside an
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office or an apartment), which is still reasonably protected from an adversary. As
a result, the main security threats for personal computers were mainly coming
from viruses and unprotected network connections.

The situation dramatically changed with the creation of the internet of things
(IoT) and the pervasive diffusion of the embedded systems which are populating
it. These devices are often operating in a hostile environment, and very often
they are easily accessible by adversaries. In this scenario, where the devices are
available to the adversary, resistance against physical attacks has become of
primary importance.

Physical attacks as we know today appeared in the open literature in the
late Nineties, but the recent declassification of the project Transient Electro-
magnetic Pulse Emanations Standard (TEMPEST) [12] demonstrates that there
was awareness of the problem at least since fifty years before.

Timing analysis, the first physical attack that was published, was presented
in 1996 by Kocher et al. [14]. Timing analysis attacks exploit the different time
required by a device to process different data and to carry out different compu-
tations. Such time difference is due to several factors, such as the time needed
to fetch the data (cache or memory hit or miss), the program behavior (branch
taken or not), or the speed of difference components (a multiplier is generally
slower than a shifter). Although these timing characteristics are often extremely
small, the work of Kocher et al. demonstrates that they are sufficient to infer
the entire secret key.

Soon after the first timing analysis attack was presented, Boneh et al. [7] pro-
posed fault attacks. Fault attacks are attacks in which an adversary voluntarily
induces a fault into a circuit and exploits the erroneous behavior to gain infor-
mation about the secret key. The first step of a fault attack is the introduction
of an error, possible transient, in the device. There are several ways to induce
a fault. The adversary usually trades the cost of the equipment for mounting
the fault with the precision of the injection (and thus the power of the attack).
Common methods to inject faults are: variation in supply voltage, variation of
the external clock, variation of operating temperature, exposure to X-rays, or
precise laser illumination.

Power analysis was presented in 1999 [15]. The instantaneous power con-
sumption of a cryptographic device strongly depends on the processed data and
on the performed operation. Power analysis attacks essentially exploit this fact.
These attacks are very powerful and can be performed with pretty inexpensive
equipment. Several variations of power analysis attacks have been proposed in
the past, the two most common are simple power analysis and differential power
analysis. In simple power analysis attacks, an adversary attempts to derive the
secret directly interpreting a set of power traces collected during the computa-
tion of the cryptographic routine. To be effective, simple power analysis requires
often a detailed knowledge about the implementation of the cryptographic algo-
rithm under attack. Differential power analysis attacks allows to retrieve the
secret key with the only knowledge of the algorithm used in the device under
attack. DPA attacks are based on a divide and conquer approach: the general
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Fig. 1. Number of references to the first paper presenting each of the most common
physical attacks (data collected the 8th of August 2016). This plot gives the intuition
of the amount of research activity per attack.

idea is that the attacker, instead of attacking the whole key at once, targets a
small portion of it, makes a hypothesis on possible values of the key and verifies
these hypothesis using the power traces. The full key is recovered iterating this
process.

After these pioneering works, several other physical attacks and channels
have been discover and presented, including attacks exploiting the electromag-
netic emission of a device [1] and attacks exploiting the photons emitted by
electronic components during the computations [23]. The scientific community
devoted significant efforts to the study of the problem. As usual, research activ-
ities focused on attacks and countermeasures against attacks. On the one hand,
researchers tried to develop countermeasures to defeat physical attacks (or, at
least, to complicate as much as possible the task of the attacker). Hardware
implementations and software routines capable of computing cryptographic oper-
ations in constant time [13], hiding the power consumption using power analysis
resistant logic styles [8,26–28] or masking it using randomization [17,19], or
efficient error detection and correction codes [6] are possible examples of coun-
termeasures developed over the years. On the other hand, researchers tried to
improve the effectiveness of the attacks to better understand their potential and
limits. Template attacks [9] and fault sensitivity [16] are two possible example
of this improvement. Furthermore, especially for power analysis, researchers also
developed metrics for fairly evaluate the robustness against attacks [25].

The amount of carried out research dealing with physical attacks is visi-
ble from Fig. 1, which depicts the number of references, as reported on Google
scholar [24] the 8th of August 2016, to the first papers discussing each of the
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most common physical attacks. Although not being an exact and precise mea-
sure, this figure gives an intuition of the large impact which physical attacks had
(and still continue to have). The physical attack more deeply studied is power
analysis. This is probably caused by the power of the attack and by the rela-
tively inexpensive equipment needed to mount it. Electromagnetic attacks and
photon emission attacks did not get the same exposure as the other physical
attacks simply because they appeared only recently. Surprisingly, fault attacks
were not investigated with the same effort as timing and power analysis attacks.
This fact is unexpected because, at least in their low cost version, fault attacks
are extremely simple to be carried out.

Despite such a vast effort however, the problem of physical attack is still
on scientific agenda, since some issues are still open. We need a better under-
standing of some physical attacks (as visible from Fig. 1, only power analysis
and timing attacks have been explored in depth), we need to develop effective
countermeasures against some other attacks, in particular photon emission, and
several other problems have to be addressed to ensure the robustness of cyber-
physical and embedded systems. The next section will focus on three of these
problems, presenting their main challenges and highlighting possible research
directions.

3 Challenge 1: Interaction Between Physical Attacks

Physical attacks, so far, have been mainly analyzed in isolation. This fact is
even more evident when it comes to the design of countermeasures. Researchers
often concentrate on one type of attack, developing a countermeasure against it
and evaluating how the protected design behaves compared to the original one.
However, the goal of the attacker is just to get access to the secret information
stored in the device (and not get access to the secret key using a specific attack).
Thus, application of a countermeasure against one attack without considering the
global effect on security of the countermeasure is extremely dangerous. In fact,
countermeasures against one attack might harm the robustness of the system
against another type of attack.

An example of this risk reported in the past is the negative effect which
countermeasures against fault attacks have on the resistance of a circuit against
power analysis [21]. Several error-detecting and correcting codes have been used
to harden the non-linear transformation of the AES algorithm and have been
analyzed. Each error-detecting and correcting code is characterized by its cover-
age and its error recovery capability. As a result, some codes where more suitable
than others to protect against fault attacks. After this exploration, the resistance
against power analysis attacks of each of the considered error-detecting and cor-
recting codes was analyzed in detail, using the information theory metric [25].
The results, reported in Fig. 2, demonstrate that the circuit characterized by the
highest resistance against power analysis attacks is the one without any error-
detecting and correcting codes (basically the one which could be easily attacked
by fault attacks).
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Fig. 2. Resistance against power analysis attacks analyzed using information theory
(from [21]). Several error detection and correction circuits have been analyzed (Parity,
Complemented Parity, Double Parity, Residue Modulo 3, Residue Modulo 7, Ham-
ming Code, and a reference version without any additional circuit). The most resistant
against power analysis attacks is the left most curve, the blue one, which is the ref-
erence circuit where no support for resistance against fault attacks was added. (Color
figure online)

This example shows that, even though the intention of the designer was to
increase the resistance of the circuit by making it more robust against fault
attacks, the achieved result was to help the attacker, since the added circuit
significantly simplified the procedure for extracting the secret key using a differ-
ent type of attack. Currently we have a pretty good knowledge of some physical
attacks, but we still know very little about the possible interaction between them
and we know even less about the about interactions between the different coun-
termeasures which we apply. Exploring these problems in much more depth is
of crucial importance for designing much more resistant and much more secure
embedded and cyber-physical systems.

4 Challenge 2: Automatic Application of Countermeasures

Despite the pervasive diffusion of electronic systems also in extremely private
and critical aspects of our live, security is often considered only at the end of
the whole design process, after other goals (such as performance and cost) are
achieved. This is not a good approach for designing secure systems in general,
but is even less effective for tackling the problem of physical attacks, since these
attacks are strictly depending on the underlining architecture and on the specific
implementation. Thus, a much more effective way of achieving robustness from
physical attacks is to consider security since the beginning of the whole design
flow, and to use security related metrics as forefront design variables as now are
area or memory occupation, performance, and power consumption.
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Furthermore, implementations of countermeasures against physical attacks
require engineers and designers with strong security expertise and good knowl-
edge of state of the art in the field. Currently designers have to rely only on
their experience and on good practices for finshing the implementation. Once
the design is completed, it is evaluated by laboratories which test the device
against a number of known attacks. If problems are encountered, the design has
to be corrected and re-evaluated.

A parallel can be made between today’s techniques for achieving physical
attacks resistance and the design process of electronic circuits as it was decades
ago. At the beginning, design of electronic circuits was carried out by teams of
expert designers, who were sometimes manually drawing the layout of the fab-
rication masks. Then electronic design automation arrived to support designers
in their tasks. The boosted productivity (together with the progresses of tech-
nology) allowed us to achieve the level of integration and to handle the level of
complexity which made possible the existence of extremely powerful personal
computers, smart devices and all other electronic components which are cur-
rently populating our lives.

In the same way, security would significantly benefit from the development of
design tools allowing designers to automatically apply countermeasures against
physical attacks, to evaluate their effects, to early estimate the impact of these
countermeasures on other design parameters and to verify their correct applica-
tion. An automation tool would take an unprotected design and apply a set of
existing countermeasures, as would have been done by a designer. Such automa-
tion tools would not replace the work of researchers studying and designing
novel and more effective countermeasures (as electronic design automation did
not replace designers manually implementing extremely optimized blocks), but
would provide an essential support for implementing systems which are robust
against physical attacks by constructions and, ultimate, overall more secure.

Despite the importance of these topics, design automation for security did
not receive significant attention. Previous works have addressed the topic mainly
from the hardware point of view, proposing design flows for power analysis resis-
tant logic styles [20,28,29]. More recently, the topic of automatic application
of physical attacks countermeasures tackled also software aspects, proposing
tools for power analysis aware instruction set extensions [22], and compilers
for the automatic application of software countermeasure as hiding and mask-
ing [3,4,18]. The focus was still mainly on power analysis attacks. Verification
tools for asserting the correct applications of countermeasures have also subject
of research [5,10,11]. Verification tools are extremely important since they would
allow to immediately identify not only errors introduced by designers during the
implementation, but also several other security pitfalls, such as intrinsic weak-
nesses of the applied countermeasure and the involuntary removal of protections
caused by various optimizations carried out in the tool chain.

These works represent however only the begin of a research direction, the
one of automation tools for security, still in infancy, which would, once more
developed, enable the design of more physical resistant, and thus overall more
secure, embedded and cyber-physical systems.
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5 Challenge 3: Physically Secure Cyber-Physical Systems

Embedded systems are becoming more and more intelligent and connected.
Together with network connectivity, these devices began to integrate sen-
sors since several years. Now, these devices integrates also some support for
autonomous decision and actuators for putting these decisions in place. Systems
composed by an analysis and decision-making part (cyber) and by a sensing and
actuating parts (physical) take the names of cybper-physical systems (CPSs).
The block representation of such systems is depicted in Fig. 3.

The presence of actuators dramatically increase the consequences of misuse
of such systems, since a malicious attack can cause much more damage than
the ones cause by a leak of private data. Cyber-physical systems are often used
in critical applications, e.g., to automatically monitor patients or to control our
smart grid. The security of these applications should be guaranteed, since a
breach in such systems might have also catastrophic consequences and cause
also the loss of human lives. For these reasons, it is of utmost importance that
the cyber part of CPSs is resistant against physical attacks.

However, this is not sufficient. Cyber-physical systems are composed of two
parts, a cyber part, very similar to the computational part of embedded sys-
tems, and a physical part. We know what are the threats to the cyber-part,
and we know what can be the defense mechanisms for it. However, the goal of
the attacker is to take control of the system, not necessarily take control of the
system attacking the cyber part. An attack directed to the physical part, could

Sensors

Processing

Actuators

CPS

CyberPhysical

Fig. 3. Simplified schema of a Cyber-Physical system. It composes a cyber part, which
analyzes the data and take the decisions, and a physical part, which usually consist
in two parts: one devoted to sensing and one devoted to actuating the decision taken
by the cyber part. Currently, security researchers are mainly focusing on securing the
cyber part of the CPS. Almost no attention is devoted yet to the security of the physical
part of the system. (Color figure online)
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be much simpler while allowing the adversary to reach his goal. In the past,
security was only concentrating on cyber attacks carried out against electronic
components.

As discussed in Sect. 2, the discovery of physical attacks against the electronic
components was devastating for embedded systems. Now, with the addition of a
physical part to systems, the game changes again. The physical portion of CPSs
will be exposed, exactly as the cyber part, to cyber and physical attacks. How-
ever, we are not prepared to address this new situation, since little or nothing is
known about attacks and countermeasures against the physical portion of a sys-
tem. Few works addressed the problems so far (physical attacks to the physical
portion of CPSs were analyzed, for instance, in the context of additive manufac-
turing [2]). Future security research should definitely address, as indicated by the
red arrow in Fig. 3, security threats and possible countermeasure devoted to the
physical portion of systems, since the adversary will attack through the weakest
point, and the physical part is much likely to be the weakest point of CPSs.

6 Conclusions

Approximately 20 years have passed since physical attacks were published in the
open literature. Since then, researchers have deeply studied the subject, aiming
on the one side at discovery of new and much more powerful ways for carrying out
the attacks, and on the other attempting to increase the robustness of the imple-
mentations. Nevertheless, several problems are still open. This paper presented
three (of the many) possible directions for future research in the area, namely
the study of the interaction of different physical attacks (and the effects which a
countermeasure against one attack might have on the robustness against another
physical attack), the study of techniques for automatically applying countermea-
sures against physical attacks (and to verify the proper applications of them),
and, finally, the study of the robustness of cyber-physical systems, where the
presence of a physical part could completely change the rules of the game.
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Abstract. Designing public key cryptosystems that resist attacks by
quantum computers is an important area of current cryptographic
research and standardization. To retain confidentiality of today’s com-
munications against future quantum computers, applications and proto-
cols must begin exploring the use of quantum-resistant key exchange and
encryption. In this paper, we explore post-quantum cryptography in gen-
eral and key exchange specifically. We review two protocols for quantum-
resistant key exchange based on lattice problems: BCNS15, based on the
ring learning with errors problem, and Frodo, based on the learning with
errors problem. We discuss their security and performance characteris-
tics, both on their own and in the context of the Transport Layer Security
(TLS) protocol. We introduce the Open Quantum Safe project, an open-
source software project for prototyping quantum-resistant cryptography,
which includes liboqs, a C library of quantum-resistant algorithms, and
our integrations of liboqs into popular open-source applications and pro-
tocols, including the widely used OpenSSL library.

1 Introduction

All Internet security protocols that use cryptography, such as the Transport
Layer Security (TLS, a.k.a. the Secure Sockets Layer (SSL)) protocol [18] have
the same basic structure: public key cryptography is used to authenticate the
communicating parties to each other and to establish a shared secret key, which
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is then used in symmetric cryptography to provide confidentiality and integrity to
their communication. The security of most public key cryptosystems depends on
the difficulty of solving some mathematical problem, such as factoring large num-
bers or computing discrete logarithms in finite field or elliptic curve groups. The
best known solutions to these problems run in exponential (or sub-exponential)
time, making it infeasible for attackers to break the schemes.

Quantum mechanics allows for devices that operate on quantum bits, known
as qubits, which are two-state quantum systems that can be in any quantum
superposition of 0 and 1. Such devices are called quantum computers, and could
solve certain types of problems much faster than “classical” (non-quantum) com-
puters. Shor’s algorithm [48] could efficiently (i.e., in polynomial time) factor
large numbers and compute discrete logarithms, breaking all widely deployed
public key cryptosystems. Most symmetric key schemes, such as the Advanced
Encryption Standard (AES) cipher, would not be broken by quantum algorithms,
although would generally need bigger keys. While large-scale quantum comput-
ers do not yet exist, building quantum computers is an active area of research.
And Schoelkopf [17] identify seven stages in the development of quantum com-
puters: so far, physicists can perform operations on single and multiple physical
qubits, perform non-destructive measurements for error correction, and are mak-
ing progress on constructing logical memories with longer lifetime than physical
qubits; to achieve large-scale quantum computation, we will require the ability
to perform operations on single and multiple logical qubits with fault-tolerant
computation. Regarding the million-dollar question of when a large-scale quan-
tum computer will be built, in 2015 Mosca [38] stated “I estimate a 1/7 chance
of breaking RSA-2048 by 2026 and a 1/2 chance by 2031.”

Any attacker who records present-day communications would be able to
decrypt it once a quantum computer is built; and there is evidence that govern-
ments are storing vast quantities of encrypted Internet traffic. This motivates
the urgent use of cryptography that is designed to be safe against quantum
attackers—called “post-quantum” or “quantum-safe” or “quantum-resistant”
cryptography. In August 2015, the United States National Security Agency
(NSA) issued a memo regarding its Suite B cryptographic algorithms for govern-
ment use, advising that it plans to “transition to quantum resistant algorithms
in the not too distant future” [39]. In August 2016, the United States National
Institute of Standards and Technology (NIST) launched its post-quantum crypto
project1, a multi-year process with the goal of evaluating and standardizing one
or more quantum-resistant public key cryptosystems.

Post-quantum Cryptography. There are several classes of mathematical problems
that are conjectured to resist attacks by quantum computers and have been used
to construct public key cryptosystems, several of which date from the early days
of public key cryptography. These include:

– Code-based cryptography. The McEliece public key encryption scheme [36] was
one of the first public key schemes, and is based on error-correcting codes, in

1 http://www.nist.gov/pqcrypto.

http://www.nist.gov/pqcrypto
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particular, the hardness of decoding a general linear code. Niederreiter [40]
subsequently proposed a digital signature scheme based on error correcting
codes.

– Hash-based cryptography. Merkle [37] first proposed the use of hash functions
for digitally signing documents; Lamport [30] and Winternitz then showed
how to convert Merkle’s one-time signature scheme into a many-time sig-
nature scheme. These schemes are based entirely on standard hash function
properties, and thus are believed to be among the most quantum-resistant.
Modern variants include SPHINCS [7] and XMSS [13].

– Multivariate cryptography. These cryptosystems are based on the difficulty of
solving non-linear, usually quadratic, polynomials, over a field [35,41].

– Lattice-based cryptography. Ajtai [1] proposed the first cryptographic schemes
directly based on lattices. Regev [46] then introduced the related learning with
errors (LWE) problem, the security of which is based on lattice problems, and
which now forms the basis of a variety of public key encryption and signature
schemes [31]. The ring learning with errors (ring-LWE) problem [33] uses
additional structure which allows for smaller key sizes. Another scheme whose
security relates to lattices is the NTRU scheme [26], which also allows for fairly
small key sizes.

– Supersingular elliptic curve isogenies. One of the newest candidates for
quantum-resistant public key cryptography is based on the difficulty of finding
isogenies between supersingular elliptic curves [20].

In addition, quantum information can be used directly to create cryptosys-
tems; this is called quantum cryptography. For example, quantum key distrib-
ution allows two parties to establish a shared secret key using quantum com-
munication and an authenticated classical channel. While this can provide very
strong security, it is not yet a candidate for widespread usage since it requires
physical infrastructure capable of transmitting quantum states reliably over long
distances, so in the rest of this paper we focus solely on quantum-resistant cryp-
tography using classical (non-quantum) computers.

Existing quantum-resistant schemes generally have several limitations. Com-
pared with traditional RSA, finite field, and elliptic curve discrete logarithm
schemes, all quantum-resistant schemes have either larger public keys, larger
ciphertexts/signatures, or slower runtime. Many quantum-resistant schemes are
also based on mathematical problems that are, from a cryptographic perspective,
quite new, and thus have received comparably less cryptanalysis. There remain
many open questions in post-quantum cryptography, making it an exciting and
active research area: the design of better public key encryption and signature
schemes with smaller keys and ciphertexts/signatures; improved cryptanalysis
leading to better parameter estimates; development of fast, secure implemen-
tations suitable for high-performance servers and small embedded devices; and
integration into existing network infrastructure and applications.

(It is worth noting that research into post-quantum cryptography is valu-
able even if large-scale quantum computers are never built: it is possible that
the factoring, RSA, or discrete logarithms problems will be solved by some
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(non-quantum) mathematical breakthrough. Having a diverse family of cryp-
tography assumptions on which we can base public key cryptography protects
against such a scenario. Furthermore, the cryptographic agility that will help pre-
pare for a transition to yet-to-be-determined quantum-resistant cryptographic
algorithms will also enable the ability to respond quickly to other unexpected
weaknesses in cryptographic algorithms.)

This Paper. In this paper, we discuss two research projects in the area of lattice-
based key exchange: the “BCNS15” protocol [10] based on the ring-LWE prob-
lem, and the “Frodo” protocol [9] based on the LWE problem. We will explain
the basic mathematics of these protocols, and our results on the performance of
these protocols and their integration into the TLS protocol. We will introduce
the Open Quantum Safe project, an open-source software project designed for
evaluating post-quantum cryptography candidates and prototyping their use in
applications and protocols such as TLS.

This line of work focuses initially on key exchange, with digital signatures
to follow closely. As noted above, any attacker who records present-day com-
munications protected using non-quantum-resistant cryptography would be able
to decrypt it once a quantum computer is built. This implies that information
that needs to remain confidential for many years needs to be protected with
quantum-resistant cryptography even before quantum computers exist. In com-
munication protocols like TLS, digital signatures are used to authenticate the
parties and key exchange is used to establish a shared secret, which can then be
used in symmetric cryptography. This means that, for security against a future
quantum adversary, authentication in today’s secure channel establishment pro-
tocols can still rely on traditional primitives (such as RSA or elliptic curve
signatures), but we should incorporate post-quantum key exchange to provide
quantum-resistant long-term confidentiality. This has the benefit of allowing us
to introduce new post-quantum ciphersuites in TLS while relying on the existing
RSA-based public key infrastructure for certificate authorities. However, appli-
cations which require long-term integrity, such as signing contracts and archiving
documents, will need to begin considering quantum-resistant signature schemes.

Notation. Let χ be a distribution; a
$← χ denotes sampling a randomly according

to χ. The uniform distribution is denoted by U . Vectors are denoted in lower-case
bold, like a; matrices are denoted in upper-case bold, like A. The inner product
of two vectors a and b is 〈a,b〉. Sampling each component of the length-n vector
a independently at random from χ is denoted by a $← χn. If A is a probabilistic
algorithm, then y

$← A(x) denotes running A on input x with fresh randomness
and storing the output in variable y, and y

$← AO(x) denotes running A with
oracle access to procedure O.

2 Lattice-Based Cryptography and the LWE Problems

In a seminal 1996 work, Ajtai [1] first proposed a cryptographic construction
(in that case, a hash function) that relied on the hardness of a computational
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problem on lattices (the Short Integer Solution (SIS) problem). A subsequent
work by Ajtai and Dwork [2] presented a public key encryption scheme based
on another lattice problem. Concurrently, Hoffstein, Pipher, and Silverman [26]
created the NTRU public key encryption scheme with can be viewed as involving
algebraically structured lattices. A variety of research on the use of lattices in
constructing cryptosystems continued during that era, and a detailed chronology
is outside the scope of this paper; see one of the many surveys of lattice-based
cryptography, such as Peikert’s [44].

2.1 The Learning with Errors Problem

In 2005, Regev [46] introduced the learning with errors (LWE) problem, showed
that LWE is related to the hardness of a lattice problem (the Gap Shortest
Vector Problem (GapSVP)), and gave a public key encryption scheme based on
LWE. Being a more abstract algebraic problem, LWE can be easier to work
with in terms of building cryptosystems, and a large amount of research into the
hardness of LWE and its use in cryptography has followed; again, see a survey
such as [44] for a detailed chronology.

The search learning with errors problem is like a noisy version of solving a
system of linear equations: given a matrix A and a vector b = As + e, find s.

Definition 1 (Search LWE problem). Let n,m, and q be positive integers.
Let χs and χe be distributions over Z. Let s $← χn

s . Let ai
$← U(Zn

q ), ei
$← χe,

and set bi ← 〈ai, s〉 + ei mod q, for i = 1, . . . , m. The search LWE problem
for (n,m, q, χs, χe) is to find s given (ai, bi)m

i=1. In particular, for algorithm A,
define the advantage

Advlwe
n,m,q,χs,χe

(A) = Pr
[
s $← χn

s ;ai
$← U(Zn

q ); ei
$← χe;

bi ← 〈ai, si〉 + e mod q : A((ai, bi)m
i=1) = s)

]
.

For appropriate distributions χs and χe, not only is it conjectured to be hard
to find the secret vector s, it is even conjectured that LWE samples (a, 〈a, s〉+e)
look independent and random: this is the decision LWE problem.

Definition 2 (Decision LWE problem). Let n and q be positive integers. Let
χs and χe be distributions over Z. Let s $← χn

s . Define the following two oracles:

– Oχe,s: a
$← U(Zn

q ), e $← χe; return (a, 〈a, s〉 + e mod q).

– U : a $← U(Zn
q ), u $← U(Zq); return (a, u).

The decision LWE problem for (n, q, χs, χe) is to distinguish Oχ,s from U . In
particular, for algorithm A, define the advantage

Advdlwe
n,q,χs,χe

(A) =
∣
∣
∣Pr(s $← Z

n
q : AOχe,s() = 1) − Pr(AU () = 1)

∣
∣
∣ .
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Choice of Distributions. The error distribution χe is usually a discrete Gaussian
distribution of width αq for “error rate” α < 1.

LWE was originally phrased involving a uniform distribution on the secret s
(χn

s = U(Zn
q )). Applebaum et al. [5] showed that the short secrets (or “normal

form”) variant, in which χs = χe, has a tight reduction to the original uniform
secrets variant. In what follows, we use the short secrets variant throughout, and
abbreviate to a single error distribution χ (using shorthand notation Advlwe

n,m,q,χ

and Advdlwe
n,q,χ).

Difficulty. Difficulty of both search and decision LWE problems depends on the
size of n,m, and q, as well as the distributions χs and χe. Regev [46] showed
that, for appropriate parameters, search and decision LWE are worst-case hard
assuming the (average case) hardness of a lattice problem. In particular, he
showed first that search-LWE is at least as hard as solving the worst-case lattice
problems GapSVPγ and SIVPγ (for a parameter γ depending on n and α) using
a quantum reduction; then that decision-LWE is at least as hard as the search
version using a classical reduction. A sequence of later results have improved
various aspects (making the first reduction classical, not quantum; handling
more moduli); see Peikert’s survey [44, Sect. 4.2.2] for a list.

Extracting Secret Bits. The decision LWE problem effectively yields an element
〈a, s〉 + e ∈ Zq that is indistinguishable from random. Parties using LWE to
establish a shared secret for public key encryption (like in Regev’s scheme) or key
agreement (as we will see in the next section) will only approximately agree on
the same value modulo q, so they will have to apply some reconciliation function
and extracting a small number of bits (maybe even just 1 bit) from a single ele-
ment of Zq. In order to establish a multi-bit shared secret with LWE, the parties
will hence need to send many samples, which we can then think of in matrix form:
a matrix A $← Z

m×n
q , and an error e $← χn, to obtain b ← As + e ∈ Z

m
q . This

increases communication sizes m-fold, and requires approximately O(mn log q)
bits of communication to obtain an m-bit secret. To reduce communication sizes,
one could try to introduce some structure to the matrix A, for example making
each row the cyclic shift of the previous row. However, rather than working in
matrix form, we can shift our representation to a polynomial ring, leading us to
the ring-LWE problem.

2.2 The Ring Learning with Errors Problem

In 2010, Lyubashevsky et al. [34] introduced the ring-LWE problem. Let R =
Z[X]/〈Xn + 1〉, where n is a power of 2. Let q be an integer, and define Rq =
R/qR, i.e., Rq = Zq[X]/〈Xn + 1〉. In other words, Rq consists of polynomials
of degree at most n − 1, with coefficients in Zq, and the wrapping rule that
Xn ≡ −1 mod q. The search and decision ring-LWE problems are analogues of
the corresponding LWE problems, except with ring elements rather than vectors.
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Definition 3 (Search ring-LWE problem). Let n and q be positive integers.
Let χs and χe be distributions over Rq. Let s

$← χs. Let a
$← U(Rq), e

$← χe,
and set b ← as + e. The search ring-LWE problem for (n, q, χs, χe) is to find s
given (a, b). In particular, for algorithm A define the advantage

Advrlwe
n,q,χs,χe

(A) = Pr
[
s

$← χs; a
$← U(Rq); e

$← χe; b ← as + e : A(a, b) = s
]
.

Again, for appropriate distributions χs and χe, not only is it conjectured
to be hard to find the secret s, it is even conjectured that ring-LWE samples
(a, as+e) look independent and random: this is the decision ring-LWE problem.

Definition 4 (Decision ring-LWE problem). Let n and q be positive inte-
gers. Let χs and χe be distributions over Rq. Let s

$← χs. Define the following
two oracles:

– Oχe,s: a
$← U(Rq), e

$← χe; return (a, as + e).
– U : a, u

$← U(Rq); return (a, u).

The decision ring-LWE problem for (n, q, χs, χe) is to distinguish Oχe,s from U .
In particular, for algorithm A, define the advantage

Advdrlwe
n,q,χs,χe

(A) =
∣
∣
∣Pr(s $← Rq : AOχe,s() = 1) − Pr(AU () = 1)

∣
∣
∣ .

Choice of Distributions. The error distribution χe is usually a discretized
Gaussian distribution in the canonical embedding of R; for an appropriate choice
of parameters, we can sample ring elements from χe by sampling each coefficient
of the polynomial independently from a related distribution.

As with LWE, ring-LWE can be formulated using either a uniform secret
(χs = U(Rq)) or with short secrets (χs = χe), which has a tight reduction to
the original secrets variant. In what follows, we use the short secrets variant
throughout, and abbreviate to a single error distribution χ (using shorthand
notation Advrlwe

n,q,χ and Advdrlwe
n,q,χ).

Difficulty. Difficulty of both search and decision ring-LWE depends on the para-
meters n and q and the distributions χs and χe. Lyubashevsky et al. [34] showed
that search ring-LWE as hard as quantumly solving approximate shortest vec-
tor problem on an ideal lattice in R; and then the classical search-to-decision
reduction applies.

Because of the additional structure present in ring-LWE, the choice of n
and q requires greater care than the unstructured LWE problem [45]. There is
also the risk that the ring-LWE problem may be easier than the LWE problem.
Currently, the best known algorithms for solving hard problems in ideal lattices
[14,29] are the same as those for regular lattices (ignoring small polynomial
speedups); and in some sieving algorithms, the ideal case enables one to save a
small constant factor of time or space [11,47]. Very recently Cramer et al. [16]
gave a quantum polynomial time algorithm algorithm for ideal-SVP with certain
parameters, but this is not currently applicable to ring-LWE. In summary, some
view LWE as a more “conservative” security choice than ring-LWE, though there
is no appreciable security difference at present.
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Extracting Secret Bits. The decision ring-LWE problem effectively yields a ring
element that is indistinguishable from random. Being an element of Rq =
Zq[X]/〈Xn + 1〉, we have n coefficients each of which is an element of Zq. As
with LWE, cryptographic constructions using this will need to reconcile approx-
imately equal shared secrets, and thus can extract only a small number of bits
(maybe even just 1 bit) from each coefficient. But since there are n (independent-
looking) coefficients, one can extract n random-looking bits from a single ring
element. Thus, one needs approximately O(n log q) bits of communication to
obtain an n-bit secret, a substantial reduction compared to LWE. Thus, in prac-
tice, one must decide between the decreased communication of ring-LWE versus
the potentially more conservative security of LWE.

3 Key Exchange Protocols from LWE and Ring-LWE

Regev [46] was the first to give a public key encryption scheme from the learning
with errors problem, and Lyubashevsky et al. [33] were the first to give a pub-
lic key encryption scheme from ring-LWE. Like ElGamal public key encryption,
both these schemes implicitly contain a key encapsulation mechanism and then
one-time-mask the KEM shared secret with (an encoded form of) the message.
Peikert [42] describes a corresponding approximate LWE key agreement proto-
col. In 2010, Lindner and Peikert [31] gave an improved LWE-based public key
encryption scheme, and a ring-LWE analogue, and described how to view it as
an approximate key agreement protocol. This was followed by detailed LWE-
and ring-LWE-based key agreement protocols by Ding et al. [19] (including a
single-bit reconciliation mechanism to obtain exact key agreement); a sketch of
an LWE-based key agreement scheme by Blazy et al. [8, Figs. 1, 2]; and detailed
ring-LWE-based key encapsulation mechanisms by Fujioka et al. [22, Sect. 5.2]
and Peikert [43] (with an alternative single-bit reconciliation mechanism). In
addition to basic unauthenticated key exchange, there have been works on using
LWE to create password-authenticated key exchange [28] and using ring-LWE to
create authenticated key exchange [49] (though the security proof of the latter
is questioned [24]).

In this section, we will examine two unauthenticated key agreement proto-
cols in which this paper’s first author was involved. Frodo [9], an LWE-based
key exchange protocol, is an instantiation of the Lindner–Peikert LWE approx-
imate key agreement scheme using a generalization of Peikert’s reconciliation
mechanism in which multiple bits are extracted from a single element of Zq.
BCNS15 [10], a ring-LWE-based key exchange protocol, is an instantiation of the
key exchange scheme corresponding to the KEM in the Lyubashevsky–Piekert–
Regev public key encryption scheme from ring-LWE using Peikert’s reconcilia-
tion mechanism.

3.1 Common Tools: Reconciliation

In both Frodo and BCNS15, the parties will establish an approximately
equal shared secret, then exchange some “hints” that allow them to perform



22 D. Stebila and M. Mosca

a reconciliation operation on the approximately equal shared secret to extract
some secret bits that are, with high probability, the same for both parties. The
reconciliation technique of Ding et al. [19] sends a single bit “hint” for each key
bit and relies on the low-order bits of the shared secret; Peikert’s technique [43]
also sends a single bit hint but relies on the high-order bits of the shared secret.
The explanation below generalizes Peikert’s approach [43] to extract multiple
bits.

Let B ∈ N be the number of bits we aim to extract from one element of
Zq. Assume B < (log2 q) − 1. Let B = �log2 q� − B. Let v ∈ Zq, represented
canonically as an integer in [0, q). Define the rounding function

	·�2B : Zq → Z2B : v �→
⌊
2−Bv

⌉
mod 2B ,

where 	·� : R → Z rounds real number x to the closest integer. When q is a
multiple of 2B , 	·�2B outputs the B most significant bits of (v + 2B−1) mod q,
thereby partitioning Zq into 2B intervals of integers with the same B most
significant bits (up to a cyclic shift of the values that centres these intervals
around 0).

Define the cross-rounding function

〈·〉2B : Zq → Z2 : v �→
⌊
2−B+1v

⌋
mod 2,

where 	·� : R → Z takes the floor of the real number x. When q is a multiple of
2B+1, 〈·〉2B partitions Zq into two intervals based according to their (B + 1)th
most significant bit.

On input of w ∈ Zq and c ∈ {0, 1}, the reconciliation function rec2B (w, c)
outputs 	v�2B , where v is the closest element to w such that 〈v〉2B = c.

If Alice and Bob have approximately equal values v, w ∈ Zq, they can use
the following process to derive B bits that are, with high probability, equal.
Suppose q is a multiple of 2B . Bob computes c ← 〈v〉2B and sends c to Alice.
Bob computes k′ ← 	v�2B . Alice computes k ← rec2B (w, c).

Security of this technique follows from the following fact: if v ∈ Zq is uni-
formly random, then 	v�2B is uniformly random given 〈v〉2B .

Correctness follows if v and w are sufficiently close. Namely, if |v − w

(mod q)| < 2B−2, then rec2B (w, 〈v〉2B ) = 	v�2B . Parameters must be chosen
so that v and w are sufficiently close.

For our parameters in the ring setting, we will want to extract 1 bit from each
element of Zq, but q will not be a multiple of 2. Peikert suggested the following
technique: Bob computes v

$← dbl(v), where dbl : Zq → Z2q : x �→ 2x − e, where
e is sampled from {−1, 0, 1} with probabilities p−1 = p1 = 1

4 and p0 = 1
2 . Bob

computes c ← 〈v/2〉2 and sends c to Alice. Bob computes k′ ← 	v/2�2. Alice
computes k ← rec2(2w, c).

For ring-LWE, these functions are extended from Zq to the ring Rq =
Zq[X]/〈Xn + 1〉 coefficient-wise. For matrix forms of LWE, these functions can
be extended to vectors component-wise.
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3.2 Ring-LWE-Based Key Exchange: BCNS15

Protocol. The BCNS15 protocol [10], based on the ring-LWE problem, is shown
in Fig. 1. Alice and Bob exchange ring-LWE samples b = as+e and b′ = as′ +e′.
They can then compute an approximately equal shared secret:

sb′ = sas′ + se′ ≈ sas′ + s′e = bs′ ∈ Rq = Zq[X]〈Xn + 1〉.

From each coefficient of the approximately equal shared secret, they extract a
single secret bit.

Public parameters

Decision ring-LWE parameters n, q, χ

a
$← U(Rq)

boBecilA

s, e
$← χ

b ← as + e ∈ Rq
b−→ s′, e′ $← χ

b′ ← as′ + e′ ∈ Rq

e′′ $← χ
v ← bs′ + e′′ ∈ Rq

v
$← dbl(v) ∈ R2q

b′,c←− c ← 〈v/2〉2 ∈ {0, 1}n

kA ← rec2(2b′s, c) ∈ {0, 1}n kB ← �v/2�2 ∈ {0, 1}n

Fig. 1. BCNS15: unauthenticated Diffie–Hellman-like key exchange from ring-LWE

Security. Assuming the decision ring-LWE problem is hard for the parame-
ters chosen, the BCNS15 key exchange protocol is a secure unauthenticated key
exchange protocol. The argument follows [31,43] by using two applications of
the decision ring-LWE assumption: first, on Alice’s computations involving s (so
b becomes independent from s), and second on Bob’s computations involving s′

(so b′ and v become independent from s′). This makes the approximately equal
shared secret v uniformly random from the adversary’s perspective, and as noted
above the hint c reveals no information about extracted key k′.

Parameters. The BCNS15 protocol is instantiated with n = 1024 and q = 232−1.
The error distribution χ is a discrete Gaussian distribution; because n is a power
of 2, this can be achieved by sampling each coefficient from a discrete Gaussian
DZ,σ with has DZ,σ(x) = 1

S e−x2/(2σ2) where S = 1 + 2
∑∞

k=1 e−k2/(2σ2). With
these parameters, the probability that reconciliation yields k �= k′ is much less
than 2−128. Total communication required for two parties to establish a shared
secret is 8,320 bytes.
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Based on hardness estimates by Albrecht et al. [3], breaking the system with
these parameters would require 2163.8 operations on a classical computer with
at least 294.4 memory usage. Assuming a square-root speedup for quantum com-
puters via Grover’s algorithm (though it is not known how to achieve a full
square-root speedup), this suggests at least 281.9 quantum security. Based on
the same difficulty estimates for the subsequent NewHope protocol [4], Alkim
et al. list BCNS15 as having 86-bit classical security and 78-bit quantum security.

Subsequent Works. Alkim et al. [4] subsequently published the so-called
“NewHope” protocol, making several improvements to the BCNS15 protocol.
NewHope uses different parameters and a different error distribution (which was
easier to sample), resulting in substantially improved performance and smaller
communication (3,872 bytes). NewHope also uses a pseudorandomly generated a,
rather than a fixed public parameter. In July 2016, Google announced that they
were deploying a two-year experiment in the alpha version of their Chrome web
browser (called “Canary”) that uses the NewHope key exchange protocol in a
hybrid ciphersuite with elliptic curve Diffie–Hellman [12]. Further improvements
to NewHope have been given by several papers [25,32].

3.3 LWE-Based Key Exchange: Frodo

Protocol. The Frodo key exchange protocol [9], based on the LWE problem, is
shown in Fig. 2. It uses a matrix form of the LWE problem: Alice uses m secrets
s1, . . . , sm, represented as a matrix S; similarly for Bob. Alice and Bob exchange
matrix LWE samples B = AS+E and B′ = S′A′ +E′. They can then compute
an approximately equal shared secret:

B′S = S′AS + S′E ≈ S′AS + SE′ = S′B ∈ Z
m×m
q .

From each entry of the approximately equal shared secret, they extract B secret
bits. Frodo follows NewHope’s idea of using a pseudorandomly generated A.

Security. Assuming the decision LWE problem is hard for the parameters chosen,
and PRF is a pseudorandom function, the Frodo key exchange protocol is a
secure unauthenticated key exchange protocol. A hybrid argument goes from the
standard decision-LWE problem to a matrix form of it, then the same argument
as for BCNS15 above yields the indistinguishability of the session key.

Parameters. The Frodo paper contains several parameter sets, including a “rec-
ommended” parameter set, which uses n = 752, q = 215,m = 8, and B = 4.
The error distribution χ is a concrete distribution specified in the paper, which
is close in Renyi divergence to a rounded continuous Gaussian distribution (but
requires fewer bits to sample). With these parameters, the probability that rec-
onciliation yields k �= k′ is 2−38.9. Total communication required for two parties
to establish a shared secret is 8,320 bytes. The claimed security level is 140 bits
of security against a classical adversary, and 130 bits against a quantum adver-
sary. The paper also includes a higher-security “paranoid” parameter set, which
conjectures a certain lower bound on lattice sieving for any adversary.
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Public parameters

Decision LWE parameters n, q, χ; integer m

boBecilA

seed $← {0, 1}λ

A ← PRF(seed) ∈ Z
n×n
q

S,E
$← χ(Zn×m

q )

B ← AS + E ∈ Z
n×m
q

b,seed−→ A ← PRF(seed) ∈ Z
n×n
q

S′,E′ $← χ(Zm×n
q )

B′ ← S′A + E′ ∈ Z
m×n
q

E′′ $← χ(Zm×m
q )

V ← S′B + E′′ ∈ Z
m×m
q

B′,C←− C ← 〈V〉2B ∈ Z
m×m
2B

k ← rec2B (B′S,C) ∈ Z
m
2B k′ ← �V�2B ∈ Z

m
2B

Fig. 2. Frodo: unauthenticated Diffie–Hellman-like key exchange from LWE

3.4 Performance of Post-quantum Key Exchange

Table 1 (copied from [9]) shows the performance characteristics of several post-
quantum key exchange protocols:

– BCNS ring-LWE key exchange, C implementation [10];
– NewHope ring-LWE key exchange, C implementation [4];
– NTRU public key encryption key transport using parameter set EES743EP1,

C implementation;2 and
– SIDH (supersingular isogeny Diffie–Hellman) key exchange, C implementa-

tion [15].

The table also includes non-quantum-secure algorithms at the 128-bit classi-
cal security level for comparison: OpenSSL’s implementation of ECDH (on the
nistp256 curve) and RSA with a 3072-bit modulus. Results were measured on
a single hardware hyper-thread on a 2.6 GHz Intel Xeon E5 (Sandy Bridge);
see [9] for details. Although some implementations included optimizations using
the AVX2 instruction set, the computer used for measurements did not support
AVX2.

In the table, Alice0 denotes Alice’s procedure for constructing her outgoing
message, and Alice1 is her procedure for processing Bob’s incoming message and
deriving the shared secret.

The NewHope protocol has the best computational performance of the post-
quantum key exchange algorithms tested, even outperforming traditional RSA
and ECDH. However, all structured lattice schemes (ring-LWE and NTRU)
have larger communication than RSA and ECDH, around 2–8 KiB round-trip.

2 https://github.com/NTRUOpenSourceProject/ntru-crypto.

https://github.com/NTRUOpenSourceProject/ntru-crypto
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Table 1. Performance of standalone cryptographic operations, showing mean runtime
in milliseconds of standalone cryptographic operations, communication sizes (public
key/messages) in bytes, and claimed security level in bits. Table from [9].

Scheme Alice0 (ms) Bob (ms) Alice1 (ms) Communication (bytes) Claimed security

A→B B→A Classical Quantum

RSA 3072-bit — 0.09 4.49 387/0∗ 384 128 —

ECDH nistp256 0.37 0.70 0.33 32 32 128 —

BCNS 1.01 1.59 0.17 4,096 4,224 86 78

NewHope 0.11 0.16 0.03 1,824 2,048 229 206

NTRU EES743EP1 2.00 0.28 0.15 1,027 1,022 256 128

Frodo recomm. 1.13 1.34 0.13 11,377 11,296 144 130

Frodo paranoid 1.25 1.64 0.15 13,057 12,976 177 161

SIDH 135 464 301 564 564 192 128
∗In TLS, the RSA public key is already included in the server’s certificate message, so RSA key transport

imposes no additional communication from server to client.

Unstructured lattice schemes (LWE) also achieve good performance, on the
order of 1 ms, but require even more communication, around 22 KiB round-trip.
Supersingular isogeny Diffie–Hellman has much smaller keys (1 KiB round-trip,
not much larger than RSA 3072), but orders of magnitude slower performance.
(Note, however, that the AVX2 optimized implementation of SIDH was an order
of magnitude faster than its C implementation). No code-based post-quantum
protocol was included in the tests above. In particular, the implementation of
Bernstein et al.’s “McBits” high-speed code-based cryptosystem [6] was not pub-
licly available at the time of writing, but their paper reports speeds of 0.005ms
(on a 3.4 GHz CPU) for decryption at the 128-bit quantum security level, but
at the cost of 216 KiB public keys.

These trade-offs leave no clear post-quantum winner: the smallest key sizes
come from SIDH but it has slow performance (though performance usually
improves!); ring-LWE gives a decent tradeoff with fast performance and not-
too-big keys; LWE’s performance remains good, and avoids the use of a struc-
tured lattice, but requires larger communication. Though these larger public
keys may be too big for embedded devices, it should be remembered that the
average webpage is over 1 MB: if we had to switch the Internet to post-quantum
cryptography today, the communication costs from post-quantum key exchange
would not be much more than an extra emoticon on a webpage.

3.5 From Unauthenticated to Authenticated Key Exchange

Both the BCNS15 and Frodo protocols are for unauthenticated key exchange:
they assume the adversary is passive. Of course in practice one must achieve
security against an active network adversary. Peikert [43] noted the challenges
that are faced in securing LWE and ring-LWE based protocols against an active
adversary, and Fluhrer [21] described an explicit attack on ring-LWE protocols
that reuse ephemeral key shares against an active adversary. Peikert suggested
the use of a transform such as the Fujisaki–Okamoto transform [23] which con-
verts a passively secure (IND-CPA) key encapsulation mechanism (KEM) into
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an actively secure (IND-CCA) KEM. For integration with TLS, there is also the
possibility of using signatures in a signed-DH-like protocol to first authenticate
the keyshares; see [10].

4 Integrating Post-quantum Key Exchange into TLS

All the post-quantum key exchange candidates explored in the previous section
incur some penalty (either slower computation, or bigger communication, or
both) compared to existing RSA or elliptic curve public key cryptography. It is
therefore important to understand the impact of these penalties in a practical
setting. Both the BCNS15 and Frodo papers integrate the corresponding key
exchange scheme into the Transport Layer Security (TLS) protocol, the domi-
nant protocol used securing Internet communications. In particular, they create
new TLS version 1.2 ciphersuites which use traditional RSA or ECDSA cer-
tificates for signature, but use post-quantum key exchange to derive a shared
secret, and then continue to use standard TLS authenticated encryption con-
structions (e.g., AES in GCM mode). (Due to the message flow in the TLS 1.2
handshake, the TLS server plays the role of “Alice” in the key exchange, and the
TLS client plays the role of “Bob”.) This is achieved by modifying OpenSSL, a
common open-source library for SSL/TLS, which is used by applications such
as the Apache httpd web server for securing web server communication.

Hybrid Ciphersuites. The experiments involving post-quantum ciphersuites in
TLS also included hybrid ciphersuites, where the TLS handshake uses two key
exchange algorithms: one post-quantum algorithm, and one traditional algo-
rithm (in this case, ECDH). While the use of two key exchange algorithms does
impact performance, it allows early adopters to retain the (current) security of
traditional algorithms like ECDHE while obtaining (potential) security against
quantum computers: since many post-quantum algorithms have had compara-
tively less cryptanalysis, there is an increased chance that parameter sizes for
post-quantum algorithms will evolve more rapidly over the next few years in the
face of new classical or quantum cryptanalytic advances. Interestingly, Google, in
its recent NewHope experiment in Chrome, decided to use solely hybrid cipher-
suites [12].

Security. As noted above, BCNS15 and Frodo were shown to be secure unauthen-
ticated key exchange protocols, i.e., assuming a passive adversary. For security
against an active adversary, we showed in the BCNS paper [10] how to achieve
the standard security notion for TLS (“authenticated and confidential channel
establishment” (ACCE) [27]) if the server signs both the client and server key
share. Note that this would require reordering some of the messages in TLS. An
alternative, as noted above, is to use a KEM transform to obtain an actively-
secure key exchange protocol.
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Table 2. Performance of Apache httpd web server, measured in connections per second,
connection time in milliseconds, and handshake size in bytes. Table from [9].

Ciphersuite Connections/second Connection time (ms) Handshake size

(bytes)

Key exchange Signature 1B 10KiB 100KiB w/o load w/load

ECDHE nistp256 ECDSA 1187 1088 961 14.2 22.2 1, 264

RSA 814 790 710 16.1 24.7 1,845

BCNS15 ECDSA 922 893 819 18.8 35.8 9,455

RSA 722 716 638 20.5 36.9 9,964

NewHope ECDSA 1616 1351 985 12.1 18.6 5,005

RSA 983 949 771 13.1 20.0 5,514

NTRU EES743EP1 ECDSA 725 708 612 20.0 27.2 3,181

RSA 553 548 512 19.9 29.6 3,691

Frodo Recomm. ECDSA 923 878 843 18.3 31.5 23,725

RSA 703 698 635 20.7 32.7 24,228

Hybrid ciphersuites

BCNS15+ECDHE ECDSA 736 728 664 23.1 37.7 9,595

RSA 567 559 503 24.6 40.2 10,177

NewHope+ECDHE ECDSA 1095 1017 776 16.5 25.2 5,151

RSA 776 765 686 18.1 28.0 5,731

NTRU+ECDHE ECDSA 590 578 539 22.5 34.3 3,328

RSA 468 456 424 24.2 36.8 3,908

Frodo Rec.+ECDHE ECDSA 735 701 667 22.9 36.4 23,859

RSA 552 544 516 24.5 39.9 24,439

All TLS ciphersuites used AES256-GCM authenticated encryption with SHA384 in the MAC and KDF.

Note that different key exchange methods are at different security levels; see Table 1 for details.

4.1 Performance of Post-quantum Key Exchange in TLS

Table 2 (copied from [9]) shows the performance of a TLS-protected Apache
web server using various key exchange mechanisms and signature schemes. It
measures:

– throughput (connections/second): number of connections per second at the
server before server latency spikes, measured with requests of different pay-
load sizes (1 B, 10 KiB, 100 KiB);

– handshake latency (milliseconds): time from when client sends first TCP
packet till client receives first application data packet, measured on an
unloaded server and a loaded server (with sufficiently many connections to
achieve 70% CPU load).

Performance was measured on a 4-CPU server with the same CPU as in Sect. 3.4.
See [9] for the detailed methodology.

Unsurprisingly, the additional overhead of other cryptographic and network
operations in a TLS connection mutes the performance differences between key
exchange protocols. For example, while the standalone performance of NewHope
is 9× better than that of Frodo recommended, throughput of a NewHope-
based ciphersuite is only 1.75× better than Frodo recommended when the server
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returns 1 byte of application data, and the gap narrows further to just 1.12×
when the server returns 100 KiB of application data. Similarly, the latency of a
Frodo-based ciphersuite is only 1.5× slower than a NewHope-based ciphersuite.
When hybrid ciphersuites are used, the performance difference between slow and
fast post-quantum ciphersuites narrows even further.

5 Interlude: Programming is Hard

In the BCNS15 work on ring-LWE-based key exchange, we did a performance
evaluation at two levels: the standalone cryptographic operations of the ring-
LWE key exchange protocol, and its performance when run in the TLS protocol.
The first is a fairly common practice in cryptographic research: implement your
algorithms in C, then use some cycle counting or microsecond-accurate timing
code to determine the runtime of your algorithms.

Evaluating performance in the TLS protocol is less common due in part to
the difficulty of doing so: either one has to implement a network protocol from
scratch (which is painful and usually not the main purpose of the research), or
integrate the cryptographic algorithms into an existing cryptographic library,
such as OpenSSL. These libraries are often quite complex. When we wanted to
add our BCNS15 ring-LWE key exchange protocol to OpenSSL for testing pur-
poses, we had to first “wrap” our core ring-LWE library inside of OpenSSL’s
data structures inside the crypto directory, then modify OpenSSL’s ssl direc-
tory to make use of those new data structures. Table 3 shows the number of files
and lines of code that were added or changed. While the core ring-LWE library
consisted of only 6 (standalone) C files totalling just under 900 lines of code,
integrating it into OpenSSL required touching 23 files and changing or adding
another 2143 lines of code.

Table 3. Source code changes to add BCNS15 ring-LWE key exchange to OpenSSL

Component New files Existing files Lines of code∗

Core ring-LWE library 6 0 896

Ring-LWE “wrapper” for OpenSSL 6 5 1229

SSL integration 0 12 914
∗Lines of code excludes Makefiles and automatically generated files, but includes
comments and whitespace, and counts both lines added and deleted. Calculated
from https://github.com/dstebila/openssl-rlwekex/commit/f80719bf.

For the Frodo work on LWE-based key exchange, we again wanted to evaluate
the performance of our algorithms both in a standalone setting and in the context
of TLS, but we also wanted to compare with other post-quantum key exchange
candidates. Writing 2100 lines of wrapper/integration code for each algorithm we
wanted to add was an unappealing prospect. For the Frodo project, we developed

https://github.com/dstebila/openssl-rlwekex/commit/f80719bf
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an intermediate API that allowed us to more easily integrate different post-
quantum key exchange algorithms into OpenSSL for performance comparison.
This not-publicly-released intermediate API was the predecessor of and partial
motivation for some of the features added to the Open Quantum Safe framework.

6 Open Quantum Safe: A Software Framework
for Post-quantum Cryptography

The goal of our Open Quantum Safe (OQS) project (https://openquantumsafe.
org) is to support the development and prototyping of quantum-resistant cryp-
tography. OQS consists of two main lines of work: liboqs, an open source C
library for quantum-resistant cryptographic algorithms; and prototype integra-
tions into protocols and applications, including the widely used OpenSSL library.

As an example of where the OQS framework can assist with the grand chal-
lenge of moving quantum-resistant cryptography towards reliable widespread
deployment, consider a small- or medium-sized enterprise that understands the
need to integrate quantum-resistant cryptography into its products. Perhaps
their products protect information that requires long-term confidentiality. Per-
haps their products will be deployed in the field for many years with no easy
opportunity for changing the cryptographic algorithms later. Or perhaps they
or their customers are worried about the small but non-negligible chance that
today’s algorithms will be broken, by quantum computers or otherwise, much
earlier than expected.

Whatever their reason for wishing to integrate quantum-safe cryptography
into their products sooner rather than later, this would not be an easy path
for them to take. In-house implementation of quantum-safe primitives requires
advanced specialized expertise in order to understand the research literature,
choose a suitable scheme, digest the new mathematics, choose suitable para-
meters, and develop robust software or hardware implementations. This is an
enormous, expensive, and risky endeavour to undertake on one’s own, especially
for a small- or medium-sized enterprise.

Commercially available alternatives, especially back in 2014 when this project
started taking shape, were few, and also potentially problematic from a vari-
ety of perspectives: cost, patents, transparency, maintenance, degree of external
scrutiny, etc.

Companies who would like to offer a quantum-safe option today do not have
an easy or robust path for doing so.

OQS gives such organizations the option of prototyping an available
quantum-resistant algorithm in their applications. Since these are still largely
experimental algorithms that have not yet received the intense scrutiny of the
global cryptographic community, our recommendation is to use one of the avail-
able post-quantum algorithms in a “hybrid” fashion with a standard algorithm
that has received intense scrutiny with respect to classical cryptanalysis and
robust implementation.

https://openquantumsafe.org
https://openquantumsafe.org
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Since we fully expect that ongoing developments and improvements in the
design, cryptanalysis, and implementation of quantum-safe algorithms, OQS is
designed so improvements and changes in the post-quantum algorithm can be
adopted without major changes to application software.

Organizations who do not wish or need to use open source in their products
can still benefit from:

– reference implementations that will guide them in their own implementations
– benchmark information that will guide their choice of algorithm
– the ability to test alternatives in their products before deciding which algo-

rithms to choose.

OQS was thus designed with the goal of both facilitating the prototyping
and testing of quantum-resistant algorithms in a range of applications, and of
driving forward the implementation, testing, and benchmarking of quantum-
resistant primitives themselves.

The high-level architecture of the OQS software project is shown in Fig. 3.

Apache httpd,
OpenVPN, . . .

OTR
}

higher-level applications

benchmark OpenSSL fork libotr fork∗ . . .
}

protocol integrations

liboqs

key exchange

ring-LWE

BCNS15
NewHope

LWE

Frodo

code

QC-MDPC

NTRU∗ SIDH

MSR∗

signatures∗

Fig. 3. Architecture of the Open Quantum Safe project. (∗ denotes future plans.)

6.1 liboqs

liboqs (https://github.com/open-quantum-safe/liboqs) provides a common
interface for key exchange and digital signature schemes, as well as implemen-
tations of a variety of post-quantum schemes. Some implementations are based
on existing open source implementations, either adapting the implementation or
putting a thin “wrapper” around the implementation. Other implementations
have been written from scratch directly for the library. As of writing, liboqs
includes key exchange based on:

https://github.com/open-quantum-safe/liboqs
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– ring-LWE using the BCNS15 protocol (adaptation of existing implementa-
tion) [10];

– ring-LWE using the NewHope protocol (wrapper around existing implemen-
tation) [4];

– LWE using the Frodo protocol (adaptation of existing implementation) [9];
– error correcting codes – quasi-cyclic medium-density parity-check codes using

the Niederreiter cryptosystem (new implementation).

liboqs also includes common routines available to all liboqs modules, including
a common random number generator and various symmetric primitives such as
AES and SHA-3.

liboqs includes a benchmarking program that enables runtime comparisons
of all supported implementations. The library and benchmarking program build
and have been tested on Mac OS X 10.11.6, macOS 10.12, and Ubuntu 16.04.1
(using clang or gcc), and Windows 10 (using Visual Studio).

6.2 Application/Protocol Integrations

The OQS project also includes prototype integrations into protocols and applica-
tions. Our first integration is into the OpenSSL library,3 which is an open source
cryptographic library that provides both cryptographic functions (libcrypto)
and an SSL/TLS implementation (libssl). OpenSSL is used by many network
applications, including the popular Apache httpd web server and the OpenVPN
virtual private networking software.

Our OpenSSL fork (https://github.com/open-quantum-safe/openssl) inte-
grates post-quantum key exchange algorithms from liboqs into OpenSSL’s speed
command, and provides TLS 1.2 ciphersuites using post-quantum key exchange
based on primitives from liboqs. For each post-quantum key exchange primitive
supported by liboqs, there are ciphersuites with AES-128 or AES-256 encryption
in GCM mode (with either SHA-256 or SHA-384, respectively), and authentica-
tion using either RSA or ECDSA certificates. (We use experimental ciphersuite
numbers.)

Each of these four ciphersuites is also mirrored by another four hybrid cipher-
suites which use both elliptic curve Diffie–Hellman (ECDHE) key exchange and
the post-quantum key exchange primitive.

Our OpenSSL integration also includes generic ciphersuites. liboqs includes
interfaces for each key exchange algorithm so it can be selected by the caller at
runtime, but it also includes a generic interface that can be configured at compile
time. Our OpenSSL integration does include ciphersuites for each individual key
exchange algorithm in liboqs, but it also includes a set of ciphersuites that call
the generic interface, which will then use whatever key exchange algorithm was
specified at compile time. This means that a developer can add a new algorithm
to liboqs and immediately prototype its use in SSL/TLS without changing a
single line of code in OpenSSL, simply by using the generic OQS ciphersuites in
OpenSSL and compiling liboqs to use the desired algorithm.
3 https://www.openssl.org.

https://github.com/open-quantum-safe/openssl
https://www.openssl.org
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6.3 Case Study: Adding NewHope to liboqs and OpenSSL

As mentioned earlier, one of the goals of the Open Quantum Safe project is to
make it easier to prototype post-quantum cryptography. It should be easy to add
a new algorithm to liboqs, and then easy to use that algorithm in an application
or protocol that already supports liboqs.

Recently, we added the NewHope ring-LWE-based key exchange to liboqs
and our OpenSSL fork. It is interesting to compare the amount of work required
to add NewHope to liboqs and our OpenSSL fork with the figures in Table 3 on
adding BCNS15 directly to OpenSSL.

In liboqs, the wrapper around NewHope is 2 new files, totalling 163 lines of
code, and requires 5 lines of code to be changed in 2 other files (plus changes in
the Makefile).

As noted above, liboqs includes a “generic” key exchange method which
can be hard-coded at compile time to any one of its implementations, and our
OpenSSL fork already includes a “generic OQS” key exchange ciphersuite that
calls liboqs’ generic key exchange method. Thus, once NewHope has been added
to liboqs, it is possible to test NewHope in OpenSSL with zero changes to the
OpenSSL fork via the generic key exchange method and recompiling. However,
to explicitly add named NewHope ciphersuites to OpenSSL, we are able to reuse
existing data structures, resulting in a diff that touches 10 files and totals 222
lines of code. Moreover, the additions can very easily follow the pattern from
previous diffs,4 making adding a new OQS-based ciphersuite a 15-min job.

7 Conclusion and Outlook

The next few years will be an exciting time in the area of post-quantum cryp-
tography. With the forthcoming NIST post-quantum project, and with contin-
uing advances in quantum computing research, there will be increasing interest
from government, industry, and standards bodies in understanding and using
quantum-resistant cryptography. Lattice-based cryptography, in the form of the
learning with errors and the ring-LWE problems, is particularly promising for
quantum-resistant public key encryption and key exchange, offering high com-
putation efficiency with reasonable key sizes. More cryptanalytic research will
be essential to increase confidence in any standardized primitive. Since each
post-quantum candidate to date has trade-offs between computational efficiency
and communication sizes compared to existing primitives, it is also important
to understand the how applications and network protocols behave when using
different post-quantum algorithms. The Open Quantum Safe project can help
rapidly compare post-quantum algorithms and prototype their use in existing
protocols and applications, and experiments like Google’s use of NewHope in its
Chrome Canary browser will give valuable information about how post-quantum
cryptosystems behave in real-world deployments.

4 https://github.com/open-quantum-safe/openssl/commit/cb91c708 and https://git
hub.com/open-quantum-safe/openssl/commit/3a04b822.

https://github.com/open-quantum-safe/openssl/commit/cb91c708
https://github.com/open-quantum-safe/openssl/commit/3a04b822
https://github.com/open-quantum-safe/openssl/commit/3a04b822


34 D. Stebila and M. Mosca

For cryptographers interested in designing new public key encryption, digital
signature schemes, and key exchange protocols—for cryptanalysts looking to
study new mathematical problems—for cryptographic engineers building new
systems—and for standards bodies preparing for the future—exciting times lie
ahead!
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Abstract. Improved Rotating S-box Masking (RSM2.0 for short) is a
well-known countermeasure designed and implemented by DPA Contest
V4.2 committee to provide security protection for AES-128. By com-
bining both 1st-order masking and shuffling techniques, improved RSM
claims to offer at least non-profiled resistance for its software implemen-
tation and up to now no systematic research has been published to chal-
lenge such security claim yet. To study the practical security of RSM2.0
against non-profiled attacks, we first propose an analytical methodology
to guide the detection of the exploitable vulnerabilities in RSM2.0. On
the basis of the methodology, several potential flaws hidden in both the
algorithm design and detailed implementation of RSM2.0 are discovered
and we make use of them to design six attacking schemes in total, all
of which belong to non-profiled attacks. Four representative attacks are
eventually implemented and submitted to DPA Contest V4.2 for offi-
cial evaluation and the results show that all the submitted attacks are
both practical and feasible. Among them, the best attack scheme requires
only 257 power traces to crack the complete 128-bit master key with 80%
success rate. To further improve the security level of RSM2.0, we also
discuss some possible strategies to eliminate or mitigate the threats pro-
posed by us.

Keywords: Side-channel analysis · 1st-order masking schemes · Shuf-
fling · Non-profiled attack · Second order CPA · DPA Contest V4.2

1 Introduction

Adding side channel resistances is indispensable for modern cryptographic
devices to thwart the potential attack first proposed by Kocher et al. in [1].
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The basic idea of the attack is to collect the observable leakages derived from
the operations of sensitive intermediate values and make use of them with the
help of statistical methods to deduce the hidden secret in the devices, generally
the cryptographic key. Masking and shuffling are two classic countermeasures
most extensively studied to enhance the security level of cryptographic devices.
By bringing in random numbers, masking schemes [2–4] divide each sensitive
intermediate value into several individual parts while keeping each part random.
This scheme cuts off the relationship between the hidden secret and the direct
leakage from sensitive intermediate value, thus efficiently resisting the common
statistical analysis methods in side channel areas such as [1,5,6]. On the other
hand, shuffling schemes [7,8] provide the side channel protection from another
perspective, namely time dimension. With the help of randomized index table,
shuffling schemes either disorder the execution path of cryptographic algorithm
or randomly insert the dummy operations, thus randomizing the leakage posi-
tion of each sensitive intermediate value and putting up obstacles to most of the
analysis methods that mainly rely on the constant leakage instant.

To counteract possible attacks against one single defense strategy and achieve
a higher security level, combining both masking and shuffling has been a ten-
dency [3,9–11] in the design of side channel countermeasures. Among them,
improved RSM [11] is a most recent and well-known countermeasure proposed
by DPA Contest V4.2 committee to provide security protection for AES-128.
Improved from the original RSM [12], RSM2.0 updates the original masking
strategy with newly introduced offset array and performs shuffled operations
with the help of the shuffle array, thus aiming to counteract the existing non-
profiled attacks proposed in V4.1. An attack is considered to be non-profiled
when adversaries don’t have the chance to build the precise leakage model of
the device they target in a previous training phase, such as DPA [1], CPA [5]
etc. Thus, compared with classic profiled method, such as template attack [13]
or stochastic model [14], non-profiled attacks usually require more power trace
for secret extraction but show a higher security risk.

The combined countermeasure in RSM2.0 shows its resistance to non-profiled
attacks in the following way. On the one hand, one byte of offset index is super-
seded by an offset array of sixteen bytes which determine the mask usage for
all state1 bytes independently. By this means, the second order attack proposed
by Zhou et al. [15] which combines S-box output with input mask mi and the
masked plaintext with mask mi+1 doesn’t work anymore. It’s also impossible to
exploit the significant power difference when operating on mask 0xFF and 0x00
for offset recovery [16] or to perform two kinds of constructive collision attacks
proposed also in [16] since the relationship of mask usage within the first and
last round has been cut off. On the other hand, the employment of shuffle array
completely disorders the predictable sequence of mask S-box execution both in
the first and last round, causes changeable execution window of the concerned
S-boxes and results in the obstacle to perform constant instant related attacks,
such as 1st-order attack [17] or second order attack which relies on the leakage

1 State denotes the basic data unit of 4 by 4 matrix as defined in standard AES-128.
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preprocessing of two instantaneous moments. Furthermore, V4.2 committee also
rewrites the implementation in assembly code and precharges the specific state
registers before overwritten by new numbers. Thus the constructive first-order
attack proposed in [18] by exploiting hamming distance leakage between the
input and output of masked S-box doesn’t work anymore.

According to the official evaluation, we are the first to launch the non-profiled
attacks against RSM2.0, and this is also the first paper to systematically ana-
lyze the potential non-profiled vulnerabilities hidden in RSM2.0. Although some
other attack schemes have also been submitted to official website [19], almost
all of them belong to profiled schemes where attackers have to perform a train-
ing phase with large quantities of power traces in order to characterize the real
leakage model of the targeted device. Such kind of attacks are capable to recover
secret key within several power traces but require a stronger assumption for the
abilities of the attackers. In this paper, we are only dedicated in the attacks of
non-profiled type.

The contribution of this paper mainly lies in the following aspects. We make
use of an analytical methodology to guide the search of exploitable flaws both
in the algorithm design and implementation of RSM2.0. Then, on the basis of
the discovered non-profiled flaws, we come up with several attack schemes, more
precisely second order schemes and its variants. Four of the attacks are eventually
implemented as examples to validate the usability of the flaws. Official results
show that all of our uploaded attacks are both feasible and practical. And the
best scheme require only 257 traces to recover the AES-128 master key with 80%
global success rate(GSR), thus breaking the security claim of RSM2.0 for the
first time. Furthermore, in order to eliminate or mitigate the threats proposed
by us, some possible countermeasures are also discussed in this paper.

The rest of the paper is organized as follows. In Sect. 2 we review the detailed
algorithm design of RSM2.0, especially the countermeasures newly added to pre-
vent the enhanced implementation from some known attacks. Then, in Sect. 3,
we first explain the analytical methodology used to restrict the range of vul-
nerability detection and then point out several potential flaws hidden in either
the design or implementation of RSM2.0. Besides, the reasons of flaw generation
are also clearly explained in this section. Afterwards, in Sect. 4, we show our
practical attack processes together with the official evaluation results of our four
exemplary attacks. Furthermore, the discussion of some possible countermea-
sures is presented in Sect. 5. Finally, we conclude our work in the last section of
the article.

2 Improved RSM Scheme

In this section, the algorithm details of improved RSM are described explicitly.
The description focuses on the mask usage and tracking in the algorithm flow
and also on some important features newly brought in, including the shuffling
countermeasure and the offset array. What’s worth mentioning is that, for the
simplicity of description, we omit “modulo 16” after all the addition operation
used hereafter unless special explanation is made.
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2.1 Algorithm Description

Mask array, offset array and shuffle array, denotes as M[], O() and Sf[] respec-
tively, are three core components to build up the whole RSM2.0 scheme.

Mask array is designed to be a fixed and publicly known array of 16 bytes.
The latest values are chosen meticulously with the goal to not only min-
imize the mutual information leakage [20] but also take side-channel indis-
tinguishability [21] into consideration. We denote each individual value in
the array as M[i], i ∈ [0, 15], and the whole mask array can be specified
as {0x03, 0x0c, 0x35, 0x3a, 0x50, 0x5f, 0x66, 0x69, 0x96, 0x99, 0xa0, 0xaf, 0xc5,
0xca, 0xf3, 0xfc}.

Offset array contains 16 four-bit random numbers which range from 0 to 15
and are refreshed in each encryption. It cooperates with Mask array to randomly
and independently select mask values which provide the initial protection for
the input state in each encryption round. That is, according to each offset byte,
noted as O(i), i ∈ [0, 15], mask M[O(i)+r] is picked out and later Xored with the
sensitive input variable at the start of each encryption round, where r ∈ [0, 9]
represents the round index. We denote such input masks in each round as Maskr,
and it can be represented in the form of a mask state:

Maskr =

⎛
⎜⎜⎝
M [O(0) + r] M [O(4) + r] M [O(8) + r] M [O(12) + r]
M [O(1) + r] M [O(5) + r] M [O(9) + r] M [O(13) + r]
M [O(2) + r] M [O(6) + r] M [O(10) + r] M [O(14) + r]
M [O(3) + r] M [O(7) + r] M [O(11) + r] M [O(15) + r]

⎞
⎟⎟⎠

Shuffle array is a new feature introduced in RSM2.0. It is refreshed trace by
trace and kept secret to analysts as offset array does. What’s different is that
Sf[] is a random permutation of [0, 15] and is deployed to disorder the non-linear
transformation of 16 S-boxes together with the subsequent linear layer operation,
namely ShiftRows, both in the first and last round. In fact, two separate shuffle
arrays are deployed which are defined as Sf0[] and Sf10[] by us to distinguish the
position of their usage.

After the description of the three fundamental arrays, the round functions
in RSM2.0 are explained below. Apart from the unchanged AddRoundKey(AR)
function, the other round functions can be divided into two categories, namely
the non-linear and linear layer functions.

• Non-linear layer function:
The only one function that belongs to the non-linear layer is MaskedSub-
Bytes(MS). Unlike standard SubBytes function in AES, MaskedSubBytes
consists of sixteen different and reconstructed S-boxes corresponding to both
the input mask and the output mask. Each masked S-box can be defined
as MaskedSubBytemm′ [x] = SubByte[x ⊕ m] ⊕ m′, where m and m′ repre-
sent the input and output mask byte respectively. Specifically in RSM2.0, m
and m′ are designed to be two successive masks in M []. That is, each new
S-box can be denoted as MaskedSubByteM [i]M [i+1][] (MaskedSubBytei[]
for short), i ∈ [0, 15], and can be previously computed due to the already
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known M []. Thus the input mask state Maskr becomes traceable (switch
to Maskr+1) when going through the non-linear layer and such special and
circular way of mask usage for S-box reconstruction is called the Rotating
S-boxes Masking (RSM).

• Linear layer functions:
Linear layer is composed of three functions in total, namely ShiftRows(SR)
and MixColumns(MC), and also the additionally introduced MaskCompen-
sation(MCP). On the one hand, the first three functions keep unchanged as in
the standard AES. The only difference is that all of their inputs and outputs
are protected with masks to randomize all the sensitive intermediate values
in the practical encryption and more importantly, these masks are naturally
traceable due to the linear property of all these functions.

On the other hand, the MaskCompensation function is newly intro-
duced to eliminate the derived output masks after the MixColumns function
and simultaneously re-mask the intermediate variable with the input masks
of the next round. To achieve this goal, the compensation mask, denoted as
MaskCompensationr(MCPr for short), r ∈ [0, 8], should be first generated
and can be expressed as:

MCPr = MC(SR(Maskr+1)) ⊕ Maskr+1

Then the MaskCompensation happening in the first nine rounds can be
described in the following derivation process:

MC(SR(MS(Kr ⊕ Xr ⊕ Maskr))) ⊕ MCPr

= MC(SR(SubBytes(Kr ⊕ Xr) ⊕ Maskr+1)) ⊕ MCPr

= MC(SR(SubBytes(Kr ⊕ Xr))) ⊕ MC(SR(Maskr+1))
⊕ MC(SR(Maskr+1)) ⊕ Maskr+1

= MC(SR(SubBytes(Kr ⊕ Xr))) ⊕ Maskr+1

The only change in MaskCompensation happens in the last round where
MixColumns is omitted and no next round input masks are needed due
to the requirement of the unmasked and correct ciphertext output. Thus
MaskCompensation9 satisfies:

MaskCompensation9 = ShiftRows(Mask10)

With the explanation of functions in both the linear layer and the non-linear
layer, all the major process of RSM2.0 has been clearly demonstrated. And more
detailed and complete algorithm of RSM2.0 is presented in Appendix 1.

2.2 Acquisition Platform and Measurements

The measurement of all the official power traces is completed on a 8-bit AVR
microcontroller Atmega163 embedded in a smartcard. It contains 16 Kb of in-
system programmable flash, 512 bytes of EEPROM, and 32 general purpose
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working registers. The acquisition of traces is performed through a LeCroy
WaveRunner 6100 A oscilloscope by the use of an EM probe. The sampling rate
FS equals to 500 MS/s and the acquisition bandwidth is 200 MHz.

3 Detecting Non-profiled Vulnerabilities in RSM2.0

In this section, we explain the analytical methodology we comply with to lead
the search of the non-profiled vulnerabilities and show the discovered exploitable
leakages and the reason of their generation. Our discoveries validate that the
improved countermeasure are far from perfect to counteract the type of non-
profiled attacks. What’s worse, some of the newly added defense mechanisms
even directly result in the attacks presented in this section.

3.1 Analytical Methodology for Vulnerability Detection

Although 1st-order masking schemes can not resist 2nd-order attack theoreti-
cally, RSM2.0 puts targeted obstacles to such kind of attack. On the one hand,
by protecting each state byte with an independent and randomly indexed mask,
none of the two masked intermediates in the algorithm share the same mask
part. On the other hand, the common attacking points, namely non-linear layer
transformation, and also the subsequent ShiftRows operation are both imple-
mented with shuffled order thus making it difficult to collect the power leakage
from those parts.

In order to follow the traditional second order idea and achieve a better
performance, we are not only expected to discover the new attacking point for
mask elimination but also expected to bypass the shuffle countermeasure in
order to avoid the costly integrated-and-combined strategy [9,22] for second
order attack.

To accomplish the above target, we first perform the vulnerability detection
process in both the algorithm design and the code implementation of RSM2.0.
Our detection mainly comply with the following guidelines aiming at obtaining
optimal attacking performance:

1. Restricting the range of detection in the intermediate values that contain only
8-bit subkey. Although the direct side channel attack against larger subkey
block is possible [23], the expensive resource overheads, such as GPU acceler-
ation and huge memory usage make it inefficient and unsuitable in the official
evaluation platform. Thus, to acquire better attacking performance we focus
on 8-bit subkey recovery at a time.

2. The predictable intermediates utilized by the attackers should be the results of
the non-linear layer transformation. The characteristics of the non-linear trans-
formation lead to the fact that each single bit guessing error of the target subkey
would influence as much bits of the prediction result as possible. Thus, making
it easier to distinguish the correct key from others with less power traces.

3. The security of the newly introduced MaskCompensation process should be
taken into consideration additionally.
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Based on the guidelines above, the vulnerability detection can be simply
limited in the following sensitive regions (Fig. 1).

Fig. 1. Critical regions for vulnerability detection

3.2 Flaws in the Algorithm Design

Online Derivation of Compensation Mask. The first vulnerability we dis-
cover in the critical regions lies in the entire process of MCPr derivation which
must be implemented online in RSM2.0. The inevitable online feature is caused
by the replacement of the offset index by the offset array O(). In the original
RSM, the input mask state of round r, which we denote as Maskidx,r, is uniquely
determined by a 4-bit index denoted by idx. More accurately, such input mask
state satisfies the following formula:

⎛
⎜⎜⎝
M [idx + 0 + r] M [idx + 4 + r] M [idx + 8 + r] M [idx + 12 + r]
M [idx + 1 + r] M [idx + 5 + r] M [idx + 9 + r] M [idx + 13 + r]
M [idx + 2 + r] M [idx + 6 + r] M [idx + 10 + r] M [idx + 14 + r]
M [idx + 3 + r] M [idx + 7 + r] M [idx + 11 + r] M [idx + 15 + r]

⎞
⎟⎟⎠

Due to the fact that M [] is a fixed mask array, there are only 16 possible values
for Maskidx,r state. Therefore, the compensation mask state which is completely
dependent on Maskidx,r, is actually derived offline and stored previously for
later use. However, the input mask state Maskr in RSM2.0 utilizes offset array
O() to index the selected mask for each input mask byte as stated in Sect. 2.
Each element O(i) in the offset array is independent and identically distributed,
thus resulting in 1616 possible values for the Maskr state. In order to store
all these compensation values derived from Maskr, 16 ∗ 1616 bytes of storage
space is required which is unreachable in the embedded devices with constrained
resources. Thus, online compensation mask derivation becomes indispensable
and all of its related power consumption would be recorded in the power traces.

The other significant cause that leads to this online process further
exploitable is the omission of shuffling protection during this stage. This vul-
nerability is serious since it means all the steps during the derivation of com-
pensation mask, including the loading of Maskr, the derivation for the first part
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of compensation mask and the compensation mask generation, are processed at
the constant time instants and leak the power consumptions corresponding to
the original input Maskr or its intermediate state during the transformation.
We briefly show all the available mask leakages in Fig. 2.

Fig. 2. Exploitable mask leakages in the derivation of compensation mask (Color figure
online).

AddRoundKey Function Flaw. In addition to compensation mask deriva-
tion, AddRoundKey operation in RSM2.0 also lacks shuffling protection, thus
causing potential second order threats. The exploitable loophole caused by this
sequential process appears at the end of the ninth round, where the AddRound-
Key function is performed right after the MixColumns of the current round.
That is to say, each output byte of AddRoundKey is protected by the same
mask as in MixColumns output, as shown in Fig. 3, where the Xi represents the
input bytes of the ninth round and Ki, K ′

i are the subkey bytes of the eighth
and ninth round respectively. Special note is that such output masks (in red)
are also generated as the first part of the compensation mask in the online mask
derivation phase (the third leakage point in Fig. 2).

Fig. 3. Exploitable leakages in AddRoundKey, taking the first column as an example.
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3.3 Flaws in the Implementation Level

Location of MaskCompensation. Flaws in the implementation level appear
because of the inserted position of the online MaskCompensation. More pre-
cisely, in the source code of RSM2.0 implementation, the MaskCompensation of
the current round starts operating after AddRoundKey has finished, just before
the MaskedSubBytes of the next round, as shown in Fig. 4. This seemingly neg-
ligible implementation order does matter since all the masked variables after the
ninth round AddRoundKey can be derived reversely from the known ciphertext
by only guessing 8-bit subkey of the last round key, which is a proper subkey
guessing space for side channel attacks. Besides, the MaskCompensation here
would switch the protection masks of its output state to Mask9 which has also
leaked its power consumption at the start of the ninth round MaskCompensation
(as shown in Fig. 2).

Fig. 4. Exploitable leakages at the output of MaskCompensation, taking the first col-
umn as an example.

Flaws in Linear Layer Function. More critical security flaws appear at linear
layer. Since almost all of the proposed attacks against original RSM select the
non-linear function, i.e. masked S-box, as their attacking point, designers of
RSM2.0 pay too much attention to the protection of S-box execution while on the
other hand ignore the potential security risk in the linear layer transformation.

The flaw we find in the linear layer appears in the process of MixColumns
operation in the first encryption round. The essential reason that gives rise to
this flaw actually lies in two aspects. The first one is that both the MixColumns
function used for encryption and the MixColumns included in the compensation
mask derivation stage share the same assembler code. The only difference is the
input variables, namely ShiftRows(X ⊕ K ⊕ Mask1) and ShiftRows(Mask1)
respectively. Also due to the linear characteristics of the MixColumns opera-
tion, such shared implementation implies that whenever a masked intermediate
value is used or generated in the MixColumns for encryption, the corresponding
mask itself, which is used for the protection of that intermediate value, will also
appear in the exactly same position of the MixColumns for compensation mask
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derivation. The second reason that makes the flaws further feasible is that the
entire MixColumns code is implemented in a fixed sequence, which means that
attackers are able to find out leakages in constant time instant, thus meeting the
prerequisite of classic second order attacks.

4 Practical Attacks and Official Evaluation Results

With the clear explanation of all the exploitable vulnerabilities in the section
above, six non-profiled attacks, more precisely second order attacks and the
variants, can be launched. We selectively perform four of them as examples to
validate the usability of the discovered flaws and show the effectiveness of our
attack schemes by citing the official evaluation data.

The basic idea of classic second order attacks, as present in [22,24,25], is
to preprocess the leakages from two parts of the power traces and both parts
respectively correspond to the intermediate variables protected with the exact
same mask. After preprocessing, the combined leakage is relevant to the unpro-
tected intermediate value, and thus making the later correlation attack feasible.
The performance of different preprocessing functions is studied in [26] and our
attacks follow the preprocessing method of improved product combining pro-
posed in this paper.

4.1 Second Order Attacks in the First Round2

We present two attacks in the first round and both of them make use of the
leakages from the execution of shared MixColumns source code in the encryp-
tion and MCPr derivation stage. To better understand the attacks, we briefly
introduce the implementation approach of MixColumns in RSM2.0.

Suppose (V0,j , V1,j , V2,j , V3,j)T is a column of 4 input bytes, which serves as
a basic unit for MixColumns transformation. Then the output of the transfor-
mation, where i ∈ [0, 3], j ∈ [0, 3], can be formalized and recombined as:

Vi,j = (2 ∗ Vi,j) ⊕ (3 ∗ V(i+1)%4,j) ⊕ V(i+2)%4,j ⊕ V(i+3)%4,j

= (2 ∗ Vi,j ⊕ 2 ∗ V(i+1)%4,j) ⊕ V(i+1)%4,j ⊕ V(i+2)%4,j ⊕ V(i+3)%4,j

= Vi,j ⊕ (V1,j ⊕ V2,j ⊕ V3,j ⊕ V4,j) ⊕ 2 ∗ (Vi,j ⊕ V(i+1)%4,j)

The implementation follows the process of the calculation in the last line.
That is, V1,j ⊕V2,j ⊕V3,j ⊕V4,j is firstly generated and shared for all the bytes in
column j. Then, to derive a specific byte Vi,j , the generation of (Vi,j ⊕V(i+1)%4,j)
is subsequently completed. This value is later used as the input of the lookup
table Xtime which is previously calculated to store 2*X (under GF (28)) in the
position of X, where X ranges from 0 to 255. Thus, after going through Xtime
table, 2∗ (Vi,j ⊕V(i+1)%4,j) is acquired. Finally, by Xoring together (V1,j ⊕V2,j ⊕
V3,j ⊕V4,j), 2∗(Vi,j ⊕V(i+1)%4,j) and the original value Vi,j stored in the register,
the newly updated Vi,j comes into being.
2 For the need of expression, all the “mod” operation would be explicitly added in this

subsection.
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Attacking Xtime Input. During the generation of the Xtime input (Vi,j ⊕
V(i+1)%4,j), Vi,j is first loaded into the register and simultaneously leaks instan-
taneous power consumption. When it happens in the encryption process, Vi,j

actually equals to one of the output variables of MaskedSubBytes function. Thus
all the MaskedSubBytes outputs in the form of S(Xi⊕Ki)⊕M [(O(i)+1)%16], i ∈
[0, 15], leaks information. On the other hand, when it goes to MaskCompensa-
tion function, Vi,j in fact represents one of the mask bytes in Mask1 state. Thus,
M [(O(i) + 1)%16] leaks its information as well. By preprocessing both of the
leakages, the combined leakage would be relevant to the following intermediate
variable:

(S(Xi ⊕ Ki) ⊕ M [(O(i) + 1)%16]) ⊕ M [(O(i) + 1)%16] = S(Xi ⊕ Ki), i ∈ [0, 15]

which is an unprotected and predictable value, appropriate for the traditional
CPA attack.

Official evaluation results show that, the second order attack proposed here
are both feasible and practical. Based on the published performance parameter,
merely 258 traces are required (Fig. 5(a)) to recover all of the 128-bit master key
with 80% success rate (the so-called 80% global success rate, GSR [27]) and only
210 traces would suffice to reduce the maximum partial guessing entropy(PGE
[27]) under 10, which means that the remaining key guessing space is less than
1016.

Optimized Chained Attack. Unlike the attack above, here we utilize the
leakage exposed when generating each complete input byte of the Xtime, namely
(Vi,j ⊕ V(i+1)%4,j). After the same combination of the leakages in MixColumns
of different stages, the united leakage would also be related to a predictable
intermediate value which is involved with 16 bits of the master key. Taking the
first column as an example, four predictable values are S(X0⊕K0)⊕S(X5⊕K5),
S(X5 ⊕K5)⊕S(X10 ⊕K10), S(X10 ⊕K10)⊕S(X15 ⊕K15) and S(X15 ⊕K15)⊕
S(X0 ⊕K0) respectively, where Xi and Ki are the ith plaintext and master key
respectively. Direct attacks by guessing the first and the third predictable value
or guessing the second and the fourth one could recover all the subkeys in this
column but the key guessing space is 2 ∗ 216 in total.

In order to further reduce the computation overhead, we optimized the attack
process in a chained way. That is, we first attack K0 by using the leakages and
method mentioned first in this subsection, then with the most probable guessing
K0 revealed, predictable value S(X0⊕K0)⊕S(X5⊕K5) is utilized to extract K5

only. The same approach then goes on for the second predictable value, where
this time, K5 is fixed to the most probable value obtained in the last step and
K10 becomes the only key which needs to be guessed in this step. Finally, K15

is also revealed in the same way. By this means, the key guessing space for
extracting four subkeys in a column is now reduced to 4 ∗ 28 and the subkeys in
other three columns can be inferred similarly as in the first column.

Figure 5(b) depicts the official evaluation result of such chained second-order
attack. It shows that such method does work, and 565 traces are needed to
uniquely determine the master key with 80% success rate(80% GSR).
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(a) GSR for MixColumn input attack. (b) GSR for optimized chained attack.

Fig. 5. Official evaluation results of Global Success Rate, GSR.

Note also that the similar second order and chained attack can also be
launched at the position of Xtime output, namely 2 ∗ (Vi,j ⊕ V(i+1)%4,j), and
the generation of shared (V1,j ⊕ V2,j ⊕ V3,j ⊕ V4,j) respectively. The only dif-
ference lies in the form of the predictable intermediate value, which is selected
and utilized by the attackers to infer the subkey. To avoid repetition, we don’t
describe them here anymore.

4.2 Second Order Attacks in the Ninth Round

Attacking MaskCompensation Output. The attack here utilizes the imple-
mentation level flaw explained in Sect. 3.3. Due to the inserted position of
MaskCompensation, each individual output byte here contains only 8-bit subkey
when derived from the ciphertext and is actually protected by the corresponding
mask in Mask9. Besides, Mask9 has also been loaded byte by byte when gener-
ating the ninth round compensation masks as depicted in Fig. 2. Thus by com-
bining the leakages from both positions, the preprocessed leakage has relevance
to the following values which are predictable from the perspective of side channel
opponents:

(Sbox−1ShiftRows−1[C⊕KL]⊕Mask9)⊕Mask9= Sbox−1ShiftRows−1[C⊕KL]

where C refers to the output ciphertext state and KL denotes the last round key.
After 16 bytes of KL is revealed completely, a reversed key expansion process of
AES should be performed in order to fetch our final target, namely the 128-bit
master key.

Figure 6(a) depicts the GSR tendency of this attack evaluated by DPA Con-
test committee. It shows that the attack by exploiting the implementation level
flaw is of high efficiency that only 257 traces can meet the requirement for 80%
GSR. Besides, to reduce the Max PGE under 10, only 205 traces are required.

Attacking AddRoundKey Output. The only difference between the output
of the ninth round AddRoundKey and MaskCompensation lies in the masks for
protection. For AddRoundKey function, these masks are obtained by transform-
ing the input mask state of the ninth round, namely Mask8, through Masked-
SubBytes, ShiftRows and MixColumns in sequence. Thus, the AddRoundKey
output in the ninth round can be derived from the ciphertext C:
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Sbox−1ShiftRows−1[C ⊕ KL] ⊕ MixColumns[ShiftRows[Mask9]]

On the other hand, during the construction of the compensation mask in the
current round, the first compensation part – MixColumns[ShiftRows[Mask9]]
should be generated first as shown in Fig. 2.

Likewise, by performing second order attacks at both parts, the last round
key KL involved in the predictable variable Sbox−1ShiftRows−1[C⊕KL] can be
recovered and the master key would also be deduced instantly with the help of
the key expansion process but in a reversed way. The official evaluation of GSR
in Fig. 6(b) shows that such attack is also feasible in RSM2.0, and the number
of traces needed to acquire 80% GSR is 698.

(a) GSR for MaskCompensation attack. (b) GSR for AddRoundKey output attack.

Fig. 6. Official evaluation results of Global Success Rate, GSR.

5 Discussion of Possible Countermeasures

In order to mitigate or even get rid of the non-profiled threats presented in this
article, we propose the following coping strategies. All of the strategies follow
the basic principle that both leakages exploited in a single second order attack
should be protected individually by either eliminating the source of the leakage
or by randomizing the position of its appearance.

1. Adding resistance in the ninth round: exchanging the order of the
AddRoundKey and MaskCompensation function in the ninth round can be
the first step to enhance the security level of RSM2.0. In fact, compared
to the original attack aiming at the MaskCompensation output leakage, now
attackers have to deduce each byte of hypothetical intermediate state, namely
Sbox−1ShiftRows−1[C ⊕KL]⊕KP , by searching 16-bit subkey space, where
KL and KP represent the last and penultimate round key respectively.
After exchanging, the output states of both functions are protected with
Mask9. In order to further prevent the second order threat, the sequential
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operations of loading Mask9, Xoring compensation masks and AddRound-
Key execution should all be respectively shuffled. Fortunately, such protec-
tions could be easily added since every operation mentioned above deals with
16 state bytes independently.

2. Adding resistance in the first round: the shared MixColumns code in the
compensation mask derivation and the original encryption part leads to our
attacks in the first round. To plug such leakages, one possible method is to
implement MixColumns in different ways. For example, alter the MixColumns
implementation in the encryption part by following the process of the original
transformation formula, namely Vi,j = 2 ∗ Vi,j ⊕ 3 ∗ V(i+1)%4,j ⊕ V(i+2)%4,j ⊕
V(i+3)%4,j . Thus all of the chained attacks mentioned can be surely counter-
acted since the derived intermediates in different implementations don’t share
the same masks any more.

To further prevent the exploitable leakages caused by the direct loading
of MixColumns input bytes for calculating each output byte, the shuffled gen-
eration order for MixColumns output bytes could be considered as a possible
solution.

3. Special note is that: no extra shuffle array(excluding Sf0[] and Sf10[]) is
needed to perform the shuffling protection suggested above. The only thing
we need to do is to distinguish the shuffle array used in the region of com-
pensation mask derivation from that used to disorder the leakage of masked
intermediate values. By this means, the pair of leakages utilized to perform
certain second order attack mentioned in this paper may now come from 162

possible combinations of time instants, thus significantly increasing the dif-
ficulty for target leakage location and even causing huge overhead (number
of power traces) when using advanced integrated-and-combined technique to
accumulate the shuffled leakages as mentioned in [9,22].

6 Conclusion

This is the first paper to systematically analyze the non-profiled vulnerabilities
in RSM2.0. To achieve the goal, we first propose the analytical methodology to
guide the vulnerability detection and then scrutinize both the algorithm design
and implementation details of the RSM2.0 countermeasure. Based on all the
vulnerabilities newly found, several attacking schemes are proposed and four of
them are finally implemented as examples and submitted for official evaluation.

The evaluation reports show that all of our proposed attacks are both feasible
and practical. Thus, this study validates in the first time that the currently used
countermeasures and implementation are still insufficient to provide RSM2.0
with non-profiled resistance.

To further fix the vulnerabilities described in this paper, we come up with
several corresponding suggestions which either try to eliminate the second order
leakages or to extend the protection region of shuffle countermeasure. These
improvements are not unique but they can be considered as a general direction
to set up obstacles for potential attackers and to further improve the security
level of RSM2.0, especially against non-profiled attacks.
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A Algorithm of Improved Rotating S-Boxes Masking

Algorithm 1. Improved rotating S-boxes masking scheme
Input:

16-bytes plaintext X = [X0, X1, . . . , X15];
One offset array: O(i), i ∈ [0, 15],
(uniformly random, unknown);
Two shuffle arrays: Sf0[i], Sf10[i], i ∈ [0, 15],
(uniformly random permutations, unknown);

Output:
16-bytes ciphertext X = [X0, X1, . . . , X15];

1: On-the-fly key expansion RoundKeyr, r ∈ [0, 10],
2: RoundKey0 ← RoundKey0 ⊕ Mask0
3: X = X ⊕ RoundKey0

/*All rounds but the last one*/
4: for each i ∈ [0, 8] do
5: if r = 0 then
6: for i ∈ Sf0[0, 15] do
7: Xi = MaskedSubBytesO(i)+r(Xi)
8: Xi = SR(Xi)
9: end for

10: else
11: for i ∈ [0, 15] do
12: Xi = MaskedSubBytesO(i)+r(Xi)
13: Xi = SR(Xi)
14: end for
15: end if
16: X = MC(X)

/* AddRouondKey of the next round */
17: X = X ⊕ RoundKeyr+1

18: MCPr = MC(SR(Maskr+1)) ⊕ Maskr+1

19: X = X ⊕ MCPr;
20: end for

/* Last round */
21: for i ∈ Sf10[0, 15] do
22: Xi = MaskedSubBytesO(i)+9(Xi)
23: Xi = SR(Xi)
24: end for
25: X = X ⊕ RoundKey10 /* Ciphertext unmasking */
26: MCP9 = SR(Mask10)
27: X = X ⊕ MCP9;
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Abstract. The accuracy and the fast convergence of a leakage model
are both essential components for the efficiency of side-channel analysis.
Thus for efficient leakage estimation an evaluator is requested to pick a
Probability Density Function (PDF) that constitutes the optimal trade-
off between both aspects. In the case of parametric estimation, Gaussian
templates are a common choice due to their fast convergence, given that
the actual leakages follow a Gaussian distribution (as in the case of an
unprotected device). In contrast, histograms and kernel-based estima-
tions are examples for non-parametric estimation that are capable to
capture any distribution (even that of a protected device) at a slower
convergence rate.

With this work we aim to enlarge the statistical toolbox of a side-
channel evaluator by introducing new PDF estimation tools that fill
the gap between both extremes. Our tools are designed for paramet-
ric estimation and can efficiently characterize leakages up to the fourth
statistical moment. We show that such an approach is superior to non-
parametric estimators in contexts where key-dependent information in
located in one of those moments of the leakage distribution. Furthermore,
we successfully demonstrate how to apply our tools for the (worst-case)
information-theoretic evaluation on masked implementations with up to
four shares, in a profiled attack scenario. We like to remark that this
flexibility capturing information from different moments of the leakage
PDF can provide very valuable feedback for hardware designers to their
task to evaluate the individual and combined criticality of leakages in
their (protected) implementations.

1 Introduction

Physical attacks are known to pose a major threat to the cryptographic com-
ponents and security services in many embedded devices. An attacker obtaining
c© Springer International Publishing AG 2017
R. Avanzi and H. Heys (Eds.): SAC 2016, LNCS 10532, pp. 58–78, 2017.
https://doi.org/10.1007/978-3-319-69453-5_4
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side-channel leakages such as the power consumption or electromagnetic emis-
sions from a cryptographic implementation can extract the secret cryptographic
key by applying suitable statistical tools on the collected data. A number of
reports have demonstrated that such attacks are not just a theoretical con-
cern but that also real-world devices can be compromised [18,28,38,51]. As a
consequence, the seminal Differential Power Analysis (DPA) paper by Kocher et
al. [21] has been followed by a vast literature on solutions for a wide range of con-
texts to mitigate these attacks. For example, the inclusion of random delays [10],
or shuffling [49] are a frequently used heuristic to improve the physical protec-
tion of software implementations. In contrast to this, re-keying strategies, for-
malized under the name of leakage-resilient cryptography, provide theoretical
tools that enable reducing the security of multiple iterations to a single one
(cf. [17] for an early result and [47] for a recent one). In this context, one of the
most investigated and best understood protection against side-channel attacks
is masking [7,13,41] that bridges theory and practice. Its underlying principle
is to encode any sensitive variable in an implementation into d shares, and to
perform the computations on these shares only. Given that the leakage of all
the shares is independent and that the measurements are sufficiently noisy, it
ensures that the smallest key-dependent (mixed) moment in the leakage distrib-
ution is d. Therefore, any adversary trying to extract information from a masked
implementation should (ideally) estimate this (mixed) higher-order moment, a
task of which the complexity increases exponentially in d.

A drawback with all these solutions is the significant performance overhead.
As a result, the development of methodologies enabling a fair assessment of their
security level has evolved in parallel with the development of countermeasures
so that designers can discuss security and performance implications for their
implementations on a sound basis [46]. Since side-channel analysis is essentially
based on the comparison of key-dependent leakage models with actual measure-
ments, these methodological developments have led to a central division between
profiled and non-profiled evaluation tools and attacks [50]. In the first case, the
adversary/evaluator is allowed to build an accurate (yet not perfect [16]) model
for his target device that generally corresponds to an estimation of the leakage
Probability Density Function (PDF)1. As depicted in the upper left part of Fig. 1,
Gaussian Template Attacks (TA) are the most common tool for this purpose [8].
In this (here: exhaustive) approach, one builds a Gaussian model for the leakage
of every target intermediate value in the implementation. The main limitation
of Gaussian templates is that they are bound to the analysis of the first two
moments in a leakage distribution (i.e., unprotected implementations and mask-
ing with d = 2). According to the state-of-the-art, the canonical way to analyze
higher-order masked implementations would be to switch to non-parametric PDF
estimation, e.g., based on histograms and kernels. But this comes at the cost of
two important drawbacks. First, these tools imply a more complex (hence mea-
surement intensive) estimation problem. Second, they estimate all the statistical

1 Profiled attacks can also be referred to when the adversary possesses a device with
a biased randomness source (as masks).
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Fig. 1. Summary of side-channel evaluation tools and attacks.

moments at once, meaning that one loses the detailed intuition that could be
obtained from the separate examination of all moments. Alternatively, one could
use the Moments-Correlating Profiled DPA (MCP-DPA) introduced in [31] that
suffers from the complementary drawback. Namely, since MCP-DPA is essen-
tially a “per moment” approach, the intuitions extracted now only correspond
to moment taken separately, and it is unclear how one could extend these attacks
towards the joint exploitation of multiple moments at the same time.

A comprehensive understanding of how the information leakage of a masked
cryptographic implementation is spread among different statistical moments is
essential to interpret the results of its security evaluation. That is, in general
a (d − 1)th-order secure implementation is defined as an implementation for
which the smallest key-dependent moment in the leakage distribution is d, and
this is ideally expected to occur for d shares. But in practice, it frequently hap-
pens that glitches (i.e., non-independent leakages) contradict this expectation,
leading to informative moments of smaller orders than d, both in hardware and
software case studies [9,26]. Significant research efforts have been dedicated to
the design of glitch-free implementations, e.g., based on multiparty computa-
tion [42] or threshold implementations [30,32]. However, in the latter case the
number of shares is larger than the claimed order. This, however, highlights the
demand for the ability to determine the exact moment that actually leaks [3].
Simple leakage detection tests (e.g., t-test [44]) can be used for this, however
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they provide only limited information and merely show the existence of leakage
(for a more detailed discussion of the limitations of t-test based leakage detec-
tion see [15]). Eventually, the recent results in [14] showed that by quantifying
the informativeness of each statistical moment in a side-channel attack, one can
extrapolate the security level of an implementation in function of the noise in
its measurements (i.e., a parameter that is typically easier to adapt for HW
engineers).

Contribution. Based on this state-of-the art, our contribution is threefold.

First, we extend the evaluation toolbox for profiled side-channel analysis with
three new PDF estimation tools, based on Exponentially Modified Gaussian
(EMG) distributions, Pearson distribution system and Shifted Generalized Log-
normal (SGL) distributions. As illustrated in the upper left part of Fig. 1, they
allow characterizing statistical moments up to the fourth one, which captures all
most relevant masked implementations published so far.

Second, we show that these tools enable the computation of the information
leakage in each statistical moment of a leakage distribution (up to the fourth
one). We further illustrate that based on such computations, we can design effi-
cient attacks that are able to exploit the information in all the leaking moments
jointly, and that the efficiency of these attacks is proportional to the sum of the
information provided by each moment.

Eventually, we observe that our tools also have applications in the con-
text of non-profiled side-channel analysis, where the adversary assumes some
a-priori model for his target implementation (e.g., typically Hamming weights,
Hamming distances). In this context as well, one can divide existing solutions
between “per moment” and “PDF-based” distinguishers (see the middle right
part of Fig. 1). Usual representatives of the first category include Correlation
Power Analysis (CPA) [6] or its equivalents [25] for first-order moments, and
higher-order DPA [37], Correlation-Enhanced Power Analysis Collision Attacks
(CEPACA) [27] or Moments Correlating Collision-DPA (MCC-DPA) [31] for
higher-order moments. The most common representative of the second cate-
gory is Mutual Information Analysis (MIA) [19], which usually relies on (non-
parametric) histograms or kernels [2], although any PDF estimation tool is in
principle eligible2. We show that MIA based on the previously mentioned PDF
estimation tools (EMG, Pearson, SGL) leads to interesting efficiency tradeoffs
for implementations leaking in moments up to four.

The combination of these tools and methods are valuable inputs for the eval-
uation of the masking countermeasure, since they allow a more accurate under-
standing of its implementation weaknesses due to glitches (or any other physi-
cal default). Furthermore, they are not limited to analysis techniques and also
lead to new attacks exploiting a (practically relevant) combination of moments.
Eventually, we remark that our results raise relevant questions regarding the
so-called simplifying distinguishers in the bottom of Fig. 1. In this context, the
adversary/evaluator does not build a model for every target intermediate value

2 Such as cumulants which are used in [22] to estimate the mutual information.
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but for a combination of them (or of their bits). All the published simplify-
ing distinguishers (e.g., linear regression in the profiled case [43], its on-the-
fly extension [12] and stepwise regression [50] in the non-profiled case) mix a
“per moment” approach [11] with simple (typically Gaussian) PDF estimations.
Hence, finding whether one could combine a simplifying distinguisher (that pro-
vides useful intuitions regarding the parts of the computations that leak more)
with more complex PDF estimation tools as in this paper (that provide similarly
useful intuitions regarding which moments are leaking) remains an interesting
open problem.

2 Background

Generally, density estimation – as a well-studied field in statistics – refers to two
major categories, namely non-parametric and parametric methods. Histograms
and kernels are amongst the well-known non-parametric ones, which do not make
any assumptions about the form of the distribution and use only the sampled
data to estimate the distribution. By contrast, Gaussian density estimation,
which is the most popular parametric PDF estimator, assumes a symmetric
form for the distribution, and characterizes it based on its (sample) mean and
standard deviation only. As mentioned in the introduction, our focus in this
paper is side-channel evaluation, which is commonly based on PDF estimation
for building the leakage models. In this section, we shortly recall some frequently-
applied PDF estimation techniques in the field of side-channel analysis. We only
consider a univariate scenario, which is motivated by our experimental case study
in Sect. 5, that is based on a threshold implementation in which all the shares
are manipulated in parallel.

Notations. The parametric PDF estimators make use of statistical moments
that we specify as follows. Let X be a (univariate) random variable. The
dth-order raw statistical moments are defined as E(Xd), with μ = E(X) the
mean of the distribution and E(.) the expectation operator. The dth-order
central moments are defined as E

(
(X − μ)d

)
, with σ2 = E

(
(X − μ)2

)
the

variance of the distribution. The dth-order standardized moments are defined

as E

((
X−μ

σ

)d
)

, with γ1 = E

((
X−μ

σ

)3
)

the skewness (a measure of the

asymmetry of the distribution, also known as the first shape parameter), and

β2 = E

((
X−μ

σ

)4
)

the kurtosis (a measure of the peakedness of the distribu-

tion, also known as the second shape parameter). Unless otherwise stated, for
simplicity we denote first raw, second central, third (and fourth) standardized
moments by first, second, third (and fourth) moments respectively.

Gaussian Density Estimation. In this case, it is assumed that the leakages
follow a Gaussian (normal) distribution, and the PDF is given by:

F (x) =
1

σ
√

2π
e− (x−μ)2

2σ2 ,
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with μ and σ the estimated mean and standard deviation of the samples. Since a
Gaussian distribution considers only the first two moments, it generally leads to a
more efficient estimation compared to the non-parametric histograms or kernels
(as long as the actual distribution is close enough to a Gaussian one). In other
words, if the higher (>2nd) statistical moments of the underlying distribution of
the samples are negligible, Gaussian density estimation is going to be extremely
efficient. Gaussian Templates and regression-based models are part of the widely-
used tools exploiting such an assumption [16].

Gaussian Mixtures. We mention that yet another approach to PDF estima-
tion for masked implementations would be to consider mixture distributions. As
demonstrated in [48], this solution is especially efficient when the profiling phase
assumes the knowledge of the shares. By contrast, it becomes heuristic – since
based on the Expectation Maximization (EM) algorithm – if they are not [23],
which will be our running scenario in this work. In particular, we will consider
contexts where the different modes of the mixture distributions are well inter-
leaved (i.e. when the noise is large enough for masking to enforce good security
guarantees), which makes the EM algorithm hard(er) to apply and stands in
contrast with contexts where the modes can be trivially identified by the adver-
sary (for example see [29]). That is, our goal is to investigate simple(r) tools that
apply to masking when it delivers its promises and are guaranteed to converge
without any need to guess about the number of shares in the target device.

3 New Proposals

We now describe three alternative parametric distributions that can cover
moments up to the fourth one. We discuss their advantages as well as the chal-
lenges one may face to set the parameters to use them.

3.1 Exponentially Modified Gaussian

Since the Gaussian distribution is symmetric, its skewness is always zero. The
exponentially Modified Gaussian (EMG) is another parametric distribution
which additionally includes this first shape parameter. The PDF of such a dis-
tribution, that covers the first three moments, is defined by [20]:

F (x) =
λ3

2
e

λ3
2 (2λ1+λ3λ2

2−2x)erfc

(
λ1 + λ3λ

2
2 − x√

2λ2

)
, (1)

where λ1, λ2, λ3 are the parameters of the distribution and erfc(.) refers to the
complementary error function defined as:

erfc(x) =
2√
π

∫ ∞

x

e−t2 dt.
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By means of the sample mean μ, standard deviation σ and skewness γ1 of the
data, these three parameters can be estimated as:

λ1 = μ − σ
(γ1

2

)1/3

, λ2
2 = σ2

(
1 −

(γ1
2

)2/3
)

, λ3 =
1

σ
(

γ1
2

)1/3
·

It should be noted that EMG does not cover symmetric distributions, i.e.,
γ1 = 0. However, it usually causes no issue in practice (and in particular for
side-channel attacks) as the estimated skewness is never exactly zero. Neverthe-
less, if the underlying skewness is zero, the estimated skewness might be very
small. These cases can lead to numerical problems, which can be solved by using
libraries for higher precision computations or switching to a distribution which
covers zero skewness (Gaussian, Pearson). Besides, note that for a negative skew-
ness γ1 < 0, the distribution is parametrized with the absolute value |γ1|, and
then mirrored around the mean.

3.2 Pearson Distribution System

The Pearson distribution system is a collection of probability distributions that
can be parametrized using the first four moments. In total twelve different distri-
butions (cf. [33–35]) are defined in such a way that depending on the estimated
moments one type is preferred, and the corresponding PDF estimation technique
is applied. In our experiments we noticed that types I, IV and VI (which are
presented in detail below) are the only necessary ones. For further descriptions of
the other types, the interested reader is referred to the original articles [33–35].

Cautionary Note. Distribution systems like Pearson’s are in general very flex-
ible as they allow characterizing a broad range of combinations of moments.
However, they require the estimation of several PDFs, and may face stability
problems at the transitions between the different types of distributions (which
may occur, e.g., by increasing the number of side-channel samples). Hence, in
these cases, it is preferable to rely on a single distribution.

3.3 Shifted Generalized Lognormal

In [24], Low introduced the Shifted Generalized Lognormal distribution (SGL).
It can be parametrized with the first four moments and covers a large inter-
val of possible combinations of skewness and kurtosis. Both of these properties
are desirable in side-channel evaluations, and therefore this distribution can be
an interesting alternative to the Pearson’s distribution system. The realm cov-
ered by the SGL is vast and we found it to be sufficient for all our practical
experiments.

Concretely, the PDF of the SGL is given by:

F (x) =
1

2λ
1/λ3
3 λ4Γ (1 + 1/λ3)(x − λ1)

e
− 1

λ3λ
λ3
4

∣
∣
∣ln
(

x−λ1
λ2

)∣
∣
∣

λ3

, (2)
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for λ1 < x < ∞, where λ1, λ2, λ3, and λ4 are the distribution parameters and
Γ (.) denotes the gamma function. These parameters can be estimated using the
first four moments. For conciseness, we only give a brief overview of the resulting
estimation problem in the full version of the paper [45], and refer the interested
readers to [24].

3.4 Computational Complexity

The presented parametric methods have all different PDFs with different com-
putation complexities. For SGL, the computation of the parameters from the
first four moments takes considerably longer than for all other discussed distri-
butions. To present some intuitions on the run time of the different PDFs, we
performed experiments using 100 randomly generated sets of moments and run
each PDF3 100 times for each of these sets. Then we computed the average over
all 1000 executions of each PDF. The Gaussian distribution is used as a reference
value and has an average of 0.0034 s on an Intel i5-4200M CPU. The averages
increase with the number of moments considered in the distribution: 0.0082 s
(EMG), 0.029 s (Pearson), 1.70 s (SGL).

4 Simulated Experiments

In order to better understand the interest of the tools proposed in Sect. 3 in the
context of side-channel analysis, we present a couple of simulated experiments.
In the following we use mathematically-generated leakages derived from:

l = HW(s ⊕ c1 ⊕ c2) + HW(c1) + HW(c2), (3)

where HW(.) denotes the Hamming weight function, s a sensitive (secret) 4-bit
variable, and c1 and c2 uniformly distributed random masks in {0, 1}4. Note that
this example is related to any nibble-oriented cipher, e.g., PRESENT [4], and
the basic evaluation procedure presented in this paper does not change for larger
bit sizes. The only adjustment is the number of possible different classifications,
i.e., 2n instead of 24 for n-bit variables. In this simulation it is supposed that the
target is a hardware design where the shares are processed at the same time. This
scenario essentially emulates a second-order Boolean masking scheme, where we
only focus on the encoding of a single variable s in a noise-free situation. In this
context, the first and second moments of the leakage distribution are expected to
be independent of s. For each s ∈ {0, 1}4, we estimate the PDF using both non-
parametric (kernels) and parametric (Gaussian, EMG, Pearson, SGL) tools. The
first four moments for each s, plotted in Fig. 2(a), reveal that there is indeed no
dependency between s and the first two moments (i.e., they remain constant for
all s). Hence, the only way that s can be distinguished is by observing the third
moment. Since kernel-based density estimation considers all possible moments,
it can be used to distinguish s as shown in Fig. 2(b).
3 We implemented three distributions in MATLAB and used the publicly available

pearspdf [5].
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(a) Estimated moments.
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(b) Kernel-based PDF.

Fig. 2. The estimated moments for each possible s ∈ {0, 1}4 (a) and kernel-estimated
PDFs (b) for mathematically-generated leakages corresponding to a 2nd-order masking.
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(d) SGL.

Fig. 3. The estimated PDFs for mathematically-generated leakages corresponding to
a 2nd-order masking, obtained with various parametric tools from Sects. 2 and 3.

By contrast, the third moment is not used to parametrize the Gaussian dis-
tribution and thus each s results in the same distribution in this case (as per
Fig. 3(a)). This example shows why Gaussian density estimation cannot be used
to analyze the leakages that reside in an order higher than two. Eventually, our
newly proposed estimators consider moments up to the fourth one, and therefore
they can be used to quantify the information leakage of our simulated masking
experiment (this can be seen in the remaining part of Fig. 3).

5 Practical Case Studies

To examine the application and efficiency of the above-mentioned solutions, we
consider a threshold implementation of the PRESENT cipher [4] on an FPGA
platform. More precisely, the target design is the Profile 2 presented in [36]
that follows a serialized architecture, i.e., using one instance of the S-box for
the whole SLayer. Such a masked hardware implementation has been selected
for the practical investigations due to its second- and third-order univariate
leakages which allow us to examine our proposed tools. If we would have no
leakage at order three and higher, examining the difference between our tools
and Gaussian would not be possible.
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In the target implementation, the data state is represented by d = 3 Boolean
shares, and the SLayer is based on the 2-stage masked S-box described in [32].
In other words, each S-box on a 4-bit data is implemented in a pipeline fashion
and needs two clock cycles to be computed. For more details on the design
architecture we refer the interested reader to [31,36].

The leakage traces are collected from a Xilinx Virtex-II Pro FPGA embedded
on SASEBO [1]. The sampling rate was set to 1GS/s and the target FPGA clock
was driven at a frequency of 3MHz.

We collected 100,000,000 traces to be used in our experiments. During the
measurements, the PRNG that provides random data (masks) for the sharing
of the plaintext was kept active. We also examined and confirmed the uniform
distribution of the masks.

A former analysis of MCP-DPA by Moradi and Standaert in [31] on the
same implementation revealed that the first pipeline stage of the target S-box
exhibits the most informative leakages. It confirms that no first-order leakage can
be exploited from this implementation, whereas the second and third moments
are indeed informative. It also suggests that second-order leakages are more
informative than third ones. By contrast, and as exhaustively discussed in the
introduction, two important questions remain open. First, can we quantify the
informativeness of the different moments on a (somewhat) more formal basis?
Second, and given that more than a single moment provides information, can we
design an attack that jointly exploits these moments? (which is in contrast with
MCP-DPA that only exploits moments one by one).

Both questions can be answered in the affirmative by the following discussion.
In order to make our results comparable with [31], we focus on the same parts of
the leakage traces. Namely, we analyze the most informative clock cycle in the
S-box execution. Based on this case study, we show that the newly introduced
PDF estimation tools are powerful ingredients for the information theoretic
analysis of a threshold implementation. First, they are able to extract an amount
of information from the traces comparable to a kernel density estimation. Second,
they are useful to estimate the informativeness of each moment, and to perform
attacks based on the best combination of moments carrying significant informa-
tion. Eventually, they can naturally and efficiently be embedded in PDF-based
non-profiled attacks such as MIA.

5.1 Profiled Evaluations and Attacks

First, we examine the information leakage of the target device using an informa-
tion theoretic approach. The idea to use Mutual Information (MI) as an eval-
uation metric was introduced in [46]. It was later refined in [39] to incorporate
the fact that the leakage distribution is only estimated, which can potentially
bias the estimation of the MI. The so-called Perceived Information (PI) is used
to reflect this bias and can be computed as:

P̂ I(S;L) = H[S] −
∑
s∈S

Pr[s]
∑
l∈L

Prchip[l|s] · log2P̂ rmodel[s|l], (4)
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Fig. 4. Kernel-, Gaussian-, EMG-, Pearson- and SGL-based PI estimation with all
covered moments (a) using 100,000,000 meas., (b) over the number of meas.

where Prchip denotes the chip’s true distribution (which is unknown but can be
sampled) and P̂ rmodel refers to the adversary’s estimated model (for which we
have an analytical formula). Computing the PI essentially requires an estimated
P̂ rmodel, which is exactly what our PDF estimation tools provide. In our experi-
ments, we followed the procedure presented in [16] for computing this metric. In
particular, we used 10-fold cross-validation and report the mean of the resulting
PI estimates. We start by looking at the information extracted using all the
moments enabled by each PDF estimation tool. We then analyze (subsets of)
these moments separately.

Combined Moments. In order to compare our proposed solutions (EMG,
Pearson, SGL) with the established ones (kernels, Gaussian), we first compute
the PI using all the covered moments. We estimate P̂ rmodel using the different
estimators and compare the results. As previously mentioned, this experiment
only covers 100 sample points corresponding to the power peak of the targeted
clock cycle. The 100,000,000 traces are divided into 10 sets. For each of the
10 runs we use one of these 10 sets (each with 10,000,000 measurements) as
samples of the chip’s true distributions, and the remaining 9 sets (90,000,000
measurements) to estimate the model distribution (P̂ rmodel). Figure 4(a) contains
the results.

At the first glance, it can be observed that the achieved PI using the Gaussian
distribution to estimate P̂ rmodel is the lowest. This implies that not all available
information is contained in the first two moments (that are the only ones cap-
tured by a Gaussian distribution). More interestingly, kernel-based density esti-
mation is non-parametric and therefore is expected to provide the highest PI if
its bandwidth is well adapted and enough samples are available. Yet, we observe
that this is not exactly the case in our experiments. As depicted in Fig. 4(a)
(where we focus on the most informative sample 719), this is most likely due
to an estimation issue (i.e., a lack of samples). As expected, the non-parametric
kernel density estimation is the slowest to converge in this case. This suggests
an interesting feature of our new parametric tools. Namely, whereas Gaussian
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estimation is very fast but limited to the exploitation of two moments (hence
leads to less efficient attacks, as will be discussed next), EMG-, Pearson- and
SGL-based estimations combine a faster convergence than kernels with a similar
informativeness.

Summarizing, we can conclude that PDFs covering the right combination of
moments lead to the best tradeoff between a fast convergence towards a well
estimated model, and a well-informative model once properly estimated (i.e., a
model for which the PI should be close to the MI [16]). By contrast, the previous
results do not allow to deduce about the relative informativeness of each moment
(which could possibly be used to further speed up the model estimation and
attacks), which motivates the following analysis.

Separate Moments. An interesting property of the parametric estimators is
the ability to consider only selected moments instead of trying to characterize
any possible moment (as in non-parametric estimations). Using the Gaussian
distribution as an example, we can compute the information contained exclu-
sively in the first two moments, as this distribution only considers the mean
and variance. Similarly, it is also possible to compute the PI for the first three
moments (with EMG distributions) and the first four moments (with Pearson’s
distribution system and SGL distributions). In the following, we present an app-
roach that enables us to compute the PI both for each moment taken separately
and for any combination of those.

For this purpose, and taking the case where we focus on a single moment,
we simply have to set all but one of the moments to a fixed value. For example,
suppose that we want to consider the information contained in the first moments
of a Gaussian distribution only. We achieve this by considering a Gaussian model
where the means are estimated as in the previous section, but the variances are
set to a fixed value, which essentially removes any secret-dependent information
they could carry from the templates through the second moments. Since chang-
ing the variances affects the shape of the distributions, the fixed value can be
chosen as the average of the variances (over the 16 templates) to minimize the
distance between the original distributions and the ones with a fixed variance4.
A similar technique actually works for any of our parametric estimators, and for
any (combination of) moments.

As an illustration, let us first recall the influence of the first four statistical
moments on the shape of the resulting distribution. The third moment, called
skewness, measures the asymmetry of the distribution. Therefore, distributions
with positive skewness tend to left while distributions with a negative skewness
tend to the right. The fourth moment, called kurtosis, measures the “peakedness”
(sharpness) of the distribution. As a consequence, the higher the kurtosis, the
sharper is the distribution. Note that we consider only the first four moments in
our analysis, hence we omitted definitions for moments of any further orders.

4 Instead, one can also consider the variance of whole trace set. Here we need only a
fixed value which is not too different from the variance of each template. Such an
approach is not valid in case of Gaussian mixtures as stated in Sect. 2.
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Fig. 5. The PDFs of the six distributions from Tables 1 and 2.

Table 1. The first four statistical moments of four distributions at sample point 719.

Dist. 1 Dist. 2 Dist. 3 Dist. 4 Average

Mean −27.9734310 −27.9811494 −27.9827913 −27.9782609 −27.9789082

Variance 22.3624316 21.9979663 22.2165081 22.2660171 22.2107308

Skewness 0.0075083 0.0053184 0.0131009 −0.0000767 0.0064627

Kurtosis 3.0177549 3.0202503 3.0219293 3.0183596 3.0195735

When we set specific higher-order moments (as in our approach) to specific
values, we actually fix the width of the distributions (i.e., variance), or their right-
left tendency (i.e., skewness) or their sharpness (i.e., kurtosis). Hence, informa-
tion sitting in the corresponding moments does not contribute in the information-
theoretic-based evaluation, e.g., mutual information. We like to emphasize that
the estimated higher-order moments in real side-channel measurements (catego-
rized, for example, based on the processed data) are very slightly different. Con-
sider for example the PDFs of four exemplary distributions shown in Fig. 5(a),
taken from the most leaking point of the measurements of our case study (see
Fig. 4(a)). The first four moments of each distribution are given in Table 1. All
moments of the four distributions are very similar to each other, e.g., the skew-
ness of all these four distributions is only slightly different. Hence, fixing the
skewness of all of them to a specific value (e.g., the average of all skewnesses
given by 0.0064627) does not significantly change the shape of the distributions.

Here we consider four different cases:

1. All moments except the first are fixed to their average (evaluation through
means).

2. All moments except the second are fixed to their average (evaluation through
variances).

3. All moments except the third are fixed to their average (evaluation through
skewnesses)

4. All moments except the fourth are fixed to their average (evaluation through
kurtoses).



Bridging the Gap: Advanced Tools for Side-Channel Leakage Estimation 71

Table 2. The first four statistical moments of two simulated distributions.

Dist. 5 Dist. 6 Average

Mean 4.9997939 7.400773 6.2002834

Variance 10.0032941 149.017440 79.5103671

Skewness 1.7063003 0.377136 1.0417184

Kurtosis 7.8417563 3.648649 5.7452030

For each case, the shape of the resulting distributions is very close to the original
shape in Fig. 5(a). The resulting PDFs of the modified distributions for each case
is provided in the full version of the paper [45].

It should be noted that in case of simulated data with significantly different
moments for each distribution the resulting shapes of each distribution would
be also dramatically different to each other. Therefore in this case, setting the
corresponding moments to a fixed (average) value does not make the distri-
butions to roughly follow the same shape. If such a huge difference between
the moments of the (categorized) distributions exists in practice by any (rare)
chance, the corresponding implementation is significantly vulnerable to certain
attacks. Obviously, this makes the necessity of performing per-moment evalua-
tions questionable. As an example, we show in Fig. 5(b) two simulated distri-
butions formed by the moments from Table 2. It is obvious that the shape of
the distribution with fixed moments is considerably different than that of the
original two distributions. In this case, a per-moment approach would not be
easily possible with an information-theoretic evaluation tool.

We analyze this moment-based investigation based on the same case study
as for the previous information theoretic analysis. Hence, we repeat the previous
experiments (of Fig. 4(a)) with the same parametric estimators (Gaussian, EMG,
Pearson, SGL), but this time we consider each possible moment separately. The
results are depicted in Fig. 6 where the PI curves are categorized based on the
employed estimator. Each part of the figure contains the PI curves obtained for
each moment separately. For example, in Fig. 6(a) the curve labeled Gaussian
(1st) shows the PI achieved for the first moments (and the curve Gaussian (2nd)
depicts the same for the second moments, etc.). Further, we included the PI curve
of the combined moments (taken from Fig. 4(a)) and the sum of the PI curves
of the separate moments (e.g., Gaussian Sum as the sum of the PI curves of
Gaussian (1st) and Gaussian (2nd)).

As expected, the first moment does not contain any exploitable information
as the implementation is first-order secure. It is also noticeable that the chosen
estimator does not affect the PI for the first moment. The second moment leads
to the highest PI, and therefore is the most informative moment. As similarly
indicated by MCP-DPA, the third moment is informative but not as much as the
second one. Furthermore, using two estimators (Pearson, SGL) that also cover
the fourth moment, we are not able to detect any significant information leakage
in the fourth moment. Therefore, a combination of the second and third moments
should suffice to capture most of the available information in the underlying
measurements.
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Fig. 6. PI estimates for the separate moments.

Most interestingly, we observe that the sum of the PI values obtained for
the separate moments is actually close to the PI estimated with the combined
moments. Although informal, this observation is particularly interesting in view
of the recent results by Duc et al. in [14] where the PI values are connected with
the success rate of a (worst-case) template attack using the same model. Indeed,
since the sum of the PI values obtained per moment is essentially the same as
the PI value obtained with the non-parametric kernel method, it implies that in
our case study, the separation between moments did not lead to any significant
information loss. This suggests that a (simple and intuitive) moment-based side-
channel evaluation could be well-founded, at least in certain contexts that would
be worth formalizing. And very concretely, it also means that an attack exploiting
out two informative (i.e., second and third) moments will be close to optimal in
our case.

Profiled Attacks. The results in [14] prove that (under sufficiently noisy leak-
ages) the success rate of a profiled template attack is inversely proportional to
the PI value estimated with the same model. In view of the previous discussions,
it means that our proposed estimation tools (EMG, Pearson, SGL) should lead to
more effective profiled attacks than their counterparts with Gaussian estimation
(because of modeling errors) and kernels (because of assumption errors). Further-
more, the attacks exploiting the second moment should lead to a higher success
rate than attacks exploiting the other three moments. Eventually, the best attack
should exploit the combination of second and third moments. For completeness,
we ran experiments to confirm these expectations. We built univariate templates



Bridging the Gap: Advanced Tools for Side-Channel Leakage Estimation 73

Measurements # 106
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Su
cc

es
s 

R
at

e

0

0.2

0.4

0.6

0.8

1

Gaussian
Gaussian (1st)
Gaussian (2nd)

(a) Gaussian.

Measurements # 106
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Su
cc

es
s 

R
at

e

0

0.2

0.4

0.6

0.8

1

EMG
EMG (1st)
EMG (2nd)
EMG (3rd)
EMG (2nd+3rd)

(b) EMG.

Measurements # 106
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Su
cc

es
s 

R
at

e

0

0.2

0.4

0.6

0.8

1

Pearson
Pearson (1st)
Pearson (2nd)
Pearson (3rd)
Pearson (4th)
Pearson (2nd+3rd)

(c) Pearson.

Measurements # 106
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Su
cc

es
s 

R
at

e

0

0.2

0.4

0.6

0.8

1

SGL
SGL (1st)
SGL (2nd)
SGL (3rd)
SGL (4th)
SGL (2nd+3rd)

(d) SGL.

Fig. 7. Success rate of several univariate template attacks exploiting separate and
combined moments, for the most informative sample point 719 in our traces.

(for the most informative sample point 719) from 90,000,000 measurements and,
for each given number of measurements, repeated an attack 1000 times for dif-
ferent measurements (excluding those used for profiling) to compute a subkey
recovery success rate. The results of this last experiment are depicted in Fig. 7
and are well in line with theoretical predictions. In this respect, the most inter-
esting curves are the ones corresponding to the combination of second and third
moments, since they correspond to the best tradeoff between model complexity
and attack efficiency, and could not have been reached with existing side-channel
evaluation tools.

Non-profiled Attacks. A detailed discussion with experimental results is pro-
vided in the full version of the paper [45].

5.2 Selection of Tools

We have discussed multiple parametric tools, each with its own advantages and
disadvantages. Compared to the traditional non-parametric tools, they offer a
higher flexibility and convergence. Therefore, they should be preferred if the
number of samples is too small or a special case (e.g., only two moments) should
be evaluated. The PDF of EMG can be computed very efficiently compared
SGL and Pearson. However, it considers only the first three moments instead
of four. The Pearson distribution system includes the kurtosis and its PDF is
still relatively efficient compared to SGL. Nevertheless, it is made up of multiple
different distributions which can be problematic in certain cases as pointed out
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in Sect. 3.2. Therefore, in scenarios where the computation time of the PDF can
be ignored and the leakages are covered by SGL, it is the preferable tool.

However, the computation time is often a limiting factor and it can be sig-
nificantly reduced in certain cases by choosing a more limited distribution which
is still sufficient to capture all relevant leakage. If the type of implementation
and leakage is known, this choice is easily possible. Gaussian (resp. EMG) is
the preferred choice for leakage which is exclusive in the first two (resp. three)
moments due to its very efficient PDF. Leakage in the fourth moment can be
also efficiently captured with the Pearson distribution system, assuming that the
aforementioned problems do not arise. If the type of masked implementation, i.e.,
the order of masking, is unknown, then this choice of distribution cannot be that
easily made. SGL is the best approach, if the distribution is inside the plane of
existence of SGL.

6 Conclusions

This paper introduced a variety of PDF estimation tools to improve the eval-
uation of leaking devices, both in the profiled and non-profiled settings. Their
main interest is their flexibility: our proposals can indeed capture information
lying in different moments of the leakage PDF. As a result, we can easily analyze
masked implementations and extract useful feedback to hardware designers, i.e.
in terms of how much information is lying in every moment and how to combine
it. This brings a concrete and more founded counterpart the recent evaluations
of implementations with non-independent leakages in [14], where this quantity
of information “per moment” is required. More generally, our findings provide
efficient tradeoffs between the cost of profiling and the efficiency of the resulting
attacks, since they allow adversaries and evaluators to build models that are tai-
lored to their implementations. These results naturally open various interesting
research challenges for future work. As mentioned in introduction, combining
an analysis of moments as in this work with simplifying approaches to leakage
modeling (e.g. based on linear regression) would be even more convenient to
evaluators. Besides, investigating the “summing rule” of Sect. 5.1 more formally
is certainly worth further efforts as well. Eventually, our current tools are lim-
ited to univariate leakages. While this was sufficient to analyze our hardware
case study, it naturally suggests the extension to multivariate case studies as
yet another important question. This is especially interesting given that even
hardware designs with univariate d-order security may include a multivariate
vulnerability for which less than d points are combined [40]. A starting point
for this purpose would be to exploit some popular “combining” functions from
the side-channel literature (which would allow us to exploit our univariate tools
directly).
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Abstract. Most masking schemes used as a countermeasure against
side-channel analysis attacks require an extensive amount of fresh ran-
dom bits on the fly. This is burdensome especially for lightweight cryp-
tosystems. Threshold implementations (TIs) that are secure against first-
order attacks have the advantage that fresh randomness is not required if
the sharing of the underlying function is uniform. However, finding uni-
form realizations of nonlinear functions that also satisfy other TI proper-
ties can be a challenging task. In this paper, we discuss several methods
that advance the search for uniformly shared functions for TIs. We focus
especially on three-share implementations of quadratic functions due to
their low area footprint. Our methods have low computational complex-
ity even for 8-bit Boolean functions.

Keywords: Boolean functions · Correction terms · Masking ·
Randomness · The threshold implementations · Uniformity

1 Introduction

Side channel attacks (SCA), which are shown to be a great threat to today’s
cryptosystems [1,14,15], derive sensitive information (e.g. secret key) by corre-
lating various characteristics of the device such as timing, power consumption
and electromagnetic emanation leakages with intermediate values of the cryp-
tographic algorithm during execution [15,16]. In this paper, we consider adver-
saries that can only use first-order SCA, i.e. can use only first-order statistical
moments of the side-channel information or equivalently can use information
from a single wire [13]. The threshold implementation (TI) method is a counter-
measure that is proven to be secure with minimal adversarial and implementation
assumptions [4,19,21] and is used for symmetric-key algorithms. Being a masking
scheme, its essence lies in splitting the sensitive data into s uniformly distributed
shares and adopting the (round) functions to operate on these shares in a way
that the correct output is calculated. Unlike other masking schemes, first-order
TI additionally requires each output share of a function to be independent of at
least one of its input shares. This enables security on demanding non-ideal (such
as glitchy) circuits and is called the non-completeness property. The uniformly
shared input combined with non-completeness randomizes the calculation, and
hence breaks the linear relation between the side-channel information and the
sensitive data for each function.
c© Springer International Publishing AG 2017
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In the most generic case, the non-completeness property implies the bound
s ≥ td + 1 on the number of shares where t is the algebraic degree of the func-
tion [4,19] and d is the attack order. Hence, in our setting s increases only with
the degree of the underlying function to be calculated. Fortunately, any high
degree permutation can be represented by a combination of quadratic functions,
by means of sequential combination alone [2] or parallel and sequential combina-
tions together [10,17]. Since more shares typically imply an increase in required
resources such as area, it is desired to keep s as low as possible. Therefore, we
mainly target implementations with three shares while keeping the discussions
generic.

Related Work. When the round-based nature of symmetric-key algorithms and
the uniformly shared input requirement are considered, it is useful to construct
the sharing of nonlinear functions in each round such that their output, which
is the input of the following round, is also uniform. A sharing of a function
(realization) satisfying this property is called a uniform sharing (realization).

So far, the strategy for finding uniform realizations has been to exhaustively
check uniformity for all possible non-complete realizations. For some Sboxes [20],
this strategy yields positive results rather quickly. However, even for small, low-
degree Sboxes with few shares the search space of possible realizations is very
large [7]. Therefore, proving the (non-)existence of a non-complete uniform shar-
ing for a particular nonlinear function is a difficult task [2,3,18].

Alternative to finding a uniform realization, fresh randomness can be added
to the output shares of a nonuniform realization. This operation, which makes
the sharing uniform, is commonly referred to as remasking. The increased cost
of high throughput fresh random number generation is undesired and sometimes
even unaffordable for a lightweight system.

Contribution. Even though there may not exist a known uniform realization
of a given vectorial Boolean function, it is beneficial to find a subset of outputs
for which the realization can be made jointly uniform since this reduces the
randomness cost significantly. Starting from this partially uniform realization
idea, which is described in Sect. 2.5, we focus on finding uniform realizations for
Boolean functions, then combine them appropriately. Finding uniform realiza-
tions has two main challenges. First, no efficient method to check the uniformity
of a realization has been presented so far. Second, if the realization under test
is not uniform, another realization needs to be checked and a systematic way to
reduce the search space has not been presented yet.

In this paper, we tackle both of these challenges. In Sect. 3, we introduce
an efficient method to check uniformity. In Sects. 4 and 5, we respectively dis-
cuss adding linear and quadratic terms to output shares in order to make the
realization uniform and provide examples. We prove that any realization which
uses a bent function as an output share can not be made uniform by adding
only linear terms. We also re-prove that there exists no uniform realization of a
nonlinear function with two inputs and one output with three shares. This result
was previously shown by exhaustive search [19].
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2 Threshold Implementations

2.1 Notation

We denote the vector space of dimension n over the Galois field of order 2
by F

n. We use lower case characters for elements of Fn and vectorial Boolean
functions from F

n to F
m. Superscripts refer to each bit and each coordinate

function, i.e. x = (x1, . . . , xn) where xi ∈ F and f = (f1, . . . , fm) where f i is a
Boolean function. We omit the superscript when n = 1 for elements and m = 1
for functions. The ring of n × m matrices over F is written as F

n×m. The dot-
product and the field addition of x, y are denoted by x·y and x+y respectively. x
represents the bitwise complement of x. |S| denotes the cardinality of the set S.

The notation used for TIs is similar to [2,4,5,19,21]. A correct s share vec-
tor x i = (xi

1, . . . , x
i
s) of xi has the property that xi =

∑s
j=1 x

i
j . In particu-

lar, Sh(xi) is the set of correct sharings for the variable xi. This notation can be
readily extended to elements of Fn and (vectorial) Boolean functions. The shar-
ing f = f1

1 , f
1
2 , . . . , f

m
sout

defined from F
nsin to F

msout with sin input and sout out-
put shares is called a realization. The realization is correct if f i =

∑sout
j=1 f

i
j for all

i. Each share f i
j of a coordinate function f i is called a component function. Con-

structing a uniform and non-complete realization for a linear function is trivial [19].
Therefore, we focus only on nonlinear functions.

2.2 Non-completeness

Non-completeness is the key property that makes TI secure even on glitchy
circuits. Without loss of generality, a first-order non-complete realization has
the property that its ith output share is independent of its ith input share [19].
This independence implies that leakage of a single share is independent of the
unmasked input, proving the security [19]. As described in Sect. 1, sin, sout ≥ t+1
due to this property [19]. A non-complete three-share realization y = (y1, y2, y3)
of an AND gate (y = f(x) = x1x2) is provided in Eq. (1) as an example.

y1 = f1(x1
2, x

1
3, x

2
2, x

2
3) = x1

2x
2
2 + x1

2x
2
3 + x1

3x
2
2

y2 = f2(x1
1, x

1
3, x

2
1, x

2
3) = x1

3x
2
3 + x1

1x
2
3 + x1

3x
2
1 (1)

y3 = f3(x1
1, x

1
2, x

2
1, x

2
2) = x1

1x
2
1 + x1

1x
2
2 + x1

2x
2
1

2.3 Uniformity

A sharing of a variable is uniform if, for each unshared value x ∈ F
n, every

x ∈ Sh(x) occurs with equal probability. A realization f is called uniform if, for
uniformly generated input, its output is also uniformly generated. Namely, f is
uniform if and only if

NU = |{x ∈ Sh(x)|f (x ) = y}| =
2n(sin−1)

2m(sout−1)

for each input x ∈ F
n and y = f(x) ∈ F

m [5].
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Definition 1 (Uniformity table U). Let f be a shared realization from F
nsin

to F
msout and Ux,y be the cardinality of {x ∈ Sh(x)|f(x) = y} for the unshared

input x and shared output y. The 2n × 2msout table which has Ux,y as its (x,y)th

element is called the uniformity table U of f.

Here, we assume that the rows and columns of U are ordered lexicographically
by each unshared then shared output. If f is uniform, the elements of U are
equal to either 0 or NU . We provide the uniformity table of Eq. (1) in Table 1
for completeness [5].

Table 1. The uniformity table of Eq. (1).

(x1, x2) (y1, y2, y3)

000 011 101 110 001 010 100 111

(0,0) 7 3 3 3 0 0 0 0

(0,1) 7 3 3 3 0 0 0 0

(1,0) 7 3 3 3 0 0 0 0

(1,1) 0 0 0 0 5 5 5 1

Note that Table 1 shows that the aforementioned realization is not uniform
since the table contains elements different from 0 and NU = 4. Since we want to
limit the randomness requirement to minimize resources, we focus on methods to
find partially or completely uniform sharings directly. We also keep the number
of shares as small as possible for performance considerations.

2.4 Correction Terms

When a realization is not uniform, it is nevertheless possible that a different con-
struction of the component functions yields a uniform realization. One possible
way of generating alternative realizations is adding correction terms (CTs) to
an even number of component functions without breaking the non-completeness
property [19]. We assume CTs are generated using only the input shares of the
realization.

Consider a realization of a quadratic Boolean function with n variables with
three output and input shares. The number of linear and quadratic CTs is
3(n +

(
n
2

)
). Therefore, there exist 23(n+(n2)) possible non-complete three share

realizations for this function. If we consider such realizations for 3- and 4-bit
(quadratic) Sboxes, we get 218 and 230 possibilities for each coordinate function
and (218)3 and (230)4 possible realizations for the Sbox [6].

2.5 Partial Uniformity

Definition 2 (Partial Uniformity). Consider the function f with m coordi-
nate functions f i. A realization that is uniform in at least one l-combination
of its coordinate functions, i.e. without loss of generality with uniform
f1
1 , f

1
2 , . . . f

l
sout , is called a partially uniform realization of f .
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The case where l = m implies that f has a uniform realization. The motiva-
tion to find a partially uniform function is that, if l output variables are jointly
uniform, they do not need to be remasked to make the joint distribution of out-
put shares uniform [3]. Hence, the required randomness for remasking can be
reduced from m · (sout − 1) bits to (m − l) · (sout − 1) bits. Note that by using
this method alone, the authors of [3] gained 60% efficiency on fresh randomness.

A straightforward way to find partially uniform realizations, which we apply,
starts by finding uniform realizations for each coordinate function of f . These
realizations are then combined iteratively until it is not possible to combine any
more component functions uniformly1. Therefore, we mainly focus on finding
uniform realizations of a Boolean function efficiently in the rest of the paper and
use their combinations for partial uniformity only on examples.

There are two main obstacles in this approach:

1. It is relatively expensive to check whether a given realization is uniform. So
far, the only proposed way to check uniformity is generating the uniformity
table U of the realization completely and checking if its nonzero elements are
equal to NU . This requires 2nsin evaluations of the realization (for all possible
sin shares of each of the n input variables) in the worst case.

2. Going through all possible realizations, i.e. trying all possible CTs, can be
extremely expensive due to the large amount of CTs as discussed at the
end of Sect. 2.3. Even if we focus only on the linear CTs, there exist 2nsin
different realizations implying O(2nsin2nsin) = O(22nsin) complexity to check
uniformity for all of them.

Therefore, both decreasing the search space of possible realizations and reducing
the complexity of checking uniformity for each realization would have significant
impact on the overall complexity of finding uniform realizations for Sboxes.

3 Fast Uniformity Check for Boolean Functions

This section aims to reduce the complexity OU of checking whether a given
realization of a Boolean function is uniform. In order to do that, we first analyze
the dependencies between the elements Ux,y of the uniformity table. We observe
that if the realization has three output shares, it is sufficient to calculate only
one row of U due to the dependency between Ux,y , reducing OU . For this reason,
we consider the case sout = 3 in the second half of this section. Note that using
three output shares limits the degree of the Boolean function to two. However,
any high-degree function can be decomposed into quadratic Boolean functions
and using a small number of shares typically reduces the implementation cost
[5,7,17].

1 One possible algorithm to find a (partial) uniform realization is provided in
Appendix A for completeness. Note that this algorithm returns a uniform realization
if it exists.
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3.1 Observations on the Rows of U
Consider a non-complete realization f with sin input and sout output shares,
represented by x and y respectively. For each unshared input x, let Nx,i denote
the number of inputs of f for which the component yi has a fixed value b ∈ {0, 1}.
That is

Nx,i =

{∑
y yi · Ux,y if b = 1

∑
y yi · Ux,y if b = 0.

(2)

Lemma 1. Nx,i is independent of x.

Proof. Due to non-completeness of f , yi is (without loss of generality) indepen-
dent of (x1

i , x
2
i , . . . , x

n
i ). Hence, Nx,i is also independent of (x1

i , x
2
i , . . . , x

n
i ). Since

the input sharing x is uniform, Nx,i is independent of x. ��
Hence, we will write Ni rather than Nx,i. The lemma implies that the entries of
any row of U corresponding to some unshared input x are related by the same
set of equations for a constant binary value b:

– For 1 ≤ i ≤ sout, Ni satisfies Eq. (2)
– The sum of the values must be equal to 2n(sin−1)

∑

y

Ux,y = 2n(sin−1). (3)

If y ∈ Sh(f(x)) with f(x) the complement of f(x), then Ux,y = 0. Hence, we
will say that the system of Eqs. (2) and (3) has only 2sout−1 unknowns.

Lemma 2. Given Eq. (3), the equations given in Eq. (2) for b = 1 and b = 0 are
linearly dependent.

Proof. Form the coefficient matrix of the system of Eqs. (2) and (3) such that
each row of the matrix represents an equation for which the columns are the
coefficients of Ux,y . Clearly, for each i, the rows p and r of this matrix corre-
sponding to Ni when b = 0 and b = 1 are binary complements. Let j be the row
of ones corresponding to Eq. (3). Then p = j− r describes the linear dependence
among these rows for each i. ��
Lemma 2 implies that there are at most sout + 1 linearly independent equations
describing the unknowns Ux,y . Since there are 2sout−1 unknowns, the values Ni

completely determine each row of U only if 2sout−1 ≤ sout + 1. This inequality
holds only for sout ≤ 3. Since sout must be greater than the degree of the function
and we focus on nonlinear operations, sout = 3. Note that fixing the number of
output shares to three has no implication on the number of input shares, nor on
the amount of input variables. In what follows, we investigate the case sout = 3
further. For this case, AppendixB lists the four linearly independent equations
for each unshared input x that describe the relation between elements in a single
row of U .
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3.2 Observations on U when sout = 3

Theorem 1. Let f be a realization of a Boolean function with sout = 3. Then
any row of its uniformity table U uniquely determines all elements of U .

Proof. Recall that the rows of U correspond to the unshared inputs. For any two
inputs x, x′, the systems of Eqs. (2) and (3) will be identical provided that we
choose the same constant value for b. If the elements of some row are known, one
can easily deduce the values Ni and hence the system of equations. The proof
is completed by the fact that for sout = 3 the system of equations completely
determines the elements of any row. ��
Note that the theorem does not imply that all rows are equal, since the unknowns
in the system of equations for x and x′ are different if f(x) �= f(x′). Namely, they
are Ux,y with y ∈ Sh(f(x)) and Ux′,y with y ∈ Sh(f(x′)) respectively. Hence,
the rows can in general take only two different values.

Corollary 1. If the realization f of a Boolean function with sout = 3 has a
uniform distribution for one unshared input value (one row of U), then it has a
uniform distribution for all unshared input values (all rows).

Proof. If the distribution of output shares is uniform for input x, then all nonzero
elements in that row are equal to NU . Hence, by Theorem 1, all values of U are
fixed. Since the uniformity table of a uniform realization is a possible solution
for U , and the solution must be unique, it follows that f is a uniform realization.

��
Using Corollary 1, the computational complexity of the uniformity check (OU )
when sout = 3 is reduced to O(2n(sin−1)), i.e. computing a single row of U . To be
able to compare with the results of the following section, we note that at most
O(2n(sin−1)2nsin) = O(22nsin−n) evaluations are required if checking all linear
CTs is desired. We conclude this section with the following theorem from which
we will benefit in the remainder of the paper.

Theorem 2. A realization with one output variable and three output shares is
uniform if and only if each of its component functions is a balanced Boolean
function.

Proof. According to Theorem 1, it is enough to solve the system of Eqs. (2) and
(3) for a single row of U to determine all the elements Ux,y . By Lemma 2, the
equations for either b = 0 or b = 1 suffice. Hence, we consider the system of
equations for b = 0 which is provided in Eq. (10) in AppendixB and simplified as
the following extended coefficient matrix with columns ordered lexicographically
by each shared, then unshared output:

⎛

⎜
⎜
⎝

1 1 0 0 1 1 0 0 N1

1 0 1 0 1 0 1 0 N2

1 0 0 1 0 1 1 0 N3

1 1 1 1 1 1 1 1 2(sin−1)n

⎞

⎟
⎟
⎠
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Depending on whether the output (y =
∑

i yi) is 0 or 1, the elements Ux,y

corresponding to either the first or the second four coefficients of the matrix
(equivalently either the first or the second line of each equation in Eq. (10))
are non-zero. Here, we only provide the solution for the system y = 0 given in
Eq. (4). The solution for y = 1 is similar.

Ux,(0,0,0) = −2
(sin−1)n−1

+
1

2
(N1 + N2 + N3), Ux,(0,1,1) = 2

(sin−1)n−1
+

1

2
(N1 − N2 − N3),

Ux,(1,0,1) = 2
(sin−1)n−1

+
1

2
(−N1 + N2 − N3), Ux,(1,1,0) = 2

(sin−1)n−1
+

1

2
(−N1 − N2 + N3)

(4)
Ux,(0,0,1) = Ux,(0,1,0) = Ux,(1,0,0) = Ux,(1,1,1) = 0

(⇒): For a uniform realization, all non-zero expressions in Eq. (4) must be
equal to each other and have the value NU = 2n(sin−1)−m(sout−1) = 2n(sin−1)−2.
This uniquely determines N1, N2 and N3 for a uniform realization. In particular,
we have

N1 = N2 = N3 = 2n(sin−1)−1, (5)

implying that each component function is balanced.
(⇐): If each output bit is uniform satisfying Eq. (5), then each Ux,y is either 0
or NU . This implies the uniformity of the realization. ��

Note that one side of the proof stating that if the realization is uniform, each
of the component functions must be balanced has already been proven in [7] and
is independent of the number of shares or the degree of the function.

4 Using Linear Correction Terms Efficiently to Satisfy
Uniformity

In this section, we show how to avoid trying all the linear correction terms one
by one in order to find uniform realizations of Boolean functions. We benefit
from the Walsh-Hadamard transformation (WHT) to directly see which linear
correction terms can lead to uniform realizations and eliminate a significant
portion of the search space. Even though we describe our method for sout = 3
to benefit from Theorem 2, the idea can be used for efficient uniformity checks
of component functions with sout > 3.

Definition 3. The Walsh-Hadamard transformation of f is denoted by Wf . For
ω ∈ F

n, it is given by

Wf (ω) =
∑

x∈Fn

(−1)f(x)+ω·x,

i.e. the discrete Fourier transform of (−1)f(x).

Here, the addition in the exponent is in F, and the summation is in the integers.
This transformation can be efficiently calculated with O(n2n) computational
complexity using fast WHT.
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Definition 4. A Boolean function f is called bent if and only if for all vectors
ω ∈ F

n, Wf (ω) = 2n/2.

Bent functions only exist for even n [22]. In our study, we will treat bent and
non-bent component functions separately for reasons that will be clarified later
in this section. Moreover, we will make use of the following well-known result.

Fact. f is balanced if and only if Wf (0 ) = 0. Moreover, f(x ) +a · x is balanced
if and only if Wf (a) = 0.

4.1 Realizations Without Bent Component Functions

Adding linear correction terms to a nonuniform realization f = (f1, f2, f3)
is described by the following equations, where a and b are binary correction
vectors.

f ′
1 = f1 + a 1̂ · x f ′

2 = f2 + b 2̂ · x f ′
3 = f3 + (a 1̂ + b 2̂)3̂ · x .

The notation a î indicates that the bits corresponding to every ith share are zero.
Due to the restrictions implied by this notation, the new sharing is non-complete.

By Theorem 2, (f ′
1, f

′
2, f

′
3) is uniform if and only if fi’s are balanced. There-

fore, Wf1(a 1̂), Wf2(b 2̂) and Wf3((a 1̂ + b 2̂)3̂) must be zero which can easily be
checked by using fast WHT. We use Algorithm 1.

Algorithm 1. Find linear correction terms for the realization f = (f1, f2, f3).
1: Compute Wf1 , Wf2 and Wf3 using WHT.
2: for a 1̂ ∈ F

nsin do
3: if Wf1(a 1̂) �= 0 then
4: continue
5: end if
6: for b 2̂ ∈ F

nsin , (a 1̂ + b 2̂)3̂ do
7: if Wf2(b 2̂) = 0 and Wf3((a 1̂ + b 2̂)3) = 0 then
8: yield (a 1̂, b 2̂)
9: end if

10: end for
11: end for

The computational complexity of the three Walsh-Hadamard transforma-
tions in this algorithm is O(n(sin − 1) · 2n(sin−1)). The outer for-loop iterates
over 2n(sin−1) values, the inner over 2n(sin−2) values. Hence, the for loop has
complexity O(2n(2sin−3)). It follows that the total worst-case complexity is

O
(
n(sin − 1) · 2n(sin−1) + 2n(2sin−3)

)
= O

(
2n(2sin−3)

)
.

To find a single solution the best-case complexity is O
(
n(sin − 1) · 2n(sin−1)

)
.
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The table below summarizes the complexities of each uniformity-check
method presented so far when only linear correction terms are considered. The
efficiency of using the WHT is clear as the input size of the Boolean function
increases. We emphasize that to find uniform realizations of vectorial Boolean
functions all the aforementioned methods should be repeated for each coordinate
function. Hence the complexity gain observed for a single Boolean function in
the following table gains in significance for Sboxes.

Method Worst-case complexity sin = 3 sin = 4

Naive O(22nsin) O(26n) O(28n)

Fast uniformity check O(22nsin−n) O(25n) O(27n)

Using WHT O(22nsin−3n) O(23n) O(25n)

Application to Q4
300. It has been shown in [7,10,17] that 4-bit permutations

can be decomposed into quadratic functions in order to enable three-share real-
ization of cryptographic algorithms. There exist six 4-bit quadratic permutation
classes [7] up to affine equivalence that can be used for decomposition. For all
quadratic permutation classes except one (namely Q4

300 as denoted by [7]) a
uniform realization with three-shares has been found. However, for class Q4

300

the (non-)existence result was inconclusive so far since the search space is too
big for practical verification. By using Algorithm1 together with Algorithm 3 on
the representative of Q4

300, we found that two out of four coordinate functions
have jointly uniform realizations as described in AppendixC. This implies a 50%
reduction when a permutation from Q4

300 is instantiated, which shows the rele-
vance of this section. We note that no further improvements are possible for this
permutation using only linear correction terms.

4.2 Realizations with Bent Component Functions

Theorem 3. If any component function of a realization—seen as a function on
F
n(sin−1)—is bent, then this realization is not uniform and it can not be made

uniform by using only linear correction terms.

Proof. Take one of the component functions fi of the realization of f , viewed as
a function on F

n(sin−1). Further assume fi is bent. Since the Walsh spectrum of
fi does not contain any zeros, it is clear that neither fi is a balanced function
nor any linear correction term makes fi balanced. Hence, the realization cannot
be made uniform with only linear CTs. Note that for sout ≥ 4, balancedness
is still a necessary condition. Thus, the theorem also holds for more than three
output shares. ��

We discuss two ad-hoc solutions to remedy this problem for any nonlinear
function in AppendixD. More generally, it is easier to find linear correction
terms if the number of zeros of the Walsh-Hadamard transform of each of the
components is high. Section 5 provides further insight into this matter.



Uniform First-Order Threshold Implementations 89

5 Finding Uniform Realizations of Quadratic Functions

So far we only focused on using linear CTs to find uniform realizations. In this
section we benefit from quadratic forms to find quadratic CTs to enable uni-
form sharing on quadratic Boolean functions even if they have bent component
functions.

5.1 Quadratic Forms

Any function f : Fn → F composed of only quadratic terms can be described by
its quadratic form as f(x) = xS xT with S an upper triangular coefficient matrix.

Similarly, its bilinear form Bf (x, y) = f(x+y)+f(x)+f(y) can be described
by the equation Bf (x, y) = y (S + ST )xT . This bilinear map defines a subspace
of F

n, given by rad(f) = {x ∈ F
n | ∀y ∈ F

n : Bf (x, y) = 0}, i.e. the radical
or kernel of f . It follows from the rank-nullity theorem that dim(rad(f)) =
n − rank (S + ST ).

Proposition 1. [22] f is bent if and only if dim(rad(f)) = 0.

Let L be an n × n invertible matrix. Then (S + ST ) and LT (S + ST )L are
called cogredient. The cogredience relation divides the set of n×n matrices into
mutually disjoint classes of cogredient matrices with the same rank.

It is well known that any symmetric matrix over F has the following normal
form [23]:

N =

⎛

⎜
⎝

0 1
1 0

0 1
1 0

. . .
0

⎞

⎟
⎠ . (6)

That is, there exists an invertible matrix T such that S + ST = T N TT . For
more information on quadratic forms over fields of characteristic two, see [11,23].

5.2 Quadratic Forms in TI Context

Let f(x) where x ∈ F
n be a quadratic Boolean function to be shared with the

realization f = (f1, . . . , fsout). In addition, let Mi be the matrices associated
with the bilinear form of fi, that is, Bfi(x ,y) = xMiy

T where

Mi =

⎛

⎜
⎝

0 X12
i X13

i ··· X1n
i

X12
i 0 X23

i ··· X2n
i

...
...

...
. . .

...
X1n

i X2n
i X3n

i ··· 0

⎞

⎟
⎠ . (7)

Each of the Xkj
i are sin × sin matrices, with zeros in the ith row and column to

satisfy non-completeness. These matrices are zero when xkxj does not appear
in the unshared function2.

Similarly, let M be a block-matrix constructed from the matrix S + ST of
the bilinear form Bf . Each block is of size sin ×sin and its values equal the value
2 We assume that there are no superfluous terms that appear in an even number of

Mi and hence can be canceled out from the realization.
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of the corresponding element of S +ST . Hence, the correctness requirement can
be stated as

∑sout
i=1 Mi = M.

Corollary 2. If rank (Mi) = n(sin − 1) for any i, then using linear CTs on the
realization f does not make it uniform.

Proof. Proof follows from Theorem 3 and Proposition 1. ��
The proof of the following theorem clarifies the quadratic form notation for TI.

Theorem 4. No nonlinear Boolean function with two inputs and one output
can be uniformly shared using three shares.

Proof. Consider the following direct sharing for the product x1x2 (AND gate):

f1 = x1
2x

2
3 + x1

3x
2
2 + x1

2x
2
2, f2 = x1

1x
2
3 + x1

3x
2
1 + x1

3x
2
3, f3 = x1

1x
2
2 + x1

2x
2
1 + x1

1x
2
1

The underlined terms cannot be moved due to the non-completeness property of
TIs, hence their corresponding coefficients are fixed to be 1 in Mi whereas the
other terms are flexible. It will be shown that any realization of x1x2 contains
at least one bent Boolean function. Equivalently, by Corollary 2, there exists at
least one Mi that is of full rank n(sin − 1).

We have the following matrices Mi associated with fi : Fn(sin−1) → F (i ∈
{1, 2, 3}): ⎛

⎜
⎜
⎝

0 0 Ai 1
0 0 1 Bi

Ai 1 0 0
1 Bi 0 0

⎞

⎟
⎟
⎠

Note that the zero rows and columns of Mi—corresponding to the unused share
due to non-completeness—have been removed in the above notation, since they
have no influence, leaving n(sin − 1) × n(sin − 1) matrices.

Due to the orthogonality of the columns and rows, the above matrix is always
of rank four, unless Ai = Bi = 1. It follows from Proposition 1 that every
condition other than Ai = Bi = 1 implies that fi is a bent function. However, the
only remaining configuration is not possible since it corresponds to the sharing

f ′
1 = x1

2x
2
3 + x1

3x
2
2 + x1

2x
2
2 + x1

3x
2
3

f ′
2 = x1

1x
2
3 + x1

3x
2
1 + x1

3x
2
3 + x1

1x
2
1

f ′
3 = x1

1x
2
2 + x1

2x
2
1 + x1

1x
2
1 + x1

2x
2
2,

which is not correct. Note also that any correction must have degree less than
three to preserve non-completeness. By Theorem 3, there exist no linear cor-
rection terms that makes the realization uniform. Hence, an AND gate has no
uniform sharing with three input and output shares. Further, since linear terms
have no influence on Bfi , it follows that no nonlinear Boolean function with two
inputs can be uniformly shared using three shares. ��
The correctness of the above theorem has been shown in [19] by enumeration
of all possible correction terms. Our proof indicates that the matrix represen-
tation of quadratic forms is a useful tool to study the uniformity of quadratic
realizations.
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5.3 Using Quadratic Forms to Find Uniform Realizations

Proposition 2. A uniform realization of a quadratic function can be found only
if there exist sout matrices Mi formed as in Eq. (7), satisfying the following
properties:

1.
∑sout

i=1 Mi = M .
2. ∀i ∈ {1, . . . , sout} : rank (Mi) < n(sin − 1).
3. Linear correction terms can be found (e.g. by using Algorithm1)3

Moreover, by Theorem2, the above requirements are also sufficient if sout = 3.

Note that the proposition applies not only to quadratic forms but also quadratic
functions in general, since linear terms do not influence the block matrix M of
the bilinear form. In what follows, we discuss how the second requirement of
Proposition 2 can be met, which is non-trivial. Moreover, we mainly focus on
bent functions.

Recall that the matrix S+ST of the bilinear form of a bent Boolean function
f is cogredient to its normal form N , given by Eq. (6). Note that if S+ST is cogre-
dient to N , then there also is a transformation T such that M = T N ′ TT . The
matrix T is obtained by replacing ones in the original cogredience transforma-
tion matrix with identity matrices, and zeros with zero-blocks of the appropriate
size. N ′ is the following block matrix:

N ′ =

⎛

⎜
⎝

0 J
J 0

0 J
J 0

. . .
0

⎞

⎟
⎠ . (8)

The matrix J is an sin × sin matrix of ones. It now suffices to select matrices
N ′

i such that N ′ =
∑sout

i=1 N ′
i with rank (N ′

i) as low as possible for each i. In
particular, since the transformation T preserves the rank and it does not act on
individual shares, if one can choose N ′

i such that rank (N ′
i) < n(sout−1), then for

Mi = T N ′
i T

T , the first and second requirements from Proposition 2 are satisfied.
One possible way of constructing the matrices N ′

i , is by decomposing each of the
block matrices J occurring in the normal form of Eq. (8). The decomposition
of each J must be chosen such that it induces a linear dependence relation
among the rows of at least one of the matrices N ′

i , and hence reduces the rank
of one of the matrices Mi. Eq. (9) provides three such decompositions of J for
sin = sout = 3:

J =
(

0 0 0
0 1 1
0 1 1

)
+

(
1 0 1
0 0 0
1 0 0

)
+

(
0 1 0
1 0 0
0 0 0

)

=
(

0 0 0
0 0 1
0 1 0

)
+

(
1 0 1
0 0 0
1 0 1

)
+

(
0 1 0
1 1 0
0 0 0

)
(9)

=
(

0 0 0
0 0 1
0 1 0

)
+

(
0 0 1
0 0 0
1 0 1

)
+

(
1 1 0
1 1 0
0 0 0

)
.

3 The possibility of finding linear CTs increases as the rank of the matrix decreases
since a low-rank matrix typically has more zeros in the Walsh spectrum.
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Notice that the ith decomposition (from top to bottom) has identical rows in
the ith term of the decomposition. The choice of the ith decomposition reduces
the rank of Mi by two4, since J is the only nonzero block in a row in N ′ and N ′

is symmetric. Hence, to ensure that each rank (Mi) < n(sin − 1), each decom-
position from Eq. (9) must be used at least once. This implies that this method
can be used effectively only when n ≥ 6. The method to generate Mi’s using
the decomposition of J for sout = 3 is formalized in Algorithm2. Note that lines
2–9 are merely intended to construct the block matrix T from the corresponding
matrix L. The computational complexity of the algorithm is as low as O(n3)
since finding the normal form can be done using a particular type of simultane-
ous row and column reduction, see for example Wan [23] for a description. Since
the search space for n ≤ 5 is feasible, we opted for a generic search algorithm to
generate the matrices N ′

i for these cases. Specifically, we focused on n = 4 since
there exist no odd-sized bent functions and Theorem 4 completes the work for
n = 2. The following theorem formalizes our findings.

Algorithm 2. Low-rank decomposition of the matrix M for sout = sin = 3.
Input: S + ST ∈ F

n×n � The matrix representation of Bf .
Output: M1, M2, M3 � Matrices of the bilinear forms of the output shares.

1: Find T such that S + ST = TNTT with N the normal form as in Eqn. (6).
2: Let L ∈ F

nsin×nsin .
3: for 1 ≤ i, j ≤ n do
4: if T [i, j] = 1 then
5: L[i : i + sin − 1, j : j + sin − 1] ← Isin
6: else
7: L[i : i + sin − 1, j : j + sin − 1] ← 0
8: end if
9: end for

10: Let M1, M2, M3 ∈ F
nsin×nsin .

11: for 1 ≤ i, j ≤ n do
12: if N [i, j] = 1 then
13: � Choose any decomposition from Eqn. (9).
14: � Use each decomposition at least once (only possible if n ≥ 6).
15: Let J = J1 + J2 + J3.
16: Ml[i : i + sin − 1, j : j + sin − 1] ← Jl for l = 1, 2, 3.
17: end if
18: end for
19: return L(M1 + MT

1 )LT , L(M2 + MT
2 )LT , L(M3 + MT

3 )LT

Theorem 5. Let f be any quadratic Boolean function on F
n, n ≥ 4. Then there

is a sharing f with sin = sout = 3 shares, such that none of the output shares of
f are bent functions.
4 We consider the matrix derived from fi of size n(sin − 1) × n(sin − 1) without the

zero rows and columns.
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Furthermore, we conjecture that if the first two requirements of Property 2
hold, then a quadratic Boolean function f can always be made uniform using
three shares with linear correction terms. We conclude this section with an
example.

Application to an F4 Multiplier. The AES S-box can be decomposed into
several multiplications in F4, additions and rotations [8]. No three share uniform
realization of F4 has been found so far, which can be explained with the fact
that both coordinate functions of this multiplication which are given in Eq. (12)
in AppendixE are bent. Since n = 4, we used a generic algorithm to find the
matrices Mi leading to a realization with non-bent coordinate functions which
is provided in Eq. (13) in AppendixE. We then performed a search on linear
correction terms as described in Algorithm 1 to make the realization uniform.
We found several uniform realizations for both coordinate functions. Details
of this investigation leading to an implementation with 50% lower randomness
requirements are given in AppendixE.

6 Conclusion

In this paper, we provided methods to find uniform realizations of nonlinear
(vectorial) Boolean functions efficiently. We limit ourselves to first-order TIs
because the uniformity property is insufficient to provide theoretical security
against higher-order attacks. We started by discussing how the uniformity check
of especially three output share realizations of Boolean functions can be per-
formed efficiently. We then described how the Walsh-Hadamard transformation
can be used to find all linear correction terms that lead to uniform realizations
without the need for an exhaustive search. This method can be applied to any
n-bit Boolean function with worst-case complexity O(22nsin−3n) where sin is the
number of input shares of the threshold implementation. We proved that if the
shared realization has a bent component function, this share can not be made
uniform by using only linear correction terms. On the other hand, we showed
that we can use the theory of quadratic forms to find uniform realizations for
many quadratic functions. We demonstrated the applicability of the theory by
providing partially uniform three-share realizations for a representative of the
problematic quadratic 4-bit permutation class Q4

300 and a F4 multiplier that
requires 50% less randomness compared to their naive implementations.
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A Algorithm to Find Partial Uniform Realizations

Algorithm 3. Find (partially) uniform realizations.
Input: f = (f 1, . . . , fm) s.t. f i is the realization of the coordinate function f i of f ; The

initial set S0 of all possible correction functions ci;
Output: The set Σl of all sets St1,...,tl with elements (ct1 , . . . , ctl ) s.t. f ′ = f t1,...,ti +

ct1,...,tl = (f t1 + ct1 , . . . , f tl + ctl ) is a uniform realization.

1: function IsUniform(f )
2: return true if f is uniform, false otherwise

3: end function

4: function GenerateCorrectionFunctions(f i, S0)
5: Si ← ∅
6: for ci ∈ S0 do

7: if IsUniform(f i + ci) then

8: Si ← Si ∪ {ci}
9: end if

10: end for
11: return Si

12: end function

13: function CombineCorrectionFunctions(f , Σl−1)

14: Σl ← ∅
15: � Denote the set of l-combinations from {1, . . . , m} by S.
16: for {t1, . . . , tl} ∈ S do
17: St1,...,tl ← ∅
18: for ct2,...,tl ∈ St2,...,tl , ct1 ∈ {ct1 |ct1,t3,...,tl ∈ St1,t3,...,tl} do
19: ct1,...,tl ← ct2,...,tl−1 + ct1

20: if ∀3 ≤ i ≤ l : ct1,...,ti−1,ti+1,...,tl ∈ St1,...,ti−1,ti+1,...,tl

and IsUniform(f t1,...,tl + ct1,...,tl ) then
21: St1,...,tl ← St1,...,tl ∪ {ct1,...,tl}
22: end if

23: end for
24: Σl ← Σl ∪ {St1,...,tl}
25: end for
26: return Σl

27: end function

28: function FindPartiallyUniformRealization(S0, g)
29: for 1 ≤ i ≤ m do
30: Si = GenerateCorrectionFunctions(f i, S0)

31: end for

32: Σ1 ← {S1, . . . , Sm}
33: l ← 2
34: while l ≤ m and ∃St1,...,tl−1 ∈ Σl−1 : St1,...,tl−1 	= ∅ do

35: Σl ← CombineCorrectionFunctions(f , Σl−1)
36: l ← l + 1

37: end while

38: return Σl−1

39: end function
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B Fast Uniformity Check for sout = 3

For each unshared input x, the four linearly independent equations describing
each row of the uniformity table U of the Boolean function f with sout = 3 are
as follows:

1 · Ux,(0,0,0) + 1 · Ux,(0,1,1) + 0 · Ux,(1,0,1) + 0 · Ux,(1,1,0)+
1 · Ux,(0,0,1) + 1 · Ux,(0,1,0) + 0 · Ux,(1,0,0) + 0 · Ux,(1,1,1) = N1

1 · Ux,(0,0,0) + 0 · Ux,(0,1,1) + 1 · Ux,(1,0,1) + 0 · Ux,(1,1,0)+
1 · Ux,(0,0,1) + 0 · Ux,(0,1,0) + 1 · Ux,(1,0,0) + 0 · Ux,(1,1,1) = N2

1 · Ux,(0,0,0) + 0 · Ux,(0,1,1) + 0 · Ux,(1,0,1) + 1 · Ux,(1,1,0)+ (10)
0 · Ux,(0,0,1) + 1 · Ux,(0,1,0) + 1 · Ux,(1,0,0) + 0 · Ux,(1,1,1) = N3

1 · Ux,(0,0,0) + 1 · Ux,(0,1,1) + 1 · Ux,(1,0,1) + 1 · Ux,(1,1,0)+

1 · Ux,(0,0,1) + 1 · Ux,(0,1,0) + 1 · Ux,(1,0,0) + 1 · Ux,(1,1,1) = 2n(sin−1)

Depending on whether the output (y =
∑

i yi) is 0 or 1, either the first or the
second line of each equation in Eq. (10) will have non-zero terms Ux,y .

C Finding Uniform Realizations Using Fast WHT

Partial uniform realization for Q4
300. Here, we describe definitive results regard-

ing the use of linear correction terms on the representative permutation of Q4
300

with truth table [0, 1, 2, 3, 4, 5, 8, 9, 6, 7, 12, 13, 14, 15, 10, 11]. Namely, it is pos-
sible to find multiple uniform realizations for each coordinate function of the
permutation using the contribution from this section. However, this does not
imply that the realization for the permutation is also uniform. Our algorithm
revealed that we can make two out of four coordinate functions jointly uniform.
We provide the algebraic description of one such realization where the unshared
permutation is described as (y1, y2, y3, y4) = f(x1, x2, x3, x4) in Eq. (11).
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This particular realization makes the joint realization of the pair (y1, y4) uniform.
The component functions corresponding to the coordinate functions (y2, y3)
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should be remasked for uniformity of the permutation’s realization. Hence, the
required randomness is reduced by 50% compared to remasking every bit. No
further improvements are impossible using only linear correction terms.

D Constructions to Avoid Bent Component Functions

Two generic constructions for avoiding bent functions are listed below:

1. Add a term of degree higher than n(sin − 1)/2 which is the maximum degree
of a bent function [9]. If n(sin − 1)/2 < n(sin − 2), we must add an additional
share due to non-completeness. Hence, this is mainly useful for sin ≥ 4.

2. It can be shown that the derivative Dωf(x ) = f(x )+ f(x +ω) is a balanced
Boolean function if f is bent [9]. Hence, adding fi(x + ω) to both share i
and a new share makes share i balanced if f is bent. The new share can be
avoided if some component f is independent of two input shares.

E Using Quadratic Correction Terms For Uniformity

Partial uniform realization for F4 multiplier. It has been shown in [8] that the
AES S-box can be decomposed into several multiplications in F4, additions and
rotations. This decomposition has been used for TIs of AES in [12,18]. Since,
no uniform realization of F4 has been found so far, these TIs relied heavily
on adding fresh randomness. This can be explained with the fact that both
coordinate functions of this multiplication which are given in Eq. (12) are bent.

f1(x) = x1x4 + x2x3 + x2x4 f2(x) = x1x3 + x1x4 + x2x3. (12)

Since n = 4, we used a generic algorithm to find the matrices Mi leading to
a realization with non-bent coordinate functions which is provided in Eq. (13).
Note that this realization is not uniform. Hence, we performed a search on linear
correction terms as described in Algorithm 1. This gave several uniform realiza-
tions for both coordinate functions such as Eq. (15) corresponding to y1.
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Since no combination of possible uniform realizations for coordinate functions
yielded a uniform result, we conclude that the sharing of either one of the coor-
dinate functions should still be remasked. This requires two bits of randomness.

f1
1 = y11 + x1

2 f1
2 = y12 + x2

1 + x3
1 f1

3 = y13 + x2
1 + x3

1 (15)
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Abstract. Side-channel attacks against implementations of elliptic-
curve cryptography have been extensively studied in the literature and a
large tool-set of countermeasures is available to thwart different attacks
in different contexts. The current state of the art in attacks and counter-
measures is nicely summarized in multiple survey papers, the most recent
one by Danger et al. [21]. However, any combination of those counter-
measures is ineffective against attacks that require only a single trace and
directly target a conditional move (cmov) – an operation that is at the
very foundation of all scalar-multiplication algorithms. This operation
can either be implemented through arithmetic operations on registers or
through various different approaches that all boil down to loading from
or storing to a secret address. In this paper we demonstrate that such
an attack is indeed possible for ECC software running on AVR ATmega
microcontrollers, using a protected version of the popular µNaCl library
as an example. For the targeted implementations, we are able to recover
99.6% of the key bits for the arithmetic approach and 95.3% of the key
bits for the approach based on secret addresses, with confidence levels
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in principle vulnerable to our attack.
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1 Introduction

For many years, efficient software implementations of cryptographic algorithms
for constrained embedded processors were mainly restricted to symmetric
ciphers. However, in recent years, various libraries for elliptic curve cryptography
(ECC) have been published that offer acceptable runtime and code size also on
microcontrollers with very limited computational resources, e.g., the 8-bit AVR
ATmega series of processors. Notable examples for these ECC implementations
are summarized in Table 1.

Table 1. Overview of ECC implementations for embedded AVR processors.

Name Description SCA countermeasures

micro-ecc [43] 8/32/64-bit C impl. for NIST
curves

Not documented; apparently
randomized projective
coordinates

nano-ecc [33] Derivate of micro-ecc Same as micro-ecc

µNaCl [23,32,49] Curve25519 for 8/16/32-bit
processors

Constant-time

AVR-Crypto-Lib [53] ECDSA with NIST P-192 None

FLECC IN C [59] 8/16/32/64-bit C impl. for
various curves

Constant time, randomized
projective coordinates

RELIC [2] Various curves and fields
supported

Constant-time

WM-ECC [58] Impl. for sensor networks None

TinyECC [42] Impl. for sensor networks None

MIRACL [13] Lib. supporting multiple
curves

None

WolfSSL [60] Support for AVR unclear None

Wiselib [1] Lib. for distributed systems None

CRS ECC [56] Commercial, closed source None

Due to the fact that an adversary often has physical access to an embedded
device performing ECC operations, implementation attacks and in particular
side-channel analysis (SCA) are severe threats in this scenario. Consequently,
several libraries comprise countermeasures against SCA, for example, by per-
forming computations in constant-time, or by using randomized projective coor-
dinates. The protected implementations are further detailed in Table 1.

Many common SCA countermeasures assume that the adversary needs access
to multiple traces (with identical scalar) to recover the secret key, which inher-
ently protects protocols with ephemeral scalars. In this paper, we challenge this
assumption and target fundamental building blocks of any ECC implementation,
namely conditional moves and loads/stores from/to secret memory addresses.
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We show that template attacks allow to recover most of the secret scalar with a
single trace of elliptic-curve scalar multiplication (ECSM) in both cases, which
in turn renders all currently published ECC implementations for the AVR (and
likely other, similar architectures) insecure.

Note that although this paper focuses on implementations of ECC, our
attacks also apply to exponentiation algorithms as used in, e.g., RSA, classi-
cal Diffie-Hellman, DSA, or ElGamal. We actually expect the attacks to work
even better there, because group elements are larger and thus require more loads
(or conditional moves). We leave this investigation for future work.

Related work. Carefully combining countermeasures like uniformity of mod-
ular operations, (re-)randomization of the projective representation of points,
scalar blinding, point blinding, and random field (or curve) isomorphisms pre-
vent classical side-channel attacks like timing [38], SPA [20], DPA [39], CPA [11]
or collision attacks [25,31]. These attacks require a fixed scalar for multiple mea-
sured power or electromagnetic traces. The main protection relies on the full ran-
domization of intermediate data, including input point, scalar and group, during
the execution of an ECSM [4,19,24]. In this work we consider implementations
based on the Montgomery ladder algorithm, protected by scalar randomization
(SR) and projective-coordinate randomization1.

To overcome the aforementioned countermeasures two kinds of attacks
have emerged: template and horizontal attacks. Although in general template
attacks [14] can be used to attack multiple traces that share the same scalar, we
need to attack ECSM traces independently, because of the SR. Template attacks
combine statistical modeling and power-analysis, and consist of two phases. In
the first phase, called profiling, the attacker builds templates by executing a
sequence of instructions using a fixed scalar (with SR turned off). The second
phase is called matching, in which the attacker matches the templates to attacked
single traces (with SR turned on). The assumption is that the attacker possesses
a profiling device, in order to build templates, that behaves the same as the
target device, and runs the same implementation.

Template attacks on ECC trace back to an attack on ECDSA demonstrated
by Medwed and Oswald [44]. However, this attack requires an offline DPA on the
ECSM during profiling, in order to select the points of interest. Moreover, since
the attack exploits data-dependent leakage it requires profiling with multiple
templates (i.e., 33) while for our attacks two templates are enough. Furthermore,
the attack only needs to recover a few bits of the multiple ephemeral scalars and
can then employ ECDSA-specific lattice techniques to recover the long-term
secret key [10]. This is not possible in the context of our work, since we do not
target ECDSA: an attacker has only a single trace to recover sufficiently many
bits of the randomized scalar using SCA to be able to compute the remaining
bits.

1 The implementations actually attacked apply only projective coordinates randomiza-
tion, however, our attack also works on an implementation with SR enabled, because
we do not make any assumption about the secret scalar, i.e., it may be different from
one execution to another.
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Another template attack on ECC is presented in [30]. This attack follows
a similar approach to our attack, but instead of exploiting address-dependent
leakage, it exploits register location based leakage using a high-resolution induc-
tive EM probe. As a result the attack is considerably expensive to execute. A
template attack on a wNAF ECC algorithm is presented in [61]. However, this
attack is applied to an implementation that is not protected with either, scalar
randomization or base-point randomization. Another approach to attack ECC
are the so called online template attacks [5,22]. These attacks work if SR is
enabled, but not when point randomization is enabled.

The template attack from [16] targets load instructions. However, multiple
traces are required in the attack phase. Therefore, this attack does not work
against implementations protected by SR. The template attack from [28] aims
to extract a random multiplicative mask (base-blinding) out of a single mea-
surement exploiting data leakage; then it is possible to unmask all intermediate
values and run DPA.

Horizontal attacks on RSA [6,8,9,15,17,18,29,54,55,57] and ECC [7,27]
are emerging forms of side-channel attacks on exponentiation-based or scalar-
multiplication-based algorithms. Their methodology allows recovering the expo-
nent bits through the analysis of individual traces. Therefore, these attacks are
efficient against SR even when combined with point and group randomization.
The attacks employ different common distinguishers: SPA, horizontal correlation
analysis [18], Euclidean distance [57], horizontal collision-correlation [6–8,17],
horizontal cross-correlation [27], or clustering [29,55].

An interesting horizontal address-based DPA attack on Montgomery multi-
plications is presented in [15]. The approach is similar to ours, but this attack
exploits Hamming weight leakage of addresses. Furthermore, the analysis in [15]
lacks the results for a full modular exponentiation (only a few iterations are
attacked) and success rates.

The main issue of horizontal attacks is that extracting leakage from a single
unlabeled trace is usually heavily limited by noise. Therefore, we have decided
to attack our state-of-the art implementations, that contains scalar and point
randomizations, using a more powerful attack paradigm, from the point of view
of the attacker setting, namely, template attacks.

Contributions. The main contributions of this paper are threefold:

1. First, by the example of a protected version of μNaCl, we show that the
single-trace leakage of conditional moves within the Montgomery ladder can
be exploited to recover the scalar.

2. Second, we show that a similar attack applies to loads and stores from/to
secret-dependent addresses. In doing so, we show that even implementations
on embedded devices without cache cannot tolerate secret-dependent memory
accesses.

3. Finally, we generalize the method from [26] to tolerate a certain number of
incorrectly recovered scalar bits without relying on normal or side-channel-
enhanced exhaustive search. Furthermore, we present experimental results for
our algorithm.
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Organization of the paper. The remainder of this paper is structured as fol-
lows: in Sect. 2, we review the use of conditional moves in scalar multiplication
algorithms, together with possible countermeasures against side-channel analy-
sis. Then, in Sect. 3, we describe the measurement setup and target implemen-
tation used for our attacks presented subsequently: while Sect. 4 deals with tem-
plate attacks on the (arithmetic) conditional swap within the Montgomery lad-
der, Sect. 5 applies similar methods to recover the scalar by exploiting the leakage
of secret load addresses. Section 6 discusses how to tolerate a certain number
of incorrectly recovered scalar bits more efficiently than by simple exhaustive
search. Finally, we conclude in Sect. 7 with directions for future work, in partic-
ular regarding countermeasures.

2 Scalar Multiplication and Conditional Moves

The most basic scalar-multiplication algorithm is the double-and-add algorithm,
which scans through the bits of the scalar and performs a double operation for
each zero bit and a double-and-add operation for each one bit. This algorithm is
well known to be vulnerable to all kind of side-channel attacks, including power
analysis and timing attacks.

The first step to side-channel protection is to always perform the same
sequence of finite-field operations, independent of the scalar. The most common
approaches to achieve such a structure are either to use (fixed-window) double-
and-add-always scalar multiplication or ladder-based approaches (typically the
Montgomery ladder [45] or, for general Weierstrass curves, the Brier-Joye lad-
der [12]). Another layer of side-channel protection then adds randomization of
the scalar (through one of various blinding methods), and the internal repre-
sentation of points (for example through projective randomization, field isomor-
phisms, or curve isomorphisms). By re-randomizing before or after each ECSM
loop iteration, most horizontal collision or cross-correlation attacks are thwarted.

Interestingly, even with all those countermeasures in place, scalar-
multiplication algorithms contain operations that choose one out of two (or
more) curve points depending on bit(s) of the scalar. An attacker who learns all
of these choices from side-channel information from just one trace, learns all of
the scalar bits used in this scalar multiplication and thus obtains the secret key.
On microcontrollers with restricted register space, there are essentially two dif-
ferent ways to implement this conditional move (cmov): either by loading from
(or storing to) addresses that depend on the secret scalar, or by using arith-
metic operations to perform a conditional register-to-register move. The latter
approach is very common on large processors with cache, where the former app-
roach leaks through cache-timing information. Essentially, the idea is to replace
a computation of the form R ← P [s], where s is a secret scalar bit, by a com-
putation of the form R ← sP [1] + (1 − s)P [0]. Note that this approach does not
require actual multiplications; it is much easier to expand s to a bit mask of all
ones or all zeros and use bit-logical instructions.

Most implementations of ECSM contain considerably more than just one
secretly-indexed load, store, or conditional move. Sometimes this is a choice made
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by the implementors to improve performance (by avoiding otherwise unnecessary
loads and stores); sometimes it is an inherent property of the ECSM algorithm.
For example, the Montgomery ladder needs a conditional swap (cswap) of two
points instead of a conditional move, which requires significantly more operations
that involve the secret scalar bit than a simple cmov (for details, see Sect. 4).

The side-channel attacks described in the remainder of this paper attack
both implementations that make use of secretly indexed memory accesses (in
Sect. 5) and implementations that use the arithmetic cmov operation (or more
specifically, the cswap operation) in Sect. 4. The idea of attacking loads from
secret positions through side-channel information is not new: it is not only used
in various cache-timing attacks (that do not apply to simple architectures such as
the AVR), but it is also the underlying principle of address-bit-DPA [34]. What
is novel is the fact that we need only a single trace. This renders countermeasures
such as scalar blinding and address randomization [35,36] ineffective.

3 Attack Setup

In this section, we describe the targeted implementations, the utilized micro-
controller, our measurement setup. The trace pre-processing, frequency filtering
and alignement, are described in the full paper [48].

3.1 Target Implementations

We target two protected ECSM implementations based on [49]. Both employ
the Montgomery ladder, with the pseudocode given in Algorithm1. The main
difference between the two variants is the realization of the cmov (i.e., the
function cswap coords): The first implementation, described in more detail
in Sect. 4.1, consists of applying an arithmetic conditional swap of the respective
coordinates values of the working points P1 = (X1 : Z1) and P2 = (X2 : Z2).
The second, described in Sect. 5.1, replaces the arithmetic conditional swap by
a conditional swap of pointers to the coordinate values. Both implementations
utilize projective-coordinate re-randomization as the main side-channel counter-
measure. A randomly generated λ ∈ Fp is multiplied with the coordinates of
P1 = (X1 : Z1) and P2 = (X2 : Z2) at the beginning of every ECSM iteration.
We make publicly available the source code for both implementations [47].

3.2 Target Device and Measurement Setup

We carried out our experiments with an ATmega328P 8-bit microcontroller
placed on the target board of the ChipWhisperer [51] side-channel evaluation
platform. While the ChipWhisperer also provides the possibility to capture ana-
log signals (e.g., power consumption or electro-magnetic emanation), we used a
separate oscilloscope (Picoscope 5203) due to the limited bandwidth, memory,
and sample rate of the ChipWhisperer.
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Algorithm 1. Montgomery ladder with arithmetic cswap and randomized pro-
jective coordinates.

// ... initialization omitted ..
bprev ← 0
for i = 254 . . . 0 do

re randomize coords(work)
b ← bit i of scalar
s ← b ⊕ bprev
bprev ← b
cswap coords(work, s)
ladderstep(work)

end for

The targeted ATmega328P has a 32 KB of Flash, 2 KB of SRAM, and 1 KB
of EEPROM. The register file contains 32 registers (R0–R31), among which 6
serve as pointers for indirect 16-bit addressing and have the following aliases: X
(R27:R26), Y (R29:R28) and Z (R31:R30). Arithmetic instructions take 1 cycle,
with the exception of multiplication instructions, which take 2 cycles. Loads
and stores from/to SRAM take 2 cycles. Loads from Flash take 3 cycles. More
technical details about the target device are given in the full paper [48].

4 Attacking Arithmetic Cswaps

In this section, we describe a template attack on conditional swaps (cswaps)
in the Montgomery ladder step. In our case, the cswap is implemented using
Boolean and arithmetic operations in constant time.

4.1 Target Implementation

In the Montgomery ladder (Algorithm1), the function cswap coords imple-
ments the cswap (based on input bit s) by first creating a mask m, which is
either 0x00 or 0xFF for s = 0 and s = 1, respectively, by setting m = −s
(assuming m, s are 8-bit values). Then, a (conditional) XOR swap is executed
as follows:

Listing 1.1. Conditional XOR swap.

1 ld xx , X ; X register points to first value

2 ld yy , Z ; Z register points to second value

3 mov tt, xx

4 eor tt, yy

5 and tt, m ; tt = (xx XOR yy) AND m

6 eor xx, tt ; xx = xx XOR tt

7 eor yy, tt ; yy = yy XOR tt

8 st X+, xx ; Store first value

9 st Z+, yy ; Store second value



106 E. Nascimento et al.

In other words, if m = 0x00 (s = 0), tt = 0 and the XORs xx = xx ⊕ tt and
yy = yy ⊕ tt leave the values unchanged. Otherwise, if m = 0xFF (s = 1), we
have a standard XOR swap, i.e., xx = xx ⊕ xx ⊕ yy = yy (equivalent for yy).

4.2 Template Generation and Matching

We generated templates for the and instruction (line 5 of Listing 1.1), grouping
the traces in the profiling set into two sets V0 and V1. Traces in V0 represent
those where m = 0 (i.e., an AND with 0x00), while V1 are traces where m = 0xFF.
Note that the traces were cut to only contain the clock cycle for the targeted
and instruction, i.e., each trace is 64 · 67 = 4288 samples long (cf. Appendix
2 of the full paper [48]). For Vi, i = 0, 1, we subsequently computed templates
consisting of the pointwise mean vector μ(i) and the covariance matrix Σ(i) [14].
Note that the two possible leakages 0x00 (all bits zero) and 0xFF (all bits one)
can be expected to be maximally (or at least to a large degree) different, which
should facilitate template attacks in this particular case.

We matched the templates to the traces in the test set with the standard app-
roach, i.e., computing the respective probabilities using the multivariate normal
distribution pdf and identifying the template with the highest probability to
recover the respective bit of the scalar. The respective success rates wrt the size
of the profiling set are given in Sect. 4.3.

Classification. For each template we computed the Euclidean distance between
the sample vector and the template mean vector. The template (T0 or T1) that
results in the smallest distance is considered the best match for the sample
vector. In this attack, the index of the closest template (0 or 1) corresponds to
the swap bit.

Confidence score and confidence level. For the first classification method
we derived a simple confidence score on the recovered bit value based on the
distances (d0 and d1) to each template. It varies linearly for a particular d0 + d1
value, ranging from 0 (no confidence) and 1 (full confidence):

conf score = 2 ·
∣
∣
∣
∣
0.5 − min(d0, d1)

d0 + d1

∣
∣
∣
∣

(1)

We furthermore define the confidence level of a given trace (in the test set)
as follows: Let us call a recovered bit suspicious if its confidence level is less than
the greatest confidence score of any falsely identified bit (whereas this threshold
is determined experimentally in the profiling phase). Then, the confidence level
is the percentage of bits that are not suspicious, i.e., that can be unambiguously
recovered. Note that the average confidence level (over all number of traces in
the test set) is always less than or equal to the average success rate, since an
incorrectly recovered bit is always suspicious.

4.3 Attack Results

Figure 1 shows the average and best case success rates (computed over all
255 scalar bits), together with the respective confidence levels over the number
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of traces used for template generation and matching. Note that each full trace
comprises 255 ECSM iterations, which were all used for generating the templates
– in other words, each full trace contributes 255 “effective” traces to the profiling
set.

The traces used for template generation and matching were taken from dif-
ferent trace sets (coming from different capture sessions). The same number of
traces was used for profiling and testing, i.e., a given value on the horizontal axis
of Fig. 1 is the same for profiling and testing.

Fig. 1. Success rates for the template
attack on cswap for different number
of full traces.

Fig. 2. Results for the template attack
on loads/stores for different number of
full traces.

As evident in Fig. 1, already for 10 full traces (i.e., about 2,550 effective
traces), the average success rate reaches 96.71%, i.e., we can recover most of
the bits of the scalar. Furthermore, the best success rate reaches 99.6% with the
confidence level 76.1%. By increasing the number of traces, both success rate and
confidence level change only minimally; due to the strong leakage of the targeted
device, most information can be already extracted with a low trace count.

5 Attacking Secret-Dependent Memory Accesses

In general, ECC (and in particular NaCl-derived) implementations avoid loads
from secret-dependent addresses altogether due to the possibility of cache-timing
attacks. However, for embedded implementations without caches, secret load
addresses are sometimes deemed acceptable. In this section, we show that tem-
plate attacks can be employed to exploit this leakage.

5.1 Target Implementation

The targeted implementation replaces the cswap of the (X1 : Z1) and (X2 : Z2)
coordinates values used in the targeted implementation in Algorithm1 by work-
ing with pointers to those coordinates, and conditionally swapping these point-
ers. Besides being slightly faster, this implementation also potentially exhibits
less leakage, because it uses the secret-dependent mask m in an AND operation
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only twice for each pointer cswap2, rather than 32 times as in the ECSM imple-
mentation based on arithmetic cswap (cf. Sect. 4.1).

However, in implementations of finite-field operations both input and output
operands are pointers. The values of these pointers are addresses to the memory
holding the actual field element value, and those addresses directly depend on
whether the swap occurred or not, which in turn depends on the value of the
secret mask bit.

AVR memory access instructions internals. Memory access instructions
(loads and stores) on an AVR take 2 clock cycles to execute. According to the
ATmega328 datasheet [3], the effective address for such instructions is computed
in the first cycle, while during the second cycle, the data word is read (load) or
written (store) if the effective address is valid. Our proposed attack focuses on the
address leakage of memory access instructions, and thus any data-dependency
may negatively impact the attack success rate if not detected and mitigated.
Therefore, we take advantage of this architectural feature by using only the
samples from the first clock period of such instructions.

Targeted loads and stores. During each iteration of the Montgomery ladder,
the actual field arithmetic occurs in the so-called ladderstep function (cf.
Algorithm 1). We target the loads and stores addresses in the first three field
operations in ladderstep, i.e., addition, subtraction, and addition. Each of
these operations has two Fp inputs (a and b) and one output r.

Finite-field addition and subtraction are implemented with reduction mod-
ulo 2256 − 38. The reduction step also execute loads and stores, of which the
samples are also used for template creation and matching. Listing 1.2 shows a
small segment of the execution trace containing the loads of the first operands
bytes and the store of the first byte of the result (before reduction):

Listing 1.2. Segment of the execution trace for a field addition.

1 0x171a: fp_add +0x5 LD R20 , X+ ; first byte of a

2 0x171a: fp_add +0x5 CPU -waitstate

3 0x171c: fp_add +0x6 LD R21 , Y+ ; first byte of b

4 0x171c: fp_add +0x6 CPU -waitstate

5 0x171e: fp_add +0x7 ADD R20 , R21

6 0x1720: fp_add +0x8 ST Z+, R20 ; first byte of r

7 0x1720: fp_add +0x8 CPU -waitstate

Our oscilloscope’s memory is divided into 255 segments, each of which is
65 kSample in length. A memory segment holds the samples captured from a
single ECSM iteration. Due to the 65 kSample limit for each ECSM iteration, we
were able to capture the samples from all the loads and stores from the first field
addition and the first field subtraction, but only half of the loads and stores from
the arithmetic part of the second field addition. Note that the memory limitation

2 For the AVR architecture, pointers are 16 bit wide and one AND with the secret-
dependent bit is required to cswap a byte. Thus a pointer cswap requires two ANDs.



Attacking Embedded ECC Implementations Through cmov Side Channels 109

is due to the relatively low-cost oscilloscope we used—high-end equipment would
further facilitate the presented attack.

Table 2 shows the number of executed instructions of each type that are used
in the attack. We used a total of 372 instructions, which are concatenated into a
single sample vector. After trace preprocessing, 67 power samples are available
per clock cycle, and as only the first clock period of a memory access instruction
is used, the sample vector per ECSM iteration has nv = 24, 924 samples.

Table 2. Number of executed instructions of each type that are used in the attack.

Type 1st fp add fp sub 2nd fp add Total

LD R20, X+ 32 32 16 80

LD R21, Y+ 32 32 16 80

LD R20, Z+0 33 33 0 66

ST Z+, R20 65 65 16 146

5.2 Template Generation

Each load or store instruction accesses at most two possible addresses. If it
always accesses the same address, then it does not provide useful leakage relevant
for the attack. Considering only those loads and stores that may access two
addresses, during any execution of the ladderstep, only two distinct sequences
of addresses can be accessed: Anoswap, containing the addresses accessed before
the first pointers swap has taken place3, i.e., an even state (noswap state); and
Aswap containing the addresses accessed in an odd state (swap state).

First, we grouped the sample vectors into two sets. The first set, V0, consists
of the load/store sample vectors for addresses in the set Anoswap, while the
second set, V1, contains those originating from addresses in set Aswap. Then,
we computed various statistics for each sample index of Vi, i = 0, 1: mean μ(i),
standard deviation σ(i), median md(i), as well as lower l(i) and upper u(i)

percentiles (the actual percentiles used are discussed in Sect. 5.3). The collection
of these statistics for V0 and V1, called T0 and T1, are the two possible templates.

5.3 Point-of-Interest Selection

The POI selection consists of using the lower and upper percentile vectors l(i)

and u(i) (i=0,1) to compute the intersection of the pair of intervals [l(0)j , u
(0)
j ]

and [l(1)j , u
(1)
j ] for each sample index j = 1, . . . , nv. The sample indices where the

intersection is empty are the considered POIs.

3 These addresses are the same as those accessed after the 2nd but before the 3rd swap,
or after the 4th but before the 5th swap, and so on.
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Intuitively, the sample indices with an empty intersection are those that are
good distinguishers for the two templates, because in these points the samples
tend to be clustered around the median (and also typically around the mean) of
one template, rather than being scattered.

Different values for the lower and upper percentiles may give a different
number of POIs, and that directly affects the success rate and confidence level
of the attack. Thus, we tested the attack for different pairs of values for these
parameters, ranging from wider and more selective percentiles (12.5, 87.5)4 to
narrow, less selective (40, 60). We emphasize that the POI selection is completely
based on the samples of the traces used for the generation—it does not depend
on the samples of the trace being attacked (i.e., the sample vector to classify).
In fact, the POIs are represented as a Boolean vector used during template
matching to select the samples from the target trace vector to be classified.

POI selection refinements. To improve the confidence level of the attack, we
tested two POI selection refinements, as explained above. First, we noticed that
when using more selective percentile parameters, the current selection method
returned sample indices that were clustered in a few instructions, while most of
the remaining instructions were not covered by any sample, although they should
in theory contribute some leakage. To make the POIs more evenly distributed
and exploit leakage from all useful instructions, we forced a minimum of one
sample index per instruction to be included in the POI vector. If there was no
sample index for a given instruction in the current POI vector, one was randomly
selected. Second, also due to the clustering of the POIs in a few instructions,
we limit the number of samples per instruction to one. In the case that sample
indices had to be removed, we selected those randomly as well.

5.4 Template Matching

At first, without using any POI selection, we tried to use the standard multivari-
ate Gaussian model, taking advantage of both the mean vector and covariance
matrix computed from V0 and V1 (also known as complete templates) similar to
the approach of Sect. 4. However, in contrast to Sect. 4, the sample vectors to
be classified and the mean template vectors are relatively long (24, 924 samples)
and relatively similar to each other (i.e., their Euclidean distance is very small),
numerical instability issues due to almost singular matrices arose during the
computation of the probability density function. For those reasons, we decided
to use reduced templates instead, which uses only the mean vectors.

After applying POI selection, the matched sample vectors are much smaller,
and thus full templates could then in principle be applied, as the covariance
matrices would not lead to numerical instability. However, due to the high success
rates achieved using the reduced templates, we decided to not use full templates
to avoid increasing storage and computational requirements.

We also evaluated the effect on the attack success rate and confidence level
of compressing the sample vector using normal and absolute sum for different
4 I.e., the lower is the 12.5-percentile and the upper is the 87.5-percentile.
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window lengths. In addition, we applied a straightforward outlier detection to
remove samples that have likely been subject to larger distortions: In the match-
ing phase, we discarded all samples that have a distance of more than a multiple
of standard deviations to the mean trace at the respective point in time. Using
reduced templates, template matching boils down to computing the (squared)
Euclidean distance between the sample vector to match and the template mean
vectors. The lower that distance is, the stronger is the match. In this case, other
distinguishers can be used in a straightforward way, and thus we also tested the
attack using the Pearson correlation coefficient.

Classification methods and confidence score. As a first classifica-
tion method to test, we selected the template closer to the sample vector
(cf. Sect. 4.2). We also tested majority voting classification, where each sample is
individually classified, also based on its distance to the corresponding element in
the templates mean vectors, and the majority vote wins. In both cases, as each
template directly corresponds to a scalar bit value, the classification output is
the recovered bit value. The confidence score was computed in the same way as
in Sect. 4.2.

5.5 Attack Results

Figure 2 depicts average and best case success rates for the template attack
on secret-dependent memory accesses for the best and average cases. Again,
as in Sect. 4.3, the trace sets used for template generation and matching were
recorded in different capture sessions, and the same number of traces was used
for each set. Again, only a limited number of profiling traces was sufficient to
reach success rates exceeding 90%; the best success rate reaches 95.3% (there
are only 12 errors) with the confidence level 78.8% (the 12 errors are included in
the 54 suspicious bits). To investigate the effect of various pre-processing steps
and attack parameters, using 10 traces we investigated the average success rate
and confidence level depending on various attack parameters. In particular, we
investigated various signal frequency filtering options, POI selection methods,
classification and compression methods, outlier filtering, and distinguishers; the
result of the investigation are described in the full paper [48]. The best parame-
ters that we discovered, were used to perform the main attack described in this
section.

6 Error Detection and Correction

Due to noise, data leakage (note that we are aiming at exploiting the address
leakage only), and other aspects that interfere with the side-channel analysis
(misalignment, clock jitter, etc.), the derivation of the final scalar for a single
trace likely contains errors. If the amount of wrong bits is sufficiently small,
then a brute-force attack may still be feasible. However, first the attacker needs
a metric to indicate the location of the possible wrong bits in the recovered



112 E. Nascimento et al.

scalar. The notion of suspicious bits (cf. Sect. 4.2) can be used as a reference for
the scalar bits selection with respect to a brute-force attack.

Let us consider the trace with smallest amount of suspicious bits from the
experiment from Sect. 5; for this trace there are 54 suspicious bits that comprise
all falsely identified bits. Unfortunately, to recover a full randomized scalar, even
in this case, the attacker needs 254 operations, which is generally impractical.
Note, that we consider only the worst-case complexity and not the average case.

To improve upon the brute-force search complexity, there are two options.
The first approach is to try to exploit the distribution of suspicious bits for
incorrectly (red) and correctly (blue) recovered bits (Fig. 3). While there is a
clear trend for incorrect bits to have lower confidence score, the intersection
between correct and incorrect bits is large. Still, it may possible to exploit the
trend with an informed brute force attack [40], prioritizing bits with the lowest
confidence score. Unfortunately this attack works well if the bits containing
errors are adjacent to each other and that is not the case in our setting.

Fig. 3. Distribution of confidence scores over all traces for suspicious bits. Red: incor-
rectly recovered bits, blue: correctly recovered but suspicious bits. (Color figure online)

Alternatively (or combined with the informed brute-force search), we apply
the second algorithm from [26], which is originally designed for square-and-
multiply chains, to the Montgomery ladder. We describe how the algorithm
works using the aforementioned example trace, which contains s = 54 suspicious
bits, as an example. Let us represent the indices of these bits as a list sorted in
descending order: is, . . . i1, where each ij ∈ {0, . . . 254} and s ≥ j ≥ 1; note that
there are 255 bits in total. Let x denote the bit index i� s

2+1� (namely, i28 for the
example trace). Let a be the number represented by the bit string corresponding
to the left part of the scalar from x (including ix) and let b be the number cor-
responding to the bit string of the (least significant) right part. Furthermore, we
know that R = [k]P , where R is the resulting point, k the scalar to be recovered,
and P the input point. Then, clearly R = [k]P = [a·2ix +b]P = [a]([2ix ]P )+[b]P .
If we denote [2ix ]P by H, then the above equation reduces to

R − [b]P = [a]H (2)

We can use Eq. 2 to check correctness of our guess. Now, following [26], we use
a time-memory trade-off technique to speed up an exhaustive search: Consider
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all different possible guesses for a. For each guess, we compute [a]H and store
all pairs (a, [a]H). We then sort all pairs based on the value of [a]H and store
them in an ordered table.

Next, we make a guess for b and compute z = R − [b]P . If our guess for
b is correct, then z is present in the second column of some row in the table
we built—the first column is the corresponding a. Finding such a pair can be
done using binary search, as the table is sorted as per the second column. If
z is present, we are done since we have determined the scalar. Otherwise, we
make a new, different guess for b and continue. Since there are approximately
2

s
2 guesses for a and b, the time complexity is O(2

s
2 ) operations. As there are 2

s
2

guesses for a, the table has that many entries and the space complexity is O(2
s
2 )

points. This way, we limit the time complexity to O(2
s
2 ) (cf. [26] for a detailed

complexity analysis), which is 227 for the example trace.
We do not know which trace contains the smallest number of suspicious

bits since we do not know the maximum confidence score of a falsely identified
bit. However, to use the above algorithm we assume that we know the num-
ber of suspicious bits to be bruteforced to recover the correct scalar. This can
be determined by using templates to attack some traces, for which we know
the randomized key. Furthermore, note that if the attack fails, we can extend
the execution to the second most likely suspicious bit and reuse the previously
obtained data. Based on our experiments, we determined that the number 54 of
suspicious bits should cover all falsely identified bits for at least one trace. Our
complete attack works as follows: we run the above algorithm sequentially for
each of the n traces. We stop the attack as soon as the time-memory trade-off
technique succeeds for one trace.

Since we are running the attack n times, the complexity of the complete
attack is multiplied by n. It totals to O(n · 2

s
2 ) operations and O(n · 2

s
2 ) points

in memory. For the attack from the previous section, this corresponds to 100 ·
227 = 232 operations. Therefore, we conclude that the scalar can be recovered
successfully and efficiently even in the presence of multiple errors and uncertain
bits (for experimental results see Sect. 6.1). Furthermore, we believe that the
above technique may be of independent interest since it can be applied to a
commonly used ECSM algorithm, i.e., Montgomery ladder, even if errors are
randomly spread across the scalar recovered by the SCA attack.

6.1 Algorithm Implementation and Experimental Results

The first challenge we faced is how to compute the point subtraction in Eq. 2.
Curve25519 is a curve in the Montgomery form, and as such, there is an efficient
formula for differential point addition using XZ coordinates, but no efficient
formula to compute a standard point addition, as far as we know. For that
reason, we decided to do the point addition in affine coordinates, which costs a
field inversion and a few multiplications. However, to use them we need to know
the y-coordinates y(R) and y([b]P ). The attack assumes that x(R) (the ECSM
output) is known, but y(R) is not, and thus has to be computed. To do so, we
use the curve formula directly to compute the two possible values for y(R), at
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the cost of a field square root, an expensive operation, but it has to be done only
once for each value of R. In the case of y([b]P ), an efficient algorithm by Okeya
and Sakurai [52] costs one field inversion.

To generate the table of precomputed points A = [a]H and to compute
B = [b]P in Eq. (2), the naive approach is to compute a full ECSM for each value
of a and b. A more efficient method is to apply Gray coding to the suspicious bits
in scalars a and b. One property of such a code is that consecutive code words
differ in just a single bit, which means that, in our context, we can generate
[k′]P from [k]P using a single point addition (if the bit changed from 0 to 1) or
point subtraction (if the change is from 1 to 0), where k and k′ are scalars whose
unknown bits are represented as Gray code words, and the code word in k′ is the
successor of the respective code word in k. To compute the sequence of points
[ki]P (i = 0, 1 . . .), we first construct the scalar k0, by setting the unknown bits
to zero and the (assumed correct) recovered bits from the output of the SCA
attack to their respective values. Then, we apply the full ECSM algorithm to
compute [k0]P , and from there we use the aforementioned method to generate
the sequence of points [k1]P, [k2]P . . . , which costs essentially a point addition
per each computed point.

We implemented the key recovery algorithm with the aforementioned arith-
metic-level optimizations as a single-threaded program. We tested our imple-
mentation in a smaller scale, to recover 40 suspicious bits of a scalar on a PC
with 8 GB of RAM total, but only 5 GB available for the program, a i7-3740QM
CPU, running at 2.7 GHz. It took 1h23 to recover the correct scalar, where about
1.5 ms is spent to add a single entry to the table and about 3 ms to test a possible
value of b. By using these time values as a reference, we estimate that the time
for the recovery of a scalar with 60 suspicious bits using the current implemen-
tation is around 18 days. The source code of the key recovery implementation is
publicly available [46].

7 Conclusions and Possible Countermeasures

In this paper we show that the single-trace data leakage of conditional moves
can be exploited to recover the scalar using a template attack. We also show
that a similar attack applies to address leakage due to loads and stores from/to
secret-dependent addresses. Furthermore, we generalize the method from [26] to
tolerate a certain number of incorrectly recovered scalar bits without relying on
normal exhaustive search.

Now we discuss possible countermeasures against our attack. We consider
evaluating or improving our attack to work against these countermeasures as
future work. First of all, note that any countermeasure based on modifying the
base point before or during the scalar multiplication does not protect against
our attacks, since they aim at exploiting address-dependent and the cswap leak-
age. Similarly, scalar blinding or splitting does not affect the attack, since we
require only one trace and could hence recover the blinded or split scalar. The
knowledge of the randomized scalar (or the split scalars) is sufficient to either
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recover the original scalar or to compute the correct scalar multiplication result.
A potential countermeasure against our attack is presented in [50], perform-
ing online data randomization during the exponentiation to prevent horizontal
collision-correlation attacks. The main idea is to the split scalar to two parts
and to randomly interleave two scalar multiplications. However, we believe that
our attack might still be mounted if four templates are used to recognize which
bit is processed and during which ECSM.

The idea behind Itoh et al. [34] memory-address countermeasure is to store
sensitive variables at different memory addresses, but with the same Hamming
weight. We believe that although this would cause our attack to be less effec-
tive, the addresses leakage may still be identified by template matching. Ran-
domization of memory addresses of the coordinates used in the Montgomery
ladder before the ECSM might lead to our attack being less effective, since the
templates are prepared assuming fixed addresses. The above countermeasure
can be improved by randomizing not only the addresses but also the memory
accesses [35–37].

The countermeasure of [30] protects against localized EM template attacks
on the ECC Montgomery ladder. The main idea is to randomly swap the ladder
registers at the end of a ladder iteration; the addressing of the registers within
the loop is inverted according to whether the registers have been swapped. The
countermeasure is uniform in its operation sequence, and hence, our template
attacks would be infeasible in principle. In addition, several randomization tech-
niques protecting the Montgomery ladder are presented in [41]. Similarly to the
countermeasure of [30], these techniques generate operation sequences indepen-
dent from the scalar. Thus we assume that our attack would be less effective
or ineffective against them. We therefore regard as future work evaluating and
improving our attacks with respect to the three latter countermeasures.
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Abstract. Elliptic curve cryptography is today the prevailing approach
to get efficient public-key cryptosystems and digital signatures. Most of
elliptic curve signature schemes use a nonce in the computation of each
signature and the knowledge of this nonce is sufficient to fully recover
the secret key of the scheme. Even a few bits of the nonce over sev-
eral signatures allow a complete break of the scheme by lattice-based
attacks. Several works have investigated how to efficiently apply such
attacks when partial information on the nonce can be recovered through
side-channel attacks. However, these attacks usually target unprotected
implementation and/or make ideal assumptions on the recovered infor-
mation, and it is not clear how they would perform in a scenario where
common countermeasures are included and where only noisy information
leaks via side channels. In this paper, we close this gap by applying such
attack techniques against elliptic-curve signature implementations based
on a blinded scalar multiplication. Specifically, we extend the famous
Howgrave-Graham and Smart lattice attack when the nonces are blinded
by the addition of a random multiple of the elliptic-curve group order or
by a random Euclidean splitting. We then assume that noisy information
on the blinded nonce can be obtained through a template attack targeting
the underlying scalar multiplication and we show how to characterize the
obtained likelihood scores under a realistic leakage assumption. To deal
with this scenario, we introduce a filtering method which given a set of
signatures and associated likelihood scores maximizes the success prob-
ability of the lattice attack. Our approach is backed up with attack sim-
ulation results for several signal-to-noise ratio of the exploited leakage.

1 Introduction

In 1985, Koblitz [Kob87] and Miller [Mil86] independently proposed to use
the algebraic structure of elliptic curves in public-key cryptography. Elliptic
curve cryptography requires smaller keys and it achieves faster computation
and memory, energy and bandwidth savings. It is therefore well suited for
embedded devices. There exists several digital signature schemes based on the
discrete logarithm problem in the group of points of an elliptic curve (e.g.
[ElG84,Sch91,Nat00]). These schemes use a nonce k for each signed message
c© Springer International Publishing AG 2017
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and compute [k]P for some public point P on the elliptic curve. It is well known
that the knowledge of partial information on the nonces used for the generation
of several signatures may lead to a total break of the scheme [HS01,Ble00].

Side-channel attacks are a major threat against implementations of cryp-
tographic algorithms [Koc96,KJJ99]. These attacks consists in analyzing the
physical leakage of a cryptographic hardware device, such as its power consump-
tion or its electromagnetic emanations. Elliptic curves implementations have
been subject to various side-channel attacks. In order to prevent the leakage
of partial information on the nonce k from the run of the algorithm that com-
putes scalar multiplication [k]P , many countermeasures have been proposed. To
thwart simple side-channel analysis, it is customary to ensure a constant (or
secret-independent) operation flow (see for instance [Cor99,JY03,IMT02]). To
prevent more complex attacks it is necessary to use a probabilistic algorithm to
encode the sensitive values such that the cryptographic operations only occur on
randomized data. In [Cor99], Coron proposed notably to randomize the scalar k
and the projective coordinates of the point P . These countermeasures are nowa-
days widely used and it is not very realistic to assume that a specific set of bits
from the nonces could be recovered in clear by a side-channel attacker.

Related works. Two famous attacks have been designed against elliptic-curve
signature schemes that exploit partial information on the nonces of several sig-
natures: the Bleichenbacher’s attack [Ble00] and the Howgrave-Graham and
Smart’s attack [HS01]. Nguyen and Shparlinski [NS02,NS03] proposed a proven
variant of Howgrave-Graham and Smart’s attack when a single block of consecu-
tive bits is unknown to the adversary. Very few results on the security of elliptic-
curve signatures with noisy partial information on the nonces are known. In
[LPS04], Leadbitter, Page and Smart considered adversaries that can determine
some relation amongst the bits of the secret nonces rather than their specific val-
ues (but this relation is known with certainty). This work was recently extended
by Faugère et al. in [FGR13]. In [BV15], Bauer and Vergnaud designed an attack
where the adversary learns partial information on the nonces but not with perfect
certainty (but their attack does not apply to ECDSA or Schnorr signatures).

In [CRR03], Chari et al. introduced the so-called template attacks which aim
at exploiting all the available side-channel information when the adversary can
only obtain a limited number of leakage traces (which is the case in our discrete
logarithm setting since a nonce is used only once). Template attacks require
that the adversary is able to perform a profiling of the side-channel leakage (e.g.
based on a copy of the target device under her control). Template attacks against
ECDSA were proposed in [MO09,HMHW09,HM09,MHMP13] but none of them
considered a blinded implementation of the scalar multiplication.

Our contributions. We consider practical attack scenario, where the target
implementation is protected with usual countermeasures and where the adver-
sary recovers some noisy information from a signature computation. We consider
an elliptic curve signature based on a regular scalar multiplication algorithm
which is protected using classic randomization techniques, such as the masking
of projective coordinates and the scalar blinding [Cor99,CJ03]. Our contribu-
tions are three-fold.
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Firstly, we adapt the lattice-based attack proposed by Howgrave-Graham
and Smart [HS01] to the setting where the adversary gets partial information on
blinded nonces of the form k + r · q where r is a small random integer (typically
of 32 bits) and q is the elliptic curve group order [Cor99]. We show that the
attack works essentially in the same way than the original one but the number
of known bits per nonce must be increased by the bit-length of the random r
and the number of unknown blocks of consecutive bits.

Afterwards, we consider a scenario where some noisy information is leaked on
the bits of the blinded nonces. Under a realistic leakage assumption, the widely
admitted multivariate Gaussian assumption, we show how to model the infor-
mation recovered by a template attacker. Specifically, we characterize the distri-
bution of the obtained likelihood scores with respect to a multivariate signal-to-
noise ratio parameter. We then introduce a filtering method which, given a set
of signatures and associated likelihood scores, select the blinded nonce bits to
construct the lattice a way to maximize the success probability of the attack. The
method relies on a criteria derived from the analysis of the Howgrave-Graham
and Smart’s attack and techniques from dynamic programming.

Finally, we consider a second implementation setting in which the scalar
multiplication is protected by the random Euclidean splitting method [CJ03].
In this setting, the nonces k are split as k = �k/r� · r + (k mod r) for a (small)
random r and the adversary gets partial information on r, �k/r� and (k mod
r). We show how this partial information can be use to directly get likelihood
scores on the nonce bits and we adapt our filtering method to this scenario.
For both blinding schemes, we provide some experimental results for our attack
based on several values for the multivariate SNR parameter. Our experiments
are simulation-based but one could equally use practically-obtained score vectors
from a template attack against an actual implementation. The obtained results
would be the same for similar multivariate signal-to-noise ratios.

2 Implementation and Leakage Model

2.1 ECDSA Signature Scheme

The ECDSA signature scheme [Nat00] relies on an elliptic curve E defined
over some finite field K where E(K), the group of K-rational points of E,
has (almost) prime order q. The public parameters of the scheme include a
description of E(K), a base point P ∈ E(K) that is a generator of the group
(or of the large prime-order subgroup), and a cryptographic hash function
H : {0, 1}∗ �→ [[0, 2�−1]], where � := �log2 q�. The secret key x is randomly
sampled over [[0, q − 1]] = [0, q) ∩ Z and the corresponding public key is set as
the point Q = [x]P , that is the scalar multiplication of P by x.

A signature σ = (t, s) of a message m ∈ {0, 1}∗ is then computed from the
secret key x as t = xcoord([k]P ) and s = k−1(h+t·x) mod q, where k is a random
nonce sampled over [[1, q − 1]] and h = H(m). One can then verify the signature
from the public key Q by computing u = s−1 h mod q and v = s−1 t mod q,
and checking whether xcoord([u]P + [v]Q) = t. A legitimate signature indeed
satisfies [u]P + [v]Q = [s−1(h + t · x) · h mod q]P = [k]P .
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2.2 Target Implementation

The attacks presented in this paper target an ECC-signature implementation
that relies on a regular scalar multiplication algorithm, which is assumed to be
binary in the sense that each loop iteration handles a single bit of the scalar.
A prominent example of such a binary regular algorithm is the Montgomery
ladder [Mon87] which is widely used for its security and efficiency features [JY03,
IMT02,GJM+11].

The target implementation is also assumed to include common countermea-
sures against side-channel attacks such as as the classic scalar blinding [Cor99]
and the Euclidean blinding [CJ03]:

Classic blinding scheme:

1. r
$←− [[0, 2λ − 1]]

2. a ← k + r · q
3. return [a]P

Euclidean blinding scheme:

1. r
$←− [[1, 2λ − 1]]

2. a ← 	k/r
; b ← k mod r
3. return [r]([a]P ) + [b]P

2.3 Leakage Model

The computation performed during one iteration of any regular binary scalar
multiplication is deterministic with respect to the current scalar-bit b and the
two points P0 and P1 in input of the iteration. The side-channel leakage produced
in such an iteration can hence be modeled as a noisy function ψ(b,P0,P1). In
the following we shall assume that for randomized points (P0,P1), the leakage
ψ(b,P0,P1) can be modeled by a multivariate Gaussian distribution:

ψ(b,P0,P1) ∼ N (mb, Σ), (1)

where m0 and m1 are T -dimensional mean leakage vectors and where Σ is a
T × T covariance matrix. In what follows, we shall simply denote this leakage
ψ(b). The overall leakage of the scalar multiplication [a]P is hence modeled as(
ψ(a�a−1), . . . , ψ(a1), ψ(a0)

)
where we further assume the mutual independence

between the ψ(ai) (where the length �a of a depends on the randomization
scheme).

2.4 Profiling Attack

We consider a profiling attacker that owns templates for the leakage of a scalar
multiplication iteration w.r.t. the input bit. Based on these templates, the
attacker can mount a maximum likelihood attack to recover each bit of the
scalar with a given probability. More precisely, the considered attacker can

– measure the side-channel leakage of a scalar multiplication [a]P ,
– divide the measured traces into sub-traces ψ(ai),
– compare the measured leakage with templates for ψ(0) and ψ(1), and deter-

mine the probability that ai = 0 or ai = 1 given an observation ψ(ai).
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In particular, we consider the ideal case where the attacker knows the exact
distribution of ψ(0) and ψ(1), namely he knows the leakage parameters m0,
m1 and Σ. Although this might be viewed as a strong assumption, efficient
techniques exist to derive precise leakage templates in practice, especially in our
context where the key-space is of size 2 (b ∈ {0, 1}). Even if model-error might
lower the probability of correctly recovering a target bit in practice, it would not
invalidate the principle of our attacks.

Considering the above leakage model, the probability that the bit ai equals
b ∈ {0, 1} given a leakage sample ψ(ai) = xi satisfies

pb(xi) := Pr(ai = b | ψ(ai) = xi) ∝ exp
( − 1

2
(xi − mb)t · Σ−1 · (xi − mb)

)
, (2)

where ∝ means is equal up to a constant factor, such that p0(xi) + p1(xi) = 1.
Let us define the multivariate signal-to-noise ratio (SNR) θ as

θ = Λ · (m0 − m1), (3)

where Λ is the Cholesky decomposition matrix of Σ−1, that is the upper trian-
gular matrix satisfying Λt ·Λ = Σ−1. This decomposition always exists provided
that Σ is full-rank (i.e. no coordinate variable of the multivariate Gaussian is
the exact linear combination of the others) which can be assumed without loss
of generality. We have the following result:

Proposition 1. For every xi ∈ R
t

p0(xi) ∝
{

exp
( − 1

2yt
iyi

)
if ai = 0

exp
( − 1

2 (yt
iyi + 2θtyi + θtθ)

)
if ai = 1 (4)

where yi = Λ·(xi−mai
). Moreover if xi follows a distribution N (mai

, Σ), then yi

follows a distribution N (0, IT ), where IT is the identity matrix of dimension T .

The above proposition shows that, for any T -dimensional leakage distribu-
tion, the outcome of the considered template attack only depends on the multi-
variate SNR θ. That is why, in Sect. 6 we provide attack experiments for several
values of θ. In practice, one could evaluate the vulnerability of an implementa-
tion to our attack by constructing leakage templates for ψ(0) and ψ(1), deriving
the corresponding multivariate SNR θ, and simulating probability scores based
on Proposition 1.

3 Lattice Attack with Partially-Known Blinded Nonces

In this section, we recall the lattice attack by Howgrave-Graham and Smart
[HS01] against ECDSA with partially known nonces, and we extend it to the
case where the attacker has partial information on the blinded nonces. The
attacker is assumed to collect n+1 signatures σ0, σ1, . . . , σn, for which he knows
some bits of the blinded nonces a0, a1, . . . , an. These blinded nonces are defined
as ai = ki +ri ·q, where ki is the original (non-blinded) nonce, and ri is the λ-bit
random used in the blinding of ki. Additionally, we denote by ti and si the two
parts of the ECDSA signature σi = (ti, si) and by hi the underlying hash value.
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3.1 Attack Description

By definition, we have si − a−1
i (hi + tix) ≡ 0 mod q for every signature σi. We

can then eliminate the secret key x from the equations since we have

x ≡ aisi − hi

ti
mod q =⇒ a0s0 − h0

t0
≡ aisi − hi

ti
mod q (5)

for every i ∈ {1, . . . , n}. The above can then be rewritten as

ai + Aia0 + Bi ≡ 0 mod q (6)

where Ai = − s0ti

sit0
mod q and Bi = h0ti−hit0

t0si
mod q.

The goal of the attack is to use the information we have on each ai to derive
a system of equations which can be reduced to a lattice closest vector problem
(CVP). Let us assume we can obtain several blocks of consecutive bits so that
ai can be expressed as:

ai =
N∑

j=1

xi,j2κi,j + x′
i (7)

where x′
i is known, and xi,1, xi,2, . . . , xi,N are the N unknown blocks. We will

denote by μi,j the bit-length of each xi,j so that we have 0 ≤ xi,j < 2μi,j .
We can now rewrite (6) to obtain a system of linear equations in the xi,j as

follows:

xi,1 +
N∑

j=2

αi,jxi,j +
N∑

j=1

βi,jx0,j + γi = ηiq (8)

for some known coefficients αi,j , βi,j , γi ∈ [[0, q − 1]], and unknown integers xi,j

and ηi. Let C ∈ Mn,N(n+1)−n(Z) be the matrix defined as

C =

⎛

⎜
⎜
⎜
⎝

α1,2 · · · α1,N β1,1 β1,2 · · · β1,N

α2,2 · · · α2,N β2,1 β2,2 · · · β2,N

. . .
...

...
. . .

...
αn,2 · · · αn,N βn,1 βn,2 · · · βn,N

⎞

⎟
⎟
⎟
⎠

(9)

and let x ∈ Z
N(n+1)−n and η ∈ Z

n be the (column) vectors defined as

x = (x1,2, . . . , x1,N | x2,2, . . . , x2,N | . . . | xn,2, . . . , xn,N | x0,1, . . . , x0,N )t,
η = (η1, η2, . . . , ηn)t.

According to (7), we have

C · x − q · η = −(γ1 + x1,1, γ2 + x2,1, . . . , γn + xn,1)t (10)

We consider the lattice L spanned by the columns of the following matrix:

M =
(

C −q · In

−IN(n+1)−n 0

)
(11)
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where In and IN(n+1)−n denote the identity matrices of dimension n and N(n+
1) − n respectively. In particular, the vector yt = −(xt|ηt) ∈ Z

N(n+1) yields the
following lattice vector:

M · y = (γ1 + x1,1, γ2 + x2,1, . . . , γn + xn,1 | xt)t (12)

which might be close to the non-lattice vector

v = (γ1, γ2, . . . , γn, 0, 0, . . . , 0)t (13)

It is indeed easy to check that the Euclidean distance ‖M · y − v‖ satisfies

‖M · y − v‖2 =
∑

0≤i≤n
1≤j≤N

x2
i,j ≤

∑

0≤i≤n
1≤j≤N

22μi,j (14)

If the distance is small enough, and if the lattice dimension (n + 1)N is not
too high, one can find M · y as the closest lattice vector to v and hence get the
solution to the system. From the latter solution, one can recover the randomized
nonces ai (by (7)) which in turn yields the secret key x (by (5)).

Normalization. We consider unknown blocks xi,j that may be of different bit-
lengths μi,j . Therefore, we shall normalize the matrix M in order to have the
same weight in all the coordinates of M ·y, which shall lead to a better heuristic
on the resolution of the lattice problem. To do so, let us define ρi,j ∈ Z as

ρi,j =
1

2μi,j
. (15)

We then consider the lattice L′ spanned by the rows of the matrix M ′ = D · M ,
where D denotes the following diagonal matrix:

D = D(
(ρi,1)n

i=1

∣
∣ (ρ1,j)N

j=2

∣
∣ (ρn,j)N

j=2

∣
∣ (ρ0,j)N

j=1

)
(16)

where D is the function mapping a vector to the corresponding diagonal matrix.1

The non-lattice vector v′ is then defined as

v′ = D · v = (ρ1,1γ1, ρ2,1γ2, . . . , ρn,1γn, 0, 0, . . . , 0)t

and the target closest lattice vector is M ′ · y. The distance between these two
vectors then satisfies

‖M ′ · y − v′‖ = ‖D · (M · y − v)‖ =
( ∑

0≤i≤n
1≤j≤N

(ρi,jxi,j)2
) 1

2 ≤
√

(n + 1)N. (17)

1 In practice, we might take ρi,j = 2µmax−µi,j where μmax = maxi,j μi,j to work over
the integers.
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3.2 Attack Parameters

We make the classic heuristic assumption that the CVP can be efficiently solved
as long as the dimension is not too high and the distance is upper-bounded by

‖M ′ · y − v′‖ ≤ c0
√

dim(M ′) det(M ′)
1

dim(M′) , (18)

for some constant c0 = 1/
√

2πe � 0.24197 (see for instance [FGR13]). In our
attacks, we will actually use the polynomial-time LLL [LLL82] algorithm in order
to recover the lattice vector M ′ · y. This gives a slightly worse inequality in (18)
and the CVP can be efficiently solved for smaller values c0 that may actually
depend on the dimension of the lattice.

Let us denote by μi =
∑

j μi,j the number of unknown bits in ai, and by
μ =

∑
i μi the total number of unknown bits. Let us also denote by δi = �+λ−μi

the number of known bits in ai, and by δ =
∑

i δi = (n + 1)(� + λ) − μ the
total number of known bits. The dimension of the matrix M ′ is (n + 1)N and
its determinant is det(M ′) = det(M) · det(D) = qn · 2−μ. By (17), the above
inequality is satisfied whenever we have2

1 ≤ c0(qn · 2−μ)
1

Nb ⇐⇒ μ + c1Nb ≤ n · log2(q) < n�, (19)

where Nb = (n + 1)N denotes the total number of unknown blocks in the n + 1
signatures, and where c1 is a constant defined as c1 = − log2(c0) > 0. We can
deduce a sufficient condition on the number of bits δ that must be known for
the attack to succeed:

δ ≥ � + (n + 1)λ + c1Nb ⇐⇒
n∑

i=0

(δi − λ − c1N) ≥ �. (20)

This means that in order to mount a lattice attack against ECDSA protected
with classic randomization of the nonce, one must recover at least (λ+c1N) bits
of each blinded nonce plus some extra bits, where the total amount of extra bits
must reach �.

Varying number of Blocks. For the sake of clarity, we described the attack by
assuming a constant number N of unknown blocks for all the signatures. Note
that the attack works similarly with a varying number of blocks N0, N1, . . . , Nn

and the above condition keep unchanged. To see this, simply consider the above
description with N = maxi Ni and μi,j = 0 for every j > Ni. Note however that
for different block sizes, we have Nb =

∑n
i=0 Ni instead of Nb = (n + 1)N .

3.3 Experiments

The CVP can be solved using Babai’s rounding algorithm [Bab86], but in prac-
tice one shall prefer the embedding technique from [GGH97]. This technique
2 In [HS01], Howgrave-Graham and Smart overlooked the linear dependency in Nb in

(19) as they assumed c0 = 1. As we show in Sect. 3.3, this increase in the number of
known bits is not an artifact of the technique but is actually necessary.
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reduces the CVP to the shortest vector problem (SVP), by defining the embed-
ding lattice Lemb spanned by the columns of

⎛

⎜
⎜
⎝

M ′ v

0 · · · 0 −K

⎞

⎟
⎟
⎠ (21)

where K is a constant taken to be of the same order as the greatest coefficient
of M ′. Informally, if M ′ · y ∈ L is close to v, then w =

(
(M ′ · y − v)t |K)t

is a short vector of the embedding lattice Lemb. By applying LLL to Lemb, one
can therefore recover w as the shortest vector in the reduced basis, from which
M ′ · y is easily deduced.

In order to validate the constraint on the parameters (see (20)) and determine
the actual value of c1, we experienced the attack using the embedding technique
with different set of parameters. Specifically, we used the ANSSI 256-bit elliptic
curve (� = 256), different random sizes (λ ∈ {0, 16, 32, 64}), different numbers
of signatures ((n + 1) ∈ {5, 10, 20}), as well as different numbers of blocks per
signature (N ∈ {1, 2, 5, 10}). In each experiments, the blocks were randomly
distributed in the blinded nonces (by randomly sampling the starting index
among possible ones). Additionally, we considered that the number of bits per
block could vary according to a standard deviation parameter σ as follows. The
bit-length δi,j of each block is randomly sampled according to the distribution
N (m,σ) with m = δ/Nb, where we recall that δ =

∑
i,j δi,j is the total number of

known bits and Nb = (n + 1)N is the total number of unknown blocks. Samples
are then rounded to the nearest integer with rejection for samples lower than 1
(minimum number of bits per block). Finally, samples are randomly incremented
or decremented until they sum to the desired value δ. In a nutshell, taking a
standard deviation σ = 0 makes all the δi,j ’s equal to m. On the other hand,
taking a standard deviation to σ ≈ m makes the δi,j ’s to vary over [[1, 2m]]
(with a few ones beyond 2m). For our experiments, we took σ = 0.1m (slight
deviation), σ = 0.5m (medium deviation), and σ = m (strong deviation).

In each setting, the number of known bits is set to δ = � + (n + 1)λ + τ for
a varying margin τ that shall correspond to c1Nb. For each tested value of τ ,
we record the success rate of the attack over 100 trials. Table 1 summarizes the
obtained ratio τ95/Nb where τ95 is the margin required to obtain a 95% success
rate. This ratio gives a good estimation of the practical value of c1.

We observe that for the tested parameters, the experimental value of c1 lies
between 3 and 5 most of the time. We also observe that the size of the random (λ)
and the deviation on the number of bits per known blocks have a small impact
on the resulting c1, whereas the number of signatures and the total number of
blocks have a stronger impact.
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Table 1. Ratio τ95/Nb for various set of parameters.

(n + 1) = 5 (n + 1) = 10 (n + 1) = 20

Nb = 5 10 25 50 10 20 50 100 20 40 100

λ = 0 (slight dev) 2.80 2.50 2.36 2.90 3.90 3.55 3.58 4.62 5.20 4.90 5.26

λ = 0 (medium dev) 3.60 2.60 2.56 2.90 4.10 3.30 3.52 3.57 4.85 4.42 4.51

λ = 0 (strong dev) 3.20 2.50 2.28 2.54 4.10 2.95 3.14 3.07 5.25 4.17 3.93

λ = 16 (slight dev) 3.40 2.80 2.44 2.90 3.80 3.35 3.62 4.75 5.05 4.95 5.5

λ = 16 (medium dev) 3.40 2.60 2.40 3.02 4.20 3.15 3.40 4.20 5.25 4.77 4.96

λ = 16 (strong dev) 3.60 2.50 2.36 2.66 3.70 3.05 3.24 3.29 5.25 4.67 4.28

λ = 32 (slight dev) 3.80 2.70 2.68 3.06 3.80 3.45 3.74 4.71 4.75 4.70 5.17

λ = 32 (medium dev) 3.40 2.60 2.60 2.68 3.90 3.10 3.60 4.07 4.95 4.50 5.12

λ = 32 (strong dev) 3.00 2.90 2.36 2.60 4.00 3.05 3.32 3.41 4.90 4.73 4.62

λ = 64 (slight dev) 3.00 2.90 2.52 2.98 3.80 3.35 3.44 4.72 4.70 4.77 5.24

λ = 64 (medium dev) 3.20 2.80 2.36 2.98 3.70 3.55 3.68 4.31 4.80 4.60 5.23

λ = 64 (strong dev) 3.20 2.80 2.44 2.72 3.50 3.40 3.68 3.78 5.45 4.30 4.75

4 Attacking Implementations with Classic Blinding

In this section we focus on attacking implementations of elliptic-curve signatures
that leak side-channel information on the blinded nonce as described in Sect. 2.
In this model, one performs a template attack on the randomized scalar multi-
plication and recovers a probability score Pr(ai,j = 0) for every bit ai,j of every
blinded nonce ai. The goal is then to select a set of bits among all the recovered
noisy bits that has the required properties for solving the associated lattice sys-
tem and that has the highest possible probability of success (i.e. all the selected
bits must have been correctly guessed based on the probability scores).

For the lattice construction, we shall use the most probable value âi,j of each
bit ai,j , that is

âi,j = argmax
b∈{0,1}

Pr(ai,j = b), (22)

and we shall denote by pi,j the probability that the bit ai,j is correctly guessed,
that is

pi,j = Pr(âi,j = ai,j) = max
b∈{0,1}

Pr(ai,j = b). (23)

Let I denote the set of indices corresponding to the selected signatures {σi}i∈I

and let Ji denote the set of indices corresponding to the selected guessed bits
{âi,j}i∈Ji

within a random nonce for every i ∈ I. Then we will use the bits
{âi,j |i ∈ I, j ∈ Ji} to construct the lattice. The CVP’s algorithm will only
succeed in recovering the right solution if all these bits are correctly guessed,
namely if âi,j = ai,j for every i ∈ I and j ∈ Ji. The probability p that these
success events happen satisfies

p =
∏

i∈I

pi with pi =
∏

j∈Ji

pi,j , (24)
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where pi is the probability that all the guessed bits within the random nonce ai

are correct. Our goal is hence to define the sets I, and Ji for every i ∈ I such
that the success probability is maximal and such that the prerequisites of the
lattice attack are well met.

Let Ni denote the number of unknown blocks in the blinded nonce ai, i.e.
the number of non-adjacent blocks of indices j /∈ Ji. The dimension Δ of the
lattice satisfies Δ =

∑
i∈I Ni (see Sect. 4). Let Δmax be the maximal dimension

of a lattice for which the attack can be practical, i.e. the LLL-reduction can be
done in a reasonable time.3 The selected bits must then satisfy

∑

i∈I

Ni ≤ Δmax. (25)

Following Sect. 4, we denote by δi = |Ji| the number of recovered bits in the
nonce ai. We recall the necessary condition for the lattice reduction to work:

∑

i∈I

(δi − λ − c1Ni) ≥ �. (26)

From the two above conditions, a requirement for the selected bits within a
blinded nonce ai is to satisfy:

δi − λ

Ni
>

�

Δmax
+ c1. (27)

Otherwise, the contribution in terms of known bits is too small with respect to
the increase of the lattice dimension. In other words, if the above condition is
not satisfied then the maximal dimension Δmax is reached before the number of
necessary known bits.

The above condition on the pair (δi, Ni) is not sufficient in itself as it does
not specify how to select the sets Ji maximizing the success probability. Our
goal is now to define a sound criterion on each signature that will allow us to
select the best sets Ji i.e. the set maximizing the success probability defined
in (24). Maximizing this probability is equivalent to maximizing the log-success
probability log(p) =

∑
i∈I log(pi), and maximizing the latter sum while satisfy-

ing (26) can be done by selecting the sets Ji with maximal ratio log pi

δi−λ−c1Ni
. We

hence look for the set of indices Ji that maximizes the following value

γi = p
1

δi−λ−c1Ni
i . (28)

Let f : N �→ � �·N
Δmax

�+c1N+λ be the function that define the minimum number of
known bits from a number of unknown blocks for condition (27) to hold. For each
signature σi and for each possible number of blocks N ∈ �1, Nmax� we define:

Ji(N) = argmax
J;|J|=f(N)

g(J)≤N

( ∏

j∈Ji

pi,j

)
, (29)

where the function g(J) gives the number of unknown blocks in the set J .
3 For our experiments, we took Δmax = 256 for which SageMath (using the fplll

library) performs the reduction within 20 s on a 2.0 GHz Intel Xeon E5649 processor.
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We then define

pi(N) =
∏

j∈Ji(N)

pi,j and γi(N) = pi(N)
1

f(N)−λ−c1N . (30)

Eventually, we shall set

Ni = argmax
N

γi(N), γi = γi(Ni), Ji = Ji(Ni), and δi = f(Ni).

Remark 1. At this point, a natural idea is to take I as the set of indices with the
highest values γi. However, this strategy is not reliable in practice. Indeed, it can
occur that a bad guess âi,j �= ai,j comes with a strong probability pi,j (i.e. one
gets a strong confidence in the wrong choice). Since each γi aggregates many
probabilities pi,j , the occurrence of such an extreme event is only marginally
correlated to the actual value of γi.

In view of the above remark, our approach in practice is to try several random
combinations of signatures, namely to take I uniformly at random among the
subsets of signatures (tightly) satisfying the constraint (26).

Evaluating Eq. (29). We now explain how to evaluate the function

N �→ max
J;|J|=f(N)

g(J)≤N

( ∏

j∈Ji

pi,j

)
(31)

for some family of probabilities pi,0, pi,1,. . . , pi,�+λ−1 (getting the argmax is then
straightforward). For this purpose, we define maxp as the function mapping a
triplet (j, δ,N) to the above max but with the condition J ⊆ [[j, � + λ − 1]],
|J | = δ, and g(J) ≤ N , so that the target function in (31) can be rewritten as:

N �→ maxp(0, f(N), N) (32)

The maxp function can then be evaluated by the following recurrence relation:

maxp(j, δ,N) = max
(
block(j, δ,N), next(j, δ,N)

)
(33)

where

block(j, δ,N) = max
w∈[[1,δ]]

( j+w−1∏

k=j

pi,k

)
maxp(j + w + 1, δ − w,N − 1), (34)

next(j, δ,N) = maxp(j + 1, δ,N). (35)

The term block(j, δ,N) in the above max represents the case where the next w
bits are added to the set J , while the term next(j, δ,N) is for the case where the
next bit is not taken in the set J .4 The tail of the recursion is fourfold:

maxp(j, δ,N) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if j + δ > � + λ
∏�+λ−1

k=j pi,k if j + δ = � + λ

0 ifN = 0and δ > 0
1 if δ = 0

(36)

4 A particular case occurs when j = 0 for which the recursive call to maxp in block
does not decrement N since no unknown block appears before the index j = 0.
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Remark 2. In order to get a higher success probability, we can also use exhaus-
tive search to guess certain bits in a signature. In fact, between two blocks of
bits selected by the block function, we can find a small block of bits with poor
probability score which will discard the chance of selecting a larger unique block.
To tackle this issue and improve the probability of success, we can use exhaustive
search to recover these bits with probability 1 (independently of the underlying
pi,j values). This improvement of our method is described in AppendixA.

5 Attacking Implementations with Euclidean Blinding

In this section we focus on attacking implementations protected with Euclidean
blinding [CJ03], i.e. for which the nonces are decomposed as ki = ai · ri + bi for
i ∈ {1, . . . , n} where ri is picked uniformly at random over �1, 2λ − 1�, ai = �ki

ri
�

and bi = ki mod ri (see Sect. 3). We suppose that the attacker can recover the
probability score for every bit of ai, ri and bi for i ∈ {1, . . . , n} with the same
template attack as in the previous section.

One approach to mount an attack is to use the information we have on each
nonce to derive a system of equations which we may solve using a lattice attack.
The equations are of degree 2 and the number of involved monomials increases
quadratically with the number of unknown blocks. A natural idea is to use the
famous Coppersmith method [Cop96b,Cop96a] which is a family of lattice-based
techniques to find small integer roots of polynomial equations. The method gen-
erates more non-linear equations by multiplication of several non-linear equations
before the linearization step in order to improve attacks. However, in this case
the structure of the variables is complex and even using polynomials of small
degree leads to a lattice of very large dimension.

Our approach is different and practical: from the recovered noisy bits, one can
compute probability scores for the individual bits of the nonces ki themselves.
If the probability that the individual bits in ai, ri and bi for i ∈ [[1, n]] are all
correctly guessed is equal to 1/2 + ε, for some ε > 0, it can be checked that the
obtained probabilities Pr(k̂i,j = ki,j) that the j-th bit of the nonce ki is correctly
guessed tends towards 1/2 quickly as j grows towards the middle bit �/2.

To show this fact, we ran the following experiments:

– for several bias ε ∈ {1/4, 1/8, . . . , 1/24}, we picked uniformly at random
10,000 nonces ki and random ri (for λ = 16) and we computed the corre-
sponding ai and bi such that ai · ri + bi = ki;

– we computed noisy versions of (ãi, r̃i, b̃i) of (ai, ri, bi) as if they were trans-
mitted over a binary symmetric channel with crossover probability ε and we
computed k̃i = ãi · r̃i + b̃i;

– for each bias and each individual bit, we computed the proportion of k̃i,j that
matches ki,j .

The estimated error probability Pr(k̃i,j �= ki,j) is plotted in Fig. 1 for the first 64
bits (in log-scale for the x-axis). These experiments show that the probabilities
Pr(k̂i,j = ki,j) tends towards 1/2 exponentially as j comes close to the middle
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Fig. 1. Estimated error probability of individual nonce bits

bit �/2. For this reason, in the case of the Euclidean blinding, we will only focus
on two particular blocks of ki for each signature: the block of δi,1 least significant
bits (lsb) and the block of δi,2 most significant bits (msb), for some δi,1, δi,2. In
this model, the necessary condition for the lattice reduction to work (see (20))
becomes: ∑

i∈I

(δi − c1) ≥ � where δi = δi,1 + δi,2, (37)

since λ = 0 and Ni = 1 (there is a single unknown block per nonce), implying:

δi ≥
⌈

�

Δmax

⌉
+ c1 (38)

as a sound condition on each signature. As seen in the previous sections, the CVP
algorithm will only succeed in recovering the right solution if the two blocks of
ki are correctly guessed for each signature. In order to select the blocks and
their respective sizes δi,1, δi,2, we use an approach similar to the one proposed
in Sect. 5.

Let Bi,1 and Bi,2 denote the blocks of δi,1 lsb and δi,2 msb of ki. The guessed
blocks are defined as:

B̂i,j = argmax
x∈{0,1}δi,j

Pr(Bi,j = x) (39)

for j ∈ {1, 2}. The block probabilities are then defined as

pi,j = Pr(Bi,j = B̂i,j) = max
x

Pr(Bi,j = x)

for j ∈ {1, 2} and the probability for one signature is pi = pi,1 · pi,2. Then, we

select δi,1 and δi,2 such that they maximize the value γi = p
1

δi−c1
i .

Clearly, γi depends on the sizes δi,1 and δi,2 of the blocks Bi,1 and Bi,2. We
shall denote γi(δi,1, δi,2) to see γi as a function of these sizes. We then set δi,1
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and δi,2 as (δi,1, δi,2) = argmax(δ1,δ2)γi(δ1, δ2) so that γi = max(δ1,δ2) γi(δ1, δ2).
Unlike for the classic blinding (see Remark 1), the number of selected bits δi

per signature can be small (it just has to be greater than c1). Therefore, it is
more relevant to select the signatures according to the γi value in the case of
the Euclidean blinding. In order to still allow several selection trials, we suggest
a hybrid approach: we first randomly pick half of the available signatures and
then select a subset I among them such that the values (γi)i∈I are the highest,
and such that the constraint (37) is well (tightly) satisfied.

Computation of block probabilities. We now explain how to evaluate (39),
i.e. how to evaluate the probabilities Pr(Bi,1 = x) and Pr(Bi,2 = x). For the sake
of simplicity, we drop the index i, namely we consider a nonce k = a · r + b for
which we know some probability score Pr(aj = 1), Pr(rj = 1) and Pr(bj = 1)
for the bits of a, r, and b. Moreover, for some integer v, we shall denote v[j0:j1] =
	 v
2j0 
 mod 2j1−j0 , i.e. the integer value composed of the j0-th bit to the (j1 −1)-th

bit of v. It is easy to check that the block B1 = k[0:δ1] only depends on the δ1 lsb
of a, r and b. We can then compute the probability Pr(B1 = x) as:

Pr(B1 = x) =
∑

x,y,z

χ1(x,w, y, z)
δ1−1∏

j=0

Pr(aj = wj) Pr(rj = yj) Pr(bj = zj) (40)

with χ1(x,w, y, z) = 1 if x = (w · y + z)[0:δ1] and χ(x,w, y, z) = 0 otherwise.
For the case of the block B2 = k[�−δ2:�], we shall denote by ah and rh the δ

msb of a and r respectively for some δ (i.e. ah = a[�−λ−δ:�−λ] and rh = r[λ−δ:λ]).
We then have

k[�−2δ:�] = ahrh + c where c =
⌊

a · r + b − ahrh2�−2δ

2�−2δ

⌋
. (41)

It can be checked that the carry c is lower than 2δ+1. Then if we take δ sufficiently
greater than δ2, we get B̃2 = B2 with high probability, where B̃2 denotes the δ2
msb of ahrh (i.e. B̃2 = (ahrh)[2δ−δ2:2δ]). We then approximate

Pr(B2 = x) ≈ Pr(B̃2 = x) =
22δ−δ1∑

x0=0

Pr(ahrh = x0 + 22δ−δ1x), (42)

where the probability mass function of ahrh satisfies

Pr(ahrh = x) =
∑

w,y

χ2(x,w, y)
δ−1∏

j=0

Pr(a�−λ−δ+j = wj) Pr(rλ−δ+j = yj) (43)

where χ2(x,w, y) = 1 if x = w · y and χ2(x,w, y) = 0 otherwise.
The above approximation is sound as long as we take δ sufficiently greater

than δ2. Since we have c ≤ 2δ+1, it can be checked that the approximation
error is upper bounded by 2δ1+1−δ. We shall then take δ such that the latter
approximation error does not impact the selection of the maximal probability
Pr(B2 = x).
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6 Experimental Results

This section provides experimental results: we have implemented our attacks
against ECDSA on the ANSSI 256-bit elliptic curve (i.e. � = 256) with
the two considered blinding schemes for 3 different random sizes, specifically
λ ∈ {16, 32, 64}. We considered a three-dimensional leakage model with unbal-
anced multivariate SNR θ = α · (0.5, 1, 2), where α ∈ {1.5, 2.0}. For each
setting, the used signatures and blinded nonces were randomly generated,
and the corresponding likelihood scores were simulated from the multivari-
ate SNR θ as shown in Proposition 1. We then applied our filtering methods
to select the best blocks of bits from which we constructed the Howgrave-
Graham and Smart lattice with the constant c1 set to 4, and we checked
whether the correct solution was well retrieved by the CVP algorithm. We
experimented our attacks with nsig available signatures and ntr trials for
the subset selection (and the underlying lattice reduction) for (nsig, ntr) ∈
{(10, 1), (20, 5), (20, 10), (100, 10), (100, 50), (100, 100)}.

The obtained success rates are reported in Table 2. The lattice reduction
worked almost every time the selected bits were correctly guessed (we noticed
only a few lattice failures in all the performed experiments). These results suggest
that the classic blinding is more sensitive to our attack than the Euclidean
blinding. However, one should note that the classic blinding is inefficient when
the group order is sparse. We also observe that for the Euclidean blinding, the
random size λ has a small impact on the resulting success rate, which is not
surprising since it can be checked from Sect. 5 that this parameter is not expected
to play a significant role.

Table 2. Success rate of our attacks.

(nsig, ntr) (10,1) (20, 5) (20, 10) (100, 10) (100, 50) (100, 100)

Classic blinding

α = 1.5 λ = 16 13.5% 38.3% 54.0% 70.1% 99.0% 99.9%

λ = 32 3.5% 13.6% 22.7% 27.8% 73.9% 91.9%

λ = 64 0.2% 0.6% 1.2% 1.5% 6.2% 11.7%

α = 2 λ = 16 91.2% 99.9% 100% 100% 100% 100%

λ = 32 90.5% 99.5%

λ = 64 85.7% 99.3%

Euclidean blinding

α = 1.5 λ = 16 0% 0% 0% 0% 0% 0%

λ = 32

λ = 64

α = 2 λ = 16 0.7% 3.1% 5.8% 42.8% 76.8% 83.3%

λ = 32 0.1% 0.4% 0.8% 41.1% 74.9% 82.6%

λ = 64 0.1% 0.4% 1.0% 40.2% 75.0% 82.8%
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A Using Exhaustive Search

In order to increase the success probability of our attack, we can make use
of exhaustive search to guess certain bits in a signature. Specifically, we can
select m bits among all the signatures for which we shall try the 2m possible
values and apply the previously defined lattice attack. To select the guessed
bits in a signature we follow the same approach as previously but with a new
dimension for the parameters: the number of bits allowed to be exhaustively
guessed. Specifically, we shall compute the optimal parameters γi, Ji and Ni for
each possible mi ≤ mmax, where mi is the number of bits exhaustively guessed
in the i-th signature and mmax is the maximal value for m. We hence get a new
constraint to the selection of the signatures, that is:

n∑

i=0

mi ≤ mmax. (44)

Let us introduce the function πi defined for every J ⊆ [[0, � + λ − 1]] and
m ∈ N as:

πi(J,m) = max
J′⊆J

|J′|=|J|−m

∏

j∈J ′
pi,j . (45)

Namely, πi(J,m) is the maximal product of |J |−m probabilities among (pi,j)j∈J .
This gives the probability of correctly guessing the bits (ai,j)j∈J while m among
them are exhaustively guessed. We then define

Ji(m,N) = argmax
J;|J|=f(N)

g(J)≤N

πi(J,m) (46)

and
pi(m,N) = πi(Ji(m,N),m), γi(m,N) = pi(m,N)

1
f(N)−λ−c1N , (47)

from which we set

γi(m) = max
N

γi(m,N), Ni(m) = argmax
N

γi(m,N), and Ji(m) = Ji(m,Ni(m)).

(48)
Eventually, we select I and (Ji(mi))i∈I such that (44) and

� ≤
∑

i∈I

|Ji(mi)| − λ − c1Ni (49)

are both satisfied.

Evaluating Eq. (46). We now explain how to evaluate the function

(m,N) �→ max
J;|J|=f(N)

g(J)≤N

πi(J,m), (50)
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from which getting the argmax is then straightforward. For such a purpose,
we extend the maxp function of Sect. 4 to deal with the m parameter i.e. the
number of bits that can be exhaustively guessed. Here, maxp maps a quadruple
(j, δ,N,m) to the above max with the condition J ⊆ [[j, � + λ − 1]], |J | = δ, and
g(J) ≤ N , so that the target function in (50) can be rewritten as:

(m,N) �→ maxp(0, f(N), N,m) (51)

The difference with the original method is that in a recursive call to the maxp
function, one can spend v out of m bits to be exhaustively guessed. Specifically,
the recurrence relation becomes:

maxp(j, δ,N,m) = max(block(j, δ,N,m), next(j, δ,N,m)) (52)

with

block(j, δ,N,m) = max
w∈[[1,δ]]
v∈�0,m�

πi(�j, j + w − 1�, v)

×maxp(j + w + 1, δ − w,N − 1,m − v)
next(j, δ,N,m) = maxp(j + 1, δ,N,m)

The recursion tail is pretty similar to the original case:

maxp(j, δ,N,m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if j + δ > � + λ

πi(�j, � + λ�,m) if j + δ = � + λ − 1
0 ifN = 0and δ > 0
1 if δ = 0

(53)

Only the second case changes, where the m left bits of exhaustive search are
spend for the final block.
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Abstract. Although postquantum cryptography is of growing practical
concern, not many works have been devoted to implementation security
issues related to postquantum schemes.

In this paper, we look in particular at fault attacks against implemen-
tations of lattice-based signature schemes, looking both at Fiat-Shamir
type constructions (particularly BLISS, but also GLP, PASSSing and
Ring-TESLA) and at hash-and-sign schemes (particularly the GPV-
based scheme of Ducas–Prest–Lyubashevsky). These schemes include
essentially all practical lattice-based signatures, and achieve the best effi-
ciency to date in both software and hardware. We present several fault
attacks against those schemes yielding a full key recovery with only a few
or even a single faulty signature, and discuss possible countermeasures
to protect against these attacks.

Keywords: Fault attacks · Digital signatures · Postquantum cryptog-
raphy · Lattices · BLISS · GPV

1 Introduction

Lattice-based cryptography. Recent progress in quantum computation [7],
the NSA advisory memorandum recommending the transition away from Suite
B and to postquantum cryptography [1], as well as the announcement of the
NIST standardization process for postquantum cryptography [6] all suggest that
research on postquantum schemes, which is already plentiful but mostly focused
on theoretical constructions and asymptotic security, should increasingly take
into account real world implementation issues.

Among all postquantum directions, lattice-based cryptography occupies a
position of particular interest, as it relies on well-studied problems and comes
c© Springer International Publishing AG 2017
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with uniquely strong security guarantees, such as worst-case to average-case
reductions [35]. A number of works have also focused on improving the per-
formance of lattice-based schemes, and actual implementation results suggest
that properly optimized schemes may be competitive with, or even outperform,
classical factoring- and discrete logarithm-based cryptography.

The literature on the underlying number-theoretic problems of lattice-based
cryptography is extensive (even though concrete bit security is not nearly as
well understood as for factoring and discrete logarithms; in addition, ring-based
schemes have recently been subjected to new families of attacks that might even-
tually reduce their security, especially in the postquantum setting). On the other
hand, there is currently a distinct lack of cryptanalytic results on the physical
security of implementations of lattice-based schemes (or in fact, postquantum
schemes in general! [39]). It is well-known that physical attacks, particularly
against public-key schemes, are often simpler, easier to mount and more devas-
tating than attacks targeting underlying hardness assumptions: it is often the
case that a few bits of leakage or a few fault injections can reveal an entire secret
key (the well-known attacks from [3,5] are typical examples). We therefore deem
it important to investigate how fault attacks may be leveraged to recover secret
keys in the lattice-based setting, particularly against signature schemes as sig-
natures are probably the most likely primitive to be deployed in a setting where
fault attacks are relevant, and have also received the most attention in terms of
efficient implementations both in hardware and software.

Practical implementations of lattice-based signatures. Efficient signature
schemes are typically proved secure in the random oracle model, and can be
roughly divided in two families: the hash-and-sign family (which includes schemes
like FDH and PSS), as well as signatures based on identification schemes, using the
Fiat-Shamir heuristic or a variant thereof. Efficient lattice-based signatures can
also be divided along those lines, as observed for example in the survey of practical
lattice-based digital signature schemes presented by O’Neill and Güneysu at the
NIST workshop on postquantum cryptography [23,24].

The Fiat-Shamir family is the most developed, with a number of schemes
coming with concrete implementations in software, and occasionally in hard-
ware as well. Most schemes in that family follow Lyubashevsky’s “Fiat-Shamir
with aborts” paradigm [26], which uses rejection sampling to ensure that the
underlying identification scheme achieves honest-verifier zero-knowledge. Among
lattice-based schemes, the exemplar in that family is Lyubashevsky’s scheme from
EUROCRYPT 2012 [27]. It is, however, of limited efficiency, and had to be opti-
mized to yield practical implementations. This was first carried out by Güneysu et
al., who described an optimized hardware implementation of it at CHES 2012 [20],
and then to a larger extent by Ducas et al. in their scheme BLISS [9], which
includes a number of theoretical improvements and is the top-performing lattice-
based signature. It was also implemented in hardware by Pöppelmann et al. [36].
Other schemes in that family include Hoffstein et al.’s PASSSign [22], which
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incorporates ideas from NTRU, and Akleylek et al.’s Ring-TESLA [2], which
boasts a tight security reduction.

On the hash-and-sign side, there were a number of early proposals with
heuristic security (and no actual security proofs), particularly GGH [18] and
NTRUSign [21], but despite several attempts to patch them1 they turned out
to be insecure. A principled, provable approach to designing lattice-based hash-
and-sign signatures was first described by Gentry et al. in [16], based on discrete
Gaussian sampling over lattices. The resulting scheme, GPV, is rather inefficient,
even when using faster techniques for lattice Gaussian sampling [30]. However,
Ducas et al. [11] later showed how it could be optimized and instantiated over
NTRU lattices to achieve a relatively efficient scheme with particularly short
signature size. The DLP scheme is somewhat slower than BLISS in software,
but still a good contender for practical lattice-based signatures, and seemingly
the only one in the hash-and-sign family.

Our contributions. In this work, we initiate the study of fault attacks against
lattice-based signature schemes, and obtain attacks against all the practical
schemes mentioned above.

As noted previously, early lattice-based signature schemes with heuristic
security have been broken using standard attacks [15,17,32] but recent construc-
tions including [9,11,16,26,27] are provably secure, and cryptanalysis therefore
requires a more powerful attack model. In this work we consider fault attacks.

We present two attacks, both using a similar type of faults which allows the
attacker to cause a loop inside the signature generation algorithm to abort early.
Successful loop-abort faults have been described many times in the literature,
including against DSA [31] and pairing computations [34], and in our attacks
they can be used to recover information about the private signing key. The
underlying mathematical techniques used to actually recover the key, however,
are quite different in the two attacks.

Our first attack applies to the schemes in the Fiat-Shamir family: we describe
it against BLISS [9,36], and show how it extends to GLP [20], PASSSign [22]
and Ring-TESLA [2]. In that attack, we inject a fault in the loop that generates
the random “commitment value” y of the sigma protocol associated with the
Fiat-Shamir signature scheme. That commitment value is a random polynomial
generated coefficient by coefficient, and an early loop abort causes it to have
abnormally low degree, so that the protocol is no longer zero-knowledge. In
fact, this will usually leak enough information that a single faulty signature is
enough to recover the entire signing key. More specifically, we show that the
faulty signature can be used to construct a point that is very close to a vector
in a suitable integer lattice of moderate dimension, and such that the difference
is essentially (a subset of) the signing key, which can thus be recovered using
lattice reduction.

1 There is a provably secure scheme due to Melchor et al. [29] that claims to “seal the
leak on NTRUSign”, but it actually turns the construction into a Fiat-Shamir type
scheme, using rejection sampling à la Lyubashevsky.
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Our second attack targets the GPV-based hash-and-sign signature scheme
of Ducas et al. [11]. In that case, we consider early loop abort faults against
the discrete Gaussian sampling in the secret trapdoor lattice used in signature
generation. The early loop abort causes the signature to be a linear combination
of the last few rows of the secret lattice. A few faulty signatures can then be
used to recover the span of those rows, and using the special structure of the
lattice, we can then use lattice reduction to find one of the rows up to sign,
which is enough to completely reconstruct the secret key. In practice, if we can
cause loop aborts after up to m iterations, we find that m + 2 faulty signatures
are enough for full key recovery with high probability.

Both of our attacks are supported by extensive simulations in Sage [38],
whose source code is provided in the full version of this paper [13].

We also take a close look at the concrete software and hardware implemen-
tations of the schemes above, and discuss the concrete feasibility of injecting the
required loop-abort faults in practice. We find the attacks to be highly realis-
tic. Finally, we discuss several possible countermeasures to protect against our
attacks.

Related work. To the best of our knowledge, the first previous work on fault
attacks against lattice-based signatures, and in particular the only one mentioned
in the survey of Taha and Eisenbarth [39], is the fault analysis work of Kamal and
Youssef on NTRUSign [25]. It is, however, of limited interest since NTRUSign is
known to be broken [12,32]; it also suffers from a very low probability of success.

Much more recently, a relevant preprint has also been made available online
by Bindel et al. [4] concurrently with this work. That paper proposes various
fault attacks against the same Fiat-Shamir type schemes that we consider in
this paper. Most of the attacks, however, are either in a contrived model (tar-
geting key generation), or require unrealistically many faults and are arguably
straightforward (bypassing rejection sampling in signature generation or size/-
correctness checks in signature verification). One attack described in the paper
can be seen as posing a serious threat, namely the one described in [4, Sect.
IV-B], but it amounts to a weaker variant of our Fiat-Shamir attack, using sim-
ple linear algebra rather than lattice reduction. As a result, it requires several
hundred faulty signatures, whereas our attack needs only one.

Another interesting concurrent work is the recent cache attack against BLISS
of Bruinderink et al. [19]. It uses cache side-channels to extract information about
the coefficients of the commitment polynomial y, and then lattice reduction to
recover the signing key based on that side-channel information. In that sense, it
is similar to our Fiat-Shamir attack. However, since the nature of the information
to be exploited is quite different than in our setting, the mathematical techniques
are also quite different. In particular, again, in contrast with our fault attack,
that cache attack requires many signatures for a successful key recovery.
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2 Description of the Lattice-Based Signature Schemes
We Consider

Notation. For any integer q, we represent the ring Zq by [−q/2, q/2)∩Z. Vectors
are considered as column vectors and will be written in bold lower case letters
and matrices with upper case letters. By default, we will use the �2 Euclidean
norm, ‖v‖2 = (

∑
i v2

i )1/2 and �∞-norm as ‖v‖∞ = maxi |vi|.
The Gaussian distribution with standard deviation σ ∈ R and center c ∈ R

at x ∈ R, is defined by ρc,σ(x) = exp
(−(x−c)2

2σ2

)
and more generally by ρc,σ(x) =

exp
(−(x−c)2

2σ2

)
and when c = 0, by ρσ(x). The discrete Gaussian distribution

over Z centered at 0 is defined by Dσ(x) = ρσ(x)/ρσ(Z) (or DZ,σ) and more
generally over Z

m by Dm
σ (x) = ρσ(x)/ρσ(Zm), where ρσ(Zm) =

∑
x∈Zm ρσ(x).

Description of BLISS. The BLISS signature scheme [9] is possibly the most
efficient lattice-based signature scheme so far. It has been implemented in both
software [10] and hardware [36], and boasts performance numbers compara-
ble to classical factoring and discrete-logarithm based schemes. BLISS can be
seen as a ring-based optimization of the earlier lattice-based scheme of Lyuba-
shevsky [27], sharing the same “Fiat-Shamir with aborts” structure [26]. One
can give a simplified description of the scheme as follows: the public key is an
NTRU-like ratio of the form aq = s2/s1 mod q, where the signing key poly-
nomials s1, s2 ∈ R = Z[x]/(xn + 1) are small and sparse. To sign a mes-
sage μ, one first generates commitment values y1,y2 ∈ R with normally dis-
tributed coefficients, and then computes a hash c of the message μ together
with u = −aqy1 + y2 mod q. The signature is then the triple (c, z1, z2), with
zi = yi + sic, and there is rejection sampling to ensure that the distribu-
tion of zi is independent of the secret key. Verification is possible because
u = −aqz1 + z2 mod q. The real BLISS scheme, described in full in Fig. 1,
includes several optimizations on top of the above description. In particular, to
improve the repetition rate, it targets a bimodal Gaussian distribution for the
zi’s, so there is a random sign flip in their definition. In addition, to reduce key
size, the signature element z2 is actually transmitted in compressed form z†

2,
and accordingly the hash input includes only a compressed version of u. These
various optimizations are essentially irrelevant for our purposes.

Description of the GPV-based scheme of Ducas et al. The second sig-
nature scheme we consider is the one proposed by Ducas et al. at ASIACRYPT
2014 [11]. It is an optimization using NTRU lattices of the GPV hash-and-sign
signature scheme of Gentry et al. [16], and has been implemented in software by
Prest [37]. As in GPV, the signing key is a “good” basis of a certain lattice Λ
(with short, almost orthogonal vectors), and the public key is a “bad” basis of
the same lattice (with longer vectors and a large orthogonality defect). To sign a
message μ, one simply hashes it to obtain a vector c in the ambient space of Λ,
and uses the good, secret basis to sample v ∈ Λ according to a discrete Gaussian
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1: function KeyGen()
2: sample f ,g ∈ R = Z[x]/(xn +1), uni-

formly with �δ1n� coefficients in {±1},
�δ2n� coefficients in {±2} and other equal
to zero

3: S = (s1, s2)
T ← (f , 2g + 1)T

4: if Nκ(S) ≥ C2 ·5 · (�δ1n�+4�δ2n�) ·κ
then restart

5: aq = (2g+1)/f mod q (restart if f is
not invertible)

6: return (pk = a1, sk = S) where a1 =
2aq mod 2q

7: end function

1: function Verify(μ, pk = a1, (z1, z
†
2, c))

2: if ‖(z1, 2
d · z†

2)‖2 > B2 then reject
3: if ‖(z1, 2

d · z†
2)‖∞ > B∞ then reject

4: accept iff c = H(�ζ · a1 · z1 + ζ · q ·
c�d + z†

2 mod p, μ)
5: end function

1: function Sign(μ, pk = a1, sk = S)
2: y1 ← Dn

Z,σ, y2 ← Dn
Z,σ

3: u = ζ · a1 · y1 + y2 mod 2q
4: c ← H(�u�d mod p, μ)
5: choose a random bit b
6: z1 ← y1 + (−1)bs1c
7: z2 ← y2 + (−1)bs2c
8: rejection sampling: restart to

step 2 except with probability
1/ M exp(−‖Sc‖/(2σ2)) cosh(〈z,Sc〉/σ2

)
9: z†

2 ← (�u�d − �u − z2�d) mod p
10: return (z1, z

†
2, c)

11: end function

Fig. 1. Description of the BLISS signature scheme. The random oracle H takes its val-
ues in the set of polynomials in R with 0/1 coefficients and Hamming weight exactly κ,
for some small constant κ. The value ζ is defined as ζ · (q −2) = 1 mod 2q. The authors
of [9] propose four different sets of parameters with security levels at least 128 bits.
The interesting parameters for us are: n = 512, q = 12289, σ ∈ {215, 107, 250, 271},
(δ1, δ2) ∈ {(0.3, 0), (0.42, 0.03), (0.45, 0.06)} and κ ∈ {23, 30, 39}. We refer to the origi-
nal paper for other parameters and for the definition of notation like Nκ and �·�d, as
they are not relevant for our attack. The instruction in red (sampling of y1) is where
we introduce our faults. (Color figure online)

distribution of small variance supported on Λ and centered at c. That vector v
is the signature; it is, in particular, a lattice point very close to c. That property
can be checked using the bad, public basis, but that basis is too large to sam-
ple such close vectors (this, combined with the fact that the discrete Gaussian
leaks no information about the secret basis, is what makes it possible to prove
security). The actual scheme of Ducas–Lyubashevsky–Prest, described in Fig. 2,
uses a lattice of the same form as NTRU: Λ = {(y, z) ∈ R2 | y + z · h = 0},
where the public key h is again a ratio g/f mod q of small, sparse polynomials
in R = Z[x]/(xn + 1). The use of such a lattice yields a very compact represen-
tation of the keys, and makes it possible to compress the signature as well by
publishing only the second component of the sampled vector v. As a result, this
hash-and-sign scheme is very space efficient (even more than BLISS). However,
the use of lattice Gaussian sampling makes signature generation significantly
slower than BLISS at similar security levels.
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1: function KeyGen(n, q)
2: f ← Dn

σ0 , g ← Dn
σ0 �

σ0 = 1.17
√

q/2n
3: if ‖(g, −f)‖2 > σ then restart �

σ = 1.17
√

q

4: if
∥∥ qf̄

f f̄+ ḡg , q¯ g
f f̄+ ḡg

)∥∥
2

> σ then
restart

5: using the extended Euclidean algo-
rithm, compute ρf , ρg ∈ R and Rf , Rg ∈
Z s.t. ρf · f = Rf mod xn +1 and ρg ·g =
Rg mod xn + 1

6: if gcd(Rf , Rg) �= 1 or gcd(Rf , q) �= 1
then restart

7: using the extended Euclidean algo-
rithm, compute u, v ∈ Z s.t. u · Rf + v ·
Rg = 1

8: F ← qvρg,G ← −quρf

9: repeat

10: k ←
⌊

F·̄f+G·̄f
f f̄+ ḡg

⌉
∈ R

11: F ← F − k · f ,G ← G − k · g
12: until k=0
13: h ← g · f−1 mod q

14: B ←
(

Mg −Mf

MG −MF

)
∈ Z

2n×2n �

short lattice basis
15: return sk = B, pk = h
16: end function

1: function GaussianSampler(B, σ, c) �

we denote by bi (resp. b̃i) the rows of B

(resp. of its Gram–Schmidt matrix B̃)
2: v ← 0
3: for i = 2n down to 1 do
4: c′ ← 〈c, b̃i〉/‖b̃i‖2

2

5: σ′ ← σ/‖b̃i‖2

6: r ← DZ,σ′,c′

7: c ← c − rbi and v ← v + rbi

8: end for
9: return v � v sampled according to

the lattice Gaussian distribution DΛ,σ,c

10: end function

1: function Sign(μ, sk = B)
2: c ← H(μ) ∈ Z

n
q

3: (y, z) ← (c,0) −
GaussianSampler(B, σ, (c,0)) � y, z
are short and satisfy y + z · h = c mod q

4: return z
5: end function

1: function Verify(μ, pk = h, z)
2: accept iff ‖z‖2 + ‖H(μ) − z · h‖2 ≤

σ
√

2n
3: end function

Fig. 2. Description of the GPV-based signature scheme of Ducas–Lyubashevsky–Prest.
The random oracle H takes its values in Z

n
q . We denote by f �→ f̄ the conjugation

involution of R = Z[x]/(xn + 1), i.e. for f =
∑n−1

i=0 fix
i, f̄ = f0 −∑n−1

i=1 fn−ix
i. Ma

represents the matrix of the multiplication by a in the polynomial basis of R, which is
anticirculant of dimension n. For 128 bits of security, the authors of [11] recommend
the parameters n = 256 and q ≈ 210. The constant 1.17 is an approximation of

√
e/2.

The steps in red (main loop of the Gaussian sampler) is where we introduce our faults.
(Color figure online)

3 Attack on Fiat-Shamir Type Lattice-Based Signatures

The first fault attack that we consider targets the lattice-based signature schemes
of Fiat-Shamir type, and specifically the generation of the random “commit-
ment” element in the underlying sigma protocols, which is denoted by y in our
descriptions. That element consists of one or several polynomials generated coef-
ficient by coefficient, and the idea of the attack is to introduce a fault in that
random sampling to obtain a polynomial of abnormally small degree, in which
case signatures will leak information about the private signing key. For simplic-
ity’s sake, we introduce the attack against BLISS in particular, but it works
against the other Fiat-Shamir type schemes (GLP, PASSSign and Ring-TESLA)
with almost no changes: see the full version of this paper [13] for details.
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In BLISS, the commitment element actually consists of two polynomials
(y1,y2), and it suffices to attack y1. Intuitively, y1 should mask the secret
key element s1 in the relation z1 = ±s1c + y1, and therefore modifying the
distribution of y1 should cause some information about s to leak in signatures.
The actual picture in the Fiat-Shamir with aborts paradigm is in fact slightly
different (namely, rejection sampling ensures that the distribution of z1 is inde-
pendent of s1, but only does so under the assumption that y1 follows the correct
distribution), but the end result is the same: perturbing the generation of y1

should lead to secret key leakage.
Concretely speaking, in BLISS, y1 ∈ Rq is a ring element generated according

to a discrete Gaussian distribution2, and that generation is typically carried out
coefficient by coefficient in the polynomial representation. Therefore, if we can
use faults to cause an early termination of that generation process, we should
obtain signatures in which the element y1 is actually a low-degree polynomial.
If the degree is low enough, we will see that this reveals the whole secret key
right away, from a single faulty signature!

Indeed, suppose that we can obtain a faulty signature obtained by forcing a
termination of the loop for sampling y1 after the m-th iteration, with m � n.
Then, the resulting polynomial y1 is of degree at most m − 1. As part of the
faulty signature, we get the pair (c, z1) with z1 = (−1)bs1c+y1. Without loss of
generality, we may assume that b = 0 (we will recover the whole secret key only
up to sign, but in BLISS, (s1, s2) and (−s1,−s2) are clearly equivalent secret
keys). Moreover, with high probability, c is invertible: if we heuristically assume
that c behaves like a random element of the ring from that standpoint, we expect
it to be the case with probability about (1 − 1/q)n, which is over 95% for all
proposed BLISS parameters. We thus get an equation of the form:

c−1z1 − s1 ≡ c−1y1 ≡
m−1∑

i=0

y1,ic−1xi (mod q) (1)

Thus, the vector v = c−1z1 is very close to the sublattice of Zn generated by
wi = c−1xi mod q for i = 0, . . . ,m−1 and qZn, and the difference should be s1.

The previous lattice is of full rank in Z
n, so the dimension is too large to

apply lattice reduction directly. However, the relation given by Eq. (1) also holds
for all subsets of indices. More precisely, let I be a subset of {0, . . . , n − 1} of
cardinality �, and ϕI : Zn → Z

I be the projection (ui)0≤i<n �→ (ui)i∈I . Then we
also have that ϕI(z1) is a close vector to the sublattice LI of ZI generated by
qZI and the images under ϕI of the wi’s; and the difference should be ϕI(s1).

Equivalently, using Babai’s nearest plane approach to the closest vector prob-
lem, we hope to show that

(
ϕI(s1), B

)
, for a suitably chosen positive constant

B, is the shortest vector in the sublattice L′
I of ZI ×Z generated by

(
ϕI(v), B

)

as well as the vectors
(
ϕI(wi), 0

)
and qZI × {0}.

2 In the other Fiat-Shamir schemes such as [20], the distribution of each coefficient
is uniform in some interval rather than Gaussian, but this doesn’t affect our attack
strategy at all.
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The volume of L′
I is given by:

vol(L′
I) = B · vol(LI) = B · vol(qZI)

[LI : qZI ]
= Bq�−r

where r is the rank of the family
(
ϕI(w0), . . . , ϕI(wm−1)

)
in Z

I
q , which is at

most m. Hence vol(L′
I) ≥ Bq�−m, and the Gaussian heuristic predicts that the

shortest vector should be of norm:

λI ≈
√

� + 1
2πe

· vol(L′
I)

1/(�+1) �
√

� + 1
2πe

· B1/(�+1)q1−(m+1)/(�+1).

Thus, we expect that
(
ϕI(s1), B

)
will actually be the shortest vector of L′

I

provided that its norm is significantly smaller than this bound λI . Now ϕI(s1)
has roughly δ1� entries equal to ±1, δ2� entries equal to ±2 and the rest are
zeroes; therefore, the norm of

(
ϕI(s1), B

)
is around

√
(δ1 + 4δ2)� + B2. Let us

choose B = �√δ1 + 4δ2. The condition for s1 to be the shortest vector LI can
thus be written as:

√
(δ1 + 4δ2) · (� + 1) �

√
� + 1
2πe

· B1/(�+1)q1−(m+1)/(�+1)

or equivalently:

� + 1 �
m + 1 + log

√
δ1+4δ2

log q

1 − log
√

2πe(δ1+4δ2)

log q

. (2)

The denominator of the right-hand side of (2) ranges from about 0.91 for
the BLISS–I and BLISS–II parameter sets down to about 0.87 for BLISS–IV.
In all cases, we thus expect to recover ϕI(s1) if we can solve the shortest vector
problem in a lattice of dimension slightly larger than m. This is quite feasible
with the LLL algorithm for m up to about 50, and with BKZ for m up to 100
or so.

To complete the attack, it suffices to apply the above to a family of subsets
I of {0, . . . , n − 1} covering the whole set of indices, which reveals the entire
vector s1. The second component of the secret key is then obtained as s2 =
a1s1/2 mod q.

Simulations using our Sage implementation (see the full version of this
paper [13]) confirm the theoretical estimates, and show that full key recovery
can be achieved in practice in a time ranging from a few seconds to a few hours
depending on m. Detailed experimental results are reported in Table 1.

Remark 1. A variant of that attack which is possibly slightly simpler consists
in observing that ϕI(s1) should be the shortest vector in the lattice generated
by LI and ϕI(v). The bound on the lattice dimension becomes essentially the
same as (2). The drawback of that approach, however, is that we obtain each
ϕI(s1) up to sign, and so one needs to use overlapping subsets I to ensure the
consistency of those signs.
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Table 1. Experimental success rate of the attack and average CPU time for key recov-
ery for several values of m, the iteration after which the loop-abort fault is injected. We
attack the BLISS–II parameter set (n, q, σ, δ1, δ2, κ) = (512, 12289, 10, 0.3, 0, 23) from
[9]. Since the choice of � has no effect on the concrete fault injection (e.g. it does not
affect the required number of faulty signatures, which is always 1), we did not attempt
to optimize it very closely. The simulation was carried out using our Sage implementa-
tion (see the full version of this paper [13]) on a single core of an Intel Xeon E5-2697v3
workstation, using 100 trial runs for each value of m.

Fault after
iteration number
m =

2 5 10 20 40 60 80 100

Theoretical
minimum
dimension �min

3 6 11 22 44 66 88 110

Dimension � in
our experiment

3 6 12 24 50 80 110 150

Lattice reduction
algorithm

LLL LLL LLL LLL BKZ–20 BKZ–25 BKZ–25 BKZ–25

Success
probability (%)

100 99 100 100 100 100 100 98

Avg. CPU time
to recover �
coeffs. (s)

0.002 0.005 0.022 0.23 7.3 119 941 33655

Avg. CPU time
for full key
recovery

0.5 s 0.5 s 1 s 5 s 80 s 14 min 80 min 38 h

Remark 2. Note that a single faulty signature is enough to recover the entire
secret key with this attack, a successful key recovery may require several fault
injections. This is due to rejection sampling: after a faulty y1 is generated, the
whole signature may be thrown away in the rejection step. On average, the fault
attacker may thus need to inject the same number of faults as the repetition
rate of the scheme, which is a small constant ranging from 1.6 to 7.4 depending
on chosen parameters [9], and even smaller with the improved analysis of
BLISS–B [8].

Remark 3. Finally, we note that in certain hardware settings, fault injection
may yield a faulty value of y1 in which all coefficients upwards of a certain
degree bound are non zero but equal to a common constant (see the discussion
in Sect. 5.3). Our attack adapts to that setting in a straightforward way: that
simply means that y1 is a linear combination of the xi for small i and of the
all-one vector (1, . . . , 1), so it suffices to add that vector to the set of lattice
generators.
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4 Attack on Hash-and-Sign Type Lattice-Based
Signatures

Our second attack targets the practical hash-and-sign signature scheme of Ducas
et al. [11], which is based on GPV-style lattice trapdoors. More precisely, the
faults we consider are again early loop aborts, this time in the lattice-point
Gaussian sampling routine used in signature generation.

4.1 Description of the Attack

The attack can be described as follows. A correctly generated signature element
is of the form z = R · f + r · F ∈ Z[x]/(xn + 1), where the short polynomials f
and F are components of the secret key, and r,R are short random polynomials
sampled in such a way that z follows a suitable Gaussian distribution. In fact,
r,R are generated coefficient by coefficient, in a single loop with 2n iterations,
going from the top-degree coefficient of r down to the constant coefficient of R.

Therefore, if we inject a fault aborting the loop after m ≤ n iterations (in
the first half of the loop), the resulting signature simply has the form:

z = r0xn−1F + r1xn−2F + · · · + rm−1xn−mF.

Any such faulty signature is, in particular, in the lattice L of rank m generated
by the vectors xn−iF, i = 1, . . . ,m, in Z[x]/(xn + 1).

Suppose then that we obtain several signatures z(1), . . . , z(�) of the previous
form. If � is large enough (slightly more than m is sufficient; see Sect. 4.2 below
for an analysis of success probability depending on �), the corresponding vectors
will then generate the lattice L. Assuming the lattice dimension is not too large,
we should then be able to use lattice reduction to recover a shortest vector in L,
which is expected to be one of the signed shifts ±xn−iF, i = 1, . . . ,m, since the
polynomial F is constructed in a such a way as to make it quite short relative to
the Gram–Schmidt norm of the ideal lattice it generates. Hence, we can recover
F among a small set of at most 2m candidates.

And recovering F is actually sufficient to reconstruct the entire secret key
(f ,g,F,G), and hence completely break the scheme. This is due to the particular
structure of the NTRU lattice. On the one hand, G is linked to F via the public
key polynomial h: G = F ·h mod q, so we obtain it directly. On the other hand,
the basis completion algorithm of Hoffstein et al. [21] allows to recover the pair
(f ,g) from (F,G) via the defining relation f · G − g · F = q. This is actually
used in the opposite direction in the key generation algorithm of the scheme of
Ducas et al. (i.e. they construct (F,G) from (f ,g): see steps 5–12 of KeyGen
in Fig. 2), but applying [21, Theorem 1], the technique is easily seen to work in
both ways.

Moreover, if we start from a polynomial of the form ζF where ζ is of the form
±xα, then applying the previous steps yields the quadruple (ζf , ζg, ζF, ζG),
which is also a valid secret key equivalent to (f ,g,F,G), in the sense that signing
with either keys produces signatures with exactly the same distributions. Thus,
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we don’t even need to carry out an exhaustive search on several possible values
of F after the lattice reduction step: it suffices to use the first vector of the
reduced basis directly.

4.2 How Many Faults Do We Need?

Let us analyze the probability of success of the attack depending on the iteration
m at which the iteration is inserted and the number � > m of faulty signatures
z(i) available. As we have seen, a sufficient condition for the attack to succeed
(provided that our lattice reduction algorithm actually finds a shortest vector)
is that the � faulty signatures generate the rank-m lattice L defined above. This
is not actually necessary (the attack works as soon as one of the shifts of F is
in sub-lattice generated by the signatures, rather than all of them), but we will
be content with a lower bound on the probability of success.

Now, that condition is equivalent to saying that the vectors (r(i)0 , . . . , r
(i)
m−1) ∈

Z
m (sampled according to the distribution given by the GPV algorithm) that

define the faulty signatures:

z(i) = r
(i)
0 xn−1F + · · · + r

(i)
m−1x

n−mF

generate the whole integer lattice Z
m. But the probability that � > m random

vectors generate Z
m has been computed by Maze et al. [28] (see also [14]), and

Table 2. Experimental success probability of the attack and average CPU time for
key recovery for several values of m, the iteration after which the loop-abort fault is
injected. We consider the attack with � = m + 1 and � = m + 2 faulty signatures. The
attacked parameters are (n, q) = (256, 1021) as suggested in [11] for signatures. The
simulation was carried out using our Sage implementation (see the full version of this
paper [13]) on a single core of an Intel Xeon E5-2697v3 workstation, using 100 trial
runs for each pair (�, m).

Fault after iteration
number m =

2 5 10 20 40 60 80 100

Lattice reduction
algorithm

LLL LLL LLL LLL LLL LLL BKZ–20 BKZ–20

Success probability for
� = m + 1 (%)

75 77 90 93 94 94 95 95

Avg. CPU time for
� = m + 1 (s)

0.001 0.003 0.016 0.19 2.1 8.1 21.7 104

Success probability for
� = m + 2 (%)

89 95 100 100 99 99 100 100

Avg. CPU time for
� = m + 2 (s)

0.001 0.003 0.017 0.19 2.1 8.2 21.6 146
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is asymptotically equal to
∏�

k=�−m+1 ζ(k)−1. In particular, if � = m+d for some
integer d, it is bounded below by:

pd =
+∞∏

k=d+1

1
ζ(k)

.

Thus, if we take � = m + 1 (resp. � = m + 2, � = m + 3), we expect the attack
to succeed with probability at least p1 ≈ 43% (resp. p2 ≈ 71%, p3 ≈ 86%).

As shown in Table 2, this is well verified in practice (and the lower bound is
in fact quite pessimistic). Moreover, the attack is quite fast even for relatively
large values of m: only a couple of minutes for full key recovery for m = 100.

5 Implementation of the Faults

Once again, due to the obvious similarities between the four instances of the
Fiat-Shamir family that we choose to attack, we only give details of the attack
on the BLISS scheme. We also give details for the GPV scheme but they are
essentially the same as the one for BLISS since the underlying fault introduced
is strictly identical.

In this section we investigate how an attacker may obtain helpful faulty sig-
natures for the proposed attacks. We base our discussion on two available imple-
mentations of BLISS signature, namely the software implementation from Ducas
and Lepoint [10] and the FPGA implementation by Pöppelmann et al. [36], and
on Prest’s software implementation of the GPV-based scheme of Ducas et al. [37].
Notice that the discussion on the hardware implementation is also valid for the
implementation of [20] since both share some common components and archi-
tecture that we exploit (for instance BRAM storage).

We emphasize the fact that those three implementations were not supposed
to have any resilience with respect to fault attacks and were only developed as
proofs of concept to illustrate the efficiency properties of the schemes. The point
here is to show that the fault attacks presented in this paper are relevant based
on the analysis of freely available and published implementations to put forward
the need of dedicated protections against faults attacks (when attackers have
such abilities).

5.1 Classical Fault Models

Faults during a computation may be induced by different means as a laser beam
shot, electromagnetic injection, under-powering, glitches, etc. These faults are
mainly characterized by their

– range: impacting a single bit or many bits (e.g. register or memory word);
– effect: typically target chunk is set to a chosen value, random value or all-

zero/all-one value;
– persistence: a fault may only modify the target for a short period or it may

be definitive.
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Obviously, some fault models are close from being purely theoretical: it is very
unlikely to be able to set a 32-bit register to 0xbad00dad during precisely 2 cycles.
Nevertheless many recent works have been published showing that some faults
models that seemed overdone are actually obtained during lab experiments. One
example is the work of Ordas et al. at CARDIS 2014 [33] showing that with finely
tuned EM probes it is possible to induce a single-bit fault (bit-set or bit-reset).

In the next subsections we discuss which fault models3 may lead to faulty
signatures relevant with respect to the attacks presented in this paper. We did
not investigate clock glitches or under-powering which induce violation of the
setup time and which actual side-effects are implementation and compilation-
dependent (with large ranges of possible parameters to test). Nevertheless, they
may not be overseen in the evaluation of a chip since they may also lead to the
generation of relevant faulty signatures.

5.2 Fault Attacks on Software Implementations

Polynomial y1 can be generated using a loop over the n coefficients. This is,
again, how the implementation in [10] is made: a loop is constructing polyno-
mials y1 and y2 one coefficient at a time using a Gaussian sampler (function
Sign::signMessage). The condition to perform the attack is rather few restric-
tive since we only require y1 to have at most (roughly) a quarter of unknown
coefficients. Such result can be obtain by going out the loop after a few itera-
tions. A random fault on the loop counter or skipping the jump operation will
lead to such result.

Notice here that it is less trivial here to decide whether a faulty signature
will be helpful or not. Hopefully, the timing precision is much less important
here since the attack will succeed even with 50 unknown coefficients out of
512. This means that the time-window for the fault to occur is composed of
decades of loop iterations. Moreover, we may use side-channel analysis to detect
the loop iteration pattern to trigger the fault injection. Such pattern is likely
to be detected after much less than 50 iterations and thus it seems that the
synchronization here will be relatively easy.

Similarly, the short random polynomials R and r used in the GPV scheme
are generated in a single loop [37] ranging from leading coefficient of r to the
constant term in R which allows to fault both polynomials using a single fault.
Again, a random fault on the counter or skipping a jump makes it work and the
time-window large according to the results shown in Table 2.

To conclude, these attacks seems to be a real threat since synchronization
(which is a major difficulty when performing fault attacks) is eased by the loose
condition on the number of known coefficients in faulted polynomials.

5.3 Fault Attacks on Hardware Implementations

Generation of polynomial y1 requires n random coefficients. It is very unlikely
that all these coefficients are obtained at the same time (n is too large) thus y1

3 We only focus on single fault attacks here.
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generation will be sequential. This is the case in the implementation we took as
example where the super memory is linked to the sampler through a 14-bit port.
We may fault a flag or a state register to fool the control logic (here the bliss
processor) and keep part of the BRAM cells to their initial state. If this initial
state is known then we know all the corresponding coefficients and hopefully
the number of unknown ones will be small enough for the attack to work. The
large number of unknown coefficients handled by the attack again helps the
attacker by providing a large time window for the fault to occur. The feasibility
of the attack will mostly depend on the precise flag/state implementation and
the knowledge of memory cells previous/initial value.

There is a second way of performing the fault injection here. The value of y1

has to be stored somehow until the computation of z1 (close to the end of the
signature generation). In the example implementation a BRAM is used. We may
fault BRAM access to fix some coefficients to a known value. A possible fault
would be to set the rstram or rstreg signal to one (Xilinx’s nomenclature).
Indeed, when set to one, this will set the output latches (resp. register) of the
RAM block to some fixed value SRVAL defined by the designer. We may notice
two points to understand why this kind of fault enables the proposed attack.

(i) The value y1 used to compute u will not be the faulted one but this has no
impact on the attack.

(ii) If we do not know the default value for the output register, all coefficients
are unknown but a big part of them are equal to the same unknown default
value. In that case, the attack is still applicable by adding one generator to
the constructed lattice: see Remark 3 in Sect. 3.

Again a large time window is given to the attacker due to sequential read induced
by the size of y1.

The BRAM storage of y1 helps here the attacker since a single bit-set fault
may have effects on many coefficients. The only difficulty seems to be able to
perform a single-bit fault—which seems to be possible according to [33]—and
the rstram signal localization4.

6 Conclusion and Possible Countermeasures

We have shown that unprotected implementations of the lattice-based signature
schemes that we considered are vulnerable to fault attacks, in fault models that
our analysis suggests are quite realistic: the faulty signatures required by our
attacks can be obtained on actual implementations. As a result, countermeasures
should be added in applications where such a physical attacker is relevant to the
threat model.
4 Since y1 is not directly outputted checking if the attack actually worked is a bit

more tricky. Again side-channel collision analysis may help here. We may also notice
that if the faulty y1 is sparse (that is known coefficients have been set to zero) then
the number of non-zero coefficients in the corresponding z1 should be significantly
smaller then for a z1 corresponding to a dense y1.
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Simple countermeasures exist to thwart the single fault attacks proposed.
There are simple, non-cryptographic countermeasures that consist in validat-
ing that the full loop have been correctly performed. This can be achieved for
instance by adding a second loop counter and doing a consistency check after
exiting the loop. Such a countermeasure is very cheap and we therefore recom-
mend introducing it in all deployed implementations.

Nevertheless, it will only detect early-abort faults while an attacker may
succeed in getting the same kind of faulty signature using another technique.
For instance, we mentioned the possibility of faulting BRAM blocks so that they
output a fixed value. For software implementations, the compiler may decide to
put the coefficient in some RAM location which address could be faulted to
point to another part of the memory leading in many coefficients having the
same value. A single fault may also alter instruction cache leading to a nop
operation instead of a load from memory and thus not updating the coefficient.
We propose now other countermeasures that may deal with this issue for both
types of signature schemes we considered.

We have described our attack on the Fiat-Shamir schemes in a setting where
the attacker can obtain a commitment polynomial y of low degree, and it works
more generally with a sparse y, provided that the attackers knows where the non
zero coefficients are located. If the locations are unknown, however, the attack
does not work, so one possible countermeasure is to randomize the order of the
loop generating y. One should be careful that this may not protect against faults
introduced after the very first few iterations, however: in the case of BLISS, for
example, we have seen that we could easily attack polynomials y in which the
non zero coefficients are located in the 20% lower degree coefficients, say; then,
if a fault attacker can collect a few hundred faulty signatures with y of very low
Hamming weight (say 3 or 4) at random positions, they have a good chance of
finding one fault with all non zero coefficients in the lower 20%, and hence be
able to attack.

Another possible approach for the Fiat-Shamir schemes is to check that the
degree of the generated y is not too low. One cannot demand that all its coeffi-
cients are non zero, as this would skew the distribution and invalidate the security
argument, but verifying that the top ε · n coefficients of y are not all zero for
some small constant ε > 0, say ε = 1/16, would be a practical countermeasure
that does not affect the security proof. Indeed, in the case of BLISS for exam-
ple, the probability that all of these coefficients vanish is roughly (1/σ

√
2π)εn,

which is exponentially small. Thus, the resulting distribution of y after this
check is statistically indistinguishable from the original distribution, and secu-
rity is therefore preserved. Moreover, the lattice dimension required to mount
our fault attack is then greater than (1 − ε)n, so it will not work. An additional
advantage of that countermeasure is that it also adapts easily to thwart faults
that cause all the top coefficients of y to be equal to some constant non-zero
value.

Regarding the hash-and-sign signature of Ducas et al., one possible coun-
termeasure is to simply check the validity of generated signatures. This will
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usually work due to the fact that a faulty signature generated from an early
loop abort from the GaussianSampler algorithm is of significantly larger
norm than a valid signature: a rough estimate of the norm after m ≤ n iter-
ations is ‖F‖2

√
mq/12 (as q/12 is the variance of a uniform random variable in

{−(q − 1)/2, . . . , (q − 1)/2}), which is too large for correct verification even for
very small values of m. An added benefit of that countermeasure is that even
the correct signature generation algorithm has a very small but non zero prob-
ability of generating an invalid signature, so this countermeasure doubles up as
a safeguard against those rare accidental failures.

Acknowledgments. We would like to thank Keita Xagawa and anonymous reviewers
for useful comments on earlier versions of this paper.
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23. Howe, J., Pöppelmann, T., O’Neill, M., O’Sullivan, E., Güneysu, T.: Practical
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Abstract. With the emergence of the Internet of Things and lightweight
cryptography, one can observe a gradual shift of interest in the design of
block ciphers. Naturally, security is still of paramount importance, but
one is willing to trade a part of that security in order to obtain higher
speed and/or smaller implementation area. Accordingly, a common met-
ric in many cipher proposals has been the gate count for realizing the
cipher in hardware. On the other side, it is also important, especially
for battery powered devices, to have a small energy consumption. That
is why we can observe the following shift of research focus: from the
analysis of the energy consumption of existing ciphers and their building
blocks to the design of new ciphers and building blocks, specifically for
low energy. Existing research results focusing on the energy consumption
of symmetric ciphers, suggest that the S-box is the most expensive part
in the majority of lightweight implementations. If we only consider purely
combinatorial S-boxes, we can focus on reducing the power consumption
of the S-box in order to minimize the energy consumption of the overall
cipher. In this paper, we propose several methods to obtain 4 × 4 and
5 × 5 S-boxes that are either power or area efficient. Our results show
that heuristics should be considered as a viable choice for the generation
of S-boxes with good implementation properties.

1 Introduction

When designing a cryptographic cipher, security is the most important concern.
Indeed, there exist a number of threats to be evaluated and it is advisable to
build in a security margin large enough to withstand future attacks. By doing so,
ciphers are usually large and often don’t fit on constrained platforms like smart
cards or microprocessors. Furthermore, even if they do fit, the speed of the exe-
cution renders the cipher often impractical for most use cases. This has led to
the advent of lightweight cryptography. In lightweight cryptography, the security
constraints are usually relaxed in order to make smaller and faster ciphers. Natu-
rally, the security of such ciphers is still of prime importance, but the implemen-
tation properties are also taken into proper consideration. In battery-powered
devices, considering only the area or speed is not enough, since the lifetime of the
battery is determined by the energy efficiency of the device. In the examination
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of lightweight ciphers, we can observe that many are realized as Substitution
Permutation Networks (SPNs) where the substitution part is done by one or
more Substitution boxes (S-boxes). Recent results show that in a number of
such ciphers, the S-box is the most power hungry building block [1]. There-
fore, this work focuses on the design of S-boxes for lightweight cryptography. To
be more precise, we experiment with S-boxes of size 4 × 4 and 5 × 5 that are
implementation-friendly while remaining with good cryptographic properties.

We emphasize that our approach is to generate power efficient and/or small
S-boxes using methods that are as simple (i.e. computationally easy) as possi-
ble. The size of the search space containing all 4 × 4 lookup tables is equal to
22

4×4 = 264. Since we only consider bijections in the construction of S-boxes, the
search space is reduced to 16! (≈244). Reducing the search space even further,
considering only affine equivalent S-boxes of 16 optimal classes [2], would still
result in a search space size larger than 235. Evaluating the power consumption
of all S-boxes in the search space would consume too much time. This is even
worse for 5×5 S-boxes. Therefore, we advocate the use of heuristics for optimiz-
ing S-boxes for power/area efficiency and we offer the experimental results that
support our choice.

Considering the design choices for ciphers that use S-boxes, there are three
main scenarios. The first one is to use different S-boxes in the encryption and
decryption process, which is done in e.g. [3]. This is less efficient for area as
well as energy optimized ciphers, since it requires the implementation of two
different S-boxes. From a heuristics perspective, this scenario would increase the
search space size, because it requires the optimization of the area and/or power
consumption of the combination of both the encryption and the decryption S-
boxes. Therefore, we do not consider this option in our experiments. The second
scenario is to use a cipher in counter mode or in a sponge construction; in that
case, the inverse of the S-box is not needed. This scenario is good for area and
energy efficiency as well as for the minimization of the search space size. Finally,
the third scenario is to use involutive S-boxes, for which the S-box is the same as
its inverse. This is the approach used for instance in the Midori [4] and Noekeon
ciphers [5].

The contributions of this paper are as follows:

1. In this work, we concentrate on the selection mechanism of S-boxes with
power/area efficiency as a goal. As far as we know, we are the first to conduct
such investigation. Since power/area efficiency plays an important role in
lightweight ciphers, we also concentrate only on the S-box dimension usually
found in such constructs, namely, we experiment with 4 × 4 and 5 × 5 S-box
sizes.

2. We experiment with several different design methods and we identify the
advantages of each of the methods. As a result we obtain a number of
power/area efficient S-boxes of which the best one has a more than two times
smaller power consumption and an almost two times smaller area than the
PRESENT S-box. Naturally, our S-boxes also fulfill relevant cryptographic
properties as discussed in [2].
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3. Besides the main contribution, we also analyze the power/area efficiency of a
number of S-boxes used in modern lightweight ciphers.

We emphasize that the main goal of this paper is to present a methodology
on the construction of power/area efficient S-boxes, and not to concentrate on
the specific results or technology. In all experiments, we use the NANGATE 45
open cell library.

The paper is organized as follows. Section 2 gives an overview of related work
in terms of lightweight cipher design and power/area evaluation/optimization. In
Sect. 3, we discuss basic notions about power and energy as well as the relevant
cryptographic properties of S-boxes. Section 4 presents the methodology we use
for obtaining power/area efficient S-boxes and discusses the results. Finally, in
Sect. 5, we end with a conclusion and possible future work.

2 Related Work

There exist a number of research studies on lightweight ciphers, two of the most
prominent ones being the PRESENT [6] and PRINCE [7] ciphers. In the rest of
this paper, we will also concentrate on the comparison with those two ciphers/S-
boxes. However, we mention several other ciphers that are SPN constructions
for which we evaluate the energy consumption of the S-boxes. Those ciphers are
RECTANGLE [3], Klein [8], Noekeon [5], and Luffa [9].

From the energy perspective of lightweight ciphers, Batina et al. give a com-
prehensive study of the area, power, and energy considerations in a number of
lightweight ciphers [10]. In their paper, the authors also show that area is not
always correlated with the power and energy consumption. This result further
justifies our approach that to find a power efficient S-box, one needs to consider
the power and not only the area. Knežević et al. analyze lightweight ciphers from
the latency perspective and they discuss trade-offs between latency on the one
hand and area, power, and energy on the other hand [11].

Kerckhof et al. present an evaluation of several lightweight ciphers with a
focus on the energy cost [12]. Next, Banik et al. study the energy consumption
of 9 lightweight ciphers as well as the AES cipher [1]. The authors also develop
a model that predicts the optimal value r at which the r-round unrolled archi-
tecture should have the best energy efficiency. Banik et al. propose the energy
efficient cipher Midori that uses involutive S-boxes that are extremely power
efficient [4]. We note that the smaller version of the cipher, Midori64, has been
broken and the authors recommend to use an S-box different from the one used
in Midori128, since that leads to another invariant subspace attack [13].

Besides those results, there exist a number of papers considering heuristics
to evolve S-boxes with good cryptographic properties [14,15], but we note that
none of those papers consider the implementation properties of S-boxes.
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3 Preliminaries

3.1 Power and Energy

The power consumption of a CMOS device is given by

Ptotal = Pdynamic + Pstatic. (1)

The dynamic power consumption originates from the switching activity of the
circuit, while the static power consumption is caused by subthreshold currents
and gate leakage. The static power consumption is constant over time and does
not depend on the clock frequency or the switching activity. In older technol-
ogy nodes the dynamic power consumption was dominant in the total power
consumption and the static power consumption was negligible. By moving to
smaller transistor dimensions and thinner gate oxide layers, subthreshold cur-
rents and gate tunneling currents have increased causing higher leakage currents.
Therefore, with smaller technology nodes, the relative contribution of the static
leakage power consumption has increased.

The dynamic energy relates to the dynamic power consumption as follows:

Pdynamic = Edynamic · fCLK , (2)

where fCLK is the clock frequency. The dynamic energy is given by

Edynamic = α · Cload · Vdd
2, (3)

where α is the switching activity of the signal and Cload is the load capacitance.

3.2 Cryptographic Properties of S-Boxes

The inner product of vectors a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1) is
denoted as a · b and equals a · b = ⊕n

i=1aibi. The addition modulo 2 is denoted
as “⊕”. The Hamming weight HW of a vector a , where a ∈ F

n
2 , is the number

of non-zero positions in the vector.
An (n,m)-function is a function from n bits to m bits. It is called bijective if

it takes every value of Fm
2 the same number of times, namely 2n−m [16]. Balanced

(n, n)-functions are permutations on F
n
2 .

The nonlinearity NF of an (n,m)-function F is equal to the minimum
nonlinearity of all non-zero linear combinations b ·F , with b �= 0, of its coordinate
functions fi [16].

NF = 2n−1 − 1
2

max
a∈F

n
2

v∈F
m∗
2

|WF (a , v)|. (4)

WF (a , v) is the Walsh-Hadamard transform of F :

WF (a , v) =
∑

x∈F
n
2

(−1)v ·F (x)⊕a·x . (5)
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The nonlinearity NF of any (n, n)-function F must satisfy the inequality [16]:

NF ≤ 2n−1 − 2
n−1
2 . (6)

An S-box F has fixed points if there exist x such that x = F (x ) [17].
Let F be a function from F

n
2 into F

n
2 and a, b ∈ F

n
2 . We denote:

D(a, b) = |{x ∈ F
n
2 : F (x + a) + F (x) = b}|. (7)

The entry at the position (a, b) corresponds to the cardinality of D(a, b) and is
denoted as δ(a, b). The δ-uniformity δF is then defined as [18,19]:

δF = max
a�=0,b

δ(a, b). (8)

To define the algebraic degree of an S-box, first we use the algebraic normal
form (ANF) representation of a Boolean function f [20] represented by a poly-
nomial in F2 [x0, . . . , xn−1] /(x2

0 − x0, . . . , x
2
n−1 − xn−1). ANF is a multivariate

polynomial defined as:
f(x ) = ⊕a∈F

n
2
h(a) · xa , (9)

where h(a) is defined by the Möbius inversion principle

h(a) = ⊕x�af(x ), for any a ∈ F
n
2 . (10)

The algebraic degree degf of a Boolean function f is defined as the number of
variables in the largest product term of the function’s ANF having a non-zero
coefficient [20]:

degf = max(HW (a) : h(a) = 1). (11)

The algebraic degree degF of an S-box F is the maximum algebraic degree
of all non-zero linear combinations of the coordinate functions (i.e. component
functions) of F [16]:

degF = max
b∈F

m∗
2

HW (b)=1

deg(b · F ). (12)

In the case of equality in Eq. (6), such functions are called almost bent (AB)
functions [16]. When a function is differentially 2-uniform, it is called almost
perfect nonlinear (APN) function [16]. Every AB function is also APN, but
the other direction does not hold. AB functions exist only in an odd number
of variables, while APN functions also exist for an even number of variables.
Furthermore, the maximal algebraic degree of AB functions equals (n + 1)/2
while for the inverse APN equals n − 1 [21].

Size 4×4. Leander and Poschmann define optimal 4-bit S-boxes as being bijec-
tive, with the minimal possible linearity (or, maximal possible nonlinearity) and
with a minimal δ-uniformity value. For optimal S-boxes, both NF and the δ-
uniformity are equal to 4 [2].
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Furthermore, Leander and Poschmann show that all optimal 4-bit S-boxes
belong to 16 classes, i.e. all optimal S-boxes are affine equivalent to one of those
classes [2]. For two S-boxes Sa and Sb to be equivalent, the following equation
needs to hold:

Sa(x) = B(Sb(A(x) ⊕ a)) ⊕ b, (13)

where A and B are invertible 4 × 4 matrices and a , b ∈ F
4
2.

For PRESENT, S-boxes from the 16 classes mentioned in [2] are considered,
but some lightweight ciphers use S-boxes with different cryptographic conditions.
For instance, the authors of the PRINCE cipher impose several additional cri-
teria on the S-box and therefore there are only 8 out of the 16 classes that are
acceptable [7]. Alternatively, one can follow a different classification of S-boxes
as for example given in [22].

Size 5 × 5. When considering 5 × 5 S-boxes, the cryptographic properties one
can obtain differ with regards to the choice of the S-box. As a first example, we
consider the Keccak S-box [23] for which both the nonlinearity and δ-uniformity
are equal to 8. Note that those values are relatively far from the optimal ones.
Furthermore, the algebraic degree of Keccak is low, and it actually equals the
minimal possible algebraic degree for a nonlinear function. However, the Keccak
S-box has an extremely efficient hardware implementation. The S-box used in
Ascon [24] is an affine transformation of the Keccak S-box in order to remove
the fixed points and to increase the branch number value [25]. On the other
hand, the PRIMATEs S-box [26] is based on an almost bent permutation, which
means it has a nonlinearity equal to 12 and a δ-uniformity equal to 2, while the
algebraic degree is only 2.

4 Methodology and Results

4.1 Power Estimation

Before the optimization procedure, the working frequency is specified. To illus-
trate the methodology, we work with a clock frequency of 10 MHz. This is because
the dynamic power and the cell leakage power have similar orders of magnitude
for this frequency for the technology used in this paper. This enables us to opti-
mize both shares of the power at the same time. Furthermore, for a fixed clock
frequency and computation time, optimizing for energy is the same as optimiz-
ing for average power. We note that our methodology can be used for any other
frequency. In this work, the power consumption of S-boxes is estimated by means
of simulation.

In the first step of our simulation setup, an S-box is generated in the
style of a lookup table (LUT). A Matlab (R2014b) script is used to gener-
ate the HDL description of the S-box (Verilog file S-box.v). For logic synthe-
sis, we use a standard cell approach using the NANGATE 45 open cell library
(PDKv1 3 v2010 12). Synopsys Design Compiler (I-2013.12) is used to produce
the gate-level netlist and the delay file (.sdf ). The standard method for estimat-
ing the power consumption using the Synopsys tool chain is based on the random
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switching activity of the internal nodes. While this approach may be suitable
for first-order estimation it does not give realistic application-specific data. In
order to obtain a more realistic estimation, one needs to use a real test-bench
to approximate the switching activity for each gate. For this purpose, we have
developed a test-bench that goes through all possible n×(n−1) input transitions
of the S-box. Then, Modelsim SE PLUS 6.6d is used to simulate the wave file
(.vcd) containing the switching activity of all nodes. This file is then converted
to an activity file (.saif) using vcd2saif (D-2010.06-SP2). Finally, Design Com-
piler is used to estimate the power consumption. The obtained results are used
as the fitness value for the optimization algorithm for both 4×4 and 5×5 S-box
sizes. In Fig. 1, we depict our simulation setup in which the communication of
our search strategies with the simulation part of the framework can be observed.

Fig. 1. Simulation setup for the generation/evaluation of S-boxes.

4.2 4 × 4 S-Boxes

The results for several commonly used 4 × 4 S-boxes are given in Table 1.

Random Search. As a first step in finding power/area optimized S-boxes, we
run a simple random search to evaluate whether the optimization problem is triv-
ial (disregarding the fact that randomly finding an optimal S-box is possible, but
not trivial). We emphasize that this step serves only for comparison purposes.
We create random S-boxes as permutations of values between 0 and 2n − 1 and
check the results in terms of area and power. When evaluating only the optimal
S-boxes, our results show that the power consumption is higher than 550 nW
which makes this method quite inefficient when looking for power efficient
S-boxes. In terms of area, the optimal S-boxes obtained through random search
have an area larger than 20 GE.
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Table 1. Reference 4 × 4 S-boxes

S-box Dynamic power Leakage power Area

PRESENT [6] 470.2837 nW 430.608 nW 22.6667 GE

PRINCE [7] 256.176 nW 326.0947 nW 17 GE

Klein [8] 592.4351 nW 568.9604 nW 28.33 GE

Noekeon [5] 353.266 nW 383.658 nW 19.333 GE

Luffa [9] 413.1651 nW 457.9016 nW 23.667 GE

Rectangle [3] 535.5948 nW 473.317 nW 24 GE

Midori Sb0 [4] 173.4473 nW 259.3096 nW 13.6667 GE

Midori Sb1 283.6654 nW 297.5085 nW 15.333 GE

Piccolo [27] 334.1657 nW 342.5687 nW 17.333 GE

Heuristics. Here, we improve the power/area of the S-boxes by using heuris-
tics instead of random search. In order to do that, we investigate a population
based metaheuristic algorithm called the Genetic Algorithm (GA). Although not
widely used in the cryptographic community, we observe there are some papers
in which GAs show good results for 4 × 4 S-boxes [28,29].

In order to simplify the methodology as much as possible, we use a simple GA
with a 3-tournament selection [30]. In a 3-tournament selection, three solutions
are selected randomly and the worst one is discarded. From the remaining two
solutions one offspring is created by the crossover operator. Each solution (i.e.
individual) is represented as a permutation of values in the range [0, 2n−1]. This
representation avoids the necessity to look after the bijectivity property. We use
well-known operators for permutation encoding, namely, the Toggle mutation
and the Order crossover. In the Toggle mutation we randomly select two values
and swap them. The Order crossover (OX) works by first randomly selecting two
crossover points and copying everything between those two points from the first
parent to the offspring. Then, starting from the second crossover point in the
second parent, the unused numbers are copied in the order they appear in that
parent [30]. The initial population is created uniformly at random and its size
equals 100 individuals. We note that the computational complexity of the GA
is negligible when compared with the evaluation cost, i.e. estimating the area or
power consumption as further discussed later. As a stopping criterion, we use
the number of evaluations without improvement, which is 30 generations in our
case. Note that this algorithm also has the property of elitism, which means that
the best solution will always remain intact in the population [30]. In order to
better understand how GA works, we give a short pseudocode description:
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1: Input : Parameters of the algorithm
2: Output : Optimal solution set
3: t ← 0
4: P (0) ← CreateInitialPopulation
5: while TerminationCriterion do
6: t ← t + 1
7: P ′(t) ← SelectMechanism (P (t − 1))
8: P (t) ← V ariationOperators(P ′(t))
9: end while
10: Return OptimalSolutionSet(P )

In Fig. 2, we display one iteration of tournament selection, crossover and
mutation (i.e., one generation of the GA). The numbers written next to the
solutions represent the solutions’ fitness values. We note that we expect that
similar results could be obtained with other heuristic techniques, like local search
for instance. However, we opted to work with GAs since they use a population
of individuals, which allows us to generate a number of solutions before sending
the data for evaluation. Since the evaluation part is the most expensive one, it
makes sense to run the power and area estimation at once for a whole population,
while with local search, every evaluation would consist of only one individual.
For further details about GAs, we refer the readers to [30].

Fig. 2. One generation of the GA.

To evaluate the quality of each obtained S-box, we use a fitness function that
consists of two parts. The first part checks the cryptographic properties of the
S-box and only if all the criteria are met, it progresses to the second part where
the power/area measurements are done. All S-boxes are ranked on the basis of
their fitness where a higher value means an S-box is better. Therefore, since
lower δ-uniformity is better, we subtract δ from a constant value. In summary,
for the first part (cryptographic evaluation), the fitness function equals:

fitness = NF + (2m − δ). (14)

With this equation, we allow that our solutions have fixed points, but since we
observe that the removal of fixed points can affect the power/area consumption,
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we also add that part to the fitness function. Since we work under the assumption
that the smaller number of fixed points the better, we subtract the number of
fixed points from the maximal possible number of fixed points:

fitness = NF + (2m − δ) + (2m − nr fixed points). (15)

We note that we experimented with more complex fitness functions where
we added weights to each parameter, but here we present the simplest version
of fitness function that yields good results. Such simple fitness function has
advantages that it is more intuitive and there is no need to tune the weights
in it. To state it differently, for size 4 × 4, this fitness function is more than
sufficient to find solutions with maximal nonlinearity and minimal δ-uniformity
(with or without fixed points). However, when working with size 5×5, there are
no weight factors for the fitness function that reach values as obtained in e.g., AB
functions. To improve the cryptographic properties, we believe one should use a
completely different fitness function considering not only the nonlinearity value,
but also all the values present in the Walsh-Hadamard spectrum. Naturally, this
holds also for sizes larger than 5 × 5. We leave this research direction for future
work.

In the second part of the evaluation, only those S-boxes that have the maxi-
mal nonlinearity and the minimal δ-uniformity are evaluated with regards to the
power/area consumption. This means that all our solutions must have optimal
cryptographic properties before the power/area estimation is performed. When
evaluating power, we take into account both static power and dynamic power
(i.e., we consider the sum of those two values). Naturally, this also means that the
results could be somewhat different if only one power value is considered. Still,
we believe our approach is the most general one, and we note that changing the
fitness functions and consequently optimization process would be trivial. We also
discuss the influence of the operators used on the obtained results. For instance,
since the power consumption can change significantly with a single mutation
operation, the question is how that influences the search process. It is not possi-
ble to give a definitive answer to this question, and for sure there will be a number
of occasions in the evolution process where such a small change influences the
fitness value significantly. However, from the other perspective, there will also
be a number of building blocks (i.e., subsets of the solutions/permutations) that
have a low power consumption and when combined also have a low power con-
sumption. Because of that, the search process will eventually converge to better
solutions, as evident from our results. In Table 2, we give results for the best
evolved S-boxes, both for S-boxes with and without fixed points. Note that all
S-boxes are optimal, so we do not add the cryptographic properties to the table.
Furthermore, all mentioned S-boxes also have a maximal algebraic degree of 3. It
is interesting to note that when optimizing with regards to the power consump-
tion, we also found an S-box with smaller area than when optimizing for area
(for the case without fixed points). A possible reason for such a result is that
when considering power, there are more values one can obtain and therefore the
search space is more fine grained. On average, our search process needed several
hours to reach those solutions.
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Table 2. Best evolved 4 × 4 S-boxes

Area results

With fixed points 13, 1, 3, 11, 12, 2, 7, 10, 0, 5, 8, 9, 4, 6, 14, 15

Area: 14.33 GE

Without fixed points 7, 10, 11, 8, 5, 3, 1, 9, 6, 2 15, 0, 4, 14, 12, 13

Area: 13.33 GE

Power results

With fixed points 3, 1, 2, 10, 14, 5, 7, 15, 4, 6, 0, 11, 13, 12, 8, 9

Dynamic power: 237.16 nW Leakage power: 297.52 nW Area: 14.67 GE

Without fixed points 13, 5, 10, 4, 7, 1, 2, 0, 14, 6, 8, 12, 15, 3, 9, 11

Dynamic power: 206.1 nW Leakage power: 240.73 nW Area: 12.67 GE

Involutive S-Boxes. The total number of involutions for an S-box of size n×n
equals [31]:

#Involution =
2n−1∑

i=0

2n!
(2n−1 − i)!22n−1−i

. (16)

If we consider the 4 × 4 case, there are in total 462 067 736 involutive S-boxes.
This search space can be exhaustively searched if we consider only relevant
cryptographic properties, but when power/area estimation is necessary, it still
represents a search space too large to be efficiently exhausted. In order to conduct
this search, we implemented a recursive swap algorithm that traverses all possible
involutions with a defined number of fixed points. We tested more than 250 000
involutive S-boxes that are optimal (i.e., with the best possible nonlinearity and
δ-uniformity values) and the best obtained result for area equals 13 GE. On
the other hand, when considering power results, the best S-box has a dynamic
power of 201.84 nW and a static leakage power of 271.48 nW. We note that
when considering power results, we found two S-boxes with the same result and
both of them are S-boxes with 4 fixed points. Finally, to put these results into
perspective from the computational complexity point and with a conservative
estimate of only 10 s per S-box power/area evaluation, we needed around 30 days
of continuous computation to conduct this experiment.

Next, we concentrate only on involutive S-boxes with 4 and 6 fixed points
that are optimal. There are in total 18 918 900 involutive S-boxes with 4 fixed
points, and 7 567 560 involutive S-boxes with 6 fixed points. We opted to follow
this line of research since for instance in Midori, both S-boxes have 4 fixed
points, while 6 fixed points is the maximal number of fixed points we could
find in 4 × 4 S-boxes that are optimal. Furthermore, we additionally prune the
results in order to keep only those that have an algebraic degree equal to 3. For
S-boxes with 4 fixed points, we investigate 30 000 optimal involutive S-boxes.
The best result for area is 13 GE while the best result for power is an S-box
with a dynamic power of 201.8418 nW and a leakage power of 255.1868 nW. For
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optimal involutive S-boxes with 6 fixed points, we evaluate 3 000 S-boxes. The
best result for area is 15 GE and the best result for power is an S-box with a
dynamic power of 223.3748 nW and a leakage power of 293.5608 nW. As can be
seen, the best results are obtained for the search within optimal S-boxes with 4
fixed points. However, this search yields a somewhat larger (to be exact, 0.33 GE
larger) S-box with a higher power consumption compared to the GA approach.
As a future work, it would be interesting to run a heuristic search only within
involutive S-boxes. However, we note that in that scenario, one would need to
design custom heuristic initialization in order to seed the algorithm with only
involutive S-boxes. Furthermore, in that scenario, custom-made crossover and
mutation operators are also needed when only involutive S-boxes are produced.
In order to give a better perspective to those results, we give the average results
over 100 random involutions with 0 to 8 fixed points in Table 3. Note that those
S-boxes are mostly not optimal.

Table 3. Random involutive 4 × 4 S-boxes

0 fixed points

Dynamic power: 361.43 nW Leakage Power: 388.53 nW Area: 19.61 GE

2 fixed points

Dynamic power: 383.69 nW Leakage Power: 403.7 nW Area: 20.55 GE

4 fixed points

Dynamic power: 364.62 nW Leakage Power: 390.43 nW Area: 19.7367 GE

6 fixed points

Dynamic power: 343.25 nW Leakage Power: 380.74 nW Area: 19.31 GE

8 fixed points

Dynamic power: 328.83 nW Leakage Power: 360.05 nW Area: 18.2467 GE

4.3 5 × 5 S-Boxes

We omit the random search results since our experiments show that this problem
is too difficult and the obtained results are far from power/area efficient. Fur-
thermore, randomly created S-boxes also have cryptographic properties far from
those observed in literature. In Table 4, we give the results for area and power
for several S-boxes used in literature as well as for an “APN S-box”, which is
an S-box we generated with the multiplicative inverse function and irreducible
polynomial x5 + x4 + x3 + x2 + 1 [19].

Heuristics. We use heuristics in the same way as in the 4 × 4 case. We note
that we are unable to obtain AB 5 × 5 S-boxes with heuristics, but we are able
to find S-boxes with cryptographic properties similar or somewhat better than
those in the Keccak S-box. All the presented S-boxes have a nonlinearity equal
to 8, δ-uniformity 6, and algebraic degree 4. The results are given in Table 5.
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Table 4. Reference 5 × 5 S-boxes

S-box Dynamic power Leakage power Area

Keccak [23] 318.9477 nW 299.5233 nW 17 GE

PRIMATEs [26] 676.173 nW 668.4548 nW 36 GE

APN S-box 1.3846µW 1.1463µW 57.33 GE

Ascon [24] 741.5331 nW 606.4438 nW 30.6667 GE

Icepole [32] 590.9029 nW 621.8677 nW 32.33 GE

Table 5. Best evolved 5 × 5 S-boxes

Area results

With fixed points 10, 5, 2, 4, 29, 21, 17, 7, 15, 13, 24, 16, 26, 20, 11, 23, 31, 0, 19,
6, 25, 3, 1, 22, 30, 8, 28, 18, 27, 9, 14, 12

Area: 39.33 GE

Without fixed p. 14, 10, 28, 29, 1, 9, 0, 15, 4, 23, 20, 17, 24, 25, 16, 27, 8, 11, 12,
13, 31 22, 26, 2, 6, 30, 5, 1, 18, 7, 19, 3

Area: 38GE

Power results

With fixed points 24, 29, 12, 14, 8, 19, 4, 2, 25, 16, 13, 9, 10, 26, 5, 11, 21, 18, 22,
20, 7, 23, 6, 0, 17, 1, 30, 27, 3, 15, 28, 31

Dynamic Power: 801.8934 nW Leakage power: 777.7131 nW Area: 39.67 GE

Without fixed p. 13, 14, 22, 27, 24, 10, 0, 29, 4, 6, 30, 26, 9, 2, 1, 17, 3, 15, 19,
23, 11, 12, 7, 18, 16, 20, 31, 25, 8, 28, 5, 21

Dynamic Power: 734.7164 nW Leakage power: 754.2006 nW Area: 39.33 GE

Affine Transformations. Since we are unable to find 5 × 5 S-boxes that have
cryptographic properties closer to the optimal values (either AB or APN), we
use the fact that affine transformations can change the power/area of
an S-box. Therefore, we aim to optimize the affine transformation in order to
reduce the area/power.

Recall from Eq. (13) the matrices A and B need to be invertible in F2 and
the number of such matrices equals:

GL =
n−1∏

i=0

(2n − 2i). (17)

For n = 4 there are in total 20 160 invertible matrices. However, since there
are two matrices and additionally two constants a, b ∈ F

n
2 , the total number of

combinations is ≈236. When calculating cryptographic properties, this number
is within reach, but for implementation properties like power where the time
necessary to calculate the results for a single 4 × 4 S-box is in the order of
magnitude of 10 s, this task becomes impossible. Moreover, for the 4 × 4 size,
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there are 16 optimal classes, which means that we need to run such a search 16
times. For the 5 × 5 size, there are 9 999 360 invertible matrices and therefore,
the total number of combinations equals ≈256.

Based on the aforesaid, we see that an exhaustive search is most often not a
realistic option. Therefore, we need a faster way to obtain good results. To be
able to do so, we again use the same genetic algorithms setting, only now the
individuals are encoded as a set of genotypes of bitstring values. Each genotype
represents one matrix or a constant as in Eq. (13). Each individual has four
genotypes of which the first two represent matrices A and B and genotypes 3 and
4 represent constants a and b. For an easier visualization of the solutions, one can
imagine genotypes A and B as row vectors of size n2 where the transformation
to a matrix is done by splitting the vector in n rows of size n.

The fitness function we aim to minimize is:

fitness = Power. (18)

Since we know that affine transformations cannot change the cryptographic
properties we consider here, we do not need to check them during the evolu-
tion. Here, we investigate 3 S-boxes: the Keccak S-box, the PRIMATEs S-box
(AB), and our APN S-box. The results for the best obtained affine transforma-
tions with regards to power consumption are given in Table 6. Note that for the
Keccak and PRIMATEs case our search did not reveal any better S-boxes that
are affine equivalent to the original S-box. Still, our best S-box that is affine
equivalent to Keccak has a significantly smaller area/power than for instance
affine transformations of the Keccak S-box as used in the Ascon and ICEPOLE
ciphers. We note that when we optimize the affine transformation for Keccak
with the goal of improving the area, the best S-box we find has an area of 21 GE
and is without fixed points (recall that Keccak has 2 fixed points) like those used
in Ascon and ICEPOLE. For the “APN S-box” the result is quite improved. This
shows it is not easy to find better S-boxes with respect to power efficiency, but
also that the S-boxes in Keccak and PRIMATEs are also good candidates from
the area/power perspective. Since “APN S-box” is an S-box we created with a
randomly selected irreducible polynomial of degree 5, one could expect that the
results for such S-box could be significantly improved and our analysis confirms
that.

4.4 Discussion

When implementing an S-box, one can follow the encoder/decoder structure as
presented in [33], but we note that that scheme is effective only on larger S-
boxes, for example size 8 × 8. The extra cost to implement an encoder/decoder
is cumbersome for 4 × 4 S-boxes both from the power and area perspective.

Therefore, we advocate here the usage of heuristics when generating S-boxes
with good power/area properties. To put our solutions into an adequate perspec-
tive, we compare them with S-boxes that are used in a number of lightweight
designs. As can be observed, the Midori S-boxes have the smallest power con-
sumption as well as the smallest area when considering currently used S-boxes.
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Table 6. Best evolved 5 × 5 S-boxes, affine transformations

Keccak 9, 24, 6, 23, 14, 30, 2, 18, 29, 13, 11, 27, 4, 21, 17, 0, 3, 26, 28, 5,
20, 12, 8, 16, 31, 7, 25, 1, 22, 15, 19, 10

Dynamic power: 488.6914 nW Leakage Power: 496.4189 nW Area: 26GE

PRIMATEs 30, 22, 16, 31, 2, 18, 26, 13, 9, 21, 15, 20, 23, 19, 7, 4, 6, 8, 10, 3,
11, 29, 17, 0, 1, 27, 5, 24, 14, 12, 28, 25

Dynamic power: 751.4109 nW Leakage Power: 723.7496 nW Area: 37GE

APN S-box 31, 16, 28, 27, 22, 24, 10, 30, 13, 17, 1, 25, 21, 29, 0, 2, 14, 5, 4,
8, 26, 15, 19, 23, 9, 12, 11, 18, 20, 3, 6, 7

Dynamic power: 913.5057 nW Leakage Power: 942.5685 nW Area: 48GE

However, when compared with the evolved S-boxes in this paper, we see that our
S-box without fixed points, has the smallest area (12.67 GE) and the smallest
power consumption except for the Midori Sb0 S-box where the difference is only
14 nW. As a matter of fact, our best evolved 4 × 4 S-box has a more than two
times smaller power consumption than the PRESENT S-box while retaining the
same nonlinearity and δ-uniformity values as the PRESENT S-box. However, we
emphasize that our evolved S-boxes are not involutive.

On the other side, we observe that the involutive S-boxes that have the small-
est power consumption (both in our work and other work) have 4 fixed points.
Indeed, both Midori S-boxes (432.75 nW and 581.17 nW) as well as the two
involutive S-boxes found in our search (473.32 nW) represent the best results for
power consumption when considering involutive S-boxes. Therefore, in scenarios
where involutive S-boxes with an as small as possible power consumption are
necessary, it seems to be prudent first to conduct an exhaustive search within
involutive S-boxes with 4 fixed points. Still, we emphasize that such a comparison
in not completely fair since the PRESENT S-box has branch number equal to 3,
while our S-boxes has branch number 2. Naturally, this is expected since we did
not include the branch number property into our optimization process. Indeed,
obtaining a high branch number in our current setting, would be more a matter
of luck than the optimization process itself. However, we note a number of cur-
rently used S-boxes also have branch numbers equal to 2 (e.g., Klein, Noekeon,
Rectangle, Prince). Finally, adding the branch number to the objective function
is trivial, and we plan to explore that direction in future work. Moreover, we
see that our evolved S-boxes have smaller area and power consumption than the
S-box used in Piccolo, which is an S-box known to be extremely efficient from
both area/power perspectives. However, we note that the Piccolo S-box is not
intended to be implemented as a lookup table, which makes a fair comparison
somewhat difficult.

For the 5×5 size, we observe that the problem is much more difficult, but we
offer two heuristic techniques to improve the results; one based on the direct evo-
lution of solutions, and another one that looks for the best affine transformation
of a certain S-box. There, we managed to find an S-box that is affine equivalent
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to the Keccak S-box, with slightly worse area/power results, but without fixed
points. However, that S-box has better area/power properties than those used
in the Ascon and ICEPOLE ciphers.

A possible drawback of our approach is that S-boxes could be also imple-
mented in other ways and not only as lookup tables. This is also the reason why
we do not include results for S-boxes larger than 5 × 5, since those S-boxes are
too big to be implemented as lookup tables in most realistic scenarios. With our
approach, there is no guarantee that a certain power efficient S-box in lookup
table style will remain power efficient when implemented using some other tech-
nique, but our results suggest that this is most often the case. Still, we believe
our approach is as fair as possible since our technique can always serve as a
strong indicator of S-box behavior. Implementing S-boxes in another way would
make the search even more difficult (and computationally complex) since then
we do not only look for S-boxes with good properties (i.e., the first level of the
search) but also for different implementation methods (can be considered as the
second level of search).

From the scalability perspective, our technique shows good behavior. Indeed,
the same technique given for the 5 × 5 size (i.e., affine transformation-based
search) works good for larger sizes. Still, those results are more difficult to inter-
pret since such sizes usually necessitate different styles of the implementation of
S-boxes. All our experiments were conducted on a PC that has an i7 4720HQ
processor and 8 GB of RAM. For all relevant sizes (4 × 4, 5 × 5, and 8 × 8) the
evaluation cost of the implementation properties is dominant. For instance, for
size 4 × 4, to test all relevant cryptographic properties of a single S-box we need
around 4 ms, for size 5×5 we need 8 ms, and for size 8×8, we need around 15 ms.
Even for the smallest size of 4×4, evaluating the power consumption takes more
than 10 s.

Naturally, these results should be taken with care. We do not suggest just to
use our S-box and replace some of the existing ones with it. Indeed, doing that
without a proper cryptanalytic analysis could be devastating for the security of
the cipher. Rather, we suggest to use S-boxes we created in some new designs that
specifically target low power consumption and area. Since we concentrated here
only on the S-box part, we cannot give any cryptanalysis results since our S-boxes
are not intended to replace existing S-boxes in modern ciphers. Therefore, we give
relevant cryptographic properties that can be used as a comparison with other
S-boxes. Furthermore, we focus here on a small set of cryptographic properties of
S-boxes, but if other criteria need to be fulfilled, our heuristic approach can easily
be adjusted. Finally, we tested our approach with one library using all possible
input transitions of the n × n S-box to do the power estimation. Our method
is easily transferable to other libraries and other ways of power estimation. We
believe that such adaptability of our framework to different settings is the main
advantage of our approach. Indeed, if a researcher needs to run experiments with
different constraints, the running time of our approach coupled with good results
makes a good choice.
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5 Conclusions and Future Work

In this work, we focused on the power and area efficiency of S-boxes of small
sizes, namely 4×4 and 5×5. First, we defined an objective experimental setting
for testing the power/area efficiency and we conducted experiments based on
several different approaches. The best results were obtained using the heuristic
approach, for which our best S-box has a more than two times smaller power con-
sumption than the PRESENT S-box. We emphasize that we do not recommend
for instance to exchange the PRESENT S-box with this new one, but rather
use the new S-box when designing new ciphers that are energy efficient. When
further cryptographic constraints are imposed in the choice of an S-box, our
heuristic approach can be readily adapted. We note that any automatic search
strategy is only as good as the synthesis tool. Therefore, with a more powerful
synthesis algorithm, our search strategy would also be more efficient.

As future work, we plan to investigate the possibility of finding one S-box
that performs optimally when considering more cryptographic properties as well
as both power and area over several implementation libraries and to use such an
S-box in the design of a new cipher that is energy efficient.
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Abstract. This paper describes highly-optimized AES-{128, 192, 256}-
CTR assembly implementations for the popular ARM Cortex-M3 and
M4 embedded microprocessors. These implementations are about twice
as fast as existing implementations. Additionally, we provide the fastest
bitsliced constant-time and masked implementations of AES-128-CTR
to protect against timing attacks, power analysis and other (first-order)
side-channel attacks. All implementations, including an architecture-
specific instruction scheduler and register allocator, which we use to
minimize expensive loads, are released into the public domain.

Keywords: AES · Software implementation · ARM Cortex-M ·
Constant-time · Bitslicing · Masking

1 Introduction

AES was published as Rijndael in 1998 and standardized in FIPS PUB 197 in
2001. Highly optimized implementations have been written for most common
architectures, ranging from 8-bit AVR microcontrollers to x86-64 and NVIDIA
GPUs. See, for example, [4,17,24]. Implementing optimized AES on any of these
architectures essentially requires to start from scratch to find out which imple-
mentation approach is going to be the most efficient. The past decades have seen
a large shift toward ARM architectures and while we have seen efficient AES
implementations for high-end processors used in modern smartphones [5] and
for older microprocessors used in smart cards [1,6], there is little to choose from
for modern low-end embedded devices and Internet of Things applications.

Sometimes an embedded device contains a coprocessor that can perform AES
encryption in hardware, but such a coprocessor is not always available. It makes
a device more expensive and it can increase the power consumption of a device.
Simply compiling an existing implementation written in, for example, the C
programming language, is unlikely to produce optimal performance. Even worse,
embedded systems are typical targets for timing attacks, power analysis attacks,
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and other forms of side-channel attacks, so software for those devices typically
needs to include adequate protection against such attacks.

We fill these gaps by providing highly optimized AES software implemen-
tations for two of the most popular modern microprocessors for constrained
embedded devices, the ARM Cortex-M3 and the Cortex-M4. Our implementa-
tions of AES-{128, 192, 256}-CTR are more than twice as fast as existing imple-
mentations. We also provide a single-block AES-128 implementation, a constant-
time AES-128-CTR implementation and a masked implementation that is secure
against first-order power analysis attacks. All of them are the fastest of their
kind. They are put into the public domain and available at https://github.com/
Ko-/aes-armcortexm.

The results of this paper are not only interesting for “stand-alone” AES
encryption. In the ongoing CAESAR competition for authenticated encryption
schemes, 14 out of the 29 remaining second round candidates are based on AES
or the AES round function. Our implementations will be helpful to speed up
those candidates on embedded ARM microcontrollers.

Organization of the Paper. In Sect. 2, we will first discuss AES and give
an outline of the different implementation approaches. We will also provide an
overview of the target architecture and what features we can benefit from when
optimizing software for speed. Section 3 then discusses our fastest AES imple-
mentations, based on the T-tables approach, while Sects. 4 and 5 consider our
constant-time bitsliced and our masked implementation, respectively. We report
performance benchmarks and provide a comparison to related work at the end
of each of the Sects. 3–5.

2 Preliminaries

2.1 Implementing AES

AES is a substitution-permutation network that operates on 128-bit blocks. Key
sizes of 128, 192, and 256 bits are supported. Depending on the key size, the
network has 10, 12, or 14 rounds, respectively. The nonlinear substitution layer
consists of the SubBytes step, where an 8-bit S-box is applied to each byte of
the state. The linear permutation layer consists of ShiftRows and MixColumns,
to provide diffusion. In the beginning, between all rounds, and at the end, the
AddRoundKey step xors the state with round keys that are derived from the
main key during a key schedule. MixColumns is omitted in the final round [12].
In software, there are four main implementation approaches:

Traditional: All steps are implemented “as is”; typically SubBytes is imple-
mented through a 256-byte lookup table.

T-tables: SubBytes, ShiftRows, and MixColumns are combined in 4 1024-byte
lookup tables. Each AES round then consists of 16 masks, 16 loads from the
lookup tables and 4 loads from the round keys, and 16 XORs. This leads to
very efficient implementations on platforms with a word size of at least 32

https://github.com/Ko-/aes-armcortexm
https://github.com/Ko-/aes-armcortexm
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bits. At the cost of extra rotations, only 1 lookup table is required. This
strategy was already suggested in the original Rijndael proposal [11]. Our
fastest implementations in Sect. 3 are based on this approach.

Vector permute: The disadvantage of the T-tables approach is that key- and
data-dependent lookups open the door for timing attacks on architectures
with cache. See, for example, [3,25,33]. Another approach to implementing
AES, which avoids such data-dependent lookups, uses vector-permute instruc-
tions [15]. However, such instructions are unavailable on our target platform,
which is why we do not go into more detail on this strategy.

Bitslicing: Another approach that does not require lookup tables is bitslicing,
originally introduced for DES by Biham [7]. The core idea is that data is split
over multiple registers, but that other blocks are used to fill the registers.
Multiple blocks can then be processed in parallel in a SIMD fashion. This
approach is especially beneficial for architectures with large registers. For
AES, the 128-bit state is usually bytesliced over 8 registers, as this allows for
an efficient linear layer. Various papers describe bitsliced implementations of
AES on Intel processors [19–21]; the most recent one by Käsper and Schwabe
from 2009 is still the software speed-record holder [17]. Our implementations
in Sects. 4 and 5 are also using bitslicing.

2.2 ARM Cortex-M

The Cortex-M is a family of 32-bit processors by ARM meant for use in embed-
ded microcontrollers. They are designed to be cheap and to be energy efficient,
while still being powerful enough to offer adequate performance in applications
such as automotive systems, medical instruments, the Internet of Things, or
other consumer products. As of 2015, over 10 billion of these processors have
been shipped [27].

The Cortex-M3 was announced in 2004, while the Cortex-M4 is a more recent
successor from 2010. Both microprocessors have 16 32-bit registers, of which
three are reserved for program counter, stack pointer, and link register. The link
pointer can be pushed to the stack to free another register. Both microproces-
sors support the ARMv7-M architecture and the Thumb-2 technology, but the
Cortex-M4 supports additional instructions for digital signal processing, i.e., the
ARMv7E-M architecture. However, we do not use these extensions.

Bitwise and arithmetic instructions take one cycle on these architectures,
except for divisions or writes to the program counter. Branches, loads, and stores
may take more cycles, which is why they can easily bottleneck the performance.
A distinguishing feature of the ARM architecture is the availability of barrel-
shifting registers. This means that we can do arithmetic on rotated or shifted
registers, without any additional cost for the rotation or shift.

We used the STM32L100C and STM32F407VG development boards. The
first comes with 256 KB of flash memory, 16 KB of RAM, and 4 KB of EEPROM.
It can run a Cortex-M3 core at up to 32 MHz. The second is more powerful and
has a 168 MHz Cortex-M4 core, 1024 KB of flash memory, 192 KB of RAM, and
a true-random-number generator.
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2.3 Accelerating Memory Access

Memory access can be expensive in terms of CPU cycles. Additionally, there are
a lot of ways to introduce penalty cycles. Carefully optimized software therefore
avoids as many potential delays as possible. Here we list a number of generic
strategies related to memory access to reduce the cycle count of programs run-
ning on the Cortex-M3 and M4. A siginifcant portion of our speedups of AES
stem from a combination of these strategies.

Flash. The instructions and tables are typically stored in flash memory. Access-
ing flash can introduce a number of wait states, depending on the relative
clock frequency of the microprocessor core and the memory chip. For our
development boards, the STM32L100C and STM32F407VG, STMicroelectronics
describes in its documentation when it is possible to have zero wait states [29,
p. 59, tbl. 13][30, p. 80, tbl. 10]. For example, on the STM32L100C, the CPU
clock can only run at 16 MHz for a supply voltage of 3.3 V. To be able to com-
pare the performance of implementations across different devices or boards, it is
important to be in this scenario.

RAM. Something similar holds for accessing RAM, where the stack is stored. On
the STM32F407VG, four different regions of RAM are available: SRAM1, SRAM2,
SRAM3, and CCM. In our case it turned out to be faster to use the core coupled
memory (CCM), as it uses the D-bus directly.

Alignment. The Cortex-M3 and M4 support Thumb-2 technology, which means
that 16-bit and 32-bit encodings of instructions can freely be mixed. However,
consider the case that a 16-bit instruction starts at a word-aligned address, fol-
lowed by one or more 32-bit instructions. The 32-bit instructions are then no
longer word-aligned, which may cause penalty cycles for the instruction fetcher,
which fetches multiple instructions at a time. In this case, forcing the use of
a 32-bit encoding for the first instruction by adding a .w suffix can improve
the instruction alignment and reduce the cycle count. Our implementations take
this into consideration. Penalty cycles may also be introduced when branching
to addresses that are not word-aligned, when loading from memory at addresses
that are not word-aligned or when not loading full words from memory. Imple-
menters needs to take care of the alignment themselves. Our implementations
carefully avoid these penalty cycles.

Pipelining Loads. Most str instructions take 1 cycle, because of the avail-
ability of a write buffer, but ldr instructions generally take at least 2 cycles.
However, n ldr instructions can be pipelined together to be executed in n + 1
cycles if there are no address dependencies and the program counter remains
untouched. An instruction such as ldm pipelines all of its loads together, but
when it is followed by an ldr, those will not be pipelined together. For our
implementations, we pipeline as many loads as possible.

Caches and Prefetch Buffers. The Cortex-M3 and M4 by themselves do
not have any caches. However, caches can be added in embedded devices or
development boards to boost the performance. For example, the STM32F407VG
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contains 64 128-bit lines of instruction cache memory and 8 128-bit lines of data
cache memory [30, p. 90]. It also contains an instruction prefetch buffer to reduce
the experienced number of wait states when a microprocessor running at a high
clock frequency accesses flash memory to fetch 128 bits of instructions [30, p. 82].
The STM32L100C supports a similar prefetch buffer when 64-bit flash access is
enabled [29, p. 59].

Data Location. When one wants to read data that is stored in the flash memory,
one first needs to load the address of the data block before one can load the
data itself. However, when data is located within 4096 bytes of the value of the
program counter, the first load instruction can be replaced by an adr pseudo-
instruction that is really an addition or subtraction of the program counter,
which may save one cycle, depending on whether the load could be pipelined. It
is therefore useful to store data close to where the data is being used.

3 Making AES Fast

Ever since Rijndael was standardized as AES, a lot of effort has been put into
making fast and secure software implementations for a large range of platforms
and architectures. Numerous optimization tricks have been suggested to improve
the performance. For T-table-based implementations, the majority is summa-
rized in [4]. In this section we discuss which strategies are useful to apply on the
Cortex-M3 and M4.

Using the T-table-based approach, AES-128-CTR can typically be imple-
mented in 720 instructions: 208 loads, 4 stores, 160 shifts, 176 masks, 168 xors
and 4 others [4]. Thanks to ARM’s barrel-shifting registers, we can do combined
shifts and masks, saving 160 instructions. [4] also mentions scaled-index loads
and second-byte instructions. A scaled-index load is the option to shift the offset
of a load instruction for free, while a second-byte instruction allows for extracting
the second byte of a register in one instruction. Both features are supported by
our architecture, but as all shifts are already fully subsumed, these optimizations
no longer yield any additional advantage.

Byte loads and two-byte loads could save another 8 instructions by not requir-
ing an additional mask, but loads that are not word-aligned cause a penalty cycle,
so for speed these optimizations are of little use. Other potential optimization
strategies, such as combining masks and inserts or loads and xors, are not pos-
sible in a single instruction on these platforms. Being able to do byte extraction
via loads allows to exchange arithmetic instructions for load instructions, but
loads are either as fast or slower, so this strategy gives no advantage either.

With round-key recomputation, only one out of four round-key words is stored
for all rounds except the first. During encryption, the other parts of the round
keys can be recomputed on the fly, exchanging 30 loads for 30 xors. However, in
our case the loads can be fully pipelined and the round keys from the previous
round would not fit into registers anymore, so this would also not reduce the
total number of cycles. Round-key caching, where all round keys are kept in
registers when encrypting multiple blocks, would require even more registers.
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Another technique called padded registers exists, where a 32-bit value is stored
in a 64-bit register in such a way that combing shifts and masks can be done a
bit more cleverly. However, our registers are too small to use anything like this.

However, counter-mode caching helps to save another 81 instructions in the
main loop. In counter mode, for 256 consecutive blocks, only 1 byte of the input
changes. This means that through the first and second AES round, computations
that do not depend on this one byte can be cached and reused. Starting from
the third round, everything will depend on all input bytes. While there is some
additional overhead involved in storing and retrieving the cached values, this
trick already leads to a speedup when only 2 blocks are processed.

3.1 Our Implementations

Our implementations of AES-128 encryption, AES-128-CTR, AES-192-CTR,
and AES-256-CTR use one 1024-byte lookup table. The extra rotates that this
would normally cause come for free thanks to ARM’s barrel shifting registers.
Using four tables would save another 40 1-cycle instructions in the key sched-
ule, and 16 1-cycle instructions in the final round for encryption, but as there
is typically little memory available on microcontrollers and the improvement in
speed is only marginal, we decided that this trade-off was not worth it. AES-128
decryption needs two 1024-byte lookup tables. On the other hand, the 16 mask
instructions in the final round are no longer required.

Key expansion is performed separately, as the round keys can be reused for
multiple blocks. In our implementation of counter mode, there is a 32-bit counter
and a 96-bit nonce. The reason is that then we do not have to deal with a carry
from the counter and a conditional add for the second counter word, which gives
another small speedup. We consider a 32-bit counter, providing a maximum
stream length of 232 · 16 = 68719476736 bytes, to be large enough in a typical
microcontroller environment.

The performance of our speed-optimized implementations is summarized in
Table 1. All results are averages over 10000 runs with random keys, inputs, and,
if applicable, nonces. For encryption in counter mode, the number of cycles
reflects the average number of cycles per block when processing 256 blocks, or
4096 bytes. Loops are fully unrolled, so the code size can be reduced drastically
with only a small performance penalty. Note that data in ROM is typically
shared by key expansion and encryption/decryption, so it has to be in memory
only once. Under RAM usage, I/O refers to the amount of RAM that is required
to store the input and output for the functions, e.g., 192 + 2m means that we
require 4 bytes for the counter, 12 for the nonce, 176 for all round keys, m for
our m-byte input, and m for the m-byte output. Again, I/O data is typically
shared by key expansion and encryption/decryption and the same stack space
can be reused for the encryption/decryption function call. It turns out that the
same code runs in slightly fewer cycles on the Cortex-M3, which is most likely
caused by the different way that instructions are fetched.
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Table 1. Performance of unprotected AES

Algorithm Speed (cycles) ROM (bytes) RAM (bytes)

M3 M4 Code Data I/O Stack

AES-128 key expansion encryption 289.8 294.8 902 1024 176 32

AES-128 key expansion decryption 1180.0 1174.6 3714 2048 176 176

AES-128 single block encryption 659.4 661.7 2034 1024 176 + 2m 44

AES-128 single block decryption 642.5 648.3 1974 2048 176 + 2m 44

AES-128-CTR 546.3 554.4 2192 1024 192 + 2m 72

AES-192 key expansion 264.9 272.2 810 1024 240 32

AES-192-CTR 663.2 673.0 2576 1024 224 + 2m 72

AES-256 key expansion 364.8 371.8 1166 1024 240 32

AES-256-CTR 786.9 791.7 2960 1024 256 + 2m 72

3.2 Comparison to Existing Implementations

There are few publicly available AES implementations optimized for the Cortex-
M3 and M4:

– In the SharkSSL crypto library, a speed of 1066.7 cycles per block is claimed
for AES-128-ECB on the Cortex-M3 [28]. CTR mode is unavailable.

– A company called Cryptovia sells an implementation that does AES-128 on
a single block in 1463 cycles [10], also on the Cortex-M3.

– The latest version of mbed TLS [26], formerly known as PolarSSL, contains a
table-based AES-128-CTR implementation that takes 1247.4 cycles per block
on the M3, while AES-128 key expansion takes 41545 cycles1.

– NXP hosts the AN11241 AES library [23], but its implementation is very
slow. AES-128-ECB runs in 4179.1 cycles per block on the M3, while the
AES-128 key expansion takes 1089 cycles (See footnote 1).

– The fastest implementation currently listed by the FELICS benchmarking
framework [13] encrypts a single block with AES-128 in 1816 cycles on a
Cortex-M3. The fastest key scheduling takes 724 cycles2.

We therefore claim that our CTR-mode implementations are about twice as
fast as existing implementations. We also require fewer cycles than optimized
implementations for older yet similar ARM architectures [1], even though in [1]
heavy use is made of the fact that the full lookup tables fit in the data cache on
a StrongARM-1110, which does not hold for our platforms.

3.3 Benchmarking with FELICS

The FELICS framework [13] has been proposed as an open system to benchmark
the performance of implementations of lightweight cryptographic systems on
1 We used gcc -O3 -funroll-loops -fno-schedule-insns with GCC 6.1.1 for these

benchmarks, the best set of compiler flags we could find, based on all sets that are
tried in the SUPERCOP benchmarking framework.

2 AES 128 128 V06 in scenario 0 with -Os and with -O3, respectively.
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three different microprocessors, one of them being the ARM Cortex-M3. Cycle
counts and memory usage are measured for three usage scenarios. Scenario 0
deals with single-block encryption, where the round keys are stored in RAM. In
scenario 1, 128 bytes are encrypted in CBC mode. In scenario 2, 128 bits are
encrypted in CTR mode.

This choice of scenarios means that our implementation needs to be adapted
to fit in the framework. In particular, counter-mode caching can no longer be
used and needs to be removed, which impacts the performance. Furthermore,
the decryption algorithm and decryption key expansion are now required as well
in scenarios 0 and 1. But most importantly, the FELICS framework does not set
the number of wait states, which means that a load from memory will cost more
than 2 cycles and that reported cycle counts are biased toward implementations
with less load instructions. This greatly slows down the overall performance of
our implementation.

The framework reports 1641 cycles for our encryption in scenario 0 and 578
cycles for our key schedule. Although this is still faster than currently listed
results, the margin is smaller. This also holds for scenarios 1 and 2.

4 Protecting Against Timing Attacks

While the availability of caches allows for speedups on platforms with relatively
slow memory, it also makes table-based AES implementations vulnerable to
cache-timing attacks [3,18]. A popular technique for writing a constant-time
AES implementation that is still reasonably fast, is by applying bitslicing. Of
course, caches can be simply disabled when performing cryptographic operations,
but this implementation also serves as a step toward the masked implementation.

Bitslicing is often explained as a technique where every bit of the state is
stored in a separate register, such that we can do operations on the bits inde-
pendently and such that we can process 32 blocks in parallel on 32-bit machines.
However, in the case of AES this is not the fastest way to bitslice, as most opera-
tions are byte-oriented. Full bitslicing would also increase the amount of registers
needed to store the state by a factor of 32. There are very few architectures that
have enough registers to keep the bitsliced state in registers, so there would be
a lot of overhead in storing and loading data to other types of memory.

Könighofer suggested in [19] to ‘byteslice’ and to process 4 blocks in parallel
on an architecture with 64-bit registers. Käsper and Schwabe were able to process
8 blocks in parallel using 128-bit registers [17]. Unfortunately, the Cortex-M3 and
M4 only have 32-bit registers, so we can only process 2 blocks in parallel while
still retaining an efficient implementation of the linear layer.

4.1 Our Implementation

After key expansion, the round keys are stored in their bitsliced representation.
To transform to bitsliced representation, we require 12 SWAPMOVE opera-
tions [22].
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SWAPMOVE(a,b,n,m) {
t = ((a � n) ⊕ b) & m
b = b ⊕ t
a = a ⊕ (t � n)

}

Due to ARM’s barrel shifter, we can implement SWAPMOVE in just 4 1-cycle
instructions, which gives a transformation overhead of 48 cycles.

eor t, b, a, lsl #n
and t, m
eor b, t
eor a, a, t, lsr #n

During encryption, the AES state is first transformed to bitsliced representation.
AddRoundKey is then again just a matter of xoring the bitsliced round keys with
the bitsliced state.

For SubBytes, a lot of research has been done on an efficient hardware imple-
mentation of the AES S-box [9]. These results are also very useful for bitsliced
software implementations. Boyar and Peralta found a circuit with only 115
gates [8], which was later improved to 113: 32 AND gates, 77 XOR gates, and
4 XNOR gates. This is the smallest known implementation, which is why we used
it as a basis for our implementation. However, with only 14 available registers, it
is impossible to implement it directly in 113 instructions. We need more instruc-
tions to deal with storing values on the stack or with recomputation of values.
We wrote an ad hoc combined instruction scheduler and register allocator that
is tailored to our microprocessors.

Scheduling. Both instruction scheduling and register allocation are hard prob-
lems, as is the combined problem. Compilers usually implement a graph coloring
algorithm and/or linear-scan allocation. They aim to schedule well on average,
but do not necessarily generate the most efficient assembly for a specific part of
code.

Existing compilers do not provide a lot of options to play with different
scheduling and allocation strategies, which is why we decided to write an ARM-
specific instruction scheduler and register allocator. This allows us to focus on
ARM’s three-operand instructions and to try several approaches. We aim to
minimize the number of loads and stores and the usage of the stack. We first
reschedule instructions to reduce the size of the active data set, by pushing
instructions down based on their left-hand side and by pushing instructions up
based on their right-hand side. Then we allocate registers in a greedy fashion,
where we insert loads and stores when necessary and try to leave the output in
registers. A more thorough overview of the tool is provided in [31], including a
comparison against the compilers GCC, Clang, and the ARM Compiler.

Our tool is nondeterministic because of hash randomization in Python, so
we try several scheduling strategies multiple times and only use the best result.
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With our scheduler we are able to compute the AES S-box in 145 instructions:
the 113 original operations, 16 loads and 16 stores. It is unknown whether this
is optimal.

ShiftRows on a bitsliced state can be computed very efficiently on modern
Intel CPUs using 8 SSSE3 byte-shuffling instructions [17]. However, something
like this is unavailable on the Cortex-M3 and M4. We use the ubfx and uxtb bit-
field instructions, together with eor on shifted registers, to compute ShiftRows
in 8 · 13 = 104 1-cycle instructions. The code below performs ShiftRows on r9,
while r12 and r5 are used as temporary registers.

uxtb.w r12 , r9
ubfx r5 , r9 , #14, #2
eor r12 , r12 , r5 , lsl #8
ubfx r5 , r9 , #8, #6
eor r12 , r12 , r5 , lsl #10
ubfx r5 , r9 , #20, #4
eor r12 , r12 , r5 , lsl #16
ubfx r5 , r9 , #16, #4
eor r12 , r12 , r5 , lsl #20
ubfx r5 , r9 , #26, #6
eor r12 , r12 , r5 , lsl #24
ubfx r5 , r9 , #24, #2
eor r9 , r12 , r5 , lsl #30

In contrast, the barrel shifters allow us to compute MixColumns in just 27
eor instructions on shifted registers, which is even more efficient than in [17].

To update the counter for the next blocks, one can either store the bitsliced
representation and operate on this, or one can use the original representation
and transform this to bitsliced representation every two blocks. While the first
may appear to be faster, we implemented both and it turned out that the latter
is in fact more efficient. This is due to overhead caused by the limited way in
which you can do conditional execution with IT-blocks on these microprocessors.

Table 2 contains performance benchmarks of our implementation. Again,
speed is measured as the average number of cycles per block when encrypt-
ing 256 consecutive blocks, which explains the decimal for the encryption. The
amount of cycles is exactly equal for all 10000 combinations of random nonces,
keys, and inputs that we tried. We see a slowdown of roughly a factor 2.9 com-
pared to our previous implementation. Note, however, that when one can disable
the caches during the AES execution or when caches are not available at all, our
previous faster implementations are also constant-time and should be favored.
We verified that after disabling caches, the cycle counts are exactly equal for
random combinations of inputs and keys. There is little related work that would
make a fair comparison.
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Table 2. Performance of constant-time AES

Algorithm Speed (cycles) ROM (bytes) RAM (bytes)

M3 M4 Code Data I/O Stack

AES-128 bitsliced key
expansion

1027.8 1033.8 3434 1036 368 188

AES-128-CTR bitsliced
constant-time

1616.6 1617.6 12120 12 368 + 2m 108

5 Protecting Against Side-Channel Attacks

Microprocessors are typical targets for side-channel attacks such as differential
power analysis or differential electromagnetic analysis. A well-known counter-
measure against first-order side-channel attacks that is used in practice is by
Boolean masking, where a secret intermediate value a is split into two statisti-
cally independent shares, i.e., ra and ā = (a ⊕ ra), where ra is called a random
mask. Linear operations can be computed on both shares independently. After a
linear operation, the shares can be xored together to unmask the result. Nonlin-
ear operations are more difficult to mask securely. Trichina suggested the follow-
ing provably secure method to mask a · b [32], where ā = (a ⊕ ra), b̄ = (b ⊕ rb),
and ra, rb, r are random masks:

((ā · b̄) ⊕ ((ra · b̄) ⊕ ((ra · rb) ⊕ r))) ⊕ (rb · ā).

This means that every AND operation requires 4 AND operations, 4 XOR operations,
and 1 load (of r) to mask.

We added first-order Boolean masking using Trichina gates to our constant-
time bitsliced implementations to find out how much this additional security
would cost on common microprocessors.

5.1 Our Implementation

To generate the masks, we need a source of randomness. The STM32F407VG
contains a random number generator (RNG) that guarantees a new 32-bit ran-
dom word every 40 periods of the RNG clock. In the case of AES, 8 random
words are required to mask the input, as two blocks are processed in parallel,
and 320 random words are required for a single encryption, as SubBytes contains
32 AND operations and is executed in all 10 rounds. While interleaving random-
ness generation and executing instructions can decrease the waiting time, the
performance of the implementation will greatly depend on the performance of
the RNG and the relative clock frequency between the core and the RNG.

All other operations are linear, so at least a factor of 2 slowdown can be
expected there. However, because the size of the active data set doubles and
will not fit in 14 registers anymore, a lot of overhead is created by additional
loads and stores. Our scheduler manages to generate a securely masked bitsliced
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SubBytes implementation in 2 · 83 + 4 · 32 = 294 XORs, 4 · 32 = 128 ANDs, 99
stores and 167 loads, that are pipelined as much as possible. Once more, the
speed is measured as the average number of cycles per block when encrypting
256 consecutive blocks. The cycle counts are precisely equal for all combinations
of inputs, keys, and nonces.

Table 3. Performance of masked constant-time AES

Algorithm Speed (cycles) ROM (bytes) RAM (bytes)

M3 M4 Code Data I/O Stack

AES-128-CTR masked
constant-time

N/A 7422.6 39916 12 368 + 2m 1588

The performance of the final implementation is summarized in Table 3. Note
that of these 7422.6 cycles per block, 2132.5 are spent on generating random
words and pushing them to the stack, while all the rest takes 5290.1 cycles per
block. A faster RNG could significantly boost the total speed. Of the 1588 bytes
on the stack, 1312 are taken by the 328 random words.

5.2 Comparison to Existing Implementations

Balasch et al. [2] showed at CHES 2015 that adding first-order Boolean masking
with Trichina gates slows the implementation down by roughly a factor of 5 on
the Cortex-A8. On the Cortex-M4, we see something similar compared to the
unmasked bitsliced implementation, with a factor 4.6, although a faster RNG
could reduce this to almost a factor of 3.5. Furthermore, we require less random-
ness because we based ourselves on the 113-gate SubBytes implementation.

Goudarzi and Rivain [14] investigated the performance of different
approaches to higher-order masking based on the ISW masking scheme [16] by
implementing masked versions of AES and PRESENT on the ARM7TDMI-S
microprocessor, a somewhat older architecture from 2001 that is still widely
deployed. For first-order masking, their fastest implementation takes 49329
cycles [14, tbl. 16, standard AES with parallel Kim-Hong-Lim S-box, 2 shares],
which is a factor 5.6 more than ours, but that comparison is not entirely fair as
we do not support higher-order masking. However, instruction timings appear
to be similar between the two architectures.

6 Conclusion and Outlook

This paper presented various speed-optimized AES software implementations
for multiple use case scenarios, including side-channel attack protection, for the
ARM Cortex-M3 and M4. All of them are the fastest of their kind. Additionally,
we provide an ARM-specific instruction scheduler and register allocator that
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is of independent interest to optimize other software for these platforms. All
software is put into the public domain, which also may benefit the performance
of (AES-based) CAESAR candidates on modern embedded microcontrollers.

We admit that the ‘all the AES you need’ claim in our tittle does not hold for
use cases that need to protect against higher-order side-channel attacks. We plan
to have an assembly generator for higher-order masked AES implementations,
although one then may want to resort to masking schemes other than gate-level
masking.
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Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 159–171. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 13

7. Biham, E.: A fast new DES implementation in software. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 260–272. Springer, Heidelberg (1997). doi:10.1007/
BFb0052352

8. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp.
178–189. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13193-6 16

9. Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005). doi:10.
1007/11545262 32

10. Cryptovia: AES algorithms for ARM CPU. http://www.cryptovia.com/ARM
AES.html

11. Daemen, J., Rijmen, V.: AES proposal: rijndael, version 2 (1999). http://csrc.nist.
gov/archive/aes/rijndael/Rijndael-ammended.pdf

12. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2013). doi:10.1007/978-3-662-04722-4

13. Dinu, D., Corre, Y.L., Khovratovich, D., Perrin, L., Großschädl, J., Biryukov, A.:
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Abstract. This work provides the first hardware implementations of
PRIMATEs family of authenticated encryption algorithms. PRIMATEs
are designed to be lightweight in hardware, hence we focus on designs for
constrained devices. We provide several serial implementations, smallest
of which requires only 1.2 kGE. Additionally, we present a variety of
threshold implementations that range from 4.7 kGE to 10.3 kGE.

The second part of this work presents a design of a lightweight PRI-
MATEs coprocessor. It is designed to conform versatile use of the core
permutation, which allows implementation of the entire PRIMATEs fam-
ily, with small differences in hardware. We implement HANUMAN-80
coprocessor, adapted for a 16-bit microcontroller from the Texas Instru-
ments MSP430 family of microcontrollers. The entire HANUMAN-80
coprocessor is tested on a Spartan-6 (XC6SLX45) development board,
where it occupies 72 slices (1.06% of available resources). ASIC synthesis
yields a 2 kGE implementation using 90 nm library, achieves 33 kbits/sec
throughput at 100 kHz operating frequency. It dissipates 0.53µW of
power on average, resulting in energy consumption of 15.60 pJ/bit.

Keywords: PRIMATEs · CAESAR · Authenticated encryption · Hard-
ware implementation · Threshold implementation · Lightweight

1 Introduction

Motivation. Emerging Internet of Things (IOT) technologies require a swarm
of lightweight devices scattered in our surroundings. Various sensors, actuators,
or authenticators, have to provide reliable, uninterrupted service, while pro-
tecting users’ privacy and data confidentiality through encryption, and data
authenticity and integrity through authentication. Since adversaries may easily
gain access to these devices, protection against physical attacks must be taken
into account. Moreover, all of this has to be achieved at a very low price in
terms of chip area, power, and energy consumption. While exact constraints
vary between different kinds of these devices, we believe that passively powered
Radio Frequency IDentification (RFID) tags—which are used for identification,
c© Springer International Publishing AG 2017
R. Avanzi and H. Heys (Eds.): SAC 2016, LNCS 10532, pp. 197–216, 2017.
https://doi.org/10.1007/978-3-319-69453-5_11
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access management and shipment tracking, handling payments; and are great
assets in aiding medical treatment—present the worst-case in terms of area and
power-budget limitations. Even though the notion of lightweightness seems sub-
jective and application-bound, statements from industry [28] and research com-
munity [6,13,14] agree that the area footprint of the cryptographic algorithm
must not exceed 2000 two-input NAND-gates equivalent (GE) in the selected
library. Having at least 12 kbits/sec throughput at the operating frequency of
100 kHz is the only bound used by researchers [6,14] whereas industry requires
having 1 bit/cycle [28]. Unfortunately, there are no widely accepted upper and
lower bounds for low power and high throughput respectively, even though the
discussions suggest that it is of interest [22,28]. Lastly, in terms of average power
usage industry suggests between 1 and 10µW/MHz, with peaks between 3 and
30µW, respectively.

Many standardized cryptographic algorithms, such as the Advanced Encryp-
tion Standard (AES) [23] of which the smallest implementation requires 2400
GE, are unfit for the lightweight area of application especially when they are
wrapped with a mode of operation to provide both encryption and authen-
tication. This results in the increasing number of stream ciphers [20], block
ciphers [6,14,17,19,30] and hash functions [5,12,18] together with the recent
standardization of the lightweight block cipher PRESENT which can be imple-
mented using 1000 GE [27].

Traditionally, the security goals of a system are achieved using generic compo-
sitions of cryptographic primitives providing only authentication or encryption
often resulting in exploitable weaknesses [2,7]. This problem of authenticated
encryption is formalized in [26], where a set of possible generic schemes named
authenticated-encryption with associated data (AEAD) is discussed. Advance-
ment in lightweight cipher design, and the formalization of the problem, followed
by discussions in research community lead to the Competition for Authenticated
Encryption: Security, Applicability, and Robustness (CAESAR) [1] which is run-
ning since 2014 with the goal of selecting a portfolio of AEAD ciphers. Currently
29 s-round candidates are being analyzed for security, software and hardware per-
formance. Out of several candidates that claim to be lightweight, PRIMATEs [3]
family grasped our attention for their claims of versatile usability, and efficiency
in hardware.

Related Work. PRIMATEs [3] is a family of single-pass nonce-based AEAD
schemes. All members of PRIMATEs are designed for constrained hardware.
They differ slightly to provide trade-offs between security and performance. High
level of granularity allows PRIMATEs to find application in a number of light-
weight scenarios. Authors claim that PRIMATEs can efficiently be protected
against Side-Channel Analysis (SCA), especially Differential Power Analysis
(DPA) [25]. Namely, non-linear part of PRIMATEs has low algebraic degree,
which results in efficient Threshold Implementations (TI) [24]. TI provides prov-
able security against DPA for symmetric key algorithms (e.g., [11]).
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Until now, only a reference software implementation of PRIMATEs is pro-
vided. The claims on efficiency in hardware, of unprotected and SCA-resistant
implementations, are still to be examined.

Contribution. We challenge lightweightness and versatility claims by focusing
on low-end designs. Namely, we design several lightweight architectures in order
to analyze area, throughput and energy trade-offs. We discuss the overall perfor-
mance, and how our implementations can be used in practice. Additionally, we
provide a variety of TI to examine efficiency of SCA resistant implementations.
We discuss the overall performance, and how our implementations can be used
in practice. Furthermore, in order to accommodate practical lightweight scenar-
ios, we present a PRIMATEs interface, designed to minimize area and latency
overhead. Lastly, we design and implement a PRIMATEs coprocessor based on
the aforementioned interface.

2 Preliminaries

We inherit the notation suggested by the PRIMATEs designers [3]. Namely,
calligraphic, capital and small letters represent a set, an element of the set and
the bit size of the element respectively, i.e. X := {0, 1}x, X ∈ X and |X| =
x. Let X ∈ {0, 1}x and Y ∈ {0, 1}y, then X||Y ∈ {0, 1}x+y represents the
concatenation of X and Y .

2.1 AEAD Scheme

An AEAD scheme is defined by the three tuple Π = (K, E ,D) as follows:

Key Space. K is a non-empty set of k-bit strings, i.e. K := {0, 1}k.
Encryption. E is a deterministic algorithm which returns a pair of strings
(C, T ) = EK(N,A,M); where: the secret key K ∈ K, the public nonce
N ∈ N := {0, 1}n, the public associated data A ∈ A := {0, 1}∗, the mes-
sage M ∈ M := {0, 1}∗, the ciphertext C ∈ C := {0, 1}∗, and the tag
T ∈ T := {0, 1}t. The algorithm must work even if |M | = 0 and/or |A| = 0.

Decryption. DK(N,A,C, T ) is a deterministic algorithm that generates the
pair (M,T ′). D returns the value M to user if T = T ′. Otherwise D returns a
unique symbol ⊥. It is possible to release the message even if the tags do not
match if the AEAD scheme follows certain properties [4].

2.2 PRIMATEs

PRIMATEs is a family of three modes of operation named APE, HANUMAN
and GIBBON [3] with sponge-like construction [8]. Namely, they rely on a per-
mutation which operates on a binary state B ∈ {0, 1}b, comprised of the rate
R ∈ {0, 1}r, and the capacity C ∈ {0, 1}c (i.e. B = R‖C).

Each mode of operation may provide two levels of security. The security level
s ∈ {80, 120} defines several parameters, as described in Table 1. The input block
size is r = 40 bits independent of the mode or the security level.
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PRIMATE. PRIMATEs family is based on a set of permutations, called PRI-
MATE permutations. Depending on the security level s, two subsets are dis-
tinguished, PRIMATE-80 and PRIMATE-120. PRIMATE-80 (resp. PRIMATE-
120) is based on P80 (P120), a 200-bit (resp. 280-bit) core permutation. Permu-
tations are designed as substitution-permutation networks (SPNs).

In both cases states are divided into 5-bit elements, with big-endian encoding.
Elements themselves are arranged into matrices with 5 (resp. 7) 8-element rows
for PRIMATE-80 (resp. PRIMATE-120). The element in the ith row and jth

column of this matrix is denoted by ai,j where i ∈ {0, . . . , 4} (resp. i ∈ {0, . . . , 6})
and j ∈ {0, . . . , 7}. The first row a0,∗ in the state matrix contains the rate of
the state, and will henceforth be referred to as the rate row. P80, and P120 are
calculated using a sequence of four transformations described as follows:

1. SubElements (SE) is the only non-linear transformation. It consists of an
element-wise permutation X → S(X) : {0, 1}5 → {0, 1}5 (S-Box) applied to
each element of a state.

2. ShiftRows (SR) performs cyclical shifts of each row for a different number
of elements. Row i is shifted left by si = {0, 1, 2, 4, 7} in P80, or by si =
{0, 1, 2, 3, 4, 5, 7} in P120.

3. MixColumns (MC) operates on a state column at a time. It is a left-hand mul-
tiplication by a 5×5 (7×7) Maximum Distance Separable (MDS) matrix [3].
The matrices are chosen in a way that allows recursive calculation of a smaller
matrix five (resp. seven) times.

4. ConstantAddition (CA) modifies a single state element a1,1 by bitwise XOR-
ing a 5-bit constant in each round.

Round constants are generated by a 5-bit Fibonacci LFSR [3]. Varying on
the sequence of values sampled from this LFSR and the number of rounds, four
permutations p1, p2, p3, and p4 are derived from the core permutation (either
P80 or P120), as shown in Table 2.

PRIMATE Modes of Operation. All modes of operation are generic con-
structs, designed based on Sponge [8] methodology principles with slight differ-
ences in input output behavior, parameter size and used permutations. Table 1
gives an overview for the latter two differences. Please refer to [3] for details on
the former difference. We only emphasize the fact that decryptions of HANU-
MAN and GIBBON do not require the inverse transformation of PRIMATE
whereas APE does.

Table 1. PRIMATEs modes of operation.

PRIMATEs APE-s HANUMAN-s GIBBON-s

k 2s s s

t 2s s s

n s s s

PRIMATE p1 p1, p4 p1, p2, p3

Table 2. PRIMATE permutations.

PRIMATE p1 p2 p3 p4
# of rounds of P-s 12 6 6 12

Init. val. of the LFSR 1 24 30 24



Hold Your Breath, PRIMATEs Are Lightweight 201

3 Implementations of PRIMATE

Following the design rationale of the PRIMATEs family, we focus on hardware
implementations for heavily constrained devices. We abstain from using power-
saving techniques (e.g., clock gating). Instead we perform architectural optimiza-
tions that lead to reduced area and power consumption. Lastly, we strive towards
the 12 kbit/sec throughput at the operating frequency of 100 kHz, discussed in
Sect. 1, as the performance criterion.

As in all Sponge-based designs, the majority of implementation cost of PRI-
MATEs comes from core permutations. Therefore, we investigate several ways
to serialize P80 and P120. Additionally, we provide round-based versions of both
core permutations.

Lastly, in order to benefit from the granulated nature of the PRIMATE fam-
ily we have fragmented our implementations into several hierarchical levels, thus
creating a generic serial-implementation strategy independent of the permuta-
tion design. Therefore, we present the design of the control logic required for
generation of p1, p2, p3, and p4 separately from the core permutations.

3.1 PRIMATE Permutations’ Control

The 5-bit Fibonacci LFSR used for CA transformation is one of the lightweight
features predicted by design. Firstly, depending on the selected pi, rounds can
be decoded from the values of the LFSR, thereby alleviating the need for addi-
tional counters. Secondly, pi’s defer from one another only by the sequence of
Fibonacci constants. Therefore, for each of the modes of operations, regardless of
the security level, control module ModeCtrl is realized using simple hardware.

Permutation pi starts by loading a corresponding constant of the Fibonacci
sequence into the LFSR. After each round—underlying permutation core must
provide a RndDone signal—LFSR progresses along its sequence. Output of the
LFSR is used as a round constant RCon for the underlying permutation core.
Lastly, small 5-bit decoders are used to detect rounds of interest (e.g., first, last)
for the control of upper layers of logic.

3.2 Core Permutations P80 and P120

In combination with the control module from Sect. 3.1, any of the implemen-
tations from this section can be used to provide encryption and decryption
of HANUMAN and GIBBON as well as APE encryption. Since APE requires
inverse of p1 we have abstained from implementing this functionality. Justifica-
tion for this is twofold: from the area-performance-power perspective implemen-
tation of p1 is negligibly different from its inverse; from the usability perspective
it is likely that heavily constrained devices perform only encryption, while the
decryption is performed in the backend. Lastly, note that these implementations
include only the functionality of the core permutation, i.e. they allow computa-
tion of only one round. Depending on the way the core is used, different overhead
will be introduced in the design (e.g., a feedback multiplexer). Nevertheless, we
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find this sort of results useful, for the various use-cases that may be anticipated
for these architectures. More discussion on this topic is given in Sect. 5.

Round-Based Implementations of P80 and P120. Figure 1, where each
line represents a 5-bit element value, depicts the round-based architecture of P80,
called P80-1. S-Boxes, MDS matrix multiplications, and constant addition, are
implemented as combinational networks. SR transformation can be realized by
rewiring of rows, hence it is free in hardware. P120 version (P120-1) is obtained
using the same design approach. Lastly, these implementations include a state-
sized register—for fair comparison.

Fig. 1. Round-based architecture of the core permutation, P80-1.

Serial Implementations of P80 and P120. Due to the relatively large state,
and combinatorial logic designed to be efficient in hardware, major cost of a serial
implementation of P80 and P120 comes from the register file used to store the
state. Consequently, we aim to minimize the number of multiplexed inputs to
every bit of the State Register File (SRF), and to avoid additional registers in the
design. Therefore, we abstain from using additional multiplexers for controlling
data flow, and design the SRF as a column-wise FIFO register. Hence, all serial
implementations of P80 feature a 25-bit data path, while P120 implementations
use a 35-bit data path; which correspond to the number of bits in a column of
the state matrix.

Lastly, each of the permutation cores requires a dedicated Finite State
Machine (FSM) for controlling the data flow, in addition to the ModeCtrl
module used to iterate rounds of pi.

P80-9 and P120-9. Figure 2 depicts a 9 clock cycle serial implementation (P80-
9). Here, the SRF has only two modes of operation MC, and SR. When MC is
active SRF is configured as a 25-bit FIFO register which feeds the data into the
combinational network at its output. This mode is used for data input, as well.
SR mode is always active during the first cycle of computation, during which
it rewires the SRF to perform the SR transformation. P120 version (P120-9) is
obtained using the same design approach.

P80-41 and P120-57. Based on the 9 clock cycle approach, we present another ser-
ial version by serializing the MC step. Namely, 5 matrix multiplications that are
required for MC transformation of PRIMATE-80, are now performed in 5 clock
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Fig. 2. Data path architecture of the P80-9 permutation core.

cycles using 5 times less hardware. The same concept applies for PRIMATE-
120 with the difference that factor of 7 applies instead of 5 (since the state
of PRIMATE-120 has 7 rows). Therefore instead of 8 additional cycles 5 × 8
(for PRIMATE-80), or 7 × 8 (for PRIMATE-120) are required to perform this
computation. SR transformation remains performed in a single clock cycle as
before.

P80-16 and P120-16. Figure 3 depicts a 16 clock cycle serial implementation (P80-
16). Instead of serializing MC transformation, we serialize the SR transformation.
Namely, SR is performed by shifting the position of the column-wise input by
the number of shifts prescribed by the SR operation for each row of SRF. After
8 clock cycles of shifting in this manner, SRF is reconfigured to perform SE and
MC for another 8 clock cycles, as done previously. This way a number of 2-to-1
multiplexers around the SRF is traded for additional latency of 7 clock cycles,
resulting in minimal multiplexer overhead.

Fig. 3. Data path architecture of the P80-16 permutation core.

On the downside, this core can not preserve state between two consecutive
rounds. Namely, in both configurations SRF is written in 8 clock cycles, using 2
different patterns: regular column-wise shift (MC), and columns-wise shift with
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offset (SR). Consequently, if the output of one round is sequentially looped back
in MC mode (as it would be done in P80-9), a number of elements in a row equal
to the row offset is overwritten. Therefore, feedback path for each row should
be delayed for the number of clock cycles equal to the row offset. In hardware
this delay maps to introducing additional flip-flops. We estimate that the cost
of this storage, and corresponding control and glue logic, increases the size of
this implementation beyond feasible. P120 version (P120-16) is obtained using
the same design approach.

P80-95 and P120-127. Lastly, we implemented single S-Box versions. These two
implementations have fully serialized MC operations (requiring an additional
cycle to load new column), and require 7 clock cycles to perform SR opera-
tion. Since 5-bit PRIMATEs S-Boxes are small (30–40 GE), we believe that area
savings are not worth the performance impact when it comes to unprotected
implementations. Nevertheless, this approach may lead to major area savings
with TI versions; since shared S-Boxes take 246 GE and 255 GE (see Sect. 4.1).

4 Threshold Implementations

Since the application of TI on affine functions is trivial [24], we mainly focus on
the sharing of the S-box. Then, we briefly discuss the shared architectures.

4.1 The Shared S-Box

The PRIMATEs S-Box is an almost bent permutation with excellent linear and
differential properties and is affine equivalent to the cubic power mapping in
GF (25). As can be seen from its algebraic normal form in Eq. (1) (with xi and
yi correspond to input and output bits assuming 0 to be the index for MSB),
the S-Box is quadratic which makes it suitable for efficient TI.

y0 = x0x2 + x0x3 + x1x4 + x1 + x2x3 + x2 + x3

y1 = x0 + x1x2 + x1x3 + x2x3 + x2x4 + x3

y2 = x0x1 + x0x4 + x0 + x1 + x2x3 + x2x4

y3 = x0x2 + x0x4 + x0 + x1x2 + x3x4

y4 = x0x3 + x1 + x2x4 + x4 + 1

(1)

In this paper, we only consider the first-order TI of the PRIMATEs S-Box.
Since at least d + 1 shares are required to implement any function of degree d,
we first implement the shared S-Box with 3 shares. We provide the component
functions of y0 for this version in Eq. (2) as an example where xj

i refers to the
j-th share of xi.



Hold Your Breath, PRIMATEs Are Lightweight 205

y10 = ((x2
0 + x3

0)(x
2
2 + x3

2)) + ((x2
0 + x3

0)(x
2
3 + x3

3))+

((x2
1 + x3

1)(x
2
4 + x3

4)) + ((x2
2 + x3

2)(x
2
3 + x3

3)) + x2
2 + x2

3 + x2
1

y20 = (x1
0x

3
2 + x3

0x
1
2 + x1

0x
1
2) + (x1

0x
3
3 + x3

0x
1
3 + x1

0x
1
3)+

(x1
1x

3
4 + x3

1x
1
4 + x1

1x
1
4) + (x1

2x
3
3 + x3

2x
1
3 + x1

2x
1
3) + x3

1 + x3
2 + x3

3

y30 = (x1
0x

2
2 + x2

0x
1
2) + (x1

0x
2
3 + x2

0x
1
3)+

(x1
1x

2
4 + x2

1x
1
4) + (x1

2x
2
3 + x2

2x
1
3) + x1

1 + x1
2 + x1

3

(2)

This particular sharing fails to satisfy the uniformity property of TI. Since
we were not able to find a uniform 3-share TI with our limited computational
resources, we re-mask the S-box output in order to attain provable security. Re-
masking is performed similarly to [10] in order to reduce the fresh randomness
requirement.

Additionally, we implement a 4-share uniform TI which is provided for y0
in Eq. (3), as an example. Even though this implementation has bigger area
compared to its 3-share counterpart, it does not require fresh randomness after
the initial sharing. This may lead to significant savings once a random number
generator is included in the design.

y10 = ((x20 + x30 + x40)(x
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4.2 Architectures

We implement a total of 6 threshold implementations of PRIMATEs. Firstly,
implementations vary in number of shares. Secondly, we utilize different degrees
of serialization to ensure tradeoffs between cost and performance. For conve-
nience we name them P80-93, P80-94, P120-94, P80-953, P80-954, P120-1274,
where the superscript numbers indicate the number of shares.

Figure 4 depicts the datapath of P80-93. For each of the S-Box shares a copy
of the MC circuit, and an additional SRF, needs to be added to the design to
maintain the masked state. The additional control logic required to implement
the circuit is minimal. This is in contrast to the serialized threshold implemen-
tation of AES [23], where the S-Box needed to be implemented using pipelined
stages. The structure of the Primates S-Box obviates the need for such pipelining.
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Fig. 4. Data path of the 3-share P80-9 permutation core.

5 Implementation Results

All implementations are synthesized from RTL code written in VHDL. We use
Synopsys Design Compiler v2015.06 to synthesize each design. Furthermore, we
use Synopsys PrimeTime v2015.06 with PX add-on to perform more accurate
static timing analysis and switching activity based power estimation.

We provide synthesis results using 2 standard-cell libraries: Faraday UMC
90 nm, generic core in Low-K RVT process, 1.2 V power supply (UMC 90), and
NangateOpenCellLibrary 45 nm, PDKv1 3 v2010 12 (NAN 45), in Table 3.

Along the maximum frequency and area we provide performance figures at
the operating frequency of 100 kHz. These include throughput, implementation
efficiency (throughput per unit of area), dynamic and static power consumption,
and energy efficiency (energy per state bit in every round). We use these figures
to benchmark P80 and P120 permutations, in order to identify the most suitable
lightweight scenario for each of the permutation cores.

Firstly, we observe that the control logic ModeCtrl discussed in Section
utilizes negligible amount of resources—under 100 GE. All control modules have
shorter critical paths than any of the permutation cores, therefore they can not
pose as a computational bottleneck. Secondly, we observe that areas of P80 and
P120 scale in a linear fashion with respect to the state-size. Therefore, we focus
discussion on the P80, for simplicity.
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Table 3. Post-synthesis hardware implementation results.

Design Library Max. Freq.
[MHz]

Area
[kGE]

@ 100 kHz

T’put
[Mbit

s
]

Impl. Eff’cy
[ Mbit
kGE·s ]

D. Pwr
[µW]

S.Pwr
[nW]

E. Eff’cy
[ pJ
bit

]

ApeCtrl UMC90 361.58 0.06 — — 0.01 1.15 —

NAN45 606.76 0.09 — — 0.01 1.37 —

HanCtrl UMC90 487.02 0.05 — — 0.01 1.02 —

NAN45 683.06 0.08 — — 0.01 1.11 —

GibCtrl UMC90 599.23 0.05 — — 0.01 1.04 —

NAN45 749.29 0.07 — — 0.01 1.23 —

P80-1 UMC90 179.60 3.68 20.00 5.43 2.32 74.00 0.12

NAN45 341.53 4.72 4.24 1.63 83.30 0.09

P80-9 UMC90 256.74 1.43 2.22 1.56 0.74 29.80 0.35

NAN45 439.77 2.05 1.08 0.78 32.80 0.37

P80-16 UMC90 509.50 1.20 1.25 1.04 0.68 25.20 0.57

NAN45 896.38 1.78 0.70 0.42 27.60 0.36

P80-41 UMC90 204.18 1.32 0.49 0.37 0.46 26.70 0.99

NAN45 267.61 1.98 0.25 0.30 31.80 0.68

P120-1 UMC90 142.27 6.32 28.00 4.42 4.61 137.00 0.17

NAN45 281.31 8.23 3.51 3.65 159.00 0.14

P120-9 UMC90 183.69 2.17 3.11 1.43 1.26 46.00 0.42

NAN45 490.17 3.10 1.00 1.17 165.00 0.43

P120-16 UMC90 447.21 1.82 1.75 0.96 1.13 38.60 0.67

NAN45 722.33 2.69 0.65 0.80 42.60 0.48

P120-57 UMC90 114.32 1.87 0.49 0.26 0.63 36.80 1.37

NAN45 239.24 2.79 0.18 0.40 44.80 0.91

P80-93 UMC90 162.60 5.18 2.22 0.428 0.81 1.04 0.36

NAN45 251.25 7.20 0.308 0.49 65.90 0.25

P80-953 UMC90 151.74 4.72 0.21 0.044 0.60 0.86 2.55

NAN45 315.45 6.33 0.033 0.35 54.40 1.92

P80-94 UMC90 133.15 6.15 2.22 0.360 0.87 1.07 0.39

NAN45 249.33 9.24 0.240 0.53 86.20 0.28

P120-94 UMC90 79.05 10.30 3.11 0.302 1.41 2.34 0.45

NAN45 104.20 13.84 0.225 0.81 125.00 0.30

P80-954 UMC90 181.49 6.19 0.21 0.033 0.78 1.12 3.71

NAN45 298.50 8.31 0.025 0.50 70.40 2.71

P120-1274 UMC90 204.45 8.60 0.22 0.025 1.04 1.60 4.72

NAN45 300.00 11.51 0.019 0.70 96.50 3.61

On the one hand, P80-1 is dominant in throughput and energy efficiency.
Area costs of computing the entire round in parallel make P80-1 large for most
resource-constrained devices (e.g., RFID tags). Therefore P80-1 is better suited
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for battery powered devices, and applications where high throughput and long
battery life is of greater interest (e.g., wireless sensor nodes).

On the other hand, serial implementations seem very suited for constrained
devices. P80-16 is the smallest implementation, which requires only 1.2 kGE.
Unfortunately, this low resource cost comes at the requirement of storing value
of the state between rounds externally. Hence, feasibility of this implementation
strongly depends on the specifics of the application and resources of the plat-
form that relies on PRIMATEs-80. Also, this implementation has maximum fre-
quency considerably higher than the rest. Second largest implementation, P80-41
removes the problem of external storage requirement, and has the lowest power
consumption. Decrease in power consumption is due to the decreased size of com-
binatorial logic used for MC transformation. Nevertheless, it is not followed by
area decrease, since SRF of P80-41 is more costly. Namely, SRF size is increased
by additional multiplexers1 required for performing SR transformation in one
clock cycle, as well as additional control that makes rest of the SRF idle while
MC transformation is performed on a column. Still, the pitfall of this implemen-
tation is the heavily reduced throughput due to the high latency. Lastly, P80-9
is 50% (320%) more efficient than P80-16 (P80-41), at the price of 20% (8%)
area, and 9% (61%) power, increase.

When it comes to TI, we see that due to the efficient design of the S-Box,
there is no need for pipelining S-Boxes. Therefore, the circuit size is increased
approximately linearly with respect to the number of shares.

6 Usability, Comparison, and Discussion

Implementation results presented in Sect. 5 serve the purpose of benchmarking
the core permutation. Here we discuss how these results fit real-world applica-
tions. Figure 5 gives estimated encryption throughput of PRIMATEs based on
different serial implementations, with respect to the size of authenticated data
and plaintext in bytes; assuming 100 kHz operating frequency. Throughput is
estimated based on the latency of encryption in all 3 modes of operation, APE,
GIBBON, HANUMAN. Due to the fact that PRIMATEs may be used for appli-
cations that require encryption and (or) authentication of very short messages,
we include the latency of initialization for each mode. Lastly, note that Fig. 5
does not take any interface overhead into account, other than assuming that
input of data into state (e.g., initialization of key and nonce), and XOR-ing of
data into state (e.g., for tag generation) introduces latency of one round of the
core permutation.

Since GIBBON employs p2, and p3 which use only 6 rounds, it is asymp-
totically twice as fast as the other two modes, allowing throughput up to 70
kbits/sec for GIBBON using P80-9. Therefore it is preferred when performance
takes precedence over slightly lowered security. Furthermore, APE is slightly
1 Note that further area decrease SRF can be done by replacing flip-flop-multiplexer

pairs with scan flip-flops. This has no practical significance as scan flip-flops are
intended for test inputs in the during production.
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Fig. 5. Estimated encryption throughput at 100 kHz operating frequency.

slower than HANUMAN, due to the initial processing of the nonce (cf. [3]) and
the highest level of security that follows. Taking the 12 kbits/sec throughput at
100 kHz operating frequency into account, serializing MC transformation in P80-
41, and P120-57 versions makes them suitable for devices where their low power
consumption outweighs low throughput. Namely, as p1, and p4 permutations
which are effectively used for encryption (authentication) of each block require
12 rounds, this results in 492 clock cycles latency for P80-41 (684 for P120-57).
On the other hand, 9 (108 cycles per block in APE, HANUMAN; 54 cycles per
block in GIBBON), and 16 (144 cycles per block in APE, HANUMAN; 72 cycles
per block in GIBBON) clock cycle version satisfies these requirements with a sig-
nificant margin; and we deem them very usable for most constrained application
even with significant interface overhead. Moreover, since it requires no external
storage, we recommend P80-9, and P120-9 as the most sound choices.

Lastly, we look into some of the industrial standards, devised for lightweight
devices (e.g., smartcards). For example, EPCGlobal Gen2 and ISO/IEC 18000-63
passive UHF RFID air interface standards discussed in [28] prescribes the fol-
lowing constraints: clock frequency (1.5–2.5 MHz) and response latency (39.06–
187.50µs). These constraints allow RFID devices between 58 and 468 clock cycles
to respond. Considering this type of constraints, and the 12 kbits/sec at 100 kHz
requirement, we believe that lightweight ciphers can be fairly compared based
on the metric presented in Table 4. Assuming a fixed operating frequency, and
the corresponding throughput, performance constraints of implementations can
be compared solely based on the block size. We believe this is a practical usabil-
ity metric, which can be easily used in conjecture with area, power, and energy
constraints.
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Table 4. Maximal cycle latency per block assuming 12 kbits/sec, 100 kHz.

Block size [bit] 16 32 40 64 80 96 128 256

Max. number of cycles 132 261 326 521 651 782 1042 2084

7 PRIMATEs Coprocessor

In this section we present a coprocessor architecture which can be used for all
PRIMATEs. It is designed to be compatible with 8-, and 16-bit microprocessors;
and features an interface to PRIMATEs cores, efficient in terms of latency and
hardware overheads. Moreover, this approach can be applied for other sponge-
based ciphers (e.g., [9,15]).

The key to the interface design is depicted in Fig. 6. Namely, instead of map-
ping the entire SRF into microprocessor memory space, we introduced a single
row-sized InterFace (IF) register. IF is treated as a number of memory mapped
registers with 8-, or 16-bit parallel input, by the microprocessor. Alternatively,
IF provides element-wise shift capability; which allows it to communicate with
each row of the underlying SRF via circular shifts. This way of accessing SRF
(row-wise) has multiple benefits: IF allows data to be written to the permu-
tation core in block-pipeline fashion, effectively introducing clock cycle latency
overhead equal to the number of elements in a row; it provides translation from
the microprocessor word to element-sized word without any precomputation;
element-sized data path conforms FIFO construction of each row, hence it results
in zero area overhead; allows implementation of all PRIMATEs. Namely, all steps
required for PRIMATEs schemes (cf. [3]) can be divided into two groups: com-
putationally expensive pi permutations, and computationally feasible data flow
operations (e.g., data parsing and writing to the core, etc.). Therefore, we believe
that the best design strategy is to leave data flow operations to a microproces-
sor (or an upper level FSM), and dedicate coprocessor to performing pi. All
required read, write, and XOR operations can be achieved using three types of
row interfaces depicted in Fig. 6.

Namely, Rc encapsulates a row of the SRF with all of its logic, can only
be written to, and introduces no hardware overhead. Rb is a row which can
also be read-written via circular shifts, where reading introduces overhead of
5-bit multiplexer entry at the output (5-bit AND2 is 6.25 GE in UMC 90), and
slightly more control logic. Ra allows the data from IF register to be circularly
shifted as is (same as Rb), or circularly XOR-ed to the value stored in the row,
depending on the value of the Xor bit of the instruction (see Table 5). This
approach requires no additional latency for the encryption of blocks, as they are
XOR-ed to the rate as they are being written to SRF. Lastly, Ra row can be
read without changing its content by a circular XOR of 040. The cost of each
5-bit XOR-multiplexer required to support XOR is 23.75 GE in UMC 90.

In the particular case of PRIMATEs IF register is 40-bits wide, hence it
can be mapped to 5 8-bit registers, or 3 16-bit registers. Additionally, an 8-bit
Instruction Register (IR) is required for PRIMATEs instructions, which can be
mapped to the remaining byte of one of the 3 16-bit registers.
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Fig. 6. Coprocessor interface and the Xor instruction support.

7.1 HANUMAN-80 Coprocessor

As an example, we design and implement a HANUMAN-80 coprocessor, based on
the preferred P80-9 core. Subset of PRIMATEs micro-instructions, required for
HANUMAN-80 encryption and decryption (cf. [3]), is given in Table 5. Top-level
architecture, depicted in Fig. 7, is adapted to MSP430 microcontroller family
[21].

Table 5. Instruction Set of the HANUMAN-80 coprocessor.

Mnemonic Code Description

Reset 0------- Perform software reset

Wait 1000-000 Put coprocessor in a idle state

P1 1----001 Perform p1 permutation

P1S 1----101 Perform p1 permutation with padding spill into capacity

P4 1----001 Perform p4 permutation

RateX 10011111 XOR in to rate

RateS 10010111 Shift in to rate

RdRate 10011111 XOR in 040 to rate; emulated rate read

Cap1S 10100111 Shift in to capacity row 1, R/W

Cap2S 10110111 Shift in to capacity row 2, R/W

Cap3S 11000111 Shift in to capacity row 3, W

Cap4S 11010111 Shift in to capacity row 4, W

Dash, “-”, can be replaced by either zero or one.
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Fig. 7. HANUMAN-80 coprocessor architecture.

We use Spartan-6 FPGA (XC6SLX45-3CSG324) to implement and test our
design, next to an OpenMSP430 implementation [16]. On this platform coproces-
sor fits in a total of 72 (1.06%) slices (206 FFs and 278 LUTs.) In ASIC, using
UMC 90 standard-cell library from Sect. 5, the entire coprocessor requires 2 kGE.
Note that HANUMAN-80 compliant P80-9 (with the data path arhictecture
from Fig. 2) requires 1.69 kGE. Overhead of 0.26 kGE (18.68% larger than the
raw P80-9 core of 1.43 kGE) includes all the glue logic; and entire control logic,
including HanCtrl and the FSM of the coprocessor for fetching, decoding, and
executing micro-instructions. Since each row has separate enable signal, area as
well as power savings can easily be achieved by gating the clock instead of using
flip-flops with enable. Furthermore overhead of 0.31 kGE is introduced for the
8-bit instruction unit and the 40-bit IF register, which enables circular access
to SRF in a block-pipeline manner, allowing to almost negligible interface over-
head. Alternatively, this register can be removed, and the SRF redesigned to be
accessible to the microprocessor. This leads to area decrease; but also increases
the latency, and makes it heavily dependent on the latency of the write cycle of
the microprocessor, since pipeline feature is absent. Average dynamic power at
the operating frequency of 100 kHz is 0.49µW, while the 39.90 nW of power are
dissipated statically; consuming 5.3µW/MHz in total, which fits requirements of
the industry [28]. Throughput estimated based on the 118 clock cycles (12×9 for
pi, 8 for circular shift, and 2 for instruction fetch and decode) latency per data
block (asymptotically) is 33 kbits/sec. This is a valid assumption, since no addi-
tional storage is required for pre-computing and storing the initialization phase,
while tag generation is simply the XOR operation. Under these assumptions,
estimated energy consumption is 15.60 pJ/bit.
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Implementation Comparison. Performing a fair evaluation of different can-
didates is a difficult task for several reasons. Firstly, it requires a common inter-
face, equally suitable for all candidates. Secondly, broad area of use cases, rang-
ing from RFID chips to high-end hardware accelerators, might not make use of
a single interface objective enough. Thirdly, implementers present their results
in different technological libraries and processes of each library; which makes
area and power comparison more difficult. Consistently with the lightweight
tone of this work, and assumed real-world limitations, we use Table 6 to bench-
mark several implementations of second-round CAESAR candidates, against the
smallest implementation of AES [23]. Coherently to the discussion from Sect. 5,
we use area, clock cycle latency(# TCLK), and block size as main comparison
parameters. Additionally, we present how well does each implementation fit the
constraints setting from Table 4 (lower percentage is better). Only two candi-
dates are chosen at this time for the lack of lightweight ASIC implementations
of others.

Table 6. Implementation comparison.

Design Tech. Area
[kGE]

Block
size [bit]

# TCLK #TCLK
Table 4

· 100 [%]

AES♠ [23] UMC 180 2.4 128 226 21.69

HANUMAN-80 UMC 90 2.00 40 118 36.20

GIBBON-80 UMC 90 ≈2.00♦ 40 64 19.63

Minalpher [29] NAN45 2.81♣ 256 304 14.59

Ascon-64 [15] UMC 90 5.86 64 354 67.95

Ascon-x-low-area [15] UMC 90 3.75 64 3072 589.63
♠UMCL18G212T3 based on a UMC 180 nm library. ♦GIBBON-80 coprocessor esti-
mated area. ♣Authors state that no optimization is performed.

8 Conclusions and Future Work

Based on the hardware implementations of PRIMATEs family of authenticated
ciphers, and adjacent discussion we find PRIMATEs to be very suitable for con-
strained devices. Namely, uninterfaced implementations of the permutation that
lies in the heart of PRIMATEs takes only 60–72% of the 2 kGE lightweightness
criteria. As shown by example of the HANUMAN-80 coprocessor, this leaves
plenty of space for the implementation of interface and control logic. Further-
more, without any circuit-level optimizations (e.g., clock gating, power gating),
or picking technology library for low-power application, our coprocessor fits the
all of the commonly accepted criteria in practice; in terms of throughput, area,
and average power consumption proposed in [28]. Additionally, presented variety
of TI shows that securing PRIMATEs against first order DPA can be achieved
using as little as 4.3 kGE.
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Additionally, by looking at the PRIMATEs AEAD schemes in [3], and the
design of our interface, we observe that by simply using different row interfaces
depicted in Fig. 6 coprocessor can be turned into GIBBON-80, and APE-80. Sim-
ilarly, by using P120-9 instead of P80-9 all 3 modes of operation can be satisfied
for the increased security level, with minor changes in hardware, conforming the
same architecture. Therefore, both security levels, for all modes of operation can
be achieved on the same chip—or any reasonable combination tailored for the
specific application—with very little hardware overhead.

Further evaluation of this family requires a tapeout of a versatile PRIMATEs
chip, which would allow detailed assessment of SCA security. This study would
also allow us to study how efficiently can different modes of operation and secu-
rity levels coexist on a single chip. Furthermore, we plan to study TI of PRI-
MATEs in order to achieve same levels of security using less randomness and
resources, as well as higher-order DPA security.

Acknowledgments. This work has started during a short-term research mission,
COST Action IC1306: Cryptography for Secure Digital Interaction. In addition, this
work is supported in part by the Research Council KU Leuven (C16/15/058), by the
Flemish Government (G.00130.13N and FWO G.0876.14N), by the Flemish iMinds
projects, by the Hercules Foundation (AKUL/11/19), and by the European Com-
mission through the Horizon 2020 research and innovation programme under con-
tract No H2020-ICT-2014-644371 WITDOM, H2020-ICT-2014-644209 HEAT, H2020-
MSCA-ITN-2014-643161 ECRYPT-NET, and under grant agreement 644052 HEC-
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Abstract. In the crypto community, it is widely acknowledged that any
cryptographic scheme that is built with no countermeasure against side-
channel analysis (SCA) can be easily broken. In this paper, we challenge
this intuition. We investigate a novel approach in the design of crypto-
graphic primitives that promotes inherent security against side-channel
analysis without using redundant circuits. We propose Keymill, a new
keystream generator that is immune against SCA attacks. Security of
the proposed scheme depends on mixing key bits in a special way that
expands the size of any useful key hypothesis to the full entropy, which
enables SCA-security that is equivalent to the brute force. Doing so, we
do not propose a better SCA countermeasure, but rather a new one. The
current solution focuses exclusively on side-channel analysis and works
on top of any unprotected block cipher for mathematical security. The
proposed primitive is generic and can turn any block cipher into a pro-
tected mode using only 775 equivalent NAND gates, which is almost half
the area of the best countermeasure available in the literature.

1 Introduction

Side-Channel Analysis (SCA) is a major threat to the embedded implementation
of cryptographic schemes. It is an implementation attack, where the adversary
exploits side-channel outputs in order to recover information about secret val-
ues. Side-channel outputs include power consumption, electromagnetic radiation,
execution time, and more. SCA targets the underlying implementation rather
than the mathematical structure of the scheme. Its concept depends on predict-
ing changes in the behavior of a crypto module using key hypotheses. Then,
the hypothesis can be confirmed or rejected based on the actual behavior of
the module. There are many variations in the details involved in applying this
attack, but the overall concept remains the same.

Traditional countermeasures comes in three categories: Masking, Hiding, and
Leakage Resiliency. Masking depends on blinding the internal operations using

c© Springer International Publishing AG 2017
R. Avanzi and H. Heys (Eds.): SAC 2016, LNCS 10532, pp. 217–230, 2017.
https://doi.org/10.1007/978-3-319-69453-5_12



218 M. Taha et al.

a random variable. The effect of randomness should be removed at the end of
computation to retrieve the legitimate output. This countermeasure prevents cor-
rect prediction about the power consumption. Hiding depends on minimizing the
signal-to-noise ratio in the leakage using a complement processing module, shuf-
fling, dedicated noise generator or other means. This countermeasure prevents
internal operations from affecting the power consumption. Leakage Resiliency
depends on updating the secret value after every operation to prevent aggregat-
ing unbounded information against the same secret.

After much research in this field, it was acknowledged that protecting an
already designed cryptographic algorithm can become very costly in terms of
area and clock cycles. Hence, Medwed et al. [12] proposed using two different
primitives: one to achieve security against side-channel analysis, while the other
is used to protect the design against mathematical cryptanalysis, as shown in
Fig. 1(a). They proposed modular multiplication between the key and a random
number (function gk(r)) that can be easily protected against SCA using masking
and shuffling. The random number works as an Initialization Vector for block
cipher modes, and should be sent to the other party. The output is a unique
secret that can be used to encrypt plain data using any block cipher. Essen-
tially, they proposed separation of duties while still depending on the common
SCA countermeasure techniques. They acknowledged that any cryptographic
primitive that is built with no sound SCA countermeasure can be easily broken.

In this paper, we challenge this intuition by proposing a new primitive that
is secure against SCA attacks inherently by design without requiring any redun-
dant circuit. We follow the separation guidelines of Medwed et al. [12] to better
focus on side-channel properties. However, we propose a keystream generator
that can encrypt plain data of any length, as shown in Fig. 1(b). The keystream
generator, Keymill, depends on a special class of NLFSRs, augmented with
some implementation aspects that are hardware specific. Security of the pro-
posed scheme depends on mixing the key bits in a novel way so that no key
hypothesis that is smaller than 128 bits can break the system. Our design can
be implemented using 775 GEs in 130 nm CMOS technology.

Fig. 1. (a) Domain separation proposed in [12]. (b) Generalized domain separation, as
followed in this paper. BC denotes a block cipher.
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The paper is organized as follows: Sect. 2 reviews some background about
NLFSR and some insights about SCA that are mandatory for this research.
Sect. 3 proposes a new definition about SCA-security and highlights the problem
statement. Sect. 4 introduces some toy models that will be helpful in the analysis
of the full system. Sect. 5 shows the proposed design, while its security analysis
is highlighted in Sect. 6. The implementation cost and comparison with previous
techniques are discussed in Sect. 7. We conclude the paper in Sect. 8.

2 Background

2.1 Nonlinear Feedback Shift Registers

An NLFSR is a common component in cryptographic stream ciphers. NLFSRs
are known to be challenging targets for SCA [7], while having high performance
at small implementation cost [15]. An NLFSR consists of n binary storage units
called stages. In each cycle, the register is shifted by one bit, while the new
value of the first bit is the output of the feedback function f(S); where f(S)
is a non-linear function computed over the state of the register with mapping
f : {0, 1}n → {0, 1}. The output of the NLFSR is the sequence that shows at the
last stage. The period of an NLFSR is the length of the longest cyclic output that
it can produce. The NLFSR that can generate the full period of 2n−1 (excluding
the zero state) is called a primitive NLFSR, where n is the length of the register.

2.2 Taxonomy of SCA

SCA depends on recovering information from leakage traces. The number of
points that are involved in recovering complete information about any piece of
the secret key determine the attack class.

For example, Simple Power Analysis (SPA) works by recovering information
from a single point in the trace. Differential Power Analysis (DPA) works by
combining information from a selected trace point across many different inputs.
Higher Order DPA (HO-DPA) works by computing higher order moments before
applying regular DPA attacks. Finally, a Multi-Variate DPA attack combines
information from different trace points along the time at different input patterns.

2.3 SCA’s Divide-and-Conquer

SCA works only for its ability to break complexity of the secret value. The
typical trend in designing cryptographic algorithms is to mix the secret key in
its original format at full entropy with the input data. We understand that,
mathematically speaking, there is no reason to reduce entropy of the key before
using it. However, this is exactly where the hardware fails, as the adversary can
control (or monitor) the input data and observe the hardware’s behavior as the
input data interacts with the secret value. Usually, the input data width is equal
to or larger than the width of the secret value, giving so much flexibility in the
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attacker’s hands to isolate, test, and collect unbounded information about small
parts of the secret key. This is known as the divide-and-conquer principle of SCA.

For example, in the AES encryption algorithm, 8-bits of the key can be isolated
and recovered at the output of the SBox by controlling 8-bits of the input data.
Similarly, 4-bits can be isolated by controlling 4-bits of the input in the PRESENT
cipher. Also, in the typical implementation of RSA, singular key-bits can be
isolated by monitoring changes in the entire input data. In these examples (and
many others), increasing mathematical security of the algorithm does not affect
its side-channel security, as a longer key length can be broken by recursively
recovering smaller segments.

In this regard, our design has two features as detailed later. We shrink the
input data width to only 1-bit, which is the smallest possible. Also, we reduce
entropy of the key before interacting with the input data, which preserves its
secrecy.

3 Design Goals

3.1 A New Definition: SCA-Security

In this paper, we propose a new definition for SCA-security.
SCA-security is the minimum size of key hypothesis (in bits) such that the

leakage-model using the correct key correlates to the measured leakage signifi-
cantly higher than the leakage-model using any other key.

Let Ls be the leakage-model using s bits of the secret key:

Ls = f(x, |k|s),

where x is the known public data (IV), and |k|s represents s bits of the secret
key. Let L∗

s represents the leakage using the correct secret key (k∗). Also, let M
be the measured leakage using the same input data set.

The SCA-security can be defined as the minimum value of s so that:

ρ(L∗
s ,M) >> ρ(Ls,M),

where ρ is the Pearson product-moment correlation coefficient.
Under this definition, SCA-security of the regular square-and-multiply algo-

rithm of RSA is only 1-bit. SCA-security of AES is 8-bits, while that of PRESENT
cipher is 4-bits.

The goal in this paper is to design a cryptographic primitive with SCA-
security that equals its brute force.

3.2 Practical Applications

The AES encryption modes CBC, CFB, OFB, and CTR, and the authenticated
encryption modes CCM, GCM and OCB [1,5] are equally vulnerable to SCA
attacks as they use one fixed key k in every call to the underlying block cipher.
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The direct application of our proposal as highlighted in Fig. 1(b) is to convert
any of the aforementioned modes into SCA-secure. This is possible by using the
secret key k along with the Initialization Vector (IV) as a seed for the random
number generator. Each 128 bits of the pseudorandom output should be used
only once to encrypt a message using any block cipher (denoted BC in the
figure). In this case, the public input data that can be monitored (or controlled)
by the adversary is the IV. In the following sections, we assume that the IV is 128
bits while the proposed keystream generator can be used with any other length.

4 Introductory Toy Models

A Simple Power Analysis against the internal state of a linear feedback shift
register was proposed in [3]. They observed that the difference between power
consumption following the Hamming Distance model of two consecutive clock
cycles depends only on the edge bits, as the effect of internal bits will cancel
out. This attack is not directly applied to the NLFSR case as proposed here.
Zadeh and Heys [17] concluded that an SCA attack can reduce complexity of
the secret key only if the adversary can detect changes within the underlying
gates in the non-triggering edge of the clock cycle. This condition is very tricky
and has never been tested through actual power traces. Hence, in the following
toy models, we will focus on Differential Power Analysis.

4.1 Toy Model I: One 8-Bit NLFSR

Without loss of generality, we focus on a toy example of NLFSR that holds some
security properties that are similar to the proposed structure. In this example,
we study an 8-bit shift register shown in Fig. 2 where all the taps are connected
to the feedback function. The structure is initialized with 8-bits of secret key,
and the public data is added one-bit at a time by xoring with the feedback
function.

Fig. 2. Toy model I: one 8-bit NLFSR

We denote the state at clock i by Si, with its internal bit number j as sj ,
(j ∈ [0 : 7]). In the first clock cycle, the power leakage following the Hamming
Distance power model is:

L = HD(S0, S1),

= HW (S0 ⊕ S1),

= HW ((s0, s1, s2, ..., s6, s7) ⊕ (s1, s2, s3, ..., s7, F (S0) ⊕ i0)).
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where HD is the Hamming Distance function, which is the number of bit-flips
between its two inputs. HW is the Hamming Weight function, which is the
number of set bits in the binary representation of its input. F (S) is the feedback
function. ix is the input bit number x.

At a fixed secret value, the first terms are not data-dependent
((s0, s1, s2, ..., s6) ⊕ (s1, s2, s3, ..., s7)), hence their power consumption will not
change by changing the input data and their effect will be canceled out by cor-
relation. Hence, the data-dependent power leakage will be:

L = s7 ⊕ F (S0) ⊕ i0,

where, the HW function was removed as its input is only one bit.
This equation shows a linear relationship between the measurable power con-

sumption and one-bit of the input data, which does not reveal any information
to the attacker. The reason is that the leakage will directly follow changes in
the input (L = 1 at i0 = 1) or the exact opposite (L = 0 at i0 = 1) with equal
probabilities of 50%, i.e. no advantage to the adversary.

In the second clock cycle, if we keep the register isolated with no other con-
nected registers, the power leakage will depend on:

L = s7 ⊕ F (S0) ⊕ i0 + F (S0) ⊕ i0 ⊕ F (S1) ⊕ i1.

Here i0 becomes part of F (S1), interacting non-linearly with other key bits to
generate the output. This equation reveals information leakage that can be used
by the adversary to break the system. Here, F (S1) compromises SCA-security
of the system but the system is not completely broken yet. The reason is that
the attacker can control only one bit-input of an 8-to-1 non-linear function. If
function F (S1) is balanced over its input bits, the input data sequence will cause
the output to flip in 50% of the cases, i.e. half of the secret space will be equally
ranked first in the analysis, hiding the original secret.

The adversary can aggregate knowledge about the first two registers by
addressing both F (S0) and F (S1) as highlighted in the equation above, to further
reduce SCA-security of the system. In principle, the adversary makes a hypoth-
esis over the initial state of the register (the key), and predicts the output of the
feedback function in each clock cycle based on the input data. Then, he focuses
on clock cycle number x to predict data-dependent power variations affecting
all the taps [1 : x]. Increasing the number x by one reduces complexity of the
unknown secret by at least one bit. The exact SCA-security reduction depends
on nonlinearity of the feedback function. In this example, attacking clock cycle
number 8 can uniquely determine the secret key.

To conclude, any regular NLFSR that is similar to Model I can be broken by
SCA, regardless of complexity of the feedback function. Next, we will propose a
novel modification in order to improve security of the structure.

4.2 Toy Model II: Two 8-Bit NLFSRs with Rotating Cross-Connect

In this model, we use two 8-bit registers, R1 and R2, each with its own function
F1(S1) and F2(S2), as shown in Fig. 3. Here, F1(S1) (or F2(S2)) is a nonlinear
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Fig. 3. Toy model II: two 8-bit NLFSRs with rotating cross-connect

function over the state bits of register R1 (or R2, respectively). Here, the feed-
back functions are connected to the register using a rotating cross-connect. In
the odd clock cycles, the output of each function is normally connected back
to its own register. In the even clock cycles, the output of function F1(S1) is
connected to R2, while F2(S2) is connected to R1. Also, the system accepts
two fresh IV bits per clock. Each bit is xored with the output of the non-linear
functions before being stored in the first tap of the register.

Analysis of the system in the first clock cycle is equivalent to the previous
model. Although the algorithmic noise here is higher, this noise alone cannot
support sound security against SCA attacks.

In the second clock cycle, the data-dependent power leakage will be:

L = s17 ⊕ F1(S10) ⊕ i0 + F1(S10) ⊕ i0 ⊕ F2(S21) ⊕ i2

+ s27 ⊕ F2(S20) ⊕ i1 + F2(S20) ⊕ i1 ⊕ F1(S11) ⊕ i3.

where s1, s2 are the state bits of register R1 and R2, respectively. Similarly, S1
and S2 represent the state of registers.

The first part of this equation represents power variations in the first register
R1, while the other part represents R2. The equation shows the effect of using
two registers with a cross-connect. If the adversary predicts the initial state one
register S1 (or S2), F2(S2) (or F1(S1) respectively) will act as a source of data-
dependent noise. In this case, the adversary can still break the system, but only
with a hypothesis over the entire secret space (16 bits in this particular example).
To the best of our knowledge, this is the first cryptographic structure that can
combine the effect of two non-linear functions, while being immune against the
divide-and-conquer principle of SCA.

One may think that the adversary may try a specially crafted input sequence
to focus on manipulating only one register. One possible choice is to switch
between one random bit and one fixed bit (i0 0 i2 0 i4 0...). However, this
will not result in any better attack. Register R2 will still show data-dependent
variations brought by the other feedback function (F1(S11)) as highlighted in
the equation above.

To conclude, more than one non-linear register can be combined using a
rotating cross-connect to increase the secret space of the structure.
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4.3 Toy Model III: Two 8-Bit Registers with 4-Bit Feedback
Function

In this section, we try to answer the interesting question: Should SCA-security
depend on the register length or the number of bits involved in evaluating the
feedback function? In the previous models, the two numbers were identical. In
Model III, we keep the length of registers as 8-bits, but we use 4-to-1 nonlinear
feedback functions. For instance, we assume that only the odd numbered taps
are connected to the feedback function.

Here, the data-dependent power leakage in the second clock cycle will be:

L = s17 ⊕ F1(S10odd) ⊕ i0 + F1(S10odd) ⊕ i0 ⊕ F2(S21even) ⊕ i2

+ s27 ⊕ F2(S20odd) ⊕ i1 + F2(S20odd) ⊕ i1 ⊕ F1(S11even) ⊕ i3.

where Sodd represents the odd numbered taps, while Seven represents the even
numbered taps.

The equation shows that the adversary needs a correct hypothesis over the
entire register in order to correctly model the power consumption. This is true if
knowledge about the value of some taps does not help in predicting the output of
the feedback function in the next clock cycle. This is best achieved by connecting
the feedback function over the odd taps of the register.

To conclude, we do not have to find a nonlinear feedback function that covers
all the register taps. Interestingly, a feedback function that connects only half of
the taps can provide the same level of SCA-security. Feedback functions with a
smaller number of inputs will have a degraded level of SCA-security.

5 Keymill, The Proposed Design

Our first option for a full system with 128-bits of secret key is to combine 16
8-bit registers using AES SBox as a non-linear function. However, the size of
the rotating cross-connect circuit will be significant. More importantly, the com-
bined secret space will be less-optimal. One full rotation of the cross-connect will
require 16 cycles, while the IV input will vanish in only 8 clock cycles (assuming
16-bits input per clock with IV of 128 bits).

Hence, we propose to use only four registers featuring 8 full rotations while
accepting new IV bits, which will be done within 128/4 = 32 clock cycles.

Unfortunately, there is no theory on how to construct NLFSRs with good
cryptographic properties and long period. However, there are many construc-
tions in the literature that have been carefully designed for cryptography with a
guaranteed maximum period. Hence, we will not design a new NLFSR. Instead,
we will focus on how to use one of the established NLFSRs in the proposed
construction.

Achterbahn [8] is a cryptographic stream cipher that was designed as part of
the eSTREAM competition. An innovative part of Achterbahn stream cipher is
the design of 13 primitive NLFSRs of different sizes (21 bits to 33 bits). Although
Achterbahn did not advance to the eSTREAM portfolio due to some limitations
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Fig. 4. Structure of Keymill, the proposed keystream generator

in the combining function, which we are not using here, the NLFSRs are still
a valuable contribution. Next, we will use three of the Achterbahn NLFSRs to
build the proposed scheme.

The proposed construction is composed of four NLFSRs, as shown in Fig. 4.
Register R1 is a 31-bit register. Registers R2 and R3 are 32 bits each. Register
R4 has 33 bits. We use feedback functions from Achterbahn stream cipher [8]
(where they are named A10, A11, A12) with the following equations:

F1(S) = s0 + s2 + s5 + s6 + s15 + s17 + s18 + s20 + s25 + s8s18

+ s8s20 + s12s21 + s14s19 + s17s21 + s20s22 + s4s12s22 + s4s19s22

+ s7s20s21 + s8s18s22 + s8s20s22 + s12s19s22 + s20s21s22

+ s4s7s12s21 + s4s7s19s21 + s4s12s21s22 + s4s19s21s22

+ s7s8s18s21 + s7s8s20s21 + s7s12s19s21 + s8s18s21s22

+ s8s20s21s22 + s12s19s21s22.

F2(S) = F3(S) = s0 + s3 + s17 + s22 + s28 + s2s13 + s5s19 + s7s19 + s8s12

+ s8s13 + s13s15 + s2s12s13 + s7s8s12 + s7s8s14 + s8s12s13

+ s2s7s12s13 + s2s7s13s14 + s4s11s12s24 + s7s8s12s13

+ s7s8s13s14 + s4s7s11s12s24 + s4s7s11s14s24.
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F4(S) = s0 + s2 + s7 + s9 + s10 + s15 + s23 + s25 + s30 + s8s15

+ s12s16 + s13s15 + s13s25 + s1s8s14 + s1s8s18 + s8s12s16

+ s8s14s18 + s8s15s16 + s8s15s17 + s15s17s24 + s1s8s14s17

+ s1s8s17s18 + s1s14s17s24 + s1s17s18s24 + s8s12s16s17

+ s8s14s17s18 + s8s15s16s17 + s12s16s17s24 + s14s17s18s24

+ s15s16s17s24.

Hence, the internal state of the structure is 128-bits, similar to the common
length of AES’ key. The feedback functions are mixed using rotating cross-connect
as follows. Assuming that i = [1, 5, 9, 13, ...],

Clock cycle i: F1 → R1, F2 → R2, F3 → R3, F4 → R4
Clock cycle i + 1: F1 → R2, F2 → R3, F3 → R4, F4 → R1
Clock cycle i + 2: F1 → R3, F2 → R4, F3 → R1, F4 → R2
Clock cycle i + 3: F1 → R4, F2 → R1, F3 → R2, F4 → R3

The structure starts by loading the secret key into the internal state. Then
on each clock cycle, four bits from the IV, one for each register, are added to the
feedback functions. After 128/4 = 32 clock cycles, adding the IV should be com-
pleted. Then, the structure goes free running without inputs or outputs for 33
clock cycles, equivalent to the length of the longest register. From this point for-
ward, the NLFSRs will generate 4 bits in each clock cycle, one from each register.

Every 128 bits of the output should be used only once to encrypt plain data
with the AES block cipher.

6 Security Analysis

First of all, we selected 4 registers with a total number of taps equal to 128 bits in
order to preserve the entropy of the secret key. Also, the output is not generated
until after 33 clock cycles from the acceptance of the last IV bit. This number
allows the last input bit to go through all the taps of the longest register, which
allows the structure to distribute its effect over all the internal state. This lets
each unique IV generate a unique bit stream.

Regarding SCA-security, the number of taps that are connected to functions
F1(S), F2(S) and F3(S) is 17 bits each. The number of connected taps to F4(S)
is 18 bits. The unique taps that are connected to each register are as follows:

F1(S) : 0, 2, 4, 5, 6, 7, 8, 12, 14, 15, 17, 18, 19, 20, 21, 22, 25
F2(S), F3(S) : 0, 2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 15, 17, 19, 22, 24, 28

F4(S) : 0, 1, 2, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 23, 24, 25, 30

The number of connected taps in each register is slightly higher than half
the register length, with a good distribution that is close to the distribution
recommended in Model III (see Sect. 4.3). Hence, it is very reasonable to declare
that the registers will have SCA-security equivalent to their length (31, 32, 32,
and 34 bits).
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Moreover, the feedback functions are mixed with a rotating cross-connect
that is similar to Model II (see Sect. 4.2). Hence, SCA-security of the system
will be equivalent to the aggregated length of the involved registers, which is
(31 + 32 + 32 + 34 = 128 bits). Essentially, the adversary cannot make an accu-
rate estimate about the data-dependent power changes in the structure unless
he makes a correct hypothesis over the entire secret key.

To the best of our knowledge, this is the first cryptographic structure ever
proposed that has an SCA-security that equals its brute force security.

6.1 Failure of Other NLFSRs

NLFSRs have long been used in the design of stream ciphers including, KeeLoq [6]
and Grain [10] as notable examples. One of the design principles that we fol-
lowed in this proposal is to limit the attacker’s control on the internal behavior
by shrinking the data-width of public data that is used in each operation. In
this regard, KeeLoq’s design features control the entire internal state, while the
key bits are used one at a time [6]. Grain makes use of a non-linear function
(called H) that involves four bits of the input data and one bit key [7]. Another
key difference is that the output of the aforementioned non-linear functions are
feedback to the register, which originally holds the input data. Hence, the pre-
vious state of the HD power model is known to enable an easy recovery of the
new state.

6.2 Similarity to GGM Structures

GGM is a tree-based structure, named after its inventors [9], that is used to
realize pseudorandom functions from any pseudorandom generator. It was re-
introduced in many recent contributions as a structure that is capable of initial-
izing leakage resilient primitives in an SCA-secure manner [2,4,16].

The GGM structure starts from the secret key and inserts the IV one bit
at a time followed by a randomization step. The value of each bit determines
the next branch in the tree. The randomization step is used to distribute the
effect of the inserted bit over the entire internal state. Hence, the attacker will
face a new secret at each step, which renders DPA attacks almost impossible.
Randomization can be realized using block ciphers [13] or hashing functions [11].

The proposed Keymill is similar to the GGM in accepting one bit of the
IV at each clock cycle, however the core concept for SCA-protection is differ-
ent. GGM employs a leaky function, that is not secure against SCA attacks, to
build an SCA-secure algorithm. Here, the randomization primitive used in the
GGM (block cipher or hashing function) is still vulnerable to SCA attacks, while
protection is achieved by preventing the adversary from aggregating informa-
tion across different executions. On the contrary, SCA-security of the proposed
Keymill depends on expanding the size of key hypotheses to the full size of the
secret key. Hence, Keymill, as an isolated primitive, is inherently secure against
SCA attacks without being part of any special algorithm.
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6.3 Cautionary Notes

There are a couple of cautionary notes that come with this new protection
mechanism.

Proposing a new masking or hiding countermeasure must be evaluated with
actual power consumption traces. This is a typical requirement in order to ensure
that the engineering defects (glitches and balanced routing) are resolved. On the
contrary, we found it difficult to evaluate the SCA-security of our scheme on the
same grounds. The reason is that our countermeasure depends on expanding the
size of key hypothesis to 128 bits. Hence, we could not enumerate all the possible
2128 cases in order to measure feasibility of the proposed scheme. Rather, we
built our security on mathematical modeling. In fact, this is in line with leakage
resilient schemes that depend on updating the secret key after each run.

Another similarity with leakage resilient schemes is that the proposed coun-
termeasure slightly changes the algorithm. Hence, the same algorithm needs to
be applied in the two sides of communication even if one side is physically pro-
tected (server or so).

One last note is that high entropy of the input key is required in order to
generate high-entropy keystream. In other words, if the input key is all zeros,
the output bit stream will also be zeros. This limitation is inherited from the
Achterbahn NLFSRs [8]. Here, we focused exclusively on SCA-security and we
did not add any cryptographic part to break symmetry of the scheme, which can
be a topic for future improvement.

7 Hardware Results

Using the hardware budget of the individual NLFSRs as discussed in [8], the
hardware cost of the proposed structure at a low-Vt 1.5 V standard cell library
targeting 130 nm CMOS technology is:

Area = 608 + 125.5 + 41.5 = 775 GE

The (4.75×128) = 608 GE covers the internal state of the registers. The (31.75 +
31 + 31 + 31.75) = 125.5 GE covers the feedback functions F1, F2, F3, and
F4 respectively. The 41.5 GE covers the rotating cross-connect. The rotating
cross-connect can be implemented very efficiently using four 4-to-1 multiplexers
(4 × 7.5 = 30 GE) and a 2-bit counter (11.5 GE).

A comparison between the hardware cost of the proposed scheme and that of
the previous work is shown in Table 1. The results of [12] are taken at the first-
order masked implementation, while the results of the minimum SP network are
taken at the lightest implementation of [2]. The table shows superiority of the
proposed scheme in terms of both area and clock cycles.

Also, the proposed scheme shows superior performance over typical mask-
ing schemes. The smallest threshold implementation of AES (to prevent leakage
caused by glitches) requires 8,393 GE of area overhead [14].

Although there is no initialization required for threshold implementations,
the initialization overhead of our scheme requires only 65 clock cycles. Then,
one key is generated every 32 clock cycles.
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Table 1. Comparison against similar schemes

Contribution Area (GE) Clock cycles

Modular Mul of [12] 7,300 562

Minimum SP network of [2] 5,302 61

The proposed Keymill 775 97

8 Conclusion

In this paper, we have proposed a new solution to SCA attacks. Our solution
depends on a new cryptographic structure that expands the size of key hypothe-
sis, and breaks the divide-and-conquer principle of SCA. Our structure is generic,
lightweight and can turn any block cipher into an SCA-secured encryption mode.
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Abstract. Fault attack countermeasures can be implemented by storing
or computing sensitive data in redundant form, such that the faulty
data can be detected and restored. We present a class of lightweight,
portable software countermeasures for block ciphers. Our technique is
based on redundant bit-slicing, and it is able to detect faults in the
execution of a single instruction. In comparison to earlier techniques, we
are able to intercept data faults as well as instruction sequence faults
using a uniform technique. Our countermeasure thwarts precise bit-fault
injections through pseudo-random shifts in the allocation of data bit-
slices. We demonstrate our solution on a full AES design and confirm the
claimed security protection through a detailed fault simulation for a 32-
bit embedded processor. We also quantify the overhead of the proposed
fault countermeasure, and find a minimal increase in footprint (14%), and
a moderate performance overhead between 125% to 317%, depending on
the desired level of fault-attack resistance.

Keywords: Fault attacks · Fault resistance · Intra-instruction
redundancy · Bitslicing · Block ciphers

1 Introduction

The injection of faults in cryptographic software is a well-studied technique to
extract cryptographic keys. Originally demonstrated against public-key cryptog-
raphy [1], their scope has since been widened to the symmetric-key case. The
current state of the art in differential fault analysis on the Advanced Encryption
Standard can extract an AES-128 key with just two faults [2]. Therefore, for
applications where fault injection is a relevant threat, it is crucial to detect the
occurrence of even a single fault and respond appropriately. In this contribution,
we study and develop countermeasure techniques that are applicable to software,
and that does not need any special hardware. Software countermeasures against
fault attacks are commonly developed using redundancy. However, all redun-
dancy based techniques share a common weakness: they are ineffective against
an adversary who can inject consistent faults in redundant sections of code or
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data. This is especially relevant for implementations that are time-redundant,
since they only require the adversary to inject the same fault sequentially.

In this paper, we propose a technique that enables the software to exploit
redundancy for fault attack protection within a single instruction; we propose the
term intra-instruction redundancy to describe it. Our technique is cross-platform
and requires that an algorithm be bit-sliced. We focus on block ciphers, as they
all can be bit-sliced. To protect from computation faults, we allocate some bit-
slices as redundant copies of the true payload data slices. A data fault can
then be detected by the difference between a data slice and its redundant copy
after the encryption of the block completes. To protect the computations from
instruction faults such as instruction skip, we also allocate some of the bit-slices
as check-slices which compute a known result. The intra-instruction redundancy
countermeasure is thus obtained through the bit-sliced design of a cipher, with
redundant data-slices to detect computation faults and check-slices to detect
instruction faults. This basic mechanism is then further strengthened against
targeted fault-injection as follows. First, we pipeline the bit-sliced computation
such that each slice computes a different encryption round. Since a fault-injection
adversary is typically interested in the last or penultimate round, and since there
will be only a few bits in a word that contain such a round, the pipelined intra-
instruction redundancy countermeasure reduces the attack surface considerably.
Second, we also randomize the slice assignment after each encryption, such that
a cipher round never remains on a single slice for more than a single encryption.
We show that this final countermeasure, the shuffled pipelined intra-instruction
redundancy, is very effective and requires an adversary who can control fault
injection with single-cycle, bit-level targeting chosen bits. We are not aware of a
fault injection mechanism that achieves this level of precision.

The contributions of the paper are as follows.

– We propose a software countermeasure based on redundant bit slicing. The
bit slices are used for data redundancy as well as control redundancy. The
latter is achieved by computing a known answer.

– The proposed countermeasure is generic and can still be used in combination
with other software countermeasures such as infective countermeasures or
side-channel resistant techniques based on masking.

– The security of the proposed countermeasure is quantitatively analyzed to
establish estimated fault coverage. In addition, it is empirically tested using
simulation for different fault models including instruction skip, random word,
random byte and bit-precision faults.

– The bit-sliced design leads to a secure fault detection and fault handling app-
roach that is purely computational, and that avoids comparison and decision
making. This avoids a well-known single point-of-failure in redundancy-based
countermeasures.

– We evaluate the overhead of the countermeasure over an unprotected, bit-
sliced implementation of AES-128 that runs at 469.3 cycles/bytes, we show
that the highest level of protection is achieved at 1957 cycles per byte, which
protects against targeted, repeatable, multiple bit faults.
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The rest of the paper is organized as follows. In the next section, we provide
additional details on the fault models used in this work. In Sect. 3, we highlight
the differences of previous software countermeasures with our proposed counter-
measure. Section 4 is an up-close discussion of the design of our countermeasure;
we elaborate on the bit-slice allocation strategy and on the integration of the
protected design on embedded platforms. Section 5 estimates the fault coverage
of the proposed countermeasures under different fault models. Section 6 presents
the implementation overhead for a 32-bit embedded processor and empirically
demonstrates the fault countermeasure operation using fault simulation. We con-
clude the paper in Sect. 7.

2 Fault Models

This section details the fault models that we used in this paper to evaluate our
countermeasures. The fault model is the expected effect of the fault injection on
a cryptosystem. The manipulated data may affect instruction opcodes as well as
data, and we distinguish these two cases as instruction faults and computation
faults.

Computation Faults: These faults cause errors in the data that is processed
by a program. There is a trade-off between the accuracy by which an adver-
sary can control the fault injection, and the required sophistication of a fault
countermeasure that thwarts it. Therefore, we assume four computational fault
models:

1. Random Word : The adversary can target a specific word in a program and
change its value into a random value unknown to the adversary.

2. Random Byte: The adversary can target a specific word in a program and
change a single byte of it into a random value unknown to the adversary.

3. Random Bit : The adversary can target a specific word in a program and
change a single bit of it into a random value unknown to the adversary.

4. Chosen Bit Pair : The adversary can target a chosen bit pair of a specific word
in a program, and change it into a random value unknown to the adversary.

Instruction Faults: This fault model assumes that an attacker can change
the opcode of an instruction by fault injection. A very common model is the
Instruction Skip fault model, which replaces the opcode of an instruction with a
nop instruction. Using this model, an attacker can skip the execution of a specific
instruction in the program.

3 Related Work

The two principal techniques for a fault countermeasure are detection-based and
infection-based [3]. We start with detection-based countermeasures in software,
as they are most similar to our proposal. A classic technique relies on time
redundancy, such as duplicate encryption or encryption followed by decryption.
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This allows the detection of faults by comparing the consistency of the redundant
executions. These techniques, however, do not work well against an adversary
who is able to inject consistent faults in the redundant copies, or against an
adversary who directly targets the comparison. Several time redundant tech-
niques have been proposed to make consistent fault injection more difficult.
For example, instruction duplication and triplication [4] are used because it is
assumed that back-to-back fault injection is harder than fault injections that
are relatively far spaced apart. Duplication and triplication were found to incur
3.4 and 10.6 times performance overhead, respectively [4]. However, duplica-
tion and triplication are relatively easy to overcome with a modern fault injec-
tion setup. More sophisticated techniques are possible, but they are algorithm-
specific. Examples are techniques based on invariant properties of a block cipher
[5], or based on storing sensitive variables in a transformed format [6]. However,
we are interested in a generic, algorithm independent technique.

Another category of detection-based countermeasures use information redun-
dancy, which uses additional check variables or parity bits [4] to detect faults in
the data. This was found to incur between 3.5–4.7 times performance overhead
[4]. A recent proposal observed that Wave Dynamic Differential Logic (WDDL),
which represents data in complementary format, is able to detect computation
faults [7] but no performance metrics are provided. While these information-
based countermeasures are generic and easy to apply to a broad class of algo-
rithms, they are unable to detect low-level instruction-level faults in the under-
lying processor when implemented in software.

The second major class of countermeasures uses infection. The idea is that
injected faults will also destroy the invariant properties of the fault. This effec-
tively eliminates the possibility of differential fault analysis. However, for every
infective countermeasure proposed so far, a corresponding attack has been
demonstrated [8,9].

Most related works show that they have good fault coverage but it’s under
a narrow fault model. A common fault model is to assume that attackers can
only inject one fault at a time. But if an attacker can inject more than one
fault or affect multiple instructions with one fault, the fault coverage is likely to
plummet.

In this paper, we propose detection-based countermeasures against fault
attacks in software that are based on intra-instruction redundancy. We go beyond
redundant encoding of information by also including the ability to detect instruc-
tion faults as well as computation faults. We show that these countermea-
sures can protect against a variety of realistic fault models. To the best of our
knowledge, this is the first work that provides comprehensive coverage against
processor-level fault attacks.

4 Proposed Software Countermeasures for Fault Attacks

We will explain the motivation and main idea of our countermeasures. We will
then explain how they can be implemented. Finally, we will provide some dis-
cussion on the performance and footprint impact.
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The countermeasures are based on bit-slicing. As we will explain further,
bit-slicing allows for a program to dynamically select different data flows to be
present in a processor word. This is attractive for a fault attack countermeasure
because it presents a new way to leverage redundancy. Each data word can
be split amongst regular data streams and redundant data streams, allowing
redundancy to be present spatially in all instructions without actually having
to re-execute anything. Because the redundancy is interleaved with the data
in every instruction, we call this Intra-Instruction Redundancy (IIR). By never
separating the data from the redundancy in the processor word, we use pure
spatial redundancy rather than commonly used time-based redundancy, which
is vulnerable to repeated fault injections [10].

In this work we consider two ways to detect faults using redundancy. First, if
you are computing data where the result is unknown, you can only detect a fault
by recomputing the data an additional time to compare the results. Second, if
the result is already known before computation, you can store a read only copy
of the result and only need to execute on the data once to reproduce the result
and check that it is the same.

Our countermeasure scheme relies on making comparisons at the end of
encryption rounds. Because the comparisons are a very small part of the code,
we assume we can cheaply duplicate them enough such that an adversary may
not reasonably skip all of them using faults. In the advent of a fault detection,
a random cipher text is output and the program may either restart encryption
or enact a different, application-specific policy.

4.1 Bit-Slicing Without Fault Attack Protection

Bit-slicing is a technique used commonly in block ciphers and embedded sys-
tems to fully utilize the word length of a processor for all operations, poten-
tially increasing the total throughput. Bit-slicing avoids data-dependent memory
lookups and because of that, data-dependent cache effects. It involves decompos-
ing all components into boolean operations and orienting the data such that one
bit can be computed at a time per instruction. If one bit is computed at a time,
then a 32 bit processor word can be filled with 32 different blocks, computing
all blocks simultaneously.

A prerequisite for bit-slicing is to transpose the layout of input blocks, as
shown in Fig. 1. At the top, a traditional layout of blocks is depicted. There are
32 blocks, each composed of 4, 32 bit data words. All of them must be transposed.
In the transposed layout, each word contains one bit from every block. In this
format, each bit from 32 different blocks can be computed simultaneously for
any instruction. A slice refers to a bit location in all words that together make
up one block.

4.2 Intra-instruction Redundancy

In traditional bit-sliced implementations, each slice is allocated to operate on
a different input block for maximum throughput (Fig. 1). Instead, we separate
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Fig. 1. Transpose of 32 blocks to fit bitwise into 128 32-bit words.

Fig. 2. Bit-slicing with intra-instruction redundancy using 15 data (B), 15 redundant
(B’), and 2 known ciphertext (KC) slices. Each KC slice is aligned with its corre-
sponding round key slices in other words.

slices into three categories: data slices (B), redundant slices (B′), and Known
Ciphertext (KC) slices for fault detection (Fig. 2). Data slices and redundant
slices operate on the same input plaintext, and thus, they produce the same
ciphertext if no fault occurs. If a fault occurs during their execution, then it will
be detected when results are compared at the end of encryption.

However, if both B and B′ experience the same fault, then both of them will
have the same faulty ciphertext and a fault cannot be detected. For example, this
would always be the case for instruction skips. To address this issue, we include
KC slices in addition to data and redundant slices. Instead of encrypting the
input plaintexts with the run-time secret key, KC slices encrypt internally stored
plaintexts with a different key, each of which are decided at design time. There-
fore, the correct ciphertexts corresponding to these internally stored plaintexts
are known by the software designer beforehand. If no fault is injected into the
execution of a KC slice, it will produce a run-time ciphertext that is equal to the
known, design-time ciphertext. In case of a computation or instruction fault, the
run-time ciphertext will be different than the design-time ciphertext. Therefore,
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the run-time and design-time ciphertexts of the KC slices are compared at the
end of encryption for fault detection. Because the round keys for the data slices
and round keys for the KC slices can be intermixed at the slice level, we can
execute KC slices together with the data and redundant slices. Figure 2 shows
the slice allocation used in this work, which includes 15 data slices (B0–14), 15
redundant slices (B′0–14), and 2 KC slices (KC0–1). All slices are split across
128 words for a 128 bit block size.

A set of known plaintext-ciphertext pairs is included in the program from
which KC slices can be selected from randomly for an encryption. This is because
each KC slice only has a 50% chance of detecting an instruction fault. If only a
couple of them are used, then there will likely be parts of the block cipher where
instruction faults do not affect the KC slices. By selecting from a larger set
of ciphertext-plaintext pairs, we significantly reduce the chance of an adversary
finding such parts of the program. Each plaintext-ciphertext pair will be the size
of two blocks of the cipher.

An adversary can bypass this countermeasure by injecting two bit faults that
are next to each other in the processor word. The two bit fault has to align with
any of the B slices and the corresponding B′ slice. Then both will produce the
same faulty ciphertext, going undetected.

4.3 Pipelined Intra-instruction Redundancy

For an adversary to carry out a fault analysis attack, he must inject a fault into a
target round of the block cipher [11,12]. It is not enough to cause an undetected
fault in the wrong round, as the faulty ciphertext will not be useful in analysis.
Previously, all data and redundant slice pairs in the target word operate on the
same round. Therefore, an adversary can target any combinations of these pairs
to bypass IIR. Here we will explain how we can make the rounds spatial by
making them correspond to slices within each word, instead of different words
executed at different times. This makes fault injection harder as the faults will
have to target specific bit locations.

Because block cipher rounds differ only in the round key used, we can make
different bits correspond to different rounds by aligning slices with different
round keys. Doing this means blocks will be computed in a pipelined fashion
as shown in Fig. 3, which shows ten rounds. The round keys are doubled and
interleaved with the known ciphertext key beforehand to align with the pipeline.
Each block is transposed one at a time rather than 32 at a time. For every
iteration, 3 slices are shifted into the 128 word state (1 data, 1 redundant, and
1 KC). Initially shifted in is B0. Running for one iteration will compute round
one of B0. Applying another shift aligns B0 for round 2 and shifts in B1 for
round 1. This eliminates the need to have a set of plaintext-ciphertext pairs as
it will be okay to have one pair. One pair will effectively make 10 different KC
slices amongst the 10 rounds.

In this pipeline, because each set of 3 bits corresponds to a different round,
any two bit fault will not suffice to undo the countermeasure. There is now only
one valid bit location to successfully inject a 2 bit fault. For example, to fault



238 C. Patrick et al.

Fig. 3. Pipelined bit-sliced layout for 32 bit processor. RK0–9 are ten different round
keys. B0–9 are different input blocks and B′09 are their redundant copies. KC
is a known ciphertext slice. C0–9 are the round keys used to produce the known
ciphertext.

round 9, a 2 bit fault must be injected at bit location 27. It is non-trivial for
an adversary to inject a fault that is in a target bit location and consists of two
adjacent bits.

Astute readers will point out that the last round in some block ciphers differs
in more than just the round key. For example, in AES, the last round does not
have the mix-columns step. Some additional masking can done to remove the
effect of particular steps on any round(s). To be able to pipeline rounds that differ
in steps, we add the following computation to each operation in the special step.

B = (BS & RM) | (B & ∼RM)

Where B is the block going through a particular step, BS is the computed
result after the step, and RM is a mask representing the rounds that use the
step. By doing this, the step will be applied to only the rounds that use it and
leave the other round(s) the same.

4.4 Shuffled, Pipelined Intra-instruction Redundancy

For our final countermeasure stage, we assume a highly skilled adversary who
can inject multiple bit faults into target bit locations. In our case, we need to
protect from a targeted 2-bit fault.

For each plaintext, we can effectively apply a random rotation to all of the
slices and their corresponding round keys. The randomness is from an initial
secret number that is continually XOR’d with generated ciphertext. We can
reasonably assume that the adversary will not be able to predict the random
rotation. Despite the adversary being able to inject known bit location faults,
he will not know which bit corresponds to what round, making the attack much
more difficult.

To support random shifts, we support dynamic allocation of each slice in the
processor word, rather than statically defining which bits correspond to each
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round. The transpose step will have to support transposing into and out of any
target bit location, rather than always shifting into bit location 0 and shifting
out of bit location 29.

4.5 Secure, Comparison-Free Fault Handling

Rather than checking the memory using excessively duplicated comparisons,
fault handling can be done in a purely computational approach. This approach
is ideal because an application no longer needs to have a secure response to a
fault injection.

If either a block, B, or its respective redundant slice, B′, contain an error,
we would expect the XOR of them B ⊕B′ to be nonzero. Whereas a non-faulty
operation would always produce zero. Building upon this, we can make a method
such that when a fault is injected, only a random number is output, foiling any
attempt of fault analysis.

After encryption, we can compute the following mask.

MASK = (−(B ⊕ B’) >> 128)

If B and B′ are the same, then B ⊕ B′ will be zero and the signed shift will
move in all zeros. If B ⊕ B′ is nonzero, then the signed shift will move in all
ones. We can easily extend this mask to check a KC slice as well for instruction
faults using our known ciphertext KC ′.

MASK = (−(B ⊕ B’) >> 128) | (−(KC ⊕ KC’) >> 128)

As in our pipelined countermeasure, a redundant slice, data slice, and KC
slice can be shifted out every iteration to compute the mask. We can then use
this mask to protect our ciphertext block before it is output.

OUTPUT = (MASK & R) | (∼MASK & B);

By doing this, only our random number R will be output when a fault is
detected. Otherwise, the correct ciphertext B will be output. Because these com-
putations are not covered by intra-instruction redundancy, they would have to
be duplicated using traditional approaches to protect from instruction faults.
They are a small part of the code, so they can easily be duplicated without
significantly increasing the footprint size. Computation faults need not be pro-
tected from as they would either cause B ⊕ B′ or KC ⊕ KC ′ to be nonzero or
just flip bits in the already computed ciphertext.

5 Security Analysis of the Proposed Countermeasures

In this section, we provide a security analysis for the proposed countermeasures
in Sect. 4 against the fault models defined in Sect. 2.

Similar to Guo et al. [13], we use the Fault Coverage (FC) to quantify the
security level of countermeasures. For a given countermeasure c and fault model
f, we compute the fault coverage using Eq. 1. In our computations, we assume
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Table 1. Theoretical security analysis of the proposed countermeasures

Countermeasure Computation fault models Instruction fault models

Random word Random byte Random bit Chosen bit pair Instruction skip

Unprotected AES 0% 0% 0% 0% 0%

IIR-AES ≈ 100% 94.90% 100% 51.61% 75%

Pipelined IIR-AES ≈ 100% 99.90% 100% 96.77% 99.90%

Shuffled pipelined IIR-AES ≈ 100% 99.90% 100% 96.77% 99.90%

that the adversary aims at injecting a computation or instruction skip fault into
the execution of a target round.

(FC)fc = 1 − Fundetected

Ftotal
(1)

In Eq. 1, Ftotal is the total number of faults covered by the fault model f.
Fundetected is the number of faults that affect the execution of the target round r,
but cannot be detected by the given countermeasure c. More capable adversaries
can increase the Fundetected, and reduce the Ftotal by accurately tuning fault
injection parameters. We list our FC computations in Table 1.

5.1 Security Analysis of Unprotected AES

In the unprotected, bit-sliced AES implementation, any computation or instruc-
tion fault during the execution of the target round r will be useful for the adver-
sary. As there is no detection mechanism for this implementation, Ftotal and
Fundetected will be equal to each other. As a result, fault coverage will be 0 in
any case. The detailed explanations for each fault model are as follows.

In the Random Word fault model, the adversary has no control on the number
of faulty bits. The adversary can only create random faults in the target word
(32-bit). For each fault injection, the difference between the correct word and the
corresponding faulty word can have (232 − 1) different values. Therefore, Ftotal

and Fundetected are (232 − 1).
In the Random Byte fault model, an adversary can tune the fault injection to

randomly affect a single byte of the 32-bit data. This adversary can inject a fault
into one of the four bytes of the data. Each fault injection can create (28 − 1)
different faults in a byte. As a result, Ftotal and Fundetected are 4 × (28 − 1).

In the Random Bit fault model, the fault injection can be tuned to affect
single bit of the target word. Therefore, Ftotal and Fundetected are 32.

In the Chosen Bit Pair fault model, the adversary can inject faults into two
chosen, adjacent bits of the target word. Therefore, Ftotal and Fundetected are 31.

5.2 Security Analysis of IIR-AES

To thwart this countermeasure, the adversary needs to create the same effect on
the data slices and their corresponding redundant slices, without affecting any
KC slice. Affecting any combination of 15 data and redundant slice pairs will
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create undetected faults. A Random Word fault can achieve this in
∑15

i=1

(
15
i

) −
(
15
0

)
= (215 − 1) different ways. Therefore, Fundetected is (215 − 1) and the FC

(using Eq. 1) is 99.9992% (≈ 100%).
This countermeasure has three data and redundant slice pairs in the most

significant byte of the target word, while it has four pairs in each of the remaining
bytes (Fig. 2). Thus, for Random Byte fault model, the Fundetected is (23 − 1) +
3 × (24 − 1) = 52, and the FC is 94.90%.

As a Random Bit fault can manipulate only a single KC slice, data slice, or
redundant slice, the Fundetected is 0, and the FC is 100%.

As a Chosen Bit Pair fault can target a specific pair of data and redundant
slices, the Fundetected is 15, and the FC is 51.61%.

An Instruction skip fault will have the same effect on a data slice and its cor-
responding redundant slice. Thus, data and redundant slice pairs cannot detect
an instruction skip. Each KC slice has a 50% chance of detecting an instruction
skip. As we have 2 KC slices, the fault coverage is 1 − 1

22 = 75%.

5.3 Security Analysis of Pipelined IIR-AES

In this countermeasure, the 32-bit word consists of 10 KC, 10 redundant, 10 data,
and 2 spare slices (Fig. 3). Each data and redundant slice pair apply a different
round of AES on a different block. As there is only one data and redundant slice
pair running the target round r, the only way to obtain a useful and undetected
computation fault is by targeting this pair of slices.

For Random Word and Random Byte faults, the Fundetected is equal to 1.
Therefore the corresponding fault coverage for Random Word and Random Byte
faults are ≈ 100% and 99.90%, respectively.

As no Random Bit fault can bypass this countermeasure, the Fundetected is 0,
the fault coverage is 100%.

A Chosen Bit Pair fault can manipulate the data and redundant slice pair
that computes the target round r. The Fundetected is 1 and the fault coverage is
96.77%.

This countermeasure significantly increases the fault coverage against
instruction skip attacks as we use 10 constant slices. The only undetected instruc-
tion skip fault is the one that does not affect any of the constant bits. Therefore,
the fault coverage against instruction skip is 1 − 1

210 = 99.90%.

5.4 Security Analysis of Shuffled Pipelined IIR-AES

This countermeasure improves the security of the previous countermeasure by
dynamically allocating the positions of the slices within a word. In this work,
the slices are rotated by a random number after each encryption. In this scheme,
we have 32 different allocations. This reduces the chance of an attacker to inject
a useful and undetected fault 32 times because attacker’s chance of guessing the
position of the target round is 1/32. In addition, this countermeasure significantly
reduces the chance of an attacker from repeating the same fault on successive
encryptions.
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6 Results

In this section we will cover our performance, footprint, and experimental fault
coverage. We verified our results in a simulation of a 32 bit SPARC proces-
sor called LEON3. We used Aeroflex Gaisler’s LEON3 CPU simulator, TSIM.
To inject faults and determine the coverage, we wrote a wrapper program1 for
Gaisler’s TSIM simulator. The wrapper enabled us to use TSIM commands to
inject faults into any instruction, memory location, or register during the exe-
cution of the code.

6.1 Performance and Footprint

Our performance and footprint results are presented in Table 2. We wrote a bit-
sliced implementation of AES in C and benchmarked it without any fault attack
countermeasures added to it. We made three forks of our reference AES imple-
mentation and added each stage of our countermeasure to them2. Performance
was measured by running AES in CTR mode and on a large input size. Foot-
print was calculated by measuring the compiled program size. Overheads were
calculated by dividing by the corresponding reference bit-sliced AES metric.

Using Shuffled Pipelined IIR-AES will be about four times as slow as the
reference implementation. Considering it can protect against side channels from
the most dangerous of fault attacks, it is a good compromise.

The original AES metric is slow compared to other works because it is
an unoptimized implementation. Other works have been able to get bit-sliced
AES implementations down to about 20 cycles/byte on 32 bit ARM [14]. We
believe the performance overhead for adding IIR would scale with the reference
performance.

Table 2. Performance and footprint of multilevel countermeasure. Unprotected AES
is the reference bit-sliced implementation with no added countermeasure.

Performance Footprint

Unprotected AES 469.3 cycles/byte 5576 bytes

IIR-AES 1055.9 cycles/byte 6357 bytes

Overhead IIR-AES 2.25 1.14

Pipelined IIR-AES 1942.9 cycles/byte 5688 bytes

Overhead pipelined IIR-AES 4.14 1.02

Shuffled pipelined IIR-AES 1957 cycles/byte 6134 bytes

Overhead shuffled pipelined IIR-AES 4.17 1.10

1 The wrapper program may be accessed on Github: https://github.com/Secure-Emb
edded-Systems/tsim-fault.

2 Our implementations can be accessed on Github: https://github.com/Secure-Emb
edded-Systems/fault-resistant-aes.

https://github.com/Secure-Embedded-Systems/tsim-fault
https://github.com/Secure-Embedded-Systems/tsim-fault
https://github.com/Secure-Embedded-Systems/fault-resistant-aes
https://github.com/Secure-Embedded-Systems/fault-resistant-aes
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Table 3. Experimental fault coverage averages for different fault injections. Every
register or instruction in the S-box stage in the last round was targeted one at a time
per run for fault injection.

Countermeasure Computation fault models Instruction fault models

Random word Random byte Random bit Chosen bit pair Instruction skip

Unprotected AES 0.0% 0.0% 0.0% 0.0% 0.0%

IIR-AES 99.98% 91.45% 93.66% 53.96% 80.56%

Pipelined IIR-AES 100.0% 100.00% 100.0% 98.51% 98.6%

Shuffled pipelined IIR-AES 100.0% 99.99% 100.0% 98.86% 98.6%

6.2 Experimental Fault Coverage

We ran fault simulations that emulated our considered adversaries. We injected
faults for every register or instruction used in the S-box step of the last round.
For data faults, our simulation would enumerate each register, injecting 1 fault,
then letting the program run to completion to check the resulting ciphertext.
For instruction skips, each instruction is similarly enumerated for skipping and
checking the resulting ciphertext.

The S-box step has 144 instructions, consisting of 18 memory operations
and 126 computational operations. Of the 144 instructions, 404 operands were
registers. Each fault injection simulation was repeated 50 times and averaged
together. For each data fault simulation, 20,200 faults were injected. For each
instruction skip simulation, 7,200 faults were injected.

Table 3 shows the average fault coverages for each countermeasure. Most of
the experiments match closely with our theoretical fault coverages. IIR-AES
has slightly lower fault coverage then theorized for random bit and byte faults
because memory addresses stored in a register can change to a different but
valid location, resulting in a control fault. Because of this, the theoretical fault
coverage for data faults will be slightly averaged with the control fault coverage.
Random bit and byte coverage is slightly lower than expected and chosen bit
pair is slightly higher than expected for IIR-AES.

Instruction skip coverage in IIR-AES is 5.56% higher then expected, which
is likely just specific to the S-box and key constants we used.

7 Conclusion

We have introduced a set of novel and state of the art methods for detecting faults
in block ciphers. We use only software and introduce intra-instruction redun-
dancy. We can protect from well timed, repeatable faults. By adding pipelining,
we make our block cipher rounds spatial and much harder to target. And by
finally applying random rotations, we make it even more difficult to fault the
target round more than once. We show that the performance overhead of our
countermeasure is acceptable and scales depending on the desired security level.
Our program size overhead is considerably lightweight. We theoretically show
why our countermeasure meets the requirements for different fault models. We
support our theoretical claims using experimental simulation results based on
Gaisler’s LEON3 simulator.
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Abstract. Dithered hash functions were proposed by Rivest as a
method to mitigate second preimage attacks on Merkle-Damg̊ard hash
functions. Despite that, second preimage attacks against dithered hash
functions were proposed by Andreeva et al. One issue with these second
preimage attacks is their huge memory requirement in the precomputa-
tion and the online phases. In this paper, we present new second preim-
age attacks on the dithered Merkle-Damg̊ard construction. These attacks
consume significantly less memory in the online phase (with a negligi-
ble increase in the online time complexity) than previous attacks. For
example, in the case of MD5 with the Keränen sequence, we reduce the
memory complexity from about 251 blocks to about 226.7 blocks (about
545 MB). We also present an essentially memoryless variant of Andreeva
et al. attack. In case of MD5-Keränen or SHA1-Keränen, the offline and
online memory complexity is 215.2 message blocks (about 188–235KB),
at the expense of increasing the offline time complexity.

1 Introduction

Cryptographic hash functions have many information security applications,
notably in digital signatures and message authentication codes (MACs). The
need for hash functions renders its security as one of the important topics in the
design analysis of cryptographic primitives.

Designing hash function usually consists of two parts:

– Designing a compression function (or a secure permutation, in the case of
sponge functions [4]).

– Designing the mode of iteration (also called domain extension).

The first and second authors were supported in part by the Israeli Science Foundation
through grant No. 827/12.
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These two parts complement one another, and to create a secure hash function,
a secure compression function and a secure mode of iteration are needed.

The most common and used mode of iteration is Merkle-Damg̊ard [6,14].
Though believed to be secure, the Merkle-Damg̊ard construction was found
vulnerable to different multi-collision and second preimage attacks [1–3,7–11].
One of the alternatives that was suggested to replace Merkle-Damg̊ard and
to increase Merkle-Damg̊ard security, is the dithered Merkle-Damg̊ard [18].
Dithered Merkle-Damg̊ard was designed by Rivest to overcome the Expandable
Message attack of [11]. The main idea of dithered Merkle-Damg̊ard is to add a
third input (derived from some sequence) to the compression function to perturb
the hashing process. However, dithered Merkle-Damg̊ard was found vulnerable
to two second preimage attacks by Andreeva et al. [1,3]. While taking less than
2n time to find a second preimage, these attacks consume a huge amount of
memory.

1.1 Related Work

Andreeva et al. described in [1,3] two second preimage attacks on dithered
Merkle-Damg̊ard. The first attack, the “adapted Kelsey-Kohno”, uses a diamond
structure (similarly to our attack). Assume that the dithering sequence z (over
alphabet A) is used, the compression function f : {0, 1}n ×{0, 1}b ×A → {0, 1}n

and that the target message is 2k blocks. The online time complexity of the first
attack is1 2n−k

Freqz(w
�+1
mc )

+2n−�, and the offline and the online memory complexities

are 2n/2+�/2+1/2 and 2�+1, respectively.
The second attack, the “Kite Generator”, requires 2 · |A| ·2n time complexity

in the offline phase, and max(2k, 2(n−k)/2) time complexity in the online phase.
Its memory complexity is |A| · 2n−k in both the offline and the online phases.

To summarize both attacks require a tremendous amount of memory in the
online phase. In this paper we reduce the memory complexity (of the online and
offline phases) of second preimage attacks on dithered.

1.2 Our Results

This paper describes novel second preimage attacks on dithered Merkle-Damg̊ard
hash function with very low memory complexities. We first explore attacks that
have low online memory complexity with almost no increase in the time complex-
ities compared with the attacks of [1,3]. The online and offline memory complex-
ities of the basic attack are |A|·Factz(�)·(�+1) and Factz(�)·2�+1+2n/2+�/2+1/2,
respectively. For example, the memory time complexity of the attack, in case of
MD5-Keränen for � = 50 is about 226.7 blocks (about 507 MB).

Then, we introduce ideas and optimizations of the attack that reduce the
offline time and memory complexities. Lastly, we use these ideas to present

1 Freqz(w) is the frequency of the word w in the sequence z, w�+1
mc is the most common

word of length � + 1 in the sequence z.
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an essentially memoryless attack, again without increasing the online time
complexity. The online and the offline memory complexity of the attack is
(� + 1) · Factz(� + 1) blocks. However, for this reduced memory attack, the
offline time complexity is increased.

In Table 1, we compare the complexities of second preimage attacks on
dithered Merkle-Damg̊ard. In Table 2, we compare the complexities of the second
preimage attacks on real hash functions with concrete parameters.2

Table 1. Comparison of the second preimage attacks on dithered hash functions.

1.3 Organization of the Paper

We introduce some terminology, describe the Merkle-Damg̊ard construction, and
the dithered Merkle-Damg̊ard construction in Sect. 2. We describe the previous
attacks in Sect. 3. We then present our new basic attack (which has comparable
time complexity to the attack of [1,3]) in Sect. 4. We show optimizations and
improvements for the offline time complexity of this attack in Sect. 5. In Sect. 6,
we show offline memory optimizations. We then show an essentially memoryless
attack on dithered hash functions in Sect. 7. Finally, we conclude the paper in
Sect. 8.

2 In Appendix A we discuss a compact representation of message blocks both in the
generation of the diamond structure and in the online phase. The results reported
in Table 2 assume these compact representations.
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Table 2. Comparison of the second preimage attacks on dithered hash functions
which uses the Keränen sequence. � was chosen as an optimal value for “adapted
Kelsey-Kohno”. The analysis in [1,3] about dithering sequence, showed that for
Keränen sequence and � = 50 holds FactKeränen(�) ≤ 732, 1

FreqKeränen(w
50
mc)

≤ 340

and 1
FreqKeränen(w

110
mc )

≤ 1020.

2 Background and Notations

2.1 General Notations

– {0, 1}n — all the strings over ‘0’ and ‘1’ of length n.
– {0, 1}∗ — all the strings of finite length.
– m — a message m ∈ {0, 1}∗.
– |m|b — the length of m in b-bit block units.
– A — a finite alphabet.
– w[i] — the ith letter of w.
– w�

mc — the most common word (or factor) of length � in a sequence z.
– Freqz(w) is the frequency of the word w over the sequence z.
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– Factz(�) — the sequence’s complexity of a sequence z, given an integer �, as
the number of different factors in z of length �.

– Pwh
— given a binary tree w, the path Pwh

is the sequence of edges which
connects the leaf h to the root of w.

2.2 Merkle-Damg̊ard

Let f : {0, 1}n × {0, 1}b → {0, 1}n be a compression function, then the Merkle-
Damg̊ard hash function Hf : {0, 1}∗ → {0, 1}n is:

– m1,m2, . . . ,mL ← padMD(m).
– h0 = IV .
– For i = 1 to L, compute hi = f(hi−1,mi).
– Hf (m) � hL.

where padMD(m) is the conventional Merkle-Damg̊ard padding function, also
called Merkle-Damg̊ard Strengthening: Given a message m, it pads a single ‘1’
to the end of the message m also up to b−1 zeros, and an embedding the original
length of the message at the end, such that the length of the padded message
will be a multiple of b.

2.3 Dithering Sequence

To overcome the attack of [11], which is based on Expandable Message, Rivest
suggested to add a third input (dithered symbol) to the compression func-
tion derived from an infinite sequence [18]. Rivest proposed to use one of two
sequences:

– Keränen sequence.3

– His concrete proposal (a combination of the Keränen sequence and a
counter) [18].

Let f : {0, 1}n×{0, 1}b×A → {0, 1}n be a compression function that accepts
an n-bit chaining value, b-bit message block, and A dither symbol taken from
the sequence z. The Dithered Merkle-Damg̊ard hash function Hf : {0, 1}∗ →
{0, 1}n is:

– m1,m2, . . . ,mL ← padMD(m).
– h0 = IV .
– For i = 1 to L, compute hi = f(hi−1,mi, z[i]).
– Hf (m) � hL.

In [2], second preimage attacks were shown on dithered hash functions, and
the conclusion was that the more complex the sequence is, the more secure the
dithered hash function is against second preimage attacks.
3 In 1992, Keränen showed in [12] an infinite abelian square-free sequence over a four

letter alphabet (Hereafter called the Keränen sequence).
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2.4 Diamond Structure

The diamond structure was introduced in [10]. It was used in the attacks of [2,10],
and also in the second preimage attack on dithered Merkle-Damg̊ard in [1,3].
A diamond structure is a tree T of depth �, where the 2� leafs are the possible
chaining values, denoted by DT = {h�

i}. The nodes in the tree are labeled by
digest values and the edges are labeled by message blocks. The adversary builds
the diamond structure starting from the 2� leafs, she tries to map the 2� leafs to
2�−1 digest values (to the next level in the structure). She does so by generating
about 2n/2+1/2−�/2 message blocks from each leaf, then she detects collisions in
the generated values. She repeats the process until she reaches the root (with
adjusted number of message blocks from each node in each level). The expected
time complexity of building a diamond structure is 2n/2+�/2+2.

The diamond structure has the interesting property that there is a path of
message blocks from any chaining value leaf h�

i to the the digest value hT (the
root). See an example in Fig. 1.

The diamond structure was introduced at first to attack classic Merkle-
Damg̊ard hash functions [10]. But it can be easily adapted for dithered Merkle-
Damg̊ard, by labeling the tree edges with a dither symbol α ∈ A as well.

We say that a diamond structure “uses” a sequence w′ when all the edges
between level i and level i + 1 in the structure are labeled in addition to the
message block also with w[i]. We denote the diamond structure T that uses the
sequence w′ by Tw′ .

hT

ĥ1
m1,1, w[1]

ĥ2 m1,2, w[1]
m2,1, w[2]

ĥ3
m1,3, w[1]

ĥ4 m1,4, w[1]
m2,2, w[2]

m3,1, w[3]

ĥ5
m1,5, w[1]

ĥ6 m1,6, w[1] m2,3, w[2]

m3,2, w[3]

Fig. 1. A diamond structure that uses the dithering sequence w.

3 Previous Attacks on Merkle-Damg̊ard Hash Functions

3.1 Dean’s Attack

Dean showed in [7] a second preimage attack on Merkle-Damg̊ard hash func-
tions. The idea is to generate an expandable message using a fixed point of the
compression function, to connect to the targeted message. Consider a message



New Second Preimage Attacks on Dithered Hash Functions 253

M = m1m2 . . . mL, an initial value IV , and let H(M) = h. Denote the
intermediate values of processing the message M by h1, h2, . . . , hL = h, i.e.,
f(hi−1,mi) = hi (where h0 = IV ).

At the first step of the attack, the adversary generates 2n/2 random
block messages, denoted by mr

1,m
r
2, . . . ,m

r
2n/2 . Then, she computes X1 =

{f(IV,mr
j)|∀j ∈ {1, 2, . . . , 2n/2}}. She then generates 2n/2 random fixed points

of the compression function,4 denoted by X2 = {(hf
k ,mc

k)|f(hf
k ,mf

k) = hf
k}.

Due to the birthday paradox, with non-negligible probability there is mr
j such

that f(IV,mr
j) = hf

k (which also means that f(IV,mr
j) = f(hf

k ,mf
k)). Now,

she tries to connect hf
k to the message, so she generates 2n/L random mes-

sage blocks, denoted by mz, 1 ≤ z ≤ 2n/L. With a non–negligible probability,
there is a hi, such that f(hf

k ,mz) = hi. At this stage the adversary can out-
put the message M ′ = m′

j mf
k . . . mf

k
︸ ︷︷ ︸

i − 2 times

mzmi+1 . . . mL as a second preimage for

M . Note that |M ′|= |M |, which means that after processing the messages, the
Merkle-Damg̊ard Strengthening has a similar affect on the digest value in both
messages.

The time complexity of the attack is 2n/2+1 + 2n/L compression function
calls.5

3.2 Kelsey and Schneier’s Expandable Messages Attack

Kelsey and Schneier showed in [11] a second preimage attack on Merkle-Damg̊ard
hash functions. They presented a new technique to build expandable mes-
sages without any assumption about the compression function (unlike in Dean’s
attack), the new technique is based on Joux’s multi-collision technique [9], pro-
ducing multiple messages of varying lengths, with the same digest value. The
time complexity of the attack is about k · 2n/2+1 +2n−k+1, for a 2k-block length
message.

3.3 Adapted Kelsey-Kohno

One of the second preimage attacks presented in [1,3], is against Merkle-
Damg̊ard hash functions. The attack depends heavily on diamond structures
which were introduced in [10]. The adversary generates a diamond structure of
depth � and tries to connect the diamond structure to the message by a connect-
ing message block. After a successful attempt, she generates a prefix P which
connects the IV to the diamond structure of appropriate length. The second
preimage message is the concatenation of the prefix P , the path in the dia-
mond structure (which connects the prefix to the root) and the remaining of the

4 The attack is efficient when it is “easy” to find fixed points of the compression
function. For example, in Davis-Meyer compression functions.

5 We note that the complexity is for the case where finding a fixed point is trivial, i.e.,
takes one compression function call.
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original message blocks (what come after the connecting message block). The
complexity of the attack is 2n/2+�/2+2 + 2n−k + 2n−�.

The attack can also be adapted to the dithered Merkle-Damg̊ard hash func-
tions, which we refer to as “Adapted Kelsey-Kohno”. Most of the attack steps
are similar to the original attack. The adversary generates a diamond structure
of depth �. The diamond structure uses the first � symbols of the most common
factor of length � + 1 of the dithering sequence z. The last symbol of the most
common factor of length � + 1 is used to connect the diamond structure’s root
to the message in appropriate location. The number of possible points to con-
nect the diamond structure is equal to 1

Freqz(w
�+1
mc )

. So, the time complexity of

the attack 2n/2+�/2+2 + 2n−k

Freqz(w
�+1
mc )

+ 2n−�, and the online memory complexity

is 2�+1.

Fig. 2. Illustration of Andreeva’ et al.’s attack: (i) Build the diamond structure T (ii)
Connect the root to the message (iii) Connect the message to the leafs of T.

3.4 Kite Generator and More Second Preimage Attacks

The “Kite Generator” was introduced in [1,3]. It is a labeled directed graph of
2n−k vertices. Every vertex labeled by a chaining value (including the IV ) and
every edge is labeled by a message block and a symbol from the alphabet of
the dithering sequence. For any symbol in the dithering alphabet (i.e., α ∈ A)
there are two edges labeled by the symbol α. The result is that every vertex has
2 · |A| outgoing edges. The structure is highly connected, that is to say, there is
an exponential number of paths for any dithering sequence that starts from a
single vertex. The time complexity of building such a structure is 2 · |A|·2n and
it requires |A|·2n−k memory.

For a given message m of 2k blocks and 2k intermediate digest values, there
is a non-negligible probability that there is an intermediate digest value which is
also a label of a vertex in the kite generator structure. Denote this value by hi.
The adversary picks a path in the kite generator starting from the IV of length
i − (n − k) with the dithering sequence z[0 . . . (i − (n − k))]. Then, from the
last chaining value of the generated path, build a binary tree of depth (n − k)/2
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that uses the dithering sequence z[(i − (n − k) + 1) . . . (i − (n − k)/2)] (this is
achieved by traversing all possible routes in the graph corresponding the required
dithering sequence). In the last step, she builds a binary tree from hi of depth
(n − k)/2 that uses the dithering sequence z[(i − (n − k)/2 + 1) . . . i]R. With a
non-negligible probability there is a collision in the leafs of the two trees. The
second preimage is the concatenation the the generated path, the path which
connects the two roots of the trees, and the remaining blocks of the original
message (the message blocks which come after hi). The online time and memory
complexities of the attack are max(2n/2, 2n−k) and |A| · 2n−k, respectively.

4 A New Second Preimage Attack on Dithered
Merkle-Damg̊ard

We now present a new second preimage attack on dithered Merkle-Damg̊ard.
The new attack has a slightly longer precomputation time, but in exchange,
the online memory complexity of the attack is significantly reduced to practical
levels.

Similarly to the attacks of [1,3], the attack consists of two phases: the pre-
computation (the offline) and the online phase. In the offline phase, we gen-
erate Factz(�) diamond structures, every structure with a unique factor of the
sequence z of length �. Then, we connect every diamond structure to all diamond
structures (including itself). We then purge unnecessary paths from the mem-
ory. These purged structures are then used in the online phase to find a second
preimage by connecting one of the purged diamond structures to the message,
and starting from the IV traversing through the purged diamond structures
to reach the connecting point. The total amount of memory that is needed for
keeping the purged diamond structures is significantly smaller than the amount
of memory needed for storing a full diamond structure.

4.1 Adapting Diamond Structure to Dithered Merkle-Damg̊ard

We now give the details of the attack:

– Offline phase:
1. Build Factz(�) diamond structures of depth � each (denoted by {Ti|1 ≤

i ≤ Factz(�)}), where every Ti uses a different factor of z of length �.
Every diamond structure Ti has a digest value hTi

. Note that the IV is
a leaf in all the generated diamond structures.

2. Connect every diamond structure Ti to every diamond structure Tj (Ti

may be Tj) with all |A| possible dithering symbols. Namely, for every pair
of Ti, Tj and any dithering symbol α, find mα

i→j such that f(hTi
,mα

i→j , α)
is a leaf of Tj .

3. Prune (reduce) the diamond structures by removing all unnecessary nodes
and edges that do not belong to any path that connects two roots hTi

and hTj
. Formally, let Gi = {Pj,i|∃Tj such that Pj,i is a path from a hTj
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to hTi
}. Then, for all Ti′ , remove the nodes {n′ ∈ Ti′ |n′ /∈ Pj′,i′ for any

Pj′,i′ ∈ Gi}.
Between two diamond structures, there are |A| such paths. So overall, keep
|A| · Fact2z(�) paths (of length � + 1 each, as we also store the connecting
message block mα

j→i).

Fig. 3. Connecting diamond structure Ti to diamond structure Tj

Complexity Analysis: Constructing Factz(�) diamond structures takes
Factz(�) ·2n/2+�/2+2 compression function calls. Connecting one diamond struc-
ture to another takes 2n−� compression function calls for a given dither
sequence. Therefore, connecting all the diamond structures to each other takes
|A| · Factz(�)2 · 2n−� time. Finally, pruning the diamond structures takes
|A| · Fact2z(�) · (� + 1) time and memory.

Therefore, the overall time complexity of the offline phase is Factz(�) ·
2n/2+�/2+2 + |A| · Factz(�)2 · 2n−� compression function calls, and it passes
|A| · Factz(�)2 · (� + 1) memory blocks to the online phase.

– Online phase: In the online phase, given a message m, such that |m| = 2k

blocks. Let w′ = wrα (|w′| = � + 1) be the most common factor in positions
0, � + 1, 2(� + 1), . . . (positions that are multiple of � + 1) of the sequence z.
Let Range be {i ∈ N|i ≤ 2k ∧ z[i − (� + 1)] . . . z[i] = w′}, namely, Range is
the set of all indexes of chaining values which were produced of hashing of
any consecutive � + 1 blocks with wr, perform:

• Find a connecting block Br such that f(hTwr
, Br, α) = hi0 for i0 ∈ Range.

• Traverse the structures and find a path from IV to Br while preserving
the dithering sequence order.

• The second preimage is generated by concatenating the path that was
found in the previous step, with the rest of the original m from the block
after the connecting point till the end.

The complexity of the online phase is 2n−k

Freqz(w′) + 2k, which is essentially the
same as the adapted Kelsey-Schneier’s attack [1,3] (we note that the connection
“into” the diamond structure is eliminated).
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Fig. 4. Illustration of the attack.

4.2 Generalization

The previous attack worked with the most common factor of length � + 1 in
positions 0, �+1, 2 · (�+1), . . . (i.e., a multiple of �+1). Traversing the diamond
structures gives always a path whose length is a multiple of � + 1. Therefore, it
is limited to work with the most common factor in specific positions, which may
not be the most common factor of the whole sequence.

To overcome this issue, we generate from the IV a chain of length �. We pick
at random a message m′ = m′

1m
′
2 . . . m′

� and evaluate h′
1 = h(IV,m′

1, z[1]), h′
2 =

h(IV,m′
1m

′
2, z[1, 2]), h′

3 = h(IV,m′
1m

′
2m

′
3, z[1, 2, 3]). etc. until h′

�. We then, use
h′
1 as one of the leafs in Tz[1...], h′

2 as one of the leafs in Tz[2...], etc.
In the online phase, let w′ be the most common word of length � + 1. We

connect Tw′ to the message in position t. Let d = t mod (� + 1), and use
m′

1m
′
2 . . . m′

d to connect the IV to the diamond structure Tz[d..(d+�)], then tra-
verse from Tz[d..(d+�)] to Tw′ .

Complexity Analysis: The additional complexity of the new algorithm is �
compression function calls (generating h′

1, h
′
2, . . . , h

′
�). This amount of complexity

is negligible, and does not affect the offline time complexity. However, it does
improve the online time complexity, as we now use the global most common
factor in the sequence, which may allow for more connecting points, instead of a
most common factor in specific positions. Therefore, the new complexity of the
online phase is 2n−k

Freqz(w
�+1
mc )

+ 2k.

5 Optimizations and Improvements

In this section, we present several optimizations and improvements. Some ideas
reduce the offline time complexity, while other ideas reduce the offline memory
complexity. All these improvements do not increase the online time and memory
complexities.

5.1 Reducing Offline Time Complexity

Optimization I - Use the Diamond Structure Roots as Leafs. A major
factor in the offline phase is connection of the diamond structures to each other.
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We now present a simple way to reduce the time to connect the diamond struc-
tures by about half: After generating a structure, let its root and all other previ-
ous structures’ roots be part of the 2� leafs of the following generated structures.
Namely,

– Set D1 = {IV }.
– For i = 1 to Factz(�):

• Generate the diamond structure Ti, such that Di is a subset of the leafs
of Ti, i.e., make sure that Di ⊆ DTi

.
• Set Di+1 = Di ∪ {hTi

}.

As the IV is a leaf in all the diamond structures, one can start the exploration
of the dither sequence factor from it, independently of the first factor. Similarly,
when generating a new diamond structure, if all the roots of the previously
generated diamond structures are leafs in the new diamond structure, then they
are already connected to it, and there is no need in connecting the previous
diamond structures to the new one.

After the generation of the diamond structures, every pair of different dia-
mond structures is already connected in one direction, but needs to connect in
the other direction. This reduces the connection time from |A| · Fact2z(�) · 2n−�

to |A| · ((Factz(�)
2

)

+ �
) · 2n−�, and the total offline time complexity to Factz(�) ·

2n/2+�/2+2 + |A| · ((
Factz(�)

2

)

+ �
) · 2n−�.

Optimization II - All the Diamond Structures Have the Same Leafs.
Another simple optimization which reduces the offline time complexity by a fac-
tor of Factz(�), is to let the leafs of all the diamond structures be the same.
In other words, choose 2� random values, and let those values be the leafs
of all the diamond structures. This way, when connecting a diamond struc-
ture to another, it connects the diamond structure to all the other diamond
structures. This reduces the diamond structures connection time complexity to
|A|·Factz(�)·2n−�, and the total offline time complexity to Factz(�)·2n/2+�/2+2+
|A| · Factz(�) · 2n−�.

Optimization III - Validate the Connections Between the Diamond
Structures. Another simple observation that reduces the time complexity of
the offline phase is that not all the factors of length � (or any length greater
than 1) are sequential. Meaning, if a factor x of length � in sequence z, does not
appear before another factor y of length �, then there is no need to connect Tx

to Ty. In fact, the number of the needed connections is Factz(�+1) (the number
of the factors of length �+1). So the overall diamond structures connection time
complexity is Factz(� + 1) · 2n−�.

Note that as a result of this improvement (together with optimization II),
the online memory complexity is also reduced to Factz(� + 1) · (� + 1).
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5.2 Treating (Almost)-Regular Sequences

Our attacks were designed for any possible sequence z over a dithering
alphabet A. However, some sequences, such as the Keränen show some regu-
lar behavior. Namely, the Keränen sequence is built by taking a sequence over a
4-letter alphabet {a, b, c, d} and replacing each character by its own 85-character
sequence.6 We now show how to use the “regularity” of this sequence in reducing
the complexities of attacking the sequence.

The basic idea is that if � ≤ 84, the most frequent factor necessarily starts
at the beginning of one of the 85-character chunks. Moreover, the sequence itself
is divided into four such chunks, and thus, one can build in advance only four
diamond structures (of depth � ≤ 84) and connect each of them to the others by
paths of length 85−�. We note that the online time complexity is not affected by
this change (as one of the most frequent factors starts at the first character of the
chunk), whereas the offline time complexity is reduced to 4 · 2n/2+�+2 +12 · 2n−�

(compared with 732 · 2n/2+�/2+2 + 2928 · 2n−� for the best general attack).
The idea also reduces the memory complexities (both offline and online). For

example, the attack of Sect. 5.1 takes (�+1) ·Factz(�+1) which are 732 · (�+1)
blocks of memory (for � < 85), or merely 12 · 85 = 1020 blocks of memory when
the regularity of the sequence is used.

For 84 < � < 169, the attack spans over two dither chunks. The offline time
complexity is thus 12 · 2n/2+�+2 + 132 · 2n−�, and the memory complexity is
36 · 170 = 6120 blocks of memory.

6 Memory Optimizations

In this section, we discuss how to reduce the increased memory complexity in
the offline phase in exchange for additional offline computations.

6.1 Reducing Memory in the Offline Phase

The offline memory complexity could be reduced from storing Factz(�) diamond
structures to only one diamond structure. The basic idea is to generate only
one diamond structure at a time, and reconstruct it in the preprocessing when
needed. The improvement is based on optimization methods II and III, where
all diamond structures share leafs. Below we describe the algorithm and then
explain it:

– Let D be the leafs of the diamond structures with cardinality of 2�.
– For i = 1 to Factz(�):

• Generate the diamond structure Ti.
• Find and save (hTi

,Mi), where Mi = {mα
hTi

→D|∀α ∈ A, h(hTi
,

mα
hTi

→D, α) ∈ D and wiα is a factor of z }.
• Delete Ti.

6 We refer the interested reader to [12] for the full specification of the sequence.
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– For i = 1 to Factz(�):
• Regenerate the diamond structure Ti.
• Compute and save Gi (recall that Gi are the paths from the leafs connected

to the root from other diamonds).
• Delete Ti.

After the offline phase, pass the paths (Gi’s) to the online phase.
We first note that when generating a diamond structure Ti, the leafs of other

diamond structure Tj should be predictable to allow the connection from Ti to Tj .
By fixing the leafs of all the diamond structures to be the same, we can overcome
this obstacle, and we also reduce the time complexity, because connecting Ti to
Tj is also connecting Ti to all other diamond structures under the same dithering
symbol.

To enable regenerating the same diamond structure twice independently, we
can use a fixed pseudo-random sequence (e.g., by seeding some PRNG) to deter-
mine the message blocks used (and their order) along with any randomness
needed for other decisions.

This reduces the offline memory complexity to Factz(�+1)·2n−�. In exchange,
the diamond structure generation time complexity is increased to 2 · Factz(�) ·
2n/2+1/2+�/2, and the total offline time complexity to 2 · Factz(�) · 2n/2+�/2+2 +
Factz(� + 1) · 2n−�.

6.2 Time-Memory Trade-Off

It is possible to balance the offline memory complexity with the offline
time complexity. One could store in memory x diamond structures that are
computed only once. The offline memory and time complexities are x · 2�+1 and
(2 · Factz(�) − x) · 2n/2+�/2+2 + Factz(� + 1) · 2n−�, respectively.

7 Memoryless Diamond Structure Generation

We now show that it is possible to essentially eliminate the memory used in the
offline phase: By building the diamond structure as a Merkle hash tree [15] (i.e.,
deciding in advance which leaf collides with which leaf), and using memoryless
collision search [13,16,17], we can reduce the offline memory completely to the
online complexity.

Each diamond structure has 2�+1 − 1 collisions, each can be found in time
O(2n/2) without additional memory, allowing for a memoryless diamond struc-
ture generation in time 2n/2+�+1. Obviously, the randomness in the genera-
tion needs to be replaced with a pseudo-random sequence (the same as in
Sect. 6.1). The total offline time complexity of the attack is 2 ·Factz(�) ·2n/2+� +
Factz(� + 1) · 2n−�. The online time complexity does not change, and remains
at (� + 1) · Factz(� + 1). The total (offline and online) memory complexity is
(� + 1) · Factz(� + 1).
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8 Summary

In this work we present a series of second preimage attacks on dithered Merkle-
Damg̊ard hash functions. The proposed attacks have the same online time com-
plexity as the previous works of [1,3], but enjoy a significantly reduced memory
complexity.

The first set of attacks concentrate on reducing the memory complexity in
the online phase (while maintaining, or slightly increasing, the offline memory
complexity). This set is motivated by the fact that an adversary may be willing
to spend some extra memory (or time) in the offline phase, so the online phase
could use a smaller amount of memory (which may be more suitable for FPGA-
based cryptanalytic efforts). We believe that this line of research (reducing online
memory complexity, possibly at the expense of an increased offline complexities),
would open up a new way to look at cryptanalytic problems.

The last attack we present offers an essentially memoryless attack on dithered
hash functions which is still considerably better than generic attacks. To con-
clude, it seems that any dithered hash function should use as complex sequences
(namely, with as many different factors) as possible.

Acknowledgements. The authors would like to thank the anonymous referees for
their constructive comments that have improved the results of the paper. In addition,
the interaction of the authors during the Dagstuhl seminar on symmetric cryptography
in January 2016, have contributed significantly to improving the results.

A Compact Representations of Message Blocks in the
Considered Attacks

We now turn our attention to a small constant improvement in the memory con-
sumption of both the generation and the online storage of the diamond structures
(similar ideas can be applied to the kite generator, though we do not discuss these
in detail). Recall the generation of a diamond structure: 2� chaining values are
chosen (or given). For each such chaining value, we compute n/2−�/2+1/2 calls to
the compression function using different message blocks. To find collisions among
the 2n/2+�/2+1/2 chaining values one can use several data structures, where the
easiest one is a hash table (indexed by the chaining value). Such a hash table
can store all the (chaining value, message block) pairs, and allow for an easy and
efficient detection of collisions.

The main question is what is the entry size that needs to be stored in such a
table. The trivial solution requires n bits for the chaining value and b bits for the
message block, i.e., a total of n+b bits (e.g., 640 for MD5). One can immediately
note that as there are only 2� different chaining values, it is possible to assign
to each chaining value an index of � bits, and store only the index. Another
trivial improvement is to note that one can use the same message blocks for all
chaining values (or determine given the chaining values the message blocks in a
pseudo-random manner), and thus, one needs to store only n/2 − �/2 + 1/2 bits
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for describing the message block in use. Hence, one can easily use a simpler and
more compact representation of n/2 + �/2 + 1/2 bits (i.e., 90 bits in our attacks
on MD5).

We devise an even more compact representation, which is based on storing
only the chaining value in the hash table. Then, once a collision is found, one can
try all message blocks sequentially to recover the message blocks that led to the
collision. While this doubles the computational effort of the generation of the
diamond structure, by storing a few additional bits of the message block along
the chaining value, is sufficient to make this approach quite computationally
efficient. Hence, one can use � + t bits, where even a small t (of 3–4 bits) can
ensure the reconstruction does not affect the time complexity by much.

We note that when � > n/2− �/2 i.e., when 3 · � > n, it is possible to store in
the table the message blocks themselves, and then in the reconstruction try all
possible message blocks. The resulting representation in this case is n/2−�/2+ t
bits.

Finally, we briefly discuss the online data structure. For that structure one
needs to store only the message block that connects the current chaining value
to the next one. Hence, in the online phase, the memory block size is n/2 − �/2.
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Abstract. This paper provides security analysis of lightweight block
cipher Lilliput, which is an instantiation of extended generalized Feis-
tel network (EGFN) developed by Berger et al. at SAC 2013. Its round
function updates a part of the state only linearly, which yields several
security concerns. The first important discovery is that the lower bounds
of the number of active S-boxes provided by the designers are incor-
rect. Then the new bounds are derived by using mixed integer linear
programming (MILP), which shows an interesting fact that the actual
bounds are better than the designers originally expected. Another con-
tribution is the best third-party cryptanalysis. Owing to its unique
computation structure, the designers expected that EGFN efficiently
enhances security against integral cryptanalysis. However, the security
is not enhanced as the designers expect. In fact, division property, which
is a new method to find integral distinguishers, finds a 13-round distin-
guisher which improves the previous distinguisher by 4 rounds. The new
distinguisher is further extended to a 17-round key recovery attack which
improves the previous best attack by 3 rounds.

Keywords: Block-cipher · Lilliput · Extended generalized Feistel
network · Mixed integer linear programming · Division property

1 Introduction

Lightweight cryptography is one of the most actively discussed topics in the cur-
rent symmetric-key community. A huge number of designs have been proposed
especially for the last decade. Here, we omit the list of all the lightweight prim-
itives. Readers may refer to [1] for such a list. An important challenge that is
common for most of those designs is achieving good security without significantly
sacrificing efficiency.

One of the major approaches to design lightweight cipher is using Feistel
network or generalized Feistel network (GFN), which has a property that its
transformation is basically involutive thus the overhead to implement decryption
circuit is minimized. Meanwhile, diffusion speed of the standard Feistel network
c© Springer International Publishing AG 2017
R. Avanzi and H. Heys (Eds.): SAC 2016, LNCS 10532, pp. 264–283, 2017.
https://doi.org/10.1007/978-3-319-69453-5_15
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Fig. 1. Comparison of GFN (Left) and EGFN (Right) with four branches.

is often much slower than other design approaches. To overcome this drawback,
several researches have developed new ideas. Suzaki and Minematsu pointed out
that security of GFN can be enhanced by replacing the way of mixing branches
[2]. This is called block-shuffle and TWINE [3] was designed based on this idea.
Zhang and Wu used modified Feistel network to design LBlock [4], which turned
out to be the same network as one in TWINE [3]. The latest approach, which is a
main focus in this paper, is extended GFN (EGFN) proposed by Berger et al. [5],
in which an additional linear diffusion layer is inserted between the application to
F -function and branch network. The comparison of GFN and EGFN is depicted
in Fig. 1. In many designs, the non-linear layer is the most expensive, thus the
linear layer leads to better diffusion speed with a small extra cost.

Berger et al. [5] specified two concrete examples of EGFN with security analy-
sis. Unfortunately, mistakes in the security analysis were pointed out by Zhang
and Wu [6] and very effective differential trails were constructed for those origi-
nal choices of EGFN. To fix this drawback, Berger et al. combined block-shuffle
[2] with EGFN, and proposed a new cipher preventing the attack by Zhang and
Wu. The cipher was named Lilliput [7].

Lilliput is a lightweight block cipher, supporting 64-bit block and 80-bit
key. Lilliput is a 16-branch EGFN with block-shuffle, in which the size of each
branch is 4 bits (nibble) and the non-linear function is an application of a 4-bit
S-box. Those parameter sizes are the same as TWINE and LBlock. The number
of rounds is 30, which is 2 rounds less than TWINE and LBlock. This shows
that the additional linear layer of Lilliput allows to ensure its security with a
smaller number of rounds than TWINE and LBlock. The designers of Lilliput
provided several security analysis, including minimal number of active S-boxes
for every round, impossible differential attack, integral attack, differential/linear
cryptanalysis, related-key attacks and chosen-key attacks. Regarding differential
cryptanalysis, the minimal number of active S-boxes is listed in Table 1. Other
single-key attacks are summarized in Table 2.

Our Contributions. In this paper, we show that the linear layer of EGFN and
Lilliput yields several security concerns to be carefully discussed.

We first study differential cryptanalysis. We show that the linear layer makes
the evaluation of truncated differential very complicated. The linear layer allows
differences to go through the round function without going through S-box.
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Table 1. Lowerbounds of number of active S-boxes for each round. NW and BW
represent nibble-wise model and bit-wise model, respectively.

Approach Rounds Tightness

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Branching [7] 0 1 2 3 5 9 12 14 15 17 21 24 26 28 29 31 Claimed as tight

MILP (NW, basic) 0 1 2 3 5 9 12 14 15 17 19 22 25 27 29 31 Not tight

MILP (NW, advanced) 0 1 2 3 5 9 12 14 15 17 19 23 25 28 30 32 Not tight

MILP (BW) 0 1 2 3 5 9 12 15 17 19 22 ? ? ? ? ? Tight

Table 2. Key recovery attacks in the single-key model against Lilliput. Related-key
attack and chosen-key attacks reach 23 rounds, which are not included in this table.

Approaches Distinguisher Key recovery Data Time Ref

Integral 9 rounds 13 rounds 262 272 [7]

Impossible differential 8 rounds 14 rounds 263 277 [7]

Division property 13 rounds 17 rounds 263 277 Ours

This implies that attackers need to trace the impact of linearly diffused differ-
ence over many rounds. This is quite opposite for SPN-based ciphers, say AES,
in which difference in all cells is randomly updated in every round. To illustrate
this fact, an example of contradicting truncated differential searched by a simple
search is shown in Fig. 3. We search for the lower bounds of the number of active
S-boxes with MILP. The results show that the lower bounds provided by the
designers are incorrect. This is the reason why our bounds are sometimes larger
and sometimes smaller than the original bounds. Then, we derive new bounds
with MILP in two approaches; nibble-wise and bitwise models. The former can
evaluate many rounds while the derived bounds are loose. The latter can derive
tight bounds while its expensive search cost restricts the search range up to 11
rounds. The results are shown in Table 1. Interestingly, our results show that
Lilliput is more secure than the designers have expected, e.g. the designers
reported that the best characteristic could reach 16 rounds while we prove this
is impossible.

We next study integral cryptanalysis. The designers evaluated the security
in [5,7], where the propagation characteristic of the integral property [8] was used
to search for the integral distinguisher. They showed that EGFN and Lilliput
have higher security than GFN with block-shuffle. Actually, while TWINE and
LBlock allow 15-round integral distinguisher, Lilliput only allows the 9-round
integral distinguisher. It implies that the linear layer enhances security against
the integral cryptanalysis by 6(= 15 − 9) rounds. On the other hand, the linear
layer does not increase the algebraic degree. Hence by constructing the inte-
gral characteristic by estimating the algebraic degree, which is often called the
higher order differential cryptanalysis, the attack may be improved drastically.
The division property is a new method to find integral distinguisher, which is a
generalization of the integral property and can exploit low algebraic degree in
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the same time [9]. Thus security contribution of the linear layer can be evaluated
more accurately with the the division property. As a result, we show that the
division property finds a 13-round integral distinguisher, and it implies that the
security is not enhanced as the designers expected. Moreover, the new distin-
guisher leads the attack against 17-round Lilliput (see Table 2), which is the
current best attack against Lilliput.

Paper Outline. Related work and specification are introduced in Sect. 2. High-
level overview of the properties we discuss on EGFN and Lilliput is given in
Sect. 3. In Sect. 4 we search for new bounds of number of active S-boxes using
MILP. In Sect. 5, we improve the previous best attack with division property.
Finally, we conclude this paper in Sect. 6.

2 Related Work

2.1 Extended Generalized Feistel Network (EGFN)

Previous GFN has two computation layers per round; one is applying non-linear
functions to some of branches and xoring the results to other branches (non-
linear layer F), and the other is permuting branches (permutation layer P),
which is often designed as a simple cyclic shift of branches. EGFN [5] adds a
new diffusion layer (linear layer L). In many designs, the non-linear layer F is
the most expensive part, thus the linear layer L helps to increase the diffusion
speed with a small additional cost. Berger et al. showed two concrete choices
of F and L when the number of branches is 8 and 16 along with some security
analysis. It is notable that the permutation P was assumed to be a simple swap
of the left half and right half of the state.

Zhang and Wu [6] pointed out that the security evaluation in [5] was wrong
and presented efficient differential characteristics against concrete examples in
[5]. The attack relies on the choice of P, which is a simple swap of branches.

2.2 LILLIPUT Specification

Lilliput [7] was designed by Berger et al. in 2015. So as to prevent the attack
by Zhang and Wu [6], the designers adopted block-shuffle network [2] proposed
by Suzaki et al. on top of EGFN so as to achieve even faster diffusion.

The block size and the key size of Lilliput are 64 bits and 80 bits, respec-
tively. Its round function consists of 16 branches of size 4 bits. 64-bit plaintext
is first loaded to sixteen 4-bit array X15,X14 . . . , X0. Then, the round function
consisting of three layers F ,L, and P is iterated 30 times. The permutation layer
P is omitted in the last round for involution reasons. An illustration of the round
function is shown in Fig. 2.

The key schedule first expands the 80-bit key to 32-bit round keys for round
j, j = 0, . . . , 29 dented by RKj . Because we do not analyze the key schedule, we
omit its description.
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: 13, 9, 14, 8, 10, 11, 12, 15, 4, 5, 3, 1, 2, 6, 0, 7 

Fig. 2. Round function of Lilliput.

Table 3. S-box.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 4 8 7 1 9 3 2 E 0 B 6 F A 5 D C

Table 4. Nibble permutation.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π(x) 13 9 14 8 10 11 12 15 4 5 3 1 2 6 0 7

Non-linear Layer F . At first, the state input and round key are xored. Then, a
4-bit S-box is applied to each of eight nibbles in the right half of the state, and the
results are xored to the left half of the state. Let RKj

i and Xj
i be the i-th nibble

of the j-th round key RKj and j-th round state Xj , respectively. Then, the
nonlinear layer can be defined as Xj

8+i ← Xj
8+i ⊕S(Xj

7−i ⊕RKj
i ), i = 0, 1, . . . , 7,

where S(·) is a 4-bit to 4-bit S-box defined in Table 3.

Linear Layer L. The idea in L is, along with diffusion by F , having Xj
7

propagate to all nibbles in the left half of the state and having Xj
15 be propagated

from all nibbles from the right half of the state. L is defined as follows.

Xj
15 ← Xj

15 ⊕ Xj
7 ⊕ Xj

6 ⊕ Xj
5 ⊕ Xj

4 ⊕ Xj
3 ⊕ Xj

2 ⊕ Xj
1 ,

Xj
15−i ← Xj

15−i ⊕ Xj
7 for i = 1, 2, . . . , 6.

Permutation Layer P. Nibble positions are permuted with permutation π
defined in Table 4. The designers chose π to achieve the highest number of active
S-boxes after 18, 19 and 20 rounds.

3 Difficulties of Analyzing LILLIPUT Round Function

In Sect. 4, we will show that the lower bounds of the number of active S-boxes
provided by the authors are wrong. However, this is not because of careless
mistakes. In Sect. 5, we will present a current best attack against Lilliput using
division property. Before explaining details, in this section, we extract overview
of the essential difficulties of analyzing EGFN and Lilliput with respect to
differential cryptanalysis and division property.
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Differential Cryptanalysis. Evaluating security of EGFN and Lilliput
against differential cryptanalysis is quite difficult owing to their unique compu-
tation structure, L. The previous truncated differential search, both dedicated
search or more structural approach such as wide trail strategy in AES [10], yields
a correct result only if the cipher can be assumed to be Markov cipher [11] with
respect to truncated differential. Namely, the probability to achieve a truncated
differential in round i+1 needs to be determined only depending on a truncated
differential in round i (or possibly in any fixed round before round i + 1).

A main obstacle for EGFN and Lilliput is that this assumption does not
hold after a few rounds because of the linear layer L. Let us discuss the Lilliput
round function (Fig. 2).

– For some round j,Xj
15 easily gets active thanks to L, then Xj

15 moves to Xj+1
7

after P.
– Xj+1

7 duplicates an identical difference to Xj+1
9 to Xj+1

14 , and those will prop-
agate to subsequent rounds.

– In a truncated differential, we only remember active/inactive of each nibble,
thus we lose information that those differences are identical, which with high
probability causes contradiction after a few rounds. (In Markov cipher, dif-
ference in round j + 2 or later rounds should not depend on difference in
round j.)

An example of contradicting truncated differential is shown in Figs. 3 and 4.
The differential is 3 middle rounds of 16-round differential evaluated by the
basic nibble-wise MILP model, which will be explained later. Figure 3 shows
that the truncated differential is valid under the assumption that difference of
all nibbles are reset to be a random difference in every round. Meanwhile, Fig. 4
traces the impact of linear diffusion. It shows that the difference of xi+2

14 , xi+2
13 ,

and xi+2
9 are the same as the one in xi

7, which are denoted by Δ in Fig. 4. Here,
we denote the difference of xi+2

7 by α, Then, the difference of the 9th, 13th, and
14th branches after the linear layer in round i + 2 are denoted by Δ ⊕ α. It is
unknown if Δ ⊕ α is 0 or not, however, differences in those three branches must
be identical. As one can see, Fig. 4 assumes that the 13th and 14th branches are
inactive while the 9th branch is active. Thus this differential is contradicted.

Even with contradiction, it is still possible to provide lower bounds. However,
the derived bounds are not tight as the linear layer L, a source of contradiction,
diffuses many truncated differential at once. Alternative approach is simulat-
ing differential propagation bit-by-bit precisely instead of truncated differential.
However, this approach requires a very expensive search cost, and simulating
all rounds is infeasible. All in all, evaluating security of EGFN and Lilliput
against differential cryptanalysis is challenging work.

Integral Cryptanalysis. The designers of EGFN and Lilliput already
showed the security against the integral cryptanalysis in [5,7], and the prop-
agation characteristic of the integral property [8] was used to search for the inte-
gral distinguisher. When a d-round EGFN reaches the full diffusion, the integral
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Fig. 3. Valid if differential is reset in
every round.

Fig. 4. Contradiction if linear propaga-
tion is considered.

distinguisher of the EGFN covers at most 2d + 2 rounds. Moreover, Lilliput,
which is a specific block cipher based EGFN with d = 4, has the 9-round integral
distinguisher. Compared with 15-round integral distinguishers of TWINE and
LBlock, it implies that the linear layer enhances the security against the integral
cryptanalysis by 6(= 15−9) rounds. On the other hand, if we construct the inte-
gral distinguisher by estimating the algebraic degree, which is often called the
higher order differential cryptanalysis, the security is not likely to dramatically
improve because the linear layer does not increase the algebraic degree.

The division property is a new method to find integral distinguishers, and it is
the generalization of the integral property so that can exploit the algebraic degree
in the same time. Therefore, we can more accurately evaluate the contribution
of the linear layer by using the division property. In Sect. 5, we will show a new
integral distinguisher with the division property, and it covers 13 rounds, which
is beyond 2d + 2 = 10. Very recently, Zhang and Wu showed that TWINE and
LBlock have 16-round integral distinguishers by using the division property [12].
Therefore, the true contribution by the linear layer is 3(= 16 − 13) rounds.
Moreover, this 13-round integral distinguisher leads to a 17-round attack, which
is a current best attack against Lilliput.
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4 New Differential Bounds

We search for lower bounds of number of active S-boxes of Lilliput with MILP.
Section 4.1 explains background of MILP based search. Section 4.2 explains
nibble-wise search and proves the 16-round truncated differential shown by the
designers are incorrect. Section 4.3 explains bit-wise search, which proves better
bounds than the evaluation by the designers up to 11 rounds.

4.1 Background of Mixed Integer Linear Programming (MILP)

An MILP-based search was proposed by Mouha et al. [13]. The approach has
two stages; (1) describing valid active byte/nibble/bit propagation patterns with
a system of linear inequalities, and (2) solving the system with an MILP solver.
Cryptographer’s task is for (1) to efficiently describe active byte/nibble/bit pat-
terns. Regarding stage (2), many softwares are available, some are license-free
and other are in commerce. In this research, we used Gurobi Optimizer [14] for
stage (2). Hereafter we explain stage (1).

The following discussion focuses on nibble-oriented ciphers. The goal is count-
ing the number of active S-boxes, thus truncated differential is analyzed. Each
nibble in each round is represented by a binary variable xi meaning that the
nibble is active when xi = 1 and inactive when xi = 0. Then, we specify an
object to be optimized, called objective function. Our goal is finding a minimal
number of active S-boxes, thus if S-box is applied to all nibbles, the objective
function is “minimize

∑
i xi.” The main task is giving constraint inequalities to

specify valid differential propagations with linear inequalities.

Inequations to Describe XOR by Mouha et al. Suppose that the nibble
corresponding to x3 is computed by other two nibbles corresponding to x1 and
x2, i.e. x1 ⊕ x2 = x3. Mouha et al. describe all possible differential patterns by
introduced a dummy binary variable d as follows.

x1 + x2 + x3 − 2d ≥ 0,

x1 − d ≤ 0,

x2 − d ≤ 0,

x3 − d ≤ 0.

Bit-Wise Model by Sun et al. Several nibble-oriented ciphers cannot be
evaluated with the approach by Mouha et al. An example is PRESENT, in
which 4 bits output from a 4-bit S-box will be input to different S-box in the
next round. Thus, it is necessary to look inside the S-box. Sun et al. proposed
MILP-based search in a bit-wise model to simulate such a case [15], in which each
binary variable xi represents active/inactive of each bit. This approach is more
advantageous for versatility, while it loses efficiency (the number of evaluated
rounds is less).
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A notable technique in [15] is to rule out impossible differential patterns
from a feasible region of MILP. Recall the XOR case explained above, x3 =
x2 ⊕ x1. We need to rule out (x1, x2, x3) = (1, 0, 0), (0, 1, 0), (0, 0, 1) and Sun
et al. showed each impossible pattern can be ruled out with 1 inequality. For
example, (x1, x2, x3) = (1, 0, 0) is ruled out with −x1 + x2 + x3 ≥ 0. Indeed,
any other value of (x1, x2, x3) satisfy this inequality, and thus only (x1, x2, x3) =
(1, 0, 0) is ruled out. (0, 1, 0) and (0, 0, 1) can be ruled out similarly.

4.2 Nibble-Wise Search

We first explain a basic method which assumes that the difference of each active
nibble is reset to a random difference in every round. This assumption is clearly
incorrect for the real specification because the linear layer L diffuses difference
only linearly (difference in round j uniquely determines difference in round j +1
in L). Hence, the derived lower bounds are loose. We then show that equivalently
transforming the cipher’s description helps us to improve the model that can
derive tighter lower bounds.

Constructing Basic Model. We assign a binary variable to each nibble in
every round. Thus we use 16r variables for r rounds; x0, . . . , x15 for round 1,
x16, . . . , x31 for round 2, and so on.

As for the objective function, our goal is minimizing the number of active
S-boxes, thus we minimize the sum of xi in the right half of the state, i.e. “min-
imize

∑
r

∑7
j=0 x16r+j .”

Constraint inequalities can be derived round-by-round. For simplicity, we
explain constraints between x0, . . . , x15 and x16, . . . , x31, which are depicted in
Fig. 5. The other rounds can be modeled just by replacing indices. S-box and key
addition do not impact to truncated differential, thus we omit them in Fig. 5.
First, we list variables before the permutation layer, which are π−1(x16, . . . , x31).
Here the right most one, x29, can be represented by xπ(0)+16. Similarly, the other
15 variables can be represented by xπ(1)+16, xπ(2)+16, . . . , xπ(15)+16. This repre-
sentation is useful to systematically construct MILP models. We then derive con-
straint inequalities between x0, x1, . . . x15 and xπ(0)+16, xπ(1)+16, . . . , xπ(15)+16

dividing them into four types.

Type 1: Right half of the state is not updated. Constraints are xπ(i)+16 = xi

for i = 0, 1, . . . , 7.
Type 2: xπ(8)+16, x8 and x7 must be a valid xor, i.e. (xπ(8)+16, x8, x7) =

(1, 0, 0), (0, 1, 0), (0, 0, 1) are impossible. We rule out those three patterns with
the following three inequalities;

−xπ(8)+16 + x8 + x7 ≥ 0,

xπ(8)+16 − x8 + x7 ≥ 0,

xπ(8)+16 + x8 − x7 ≥ 0.
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Fig. 5. Nibble based MILP model for Lilliput. Fig. 6. Equivalent descriptions.

Type 3: For j = 9, 10, . . . , 14, xπ(j)+16, x8+j , x7−j , x7 must be a valid xor. We
rule out (xπ(j)+16, x8+j , x7−j , x7)=(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1).
Similarly to Type 2, this can be done with four inequalities for each j.

Type 4: xπ(15)+16 and other 9 input variables must be a valid xor. Similarly
to Type 2 and Type 3, differential propagation is impossible if and only if
exactly one variable is active. There are ten impossible patterns, and these
are ruled out with ten inequalities.

In total, we use 8 + 3 + (6 ∗ 4) + 10 = 45 inequalities per round, thus 45r for
r rounds. In addition we use 1 inequalities

∑15
j=0 xi > 0 to ensure at least one

nibble is active in plaintext.

Results of Basic Model. Execution time is reasonably short. The system for
16 rounds was solved in a few minutes by a standard PC. The results are shown
in Table 1. At first glance, the derived bounds are worse than the designers’
evaluation. However this is not right. The designers claimed that the best 16-
round characteristic activates 31 S-boxes [7, Sect. 7].

we provide here the best truncated differential and linear masks we found
for 16 rounds of LILLIPUT with 31 active S-boxes · The best truncated dif-
ferential path is given by an input of the form (α0, 0, α0, α0, α0, α0, α0, α1,
α0, 0, 0, 0, 0, 0, 0, 0, ) that gives after 16 rounds an output of the form
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β, 0) · · ·

We tested their input and output differential masks. We obtained that the (loose)
lower bound for those masks is 34 for 16 rounds, thus their claim is wrong.1

1 We communicated to the designers and asked to provide more details, in particular
differential masks for every round. The designers have not provide us the details.



274 Y. Sasaki and Y. Todo

Fig. 7. Equivalently Transformed Round Function Analyzed in Advanced MILP Model.

Constructing Advanced Model. The drawback in the basic model is that
the truncated differential is assumed to be reset in every round, while it is not in
the actual specification. Indeed, we manually verified several optimal solutions
returned by a solver, but they always include contradiction. Namely, the bound is
not tight (though 30 rounds seem sufficient to resist differential cryptanalysis).
Let us analyze more details. We divide the linear layer L into two layers L1

and L2, in which L1 is the diffusion from X1,X2, . . . , X7 to X15 and L2 is the
diffusion from X7 to X9,X10, . . . , X15 defined below (illustrated in Fig. 7).

L1 : X15 ← X15 ⊕ X7 ⊕ X6 ⊕ X5 ⊕ X4 ⊕ X3 ⊕ X2 ⊕ X1,

L2 : X15−i ← X15−i ⊕ X7 for i = 1, 2, . . . , 6.

Our observation is that the impact of linear diffusion with L1 and L2 never
interact within one round. X15 is (easily) activated through L1, and this moves
to x7 after P, and in the next round, x7 diffuses with L2. In the basic MILP
model, the above combination effect via L1 and L2 over two rounds cannot be
captured due to the difference reset in every round.

Our improving idea is moving the position of the linear layer L2 so that the
cancellation through L1 and L2 can be simulated within one round. In details,
we move L2 for round i (diffusion from X7 in round i) to round i − 1 (diffusion
from π−1(X7) = X15 in round i − 1). The converted computation structure is
shown in the right-half of Fig. 6. Note that the original L2 in the first round can
be regarded as a preprocessing and L2 in the last round is removed.

Results of Advanced Model. Execution time of the advanced model is almost
the same as the basic one. The results are shown in Table 1. Compared to the
basic model, the lower bounds are improved when the number of rounds is 12,
14, 15 and 16. Compared to the designers’ original expectation, the lower bounds
are improved, meaning that Lilliput is more secure than it was expected. In
particular, proving 32 active S-boxes for 16 rounds is important owing to the
64-bit block size and the maximum differential probability of the S-box, 2−2.

Even with the advanced model, contradiction via L over 3 rounds cannot be
simulated, thus the bounds are not tight. This motivates us to generate tight
bounds in the next section.
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4.3 Bit-Wise Search

The bit-wise model traces active/inactive of each bit. The main advantage is that
the cancellation by the xor operation, which is the main cause of the contradic-
tion in the nibble-wise model, can be simulated precisely and solving the system
becomes equivalent to finding the best characteristic. Meanwhile, S-box is not
bit-wise thus cannot be ignored as the nibble-wise model, which requires a large
number of constraint inequalities to describe valid differential propagations.

Variables in One Round. We assign a binary variable xi bit by bit. To
reduce a total number of variables, we introduce new variables only for updated
32 bits (right half of the state) in every round. Besides, active/inactive of each
bit changes through S-box, thus we introduce a binary variable yi to describe
active/inactive of each bit of S-box output.

Permutation π needs to be adjusted to be bitwise, πbw. The conversion is
straightforward, thus we omit it.

Number of Active S-Boxes in Bitwise Model. We need to convert active-
bit information into active-nibble one to count the number of active S-boxes.
Here, we introduce a dummy binary variable, n. Suppose that n4i is a nibble
whose corresponding 4 input bits are xi, xi+1, xi+2, xi+3. We set constrains so
that n4i becomes 1 when at least one of xi, . . . , xi+3 are active and n4i = 0 if all
of xi, . . . , xi+3 are inactive. This can be done by borrowing the idea of simulating
XOR by Mouha et al. [13], and we set the following five inequalities;

xi + xi+1 + xi+2 + xi+3 − n4i ≥ 0,

n4i − xi ≥ 0,

n4i − xi+1 ≥ 0,

n4i − xi+2 ≥ 0,

n4i − xi+3 ≥ 0.

If all of xi, xi+1, xi+2, xi+3 are inactive (= 0), n4i becomes 0. If at least one
of xi, xi+1, xi+2, xi+3 is active (= 1), n4i becomes 1. Thus, n4i represents
active/inactive of the S-box.

Each round computes 8 S-boxes. The objective function for r rounds is
“minimize

∑8r−1
i=0 ni.”

Constraints for S-Box. We first generate differential distribution table
(DDT). DDT consists of 150 zero entries (impossible propagations). With the
approach by Sun et al. [15], we can rule out each impossible propagation with
one inequality.

For example, xi+3‖xi+2‖xi+1‖xi = 0010 and yi+3‖yi+2‖yi+1‖yi = 0011 is an
impossible propagation and this can be ruled out by

xi+3 + xi+2 − xi+1 + xi + yi+3 + yi+2 − yi+1 − yi ≥ −2.
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All the impossible differential propagations can be ruled out with at most 150
inequalities. Sun et al. showed that several impossible propagations may be ruled
out with 1 inequality.

For example, xi+3‖xi+2‖xi+1‖xi‖yi+3‖yi+2‖yi+1‖yi = *00**101 is impossi-
ble for any choice of * ∈ {0, 1}. Those 8 patterns are ruled out by

xi+2 + xi+1 − yi+2 + yi+1 − yi ≥ −1.

We exhaustively searched for such compact representations. The number of
total constraint inequalities should be minimized. We followed the approach by
Sun et al. [16] using the greedy algorithm to choose constraint inequalities. In
the end, we rule out all 150 impossible differential patterns with 46 inequalities.

Constraints Other Than S-Box. Update on 28 bits, from bit positions 32 to
59, is rather simple. If the computation is the 2-input xor, e.g. a⊕b = c, the num-
ber of impossible propagations is 4; (a, b, c) = (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1),
which can be ruled out with 4 inequalities. Note that differently from nibble-wise
search, (a, b, c) = (1, 1, 1) is impossible in the bitwise computation. Similarly, for
3-input xor, e.g. a ⊕ b ⊕ c = d, there are 8 impossible patterns, and we can rule
them out with 8 inequalities.

The last 4 bits are updated with 9-input xor, thus the number of impossible
propagations is 29 = 512 per bit. Using 512 inequalities is too expensive. Here,
we focus on the property that the sum of involved variables must be even. We
introduce an integer dummy variable e, where e ∈ {0, 1, 2, 3, 4}. Let 9 input
bits be y0, x4, x8, . . . , x28 and 1 output bit be xπbw(60). We set the following
constraint;

y0 + x4 + x8 + x12 + x16 + x20 + x24 + x28 − xπbw(60) = 2e.

Result of Bitwise Model. Owing to the expensive computational cost, the
machine performance is an important factor for this research. We executed
Gurobi Optimizer with Xeon Processor E5-2699 (18 cores) in 128 GB RAM.
The results are shown in Table 1. It provides the best bound from 8 rounds
and we confirmed the tightness. Namely the optimal solutions can be used for
attacks. The running time for 8, 9, 10, and 11 rounds is 2746 s, 5512 s, 53099 s
(≈14 h), and about 1 week, respectively. Because of the complicated algorithm
of the MILP solver, it is difficult to predict the running time for more rounds.

5 Attacks Based on Division Property

5.1 Background of Division Property

The division property proposed in [9] is a new method to find integral dis-
tinguishers. This section briefly shows the definition and propagation rules to
understand this paper. Please refer to [9] for details.
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The division property of a multiset is evaluated by using the bit product
function defined as follows. Let πu : (Fn

2 )m → F2 be a bit product function for
any u ∈ (Fn

2 )m. Let x ∈ (Fn
2 )m be the input, and πu(x) is defined as

πu(x) :=
m∏

i=1

⎛

⎝
n∏

j=1

xi[j]ui[j]

⎞

⎠ .

Notice that xi[j]1 = xi[j] and xi[j]0 = 1.

Definition 1 (Division Property [9]). Let X be a multiset whose elements
take a value of (Fn

2 )m. When the multiset X has the division property Dnm

K
, where

K denotes a set of m-dimensional vectors whose elements take a value between
0 and n, it fulfills the following conditions:

⊕

x∈X

πu(x) =

{
unknown if there are k ∈ K s.t. W (u) � k,

0 otherwise,

where W (u) = (w(um), . . . , w(u1)) ∈ Z
m and w(uj) =

∑n
i=1 uj [i]. Moreover,

k � k′ denotes ki ≥ k′
i for all i ∈ {1, 2, . . . ,m}.

If there are k ∈ K and k′ ∈ K satisfying k � k′ in the division property Dnm

K
,k

can be removed from K because the vector k is redundant. Let X be the set
of texts encrypted by r rounds, and ei ∈ Z

m denotes an unit vector whose ith
element is one and the others are zero. Assuming that X fulfills the division
property Dnm

K
and ei does not belong to K, the cipher has the r-round integral

distinguisher, where the ith element is balanced.
We summarize propagation rules that we use in this paper as follows.

Rule 1 (Substitution). Let F be a function that consists of m S-boxes, where
the bit length and the algebraic degree of S-boxes is n bits and d, respec-
tively. The input and the output take a value of (Fn

2 )m and X and Y denote
the input multiset and the output multiset, respectively. Assuming that the
multiset X has the division property Dnm

K
, the multiset Y has the division

property Dnm

K′ , where K
′ is calculated as follows: First, K′ is initialized to φ.

Then, for all k ∈ K,

K
′ = K

′ ∪
[ ⌈

k1
d

⌉

,

⌈
k2
d

⌉

, . . . ,

⌈
km

d

⌉ ]

,

is calculated. Here, when the ith S-box is bijective and ki = n, the ith element
of the propagated property becomes n not n/d�.

Rule 2 (Copy). Let F be a copy function, where the input x takes a value of Fn
2

and the output is calculated as (y1, y2) = (x, x). Let X and Y be the input mul-
tiset and output multiset, respectively. Assuming that the multiset X has the
division property Dn

k , the multiset Y has the division property Dn,n
K′ , where K′

is calculated as follows: First, K′ is initialized to φ. Then, for all i (0 ≤ i ≤ k),

K
′ = K

′ ∪ [k − i, i],

is calculated.
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Rule 3 (Compression by XOR). Let F be a function compressed by an
XOR, where the input (x1, x2) takes a value of (Fn

2 × F
n
2 ) and the output

is calculated as y = x1 ⊕ x2. Let X and Y be the input multiset and output
multiset, respectively. Assuming that the multiset X has the division property
Dn,n

K
, the division property of the multiset Y is Dn

k′ as

k′ = min
[k1,k2]∈K

{k1 + k2}.

Here, if the minimum value of k′ is larger than n, the propagation character-
istic of the division property is aborted. Namely, a value of ⊕y∈Yπv(y) is 0
for all v ∈ F

n
2 .

These propagation rules are proven in [9,17].

5.2 Integral Distinguisher on LILLIPUT

The state of Lilliput is represented as sixteen 4-bit values, and the use of the
division property D416

K
is appropriate. Let |K| be the number of elements in K,

and the upper bound of |K| is 516 ≈ 237.15. Since we can reduce |K| by remov-
ing redundant vectors in general, we can practically evaluate the propagation
characteristic of D416

K
.

Propagation Characteristic. The round function of EGFN consists of three
layers: the non-linear layer, the linear layer, and the permutation layer. In the
non-linear layer of EGFN, the core operation is

xi = xi ⊕ F (xj)

for appropriate i and j. We only focus on the case that F is permutation because
the most important instantiation Lilliput uses a bijective S-box. Let D4

k and
D4

k′ be the input and output division property for the S-box, respectively. As
the algebraic degree of F is at most three, it holds

k′ = DS(k) =

⎧
⎪⎨

⎪⎩

4 if k = 4,

1 if k = 1, 2, 3,

0 if k = 0.

Assuming D42

(ki,kj)
be the input division property of the Feistel structure, the

output division property D42

K
is

K = {(ki + DS(x), kj − x) | 0 ≤ x ≤ kj ,DS(x) ≤ 4 − ki}.

The propagation characteristic for the non-linear layer is shown in nonLinear
of Algorithm 1.
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Algorithm 1. Propagation from D416

K
for the round function of Lilliput

1: procedure nonLinear(K, i, j)
2: K

′ ⇐ φ
3: for all k ∈ K do
4: k′ ⇐ k
5: for x = 0 to kj do
6: k′

i ⇐ ki + DS(x)
7: k′

j ⇐ kj − x
8: if k′

i ≤ 4 then
9: K

′ ⇐ K
′ ∪ {k′}

10: end if
11: end for
12: end for
13: remove redundant vectors from K

′

14: return K
′

15: end procedure

1: procedure linear(K, i, j)
2: K

′ ⇐ φ
3: for all k ∈ K do
4: k′ ⇐ k
5: for x = 0 to kj do
6: k′

j ⇐ kj − x
7: k′

i ⇐ ki + x
8: if k′

i ≤ 4 then
9: K

′ ⇐ K
′ ∪ {k′}

10: end if
11: end for
12: end for
13: remove redundant vectors from K

′

14: return K
′

15: end procedure

The linear layer of EGFN consists of the iteration of XORs as

xi = xi ⊕ xj

for appropriate i and j. Therefore, assuming D42

(ki,kj)
be the input division prop-

erty of the Feistel structure, the output division property D42

K
is

K = {(ki + x, kj − x) | 0 ≤ x ≤ min{kj , 4 − ki}}.
The propagation characteristic for the linear layer is shown in linear of
Algorithm 1.

About the permutation layer, the propagation characteristic is the only
modification of the corresponding index. The entire algorithm to evaluate the
propagation characteristic of the round function is shown in roundFunction of
Algorithm 2.

New Integral Distinguisher. As the number of exploiting chosen plaintexts
increases, the integral distinguisher can analyze more rounds in general. There-
fore, we evaluate all integral distinguishers with 263 chosen plaintexts where only
one bit in the right half is constant. Note that these distinguishers are always
better than distinguishers whose only one bit in the left half is constant. We
choose one 4-bit value from X0 to X7, and we prepare chosen plaintexts such
that any one bit in the chosen value is constant and the others are active.

We implemented Algorithm 2 and searched non-trivial integral distinguishers.
Let D416

k be the plaintext division property. When we choose one-bit constant
from Xp, we use k as

ki =

{
4 if i �= p

3 if i = p
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Algorithm 2. Propagation from D416

K
for the round function of Lilliput

1: procedure roundFunction(K)
2: for all (i, j) ∈ {(8, 7), (9, 6), (10, 5), (11, 4), (12, 3), (13, 2), (14, 1), (15, 0)} do
3: K = nonLinear(K, i, j)
4: end for
5: for all (i, j) ∈ {(15, 1), (15, 2), (15, 3), (15, 4), (15, 5), (15, 6), (15, 7)} do
6: K = linear(K, i, j)
7: end for
8: for all (i, j) ∈ {(14, 7), (13, 7), (12, 7), (11, 7), (10, 7), (9, 7)} do
9: K = linear(K, i, j)

10: end for
11: K

′ ⇐ φ
12: for all k ∈ K do
13: for i = 0 to 16 do
14: k′

π(i) ⇐ ki

15: end for
16: K

′ ⇐ K
′ ∪ {k′}

17: end for
18: return K

′

19: end procedure

Table 5. Propagation from D416

{[4,4,...,4,3]}

#rounds 0 1 2 3 4 5 6 �

|K| 1 1 3 14 377 33948 5513237

maxw(K) 63 63 63 63 63 55 ≤57

minw(K) 63 63 61 59 55 19 35

#rounds 7 � 8 � 9 � 10 11 12 13

|K| 266813452 70804820 1385951 16960 572 52 16

maxw(K) ≤51 ≤43 ≤25 13 6 4 2

minw(K) 22 9 6 3 2 1 1

In rounds labeled �, the set K includes redundant vectors.

for i ∈ {0, 1, . . . , 16}. We coded our algorithm with C++, and we executed it in
Xeon Processor E5-2699 (18 cores) in 128 GB RAM. As a result, our algorithm
found 13-round integral distinguishers for p = 0 and p = 6. For other p, our
algorithm found 12-round integral distinguishers.

When p = 0 i.e., k = [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3], we find a 13-round
integral distinguisher, and the position X13

9 is balanced. Table 5 shows the prop-
agation characteristic, where minw(K) and maxw(K) are calculated as

minw(K) = min
k∈K

{
16∑

i=1

ki

}

, maxw(K) = max
k∈K

{
16∑

i=1

ki

}

.

Round 0 denotes the division property of the plaintext set, and we perfectly
remove redundant vectors except for 6, 7, 8, and 9 rounds.
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5.3 Key Recovery

Let Xj
i be the j-round nibble value in Xi, where the plaintext is represented as

(X0
15, . . . , X

0
0 ). Moreover, let Y j

i be the output of the S-box as Y j
i = S(Xj

i ⊕
RKj

i ). We prepare 263 chosen plaintexts such that any one bit of X0
0 is constant

and the other 63 bits are active. Then, it holds
⊕

X13
9 = 0, and we can attack

17-round Lilliput by using the 13-round integral distinguisher. In our attack,
let c = (c15, . . . , c0) be the ciphertext, where the linear layer of the last round is
removed. Note that the last round of Lilliput has the linear layer but this c is
equivalent with the ciphertext of 17-round Lilliput because the linear layer is
public.

Since Lilliput has many XORs in the round function, the procedure of the
key recovery is very complicating. For simplicity, we use the following strategy.
We first decompose four rounds of Lilliput into five subfunctions denoted by
f13, f14, f15, f16, and L. Here the output of fi is the XOR of Y i involved in X13

9 ,
and the output of L is the linear part to compute X13

9 from ciphertext. Then

X13
9 = f13(c,K13) ⊕ f14(c,K14) ⊕ f15(c,K15) ⊕ f16(c,K16) ⊕ L(c),

where Ki is the set of round keys involved in fi. The bit sizes of K13,K14,K15,
and K16 are 44, 16, 48, and 28 bits, respectively. Then,

f13(c,K13) = Y 13
6 ,

f14(c,K14) = Y 14
0 ,

f15(c,K15) = Y 15
0 ⊕ Y 15

1 ⊕ Y 15
3 ⊕ Y 15

5 ⊕ Y 15
6 ⊕ Y 15

7 ,

f16(c,K16) = Y 15
0 ⊕ Y 15

1 ⊕ Y 15
3 ⊕ Y 15

4 ⊕ Y 15
5 ⊕ Y 15

6 ⊕ Y 15
7 .

We compute the sum of fi(c,Ki) by guessing Ki independently of i. Then, we
compute keys satisfying

⊕

X0

f13(c,K13) ⊕ f14(c,K14) ⊕ f16(c,K16) =
⊕

X0

f15(c,K15) ⊕ L(c) (1)

Note that we do not need to guess round keys to compute the sum of L(c). Note
that K13 ∪ K14 ∪ K15 ∪ K16 is 72 bits, and the probability that Eq. (1) holds
randomly is 2−4. Therefore, we reduce the space of key candidates from 272 to
268. Finally, we recover the correct key by additionally guessing the remaining
8 bits. It is enough to determine the correct key by using two known plaintexts.
Thus, the total time complexity is 276 × 2 = 277.

Note that the time complexity that we evaluate whether Eq. (1) holds or not
is less than 261 and it is negligible because of [18,19]. Due to the limited space,
we omit the detailed procedure.

6 Concluding Remarks

In this paper, we showed security evaluation of Lilliput. The linear layer L,
which is the main feature introduced by EGFN, gives several security concerns to
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be carefully discussed. By using MILP, we proved that the lower bounds of num-
ber of active S-boxes provided by the designers were incorrect. Then, we derived
new bounds in two approaches; nibble-wise and bitwise models. Interestingly, it
turned out that security of Lilliput is better than the original expectation. Fur-
ther improving the lower bounds and deriving tight bounds for more rounds will
be interesting future research directions. Meanwhile, we showed that the secu-
rity enhance by the linear layer L, which applies many xors without increasing
S-box, is not so strong against division property, and improved the previous best
key recovery attacks by three rounds. EGFN is a relatively new design approach.
We believe that this paper leads to better understanding of EGFN.
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1. Biryukov, A., Johann Großschädl, Y.L.C.: CryptoLUX, Lightweight Cryptography
(2015). https://www.cryptolux.org/index.php/Lightweight Cryptography

2. Suzaki, T., Minematsu, K.: Improving the generalized Feistel. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13858-4 2

3. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE : a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC
2012. LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35999-6 22

4. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-21554-4 19

5. Berger, T.P., Minier, M., Thomas, G.: Extended generalized Feistel networks
using matrix representation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
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Abstract. Simpira v1 is a recently proposed family of permutations,
based on the AES round function. The design includes recommenda-
tions for using the Simpira permutations in block ciphers, hash func-
tions, or authenticated ciphers. The designers’ security analysis is based
on computer-aided bounds for the minimum number of active S-boxes.
We show that the underlying assumptions of independence, and thus
the derived bounds, are incorrect. For family member Simpira-4, we pro-
vide differential trails with only 40 (instead of 75) active S-boxes for the
recommended 15 rounds. Based on these trails, we propose full-round
collision attacks on the proposed Simpira-4 Davies-Meyer hash construc-
tion, with complexity 282.62 for the recommended full 15 rounds and a
truncated 256-bit hash value, and complexity 2110.16 for 16 rounds and
the full 512-bit hash value. These attacks violate the designers’ secu-
rity claims that there are no structural distinguishers with complexity
below 2128.

Keywords: Simpira · Permutation-based cryptography · Cryptanaly-
sis · Hash functions · Collisions

1 Introduction

The Advanced Encryption Standard AES and its underlying wide-trail design
strategy are among the most popular building blocks for new symmetric designs.
There are several good reasons for this. New AES-like designs profit both from
the insights in efficient implementations and from the extensive cryptanalysis
and well-understood security bounds of AES. In particular, if new designs not
only reuse the general design ideas, but the AES block cipher itself or its round
function, then Intel’s AES-NI instruction set can provide high software perfor-
mance on modern CPUs. However, while block ciphers are a versatile building
block for other cryptographic primitives, the fixed block size of AES of 128
bits implies a certain limitation. Modern designs often require larger states
for efficiency or security. Examples include permutation-based cryptography
(hash functions, authenticated encryption, etc.), wide-block encryption, secu-
rity beyond 264 inputs without resorting to beyond-birthday-security schemes,
and more.

These considerations have motivated the design of numerous cryptographic
algorithms based on the AES round function. Notable recent examples of dedi-
cated designs include several authenticated encryption algorithms with excellent
c© Springer International Publishing AG 2017
R. Avanzi and H. Heys (Eds.): SAC 2016, LNCS 10532, pp. 284–298, 2017.
https://doi.org/10.1007/978-3-319-69453-5_16
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software performance, such as the CAESAR round-2 candidates AEGIS [15] and
Tiaoxin [12], but also more specialized primitives like the Haraka hash function
for short inputs [9]. Very recently, Jean and Nikolić [5] analyzed a more gen-
eral family of AES-round-based building blocks that generalizes several of the
previous dedicated designs. However, except for the last work, these dedicated
designs target only specific state sizes, and do not offer scalable, easily reusable
building blocks for other cryptographic applications.

Simpira is a recently proposed family of permutations designed by Gueron
and Mouha [2] that aims to fill this gap. The design goal is to provide very
efficient permutations for arbitrarily large input sizes of b · 128 bits, b ∈ N

+,
while taking advantage of the Intel AES-NI instruction set for optimized soft-
ware implementations. To achieve these goals, Simpira plugs the AES round
function into a generalized Feistel construction. Additionally, the designers pro-
vide computer-aided bounds for the minimum number of active S-boxes, and
argue that these bounds provide security against a wide range of attack vectors.
To showcase the versatility of the Simpira permutations, the designers propose a
number of application scenarios, including Even-Mansour block cipher construc-
tions, or a keyless Davies-Meyer variant for hash functions with limited-length
inputs.

Our Contribution. We analyze members of the original Simpira v1 family [2].
We show that the underlying assumptions of independence, and thus the derived
bounds on the minimum number of active S-boxes, are incorrect. We focus our
analysis on family member Simpira-4 with its 512-bit state, but similar observa-
tions also apply to other family members with larger state sizes. For Simpira-4,
we provide differential trails with only 40 (instead of 75) active S-boxes for the
recommended 15 rounds. Based on these trails, we propose collision attacks on
the proposed Simpira-4 Davies-Meyer hash construction. For 16 rounds of the
permutation, we obtain collisions for the full 512-bit hash output with complex-
ity 2110.16. We also adapt the attack to the originally recommended 15 rounds,
providing second-order collisions and truncated collisions. We consider several
truncation variants, and obtain, among others, collisions on truncated 384-bit
output with complexity 2110.16, or collisions on the 256-bit output with com-
plexity 282.62 – the details depend on the implemented truncation variant. These
attacks violate the designers’ security claims that there are no structural distin-
guishers below 2128.

Related Work. Rønjom [14] independently analyzed Simpira v1, and identified
invariant subspaces for any even number of rounds of Simpira-4. Both attacks
on Simpira v1 exploit properties of the underlying Type-1.x Generalized Feistel
Structure by Yanagihara and Iwata [16] and the sparse, structured round con-
stants. In response to Rønjom’s and our attacks, Gueron and Mouha proposed a
new version of the design, Simpira v2 [3], published at ASIACRYPT 2016. Sim-
pira v2 replaces both the Feistel construction and the round constant schedule.
In the remaining document, Simpira always refers to Simpira v1.
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Simpira is not the first AES-round-based design with problematic round con-
stants. Other examples include the analysis of the hash function Haraka [9] by
Jean [4], the analysis of the withdrawn CAESAR round-1 candidate PAES [17]
by Jean et al. [6,7], or the analysis of SHAvite-3 [1] by Peyrin [13]. In all three
cases, the structure of the round constants failed to break the symmetry proper-
ties of the unkeyed AES round function. However, our attack exploits different
properties, in particular the incomplete diffusion of differences in the structured
round constants.

Outline. We first describe the Simpira family of permutations in Sect. 2. We
then propose our attacks in Sect. 3, beginning with an iterative truncated differ-
ential trail with fewer S-boxes than expected in Sect. 3.1. In Sect. 3.2, we select
the bitwise differences of our truncated trail to obtain an 8-round differential
trail with probability 2−110.16. Based on this trail, we propose a collision attack
on the 16-round Simpira-4 hash construction in Sect. 3.3. Finally, in Sect. 3.4,
we adapt our attack to the recommended 15-round design.

2 Description of Simpira

Simpira is a family of permutations designed by Gueron and Mouha [2]. By using
the AES round function in a generalized Feistel construction, it can be adapted
to any input size of b · 128 bits, b ∈ N

+. We refer to Simpira family members as
Simpira-b.

2.1 F -Function

The Feistel update function F = Fc,b applies two rounds of AES, where the
Simpira family member b and the round counter c define the round constants.
Like for AES, the 128-bit intermediate state of F is represented as a 4×4-matrix
of bytes, labelled s0, . . . , s15:

S =

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

.

We also refer to the value at byte position si in state S as S[i].
The operations SubBytes, ShiftRows, and MixColumns are defined identically

to AES, whereas AddConstant adds counters that define an invocation counter
and the value b:

– SubBytes (SB): Applies the 8-bit AES S-box S to each of the 16 state bytes.
– ShiftRows (SR): Rotates row i of the state, 0 ≤ i ≤ 3, by i bytes to the left.
– MixColumns (MC): Multiplies each byte column of the state by the MDS-

matrix M over K = F2[α]/(α8 + α4 + α3 + α + 1),
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M =

⎛
⎜⎜⎝

α α + 1 1 1
1 α α + 1 1
1 1 α α + 1

α + 1 1 1 α

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎠

– AddConstant (AC): In the cth invocation of F for Simpira-b, xors the following
round constant Cc,b to the state:

Cc,b =

c0 b0 0 0
c1 b1 0 0
c2 b2 0 0
c3 b3 0 0

.

In the remaining paper, we focus on Simpira-4, so b0 = 04 and b1 = b2 = b3 =
00. Also, since the number of invocations of F is limited to 30 in Simpira-4,
c1 = c2 = c3 = 00. This constant is only added in the first of the two AES
rounds of F , while the second round adds 0.

To refer to intermediate states of F for an input S, we use the following notation:

S
SB�−→ SSB1 SR�−→ SSR1 MC�−−→ SMC1 AC�−−→ SAC SB�−→ SSB2 SR�−→ SSR2 MC�−−→ SMC2 = F (S) .

2.2 Round Function and Permutation

The permutation Simpira-b keeps a state of b · 128 bits. The generalized Feistel
round function for b ≥ 4, where b �= 6, 8, is illustrated in Fig. 1. The final output
of Simpira-b for b ≥ 4, b �= 6, 8, is the state after 6b − 9 such rounds. Note that
if the number of rounds is not a multiple of b, the state words are output in a
permuted order to allow for more efficient implementations.

F2i−1,b F2i,b · · ·⊕ ⊕

Fig. 1. Round function for round i of Simpira-b for b ≥ 4, b �= 6, 8.

In case of Simpira-4, we denote the 4 state words before round i ≥ 1 by
SA
i , SB

i , SC
i , SD

i , so the state update rule corresponds to

SA
i+1 = F2i−1,4(SA

i ) ⊕ SB
i ,

SB
i+1 = F2i,4(SD

i ) ⊕ SC
i ,

SC
i+1 = SD

i ,

SD
i+1 = SA

i .

The recommended number of rounds for Simpira-4 is 15, with output words
(SB

16, S
C
16, S

D
16, S

A
16).
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2.3 Permutation-Based Hashing

Simpira’s designers identify several application areas for the Simpira permu-
tation, such as block ciphers via an Even-Mansour construction. One particu-
lar suggested application is permutation-based hashing for short inputs, where
“short” means the state size of any Simpira variant. The proposal is to use
a single-block, keyless Davies-Meyer-like construction with a feed-forward, and
compute the hash h(x) of x as

h(x) = Simpira-b(x) ⊕ x.

This approach provides an efficient construction for hashing inputs of limited
length, which is required by many applications, such as Lamport signatures [10].

3 Collision Attacks on Simpira-4 Hash

In this section, we show that the number of rounds recommended by the design-
ers is not sufficient to obtain a secure permutation. In particular, we provide
collisions for full-round Simpira-4 when used in the hash mode suggested by the
designers. While our analysis is focused primarily on Simpira-4, the basic obser-
vations also apply to the larger Simpira variants with the same construction
approach, that is, Simpira-b with b ≥ 4, b �= 6, 8.

3.1 Differential Trail with 40 Active S-Boxes over 15 Rounds

The analysis performed by Simpira’s designers [2] relies on two basic bounds:
full bit diffusion, and minimum number of active S-boxes. The recommended
number of rounds for each variant is selected as 3 times the number of rounds
necessary to prove full bit diffusion and a minimum number of 25 differentially
or linearly active S-boxes. While the proofs for full bit diffusion are based on
generic results on the underlying generalized Feistel construction by Yanagihara
and Iwata [16], the bounds for active S-boxes were obtained with a Mixed-Integer
Linear Programming (MILP) model [11]. For Simpira-4, both full bit diffusion
and at least 25 active S-boxes are claimed to be provided by 5 rounds of the
round function. For the full number of 15 rounds, this method would imply at
least 75 active S-boxes.

The bound is derived under the assumption that all F -function inputs are
processed independently. For example, if the F -functions were indeed indepen-
dent, the 4-round differential trail illustrated in Fig. 2 would contain 20 indepen-
dently active S-boxes. Since the trail is iterative, and adds 5 active S-boxes per
round, this trail also demonstrates the tightness of the 15-round bound.

Of course, in an unkeyed primitive like a permutation or a hash function,
the S-boxes are not really independent, since there are no random, independent
round keys. Nevertheless, it is usually a reasonable assumption that the differ-
ential probabilities behave as if the values were actually independently random.
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5 SB

5 SC
5 SD
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Fig. 2. Iterative 4-round trail for Simpira-4 with 10 independently active S-boxes.

We thus count S-boxes as independently active when it can reasonably be
expected that their multiplied differential probabilities give a good estimate for
the overall differential probability of the trail.

However, for all instances of Simpira-b with b ≥ 4, b �= 6, 8, this independence
is violated by the generalized Feistel construction, and the particular definition
of F . Consider, for example, the inputs to the active F -functions in rounds 1
and 2, SA

1 and SD
2 . The input values to the two F -functions are identical. Recall

the definition of F = Fc,b, in our case F1,4 and F3,4. The only difference between
F1,4 and F3,4 is the round-constant addition at the end of the first AES round.
This means that the inputs and outputs of the S-boxes of the first AES round
must be identical, i.e., SA,MC1

1 = SD,MC1
2 . The round constant only differs in

state byte s0, so this means the S-box transitions in the second AES round will
also be identical except in s0. In fact, the outputs SA,MC2

1 of F1,4 an SD,MC2
2 of

F3,4 will have identical values except for the first column.
Considering the 4-round trail of Fig. 2, this means that the entire output

difference of F3,4 will be identical to that of F1,4 with probability 1, as illustrated
in Fig. 3. Note that s0 is not active in the second AES round, and the differential
behaviour of MixColumns is independent of the actual values of s0. Consequently,
if we fix all full-state differences to the same bitwise difference pattern, all single-
byte differences to the same difference pattern, and all columnwise differences
to the same difference pattern, the actual cost of the iterative trail of Fig. 2
is equivalent to only 5 active S-boxes per 2 rounds, or 40 S-boxes overall for
the recommended 15 rounds, which is about half as many as suggested by the
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MILP-based bound. In fact, the MILP model can be adapted to take this into
account by counting only the activity of the left-hand F -functions, and only
S-box s0 for the right-hand F -functions, except in the first round. With this
modification, it is easy to prove that 40 active S-boxes is a tight bound for 25
rounds. The minimum number of rounds to achieve at least 25 active S-boxes is
then 9, instead of 5.

SB SR MC AC

c

SB

c

SR

c

MC

c
c
c
c

Fig. 3. Trail for the F -function with 5 active S-boxes.

3.2 Collision Attack on 8 Rounds

We now want to use this iterative differential trail of Fig. 2 to find collisions for
the permutation-based hash construction suggested for Simpira permutations.
Recall that in this short-input Davies-Meyer construction, the b ·128-bit message
is used as input to the Simpira permutation, and finally added as a feed-forward
to the permutation output to produce the untruncated b·128-bit hash value. Our
trail is incidentally very well suited to produce collisions for this feed-forward
construction. Observe that if we fix all state differences to the same patterns
as discussed in Sect. 3.1, the feed-forward will cancel out the message difference
with probability 1 for any number of rounds that is a multiple of b = 4.

To optimize the complexity of the collision attack, we need to fix the bitwise
difference patterns suitably. Recall that the AES S-box has maximum differential
probability 4

256 = 2−6. For each nonzero input difference, there is exactly one
output difference with this probability (and vice versa), while the other prob-
abilities are either 2

256 = 2−7 or 0. We can easily choose difference patterns so
that all S-box transitions have this optimal probability, at least for uniformly
random round constants. For example, if we fix the one-byte input difference to
75, the trail illustrated in Fig. 4 satisfies our requirements. The probability of
the differential for the F -function is then at least 2−30. Overall, the probability
of such an 8-round trail is at least 2−30·4 = 2−120, and the resulting complexity
for finding the 512-bit collision is at most 2120.

Fig. 4. Trail for the F -function with probability 2−30

Note that we are actually not interested in the probability of the trail within
the F -function, but just in the input-output differential from the fixed 1-byte
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difference to the fixed 16-byte difference. The probability of this differential is
typically higher than that of the trail, since several different trails can contribute
to the same differential. In the case of 2-round AES, Keliher and Sui [8] proved
that for a random round constant, the probability of the differential in Fig. 4 is
actually 2−30 + 74 · 2−35 ≈ 2−28.272.

If we consider additionally that the round constant is not random, but in our
case fixed to (00, 00, 00, 00)� for the relevant state bytes, the transition probabil-
ities can increase even further. For example, the differential in Fig. 5 is satisfied
with probability 22 ·2−32 ≈ 2−27.54. With this differential, the probability of the
8-round trail is increased to 24×27.54 = 2−110.16.

Fig. 5. Differential for F -function with probability 2−27.54

3.3 Collision Attack on 16 Rounds

Since the permutation involves no round keys, we can try to satisfy the condi-
tions for some active F -functions with message modification. We will try to find
messages (or rather, initial structures for intermediate Simpira states) such that
the conditions for several rounds are satisfied “for free” with probability 1, and
append the previous 8-round trails of Sect. 3.2 to be satisfied probabilistically.
We first propose a simple initial structure covering 6 rounds, and then improve
it to satisfy all conditions over 8 rounds, thus extending the previous 8-round
trail to a 16-round trail with the same probability.

Initial Structure for 6 Rounds. It is sufficient to set the 4 bytes
x1, x6, x11, x12 of a state SA

i to a suitable assignment in order to follow the
trail for this F -function deterministically. We will refer to these 4 bytes as the
diagonal in the following, and to a valid assignment as a valid diagonal. We can
reuse one precomputed valid diagonal for all necessary diagonals.

We want to fix the values of the diagonals in SA
1 , SA

3 , and SA
5 to the valid

diagonal. Observe that SA
1 = SC

3 , and SA
3 = SC

5 . Thus, by fixing the diagonals
of SA

5 and SC
5 , we have already satisfied 2 F -trails. The remaining 12 + 16 + 12

bytes of SA
5 , SB

5 , SC
5 can be filled arbitrarily, which will immediately determine

the value of SD
3 and thus SD,MC2

3 . If we now set the diagonal of SC
3 to the valid

diagonal, and fill its remaining 12 bytes with arbitrary values, we completely
determine SD

5 via SB
4 and SA

4 , and thus complete the state after 4 rounds.
By varying the 52 arbitrary byte values, we can obtain the necessary 2110.16

candidates to satisfy the 8-round trail. The approach is illustrated in rounds 1–6
of Fig. 6, where and mark the 52 arbitrary bytes.
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Improved Initial Structure for 8 Rounds by Matching Diagonals. With
some additional effort, we can find initial structures that also satisfy the F -trail
in round 7. We will again initialize the values of SA

5 , SB
5 , SC

5 , SC
3 as in the previous

6-round initial structure. However, we can use the 12 + 12 arbitrary bytes of SA
5

and SC
5 to obtain a valid diagonal in SA

7 . This will provide us with a 16-round
collision attack with the same computational complexity as the 8-round trail in
Sect. 3.2.

Our goal is to obtain a match between the diagonals of SD,MC2
5 and SA,MC2

6 ,
as illustrated in Fig. 6. If these two diagonals sum to zero, the diagonal of SA

7

will take the exact same value as that of SC
5 , which is the valid diagonal. For this

purpose, we want to initialize part of the initial structure to generate random
values in SA,MC2

6 , and independently a different part of the initial structure, to
independently get random values in SD,MC2

5 . Then, any match between the two
corresponds to an initial structure that satisfies 4 F -trails.

Assume that SC
3 and SB

5 are already fixed to some arbitrary constants, with
the valid diagonal in SC

3 . We first use the free bytes of SA
5 to randomize SA,MC2

6 .
Any complete assignment of SA

5 will directly determine SA,MC2
6 via SA,MC2

5 and
SA
6 . We can assume the values are distributed reasonably close to uniformly

random, since the values are processed by 4 AES rounds, and only 4 input bytes
are fixed.

Independently, we can vary the 12 bytes of SC
5 to randomize the diagonal

of SD,MC2
5 . To see the independence of the values in SA

5 , consider the diagonal
of SA,MC2

4 . Its values will always be identical to that of SD,MC2
5 , except for the

first column, which is influenced by the round constant and will be considered
separately in a moment. Since the diagonals of SA

5 and SC
3 are fixed and prede-

termined, these values can further be traced back right to SD,MC2
3 . Thus, knowing

the diagonal of SD,MC2
3 is equivalent to knowing the target diagonal of SD,MC2

5 ,
except for 1 byte in s1. This equivalent diagonal is derived easily from SC

5 , again
by 4 AES rounds via SD

4 , SD,MC2
4 , SC

4 .

Evaluating the Missing Match Byte s1 of SD,MC2
5 . Now we still need to

account for the missing byte s1. Fortunately, with some minor modifications of
our guessing strategy, this value can also be computed directly from SD,MC2

3 .
Instead of varying all 12 arbitrary bytes of SA

5 to produce our matching candi-
dates, we will keep the first column (bytes s0, s2, s3) fixed. In fact, for simplicity,
we will set them to the exact same values as the first column of SC

3 :

SA
5 [0, . . . , 3] = SC

3 [0, . . . , 3].

This implies that the values of the first column and diagonal (bytes s0, . . . , s3, s6,
s11, s12) must be identical between SD,MC2

3 and SA,MC2
4 . By partially inverting

the last few steps of F , we can also easily verify that this means that

SD,AC
3 [0] = SA,AC

4 [0].



Cryptanalysis of Simpira v1 293

R
1 SB

SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
1 SB

1 SC
1 SD

1

R
3 SB

SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
3 SB

3 SC
3 SD

3

R
5 SB

SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
5 SB

5 SC
5 SD

5

R
7 SB

SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
7 SB

7 SC
7 SD

7

R
2 SB

SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
2 SB

2 SC
2 SD

2
R

4 SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
4 SB

4 SC
4 SD

4

R
6 SB

SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
6 SB

6 SC
6 SD

6

R
8 SB

SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
8 SB

8 SC
8 SD

8

�
�
�

�

�
�
�

�

SA
9 SB

9 SC
9 SD

9

· · · 8 rounds, probability 2−110.16 · · ·

SA
17 SB

17 SC
17 SD

17

Fig. 6. 16-round collision attacks on Simpira-4 hash using 8-round initial structure.
fixed difference, valid diagonal, arbitrary bytes, matching inputs, � match

To determine our target value s1 in SD,MC2
5 , consider a differential view of

the intermediate variables in the computations F (SA
4 ) and F (SD

5 ). The input
values are identical, but a difference in s0 is introduced by AddConstant. We are
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interested in how this difference ΔSAC propagates to the target byte in ΔSMC2.
Since we only introduced a single-byte difference before the final MixColumns,
we get

ΔSMC2[1] = 01 · ΔSSB2[0]

= S
(
SA,AC
4 [0]

)
⊕ S

(
SA,AC
4 [0] ⊕ ΔSAC[0]

)
.

By using the previously established identities between F (SA
4 ) and F (SD

3 ), and
observing ΔSAC[0] = 07 ⊕ 0A = 0D, we finally obtain all our target match bytes
in SD,MC2

5 directly from F (SD
3 ):

SD,MC2
5 [1] = SA,MC2

4 [1] ⊕ ΔSMC2[1]

= SA,MC2
4 [1] ⊕ S

(
SA,AC
4 [0]

)
⊕ S

(
SA,AC
4 [0] ⊕ 0D

)

= SD,MC2
3 [1] ⊕ S

(
SD,AC
3 [0]

)
⊕ S

(
SD,AC
3 [0] ⊕ 0D

)
,

SD,MC2
5 [6] = SD,MC2

3 [6],

SD,MC2
5 [11] = SD,MC2

3 [11],

SD,MC2
5 [12] = SD,MC2

3 [12].

Complexity of Generating Initial Structures. Summarizing, we can now
generate a large number of initial structures as follows. First, fix the diagonals
in SC

3 and SC
5 to any valid diagonal. Fix all remaining bytes of SC

3 and SB
5 to

arbitrary values. Copy the valid diagonal and first column of SC
3 to SA

5 . Vary the
remaining 9 bytes of SA

5 , storing the resulting values of the diagonal of SA,MC2
6

in a list. Independently vary the 12 bytes of SC
5 , derive the diagonal of SD,MC2

5 ,
and store it in a second list. Any match between the two lists gives a valid initial
structure that follows the differential trail up to round 8.

If we only wanted one match on the 4 bytes of the diagonal, we could try
216 values each for SA

5 and SC
5 , and would expect roughly 22·16−32 = 1 match

due to the birthday effect. However, consider using 232 values each instead.
The expected number of 4-byte matches is roughly 22·32−32 = 232. Now we
evaluate the complexity for generating these 232 solutions. Computing the match
bytes requires to evaluate 2 · 2 · 232 = 234 F -functions. Since 16-round Simpira-
4 evaluates more than 16 = 24 F -functions, this corresponds to a complexity
of about 232−4 = 230 Simpira-4 evaluations. Thus, we were able to produce
solutions with amortized complexity less than 1. With this initial structure, we
obtain a 16-round collision with computational complexity about 24×27.54 =
2110.16. The memory requirements are only about 232 · 2 AES states.

3.4 Collision Attack on 15 Rounds with Truncation

In Sect. 3.3, we actually attacked more than the recommended number of 15
rounds for the Simpira-4. In the following, we discuss the applicability of the
analysis to the original 15-round design.



Cryptanalysis of Simpira v1 295

Permutation Distinguisher. Clearly, the 16-round trail of Fig. 6 also imme-
diately leads to a 15-round permutation distinguisher. With a computational
complexity of 2110.16, we can find pairs of inputs with a fixed input difference
such that the permutation outputs collide in 62 of 64 bytes, or actually in 510
of 512 bits, since we use the 1-byte differences of Fig. 5. This property implies,
for example, second-order collisions for the hash construction with complexity
2 · 2110.16, whereas the generic complexity bound is at least about 2512/4 = 2128.
This distinguisher violates the security claims for Simpira-4.

Furthermore, if we impose no constraints on the active F -function in round
15 by allowing arbitrary constraints in SA,MC2

15 and thus in SA
16, we still get a

collision on at least 46 of 64 bytes, or in at least 382 of 512 bits, with a fixed input
difference. Then, only the 3 active F -functions in rounds 9, 11, and 13 need to
be satisfied probabilistically. The probability for this trail is 2−3×27.54 = 2−82.62.

Truncated Collisions. The trail no longer automatically leads to full-state
collisions for the hash construction, since the 2 active state words we get after
an odd number of rounds cannot cancel all 3 active state words at the input.
However, we can consider truncated versions of the hash construction. Since the
permutation-based Simpira-4 hash construction claims only 128-bit security, but
the state size is 512 bits, Simpira’s designers comment that “truncation of the
output of Simpira may be required [. . . ] to match the intended application”. An
obvious choice would be to truncate the state to 256 bits, so that the security
claim matches the generic bound. The details and complexity of the collision
attack then vary depending on the implementation of this truncation. Below, we
consider 3 natural choices for truncation.

Truncation Variant 1: Left/right Half. The most intuitive choice is to
simply truncate to the right (or left) half of the final state. Consider the rightmost
256 bits. With the previous 16-round trail of Figs. 6 and 7a, the permutation of
the output words means that this conveniently corresponds to a hash output of

(SC
1 ⊕ SD

16, SD
1 ⊕ SA

16) =
(

⊕ , ⊕
)

=
(

,
)

.

In fact, we can extend this to collisions up to the rightmost 384 bits if we just shift
our iterative trail down by 1 round, as illustrated in Fig. 7b. The probabilistic
part of the trail is then moved to rounds 1 (input SD

1 ) and rounds 10, 12, and 14
(inputs SA). For the same complexity of 2110.16, we get a 384-bit hash collision
of the output

(SB
1 ⊕ SC

16, SC
1 ⊕ SD

16, SD
1 ⊕ SA

16).

Truncation Variant 2: Every Second Word. Assume the truncation func-
tion selects every second word, that is, the 256-bit hash output is

(SA
1 ⊕ SB

16, SC
1 ⊕ SD

16).

Then, we can even take advantage of the improved permutation distinguisher
with complexity 282.62, as in Fig. 7c.
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Fig. 7. Collisions for truncated 15-round Simpira-4 hash.
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Truncation Variant 3: Updated Words. In the previous truncation variants,
we took advantage of the fact that the output of one of the last round’s two F -
functions was truncated. Consequently, another good candidate for a truncation
function is to select exactly the words that depend on the last round’s F -outputs,
SA
16 and SB

16, so the hash output is

(SA
1 ⊕ SB

16, SD
1 ⊕ SA

16).

Nevertheless, the trail of Fig. 7a still provides hash collisions with complexity
2110.16.

4 Conclusion

In this paper, we analyzed the permutations Simpira-b, b ≥ 4, b �= 6, 8, of the
Simpira v1 family, with a focus on Simpira-4. Due to properties of the underly-
ing Type-1.x Generalized Feistel Structure and the sparse round constants, the
computer-aided bounds given by the designers for the minimum number of active
S-boxes are invalid. The count includes many pairs of S-boxes whose inputs are
not independent, in particular, many actually share the exact same inputs. Based
on differential trails that exploit this property, we propose full-round collision
attacks on the proposed Simpira-4 Davies-Meyer hash construction, with com-
plexities down to 282.62 for the recommended full 15 rounds and the truncated
256-bit hash value, depending on the truncation rule, and complexity 2110.16 for
16 rounds and the full 512-bit hash value.

The attacks exploit Generalized Feistel Structures which apply multiple F -
functions to a Feistel branch without xoring other F -outputs in between, as
would be the case in a standard Feistel construction. While it is not clear
whether this property could be exploited in general for independent F , it cer-
tainly becomes a problem when the F -functions differ only by using different,
sparse round constants. In Simpira v1, this is the case for all family members
b ≥ 4, b �= 6, 8. The consequence is that two branches of the state will be updated
with two closely related F -outputs.

To address the problems described in this paper and by Rønjom [14], Gueron
and Mouha subsequently tweaked their design [3]. The new Simpira v2 fixes the
issue by replacing both the Feistel construction, to ensure disjoint F -inputs, and
the round constants with denser values.
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Abstract. An affine equivalence problem is to find affine mappings A
and B such that F = B ◦ S ◦ A for given two permutations F and S,
which was first studied by Biryukov et al. Their algorithm for solving
an affine equivalence problem is quite efficient and has been used in the
cryptanalytic toolbox for many cryptographic schemes. Recently, Baek
et al. presented a specialized affine equivalence algorithm (SAEA), which
solves an affine equivalence problem in the case that S is a concatena-
tion of several smaller S-boxes. The SAEA is more efficient than the
affine equivalence algorithm for special cases, but its complexity mainly
depends on the entire input size of F .

In this paper, we revisit the affine equivalence problem for a special
ASA structure with multiple S-boxes and a structured input affine layer.
We show that the work factor in SAEA can be reduced if the input affine
layer in ASA has a certain structure. Moreover, the complexity of our
algorithm mainly depends on the input size of smaller S-boxes, and not
on the entire input size of F . We also present a new attack algorithm on
the white-box AES implementation proposed by Baek et al. The crypt-
analysis efficiently extracts the secret key from the implementation with
a complexity of 233, where the claimed security level is 2110.

Keywords: Affine equivalence algorithm · ASA structure · Multiple
S-boxes · Structured affine mapping · White-box implementation

1 Introduction

In 1997, Even and Mansour [9] showed that for the independent n-bit keys K and
K ′ and the random permutation P , the block cipher E(K,K′)(x) = P (x⊕K)⊕K ′

is secure against an adversary with up to O(2n/2) queries. This block cipher,
often referred to as the Even-Mansour cipher, is regarded as a minimal block
cipher construction [8]. The three-layer scheme E(A,B)(x) = B ◦ S ◦ A(x) for
which S is a substitution layer and B and A are secret affine mappings is a
generalization of the Even-Mansour cipher, say ASA structure or three-layer
scheme ASA. The problem of finding the affine layers for a given three-layer
scheme ASA with a known S can be seen as the affine equivalence problem,
which was introduced in [4].
c© Springer International Publishing AG 2017
R. Avanzi and H. Heys (Eds.): SAC 2016, LNCS 10532, pp. 299–316, 2017.
https://doi.org/10.1007/978-3-319-69453-5_17
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Fig. 1. Variants of the ASA structure

More precisely, the affine equivalence problem is to find the affine mappings
A and B satisfying F = B ◦ S ◦ A for two given permutations F and S of
n bits, if they exist, as in Fig. 1(a). Biryukov et al. [4] proposed an algorithm,
which solves the affine equivalence problem with a complexity of O(n322n). Their
algorithm is quite efficient and has been used as a cryptanalytic tool [11–16] for
many cryptographic schemes. A variant of this problem appears in the white-
box implementations, where the middle layer S consists of a concatenation of
several m-bit S-boxes as in Fig. 1(b). Baek et al. [1] presented a specialized affine
equivalence algorithm (SAEA), which solves the affine equivalence problem in
this case. They showed that an ASA structure with multiple S-boxes requires
O

(
min

{
(nm+4/m)22m, (n4/m)23m + n log n · 2n/2

})
steps to recover the secret

affine mappings under the previous attacks.
In this paper, we propose an efficient attack algorithm for the special ASA

structure with multiple S-boxes and a structured input affine layer. Especially,
we consider a variant of the affine equivalence problem depicted as in Fig. 1(c)
where S is a concatenation of m-bit S-boxes for m = n/s and A is an s × s
block matrix with m × m matrix entries which are zeros in at least one position
of each row except one. Our algorithm has a complexity that mainly depends
on the size of the smaller S-boxes, and not the entire input/output size of F .
Furthermore, the main factor of the complexity of our algorithm related to n
drops from nm+3 to n3 compared to SAEA. In Table 1, we precisely compare
our affine equivalence algorithm to previous results [1,4].

Table 1. Comparison to previous affine equivalence algorithms

Algorithm Complexity (dominant part)

Naive approach n32n
2+n

Affine equivalence algorithm [4] n322n

SAEA [1] min
{ n

m
· nm+322m,

n

m
· n323m + n logn · 2n/2

}

Our algorithm 5
( n

m
log

n

m

)
n3 + 5n22m + nm222m

m: the input size of smaller S-boxes in the S-layer of ASA sturcture (in [4], m = n)
n: an entire input/output size of the instance functions

The “naive approach” is to check if B = F ◦ A−1 ◦ S−1 is affine and invertible for all As
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Application to White-Box Implementations. A white-box implementation
aims to obfuscate the secret key inside a cryptographic algorithm itself [6]. It is a
way of implementing a cryptographic algorithm with a specialized attack model,
thereby protecting the secret keys even in the situation that the adversary has
a full access to the implementation of the cryptosystem and full control over its
execution platform.

Given n-bit block ciphers as in [2,7], a naive approach to hide the secret key
in such situations is to provide an input/output table of the original cipher with
the secret key. However, this is not a practical solution since it is too heavy,
e.g. It needs about 2102 GB for n = 128. To reduce storage requirements, the
most popular approach is to decompose a cipher into round functions and split
each round function as a sum of small tables [1,5,6,10,18]. Since the secret key
can be easily exposed from the input/output behaviors of the round function,
the table representations of round functions need to be obfuscated by secret
encoding functions.

To obfuscate the secret key efficiently, the composition of an affine layer
and a substitution layer with tiny S-boxes was usually considered as a secret
encoding (SA as an output encoding and AS as an input encoding). Baek
et al. [1] showed that composing the substitution layers of tiny S-boxes to the
input/output encodings does not help to improve the security of the white-box
implementations. Hence, the secret encodings would be reduced up to affine lay-
ers so that encoded round functions may have the ASA structure. One approach
to split the table of ASA structure into smaller ones is to use an affine map
whose linear part is a block diagonal matrix of m × m blocks as an input A
layer, where m is the size of S-boxes. In this case, we can express the three layer
scheme ASA as a sum of 2m-by-n tables. However, this type of construction
allows the block-wise attacks with the affine equivalence algorithm in [4], which
results in a low complexity depending on the block size.

Recently, Baek et al. [1] proposed a white-box AES implementation (referred
to as the BCH implementation) that uses the special input affine encoding with
sparse non-zero m × m blocks which is depicted in Fig. 2. They made a point of
trade-off between the above approach and a naive approach (to store an entire
input/output table) to hide the secret key into the ASA structure and suggested
a method for constructing the look-up tables of the encoded round functions
with this special input affine encodings. The encoded round function in their
implementation can be expressed as a sum of 22m-by-n tables instead of the
2n-by-n table in the naive approach.

By the way, the affine input encodings in the BCH implementation exactly
have a structure that we define. Applying our attack algorithm, we can efficiently
extract the secret round key in the implementation with a complexity of 233 for
the case that the input size of the encoded round function is 256 bits, where
the claimed security level is 2110. We provide the attack complexities for the
other parameters in the BCH implementation in Table 2. In future works, our
attack algorithm for the special ASA would be a useful attack tool for white-box
implementations.
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Fig. 2. The special structure lying in the input A layers of the BCH implementation

Table 2. The security of the BCH implementation, where n is the block size of encoded
round function

n Claimed security level in [1] New security level

128 75 bits 32 bits

256 110 bits 33 bits

384 117 bits 34 bits

Outline of the Paper: In Sect. 2, we give some preliminaries used in this
paper. Our attack for the special ASA structure is presented in Sect. 3. We give
a cryptanalysis of the BCH implementation in Sect. 4. Finally, we conclude the
paper in Sect. 5.

2 Preliminaries

2.1 Structured Matrix

Fix parameters n, m, s such that n = s ·m (throughout this paper), and we will
consider an n-bit ASA scheme

F = B ◦ S ◦ A

such that the inner S-box S is given as a concatenation of s S-boxes of m-bit
input/output size. We will also give a certain condition on the linear part L of
A: when L is viewed as an s×s block matrix of m×m blocks, each row contains
some zero entries except one row. The motivation of this particular structure is
that such a scheme allows an efficient white-box implementation based on table
look-ups. The block-wise density of a matrix can be represented by its block
representing matrix, as defined as follows.

Definition 1 (Block Representing Matrix). Let n, m, s be integers such
that n = s ·m, and let L be an n×n matrix that is represented by a block matrix
as follows.
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L =

⎡

⎢
⎢
⎢
⎣

L1,1 L1,2 · · · L1,s

L2,1 L2,2 · · · L2,s

...
...

. . .
...

Ls,1 Ls,2 · · · Ls,s

⎤

⎥
⎥
⎥
⎦

where Li,j is an m × m matrix for every i and j. Then the block represent-
ing matrix of L, denoted by BL, is defined as a binary s × s matrix where the
(i, j)-entry is 0 if Li,j is the zero matrix and 1 otherwise.

Definition 2 (Structured Matrix). Let n, m, s be integers such that n =
s · m. A matrix L is called structured with respect to the block length m if L is
invertible and the rows of its block representing matrix BL are pairwise distinct.

Example 1. The MixColumn step of AES-128 can be represented by a 128 × 128
matrix, say MC. When it is partitioned into 8 × 8 blocks, its 16 × 16 block
representing matrix becomes

BMC =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Since MC is invertible over F2 and any two rows of above matrix BMC are pairwise
distinct, MC is structured.

An affine mapping A that maps n bits to n bits can be decomposed into a
linear part L and a constant translation C as follows:

A(x) = L · x + C

where L is an n × n matrix and C is an n × 1 matrix over F2. We will say A
is structured with respect to the block size m if the linear part L is structured
with respect to the block size m.

2.2 Notation

We would set our notation used in Sects. 3 and 4. Throughout this paper, we
set our target as a three-layer scheme F = B ◦ S ◦ A of n bits which consists
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of a substitution and affine transformations. Our attack considers the case that
the S layer contains s invertible S-boxes S1, S2, · · · , Ss of m bits, the output
affine layer B is invertible, and the input affine layer A is structured. For the
affine mappings A and B, we use the notation L and M to represent the linear
part of A and B, and C and D to represent to the constant part of A and B,
respectively. i.e., The affine functions A and B are represented as follows:

A(x) = L · x + C and B(x) = M · x + D

We consider the linear part L of A to be partitioned into s2 m × m blocks.
The (i, j)-th block matrix of size m × m is denoted by Li,j . i.e.,

L =

⎡

⎢
⎢
⎢
⎣

L1,1 L1,2 · · · L1,s

L2,1 L2,2 · · · L2,s

...
...

. . .
...

Ls,1 Ls,2 · · · Ls,s

⎤

⎥
⎥
⎥
⎦

The linear part M of B can be partitioned into s vertical strips of size n×m.
We denote the i-th strip by Mi so that

M =
[
M1

∣
∣
∣
∣M2

∣
∣
∣
∣ · · ·

∣
∣
∣
∣Ms

]

For an arbitrary rectangular matrix N , we use a notation col(N) to represent
the column space of N , namely a subspace of Fn

2 spanned by the columns of N .
We write the operation ‘+’ to denote the bitwise XOR operation. We define ⊕K

as the map ⊕(x) = x + K. Using this notation, we represent the key additions
in a block cipher. We also split the n-bit string x into s m-bit blocks and write
it as x = (x1, · · · , xs).

2.3 Our Problem Related to the Affine Equivalence Problem

We will formulate a problem, namely specialized affine equivalence problem. It
can be regarded as a special variant of the affine equivalence problem. So, we first
present the problem definition of the affine equivalence problem defined in [4]
and then our problem related to the affine equivalence problem.

Given two permutations F and S, we say that F and S are affine equivalent
if there exist invertible affine mappings A and B such that F = B ◦ S ◦ A. The
affine equivalence problem is to find such affine mappings if they exist, by making
a certain number of oracle queries to F and S.

We also take an attacker who can make oracle queries to F into account. The
goal of this attacker might be to recover the affine layers with the knowledge of
the three-layer scheme structure and input/output tables of m-bit S-boxes.

Definition 3 (Specialized Affine Equivalence Problem). Consider a
three-layer invertible ASA scheme F = B ◦ S ◦ A of n-bit for which S is a
concatenation of m-bit S-boxes and A is structured with respect to the block size
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m. We assume that the s m-bit S-boxes are given as input/output tables, and
the block representing matrix of A with respect to the block length m is known.
By making a certain number of oracle queries to F , we want to recover affine
mappings A′ and B′ which are equivalent to A and B in the sense that:

– F = B′ ◦ S ◦ A′

– The block representing matrices of A and A′ with respect to the block length
m are the same.

We can erase the assumption that m-bit S-boxes are given as tables. Then,
we need to allow the oracle queries to S and store sm2m bits of input/output
pairs of S-boxes in our algorithm in Sect. 3. We added an assumption that the
block representing matrix of A with respect to the block length m is known
since we can easily retrieve it with input/output behaviors of F in a practical
scheme or it would be contained in an algorithm of a practical scheme, e.g. BCH
implementation [1].

2.4 Useful Lemmas

In this subsection, we introduce useful lemmas which are used in our
cryptanalysis.

Affine Equivalence Algorithm. Biryukov et al. [4] proposed an affine equiv-
alence algorithm that efficiently solves the affine equivalence problem compared
to the exhaustive search for A and B. The following lemma summarizes their
result in terms of the complexity of the algorithm.

Lemma 1. Let S1 and S2 be m-bit permutations. If S1 and S2 are affine
equivalent, one can find all the pairs of affine mappings A and B such that
S2 = B ◦ S1 ◦ A in time O(m322m).

Rank of a Random Matrix over F2. The following lemma presented by
Wan [17] tells us the property of random binary matrices.

Lemma 2. Let n, k, r be integers such that 1 ≤ r ≤ min(n, k). The probability
that a random n × k binary matrix has rank r over F2 is

P (n, k, r) =
1

2(n−r)(k−r)
·

r−1∏

i=0

(1 − 2i−k)(1 − 2i−n)
(1 − 2i−r)

.

By Lemma 2, the simulation result shows that the probability that a random
n × k binary matrix has rank r ≥ k − 5 is greater than or equal to 0.99 for
n ≤ 1000.

Affine Self-equivalences in Rijndael. The affine equivalence problem can
have many equivalent solutions. For a permutation Ŝ, if there exists nontrivial
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affine mappings a, b such that Ŝ = b ◦ Ŝ ◦ a, then we say that (a, b) is a self-
equivalence of Ŝ. The following lemma proposed by Biryukov et al. [4] tells us
the number of affine self-equivalence of the S-box used in Rijndael [7].

Lemma 3. The S-box Ŝ used in Rijndael has 2040 affine self-equivalences. In
other words, there exists 2040 pairs of affine mappings (a, b) such that Ŝ =
b ◦ Ŝ ◦ a.

Intersection of Subspaces. For given two subspaces of Fn
2 , a complexity for

computing an intersection of these two subspaces is less than 5n3 and is more
precisely presented as follows.

Lemma 4. For 0 < m1 < m2 < n, suppose that V and W are subspaces of Fn
2

of dimensions m1 and m2, respectively. For given bases of V and W , we can
compute a basis for a subspace

V ∩ W

over F2 in a complexity of n(2m2
1 + 2m1m2 + m2

2).

Proof. To calculate an intersection, consider the basis matrices V̄ and W̄ for V
and W , respectively. Since

V̄ · x = W̄ · y ⇐⇒ [V̄ |W̄ ] ·
[

x
−y

]
= 0 ,

we need to find the null space of [V̄ |W̄ ] with a Gaussian elimination in n(m1 +
m2)2 steps and then multiply V̄ to the x’s to obtain a basis for V ∩ W in less
than nm2

1 steps. 	


3 Cryptanalysis of the ASA Structure with a Structured
Affine Layer

In this section, we present an efficient algorithm solving the specialized affine
equivalence problem defined in Definition 3. To avoid an abuse of notation, we
first describe an instance of our algorithm for the specific cases which can be
directly applied to the BCH implementation and then present a theorem for the
general cases.

For an ASA structure F = B ◦ S ◦ A whose notation is defined in Sect. 2.2,
we would specify a class of L by defining its block representing matrix BL with
respect to block length m as follows.

(BL)i,j =

⎧
⎪⎨

⎪⎩

1, if 1 ≤ i ≤ s − β + 1 and i ≤ j ≤ i + β − 1
1, if s − β + 1 < i ≤ s and 1 ≤ j ≤ i + β − s − 1
0, otherwise

,

for some positive integer β <
⌊s

2

⌋
.
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In other words, the s×s block representing matrix BL of L would be depicted
as:

BL =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 · · · 1
1 1 · · · 1

1 1 · · · 1
. . . . . . . . . . . .

1 1 · · · 1
1 1 · · · 1
...

. . . . . .
...

1 · · · 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (1)

where each row and column contains β nonzero entries. Note that all the rows
of BL are distinct so that L is structured.

Summary of Our Approach. Our cryptanalysis is divided into two phases.
Before we start to describe our attack, we summarize our cryptanalysis as below.

Phase 1. We first find the column spaces col(Mi) for all 1 ≤ i ≤ s. Then, we can
recover the linear part of output affine layer B up to a block diagonal matrix
of block size m. Though we cannot obtain the exact M , it is an essential step
to reduce output sizes of F from n to m.

Phase 2. From the phase 1, we can split F into F̃i for 1 ≤ i ≤ s which are
the ASA structures from βm bits to m bits, respectively. We transform F̃i

into an invertible ASA structure on m bits reducing the input sizes from βm
to m. Then, the affine equivalence algorithm can be applied to the invertible
ASA structure on m bits.

3.1 Decomposing the Linear Part of B

The first phase of our attack is to recover the linear part of B upto a block
diagonal matrix. For each index 1 ≤ i ≤ s, we will choose a certain number
of pairs of plaintexts (P1, P2) having a difference only in the i-th m-bit block.
Namely, when we write

P1 = (x1, x2, · · · , xi, · · · , xs)
P2 = (y1, y2, · · · , yi, · · · , ys)

for m-bit blocks xj and yj , j = 1, . . . , s, we have xj = yj for every j �= i, but
xi �= yi. For any of such pairs (P1, P2), S◦A(P1) and S◦A(P2) will have non-zero
differences exactly in β blocks since each column of BL contains β 1’s and S is
defined as a concatenation of m-bit S-boxes. Specifically, we have

S ◦ A(P1) + S ◦ A(P2) = (Δ1, · · · ,Δs),

where Δi−β+1, · · · ,Δi are all non-zero blocks and the others are all zero
blocks (cyclically indexed modulo s). So the positions of non-zero blocks are
cyclically shifted as the index i increases. Since

F (P1) + F (P2) = B ◦ S ◦ A(P1) + B ◦ S ◦ A(P2) = M · (S ◦ A(P1) + S ◦ A(P2))
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F (P1) + F (P2) would be always a linear combination of the βm columns from
Mi−β+1 to Mi, namely

F (P1) + F (P2) ∈ col(Mi−β+1|Mi−β+2| · · · |Mi).

In order to find the column space col(Mi−β+1|Mi−β+2| · · · |Mi), we set P1+P2

to have nonzero entries exactly in β blocks and compute F (P1) + F (P2) for
random P1’s in {0, 1}n to collect βm linearly independent vectors over F2. Note
that the probability that a random n× (βm+5) binary matrix has rank r ≥ βm
is greater than 0.99 when n ≤ 1000 by Lemma 2. Hence, from βm + 5 vectors of
the form F (P1) + F (P2), we can find the basis of this column space with a high
probability(≥0.99) via the Gaussian elimination which takes n(βm + 5)2 time.
Since M is invertible over F2 and β <

⌊s

2

⌋
, we have

col(Mi) = col(Mi−β+1|Mi−β+2| · · · |Mi) ∩ col(Mi|Mi+1| · · · |Mi+β−1).

Therefore we can compute a basis of col(Mi) in 5n(βm)2 time by Lemma 4.
Overall, this phase requires sn[(βm+5)2+5(βm)2] time complexity and 2s(βm+
5) chosen plaintexts.

Now, we obtained the basis of each space col(Mi) for 1 ≤ i ≤ s. Let M̃i ∈
F

n×m
2 denote the matrix whose columns are the basis of col(Mi). Then each

column of Mi can be represented by a linear combination of the columns of M̃i

with certain unknown coefficients. So we have a decomposition as follows.

M = M̃ · U

where

M̃ =
[
M̃1

∣
∣
∣
∣M̃2

∣
∣
∣
∣ · · ·

∣
∣
∣
∣M̃s

]
and U =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

U1 0 0 · · · 0
0 U2 0 · · · 0
0 0 U3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Us

⎤

⎥
⎥
⎥
⎥
⎥
⎦

for some (unknown) m × m invertible matrices U1, . . . , Us.

3.2 Recovering A and B

The second phase is to split the entire structure F on n bits into smaller ASA
structures on m bits, and then apply the affine equivalence algorithm given in
Lemma 1 to each of the smaller structures.

Let F̃ be a map defined by F̃ (X) = M̃−1 · F (X) for every X ∈ F
n
2 . When F̃

is splitted into m-bit blocks as

F̃ = (F̃1, · · · , F̃s),

it is easily shown that each F̃i, i = 1, . . . , s, depends only on βm bits of an n-bit
input X: precisely we can write

F̃i(X) = Ui (Si ([Li,i|Li,i+1| · · · |Li,i+β−1] · X ′ + C ′
i)) + D′

i
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where Si is an m-bit S-box in S layer, X ′ denotes the βm bits of X from the
i-th m-bit block to (i + β − 1)-th m-bit block, and C ′

i and D′
i are the i-th m-bit

block of C and M̃−1 · D, respectively. In this way, we can view F̃i as an ASA
structure based on a single m-bit S-box that takes as input βm bits and outputs
m bits.

The first step of this phase is to fix (β−1)m bits of inputs X ′ for each F̃i and
then apply the affine equivalence algorithm of Lemma1 to the resulting m-bit
to m-bit ASA structure. Since the affine map A is invertible, the m×βm matrix

[Li,i|Li,i+1| · · · |Li,i+β−1]

has full row rank(= m) over F2, and hence the column rank m. In order to find
the positions of m linearly independent columns from this unknown matrix, we
fix a set of m positions of X ′, and then evaluate F̃i for all the possible 2m values
on this set of positions with the other positions fixed as zero. If all the possible
outputs of Fm

2 are obtained from this evaluation, then the columns corresponding
to these m positions would be linearly independent.

The probability that we choose m linearly independent columns from βm
columns is (1− 1

2 ) · (1− 1
22 ) · · · (1− 1

2m ) > 0.288 for the random full rank m×βm
matrix. So, we would iterate the procedures to guess m positions of X ′ and
check if all the possible outputs come out for about 5 times in average. It takes
n3 time to compute M̃−1 and for each iteration, nm2m time to perform a matrix
multiplication and m2m time to sort 2m instances, with 2m chosen plaintexts
needed. Since five iterations would be held for each 1 ≤ i ≤ s, it takes totally
n3 + 5s(nm2m + m2m) = n3 + 5(n2 + n)2m steps with 5s2m chosen plaintexts
to find the positions of m linearly independent columns for all 1 ≤ i ≤ s.

After this step, by fixing the other (β−1)m positions of X ′ as zero, we obtain
an invertible m-bit ASA structure. By applying the affine equivalence algorithm
of Lemma 1 to this small construction which takes m322m time, we can recover
the affine layers of F̃i for every i = 1, . . . , s, and hence F . More precisely, after
running the affine equivalence algorithms, we achieve Ui, C ′

i, D′
i and the m

linearly independent columns of [Li,i|Li,i+1| · · · |Li,i+β−1]. We recover the affine
maps A and B from this information as follows. We first recover B multiplying
M̃ to the affine map U ·X +(D′

1, · · · ,D′
s) in time n3, and compute B−1 in time

n3. Then the unknown (β − 1)m columns of [Li,i|Li,i+1| · · · |Li,i+β−1] remain for
each i. The j-th unknown column of this matrix is obtained by

S−1
i (i-th m-bit block of (B−1 · F (ej))) + C ′

i,

where ej is the j-th coordinate vector in F
n
2 . To calculate all of them for 1 ≤ i ≤ s,

we need to compute B−1 ·F (ej) for all j, which takes n · (n2) time with n chosen
plaintexts. Now, we can obtain the whole matrix [Li,i|Li,i+1| · · · |Li,i+β−1] for
each i, and finally achieve A.

The overall work factor of the second phase is 4n3 + 5(n2 + n)2m + nm222m

with s(5 · 2m + m) chosen plaintexts.
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We can conclude the overall work factor in our attack including the first and
second phases would be calculated as

sn[(βm + 5)2 + 5(βm)2] + 4n3 + 5(n2 + n)2m + nm222m

≈ 6β2n2m + 4n3 + 5n22m + nm222m,

with about s(2βm + 5 · 2m + m + 10) chosen plaintexts.

Example 2. For n = 128, m = 8 and β = 3, the time complexity of our attack
would grow up to 229. For n = 256, m = 8 and β = 2, the complexity would
be less than 231. In these examples, the complexity of our attack algorithm is
dominated by the term nm222m.

3.3 Generalizations

In Sects. 3.1 and 3.2, we cryptanalyze the three-layer scheme ASA with specific
input affine layers. We would provide an upper bound for the complexity of the
attack algorithm for ASA with structured input affine layers.

Theorem 1. Consider a three-layer scheme ASA, F = B ◦ S ◦ A on n bits for
which A is a structured affine mapping with respect to block length m and S is a
concatenation of m-bit S-boxes. One can solve the specialized affine equivalence
problem for F in time

5 ·
(

n

m
· log2

n

m

)
· n3 + 5 · n2 · 2m + n · m2 · 22m

with n
m (2n + 5 · 2m + m + 10) chosen plaintexts.

Proof. The proof of theorem follows the attack scenario of Sects. 3.1 and 3.2.
Since the attack procedure in the second phase is appliable to the general cases
with no changes in time complexity, it suffices to show the following claim related
to the first phase (with the same notations as in Sects. 3.1 and 3.2).

Claim. Let coli be the column space obtained by picking plaintexts with no
differentials except the i-th block in Phase 1 (e.g. In our example in Sect. 3.1,
coli = col(Mi−β+1|Mi−β+2| · · · |Mi) for 1 ≤ i ≤ s). Given coli for 1 ≤ i ≤ s,
performing less than s(log2 s + 1) operations of intersections of subspaces in
F

n
2 ,1 we can achieve bases for col(Mi) for 1 ≤ i ≤ s over F2, respectively.

Proof of Claim (Sketch). Note that since L is invertible, every column of BL

is not a zero vector. The following algorithm terminates in log2 s iterations and
outputs col(Mi) for some single strip Mi.

– Let l be an index in {1, · · · , s}. Set the initial values v ← (the l-th column of
BL) and col ← coll. We iterate the followings while k > 1.

1 Each operation of subspaces takes less than 5n3 steps by Lemma 4.
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• k ← (hamming weight of v).
• Let {i1 < · · · < ik} be the set of indices in which components of v are

nonzeros.
• For the i1-th row and i2-th row of BL, find j such that the i1-th component

of the j-th column of BL is different from the i2-th component of the j-th
column (such j exists since L is structured).

• Set w as the j-th column of BL.
∗ If w has more than �k/2� nonzero overlapped components with v, then

v ← v + (v ∧ w) where “∧” indicates componentwise multiplication
and compute col ← col∩ col⊥j where col⊥j ∈ F

n
2 is an orthogonal space

of colj .
∗ Otherwise, set v ← v ∧ w and compute col ← col ∩ colj .

– Output v and col.

Remark 1. The algorithm outputs v whose components are all zeros except one.
Suppose that the output v ∈ F

s
2 has all zero entries except the i-th entry. Then,

we can observe that the output col is equal to col(Mi). In other words, v indi-
cates the index of the strip of which column space is obtained from the above
algorithm.

Note that this algorithm does not guarantee to output distinct column spaces.
So, to find distinct column spaces, we remove the indices i’s from the initial
{i1, i2, · · · , ik}, check if the set remains nonempty (if it is empty, then choose
another l and repeat), and then replace the initial col with an intersection of col
and the spaces col(Mi)⊥’s to run the algorithm again. Totally, we could output
col(Mi) for 1 ≤ i ≤ s with log2 s+(s−1)(log2 s+1) operations of subspaces in F

n
2 .

Though the above algorithm is not optimized for a particular A, it provides an
approximate upper bound of complexity of finding col(Mi)’s for the structured
A with our strategies in general. 	


4 Application to the White-Box AES Implementation

To see the background of the BCH implementation, let us take a glance at the
historical aspects briefly. In the first white-box implementations presented by
Chow et al. [6], the composition of a linear map and a nonlinear permutation
with multiple S-boxes is used as an encoding. The linear map in their encoding
contains a block diagonal matrix in which block provides a linear mixing bijec-
tion. However, the implementation is vulnerable to the Billet et al. attack [3].
Since then, Xiao and Lai proposed a white-box AES implementation with linear
mappings as encodings [18]. They expected their implementation would resist
the Billet et al. attack, using the linear encodings of block diagonal matrices
whose block size is twice of the size of S-boxes. But the implementation was also
broken by Mulder et al. attack [14] using linear equivalence algorithm in [4].

Recently, Baek et al. [1] showed that the substitution layers of the encodings
in the previous constructions do not help to improve the security of the white-
box implementations and the linear parts of the affine input encodings should
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not be split into the block diagonal matrices of small blocks to resist their attack
toolbox. Hence, they constructed the special input encoding in which linear part
can not be split, called sparse unsplit encoding. They presented their white-box
AES implementation using the sparse unsplit encodings in [1], which was claimed
to be secure against all known attacks including their attack toolbox.

However, the special structure of their sparse unsplit encodings threw new
light on the cryptanalysis for us. We will explain our attack against the BCH
implementation in this section. We can efficiently extract the round key of the
implementation for all rounds except the first round, in 233 time with 214 chosen
plaintexts for n = 256. This attack can also be applied for other parameters.
The attack complexities for other parameters are presented in Table 2.

4.1 The BCH Implementation

The strategy of the BCH implementation is to obfuscate several parallel AES
round functions at the same time using the special input encoding and to decom-
pose the encoded round function into table lookups with small inputs so that
their composition is equivalent to the encoded round function. Especially, the
structured affine mapping with respect to the block length 8 was used as an
input encoding in the BCH implementation.2

Let an input encoding Â(r) be a structured affine mapping on n bits with
respect to block length 8 of the form in Eq. 1 for β = 2. The r-th encoded round
function F (r) of AES-128 in the BCH implementation is of the form:

F (r) = B̂(r) ◦ (Ŝ, · · · , Ŝ)
︸ ︷︷ ︸

#of S-boxes=s

◦ ⊕(K(r), · · · ,K(r))
︸ ︷︷ ︸
#of roundKey=n/128

◦ Â(r),

where Ŝ is the S-box on 8 bits used in Rijndael, K(r) is the r-th round key of
128 bits in AES-128, and the output encoding B̂(r) is an affine map defined as
B̂(r) = (Â(r+1))−1 ◦ (MC◦SR, · · · ,MC◦SR) for r < 10, where MC and SR are the
functions of MixColumn and ShiftRow steps in AES-128, respectively. Then, the
encoded round function F (r) in the BCH implementation has ASA structure on
n bits with n = 8s, where the S layer is a concatenation of s S-boxes on 8 bits
and the input affine layer contains structured input affine mapping.

4.2 Cryptanalysis of the BCH Implementation

In our notations of Eq. (1), the input encoding of the BCH implementation is
the case of β = 2 and m = 8. Hence, our cryptanalysis can be directly applied
to the BCH implementation, setting m = 8. The encoded round function of the
BCH Implementation is of the form in Sects. 3.1 and 3.2 for β = 2. For each
round, we can solve the specialized affine equivalence problem for F (r) in

6β2n2m + 4n3 + 5n22m + nm222m

time with s(2βm + 5 · 2m + m + 10) chosen plaintexts.
2 In [1], they called the input encodings used in the BCH implementation as the sparse
unsplit affine mapping.
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We would regard B̂(r) as B, and ⊕(K(r),···,K(r)) ◦ Â(r) as A, according to the
notations in Sects. 3.1 and 3.2. For example, to find the image space of M1, we
would start with the plaintexts P1, P2, P3 and P4 such that P1 and P2 have the
same values except the first 8-bit blocks, and P3 and P4 have same values except
the second 8-bit blocks. From such plaintexts, we can find the column spaces as
follows:

col(M1|Ms) =
{
F (P1) + F (P2) | P1, P2 ∈ {0, 1}n withP1 + P2 = (∗,0, · · · ,0) ∈ {0, 1}8·s} ,

col(M1|M2) =
{
F (P3) + F (P4) | P3, P4 ∈ {0, 1}n withP3 + P4 = (0, ∗,0, · · · ,0) ∈ {0, 1}8·s}

The column space col(M1) is obtained by computing an intersection of
col(M1|Ms) and col(M1|M2). The work factor of the first phase in Sect. 3.1 is
sn[(2m + 5)2 + 5(2m)2] ≈ 224 for n = 256.

In the second phase, for example, we know M̃1 such that M1 = M̃1 · U1 for
some (unknown) 8 × 8 matrix U1. So, we have the function

F̃1 = U1 ◦ Ŝ ◦ ((L1,1|L1,2) · X ′ + C ′
1) + D′

1,

where Ŝ is the 8-bit S-box in Rijndael, X ′ consists the first and second 8-bit
blocks of an n-bit input X, and C ′

1 and D′
1 are the first 8-bit blocks of C and

M̃−1 · D. To transform F̃1 : F16
2 → F

8
2 into an invertible map F̂1, we search for

the set of eight indices {i1, · · · , i8} such that the output values of F̃1 restricting
j-th bits to be zeros for all j ∈ {1, · · · , 16}\{i1, · · · , i8} covers all 28 possible
values. After then, applying Lemma 1 for F̂1 and Ŝ, we can obtain U1, C ′

1, D′
1

and the eight columns of [L1,1|L1,2]. Each unknown column of [L1,1|L1,2] can
be recovered by computing Ŝ−1(the first 8 bits of B−1 · F (ej))) + C ′

1 for j ∈
{1, · · · , 16}\{i1, · · · , i8}. The overall complexity of the second phase is 4n3 +
5(n2 + n)2m + nm222m � 231 for n = 256.

Hence, we can recover a pair A and B, a solution for the specialized affine
equivalence problem in 231 time for n = 256.

Extracting the Round Keys. Now, our goal is to extract the round key bits
except for the first round. Note that it suffices to have the adjacent two round
keys to extract the full 128-bit AES key.

Following the above strategies, we have possibly many candidates of B̂(r) and
⊕(K(r+1),··· ,K(r+1)) ◦ Â(r+1) on consecutive rounds. However, just one represen-
tative of the solutions, say B(r) and A(r+1), would be used to recover the exact
B̂(r) and ⊕(K(r+1),··· ,K(r+1)) ◦ Â(r+1) and extract the (r + 1)-th round key bits,
with the set of self-equivalences of Ŝ.

We know that the exact pair of ⊕(K(r+1),··· ,K(r+1)) ◦ Â(r+1) and B̂(r) differs
from the obtained pair A(r+1) and B(r) by the 2s pairs of affine self-equivalences
of the S-box Ŝ. Recall that

Â(r+1) ◦ B̂(r) = (MC ◦ SR, · · · ,MC ◦ SR).

Hence, to find the exact pair of ⊕(K(r+1),··· ,K(r+1))◦Â(r+1) and B̂(r), it suffices
to find the set of self-equivalences of Ŝ,

{(a1, b1), · · · , (as, bs), (a′
1, b

′
1) · · · , (a′

s, b
′
s)}
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such that

(�a1 , · · · , �as
) ◦ L(r+1) ◦ M (r) ◦ (�b′

1
, · · · , �b′

s
) = (MC ◦ SR, · · · ,MC ◦ SR),

where �ai
, �bj are the linear part of the small affine maps ai and bj on 8 bits,

respectively. So, we do the followings.

– Searching for all self-equivalences, we would find self-equivalences (a1, b1) and
(a′

1, b
′
1) of Ŝ such that

�a1 · [(1, 1)-th block of L(r+1) · M (r)] · �b′
1

is equal to the corresponding (1, 1)-th block of the matrix (MC ◦ SR, · · · ,
MC ◦ SR).

– If we find the right pairs (a1, b1) and (a′
1, b

′
1), then fix b′

1 and then search for
all self-equivalences to find (aj , bj) such that

�aj
· [(j, 1)-th block of L(r+1) · M (r)] · �b′

1

is equal to the corresponding (j, 1)-th block of the matrix (MC ◦ SR, · · · ,
MC ◦ SR) for all 1 ≤ j ≤ s.

– Samely, fix a1 and then search for all self-equivalences of Ŝ to find (a′
j , b

′
j)

such that
�a1 · [(1, j)-th block of L(r+1) · M (r)] · �b′

j

is equal to the corresponding (1, j)-th block of the matrix (MC ◦ SR, · · · ,
MC ◦ SR) for all 1 ≤ j ≤ s.

– Now we have the set of {(a1, b1), · · · , (as, bs), (a′
1, b

′
1) · · · , (a′

s, b
′
s)} so that we

can obtain

(a1, · · · , as) ◦ A(r+1) ◦ B(r) ◦ (b′
1, · · · , b′

s) = ⊕(K(r+1),··· ,K(r+1)) ◦ Â(r+1) ◦ B̂(r).

Since the number of self-equivalences of Ŝ is about 211 by Lemma 3, the work
factor to find the exact pair of ⊕(K(r+1),··· ,K(r+1)) ◦ Â(r+1) and B̂(r) is [(211)2 +
2 · (s − 1) · 211] · (2 · m3) + 2 · n3 ≈ 232 for n = 256.

Now, we know the exact affine maps ⊕(K(r+1),··· ,K(r+1)) ◦ Â(r+1) and B̂(r). We
can achieve the round key bits K(r+1) from

(⊕(K(r+1),··· ,K(r+1))◦Â(r+1))◦B̂(r) = ⊕(K(r+1),··· ,K(r+1))◦(MC ◦ SR, · · · ,MC ◦ SR),

in time complexity n2. In fact, (K(r+1), · · · ,K(r+1)) is the sum of the constant
of Â(r+1) and L(r+1) × (the constant of B̂(r)).

Thus, the total work factor of our attack for the BCH implementation to
extract the round key is less than 233 for n = 256. The complexity of our attack
is stable for other parameters as in Table 2, since it mainly depends on the input
size of S-boxes.
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5 Conclusion

In this paper, we suggested an optimized algorithm to solve the affine equivalence
problem in the case that the middle S layer is a concatenation of S-boxes and the
input affine layer is structured. For the three-layer scheme F = B◦S◦A satisfying
our problem setting, one can find the secret affine layers via oracle queries to
F (as black boxes) with our algorithm in low complexity. Our algorithm is more
efficient than previous algorithms such as the affine equivalence algorithm [4]
and SAEA [1].

The structured affine map could induce an efficient white-box implementa-
tion. In the BCH implementation [1], the structured affine mapping was used
as an input encoding to resist known attacks. Baek et al. expected that their
implementation is secure against a cryptanalysis using SAEA. In this paper, we
showed that the overall work factor of SAEA can be significantly reduced. As
a result, our cryptanalysis on the BCH implementation efficiently extracted the
round key with low complexity, 232, 233, and 234 for n = 128, 256, and 384,
respectively.
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Abstract. We investigate the cost of Grover’s quantum search algo-
rithm when used in the context of pre-image attacks on the SHA-2 and
SHA-3 families of hash functions. Our cost model assumes that the attack
is run on a surface code based fault-tolerant quantum computer. Our esti-
mates rely on a time-area metric that costs the number of logical qubits
times the depth of the circuit in units of surface code cycles. As a surface
code cycle involves a significant classical processing stage, our cost esti-
mates allow for crude, but direct, comparisons of classical and quantum
algorithms.

We exhibit a circuit for a pre-image attack on SHA-256 that is approx-
imately 2153.8 surface code cycles deep and requires approximately 212.6

logical qubits. This yields an overall cost of 2166.4 logical-qubit-cycles.
Likewise we exhibit a SHA3-256 circuit that is approximately 2146.5 sur-
face code cycles deep and requires approximately 220 logical qubits for
a total cost of, again, 2166.5 logical-qubit-cycles. Both attacks require on
the order of 2128 queries in a quantum black-box model, hence our results
suggest that executing these attacks may be as much as 275 billion times
more expensive than one would expect from the simple query analysis.

Keywords: Post-quantum cryptography · Hash functions · Pre-image
attacks · Symmetric cryptographic primitives

1 Introduction

Two quantum algorithms threaten to dramatically reduce the security of cur-
rently deployed cryptosystems: Shor’s algorithm solves the abelian hidden sub-
group problem in polynomial time [1,2], and Grover’s algorithm provides a
quadratic improvement in the number of queries needed to solve black-box search
problems [3–5].
c© Springer International Publishing AG 2017
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Efficient quantum algorithms for integer factorization, finite field discrete log-
arithms, and elliptic curve discrete logarithms can all be constructed by reduc-
tion to the abelian hidden subgroup problem. As such, cryptosystems based on
these problems can not be considered secure in a post-quantum environment.
Diffie-Hellman key exchange, RSA encryption, and RSA signatures will all need
to be replaced before quantum computers are available. Some standards bodies
have already begun discussions about transitioning to new public key crypto-
graphic primitives [6,7].

The situation is less dire for hash functions and symmetric ciphers. In a
pre-quantum setting, a cryptographic primitive that relies on the hardness of
inverting a one-way function is said to offer k-bit security if inverting the function
is expected to take N = 2k evaluations of the function. An exhaustive search
that is expected to take O(N) queries with classical hardware can be performed
with Θ(

√
N) queries using Grover’s algorithm on quantum hardware. Hence,

Grover’s algorithm could be said to reduce the bit-security of such primitives
by half; one might say that a 128-bit pre-quantum primitive offers only 64-bit
security in a post-quantum setting.

A conservative defense against quantum search is to double the security para-
meter (e.g. the key length of a cipher, or the output length of a hash function).
However, this does not mean that the true cost of Grover’s algorithm should
be ignored. A cryptanalyst may want to know the cost of an attack even if it
is clearly infeasible, and users of cryptosystems may want to know the minimal
security parameter that provides “adequate protection” in the sense of [8–10].

In the context of pre-image search on a hash function, the cost of a pre-
quantum attack is given as a number of invocations of the hash function. If
one assumes that quantum queries have the same cost as classical queries, then
the query model provides a reasonable comparison between quantum and clas-
sical search. However, realistic designs for large quantum computers call this
assumption into question.

The main difficulty is that the coherence time of physical qubits is finite.
Noise in the physical system will eventually corrupt the state of any long com-
putation. If the physical error rate can be suppressed below some threshold, then
logical qubits with arbitrarily long coherence times can be created using quan-
tum error correcting codes. Preserving the state of a logical qubit is an active
process that requires periodic evaluation of an error detection and correction
routine. This is true even if no logical gates are performed on the logical qubit.
Hence the classical processing required to evaluate a quantum circuit will grow
in proportion to both the depth of the circuit and the number of logical qubits
on which it acts.

We suggest that a cost model that facilitates direct comparisons of clas-
sical and quantum algorithms should take the classical computation required
for quantum error correction into consideration. Clearly such estimates will be
architecture dependent, and advances in quantum computing could invalidate
architectural assumptions.
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To better understand the impact of costing quantum error correction, we
present an estimate of the cost of pre-image attacks on SHA-2 and SHA-3 assum-
ing a quantum architecture based on the surface code with a logical Clifford+T
gate set. We execute the following procedure for each hash function. First, we
implement the function as a reversible circuit1 over the Clifford+T gate set.
We use a quantum circuit optimization tool, “T -par” [11], to minimize the cir-
cuit’s T -count and T -depth2. With the optimized circuit in hand we estimate
the additional overhead of fault tolerant computation. In particular, we estimate
the size of the circuits needed to produce the ancillary states that are consumed
by T -gates.

Grassl et al. presented a logical-layer quantum circuit for applying Grover’s
algorithm to AES key recovery [12]. Separately, Fowler et al. have estimated
the physical resources required to implement Shor’s factoring algorithm on a
surface code based quantum computer [13]. Our resource estimates combine
elements of both of these analyses. We focus on the number of logical qubits in
the fault-tolerant circuit and the overall depth of the circuit in units of surface
code cycles. While our cost model ties us to a particular quantum architecture,
we segment our analysis into several layers so that the impact of a different
assumptions at any particular level can be readily evaluated. We illustrate our
method schematically in Fig. 2.

The structure of this article reflects our workflow. In Sect. 2 we state the
problem of pre-image search using Grover’s algorithm. Section 3 introduces our
framework for computing costs, and Sect. 4 applies these principles to compute
the intrinsic cost of performing Grover search. Sections 5 and 6 detail our proce-
dure for generating reversible circuits for SHA-256 and SHA3-256 respectively.
In Sect. 7 we embed these reversible implementations into a surface code, and
estimate the required physical resources. We summarize our results and propose
avenues of future research in Sect. 8.

2 Pre-image Search via Grover’s Algorithm

Let f : {0, 1}k → {0, 1}k be an efficiently function. For a fixed y ∈ {0, 1}k, the
value x such that f(x) = y is called a pre-image of y. In the worst case, the
only way to compute a pre-image of y is to systematically search the space of all
inputs to f . A function that must be searched in this way is known as a one-way
function. A one-way function that is bijective is a one-way permutation3.

Given a one-way permutation f , one might ask for the most cost effective way
of computing pre-images. With a classical computer one must query f on the

1 Reversibility is necessary for the hash function to be useful as a subroutine in Grover
search.

2 The logical T gate is significantly more expensive than Clifford group gates on the
surface code.

3 A hash function that has been restricted to length k inputs is expected to behave
roughly like a one-way permutation. The degree to which it fails to be injective should
not significantly affect the expected probability of success for Grover’s algorithm.
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Fig. 1. Grover searching with an oracle for
f : {0, 1}k → {0, 1}k.

Fig. 2. Analyzing Grover’s
algorithm.

order of 2k times before finding a pre-image. By contrast, a quantum computer
can perform the same search with 2k/2 queries to f by using Grover’s algorithm
[3]. Of course, counting only the queries to f neglects the potentially significant
overhead involved in executing f on a quantum computer.

Figure 1 gives a high-level description of Grover’s algorithm. The algorithm
makes �π

4 2k/2� calls to G, the Grover iteration. The Grover iteration has two
subroutines. The first, Ug, implements the predicate g : {0, 1}k → {0, 1} that
maps x to 1 if and only if f(x) = y. Each call to Ug involves two calls to a
reversible implementation of f and one call to a comparison circuit that checks
whether f(x) = y.

The second subroutine in G implements the transformation 2|0〉〈0|−I and is
called the diffusion operator. The diffusion operator is responsible for amplifying
the probability that a measurement of the output register would yield x such
that f(x) = y. As it involves only single-qubit gates and a one k-fold controlled-
NOT, the cost of the diffusion operator is expected to be small compared with
that of Ug.

3 A Cost Metric for Quantum Computation

Without significant future effort, the classical processing will almost cer-
tainly limit the speed of any quantum computer, particularly one with
intrinsically fast quantum gates.

Fowler–Whiteside–Hollenberg [14]

The majority of the overhead for quantum computation, under realistic
assumptions about quantum computing architectures, comes from error detec-
tion and correction. There are a number of error correction methods in the
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literature, however the most promising, from the perspective of experimental
realizability, is the surface code [15].

The surface code allows for the detection and correction of errors on a two-
dimensional array of nearest-neighbor coupled physical qubits. A distance d sur-
face code encodes a single logical qubit into an n × n array of physical qubits
(n = 2d − 1). A classical error detection algorithm must be run at regular inter-
vals in order to track the propagation of physical qubit errors and, ultimately, to
prevent logical errors. Every surface code cycle involves some number of one- and
two-qubit physical quantum gates, physical qubit measurements, and classical
processing to detect and correct errors.

The need for classical processing allows us to make a partial comparison
between the cost of classical and quantum algorithms for any classical cost met-
ric. The fact that quantum system engineers consider classical processing to be a
bottleneck for quantum computation [14] suggests that an analysis of the classi-
cal processing may serve as a good proxy for an analysis of the cost of quantum
computation itself.

Performing this analysis requires that we make a number of assumptions
about how quantum computers will be built, not least of which is the assumption
that quantum computers will require error correcting codes, and that the surface
code will be the code of choice.

Assumption 1. The resources required for any large quantum computation are
well approximated by the resources required for that computation on a surface
code based quantum computer.

Fowler et al. [16] give an algorithm for the classical processing required by
the surface code. A timing analysis of this algorithm was given in [14], and a
parallel variant was presented in [17]. Under a number of physically motivated
assumptions, the algorithm of [17] runs in constant time per round of error
detection. It assumes a quantum computer architecture consisting of an L × L
grid of logical qubits overlaid by a constant density mesh of classical computing
units. More specifically, the proposed design involves one ASIC (application-
specific integrated circuit) for each block of Ca×Ca physical qubits. These ASICs
are capable of nearest-neighbor communication, and the number of rounds of
communication between neighbors is bounded with respect to the error model.
The number of ASICs scales linearly with the number of logical qubits, but the
constant Ca, and the amount of computation each ASIC performs per time step,
is independent of the number of logical qubits.

Each logical qubit is a square grid of n × n physical qubits where n depends
on the length of the computation and the required level of error suppression.
We are able to estimate n directly (Sect. 7). Following [14] we will assume that
Ca = n. The number of classical computing units we estimate is therefore equal
to the number of logical qubits in the circuit. Note that assuming Ca = n
introduces a dependence between Ca and the length of the computation, but
we will ignore this detail. Since error correction must be performed on the time
scale of hundreds of nanoseconds (200 ns in [15]), we do not expect it to be
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practical to make Ca much larger than n. Furthermore, while n depends on the
length of the computation it will always lie in a fairly narrow range. A value
of n < 100 is sufficient even for the extremely long computations we consider.
The comparatively short modular exponentiation computations in [15] require
n > 31. As long as it is not practical to take Ca much larger than 100, the
assumption that Ca = n will introduce only a small error in our analysis.

Assumption 2. The classical error correction routine for the surface code on
an L×L grid of logical qubits requires an L×L mesh of classical processors (i.e.
Ca = n).

The algorithm that each ASIC performs is non-trivial and estimating its exact
runtime depends on the physical qubit error model. In [14] evidence was pre-
sented that the error correction algorithm requires O(C2

a) operations, on average,
under a reasonable error model. This work considered a single qubit in isolation,
and some additional overhead would be incurred by communication between
ASICs. A heuristic argument is given in [17] that the communication overhead
is also independent of L, i.e. that the radius of communication for each proces-
sor depends on the noise model but not on the number of logical qubits in the
circuit.

Assumption 3. Each ASIC performs a constant number of operations per sur-
face code cycle.

Finally we (arbitrarily) peg the cost of a surface code cycle to the cost of
a hash function invocation. If we assume, as in [15], that a surface code cycle
time on the order of 100 ns is achievable, then we are assuming that each logical
qubit is equipped with an ASIC capable of performing several million hashes per
second. This would be on the very low end of what is commercially available for
Bitcoin mining today [18], however the ASICs used for Bitcoin have very large
circuit footprints. One could alternatively justify this assumption by noting that
typical hash functions require ≈10 cycles per byte on commercial desktop CPUs
[19]. This translates to approximately ≈1000 cycles per hash function invocation.
Since commercial CPUs operate at around 4 GHz, this again translates to a few
million hashes per second.

Assumption 4. The temporal cost of one surface code cycle is equal to the
temporal cost of one hash function invocation.

Combining Assumptions 1, 2, and 4 we arrive at the following metric for
comparing the costs of classical and quantum computations.

Cost Metric 1. The cost of a quantum computation involving � logical qubits
for a duration of σ surface code cycles is equal to the cost of classically evaluating
a hash function � · σ times. Equivalently we will say that one logical qubit cycle
is equivalent to one hash function invocation.

We will use the term “cost” to refer either to logical qubit cycles or to hash
function invocations.
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4 Intrinsic Cost of Grover Search

Suppose there is polynomial overhead per Grover iteration, i.e. Θ(2k/2) Grover
iterations cost ≈ kv2k/2 logical qubit cycles for some real v independent of k.
Then an adversary who is willing to execute an algorithm of cost 2C can use
Grover’s algorithm to search a space of k bits provided that

k/2 + v log2(k) ≤ C. (1)

We define the overhead of the circuit as v and the advantage of the circuit
as k/C. Note that if we view k as a function of v and C then for any fixed v
we have limC→∞ k(v, C)/C = 2, i.e. asymptotically, Grover’s algorithm provides
a quadratic advantage over classical search. However, here we are interested in
non-asymptotic advantages.

When costing error correction, we must have v ≥ 1 purely from the space
required to represent the input. However, we should not expect the temporal cost
to be independent of k. Even if the temporal cost is dominated by the k-fold
controlled-NOT gate, the Clifford+T depth of the circuit will be at least log2(k)
[20]. Hence, v ≥ 1.375 for k ≤ 256. This still neglects some spatial overhead
required for magic state distillation, but v = 1.375 may be used to derive strict
upper bounds, in our cost model, for the advantage of Grover search.

In practice the overhead will be much greater. The AES-256 circuit from
[12] has depth 130929 and requires 1336 logical qubits. This yields overhead of
v ≈ 3.423 from the reversible layer alone.

Substituting z = k ln 2
2v , the case of equality in Eq. 1 is

zez =
2C/v ln 2

2v
=⇒ k(v, C) =

2v

ln(2)
· W

(
2C/v ln 2

2v

)
(2)

where W is the Lambert W-function. Table 4 in AppendixA gives the advantage
of quantum search as a function of its cost C and overhead v; k is computed
using Eq. 2.

5 Reversible Implementation of a SHA-256 Oracle

The Secure Hash Algorithm 2 (SHA-2) [21] is a family of collision resistant cryp-
tographic hash functions. There are a total of six functions in the SHA-2 family:
SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224 and SHA-512/256. There
are currently no known classical pre-image attacks against any of the SHA-2 algo-
rithms which are faster then brute force. We will focus on SHA-256, a commonly
used variant, and will assume a message size of one block (512 bits).

First the message block is stretched using Algorithm 2 and the result is stored
in W. The internal state is then initialized using a set of constants. The round
function is then run 64 times, each run using a single entry of W to modify the
internal state. The round function for SHA-256 is shown in Algorithm1.
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Algorithm 1. SHA-256. All variables are 32-bit words.
1: for i=0 to 63 do
2: Σ1 ← (E ≫ 6) ⊕ (E ≫ 11) ⊕ (E ≫ 25)
3: Ch ← (E ∧ F) ⊕ (¬E ∧ G)
4: t1 ← H + Σ1 + Ch + K[i] + W[i]
5: Σ0 ← (A ≫ 2) ⊕ (A ≫ 13) ⊕ (A ≫ 22)
6: Maj ← (A ∧ B) ⊕ (A ∧ C) ⊕ (B ∧ C)
7: t2 ← Σ0 + Maj
8: H ← G
9: G ← F

10: F ← E
11: E ← D + t1
12: D ← C
13: C ← B
14: B ← A
15: A ← t1 + t2
16: end for

Algorithm 2. SHA-256 Stretch. All variables are 32-bit words.
1: for i = 16 to 63 do
2: σ0 ← (Wi−15 ≫ 7) ⊕ (Wi−15 ≫ 18) ⊕ (Wi−15 � 3)
3: σ1 ← (Wi−2 ≫ 17) ⊕ (Wi−2 ≫ 19) ⊕ (Wi−2 � 10)
4: w[i] ← Wi−16 + σ0 + Wi−7 + σ1

5: end for

5.1 Reversible Implementation

Our implementation of the SHA-256 algorithm as a reversible circuit is simi-
lar to the one presented in [22] (with the addition of the stretching function).
Each round can be performed fully reversibly (with access to the input) so no
additional space is accumulated as rounds are performed. The in-place adders
shown in the circuit are described in [23]. The adders perform the function
(a, b, 0) → (a, a+ b, 0) where the 0 is a single ancilla bit used by the adder. Since
the Σ blocks use only rotate and XOR operations, they are constructed using
CNOT gates exclusively.

Maj is the bitwise majority function. The majority function is computed using
a CNOT gate and two Toffoli gates as show in Fig. 4.

The Ch function is ab ⊕ ¬ac which can be rewritten as a(b ⊕ c) ⊕ c. This
requires a single Toffoli gate as shown in Fig. 5.

There are a few options for constructing the round circuit. For example if
space is available some of the additions can be performed in parallel, and the
cleanup of the Σ, Ch, and Maj functions can be neglected if it is desirable to
exchange space for a lower gate count. We select the round implementation
shown in Fig. 3.
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Fig. 3. SHA-256 round.

a • • a

b • • a ⊕ b
c • c

0 ab ⊕ ac ⊕ bc

Fig. 4. Majority circuit implementa-
tion. The a ⊕ b line will be returned
to b when the inverse circuit is applied.

a • a
b • b
c • • b ⊕ c

0 ab ⊕ ¬ac

Fig. 5. Ch circuit implementation. This
circuit is applied bitwise to input of
each Ch block.

5.2 Quantum Implementation

For the quantum implementation we converted the Toffoli-CNOT-NOT circuit
(Fig. 3) discussed above into a Clifford+T circuit. To expand the Toffoli gates
we used the T -depth 3 Toffoli reported in [24]. T -par was then used to optimize
a single round. The results are shown in Table 1. Due to the construction of

Table 1. T -par optimization results for a single round of SHA-256, one iteration of the
stretch algorithm and full SHA-256. Note that 64 iterations of the round function and 48
iterations of the stretch function are needed. The stretch function does not contribute
to overall depth since it can be performed in parallel with the rounds function. No X
gates are used so an X column is not included. The circuit uses 2402 total logical qubits.

T/T † P/P † Z H CNOT T -Depth Depth

Round 5278 0 0 1508 6800 2262 8262

Round (Opt.) 3020 931 96 1192 63501 1100 12980

Stretch 1329 0 0 372 2064 558 2331

Stretch (Opt.) 744 279 0 372 3021 372 2907

SHA-256 401584 0 0 114368 534272 171552 528768

SHA-256 (Opt.) 228992 72976 6144 94144 4209072 70400 830720
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the adders every Toffoli gate shares two controls with another Toffoli gate. This
allows T -par to remove a large number of T -gates (see [20]).

Observing that the depth of the optimized SHA-256 circuit, 830720, is
approximately 2562.458, and likewise that it requires 2402 ≈ 2561.404 logical
qubits, the overhead, from the reversible layer alone, is v ≈ 3.862.

6 Reversible Implementation of a SHA3-256 Oracle

The Secure Hash Algorithm 3 standard [25] defines six individual hash algo-
rithms, based on the length of their output in the case of SHA3-224, SHA3-256,
SHA3-384 and SHA3-512, or their security strength in the case of SHAKE-128
and SHAKE-256. In contrast to the SHA-2 standard, each of the SHA-3 algo-
rithms requires effectively the same resources to implement reversibly, owing to
their definition as cryptographic sponge functions [26]. Analogous to a sponge,
the sponge construction first pads the input to a multiple of the given rate
constant then absorbs the padded message in chunks, applying a permutation to
the state after each chunk, before “squeezing” out a hash value of desired length.
Each of the SHA-3 algorithms use the same underlying permutation, but vary
the chunk size, padding and output lengths.

The full SHA-3 algorithm is given in pseudocode in Algorithm3. Each
instance results from the sponge construction with permutation Keccak-
p[1600, 24] described below, padding function pad10∗1(x,m) which produces a
length −m mod x string of the form (as a regular expression) 10∗1, and rate
1600−2k. The algorithm first pads the input message M with the string 0110∗1
to a total length some multiple of 1600 − 2k. It then splits up this string into
length 1600 − 2k segments and absorbs each of these segments into the current
hash value S then applies the Keccak-p[1600, 24] permutation. Finally the hash
value is truncated to a length k string.

The SHAKE algorithms are obtained by padding the input M with a string
of the form 111110∗1, but otherwise proceed identically to SHA-3.

Assuming the pre-image has length k, the padded message P has length
exactly 1600 − 2k and hence n = 1 for every value of k, so Algorithm 3 reduces
to one application of Keccak-p[1600, 24].

The Keccak Permutation. The permutation underlying the sponge construc-
tion in each SHA-3 variant is an instance of a family of functions, denoted

Algorithm 3. SHA3-k(M).
1: P ← M01(pad10∗1(1600 − 2k, |M |)
2: Divide P into length 1600 − 2k strings P1, P2, . . . , Pn

3: S ← 01600

4: for i=1 to n do
5: S ←Keccak-p[1600, 24](S ⊕ (Pi0

2k))
6: end for
7: return S[0, c − 1]
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θ : A′[x][y][z] ←A[x][y][z] ⊕
y′∈Z4

A[x − 1][y′][z] ⊕ A[x + 1][y′][z − 1] (3)

ρ : A′[x][y][z] ←A[x][y][z + c(x, y)] (4)

π : A′[y][2x + 3y][z] ←A[x][y][z] (5)

χ : A′[x][y][z] ←A[x][y][z] ⊕ A[x + 2][y][z] ⊕ A[x + 1][y][z])A[x + 2][y][z] (6)

ιi : A′[x][y][z] ←A[x][y][z] ⊕ RC(i)[x][y][z] (7)

Fig. 6. The component functions of Ri

Keccak-p[b, r]. The Keccak permutation accepts a 5 by 5 array of lanes, bit-
strings of length w = 2l for some l where b = 25w, and performs r rounds of an
invertible operation on this array. In particular, round i is defined, for 12+2l−r
up to 12 + 2l − 1, as Ri = ιi ◦ χ ◦ π ◦ ρ ◦ θ, where the component functions are
described in Fig. 7. Note that array indices are taken mod 5 and A,A′ denote the
input and output arrays, respectively. The rotation array c and round constants
RC(i) are pre-computed values.

The Keccak-p[b, r] permutation itself is defined as the composition of all r
rounds, indexed from 12 + 2l − r to 12 + 2l − 1. While any parameters could
potentially be used to define a hash function, only Keccak-p[1600, 24] is used
in the SHA-3 standard. Note that the lane size w in this case is 64 bits (Fig. 6).

6.1 Reversible Implementation

Given the large size of the input register for the instance used in SHA3-256
(1600 bits), we sought a space-efficient implementation as opposed to a more
straightforward implementation using Bennett’s method [27] which would add
an extra 1600 bits per round, to a total of 38400 bits. While this space usage could
be reduced by using pebble games [28], the number of iterations of Keccak-p
would drastically increase. Instead, we chose to perform each round in place by
utilizing the fact that each component function (θ, ρ, π, χ, ιi) is invertible. The
resulting circuit requires only a single temporary register the size of the input,
which is returned to the all-zero state at the end of each round.

A /
25w

θ

A

θ−1

| |
χ

χ ◦ π ◦ ρ ◦ θ(A)

χ−1

ιi Ri(A)

| /
25w θ(A)

π ◦ ρ
π ◦ ρ ◦ θ(A)

|

Fig. 7. Reversible circuit implementation for round i of Keccak-p.

Figure 7 shows our circuit layout for a given round of Keccak-p[b, r]. We
compute θ(A) into the ancilla register by a straightforward implementation of
(3), as binary addition (⊕) is implemented reversibly by the CNOT gate. The
implementation of θ−1 : |ψ〉|θ(A)〉 → |ψ ⊕ A〉|θ(A) is much less obvious – we
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adapted our implementation from the C++ library Keccak tools [29] with
minor modifications to remove temporary registers. To reduce the number of
unnecessary gates, we perform the ρ and π operations “in software” rather than
physically swapping bits. The χ and χ−1 operations are again straightforward
implementations of (6) and the inverse operation from Keccak tools, respec-
tively, using Toffoli gates to implement the binary multiplications. Finally the
addition of the round constant (ιi) is a sequence of at most 5 NOT gates, pre-
computed for each of the 24 individual rounds.

As a function of the lane width w, θ comprises 275w CNOT gates. The inverse
of θ is more difficult to assign a formula to, as it depends on some precomputed
constants – in particular, θ−1 is implemented using 125w·j CNOT gates, where j
is 170 for b = 1600. As ρ and π are implemented simply by re-indexing, they have
no logical cost. We implement χ using 50w additions and 25w multiplications,
giving 50w CNOT gates and 25w Toffoli gates in 5 parallel stages. Finally χ−1

requires 25w CNOT gates to copy the output back into the initial register,
then 60w CNOT and 30w Toffoli gates in 6 parallel stages. As the cost of ιi is
dependent on the round, we don’t give its per-round resources.

The final circuit comprises 3200 qubits, 85 NOT gates, 33269760 CNOT
gates and 84480 Toffoli gates. Additionally, the Toffoli gates are arranged in 264
parallel stages.

6.2 Quantum Implementation

As with the Clifford+T implementation of SHA-256, we used the T -depth 3
Toffoli reported in [24] to expand each Toffoli gate. Since the χ (and χ−1) trans-
formation is the only non-linear operation of Keccak-p[1600, 24], we applied
T -par just to the χ/χ−1 subcircuit to optimize T -count and depth. We used the
formally verified reversible circuit compiler ReVerC [30] to generate a machine
readable initial circuit for χ/χ−1 – while the ReVerC compiler performs some
space optimization [31], the straightforward manner in which we implemented
the circuit meant the compiled circuit coincided exactly with our analysis above.
The optimized results are reported in Table 2. Note that each algorithm in the

Table 2. Clifford+T resource counts for the Keccak-p[1600, 24] components, as well
as for the full oracle implementation of SHA3-256. ι gives the combined resource counts
for all 24 rounds of ιi. The circuit uses 3200 total logical qubits.

X P/P † T/T † H CNOT T -depth Depth

θ 0 0 0 0 17600 0 275

θ−1 0 0 0 0 1360000 0 25

χ 0 0 11200 3200 14400 15 55

χ−1 0 0 13440 3840 18880 18 66

ι 85 0 0 0 0 0 24

SHA3-256 85 0 591360 168960 33269760 792 10128

SHA3-256 (Opt.) 85 46080 499200 168960 34260480 432 11040
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SHA-3 family corresponds to one application of Keccak-p[1600, 24] for our pur-
poses, so the resources are identical for any output size.

As an illustration of the overhead for SHA3-256, our reversible SHA3-256
circuit, having depth 11040 ≈ 2561.679 and a logical qubit count of 3200 ≈
2561.455 yields v ≈ 3.134 at the reversible layer.

7 Fault-Tolerant Cost

The T gate is the most expensive in terms of the resources needed for imple-
menting a circuit fault-tolerantly in a surface code. Most known schemes imple-
ment the T gate using an auxiliary resource called a magic state. The latter is
usually prepared in a faulty manner, and purified to the desired fidelity via a
procedure called magic state distillation. Fault-tolerant magic state distilleries
(circuits for performing magic state distillation) require a substantial number of
logical qubits. In this section we estimate the additional resources required by
distilleries in the particular case of SHA-256 and SHA3-256.

Let T c
U denote the T -count of a circuit U (i.e., total number of logical T

gates), and let T d
U be the T -depth of the circuit. We denote by Tw

U = T c
U/T d

U

the T -width of the circuit (i.e., the number of logical T gates that can be done
in parallel on average for each layer of depth). Each T gate requires one logical
magic state of the form

|AL〉 :=
|0L〉 + eiπ/4 |1L〉√

2
(8)

for its implementation. For the entirety of U to run successfully, the magic states
|AL〉 have to be produced with an error rate no larger than pout = 1/T c

U .
The magic state distillation procedure is based on the following scheme. The

procedure starts with a physical magic state prepared with some failure prob-
ability pin. This faulty state is then injected into an error correcting code, and
then by performing a suitable distillation procedure on the output carrier qubits
of the encoded state a magic state with a smaller failure probability is distilled.
If this failure probability is still larger than the desired pout, the scheme uses
another layer of distillation, i.e. concatenates the first layer of distillation with a
second layer of distillation, and so forth. The failure probability thus decreases
exponentially.

In our case, we use the Reed-Muller 15-to-1 distillation scheme introduced
in [32]. Given a state injection error rate pin, the output error rate after a layer
of distillation can be made arbitrarily close to the ideal pdist = 35p3in provided
we ignore the logical errors that may appear during the distillation procedure
(those can be ignored if the distillation code uses logical qubits with high enough
distance). As pointed out in [33] logical errors do not need to be fully eliminated.
We also assume that the physical error rate per gate in the surface code, pg, is
approximately 10 times smaller than pin, i.e. pg = pin/10, as during the state
injection approximately 10 gates have to perform without a fault before error
protection is available (see [13] for more details).
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Algorithm 4. Estimating the required number of rounds of magic state distil-
lation and the corresponding distances of the concatenated codes
1: Input: ε, pin, pout, pg(= pin/10)
2: d ← empty list []
3: p ← pout

4: i ← 0
5: repeat
6: i ← i + 1
7: pi ← p

8: Find minimum di such that 192di(100pg)
di+1

2 < εpi
1+ε

9: p ← 3
√

pi/(35(1 + ε))
10: d.append(di)
11: until p > pin

12: Output: d = [d1, . . . , di]

We define ε so that εpdist represents the amount of logical error introduced,
so pout = (1 + ε)pdist. In the balanced case ε = 1 the logical circuit introduces
the same amount of errors as distillation eliminates. Algorithm4 [33] summarizes
the procedure for estimating the number of rounds of state distillation needed to
achieve a given output error rate, as well as the required minimum code distances
at each round. Note that d1 represents the distance of the surface code used in
the top layer of distillation (where by top we mean the initial copy of the Reed-
Muller circuit), d2 the distance of the surface code used in the next layer, and
so forth.

7.1 SHA-256

The T -count of our SHA-256 circuit is T c
SHA-256 = 228992 (see Table 1), and the

T -count of the k-fold controlled-NOT is T c
CNOT-k = 32k − 84 [12]. With k = 256,

we have T c
CNOT-256 = 8108 and the total T -count of the SHA-256 oracle Ug (of

Fig. 1) is

T c
Ug

= 2T c
SHA-256 + T c

CNOT-256 = 2 × 228992 + 8108 = 466092. (9)

The diffusion operator consists of Clifford gates and a (k − 1)-fold controlled-
NOT, hence its T -count is T c

CNOT-255 = 8076. The T -count of one Grover iteration
G is therefore

T c
G = T c

Ug
+ T c

CNOT-255 = 466092 + 8076 = 474168, (10)

and the T -count for the full Grover algorithm (let us call it GA) is

T c
GA = �π/4 × 2128� × 474168 ≈ 1.27 × 1044. (11)

For this T -count the output error rate for state distillation should be no greater
than pout = 1/T c

GA ≈ 7.89 × 10−45. Assuming a magic state injection error rate
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pin = 10−4, a per-gate error rate pg = 10−5, and choosing ε = 1, Algorithm 4
suggests 3 layers of distillation, with distances d1 = 33, d2 = 13 and d3 = 7.

The bottom layer of distillation occupies the largest footprint in the surface
code. Three layers of distillation consume Ndist = 16 × 15 × 15 = 3600 input
states in the process of generating a single |AL〉 state. These input states are
encoded on a distance d3 = 7 code that uses 2.5 × 1.25 × d23 ≈ 154 physical
qubits per logical qubit. The total footprint of the distillation circuit is then
Ndist × 154 ≈ 5.54 × 105 physical qubits. The round of distillation is completed
in 10d3 = 70 surface code cycles.

The middle layer of distillation requires a d2 = 13 surface code, for which a
logical qubit takes 2.5 × 1.25 × d22 ≈ 529 physical qubits. The total number of
physical qubits required in the second round is therefore 16×15×529 ≈ 1.27×105

physical qubits, with the round of distillation completed in 10d2 = 130 surface
code cycles.

The top layer of state distillation requires a d1 = 33 surface code, for which
a logical qubit takes 2.5× 1.25×d21 ≈ 3404 physical qubits. The total number of
physical qubits required in the top layer is therefore 16 × 3404 = 54464 physical
qubits, with the round of distillation completed in 10d1 = 330 surface code
cycles.

Note that the physical qubits required in the bottom layer of state distillation
can be reused in the middle and top layers. Therefore the total number of physical
qubits required for successfully distilling one purified |AL〉 state is ndist = 5.54×
105. The concatenated distillation scheme is performed in σdist = 70+130+330 =
530 surface code cycles. Since the middle layer of distillation has smaller footprint
than the bottom layer, distillation can potentially be pipelined to produce φ =
(5.54 × 105)/(1.27 × 105) ≈ 4 magic states in parallel. Assuming, as in [13], a
tsc = 200 ns time for a surface code cycle, a magic state distillery can therefore
produce 4 |AL〉 states every σdist × tsc ≈ 106µs. Generating the requisite T c

GA =
1.27×1044 magic states with a single distillery would take approximately tdist =
3.37 × 1039 s ≈ 1.06 × 1032 years.

We now compute the distance required to embed the entire algorithm in
a surface code. The number of Clifford gates in one iteration of G is roughly
8.76 × 106, so the full attack circuit performs around 2.34 × 1045 Clifford gates.
The overall error rate of the circuit should therefore be less than 4.27×10−46. To
compute the required distance, we seek the smallest d that satisfies the inequal-
ity [14] ( pin

0.0125

) d+1
2

< 4.27 × 10−46, (12)

and find this to be dSHA-256 = 43. The total number of physical qubits in the
Grover portion of the circuit is then 2402 × (2.5 × 1.25 × 432) = 1.39 × 107.

We can further estimate the number of cycles required to run the entire
algorithm, σGA. Consider a single iteration of G from Fig. 1. The T -count is
T c

GA = 1.27 × 1044 and the T -depth is T d
GA = 4.79 × 1043 for one iteration of

SHA-256, yielding Tw
G = T c

GA/T d
GA ≈ 3.
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Our SHA-256 circuit has NSHA-256 = 2402 logical qubits. Between sequential
T gates on any one qubit we will perform some number of Clifford operations.
These are mostly CNOT gates, which take 2 surface code cycles, and Hadamard
gates, which take a number of surface code cycles equal to the code distance [13].

Assuming the 8.76 × 106 Clifford gates in one Grover iteration are uniformly
distributed among the 2402 logical qubits, then we expect to perform 8.76 ×
106/(2402 × T d

G) ≈ 0.026 Clifford operations per qubit per layer of depth. As a
magic state distillery produces 4 magic states per 530 surface code cycles, we can
perform a single layer of T depth every 530 surface code cycles. We thus need only
a single distillery, Φ = 1. On average about 2% of the Cliffords are Hadamards,
and the remaining 98% are CNOTs. This implies that the expected number of
surface code cycles required to implement the 0.025 average number of Clifford
gates in a given layer of T depth is 2% × 0.025 × 43 + 98% × 0.025 × 2 = 0.071.
As this is significantly lower than 1, we conclude that performing the T gates
comprises the largest part of the implementation, while the qubits performing
the Clifford gates are idle most of the time. In conclusion, the total number of
cycles is determined solely by magic state production, i.e.

σGA = �π/4 × 2128� × 530 × (2T d
SHA-256) ≈ 2153.8.

As discussed in Sect. 3, the total cost of a quantum attack against SHA-256
equals the product of the total number of logical qubits (including the ones used
for magic state distillation) and the number of code cycles, which in our case
results in

(NSHA-256 + ΦNdist)σGA = (2402 + 1 × 3600) × 2153.8 ≈ 2166.4,

corresponding to an overhead factor of v = (166.4 − 128)/ log2(256) = 4.8.

7.2 SHA3-256

We perform a similar analysis for SHA3-256. We have T c
Ug

= 2 × 499200 + 32 ×
256− 84 = 1006508, and T c

G = 1006508+32× 255− 84 = 1014584, and thus the
full Grover algorithm takes T -count T c

GA = �π/4×2128�×1014584 ≈ 2.71×1044.
If we choose, like in the case of SHA-256, pin = 10−4, pg = 10−5, and ε = 1,
Algorithm 4 yields 3 layers of distillation with distances d1 = 33, d2 = 13, and
d3 = 7; these are identical to those of SHA-256. Thus, the distillation code
requires takes 3600 logical qubits (and 5.54 × 105 physical qubits), and in 530
cycles is able to produce roughly 4 magic states.

We compute the distance required to embed the entire algorithm in a surface
code. The total number of Cliffords in one iteration of G is roughly 6.90 × 107,
so the total number will be around 1.84 × 1046 operations. We thus need the
overall error rate to be less than 5.43 × 10−47, which by Eq. 12 yields a distance
dSHA3-256 = 44. The number of physical qubits is then 1.94 × 107.

Consider a single iteration of G from Fig. 1. T c
G = 1014584 and T d

SHA3-256 =
432, which yields Tw

G = 1014584/(2 × 432) = 1175. Above we figured we can
compute 4 magic states in 530 code cycles. Then, to compute 1175 magic states
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in the same number of cycles we will need roughly Φ = 294 distillation factories
working in parallel to keep up. This will increase the number of physical qubits
required for state distillation to 1.63 × 108. If we assume tsc = 200 ns cycle
time, generation of the full set of magic states will take 2.28 × 1037 s, or about
tdist = 7.23 × 1029 years.

Our SHA3-256 circuit uses NSHA3-256 = 3200 logical qubits. Assuming the
6.90 × 107 Clifford gates per Grover iteration are uniformly distributed among
the qubits, and between the 864 sequential T gates, we must be able to implement
6.90× 107/(3200× 864) ≈ 25 Clifford operations per qubit per layer of T -depth.
As the ratio of CNOTs to Hadamards is roughly 202 to 1, i.e. 99.5% of the
Cliffords are CNOTs and only 0.5% are Hadamards, the expected number of
surface code cycles required to implement the average of 25 Clifford gates in a
given layer of T depth is 25 × (0.005 × 44 + 0.995 × 2) ≈ 55. We have used just
enough ancilla factories to implement a single layer of T -depth in 530 cycles,
meaning that once again the limiting step in implementing this circuit is the
production of magic states. Hence, we can compute the total number of surface
code cycles required to implement SHA3-256 using just the T -depth:

σGA = �π/4 × 2128� × 530 × (2T d
SHA3-256) ≈ 1.22 × 1044 ≈ 2146.5.

The total cost of a quantum attack against SHA3-256 is then

(NSHA3-256 + ΦNdist)σGA = (3200 + 294 × 3600) × 2146.5 ≈ 2166.5,

or an overhead of v = (166.5 − 128)/ log2(256) = 4.81 (Table 3).

Table 3. Fault-tolerant resource counts for Grover search of SHA-256 and SHA3-256.

SHA-256 SHA3-256

Grover T -count 1.27 × 1044 2.71 × 1044

T -depth 3.76 × 1043 2.31 × 1041

Logical qubits 2402 3200

Surface code distance 43 44

Physical qubits 1.39 × 107 1.94 × 107

Distilleries Logical qubits per distillery 3600 3600

Number of distilleries 1 294

Surface code distances {33, 13, 7} {33, 13, 7}
Physical qubits 5.54 × 105 1.63 × 108

Total Logical qubits 212.6 220

Surface code cycles 2153.8 2146.5

Total cost 2166.4 2166.5
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8 Conclusions and Open Questions

We estimated the cost of a quantum pre-image attack on SHA-256 and SHA3-
256 cryptographic hash functions via Grover’s quantum searching algorithm. We
constructed reversible implementations of both SHA-256 and SHA3-256 crypto-
graphic hash functions, for which we optimized their corresponding T -count and
depth. We then estimated the required physical resources needed to run a brute
force Grover search on a fault-tolerant surface code based architecture.

We showed that attacking SHA-256 requires approximately 2153.8 surface
code cycles and that attacking SHA3-256 requires approximately 2146.5 surface
code cycles. For both SHA-256 and SHA3-256 we found that the total cost
when including the classical processing increases to approximately 2166 basic
operations.

Our estimates are by no means a lower bound, as they are based on a series
of assumptions. First, we optimized our T -count by optimizing each component
of the SHA oracle individually, which of course is not optimal. Dedicated opti-
mization schemes may achieve better results. Second, we considered a surface
code fault-tolerant implementation, as such a scheme looks the most promising
at present. However it may be the case that other quantum error correcting
schemes perform better. Finally, we considered an optimistic per-gate error rate
of about 10−5, which is the limit of current quantum hardware. This number will
probably be improved in the future. Improving any of the issues listed above will
certainly result in a better estimate and a lower number of operations, however
the decrease in the number of bits of security will likely be limited.

Acknowledgments. We acknowledge support from NSERC and CIFAR. IQC and PI
are supported in part by the Government of Canada and the Province of Ontario.

A Tables

(See Tables 4 and 5).

Table 4. The advantage, k/C, of a quantum pre-image search that can be performed
for cost 2C = ka2k/2. The entries less than 1 correspond to a regime where quantum
search is strictly worse than classical search.

k(a,C)
C

C

16 32 48 64 80 96 112 128

a 0 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

1 1.38 1.63 1.73 1.78 1.81 1.84 1.86 1.88

2 1.00 1.31 1.48 1.58 1.64 1.69 1.72 1.75

3 0.69 1.03 1.25 1.39 1.48 1.54 1.60 1.63

4 0.44 0.81 1.04 1.20 1.33 1.41 1.47 1.52

5 0.38 0.63 0.88 1.05 1.18 1.27 1.35 1.41
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Table 5. The k for which the classical and quantum search costs are equal after
accounting for the ka overhead for quantum search.

a 1 2 3 4 5

k 5 16 30 44 59

B Parallel quantum search

Classical search is easily parallelized by distributing the 2k bitstrings among 2t

processors. Each processor fixes the first t bits of its input to a unique string and
sequentially evaluates every setting of the remaining k − t bits. Since our cost
metric counts only the number of invocations of g, the cost of parallel classical
search is 2k for all t. If one is more concerned with time (i.e. the number of
sequential invocations) than with area, or vice versa, it may be more useful to
report the cost as (T,A). Or, in this case, (2k−t, 2t).

Quantum computation has a different time/area trade-off curve. In particu-
lar, parallel quantum strategies have strictly greater cost than sequential quan-
tum search. Consider sequential quantum search with cost C(1) = (CT , CA) =
(ka2k/2, kb). Parallelizing this algorithm across 2t quantum processors reduces
the temporal cost per processor by a factor of 2t/2 and increases the area by
a factor of 2t. Fixing t bits of the input does not change the overhead of the
Grover iteration, so the cost for parallel quantum search on 2t processors is
C(2t) = (2−t/2CT , 2tCA) = (ka2(k−t)/2, kb2t).
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Abstract. In this paper we consider the simplest possible construction
of PMAC from a permutation. PMAC-type schemes have been usually
constructed from a tweakable blockcipher (TBC). Regarding TBCs, there
have been research directions from (1) to (2) and from (1) to (3) described
as follows. Here, EK′ : {0, 1}n → {0, 1}n is a blockcipher with a key K′,
P : {0, 1}n → {0, 1}n is a permutation, hK is a hash function of a uniform
and almost XOR universal family from some tweak space T W to {0, 1}n,
tw ∈ T W is a tweak, and x ∈ {0, 1}n is an input to a TBC.
(1) Liskov et al. proposed a blockcipher-based TBC defined as (tw, x) �→

hK(tw)⊕EK′(hK(tw)⊕x). They proved that this scheme is a secure
tweakable SPRP (Strong Pseudo-Random Permutation) up to the
birthday bound, assuming EK′ is a secure SPRP.

(2) Kurosawa eliminated EK′ from Liskov et al.’s TBC, where it is
replaced with a permutation. This scheme is called Tweakable Even-
Mansour (TEM), defined as (tw, x) �→ hK(tw) ⊕ P (hK(tw) ⊕ x). He
proved that TEM is a secure tweakable SPRP up to the birthday
bound, assuming P is a public random permutation to which every-
one can access. Therefore, one can construct a permutation-based
PMAC by incorporating TEM with PMAC.

(3) Rogaway eliminated the output masking. The resultant scheme is
called XE, defined as (tw, x) �→ EK′(hK(tw) ⊕ x). He proved that
XE is a secure tweakable PRP (Pseudo-Random Permutation) up to
the birthday bound, assuming EK′ is a secure PRP. Indeed the XE-
style constructions have been employed in almost all blockcipher-
based PMAC-type schemes.

From these research directions, it is quite natural to consider the scheme
defined as (tw, x) �→ P (hK(tw) ⊕ x). We call the scheme XP (Xor-
Permutation). From TEM to XP, the output masking is eliminated, and
from XE to XP, the keyed blockcipher is eliminated, where it is replaced
with a permutation. However, XP is not a secure tweakable (S)PRP,
since the offset hK(tw) can be obtained by inverting the underlying per-
mutation from the output of XP. The next question is to find a secure
TBC-based cryptographic scheme, incorporating XP with it instead of a
TBC. We prove that incorporating XP with PMAC and truncating some

c© Springer International Publishing AG 2017
R. Avanzi and H. Heys (Eds.): SAC 2016, LNCS 10532, pp. 341–359, 2017.
https://doi.org/10.1007/978-3-319-69453-5_19
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bits of XP at the last block of PMAC, the resultant scheme becomes a
secure pseudorandom function up to the birthday bound, assuming P is
a public random permutation.

Keywords: Tweakable Even-Mansour · XE · Output masking ·
PMAC · PRF · Coefficient H technique

1 Introduction

Simplification of Blockcipher Construction. Designing a cryptographic
scheme with minimal components is a main theme in cryptographic research
over the last thirty years. Even and Mansour [8,9] addressed this problem with
respect to blockcipher design in 1991. They were motivated by DESX proposed
by Rivest in 1984. DESX was designed to protect DES against exhaustive search
attacks by XORing two independent prewhitening and postwhitening keys to the
plaintext and ciphertext, respectively. The Even-Mansour (EM) scheme used
such whitening keys but eliminated the keyed blockcipher, where it is replaced
with a public random permutation. The constructions of DESX and EM are
shown in Fig. 1, where EK′ : {0, 1}n → {0, 1}n is a blockcipher with a key K ′,
P : {0, 1}n → {0, 1}n is a permutation, x is the input, and y is the output (Note
that hereafter, we use these notations).

Dunkelman et al. [7] considered the minimal construction for EM. They
showed that the two-key EM is not minimal in the sense that it can be fur-
ther simplified into a single-key variant, i.e., K1 = K2, which has exactly the
same provable security.

Tweakable Blockcipher Design. The same research direction has been done
in the area of tweakable blockcipher (TBC) design. TBCs are a generalization
of traditional blockciphers, which have been formalized by Liskov et al. [14,15].
A TBC takes, in addition to the usual inputs (message and key), an extra input
for performing rekeying efficiently. This input is called tweak.

E

x

K’

y

K1

K2

DESX

P

x

y

K1

K2

EM

eliminating 
blockcipher’s key

Fig. 1. Blockciphers: DESX and EM
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E
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(3) eliminating
blockcipher’s key

Fig. 2. Tweakable blockciphers: LRW, TEM, XE and our target: XP

Liskov et al. [14,15] proposed the so-called LRW that is based on a block-
cipher and a uniform and almost XOR-universal (AXU) family of functions
{hK}K∈Kh

indexed by key set Kh from tweak set T W to {0, 1}n. In this scheme,
the underlying blockcipher is sandwiched between two maskings of offset hK(tw).
This construction is shown in the top left part of Fig. 2, where tw ∈ T W is
a tweak and (K,K ′) is a key. They proved that LRW is a secure tweakable
SPRP (Strong Pseudo-Random Permutation) up to the birthday bound, i.e.,
2n/2 adversarial queries, assuming EK′ is a secure SPRP.

Similar to the research direction from DESX to EM, Kurosawa [12,13] elim-
inated the keyed blockcipher, where it is replaced with a permutation. This
scheme is called tweakable Even-Mansour (TEM) [6], which is shown in the top
right part of Fig. 2. He proved that TEM is a secure tweakable SPRP up to the
birthday bound, assuming the underlying permutation is a public random per-
mutation [12,13]. The research direction from LRW to TEM is shown in Fig. 2
cited as (1).

Eliminating Output Masking. In LRW, there are three components, the
input masking, the output masking, and the keyed blockcipher. Therefore,
besides the elimination of the keyed blockcipher, it is natural to consider the
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Fig. 3. PMAC using ˜E

elimination of the input masking or output masking. Regarding this research
topic, Rogaway [18] showed that eliminating the output masking of LRW, the
resultant scheme becomes a secure tweakable PRP (Pseudo-Random Permuta-
tion). This scheme is called XE, which is shown in the bottom left part of Fig. 2.
Note that eliminating the input masking of LRW, the resultant scheme is not a
secure tweakable PRP, since the linearity of the offsets appears in the outputs
of this scheme. Therefore, regarding the elimination of a masking, XE has a
minimal construction with tweakable PRP-security. The research direction from
LRW to XE is shown in Fig. 2 cited as (2).

Main Question. From Fig. 2, it is quite natural to consider the research direc-
tions (3) and (4), both of which attain at the scheme shown in the bottom right
part. The direction (3) eliminates the keyed blockcipher, where it is replaced
with a permutation, and the direction (4) eliminates the output masking of
TEM. We call the target scheme XP (Xor-Permutation). However XP is not
a secure tweakable (S)PRP, since the offset can be obtained by inverting the
underlying permutation from the output of XP. Therefore the next question is
naturally arisen: can we securely incorporate XP with a cryptographic scheme?

Our Result. In this paper we consider PMAC [3,18] that is a TBC-based
message authentication code (MAC) and is a main application of XE. Indeed
almost all blockcipher-based PMAC-type schemes such as [3,18,21] use the XE-
type schemes. The PMAC construction is shown in Fig. 3, where the tweak space
is defined as T W := N×{0, 1, 2}, ˜EK : T W ×{0, 1}n → {0, 1}n is a TBC having
a key K, M1,M2, . . . ,Ml are message blocks with |Mi| = n (i = 1, . . . , l−1) and
|Ml| ≤ n, and (1, 0), (2, 0), . . . , (l − 1, 0), (l − 1, 1), (l − 1, 2) ∈ T W are tweaks.
In this construction, if |Ml| = n, then the tweak (l − 1, 1) is used, and else if
|Ml| < n, then 1 and zero strings are appended to Ml and the tweak (l − 1, 2) is
used.
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Note that incorporating XP with PMAC, the resultant scheme does not
become a secure PRF (Pseudo-Random Function), since the offset of XP at
the last block can be obtained by inverting the underlying permutation from the
output. In order to avoid this attack, we consider PMAC with output truncation.
The resultant construction is shown in Fig. 4. We prove that truncating n − t
bits (i.e., the tag length is t bit), it is a secure PRF up to min{2n−t/t, 2n/2}
permutation calls by adversarial queries, assuming the underlying permutation
is a public random permutation. As a result, setting t = n/2 − log2(n/2), it
becomes a secure PRF up to the birthday bound.

In addition to the theoretical result, we discuss practical benefit of the
scheme. It should be noted that the advantage of XP over TEM would be similar
to that of XE over LRW, however, the advantage has not been thoroughly dis-
cussed so far. In the previous work, Rogaway mentioned that XE is slightly more
efficient than LRW because some XOR instructions/gates can be reduced [18]. In
this paper, we show that the benefit can be even more significant. That is because
the elimination of the output masking relaxes data dependency and enables fur-
ther optimization. In particular, an architectural optimization enabled by the
relaxed data dependency is discussed in detail for hardware implementation.

Organization. We start by giving notations and security definitions in Sect. 2.
In Sect. 3, we give the description of PMAC with XP, and the PRF-security
bound. In Sect. 4, we give the security proof. Finally, we discuss the benefit of
PMAC with XP over PMAC with TEM with respect to hardware implementa-
tion, and describe a future work from this paper in Sect. 5.
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2 Notation and Security Definition

Notation. Let {0, 1}∗ be the set of all bit strings, for an integer n ≥ 0, {0, 1}n

the set of n-bit strings, {0, 1}≤n := ∪n
i=0{0, 1}i the set of bit strings whose bit

lengths are n bit or less, 0n the bit string of n-bit zeroes, and λ the empty string.
For integers 0 ≤ i ≤ n and a bit string x ∈ {0, 1}n, we denote by [x]i the least
significant i-bit string of x and by [x]i the most significant i-bit string of x. For

a finite set X, x
$←− X means that an element is randomly drawn from X and is

set to x. For a set X, let Perm(X) be the set of all permutations: X → X. For
sets X and Y , let Func(X,Y ) be the set of all functions: X → Y . We denote
by ∅ the empty set. For sets X and Y , X ← Y means that Y is assigned to X,
and X

∪←− Y means X ← X ∪ Y . For a bit string x and a set X, we denote by
|x| and |X| the bit length of x and the number of elements in X, respectively.
Let F2n be the set {0, 1}n seen as the field with 2n elements defined by some
irreducible polynomial of degree n over F2. a ⊗ b denotes multiplication of two
elements a, b ∈ F2n in the field.

PRF-Security. Through this paper, a distinguisher D is a computationally
unbounded algorithm. It is given query access to one or more oracles O, denoted
by DO. Its complexity is solely measured by the number of queries made to
its oracles. Let t ≥ 0 be an integer, K a key set, and {FP

K}K∈K a family of
functions from {0, 1}∗ to {0, 1}t indexed by K and based on a permutation
P ∈ Perm({0, 1}n) for an integer n > 0. The security proof will be done in the
ideal model, regarding the underlying permutation as a random permutation
P $←− Perm({0, 1}n). We denote by P−1 its inverse.

The PRF-security of F is defined in terms of indistinguishability between
the real world and the ideal world. In the real world, D has query access to FP

K ,

P, and P−1 for K
$←− K and P $←− Perm({0, 1}n). In the ideal world, it has query

access to a random function R, P, and P−1 for R $←− Func({0, 1}∗, {0, 1}t) and

P $←− Perm({0, 1}n). After interacting with oracles, D outputs y ∈ {0, 1}. This
event is denoted by D ⇒ y. We define the advantage function as

Advprf
F (D) = Pr[DFP

K ,P,P−1 ⇒ 1] − Pr[DR,P,P−1 ⇒ 1].

We call queries to FP
K/R “online queries” and queries to (P,P−1) “offline

queries.” Through this paper, without loss of generality, we assume that D is
deterministic, and makes no repeated query which includes offline queries such
that once D obtains (X,Y ) such that Y = P(X), it does not ask X nor Y as
an offline query.

3 PMAC with XP and the PRF-Security

In this section, first we give the description of PMAC using XP. This construction
is denoted by PMAC XP. Secondly, we define a uniform and almost XOR-universal
(AXU) family of hash functions whose properties will be used in the security
proof of PMAC XP. Thirdly, we give the PRF-security bound of PMAC XP.
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3.1 PMAC XP

Fix integers n ≥ 1 and p ≥ 0. Let T W := Zp ×{0, 1, 2} be the set of tweaks, and
K the set of keys. Let H = {hK}K∈K be a family of functions from T W to {0, 1}n

indexed by K. By PMAC XPP
K , we simply denote the function with PMAC XP, which

uses a permutation P ∈ Perm({0, 1}n) as the underlying permutation and a key
K ∈ K. For a message M ∈ {0, 1}≤n×(p+1), the response PMAC XPP

K(M) = T is
defined as follows. Here, M‖10∗ means that first 1 is appended to M , and if the
bit length of M‖1 is not a multiple of n bits, then a sequence of the minimum
number of zeros is appended to M‖1 so that it becomes a multiple of n bits.

1. If |M | mod n = 0 and M �= λ then M ′ ← M ; Else M ′ ← M‖10∗

2. Partition M ′ into n-bit blocks M1, . . . ,Ml

3. S ← 0n; For i = 1, . . . , l −1 do Bi ← Mi ⊕hK(i, 0); Ci ← P (Bi); S ← S ⊕Ci

4. If |M | mod n = 0 and M �= λ then Bl ← S ⊕Ml ⊕hK(l −1, 1); Cl ← P (Bl);
Else Bl ← S ⊕ Ml ⊕ hK(l − 1, 2); Cl ← P (Bl)

5. T ← [Cl]t; Return T

3.2 Uniform AXU Hash Function Family

We will need the following property of the family of functions H.

Definition 1. Let H = {hK}K∈K be a family of functions from (some set) T W
to {0, 1}n indexed by a set of keys K. H is said to be uniform if for any tw ∈ T W
and y ∈ {0, 1}n,

Pr[K $←− K : hK(tw) = y] = 2−n.

H is said to be ε-almost XOR-universal (ε-AXU) if for all distinct tw, tw′ ∈ T W
and all y ∈ {0, 1}n,

Pr[K $←− K : hK(tw) ⊕ hK(tw′) = y] ≤ ε.

H is simply said to be XOR-universal (XU) if it is 2−n-AXU.

Example 1. Let K := F2n . For any integer � ≥ 1, we define a family of functions
H = {hK}K∈K from (F2n)� to F2n as hK(X1, . . . , X�) =

∑�
i=1 Ki ⊗ Xi. Then

H is � · 2−n-AXU [20]. Note, however, that H is not uniform since the tweak
with (X1, . . . , X�) = (0, . . . , 0) is always mapped to 0 independently of the key.
This can be handled by forbidding the all-zero input, in which case the family is
not exactly uniform, but rather � · 2−n-almost uniform, i.e., for ∀(X1, . . . , X�) ∈
(F2n)�{(0, . . . , 0)} and y ∈ {0, 1}n, Pr[K $←− K : hK(X1, . . . , X�) = y] ≤ � · 2−n.

Example 2. Rogaway [18] proposed a powering-up method that offers a uniform
AXU function family, e.g., T W := {1, . . . , 2n/2} × {0, . . . , 10} × {0, . . . , 10},
K := F2n , and the family of functions H = {hK}K∈K is defined as hK(i, j, r) :=
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2i3j7r ⊗ K.1 The multiplications by 2, 3 and 7 can be calculated by XOR and
shift operations. Using this method, the offsets of PMAC XP can be efficiently
calculated, e.g., 2 ⊗ K, 22 ⊗ K, 23 ⊗ K, . . . , 2l−1 ⊗ K, 2l−13 ⊗ K, etc.

Example 3. Several methods for efficiently implementing the uniform AXU func-
tion family have been proposed such as Gray-code-based schemes [3,11] and
LFSR-based schemes [4,10].

3.3 The PRF-Security of PMAC XP

The PRF-security bound of PMAC XP is given in the following, where the underly-
ing permutation is modeled as a random permutation. The proof will be provided
in the next section.

Theorem 1. Let H be a uniform ε-AXU family of functions from T W to
{0, 1}n. Let D be a distinguisher which makes Q offline queries and q online
queries. Let σ be the total number of the blocks in q online queries, namely,
σ =

∑q
i=1 li, where li is the number of the blocks l at the i-th online query.

Then, we have

Advprf
PMAC XP(D) ≤ 0.5σ2ε +

0.5q2 + 0.5σ2 + 2σQ

2n
+

tQ

2n−t
+

(

8eqQ

2n

)1/2

,

where e = 2.71828 · · · is Napier’s constant.

Theorem 1 can be interpreted as implying that setting t = n/2, PMAC XP becomes
a secure PRF as long as σ and Q do not exceed roughly 2n/2 and 2n/2/n,
respectively, and setting t ≤ n/2 − log2(n/2), it becomes a secure PRF as long
as both of σ and Q do not exceed roughly 2n/2, assuming ε = 2−n.

Remark 1. The requirement for a secure MAC is unforgeability under chosen-
message attacks, i.e., in the PMAC XP case, for a key K

$←− K and a random per-
mutation P $←− Perm({0, 1}n), an attacker A, given adaptive access to PMAC XPP

K ,
cannot output a valid pair (M,T ) such that PMAC XPP

K(M) = T and M was not
a query to PMAC XPP

K . We note that if Advprf
PMAC XP(D) ≤ ε for any distinguisher D

making q+qV online queries, then no attacker making q queries to PMAC XPP
K can

output such a valid pair (M,T ) within qV attempts, except with probability at
most ε+qV /2t. Combining Theorem 1 with this fact and setting t = n/2, PMAC XP
is secure in the sense of unforgeability as long as qV , σ and Q do not exceed
roughly 2n/2, 2n/2 and 2n/2/n, respectively, and setting t = n/2 − log2(n/2),
PMAC XP is secure in the sense of unforgeability as long as qV , σ and Q do not
exceed roughly 2n/2/n, 2n/2, and 2n/2, respectively.

1 The original method by Rogaway is based on a blockcipher EK′ : {0, 1}n → {0, 1}n,
where K is defined as K := EK′(0n).
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4 Proof of Theorem1

We give the PRF-security bound of PMAC XPP
K via three games denoted by

Game 1, Game 2, and Game 3. For i ∈ {1, 2, 3}, let Gi := (Li,P,P−1) be
oracles to which D has query access in Game i. Note that in each game, P is
independently drawn as P $←− Perm({0, 1}n). Let L1 := PMAC XPP

K and L3 := R.
L2 will be defined in Subsect. 4.1. Then,

Advprf
PMAC XP(D) =

2
∑

i=1

(

Pr[DGi ⇒ 1] − Pr[DGi+1 ⇒ 1]
)

. (1)

Hereafter, we upper-bound Pr[DGi ⇒ 1] − Pr[DGi+1 ⇒ 1] for i ∈ {1, 2}. In
this evaluation, we use the following notations. For α ∈ {1, . . . , Q}, we denote
the α-th offline query by Xα, resp. Y α, and the response by Y α, resp. Xα,
where Y α = P(Xα), resp. Xα = P−1(Y α). For α ∈ {1, . . . , q}, we denote the
α-th online query by Mα and the response by Tα. We also use superscripts for
internal values defined by online queries except for their block length l, e.g.,
B1

1 , C
1
1 , S1

1 , etc. For α ∈ {1, . . . , q}, we denote the block length l at the α-th
online query by lα.

4.1 Upper-Bound of Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1]

We start by defining L2. Let G $←− Func(T W×{0, 1}n, {0, 1}n) be a random func-
tion (Note that T W = Zp × {0, 1, 2}). For an online query M ∈ {0, 1}≤n×(p+1),
the response L2(M) = T is defined as follows.

1. If |M | mod n = 0 and M �= λ then M ′ ← M ; Else M ′ ← M‖10∗

2. Partition M ′ into n-bit blocks M1, . . . ,Ml

3. S ← 0n; For i = 1, . . . , l − 1 do Ci ← G((i, 0),Mi); S ← S ⊕ Ci

4. If |M | mod n = 0 and M �= λ then Cl ← G((l − 1, 1), S ⊕ Ml); Else Cl ←
G((l − 1, 2), S ⊕ Ml)

5. T ← [Cl]t; Return T

Independently of the above procedure, a key is defined as K
$←− K before D

makes the first query. In addition, at the α-th online query for α ∈ {1, . . . , q},
Bα

i for i ∈ {1, . . . , lα − 1} is defined as Bα
i := Mα

i ⊕ hK(i, 0), and Bα
lα

is defined
as Bα

lα
:= Sα ⊕ Mα

l ⊕ hK(lα − 1, 1) if |Mα| mod n = 0 and Mα �= λ; Bα
lα

:=
Sα ⊕ Mα

lα
⊕ hK(llα − 1, 2) otherwise. These values are defined after D ends all

queries. Note that these values do not affect the procedure of L2 but are used
in the following proof.

Transcript

Since D is deterministic, its output is determined by the transcript, which is
a list of values obtained by its queries. Let T1 be the transcript in Game 1
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obtained by sampling K
$←− K and P $←− Perm({0, 1}n). Let T2 be the tran-

script in Game 2 obtained by sampling K
$←− K, P $←− Perm({0, 1}n) and

G $←− Func(T W × {0, 1}n, {0, 1}n). We call a transcript τ valid if an interac-
tion with their oracles could render this transcript, namely, Pr[Ti = τ ] > 0 for
i ∈ {1, 2}. Then Pr[DG1 ⇒ 1]−Pr[DG2 ⇒ 1] is upper bounded by the statistical
distance of transcripts, i.e.,

Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1] ≤ SD(T1,T2) =
1
2

∑

τ

|Pr[T1 = τ ] − Pr[T2 = τ ]|,

where the sum is over all valid transcripts.
Regarding D’s transcript, it obtains the following sets of query-response pairs

after queries: τL :=
{

(M1, T 1), . . . , (Mq, T q)
}

the set of query-response pairs
defined by online queries; τP :=

{

(X1, Y 1), . . . , (XQ, Y Q)
}

the set of query-
response pairs defined by offline queries. In addition to these sets, we define a set
τi,j for (i, j) ∈ T W, which keeps all pairs for (Bi, Ci) defined by using the tweak
(i, j). Formally, τi,j := ∪q

α=1{(Bα
i,j , C

α
i,j)}, where {Bα

i,j , C
α
i,j} := {(Bα

i , Cα
i )} if

twα
i = (i, j), and {Bα

i,j , C
α
i,j} := ∅ otherwise, where for α ∈ {1, . . . , q} and

i ∈ {1, . . . , lα}, let twα
i denotes the tweak used at the i-th block of the α-th online

query, i.e., if i �= lα, then twα
i := (i, 0); if i = lα∧|Mα| mod n = 0∧M �= λ, then

twα
lα

:= (lα−, 1); if i = lα ∧ (|Mα| mod n �= 0∨M = λ), then twα
lα

:= (lα −1, 2).
This proof permits D to obtain these sets and a secret key K after D’s interaction
but before it outputs a result. Let τprim :=

⋃

(i,j)∈T W τi,j . Consequently, D’s
transcript is summarized as τ := {τL, τP , τprim,K}.

Coefficient H Technique

We upper-bound the statistical distance by using the coefficient H technique [5,
17], in which valid transcripts are partitioned into good transcripts Tgood and
bad transcripts Tbad, and then the following lemma holds.

Lemma 1 (Coefficient H Technique). Let 0 ≤ δ ≤ 1 be such that for all
τ ∈ Tgood,

Pr[T1=τ ]
Pr[T2=τ ] ≥ 1 − δ. Then, SD(T1,T2) ≤ δ + Pr[T2 ∈ Tbad].

The proof of the lemma is given in [5]. Hence, we can upper-bound Pr[DG1 ⇒ 1]−
Pr[DG2 ⇒ 1] by defining good and bad transcripts and by evaluating δ and
Pr[T2 ∈ Tbad].

Good and Bad Transcripts

In order to define Tgood and Tbad, we need to recall the difference between Game 1
and Game 2. In Game 1, the i-th output block at the α-th query is defined as
P(hK(twα

i )⊕Mα
i ) (i �= lα); P(hK(twα

i )⊕Mα
i ⊕Sα) (i = lα). On the other hand,

in Game 2, it is defined as G(twα
i ,Mα

i ) (i �= lα); G(twα
i ,Mα

i ⊕ Sα) (i = lα),
which implies that in Game 2, (1) the output block is defined independently of
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all offline queries, since G is defined independently of P, and (2) the output block
is also defined independently of the other blocks with distinct inputs. Therefore,
if Game 1 and Game 2 are indistinguishable, these independences should also
hold in Game 1. Thus we consider four conditions hitBB , hitCC , hitBX , and hitCY .
hitBB and hitCC come from the independence (2), where hitBB considers an input
collision by online queries (collision in B-values) and hitCC considers an output
collision by online queries (collision in C-values). hitBX and hitCY come from the
independence (1), where hitBX considers an input collision between online and
offline queries (collision between B-values and X-values) and hitCY considers an
output collision between online and offline queries (collision between C-values
and Y -values). Formally, these conditions are defined as follows.

hitBB ⇔∃α, β ∈ {1, . . . , q}, i ∈ {1, . . . , lα}, j ∈ {1, . . . , lβ}
s.t. Bα

i = Bβ
j ∧ twα

i �= twβ
j

hitCC ⇔∃α, β ∈ {1, . . . , q}, i ∈ {1, . . . , lα}, j ∈ {1, . . . , lβ}
s.t. Cα

i = Cβ
j ∧ (twα

i , Bα
i ) �= (twβ

j , Bβ
j )

hitBX ⇔∃α ∈ {1, . . . , q}, i ∈ {1, . . . , lα}, β ∈ {1, . . . , Q} s.t. Bα
i = Xβ

hitCY ⇔∃α ∈ {1, . . . , q}, i ∈ {1, . . . , lα}, β ∈ {1, . . . , Q} s.t. Cα
i = Y β

We define Tbad by the set of transcripts which satisfy one of the above condi-
tions, and Tgood by the set of transcripts which do not satisfy any of the above
conditions.

Upper-Bound of Pr[T2 ∈ Tbad]

We first note that the following inequation holds.

Pr[T2 ∈ Tbad] ≤ Pr[hitBB ∨ hitCC ∨ hitBX ∨ hitCY ]
≤ Pr[hitBB ] + Pr[hitCC ] + Pr[hitBX ] + Pr[hitCY ]. (2)

Hereafter, we upper bound Pr[hitBB ], Pr[hitCC ], Pr[hitBX ], and Pr[hitCY ]. Note
that these events are considered within Game 2, and L2 is independent of K.

Upper-Bound of Pr[hitBB]. First we fix α, β ∈ {1, . . . , q}, i ∈ {1, . . . , lα}, j ∈
{1, . . . , lβ} such that twα

i �= twβ
j , and evaluate the probability that hitBB is

satisfied due to Bα
i and Bβ

j , that is, Bα
i = Bβ

j . Here, Bα
i is of the form hK(twα

i )⊕
Dα

i , and Bβ
j is of the form hK(twβ

j ) ⊕ Dβ
j , where for γ ∈ {α, β}, Dγ

i := Mγ
i for

i ∈ {1, . . . , lγ − 1} and Dγ
lγ

:= Mγ
lγ

⊕ Sγ . Thus,

Bα
i = Bβ

j ⇔hK(twα
i ) ⊕ Dα

i = hK(twβ
j ) ⊕ Dβ

j

⇔hK(twα
i ) ⊕ hK(twβ

j ) = Dα
i ⊕ Dβ

j

By the ε-AXU property of h, the probability that the above equation holds is
at most ε. Finally, we have Pr[hitBB ] ≤

(

σ
2

)

× ε ≤ 0.5σ2ε.
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Upper-Bound of Pr[hitCC ]. First we fix α, β ∈ {1, . . . , q}, i ∈ {1, . . . , lα}, j ∈
{1, . . . , lβ} such that (twα

i , Bα
i ) �= (twβ

j , Bβ
j ), and evaluate the probability that

hitCC is satisfied due to Cα
i and Cβ

j , that is, Cα
i = Cβ

j . By (twα
i , Bα

i ) �= (twβ
j , Bβ

j ),
(twα

i ,Mα
i ) �= (twβ

j ,Mβ
j ) holds, and thereby, Cα

i and Cβ
j are independently

drawn. As a result, the probability that Cα
i = Cβ

j is at most 1/2n. Finally,

we have Pr[hitCC ] ≤
(

σ
2

)

× 1
2n ≤ 0.5σ2

2n .

Upper-Bound of Pr[hitBX ]. First we fix α ∈ {1, . . . , q}, i ∈ {1, . . . , lα} and
β ∈ {1, . . . , Q}, and evaluate the probability that hitBX is satisfied due to Bα

i

and Xβ , that is, Bα
i = Xβ . Here, Bα

i is of the form hK(twα
i ) ⊕ Dα

i , where
Dα

i := Mα
i with i ∈ {1, . . . , lγ − 1} and Dα

lα
:= Mα

lα
⊕ Sα. Thus,

Bα
i = Xβ ⇔hK(twα

i ) ⊕ Dα
i = Xβ

⇔hK(twα
i ) = Dα

i ⊕ Xβ

By the property of uniformity of h, the probability that the above equation holds
is at most 1/2n. Finally, we have Pr[hitBX ] ≤ σQ

2n .

Upper-Bound of Pr[hitCY ]. Let ρ be any threshold, and Clast :=
{

Cα
lα

:
(

α ∈

{1, . . . , q}
)

∧
(

∀β ∈ {1, . . . , α − 1} : (twα
lα

, Sα ⊕ Mα
lα

) �= (twβ
lβ

, Sβ ⊕ Mβ
lβ

)
)

}

the
set of outputs of G at the last block with distinct inputs. Thus, all elements in
Clast are independently drawn. Then we define the following condition.

mcoll(ρ) ⇔ ∃C(1), C(2), . . . , C(ρ) ∈ Clast s.t. [C(1)]t = [C(2)]t = . . . = [C(ρ)]t

Then we have

Pr[hitCY ] ≤ Pr[mcoll(ρ)] + Pr[hitCY |¬mcoll(ρ)].

Hereafter, we evaluate the probabilities Pr[mcoll(ρ)] and Pr[hitCY |¬mcoll(ρ)].

– We evaluate Pr[mcoll(ρ)]. Fixing C ∈ Clast and C ′ ∈ {0, 1}t, since [C]t is
randomly drawn from {0, 1}t, the probability that [C]t = C ′ holds is at most
1/2t. Since all elements in Clast are independently drawn and |Clast| ≤ q, we
have

Pr[mcoll(ρ)] ≤ 2t ·
(

q

ρ

)

·
(

1
2t

)ρ

≤ 2t ·
(

eq

ρ2t

)ρ

,

using Stirling’s approximation (x! ≥ (x/e)x for any x).
– We evaluate Pr[hitCY |¬mcoll(ρ)]. We assume that mcoll(ρ) is not satisfied.

First we fix β ∈ {1, . . . , Q}, and evaluate the probability that hitCY is satisfied
due to Y β , that is, ∃α ∈ {1, . . . , q}, i ∈ {1, . . . , lα} s.t. Cα

i = Y β .
• We consider the case where ∃α ∈ {1, . . . , q}, i ∈ {1, . . . , lα − 1} s.t. Cα

i =
Y β . Since Cα

i is randomly drawn from {0, 1}n, the probability that hitCY

is satisfied in this case is at most σ/2n.
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• Next we consider the case where ∃α ∈ {1, . . . , q} s.t. Cα
lα

= Y β . By
¬mcoll(ρ), the number of outputs at the last block whose inputs are dis-
tinct and whose last t bits equal [Y β ]t is at most ρ. Thus the probability
that hitCY is satisfied in this case is at most ρ/2n−t.

We thus have

Pr[hitCY |¬mcoll(ρ)] ≤
Q

∑

β=1

( ρ

2n−t
+

σ

2n

)

=
ρQ

2n−t
+

σQ

2n
.

Finally, we have

Pr[hitCY ] ≤ ρQ

2n−t
+

σQ

2n
+ 2t

(

eq

ρ2t

)ρ

.

and then putting ρ = max
{

t,
(

2eq2n−t

Q2t

)1/2
}

gives

Pr[hitCY ] ≤max

{

t,

(

2eq2n−t

Q2t

)1/2
}

× Q

2n−t
+

σQ

2n

+ 2t

⎛

⎜

⎜

⎝

eq

max
{

t,
(

2eq2n−t

Q2t

)1/2
}

2t

⎞

⎟

⎟

⎠

max

{
t,
(

2eq2n−t

Q2t

)1/2
}

≤ tQ

2n−t
+

(

2eqQ

2n

)1/2

+
σQ

2n
+ 2t

⎛

⎜

⎝

eq
(

2eq2n−t

Q2t

)1/2

2t

⎞

⎟

⎠

t

≤ tQ

2n−t
+

(

2eqQ

2n

)1/2

+
σQ

2n
+

(

2eqQ

2n

)t/2

≤ tQ

2n−t
+

σQ

2n
+

(

8eqQ

2n

)1/2

.

Upper-Bound of Pr[T2 ∈ Tbad]. Finally, we have

Pr[T2 ∈ Tbad] ≤ 0.5σ2ε +
0.5σ2 + 2σQ

2n
+

tQ

2n−t
+

(

8eqQ

2n

)1/2

.

Upper-Bound of δ

Let τ ∈ Tgood. Let alli be the set of all oracles in Game i for i = 1, 2. Let
compi(τ) be the set of oracles compatible with τ in Game i for i = 1, 2. Then

Pr[T1 = τ ] =
|comp1(τ)|

|all1|
and Pr[T2 = τ ] =

|comp2(τ)|
|all2|

.
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Hereafter, we evaluate |all1|, |all2|, |comp1(τ)| and |comp2(τ)|. In this evaluation,
we use the following notations: Ntw := |T W|, NK := |K|, γi,j := |τi,j | for
(i, j) ∈ T W, γP := |τP |, and γ := γP +

∑

(i,j)∈T W γi,j .
Firstly, we evaluate |all1|. By K ∈ K and P ∈ Perm({0, 1}n), |all1| = NK ·2n!.
Secondly, we evaluate |all2|. By K ∈ K, P ∈ Perm({0, 1}n), and G ∈

Func(T W × {0, 1}n, {0, 1}n), |all2| = NK · 2n! · (2n)Ntw·2n

.
Thirdly, we evaluate |comp1(τ)|. τi,j ’s with (i, j) ∈ T W and τP are defined

so that they do not overlap each other. In this case, the number of input-output
pairs of P defined by online and offline queries is γ, and thereby |comp1(τ)| =
(2n − γ)!.

Fourthly, we evaluate |comp2(τ)|. In this case, the number of input-output
pairs of P defined by online queries is γP , the number of input-output pairs of
G with tweak (i, j) defined by offline queries is γi,j , and thereby

|comp2(τ)| = (2n − γP)! ·
∏

(i,j)∈T W
(2n)2

n−γi,j = (2n − γP)! · (2n)Ntw·2n−γ+γP .

Finally, we have

Pr[T1 = τ ]

Pr[T2 = τ ]
=

|comp1(τ)|
|all1|

× |all2|
|comp2(τ)| =

(2n − γ)!

NK · 2n!
× NK · 2n! · (2n)Ntw·2n

(2n − γP)! · (2n)Ntw·2n−γ+γP

=
(2n)γ · (2n − γ)!

(2n)γP · (2n − γP)!
≥ 1,

and thereby δ = 0.

Upper-Bound of Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1]

We apply the above results to Lemma 1, and thereby

Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1] ≤ 0.5σ2ε +
0.5σ2 + 2σQ

2n
+

tQ

2n−t
+

(

8eqQ

2n

)1/2

.

(3)

4.2 Upper-Bound of Pr[DG2 ⇒ 1] − Pr[DG3 ⇒ 1]

First we prove the following lemma.

Lemma 2. G2 and G3 are indistinguishable unless the following condition holds
in Game 2.

coll ⇔ ∃α, β ∈ {1, . . . , q} s.t. α �= β ∧ twα
lα = twβ

lβ
∧ Mα

lα ⊕ Sα = Mβ
lβ

⊕ Sβ .

Proof. We assume that coll does not hold. Then for any α, β ∈ {1, . . . , q} with
α �= β, (twα

lα
,Mα

lα
⊕ Sα) �= (twβ

lβ
,Mβ

lβ
⊕ Sβ) holds, where for γ ∈ {α, β},

(twγ
lγ

,Mγ
lγ

⊕ Sγ) is the input to G at the last block of the γ-th online query.

Hence, the outputs Cα
lα

and Cβ
lβ

are independently and randomly drawn from
{0, 1}n. As a result, all outputs of L2: T 1, . . . , T q are independently and ran-
domly drawn from {0, 1}n, and thereby G2 and G3 are indistinguishable. �
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By the above lemma, Pr[DG2 ⇒ 1|¬coll] = Pr[DG3 ⇒ 1] holds, and thereby

Pr[DG2 ⇒ 1] − Pr[DG3 ⇒ 1] ≤ Pr[coll].

The detail for deriving the upper-bound is given in AppendixA. Hereafter, we
upper bound Pr[coll].

First we fix α, β ∈ {1, . . . , q} such that α �= β∧twα
lα

= twβ
lβ

, and upper bound

the probability that Mα
lα

⊕ Sα = Mβ
lβ

⊕ Sβ holds. Note that

Mα
lα ⊕ Sα = Mβ

lβ
⊕ Sβ ⇔Mα

lα ⊕
(

lα−1
⊕

i=1

Cα
i

)

= Mβ
lβ

⊕

⎛

⎝

lβ−1
⊕

i=1

Cβ
i

⎞

⎠

⇔Mα
lα ⊕ Mβ

lβ
=

(

lα−1
⊕

i=1

Cα
i

)

⊕

⎛

⎝

lβ−1
⊕

i=1

Cβ
i

⎞

⎠ . (4)

Let twMα,β := ∪γ∈{α,β} ∪lγ−1
i=1 {(twγ

i ,Mγ
i )} be the set of the inputs to G at the

α-th and β-th online queries except for the last blocks (thus twγ
i = (i, 0)), and

Cα,β := ∪γ∈{α,β} ∪lγ−1
i=1 {Cγ

i } the set of the corresponding outputs of G.

– If Mα
lα

= Mβ
lβ

, then since D makes no repeated query, Mα
1 ‖ · · · ‖Mα

lα−1 �=
Mβ

1 ‖ · · · ‖Mβ
lβ−1 holds. Note that lα = lβ by twα

lα
= twβ

lβ
. Then there exist

γ ∈ {α, β}, i ∈ {1, . . . , lγ − 1} such that (twγ
i ,Mγ

i ) �∈ twMα,β\{(twγ
i ,Mγ

i )}.
Therefore, Cγ

i is drawn independently of Cα,β\{Cγ
i }. Hence, the probability

that the equation of (4) holds is at most 1/2n.
– If Mα

lα
�= Mβ

lβ
, then in order to satisfy the equation of (4), Sα �= Sβ should

hold. Sα �= Sβ implies that there exists γ ∈ {α, β}, i ∈ {1, . . . , lγ − 1} such
that Cγ

i �∈ Cα,β\{Cγ
i }, namely, Ci is drawn independently of Cα,β\{Cγ

i }.
Hence, the probability that the equation of (4) holds is at most 1/2n.

By the above analysis, we have

Pr[DG2 ⇒ 1] − Pr[DG3 ⇒ 1] ≤ Pr[coll] ≤
(

q

2

)

× 1
2n

≤ 0.5q2

2n
. (5)

4.3 Upper-Bound of Advprf
PMAC XP(D)

Finally, putting upper-bounds (3) and (5) into (1) gives

Advprf
PMAC XP(D) ≤ 0.5σ2ε +

0.5q2 + 0.5σ2 + 2σQ

2n
+

tQ

2n−t
+

(

8eqQ

2n

)1/2

.
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5 Discussion

5.1 Benefit in Hardware Implementation

In this section, we discuss benefits of PMAC with XP over the previous
permutation-based PMAC, PMAC with TEM, with respect to hardware imple-
mentation. In summary, there are two main advantages. Firstly and apparently,
some XOR gates can be reduced. Secondly, architectural optimization is enabled
because data dependency is relaxed.

The reduction of XOR gates is discussed. Two common architectures shown
in Fig. 5 are considered. Figure 5(a) and (b) are ones for the TEM- and XP-
based schemes, respectively. Both are based on a reference circuit found in the
specification document of Minalpher [19]. Note that offsets are assumed to be
serially updated for each permutation call (e.g., 2 ⊗ K, 22 ⊗ K, 23 ⊗ K, . . . in a
field for K ∈ {0, 1}n) in the component labeled “offset update”. If a single XOR
gate is approximated by 2 [GE], then XOR gates corresponding to 2N [GE] are
reduced by the XP-based scheme in which N is the datapath width. In addition,
some accompanying gates can be reduced. In case of Minalpher, the permutation
can be called without any masking and thus there are accompanying AND gates
for disabling the XORs (see Fig. 5). The AND gates can also be reduced in the
XP-based scheme.

Secondly, and more importantly, data dependency is relaxed by eliminat-
ing the output masking. The architectures in Fig. 5 are considered again. Data
dependency is discussed using concurrency diagrams shown in Fig. 6. In the dia-
grams, horizontal axes represent time and squares represent that the resource is
occupied. In the TEM-based scheme in Fig. 6(a), the offset should be maintained
until the end of permutation and thus “offset update” should be suspended while
permutation is being executed. Similarly, permutation should be suspended while
the offset is being updated. In the XP-based scheme in Fig. 6(b), on the other
hand, permutation and “offset update” can be processed simultaneously because
the data dependency is relaxed by eliminating the output masking. The prop-
erty brings advantages both in throughput and circuit area: (i) throughput is

Fig. 5. Common circuit architectures for (a) TEM-based and (b) XP-based schemes
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Permutation

Offset update

Permutation

Offset update

(a) TEM-based

(b) XP-based

Fig. 6. Concurrency diagram: occupancy of resources in circuits for (a) TEM-based
and (b) XP-based schemes
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Fig. 7. A 4-stage pipeline architecture and pipeline registers for delaying tweak values

improved because the idling period is removed and (ii) a smaller implementation
can be used for “offset update” because that is no longer a bottleneck for speed.

An alternative way to tackle the data dependency issue in the TEM-based
scheme is to use a temporal register that stores the offset until the end of permu-
tation. In that case, the XP-based scheme is advantageous in the sense that the
temporal register can be removed. The reduction is effective because register is
relatively expensive (i.e., a 1-bit register is approximated by 5–7 [GE]). The capa-
bility to reduce temporal register is more important in a pipelined implemen-
tation. Figure 7 shows a 4-stage pipelined implementation for the TEM-based
scheme. In order to carry offset values to the last stage, multiple of temporal
registers (i.e. pipeline registers) are needed. The registers can be simply elimi-
nated in the XP-based scheme.

5.2 Open Problem

Recently, Mennink [16] discussed the tweakable SPRP-security (Strong Pseudo-
Random Permutation security) of TEM against related-key attacks. He defined
a family of functions calculating an offset from a tweak. He call the TEM con-
struction with this function XPX. He showed sufficient conditions for functions to
become secure tweakable SPRPs against related-key attacks within the frame-
work of Bellare and Kohno [2] and Albrecht et al. [1]. Note that our result
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considers only single-key attacks, and proving the PRF-security of PMAC XP
against related-key attacks is an open problem from this paper. We conjecture
that applying the function of XPX to the offset generating function hK of XP,
PMAC XP becomes a secure PRF against related-key attacks.

A Deriving Pr[DG2 ⇒ 1] − Pr[DG3 ⇒ 1] ≤ Pr[coll]

We show how to obtain the inequation of Pr[DG2 ⇒ 1]−Pr[DG3 ⇒ 1] ≤ Pr[coll],
assuming Pr[DG2 ⇒ 1|¬coll] = Pr[DG3 ⇒ 1].

Pr[DG2 ⇒ 1] − Pr[DG3 ⇒ 1]

= Pr[DG2 ⇒ 1 ∧ coll] + Pr[DG2 ⇒ 1 ∧ ¬coll] − Pr[DG3 ⇒ 1]

= Pr[DG2 ⇒ 1|coll] · Pr[coll] + Pr[DG2 ⇒ 1|¬coll] · Pr[¬coll] − Pr[DG3 ⇒ 1]

= Pr[DG2 ⇒ 1|coll] · Pr[coll] + Pr[DG3 ⇒ 1] · (Pr[¬coll] − 1)

= Pr[DG2 ⇒ 1|coll] · Pr[coll] − Pr[DG3 ⇒ 1] · Pr[coll]
≤ Pr[coll].
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Abstract. Until quite recently, anonymous credentials systems were
based on public key primitives. A new approach, that relies on alge-
braic Message Authentication Codes (MACs) in prime-order groups, has
recently been introduced by Chase et al. at CCS 2014. They proposed
two anonymous credentials systems referred to as “Keyed-Verification
Anonymous Credentials (KVAC)” as they require the verifier to know
the issuer secret key. Unfortunately, both systems presentation proof, for
n unrevealed attributes, is of complexity O(n) in the number of group
elements. In this paper, we propose a new KVAC system that provides
multi-show unlinkability of credentials and is of complexity O(1) in the
number of group elements while being almost as efficient as Microsoft’s
U-Prove anonymous credentials system (which does not ensure multi-
show unlinkability) and many times faster than IBM’s Idemix. Our cre-
dentials are constructed based on a new algebraic MAC scheme which is
of independent interest. Through slight modifications on the verifier side,
our KVAC system, which is proven secure in the random oracle model,
can be easily turned into a public-key credentials system. By implement-
ing it on a standard NFC SIM card, we show its efficiency and suitability
for real-world use cases and constrained devices. In particular, a creden-
tial presentation, with 3 attributes, can be performed in only 88 ms.

Keywords: MAC · Anonymous credentials · Attributes · Multi-show
unlinkability · Java Card SIM card

1 Introduction

Introduced by Chaum [16], anonymous credentials systems allow users to obtain
a credential from an issuer and then, later, prove possession of this credential, in
an unlinkable way, without revealing any additional information. This primitive
has attracted a lot of interest as it complies with data minimization principles
that consist in preventing the disclosure of irrelevant and unnecessary informa-
tion. Typically, an anonymous credentials system is expected to enable users to
c© Springer International Publishing AG 2017
R. Avanzi and H. Heys (Eds.): SAC 2016, LNCS 10532, pp. 360–380, 2017.
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reveal a subset of the attributes associated to their credentials while keeping the
remaining ones hidden. For instance, a service provider only needs to know that
a user is legitimate (i.e. he is authorized to access the service) without yet being
able to collect personal information such as address, date of birth, etc.

Potential applications of anonymous credentials systems are numerous,
including e-cash [21], public transport and electronic toll (for authentication pur-
poses). In such applications, the system efficiency is an important requirement
especially as it is usually deployed on constrained environments like smart cards.

Furthermore, it is desirable that an anonymous credentials system provides
multi-show unlinkability. That is, one can prove possession of the same credential
several times in an unlinkable manner. However, when it is intended for eCash
applications, credentials should be one-show to prevent double spending of coins.

Related Work. One of the most prevalent anonymous credentials systems is
Microsoft’s U-Prove [23,24] which is based on a blind signature scheme due to
Brands [6]. It is quite efficient, as it works in prime-order groups, and supports
the selective disclosure of attributes. Nevertheless, U-Prove does not provide
multi-show unlinkability unless the user uses a different credential at each proof
of possession. Besides, to date, its security has not been formally proven.

A slightly less efficient anonymous attribute-based credentials system has
been proposed by Baldimsti and Lysyanskaya [3]. Their proposal, which relies on
an extension of Abe’s blind signature scheme [1], is proven secure in the Random
Oracle Model (ROM) under the DDH assumption. Recently, Fuchsbauer et al.
[19] introduced another anonymous credentials system that is proven secure in
the standard model. However, similarly to U-Prove, both systems are one-show
(i.e. credential presentations are linkable if a credential is used more than once).

IBM’s Identity Mixer, commonly known as Idemix [22], is built on
Camenisch-Lysyanskaya (CL) signature scheme [10,11]. Unlike previously
reviewed credentials systems, Idemix credentials provide multi-show unlinka-
bility but at the cost of a less efficient proof of possession. Indeed, the used CL
signatures are based on the Strong RSA assumption [4]. This implies large RSA
parameters which make Idemix unsuitable for constrained devices. Despite this,
Vullers and Alpár focused in [27] on the implementation of Idemix on MULTOS
smart cards. Using a 1024-bit modulus, their implementation enables the pre-
sentation of a credential with three attributes, one of which is undisclosed, in
1 s. Moreover, de la Piedra et al. [25] addressed smart cards limited Random
Access Memory (RAM) issues by proposing a RAM-efficient implementation of
Idemix. Thereby, smart cards can support Idemix credentials with more than 5
attributes. Unfortunately, even with these implementation improvements, tim-
ing results far exceed the time constraints of some use cases, which limits the
use of Idemix in practice.

Camenisch and Lysyanskaya introduced in [12] an efficient signature scheme
defined in bilinear groups and used it to construct an anonymous creden-
tials system. Shortly afterwards, Akagi et al. [2] provided a more effective
Boneh Boyen-based anonymous credentials system. Recently, Camenisch et al. [9]
proposed a Universally Composable (UC) secure anonymous credentials system
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that provides multi-show unlinkability and whose presentation proof is of con-
stant size. Nevertheless, these three proposals require the prover to compute
pairings and/or perform computations in G2. Thus, they cannot be implemented
on SIM cards as the latter cannot handle such heavy computations.

Recently, Chase et al. [15] have opted for the use of symmetric key primitives,
instead of digital signatures, so as to achieve better performances. More precisely,
they used algebraic Message Authentication Codes (MACs), that relies on group
operations rather than block ciphers or hash functions, as the main building block
of their credentials system. Their two proposals, denoted MACGGM and MACDDH,
assume that the issuer of the credential and the verifier share a secret key. In such
a setting, the anonymous credentials system is referred to as Keyed-Verification
Anonymous Credentials (KVAC). Unfortunately, their presentation proofs, for n
unrevealed attributes, are of complexity O(n) in the number of group elements.
Moreover, when credential blind issuance is required, their KVAC systems do not
provide perfect anonymity as they rely on ElGamal encryption to hide attributes.

As pointed out in [15], one can switch between the use of public-key and
keyed-verification anonymous credentials which are more efficient. For that,
whenever interacting with a new entity, the user proves the possession of a pub-
licly verifiable credential (such as a driving license anonymous credential issued
by a government on a set of attributes) and gets back a keyed-verification cre-
dential on the same attributes without disclosing them. Thus, during subsequent
interactions with that entity, the user will use the keyed-verification credential
for better efficiency.

Contributions. In this paper, we aim to design an anonymous credentials system
that provides multi-show unlinkability while being both efficient and suitable for
resource constrained environments like SIM cards (that cannot handle pairing
computations). To this end, following Chase et al. approach [15], we first build
a new algebraic MAC scheme that relies on a pairing-free variant of the Boneh
Boyen signature scheme. We prove the security of our proposal, which is of
independent interest, under the q−SDH assumption. Then, we use it to construct
a practical Keyed-Verification Anonymous Credentials (KVAC) system whose
presentation proof is of complexity O(1) in the number of group elements and
linear in the number of scalars. Our KVAC system is proven secure in the ROM
under classical assumptions. Furthermore, it can be easily turned into an efficient
publicly verifiable anonymous credentials system through the use of pairings
solely on the verifier side. To show its efficiency and suitability for constrained
environment, we implemented our system on a standard NFC SIM card. The
proof of possession of a credential on three attributes, with one unrevealed,
takes just 88 ms. This confirms its suitability for real world applications.

Organization. The paper is structured as follows. Section 2 introduces our main
notation and necessary building blocks. Then, Sect. 3 presents a novel algebraic
MAC scheme based on a pairing-free variant of the Boneh Boyen signature
scheme. Next, Sect. 4 describes our keyed-verification anonymous credentials sys-
tem as well as the way it can be turned into a traditional public-key anonymous
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credentials system. Finally, Sect. 5 provides efficiency and complexity evaluations
as well as implementation benchmarks of our KVAC system.

2 Preliminaries

2.1 Classical Tools

Notation. To state that x is chosen uniformly at random from the set X, we
use one of the two following notations x

R←− X or x ∈R X. In addition,
→
m and

{gi}l
i=1 respectively denote the vector (m1, . . . ,mn) and the set {g1, g2, . . . , gl}.

Zero-Knowledge Proof of Knowledge. Zero-Knowledge Proofs of Knowl-
edge (ZKPKs) allow a prover P to convince a verifier V that he knows some
secrets verifying a given statement without revealing anything else about them.
Following the usual notation introduced by Camenisch and Stadler [13], they
are denoted by π = PoK{α, β : statements about α, β} where Greek letters cor-
respond to the knowledge of P.

A ZKPK should satisfy three properties, namely (1) completeness (i.e. a
valid prover should be able to convince an honest verifier with overwhelming
probability), (2) soundness (i.e. a malicious prover should be rejected with over-
whelming probability), (3) zero-knowledge (i.e. the proof reveals no information
about the secret(s)).

In addition to classical ZKPKs (such as a proof of knowledge of a discrete log-
arithm [26], a proof of knowledge of a representation [8], or a proof of equality of
discrete logarithms [17]), our KVAC system relies on a ZKPK that a committed
value is non-zero. Such a proof has been introduced by Brands [7].

Indeed, a prover P may sometimes have to convince the verifier V that the
value x committed in C = gxhw is non-zero, where g and h are two random
generators (i.e. the discrete logarithm of g in the base h is unknown). To do so, P
has to prove the knowledge of the representation of g in the bases C and h. That
is, P has to build a ZKPK π defined as π = {α, β, γ, δ : C = gαhβ ∧ g = Cγhδ}.

Computational Hardness Assumptions. The security of our MAC scheme
and KVAC system relies on a set of computational hardness assumptions. In
what follows, G denotes a cyclic group of prime order p.

Discrete Logarithm (DL) Assumption. The Discrete Logarithm assumption states
that, given a generator g ∈R G and an element y ∈R G, it is hard to find the
integer x ∈ Zp such that y = gx.

Decisional Diffie-Hellman (DDH) Assumption. The Decisional Diffie-Hellman
assumption states that, given a generator g ∈R G, two elements ga, gb ∈R G

and a candidate X ∈ G, it is hard to decide whether X = gab or not. This is
equivalent to decide, given g, h, ga, gb, whether a = b or not.
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q-Strong Diffie-Hellman (q − SDH) Assumption. The q-Strong Diffie-Hellman
assumption holds in G if, given a generator g ∈R G and (gy, gy2

, . . . , gyq

) ∈ G
q

as input, it is hard to output a pair (x, g
1

y+x ) ∈ Z
∗
p × G.

This assumption is believed to be hard even in gap-DDH groups, i.e. groups
in which there is an efficient test to determine, with probability 1, on input
(g, h, gx, hy) if x = y mod p or not. Moreover, it has been proven in [20] that the
hardness of the q − SDH assumption in gap-DDH groups implies the hardness of
the gap q − SDH − III assumption defined as follows1.

Gap q-Strong Diffie-Hellman-III (gap q − SDH − III) Assumption. The q-Strong
Diffie-Hellman-III assumption states that, given (g, h, gy) ∈ G

3 and q distinct
triples (xi,mi, (gmih)

1
y+xi ) ∈ Z

2
p ×G and having access to a DDH oracle (which

indicates whether a given quadruple (g, h, gx, hy) ∈ G
4 is a DH quadruple or

not), it is hard to output a new triple (x,m, (gmh)
1

y+x ) where (x,m) ∈ Z
2
p.

2.2 Message Authentication Codes (MACs)

A Message Authentication Code (MAC) is an authentication tag computed using
a secret key that is shared between the issuer and the verifier. More formally, a
MAC scheme consists of the following four algorithms:

Setup(1k) creates the public parameters pp, given a security parameter k.
KeyGen(pp) generates the secret key sk that is shared between the issuer and

the verifier.
MAC(pp, sk,m) takes as input a message m and a secret key sk. It outputs a

MAC, also known as a tag and denoted by τ , on the message m.
Verify(pp, sk,m, τ) is a deterministic algorithm which outputs either 1 or 0

depending on the validity of the MAC τ with respect to the message m and
the secret key sk.

UF-CMVA Security. Usually, a probabilistic MAC scheme is considered
secure if it is unforgeable under chosen message and verification attack (UF-
CMVA). In other words, the adversary A can query two oracles: OMAC and
OVerify. OMAC provides him with a valid MAC on any message of his choice
whereas OVerify enables him to check the validity of any (message, MAC) pair.
Such an adversary should not be able to compute a pair (m′, τ ′) where τ ′ is a valid
MAC on the message m′ that has not already been queried to the OMAC oracle.
A yet stronger security notion for probabilistic MACs, denoted sUF-CMVA,
exists. In such a variant, the adversary wins even if m′ has already been queried to
the OMAC oracle, provided that the oracle did not output the pair (m′, τ ′). More
formally, Fig. 1 details the sUF-CMVA experiment ExpsUF-CMVA

A (1k) between a
challenger C and an adversary A. The adversary’s success probability, denoted
by AdvsUF-CMVA

A (1k), is defined as Pr[ExpsUF-CMVA
A (1k) = 1].

1 For this reason, we will sometimes simply refer to the gap q − SDH − III assumption
as the q − SDH assumption.
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ExpsUF-CMVA
A (1k)

1. pp ← Setup(1k)
2. sk ← KeyGen(pp)
3. (m′, τ ′) ← AOMAC,OVerify(pp)
4. If (m′, τ ′) was obtained following a call to the OMAC oracle, then

return 0.
5. Return Verify(pp, sk, m′, τ ′)

Fig. 1. sUF-CMVA security

3 An Algebraic MAC Scheme Based on Boneh-Boyen
Signatures

Based on a pairing-free variant [14] of the Boneh-Boyen signature scheme [5], we
design a new algebraic MAC scheme. In this section, we detail our construction
which can be applied to both a single message as well as a block of messages.

3.1 MACBB

Our algebraic MAC scheme for a single message m, referred to as MACBB, is
defined as follows:

Setup(1k) creates the system public parameters pp = (G, p, h, g0, g1, g) where
G is a cyclic group of prime order p, a k-bit prime, and h, g0, g1, g are four
random generators of G.

KeyGen(pp) selects a random value y ∈R Zp as the issuer’s private key and
optionally computes the corresponding public key Y = gy

0 .
MAC(m, y) picks two random values r, s ∈R Zp and computes A = (gm

1 gsh)
1

y+r .
The MAC on the message m consists of the triple (A, r, s).

Verify(m,A, r, s, y) checks the validity of the MAC (A, r, s) with respect to the
message m. The MAC is valid only if (gm

1 gsh)
1

y+r = A.

Theorem 1. Our MACBB scheme is sUF-CMVA secure under the gap q −
SDH − III assumption2.

3.2 MACn
BB

Our algebraic MAC scheme can be generalized to support a block of n messages
(m1, . . . ,mn). This extension is referred to as MACn

BB and works as follows:

Setup(1k) creates the system public parameters pp = (G, p, g1, g2, . . . ,
gn, h, g0, g) where G is a cyclic group of prime order p, a k-bit prime, and
h, g, g0, g1, . . . , gn are random generators of G.

2 The proof is detailed in Appendix A.1.
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KeyGen(pp) selects a random value y ∈R Zp as the issuer’s private key and
optionally computes the corresponding public key Y = gy

0 .
MAC(

→
m, y) takes as input a block of n messages

→
m = (m1, . . . ,mn) and computes

A = (gm1
1 gm2

2 . . . gmn
n gsh)

1
y+r where r, s ∈R Zp. The MAC on

→
m consists of

the triple (A, r, s).
Verify(

→
m,A, r, s, y) checks the validity of the MAC with respect to the block

of messages
→
m. The MAC is valid only if (gm1

1 gm2
2 . . . gmn

n gsh)
1

y+r = A.

Theorem 2. Our MACn
BB scheme is sUF-CMVA secure under the assumption

that MACBB is sUF-CMVA3.

One particular feature of our algebraic MAC scheme is that anyone can verify
the validity of a given MAC by himself (i.e. without neither knowing the private
key y nor querying the Verify algorithm). Indeed, a MAC on

→
m = (m1, . . . ,mn)

consists of the triple (A, r, s) such that A = (gm1
1 gm2

2 . . . gmn
n gsh)

1
y+r . This

implies that Ay+r = gm1
1 gm2

2 . . . gmn
n gsh and hence, B = gm1

1 gm2
2 . . . gmn

n gsh ·
A−r = Ay. Therefore, if the issuer of the MAC also provides a ZKPK defined as

π = PoK{γ : B = Aγ ∧ Y = gγ
0 },

then its receiver will be convinced that the MAC is valid.
Furthermore, unlike both algebraic MAC schemes due to Chase et al. [15],

the issuer does not have to hold as many private keys as messages but rather a
sole private key regardless of the number of messages.

4 A Keyed-Verification Anonymous Credentials System
Based on MACn

BB

In this section, we first define Keyed-Verification Anonymous Credentials
(KVAC) systems as well as their requirements. Next, we detail our new KVAC
system that is built upon our MACn

BB scheme.

4.1 Overview on KVAC Systems

A keyed-verification anonymous credentials system is defined through the follow-
ing algorithms which involve three entities: a user U , an issuer I and a verifier V.

Setup(1k) creates the system public parameters pp, given a security parameter k.
CredKeyGen(pp) generates the issuer’s private key sk, which is shared with V,

and computes the corresponding public key pk.
BlindIssue(U(

→
m, s), I(sk)) is an interactive protocol between a user U who

wants to get an anonymous credential on a set of attributes
→
m = (m1, . . . ,mn)

and a secret value s, without revealing them, and the issuer I who holds the
private key sk. If the protocol does not abort, the user gets a credential σ.

3 The proof is detailed in Appendix A.2.
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Show(U(s, σ,
→
m,φ),V(sk, φ)) is an interactive protocol between U , who wants to

prove that he holds a valid credential on attributes
→
m satisfying a given set

of statements φ, and V, holding the private key sk, whose goal is to check
that it is actually true.

Security Requirements. In addition to the usual correctness property, a
KVAC system should satisfy four security properties, namely unforgeability,
anonymity, blind issuance and key-parameter consistency. Roughly speaking,
they are defined as follows (formal definitions are provided in [15]):

– Unforgeability: it should be infeasible for an adversary to generate a valid
ZKPK that convinces a verifier that he holds a credential satisfying a given
statement, or a set of statements, when it is not actually true;

– Anonymity: the presentation proof produced during the protocol Show reveals
nothing else aside from the statement φ being proven;

– Blind issuance: BlindIssue is a secure two-party protocol for generating
credentials on the user’s attributes;

– Key-parameter consistency : an adversary should not be able to find two secret
keys that correspond to the same issuer’s public key.

4.2 Our Keyed-Verification Anonymous Credentials System

Based on the designed MACn
BB scheme, we construct a KVAC system involving a

user U , an issuer I and a verifier V. Our KVAC system consists of the following
four phases. The two main phases (BlindIssue and Show) are depicted in Fig. 2.

Setup. Generate the public parameters pp = (G, p, g1, g2, . . . , gn, g, h, g0, f)
where G is a cyclic group of prime order p, a k-bit prime, and (h, g, g0, {gi}n

i=1, f)
are random generators of G where DDH is hard. For i ∈ {1, . . . , n}, gi is asso-
ciated with a specific type of attributes (e.g. age, gender, etc.). This allows us
to differentiate attributes and avoid any ambiguity. Note that, in the sequel, all
computations on exponents are computed modulo p (i.e. mod p).

Key Generation. Choose a random value y ∈R Zp as the issuer’s private key
and compute the corresponding public key Y = gy

0 . Each user U is also provided
with a private key sku and the associated public key pku which may be used to
authenticate the user during the issuance of his credentials.

Blind Issuance. To issue a credential on the attributes (m1, . . . ,mn), the issuer
and the user (who has already been authenticated) engage in the following proto-
col. First, the user U builds a commitment Cm = gm1

1 . . . gmn
n gs on his attributes,

where s ∈R Z
∗
p. Then, he sends it to the issuer I along with a ZKPK π1 defined as

π1 = PoK{α1, . . . , αn+1 : Cm = gα1
1 gα2

2 . . . gαn
n gαn+1}. If the proof is valid, I ran-

domly picks r, s′ ∈R Zp and computes A = (Cm ·gs′ ·h)
1

y+r which corresponds to
a MACn

BB on (m1, . . . ,mn). He may also build a ZKPK π2 ensuring that the cre-
dential is well-formed. Such a proof is defined as π2 = PoK{γ : B = Aγ∧Y = gγ

0 }
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where B = Cm · gs′ · h · A−r = Ay. Then, he provides U with the triple (A, r, s′)
along with the proof π2. Upon receiving them, U first verifies the validity of π2,
then computes C̃m = Cm gs′

h as well as su = s+ s′, which is a secret value only
known to U . Finally, he sets his anonymous credential σ as σ = (A, r, su, C̃m).

Note that in case where U does not mind revealing his attributes (or a subset
of them), he just sends them without using any commitment (respectively, only
commits to the attributes that he does not want to reveal).

Fig. 2. Our keyed-verification anonymous credentials system

Credential Presentation. To anonymously prove that he holds a credential
on the attributes (m1, . . . ,mn), the user engages in an interactive protocol with
the verifier V. First, he randomly selects l, t ∈R Z

∗
p and computes B0 = Al, a

randomized version of his credential. He also computes C = C̃l
mB−r

0 as well as
E = C

1
l f t.

Note that by definition, Ay+r = Cm gs′
h = gm1

1 gm2
2 . . . gmn

n gsuh. Thus, we
have (Al)y+r = glm1

1 glm2
2 . . . glmn

n glsuhl. Hence, C is simply equal to Aly = By
0 .

U also builds a ZKPK π3 to prove that he really holds a valid credential
(i.e. he knows the associated attributes/secrets and the value committed in E
is different from zero). π3 is defined as π3 = PoK{α, β, λ, δ1, . . . , δn+1, γ, θ : E =
Cαfβ ∧ E · h−1 = gδ1

1 . . . gδn
n gδn+1 · Bλ

0 · fβ ∧ C = Eθfγ}. Once the required
values have been computed, U provides V with B0, C and E along with π3

4.

4 π3 is detailed in Appendix C.
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Upon their receipt, V first computes C ′ = By
0 , then verifies that C = C ′. If

so, he checks that π3 is valid. V is convinced that U really holds a valid credential
on attributes (m1, . . . ,mn) if, and only if, both checks succeed.

Theorem 3. Our KVAC system is unforgeable under the assumption that
MACn

BB is sUF-CMVA, perfectly anonymous and ensures blind issuance as well
as key-parameter consistency in the Random Oracle Model5.

4.3 From Keyed-Verification to Public Key Anonymous Credentials

In this section, we explain how to turn our KVAC system into a public key
anonymous credentials system. Thereby, a user would be able to prove possession
of a credential to any entity (i.e. even if the issuer’s private key is unknown).

For that, our system should be defined in bilinear groups. Let us first recall
that bilinear groups are a set of three cyclic groups G1, G2 and GT of prime
order p along with a bilinear map e : G1 × G2 → GT satisfying the following
properties:

– For all g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)a.b;
– For g �= 1G1 and g̃ �= 1G2 , e(g, g̃) �= 1GT

;
– e is efficiently computable.

In such a case, the system public parameters are defined as pp =
(G1,G2,GT , p, e, g1, . . . , gn, g, h, g0, f, g̃0) where G1, G2 and GT are three cyclic
groups of prime order p, (h, g, g0, {gi}n

i=1, f) are random generators of G1 and
g̃0 is a random generator of G2. The other phases are updated as follows.

Key Generation. The issuer publishes a second public key W = g̃y
0 associated

with his private key y.
Blind Issuance. This phase does not require any changes.
Credential Presentation. As the verifier V does not hold the private key y,

some changes are required on his side. More precisely, he must compute two
pairings e(C, g̃0) and e(B0,W ). V is convinced that the user really holds a
valid credential on (m1, . . . ,mn) only if e(C, g̃0) = e(B0,W ) and π3 is valid.

5 Efficiency Comparison and Performance Assessment

We first compare the efficiency of our KVAC system to that of the main existing
anonymous credentials schemes (i.e. U-Prove, Idemix, Bilinear CL, MACGGM and
MACDDH) both in terms of credential size and computational cost related to the
creation of a presentation proof since it is the most time-critical phase. Next,
we focus on the complexity, in the number of group elements, of KVAC systems
presentation proofs. Finally, we provide timing results of the implementation of
our Credential presentation protocol on a standard NFC SIM card.

5 Proofs are detailed in Appendix B.
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Presentation Proof Computational Cost. We compare in Table 1 the esti-
mated cost of creating a presentation proof in terms of total number of multi-
exponentiations. We use the same notation as [15] where l-exp denotes the com-
putation of the product of l powers and l − exp(b1, . . . , bl) corresponds to the
computation of the product of l powers with exponents of b1, . . . , bl bits (for
Idemix). The number of multi-exponentiations depends on three parameters:
n, r and c which respectively denote the number of attributes in a credential,
the number of revealed attributes and the number of attributes kept secret.

Table 1 shows that our KVAC system is competitive with U-Prove (which
does not provide multi-show unlinkability) and MACGGM (which requires the
verifier to know the issuer’s private key and thus does not allow public verifia-
bility). When most of the attributes are not disclosed, our proposal outperforms
MACGGM.

Table 1. Comparison of credential sizes (for s unlinkable shows) and presentation
proof generation cost (for a credential on n attributes, c of which are not disclosed).
Note that all schemes use a 256-bit elliptic curve group, except Idemix which uses a
2048-bit modulus.

Schemes Credential size
(in bits)

Number of exponentiations

U-Prove [23,24] 1024s 2c 2-exp and 1 (n − r + 1)-exp

Idemix [22] 5369 1 1-exp(2048), c 2-exp(256, 2046), c
2-exp(592, 2385) and 1 (n − r + 2)-exp (456,
3060, 592, . . ., 592)

Bilinear CL [12] 512n + 768 (3 + n) 1-exp, 2c 2-exp and 3 + n pairings

MACGGM [15] 512 3 1-exp, 2(n − r) 2-exp and 1 (n − r + 1)-exp

MACDDH [15] 1024 6 1-exp, 2(n − r + 1) 2-exp and 2
(n − r + 1)-exp

MACn
BB 1024 1 1-exp, 4 2-exp and 1 (n − r + 3)-exp

Complexity in the Number of Group Elements. As it only requires a
multi-commitment to all undisclosed attributes, our presentation proof is of com-
plexity O(1) in the number of group elements. This makes our KVAC system
more efficient than Chase et al. systems (i.e. MACGGM and MACDDH [15]) whose
presentation proof is of complexity O(c). Indeed, both of their proposals presen-
tation proof needs c commitments (one for each unreavealed attribute).

Implementation Results. Table 2 gives timing results of the implementation
of our Show protocol on a Javacard 2.2.2 SIM card, Global Platform 2.2 com-
pliant, embedded in a Samsung galaxy S3 NFC smartphone. Compared to the
javacard specifications, the only particularity of our card is some additional API
provided by the card manufacturer enabling operations in modular and ellip-
tic curve arithmetic. To be able to handle asymmetric cryptography on elliptic
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curves, the used card is equipped with a cryptoprocessor. This makes it more
powerful than most cards. It is, however, worth to emphasize that such SIM
cards are already widely deployed by some phone carriers to provide NFC based
services.

The implementation uses a 256-bit prime “pairing friendly” Barreto-Naehrig
elliptic curve. In our implementation, the protocol is split into two parts: an
off-line part that can be run in advance by the card (during which all the val-
ues necessary for an execution of the Show protocol in the worst case scenario,
i.e. no revealed attributes, are computed) and an on-line part that needs to be
performed on-line as it depends on the verifier’s challenge. Indeed, in our imple-
mentation, the proof π3 is made non-interactive: the verifier sends to the prover
a challenge Ch which is included in the computation of the hash value c. Timings
are given for n = 3, r = 2 and c = 1.

Table 2. Timings in ms ((min-max) average) of the implementation of the protocol
Show

Off-line part (card) Battery-On: (1352–1392) 1378ms

On-line part

Presentation proof (card) Proof verification (PC)

Battery-On Battery-Off y known y unknown

(81–86) 83ms (123–124) 123.4 ms (3–14) 5 ms (5–17) 10 ms

Total On-line part

Battery-On Battery-Off

y known y unknown y known y unknown

(84–100) 88ms (86–103) 93 ms (126–137) 128 ms (128–141) 133 ms

The presentation proof by the card actually refers to the total time, from the
applet selection to the proof reception, including the sending of the challenge by
the verifier, but excluding the proof verification. Communication between the SIM
card in the smartphone and the PC (Intel Xeon CPU 3.70 GHz), acting as the
Verifier, was done in NFC using a standard PC/SC reader (an Omnikey 5321).
“Battery-Off” denotes a powered-off phone either by the user, or because its bat-
tery is flat. In such a situation, as stated by NFC standards, NFC-access to the
SIM card is still possible, but with degraded performances. Off-line computations
are assumed to be automatically launched by the smartphone (battery-On) after a
presentation proof, in anticipation for the next one. It is noteworthy that all com-
putations are entirely done by the card: the smartphone is only used to trigger the
Show protocol and to power the card. On-line computations refer to computations
of Ri values and the hash c involved in the proof π3 (see Appendix C), and can be
potentially carried out even by a battery-Off phone. On average, the On-line part
of the presentation proof is very fast even when the phone is powered-off. Actually,
data exchange is the most time-consuming task.
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6 Conclusion

In this paper, our contribution is twofold. First, we proposed a new algebraic
MAC scheme that relies on a pairing-free variant of the Boneh Boyen signature
scheme. Then, based on it, we designed a keyed-verification anonymous cre-
dentials (KVAC) system whose presentation proof is efficient both in terms of
presentation cost and complexity (in the number of group elements). Our KVAC
system provides multi-show unlinkability and requires the issuer to hold a single
private key regardless of the number of attributes. Through slight modifications
(solely on the verifier side), our KVAC system can be easily turned into a quite
efficient public key anonymous credentials system. Thereby, it can also be used
even if the verifier does not hold the issuer’s private key. Finally, implementation
results confirm its efficiency and suitability for delay sensitive applications, even
when implemented on a standard NFC SIM card.

A MAC Security

A.1 Security Proof of MACBB (Theorem1)

Let A be an adversary who breaks the sUF-CMVA security of our MACBB scheme
with non-negligible probability. Using A, we construct a reduction B against the
q − SDH assumption in gap-DDH groups (which implies the gap q − SDH − III
assumption). A can ask for tags on any message of his choice and receives the
corresponding tags (Ai, ri, si) for i ∈ {1, . . . , q} where q denotes the number of
requests to the OMAC oracle. Eventually, A outputs his forgery (A, r, s) for the
message m. We distinguish two types of forgeries:

– Type-1 Forger: an adversary that outputs a valid tag (A, r, s) on m such
that (A, r) �= (Ai, ri) for all i ∈ {1, . . . , q}.

– Type-2 Forger: an adversary that outputs a valid tag (A, r, s) on m such
that (A, r) = (Aj , rj) for some j ∈ {1, . . . , q} and (m, s) �= (mj , sj).

We show that, regardless of their type, both adversaries can be used to break the
gap q −SDH assumption. However, the reduction works differently for each type
of forger. Consequently, B initially chooses a random bit cmode ∈ {1, 2} which
indicates its guess for the type of forgery that A will output.

• If cmode = 1: B receives on input from its q−SDH challenger, denoted by C,
the public parameters (g0, g1, h) and the public key Y = gy

0 as well as q random,
and distinct, triples (Ai, ri,mi) such that Ai = (gmi

1 h)
1

ri+y for i ∈ {1, . . . , q}.
As it is against the gap q −SDH − III assumption, B has access to a DDH oracle,
denoted by ODDH, that decides whether a given quadruple (g, h, gx, hy) is a valid
Diffie-Hellman quadruple (i.e. whether x

?= y mod p) or not. B also randomly
chooses v ∈R Zp and computes g = gv

1 . Thereby, it can provide A with the public
parameters (g0, g1, h, g, Y ) and answer his requests as follows:
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– OMAC requests: given m as input, B first computes si such that m+vsi = mi.
Then, it provides A with the triple (Ai, ri, si) which is a valid MAC on m
(i.e. Ay+ri

i = gm
1 gsih). The simulation of this oracle is perfect.

– OVerify requests: given a quadruple (A, r, s,m), B first verifies that A �= 1
and computes B = A−rgm

1 gsh. Then, it provides the quadruple (g0, A, Y,B)
as input to the ODDH oracle so as to know if it is valid or not. B forwards the
oracle’s answer to A, thus perfectly simulating OVerify.

Eventually, after q queries to OMAC and qv queries to OVerify, A outputs his
forgery (A, r, s) on m such that it breaks the sUF-CMVA security of our MACBB

scheme. Using these values, B computes m̃ = m + sv and outputs his forgery
(A, r, m̃) thus breaking the q − SDH assumption with the same advantage as A.

• If cmode = 2: A Type-2 adversary A is rather used, as a subroutine, to
construct a reduction B against the DL problem. In such a case, B receives on
input from its DL challenger, denoted by C, the challenge (g1,H = gv

1). Its goal
is to find the value v. For this purpose, it first randomly chooses (y, g0, h) ∈R

Zp × G
2 and computes Y = gy

0 . B also sets g as g = H. Thereby, it can provide
A with the public parameters (g1, g0, h, g, Y ) and answer his requests as follows:

– OMAC requests: as it holds y, B can generate a valid MAC (A, r, s) on any
queried message m. To do so, it computes A = (gm

1 gsh)
1

y+r where r, s ∈ Z
∗
p.

– OVerify requests: given a quadruple (A, r, s,m), B computes Ã =
(gm

1 gsh)
1

y+r . To check its validity, and answer A’s query, B verifies whether
Ã

?= A.

Eventually, after q queries to OMAC and qv queries to OVerify, A outputs his
forgery (A, r, s) on m such that it breaks the sUF-CMVA security of our MACBB

scheme. By assumption, (A, r) is equal to one of the (Aj , rj) pairs output by the
OMAC oracle following A’s request for some j ∈ {1, . . . , q}. Since (A, r) = (Aj , rj),
then Ay+rj = g

mj

1 gsj h = Ay+r = gm
1 gsh and so g

mj

1 gsj = gm
1 gs. We therefore

necessarily have sj �= s, otherwise this would imply that m = mj (contradicting

the fact that we have supposed (m, s) �= (mj , sj)). Thereby, g = (g1)
m−mj
sj−s . Using

the values (m,mj , s, sj), B can recover v, hence breaking the DL problem. If B
can break the DL problem, then it can break the q − SDH problem (by finding
the discrete logarithm y of gy in the base g).

B can guess which type of forgery a particular adversary A will output with
probability 1/2. So, B can break the gap q − SDH problem with probability ε/2
where ε is the probability that A breaks the sUF-CMVA security of our MACBB

scheme. Therefore, under the gap q − SDH assumption, our MACBB scheme is
sUF-CMVA secure.

A.2 Security Proof of MACn
BB (Theorem2)

Let A be an adversary who breaks the unforgeability of our MACn
BB with non-

negligible probability. Using A, we construct an algorithm B against the unforge-
ability of MACBB. A can ask for tags on blocks of messages

→
m1 = (m1

1, . . . ,m
1
n),
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→
m2 = (m2

1, . . . ,m
2
n), . . . ,

→
mq = (mq

1, . . . ,m
q
n) and receives the corresponding tags

(Ai, ri, si) for i ∈ {1, . . . , q}. Eventually, A outputs his forgery (A, r, s) for the
block of messages

→
m = (m1, . . . ,mn). We differentiate two types of forgers:

– Type-1 Forger: an adversary that outputs a forgery where (A, r, s) �=
(Ai, ri, si) for i ∈ {1, . . . , q}.

– Type-2 Forger: an adversary that outputs a forgery where (A, r, s) =
(Ai, ri, si) for some i ∈ {1, . . . , q} and (m′

1, . . . ,m
′
n) �= (mi

1, . . . ,m
i
n).

We show that any forger can be used to forge MACBB tags. The reduction
works differently for each forger type. Therefore, B initially chooses a random
bit cmode ∈ {1, 2} that indicates its guess for the type of forgery that A will
emulate.

• If cmode = 1: B receives on input from its MACBB challenger, denoted by
C, the public parameters (g0, g1, g, h) as well as the public key Y = gy

0 . Then, B
constructs the public parameters for A as follows: for i ∈ {2, . . . , n}, B chooses
αi ∈R Z

∗
p and computes gi = gαi

1 . The parameters g0, g1, g, h and Y are the same
as those sent by C. B can answer A’s requests as follows:

– OVerify requests: when A sends a verify request to B on (A, r, s) and a block
of messages (m1, . . . ,mn), B computes M = m1 +α2m2 + . . .+αnmn. Then,
it queries its MACBB Verify oracle on (A, r, s,M) and outputs the oracle’s
answer to A.

– OMAC requests: when A sends a tag request to B on the block of messages
(m1, . . . ,mn), B asks the MACBB oracle on M = m1 + α2m2 + . . . + αnmn.
Thus, B obtains the tag (Ai, ri, si). It sends back (Ai, ri, si) to A which is a
valid MACn

BB tag on (m1, . . . ,mn).

Eventually, A outputs his forgery (A, r, s) on the block of messages (m1, . . . ,mn).
Using these values, B directly outputs its MACBB forgery (A, r, s) on M ′ =
m1 +α2m2 + . . .+αnmn. Therefore, B breaks the unforgeability of MACBB with
the same advantage as A.

• If cmode = 2: In this case, A is rather used as a subroutine to construct a
reduction B against the DL problem. B receives as input from its DL challenger,
denoted by C, the challenge (g,H = gv). The goal of B consists in finding v.
For that purpose, it first randomly chooses (y, g0, h) ∈R Zp × G

2 and computes
Y = gy

0 . Then, it chooses I ∈ {1, . . . , n} and (n − 1) random values αi ∈ Z
∗
p. It

computes, for i �= I, gi = gαi and defines gI = H. B can answer A’s requests as
follows:

– OVerify requests: when A sends a verify request to B on (A, r, s) and a block
of messages

→
m = (m1, . . . ,mn), B computes Ã = (gm1

1 . . . gmn
n gs · h)

1
y+r . It

can thus check the validity of the quadruple (A, r, s,
→
m) by verifying whether

Ã
?= A;

– OMAC requests: as it holds y, B can generate a valid MAC (A, r, s) on any
queried block of messages (m1, . . . ,mn). Indeed, it chooses r, s ∈R Z

∗
p and

computes A = (gm1
1 . . . gmn

n gs · h)
1

y+r .
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Eventually, A outputs his forgery (A, r, s) on a block of messages
→
m =

(m1, . . . ,mn). By assumption, (A, r, s) is equal to one of A’s requests, let
say (Ai, ri, si), but it is a forgery on a new block of messages. Therefore,
(mi

1, . . . ,m
i
n) �= (m1, . . . ,mn) (one can easily show that there is at least one

difference in the two blocks of messages). So with probability 1
n ,mi

I �= mI . Thus,

since (A, r, s) = (Ai, ri, si), we have gm1
1 gm2

2 . . . gmn
n = g

mi
1

1 g
mi

2
2 . . . g

mi
n

n . So, the

discrete logarithm v of H = gI in the base g is equal to: v =
∑n

j �=I αj
(mj−mi

j)

mi
I−mI

.
Therefore, B can find v with probability ε

n where ε is the probability that A
breaks the unforgeability of MACn

BB. If B can break the DL problem then, it can
break the MACBB scheme (by finding the discrete logarithm of Y in the base g0).

We can guess which of the two forgers a particular adversary A is with
probability 1/2. So, assuming the most pessimistic scenario (case 2), B can break
the unforgeability of MACBB with probability ε/2n.

B Security Proofs of Theorem3

Relying on the KVAC security model provided in [15], we focus in this appendix
on the security proofs of our KVAC system. Owing to the lack of space, we only
detail the proofs of unforgeability and anonymity.

Unforgeability. Here, we prove unforgeability when A is given credentials gen-
erated by the BlindIssue protocol. We have shown (see Theorem 2) that MACn

BB

is unforgeable under the gap q − SDH assumption.
Suppose there exists an adversary A who can break the unforgeability prop-

erty of our anonymous credentials system. We will show that A can be used to
construct an algorithm B that breaks the unforgeability of MACn

BB. B receives
pp = (G, p, g1, . . . , gn, g, h, g0) from its MACn

BB challenger along with Y , the
issuer’s public key. It sends pp and Y to A and answers his requests as follows:

– When A queries the OBlindIssue oracle: A sends Cm and gives a proof π1. If
π1 is invalid, B returns ⊥. Otherwise, B runs the proof of knowledge extractor
to extract {mi}n

i=1 and s. B then queries its MACn
BB oracle on {mi}n

i=1 which
returns a tag (A, r, su) to B. Finally, B simulates the corresponding proof6 π2

and forwards the tag (A, r, su − s) along with π2 to A.
– When A queries the OShowVerify oracle: A sends B0, C,E along with a

proof π3. If the proof π3 is invalid, B returns ⊥. Otherwise, B runs the proof
of knowledge extractor to extract α, β, λ, δ1, δ2, . . . , δn+1, γ and θ. If α = 0,
B returns 0 to A. Otherwise, B computes A = Bα

0 , r = − λ
α and s = δn+1.

Finally, it queries its Verify oracle with ((δ1, δ2, . . . , δn), (A, r, s)) as input
and returns the result to A.

In the final Show protocol, B again extracts α, β, λ, δ1, δ2, . . . , δn+1, γ, θ and out-
puts ((δ1, δ2, . . . , δn), (Bα

0 ,− λ
α , δn+1)) as its forgery.

6 Such a proof can be easily simulated in the ROM, using standard techniques.



376 A. Barki et al.

First, note that B’s response to OBlindIssue queries are identical to the
ones of the honest OBlindIssue algorithm. Then, we argue that its response
to ShowVerify queries are also, with overwhelming probability, identical to the
output of a real ShowVerify algorithm. To see this, note that the proof of knowl-
edge property guarantees that the extractor succeeds in producing a valid wit-
ness with all but negligible probability. Furthermore, if the extractor gives valid
(α, β, λ, δ1, δ2, . . . , δn+1), we have from E = Cαfβ = gδ1

1 . . . gδn
n gδn+1 · h · Bλ

0 · fβ

that

Cα = gδ1
1 . . . gδn

n gδn+1 · h · Bλ
0 =⇒ CαB−λ

0 = gδ1
1 . . . gδn

n gδn+1 · h

If the MACn
BB Verify oracle outputs 1 on input ((δ1, δ2, . . . , δn), (Bα

0 ,− λ
α , δn+1)),

this implies that

(Bα
0 )y− λ

α = gδ1
1 . . . gδn

n gδn+1 · h

⇔ (Bα
0 )y · B−λ

0 = gδ1
1 . . . gδn

n gδn+1 · h

⇔ (Bα
0 )y · B−λ

0 = CαB−λ
0

⇔ (Bα
0 )y = Cα

⇔ By
0 = C

Note that α is necessarily different from 0, otherwise Bα
0 = 1 and would have

been rejected by the MACn
BB Verify oracle.

Thus, the honest verifier algorithm accepts, if and only if, (Bα
0 ,− λ

α , δn+1)
would be accepted by the MACn

BB Verify algorithm for message (δ1, . . . , δn).
Similarly, we can argue that B can extract a valid MAC from the final Show
protocol whenever α �= 0 and ShowVerify would have output 1. Thus, if A can
cause ShowVerify to accept for some statement φ that is not satisfied by any of
the attributes sets queried to OBlindIssue, then B can extract a new message
(δ1, . . . , δn) and a valid tag for that message.

Anonymity. Suppose the user is trying to prove that he has a credential for
attributes satisfying some statement φ. We want to show that there exists an
algorithm SimShow that, for the adversary A, is indistinguishable from Show but
that only takes as input the statement φ and the secret key sk.

Let φ ∈ Φ and (m1, . . . ,mn) ∈ U be such that φ(m1, . . . ,mn) = 1. Let pp
be the system public parameters, Y the issuer’s public key and σ be such that
CredVerify(sk, σ, (m1, . . . ,mn)) = 1. So, σ consists of a quadruple (A, r, su, C̃m)
∈ G × Zp × Zp × G satisfying Ay+r = gm1

1 . . . gmn
n gsuh.

SimShow(sk, φ) behaves as follows: it chooses a random value l′ ∈R Z
∗
p as

well as a random generator E ∈R G. It then computes B0 = gl′
0 and C = Y l′ .

It runs A with the values (B0, C,E) as the first message, simulates the proof of
knowledge π3 and outputs whatever A outputs at the end of the proof.

Let us first show that the values B0, C and E are distributed identically to
those produced by Show. Note that since A �= 1, there exists x ∈ Zp such that
A = gx

0 . For a random value l ∈R Zp, B0 = Al = glx
0 = gl′

0 for l′ = lx. Therefore,
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we also have C = Aly = Y l′ . Moreover, there exists t such that E = C1/lf t.
Then, the values computed by SimShow are identical to those that the normal
Show protocol would have produced. Owing to the zero-knowledge property of
the proof of knowledge, we conclude that the resulting view is indistinguishable
from that produced by the adversary interacting with Show.

C ZKPK π3 - Proof of Possession of a Credential

We describe an instantiation of our presentation protocol using non-interactive
Schnorr-like proofs. As in [15], our protocol does not include proofs of any addi-
tional predicates φ, but outputs a commitment H on the attributes which may
be used as input to further proof protocols.

Hereinafter, we detail the ZKPK π3 = PoK{α, β, λ, δ1, . . . , δn+1, γ, θ : E =
Cαfβ∧H = gδ1

1 . . . gδn
n gδn+1Bλ

0 fβ∧C = Eθfγ} where E = C1/lf t, H = E·h−1 =
gm1
1 gm2

2 . . . gmn
n gsuB

−r/l
0 f t and C = Elf−tl.

Prover Verifier

Private Input:
→
m = (m1, . . . , mn), l, t

su and r

Choose a1, a2, . . . , an+6
R← Z

∗
q

Compute t1 ← Ca1fa2

t2 ← g
a3
1 g

a4
2 . . . g

an+2
n gan+3B

an+4
0 fa2

t3 ← Ean+5fan+6

Compute c = H(Ch, t1, t2, t3)
Ch←−−−−−−−−−− Choose Ch ∈R Z

∗
p

Compute R1 ← a1 + c/l, R2 ← a2 + ct
c,R1,...,Rn+6−−−−−−−−−−→ Compute t′

1 = CR1fR2E−c

for i∈{1, . . . , n}, Ri+2 ← ai+2 + cmi t′
2=g

R3
1 . . . g

Rn+2
n gRn+3B

Rn+4
0 fR2H−c

Rn+3 ← an+3 + csu, Rn+4 ← an+4 − cr
l t′

3 = ERn+5fRn+6C−c

Rn+5 ← an+5 + cl, Rn+6 ← an+6 − ctl Check if c = H(Ch, t′
1, t′

2, t′
3)

Proof. Let us prove that, when C = By
0 , π3 is a ZKPK of a MACn

BB (A, r, su)
on a block of messages (m1, . . . ,mn). The completeness of the protocol fol-
lows by inspection. The soundness follows from the extraction property of the
underlying proof of knowledge7. In particular, the extraction property implies
that for any prover P∗ that convinces V with probability ε, there exists an
extractor which interacts with P∗ and outputs (α, β, λ, δ1, . . . , δn+1, γ, θ) with
probability poly(ε). Moreover, if we assume that the extractor inputs consists
of two transcripts i.e. (G, g, h, f,B0, C,E, c, c̃, R1, . . . , Rn+6, R̃1, R̃2, . . . , R̃n+6),
the witness can be obtained by computing α = R1−R̃1

c−c̃ ; β = R2−R̃2
c−c̃ ; δi =

Ri+2−R̃i+2
c−c̃ ,∀i ∈ {1, . . . , n}; δn+1 = Rn+3−R̃n+3

c−c̃ ; λ = Rn+4−R̃n+4
c−c̃ ; θ = Rn+5−R̃n+5

c−c̃ ,

γ = Rn+6−R̃n+6
c−c̃ ; (all the computations are done mod p). The extractor succeeds

when (c−c̃) is invertible in Zp. We know that H = E ·h−1 = gδ1
1 . . . gδn

n gδn+1Bλ
0 fβ

7 For concurrent security, we could use the D̊amgard protocol [18] which converts any Σ
protocol into a three-round interactive ZKPK secure under concurrent composition.
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so E = gδ1
1 . . . gδn

n gδn+1Bλ
0 fβh. We also know that E = Cαfβ so Cαfβ =

gδ1
1 . . . gδn

n gδn+1Bλ
0 fβh and then

Cα = gδ1
1 . . . gδn

n gδn+1Bλ
0 h. (1)

Since C = By
0 , we have Bαy

0 = gδ1
1 . . . gδn

n gδn+1Bλ
0 h and

Bαy−λ
0 = gδ1

1 . . . gδn
n gδn+1h. (2)

If α �= 0, (2) implies that

(Bα
0 )y− λ

α = gδ1
1 . . . gδn

n gδn+1h. (3)

Let A = Bα
0 , r = − λ

α , su = δn+1 and mi = δi for i ∈ {1, . . . , n}.
If α �= 0, (3) implies that the prover knows a valid MACn

BB, (A, r, su) on a
block of messages (m1, . . . ,mn). Note that y− λ

α �= 0, otherwise this would imply
that the prover knows y which would be equal to λ

α .
Let us now prove that α �= 0. We know that

C = Eθfγ = (Cαfβ)θfγ = Cαθfβθ+γ =⇒ 1 = Cαθ−1fβθ+γ (4)

• If the prover does not know the discrete logarithm of C in the base f , this
implies that it only knows one representation (0, 0) of 1 in the base (C, f) [8].
Therefore, αθ = 1 which implies that α �= 0.

• Suppose now that the prover knows the discrete logarithm χ of C in the
base f (i.e. C = fχ) and that α = 0. Since C = By

0 , we have By
0 = fχ and then

B0 = f
χ
y (since Y = gy

0 �= 1, this implies that y �= 0 mod p). From (1) and since
α is supposed to be equal to 0, we have that h = g−δ1

1 g−δ2
2 . . . g−δn

n g−δn+1f−λ χ
y .

So, the issuer could use the prover as a subroutine to compute a representa-
tion of h in the base (g1, g2, . . . , g, f). As (g1, g2, . . . , g, f) are random generators
of G, this is impossible under the DL assumption [8]. Therefore, this means that
either P∗ does not know the discrete logarithm of C in the base f or α �= 0. Both
cases imply that α �= 0. We therefore conclude that α �= 0 and so the prover
knows a valid MACn

BB (A, r, su) on a block of messages (m1, . . . ,mn).
Finally, to prove (honest-verifier) zero-knowledge, we construct a simulator

Sim that will simulate all interactions with any (honest verifier) V∗.

1. Sim randomly chooses l′ ∈R Z
∗
p and a random generator E ∈R G and then

computes B0 = gl′ and C = Y l′ .
2. Sim randomly chooses c,R1, . . . , Rn+6 ∈R Z

∗
p and computes t1 = CR1fR2E−c,

t2 = gR3
1 . . . g

Rn+2
n gRn+3B

Rn+4
0 fR2H−c and t3 = ERn+5fRn+6C−c.

3. Sim outputs S = {B0, C,E, c,R1, R2, . . . , Rn+6}.

Since G is a prime-order group, then the blinding is perfect in the first
step. Indeed, there exists x ∈ Zp such that for a valid MACn

BB (A, r, su) on
(m1, . . . ,mn): A = gx

0 .
For a random value l ∈ Z

∗
p, we therefore have B0 = Al = glx

0 = gl′
0 for

l′ = lx. This also implies that C = Aly = Y l′ . Moreover, there exists t such
that E = C

1
l f t. Therefore S and V∗’s view of the protocol are statistically

indistinguishable.
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Abstract. Ever since Keccak won the SHA3 competition, sponge-based
constructions are being suggested for many different applications, includ-
ing pseudo-random number generators (PRNGs). Sponges are very desir-
able, being well studied, increasingly efficient to implement and simplis-
tic in their design. The initial construction of a sponge-based PRNG
(Bertoni et al. CHES 2010) based its security on the well known sponge
indifferentiability proof in the random permutation model and provided
no forward security.

Since then, another improved sponge-based PRNG has been put for-
ward by Gaži and Tessaro (Eurocrypt 2016) who point out the necessity
for a public seed to prevent an adversarial sampler from gaining non-
negligible advantage. The authors further update the security model of
Dodis et al. (CCS 2013) to accommodate a public random permutation,
modelled in the ideal cipher model, and how this affects the notions of
security.

In this paper we introduce Reverie, an improved and practical, sponge-
like pseudo-random number generator together with a formal security
analysis in the PRNG with input security model of Dodis et al. with the
modifications of the Gaži and Tessaro paper.

We prove that Reverie is robust when used with a public random per-
mutation; robustness is the strongest notion of security in the chosen
security model. Robustness is proved by establishing two weaker notions
of security, preserving and recovering security, which together, can be
shown to imply the robustness result. The proofs utilise the H-coefficient
technique that has found recent popularity in this area; providing a very
useful tool for proving the generator meets the necessary security notions.

Keywords: Sponge · Pseudo-random number generator (PRNG) ·
Patarin’s H-coefficient technique · Robustness · Keccak · SHA-3 · Ideal
permutation model

1 Introduction

Randomness is an essential ingredient in almost every area of cryptography; yet
in the literature, randomness is often sampled uniformly at random with little
thought on how quickly this amount of “good” randomness can be generated in
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practice. The need for high quality randomness delivered quickly has spawned
work on the various key aspects of a PRNG, such as the ability to produce
randomness at a fast and reliable rate, and protection against adversaries who
may be able to compromise parts of the generator’s state or the environment
in which it draws entropy. In practice, many generators in active use have not
received valid security analysis, and, on the opposite side of the fence, many
designs are created in a theoretical setting without the full scope of desirable
properties for a PRNG in mind and as result, are impractical for active use.

Sponges. The sponge design is very simple and yet very powerful; it benefits
from a large amount of analysis due to the success of Keccak [6] in the SHA3
competition in 2012. The design requires an n-bit state with a rate r and capacity
c such that n = r + c; the r bits of the state s are known as the outer state,
written s while the c bits are known as the inner state ŝ. The design initialises
with an initial state of the zero state, and a random permutation π. The sponge
has two algorithms; Absorb and Squeeze.

Previous constructions. The sponge-based PRNG construction first sug-
gested by Bertoni et al. in [8] utilises a random permutation and relies on the
sponge indifferentiability proof of [7] for security. This analysis, though useful,
does not consider security in terms of a security model for PRNGs. More recently,
work by Gaži and Tessaro has improved upon this design and security claims,
but still requires multiple additional calls to the permutation to ensure forward
security, along with several additional strings to give a seeded design.

Ideal permutation model. We prove all of our security claims in the ideal per-
mutation model where π is a public, random permutation picked at the beginning
of any game. Any party has access to the permutation and may make forward
and backward queries. We denote by Aπ an adversary with oracle access to

π
$← Pn with Pn being the space of all permutations on n-bit strings. We say

that Aπ is a qπ-query adversary if it makes at most qπ queries π.

PRNG security models. The development of security models for PRNGs has
been slow due to a complex combination of security goals and the difficulty
in accurately capturing the environment both the PRNG and the associated
adversary are working in. Security models for PRNGs include work by Barak
and Halevi [2], from 2005, a brilliantly simple model that introduced a very
strong notion of Robustness.

This model was later improved upon in successive work by Dodis et al. [10],
which initially aims to address the situation where a PRNG accumulates entropy
at a slow rate, and is at risk of “prematurely” being called before enough entropy
has been gathered.

The model was then further improved in [11], which introduced the idea of
a scheduler, inspired by the design of the Fortuna PRNG [12] which aimed at
a design to improve the recovery time of a compromised PRNG. We will not
be considering a scheduler in this paper and will keep to the definitions of [10];
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however, the idea of a scheduler is an interesting prospect in terms of possibly
replacing the need for seed described below.

Seedless design. More recently, work done concurrently to the first draft of this
paper, by Gaži and Tessaro [13], concentrates on the importance of a “seeded”
design when using a public ideal permutation. The authors argue that a publicly
available permutation allows an adversary to generate PRNG inputs dependent
on the permutation. These “bad” distributions can output high entropy inputs
but result in a predictable bit of the state, and thus result in a non-negligible
advantage for the adversary. The authors of this work ensure their implementa-
tion is seeded by requiring a small number (s = 2 or 3) of r-bit strings that are
used as additional inputs to prevent this attack.

We note that this adds to the initial entropy requirements of the PRNG,
which can already be one of the most restrictive and problematic situations for
a PRNG. Another addition is the need for a counter to be kept; this is absorbed
into the refresh procedure but should be an additional part of the state. Fortu-
nately due to work in [15], this would not affect security. Alternatively, this could
merely be an identifier of the system on which the PRNG is implemented, along
with the current time of the system clock, which could be hashed to provide the
seed, though in the security games the seed is chosen uniformly at random. Our
design is aimed at being practical and efficient; in a practical scenario the distri-
bution sampler or entropy accumulation mechanism is not so easily influenced
and discovering these “bad” distributions is very difficult when good, studied
entropy sources are used.

We include the option of a seed so that robustness can be achieved, but we
question the necessity of the seed in a practical scenario; this can be likened to
many PRNGs made for practical use having the option of a “personalisation”
string [16], but note that this is often not used or even implemented. In practical
implementations the PRNG does not have direct access to a noise source, but
rather an entropy source that has been studied and provides a minimum entropy
estimate, along with post processing and health checking [3,4].

Notation. In this paper we denote by si the ith n−bit state of a generator.
In the context of sponges we work with an n−bit state si which is split into an
inner state of c-bits, denoted by ŝi. The rest of the state is called the outer state,
of r-bits and is denoted si. Thus, the state can be given as si = (si‖ŝi) where
‖ is the usual concatenation of strings. The construction defined in this paper
utilises a public, random permutation π from the set Pn of all permutations on
n-bits. We use x

$← X to denote an element x of a set X chosen uniformly at
random. We denote by Ii the ith r-bit input string, used to refresh the state of
a generator. We denote by ri the ith output of a generator. These counters are
in fact dependent on the state counter, so rather than the i-th output, we refer
to the output associated with state i.

Contributions. We put forward an improved sponge-like PRNG design which
we prove is robust in the updated security model. The recent work by Gaži and
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Tessaro updated the security of the sponge-based PRNG design of Bertoni et al.
but did not seek to improve the design of the next procedure. We improve the
design of the next function to ensure our design is more efficient, making a single
call to the permutation π, compared with 1+ t calls; resulting in a design better
suited for practical application, especially those that restrict the number of calls
to π. Since the p.forget procedure of the previous generator calls the permutation
1 + t times, with zeroing, it presents the problem of increased collisions in the
state, something that is avoided by our design and thus our bound is mainly
limited by the collision factor associated with the refresh procedure. This poten-
tially makes our generator comparatively more secure when first initialised on
a random initial state and before any refreshes have been made. Below are the
two main components of the new design Reverie.

– Reverie.refreshπ(si, I, seed, j) = π((si ⊕I⊕seedj)‖ŝi) = si+1, j = j+1 mod s,
– Reverie.nextπ(si) = (π(si) ⊕ (0r‖ŝi), si) = (si+1, ri+1).

The security notion of interest in this paper is the strongest security notion,
“robustness” which, informally, refers to an adversary working in time t, with
access to a distribution sampler D that outputs refresh material used to update
the state of the generator.

The adversary is allowed up to qD outputs from the distribution sampler
D, these strings are required to have a minimum entropy when being used to
refresh the generator from a compromised state. The adversary also has access
to two algorithms get-next and next-ror which give the adversary output from
the generator or random. The adversary is allowed up to qR queries between
these two algorithms.

Lastly, the adversary has up to qS queries to set-state and get-state which give
the adversary the current state of the generator and in the case of the former,
allow it to set the state. In addition, the generator is said to be “uncompromised”
if the current state has minimum entropy ≥ γ∗ for some value γ∗. We say a
generator is ((t, qD, qR, qS), γ∗, ε) robust where ε is the maximum advantage of
any adversary playing the robustness game.

The design can be seen in Fig. 2 for further clarity. Although this design
departs slightly from the sponge design, it can still be captured by the more
generalised structure of the parazoa as defined in [1], and, given access to the
underlying permutation function, easily implemented.

Organisation. This paper is organised into preliminaries in Sects. 2 and 3, fol-
lowed by the description of the new generator in Sect. 4, the security analysis of
the generator in Sect. 5 and finally a discussion of results in Sect. 6.

2 Preliminary Definitions

This section aims to provide a background on all the necessities of pseudo-
random number generators (PRNG), the ideal permutation model, along with
an introduction to Patarin’s H-coefficient technique.
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2.1 Probabilities and Further Notation

Definition 1. The statistical distance between two discrete random variables
X and Y over the set X is denoted

SD(X,Y ) =
1
2

∑

x∈X
|Pr [X = x] − Pr [Y = x]| .

Definition 2. The minimum entropy of a random variable X is defined as
H∞(X) = min

x
$←X

{− log(Pr [X = x])}.

Definition 3. For the purposes used in this paper, a source Sπ is defined as an
input-less randomised oracle which makes queries to π and outputs a string. The
range of the source is denoted [S] and is the set of all values the source outputs with
positive probability, taken over the choice of π and the internal randomness of S.

We use the usual game-based formalism from [5]; for a game G, G(A) ⇒ 1 denotes
the event that an adversary A playing the game G, results in the game outputting
1, while G(A) → 1 denotes the event that the A playing the game G outputs 1.

2.2 PRGs and PRNGs

In this document a PRG will refer to a pseudo-random number generator without
input, while PRNG will refer to a pseudo-random number generator with input
and in the form described in Definition 4.

Definition 4 (PRNG from [10]). A PRNG with input is a triple of algorithms
G = (setup, refresh, next) and a triple (n, �, p) ∈ N

3 where: n is the state length,
� is the output length, p is the input length of G and

– setup: is a probabilistic algorithm that outputs some public parameters seed
for the generator.

– refresh: is a deterministic algorithm that, given seed, a state si ∈ {0, 1}n and
an input I ∈ {0, 1}p, outputs a new state si+1 := refresh(si, I, seed)

– next: is a deterministic algorithm that, given seed and a state si ∈ {0, 1}n,
outputs a pair (si+1, ri+1) = next(seed, si), where si+1 is the new state and
ri+1 ∈ {0, 1}� is the output. We write next(si) and omit seed for clarity.

Definition 5 (Originally of [10] but as amended in [13]). A Q-distribution
sampler is a randomised stateful oracle algorithm D which operates as follows:

– It takes a state σi, with initial state σ0 =⊥.
– Dπ(σi) outputs a tuple (σi,Si, γi, zi), where

• σi is the new state of Dπ.
• Si is a source with range [Si] ⊆ {0, 1}�

i for some �i ≥ 1.
• γi is an entropy estimation for Si which will be discussed further below.
• zi is the leakage and/or auxiliary information about Si.

– When run qD times, the number of queries to the permutation π made by Dπ

and S1, . . . ,SqD is at most Q(qD).
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For simplicity, (σi, Ii, γi, ri)
$← Dπ(σi−1) is written as the overall process of

running D and the generated source Si. Next, we note the requirement for some
restriction on distribution samplers, namely we require the following:

Definition 6. A distribution sampler D as defined above in Definition 5 is
(qD, qπ)-legitimate, if, for every adversary A making qπ queries, every i∗ ∈ [qD],
and for any possible values (Ij)j �=i∗ , (γ1, z1), . . . , (γqD , zqD ), VA , QD potentially
output by the game GLEGqD,i∗(A,D) with positive probability,

Pr
[

Ii∗ = x | (Ij)j �=i∗ , (γ1, z1), . . . , (γqD , zqD ), VA , QD
]

≤ 2−γi∗ ,

for all x ∈ {0, 1}�i∗ , where the probability is conditioned on these particular
values being output by the game. The game GLEGqD,i∗(A,D), is defined in full
in [13, Definition 3, p. 10] and presented in AppendixA, but informally, the
challenger samples a permutation π, Dπ is run qD times and the adversary A
is run on all of the output from Dπ, apart from that of Si and its associated
queries. VA is the adversary’s final output, while QD is the input-output pairs
of permutation queries made by D.

2.3 The Ideal Permutation Model (IPM)

An implementation of a sponge-based PRNG would involve a publicly available
permutation; hence, our analysis is done in the ideal permutation model. For-
mally, each party has oracle access to a public, random permutation π

$← Pn,
chosen by the challenger at the beginning of a game. The permutation can be
queried as both π and π−1 but for simplicity, we write that an algorithm or
entity, such as an adversary A, has access to π by Aπ. We make use of the
following, which denotes the advantage of an adversary A with oracle access to
π in distinguishing between the distributions D0,D1 that also have access to π:

AdvdistA (D0,D1) =
∣

∣

∣Pr
[

X
$← Dπ

0 : Aπ(X) ⇒ 1
]

− Pr
[

X
$← Dπ

1 : Aπ(X) ⇒ 1
]∣

∣

∣ ,

with A being called a qπ-query adversary if it asks at most qπ queries to π.

2.4 Patarin’s H-Coefficient Technique

This section gives a brief introduction to Patarin’s H-coefficient technique with
a focus on functionality. Influenced by [9] and initially defined in [14], the
H-coefficient technique is applied by splitting the “transcripts” of a game into
two or more distinct sets; calculating the probability of the real or ideal world
outputting transcripts in a particular set yields a close bound for the statistical
distance of the real and ideal world.

A high level overview is that of a q-query information theoretic adversary A
which can be assumed to be deterministic, making no redundant queries without
loss of generality, interacting with an oracle ω representing either the real world
or ideal world. The interaction A has with this oracle ω is represented in a
transcript τ which includes a list of queries and their answers given by ω.
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Let ω be an oracle that serves as the way the adversary A interacts with the
challenger in the chosen world. Let ΩX refer to the probability space of all real
world oracles with the uniform probability distribution, and similarly ΩY is the
probability space of all ideal world oracles again with the uniform distribution.

Let T be the set of all transcripts, with τ ∈ T an individual transcript that
describes, in full, the interactions and final output between the adversary A and
the oracle she interacts with.

Further, the random variables X and Y are defined over the probability
spaces respectively, where X(ω) = τ refers to running A on oracle ω for ω ∈ ΩX ,
which in turn produces the transcript τ .

For simplicity we will only consider two sets; good and bad transcripts, which
are denoted TG and TB respectively. Defining this split is integral to the proof
since the H-coefficient technique allows bounding the statistical distance of the
random variables X and Y in the following way: suppose ∃ε ∈ [0, 1], such that
∀τ ∈ TG, with Pr [Y = τ ] > 0,

Pr [X = τ ]
Pr [Y = τ ]

≥ 1 − ε.

Finally,

Theorem 1 (H-coefficient). Let X,Y, TG, TB , τ, ε be as above, then,

SD(X,Y ) ≤ ε + Pr [Y ∈ TB ] .

3 Security Notions

This section defines the notion of robustness originally from [10], but augmented
as in [13] to allow for the publicly available random permutation. Robustness is
the strongest security notion of the security model. We also include definitions of
two weaker notions of security; preserving and recovering security, which together
imply that a PRNG fulfils the requirements of robustness.

As per the definitions of [10], a minimal “fresh” entropy in the PRNG sys-
tem when security should be expected. Minimising γ∗ corresponds to a stronger
security guarantee.

An adversary is modelled using a pair (A,D) where A is the actual qπ-query
adversary and D is a (qD, qπ)-legitimate distribution sampler. The adversary A’s
goal is to determine a challenge bit b picked during the initialise procedure, this
procedure also returns seed to the adversary.

Definition 7. A PRNG with input G, is called ((qπ, qD, qR, qS), γ∗, εrob)-robust
(ROBγ∗

G ) if for any adversary A making at most qπ queries to π±, making at
most qD calls to D-refresh, qR calls to Next-ror/Get-next and qS calls to Get-
state/Set-state and any legitimate distribution sampler D, the advantage of any
adversary in the robustness game is at most εrob which is defined below.

The adversary A has access to a subset of the following oracles, dependent
on the security game that it’s playing; the full set is available in ROBγ∗

G (A,D).
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We say that an adversarial pair (A,D) playing the robustness game as described
below in Sect. 3 for a PRNG G have advantage

Advγ∗−ROB
G (A,D) :=

∣

∣

∣2Pr
[

ROBγ∗
G (A,D) ⇒ 1

]

− 1
∣

∣

∣ ≤ εrob.

Next, we define two further security notions: preserving security and recov-
ering security. If a PRNG satisfies both these notions, then by Theorem 1 of [10]
(with updated version from [13]) the generator in question satisfies the robustness
security notion under the corresponding parameters. Next we define preserving
and recovering security (Fig. 1).

Fig. 1. ROBγ∗
G (A,D)

3.1 Preserving Security

Informally, preserving security states that if the state of a generator starts
uncompromised, is refreshed using compromised input, then the next output
and resulting state are still indistinguishable from random.

Definition 8. A PRNG with input is said to have (qπ, εpres)-preserving security
if the advantage of any adversary A making at most qπ queries to π± in the
following game is at most εpres, where the advantage is defined to be

AdvPRESG (A) := |2Pr [PRESG(A) ⇒ 1] − 1| ≤ εpres.
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3.2 Recovering Security

Informally, recovering security implies that if a PRNG is compromised, inserting
enough random entropy to refresh the internal state will ensure that the next
output and state will be indistinguishable from random.

Definition 9. A PRNG with input has (qπ, qD, γ∗, εrec)-recovering security if the
advantage of any adversary A making at most qD queries to π± and distribution
sampler D, making at most Q(qD) queries to π±, in the following game with
γ∗ > 0 is at most εrec where advantage is defined as

Adv
(γ∗,qD)−rec
G (A,D) :=

∣

∣

∣2Pr
[

REC
(γ∗,qD)
G ⇒ 1

]

− 1
∣

∣

∣ ≤ εrec.
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4 Improved Construction

The following algorithms describe Reverie, a sponge-like PRNG with forward
security that does not require additional calls to the underlying public permu-
tation. Let s, r, c ≥ 1 and c := n − r, � = p = r, together with π

$← Pn, then
Revπ

s,n,r := (Reverie.setupπ,Reverie.refreshπ,Reverie.nextπ) for:

s0 S

Iseedj

π

r2

π

Fig. 2. Reverie.

5 Security of Reverie

This section consists of the security proofs of Reverie; the approach is to analyse
the security of the next function, and then focus on the preserving and recovering
security games, making use of the previous result.

Theorem 2. For Reverie = Revπ
s,n,r as defined above, let γ∗ > 0, let D be a

(qD, qπ)-legitimate distribution sampler, let qπ := qπ +Q(qD) and q̂ := qπ + qR +
qDd. Then Revπ

s,n,r is ((qπ, qD, qR, qS), γ∗, εrob)-robust, for εrob as below:

Advγ∗−rob
Revπ

s,n,r
(A,D) ≤ qR ·

(

qπ + 1
2γ∗ +

Q(qD)
2sr

+
7(q̂2 + 1) + 29q̂

2c−1

+
(2d2 + 3)q̂ + d(3d + 2d)

2n

)

.

Proof. The theorem is the result of the preserving and recovering security bounds
in Lemmas 2 and 3 respectively, combined by [13, Theorem 4].
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Lemma 1 (Security of the next function). Let Ux is the uniform distribution

over x-bit strings, let next be as defined in Sect. 4, let s0
$← {0, 1}n, then for any

qπ-query adversary A,

εnext(qπ) := AdvdistA (next(Un), (Un, Ur)) ≤
(

2 − 1
2r

)

qπ

2c−1
+

3qπ

2c−1

=
(

5 − 1
2r

)

qπ

2c−1
.

Proof outline. Distinguishing between next(s0) and random output (S, T ) $←
{0, 1}n ×{0, 1}r naively, it seems like the adversary’s only option is to guess the
inner state of the secret initial state, by either a direct forward query to π or
by an indirect guess that would reveal a candidate for this inner state through
a query to π−1.

The proof, given in AppendixB proves that this is in fact the optimal strategy.
Since there are two parts to the challenge, the logical approach is to split the
proof into first proving that one part of the challenge can be replaced with
random, before approaching the remaining part of the challenge.

We note that unlike [13], the next function requires a uniformly random state;
the difference is made up for in a game jump in the proof, but allows us to avoid
an additional call to π, as is required in [13]. This step can be reinstated at the
cost of a single additional call to π.

5.1 Preserving Security

Now that we have this tool, we can prove the following:

Lemma 2. Given Reverie as defined in Sect. 4, and with εnext as above, then
for every qπ-query adversary A playing the preserving security game defined in
Definition 8 with d adversarial refresh inputs, we have

AdvpresA (Reverie[π]) ≤ εnext(qπ) +
q′
π + d

2n
+

(d + 1)(2q′
π + d)

2n

≤ 5qπ

2c−1
+

(2d + 3)qπ + d(d + 2)
2n

.

Proof outline. The proof relies on proving that for a random secret initial state
s0, the resulting state sd will look random and thus, by our previous analysis of
the next function, the challenge output will also be random. The complete proof
can be found in the full version of the paper.

5.2 Recovering Security

Thanks to the impressive result of [13] the proof of recovering security can be
expressed as an adaptation of their result; using the sponge as an extractor, and
the security of the next function. To formalise this:
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Lemma 3. Let qπ, qπ := qπ +Q(qD), r, s, c be as in Sect. 4. Let εext(qπ, qD) be as
described in [13, Sect. 5.3] and similarly let εnext(qπ) be the bound as in Lemma 1
as a function of qπ; both with n, r, c as previously described. Given Reverie, also
as in Sect. 4, γ∗ > 0, qD ≥ 0,A, a qπ-query adversary against recovering secu-
rity, and D, a (qD, qπ)-legitimate distribution sampler as defined in Definition 5.
Then,

Adv
(γ∗,qπ)−rec
Revπ

s,n,r
(A,D) ≤ εext(qπ + 1, qD) + 2εnext(qπ) +

qπ

2n−1

≤ qπ + 1
2γ∗ +

Q(qD)
2sr

+
7(q2π + 1) + 24qπ

2c−1
+

(qπ + 1)d + d2 + qπ − 2qπ

2n−1
.

Proof outline. The strategy of the proof is to use the extractor properties of
the sponge to replace the resulting state with a random state; following this the
output of next will be random by the arguments of Lemma 1. The complete proof
can be found in the full version of the paper.

6 Conclusion

We have presented an updated construction, Reverie, for a sponge-like PRNG.
The construction incorporates an effective and efficient forward-security mech-
anism and we have provided proofs of both preserving and recovering security
in the chosen security model. Our design makes a single call to the permutation
on every invocation of Reverie.next, while the comparable generators make 1 + t
calls. Our design choice ensures the underlying permutation is called far fewer
times. Thus, the loss of security from collisions is reduced when compared to the
relevant bounds of other designs.

The main limiting factor of the bound relates to the recovering security
bound; and more precisely the extraction bound. This begs the question: can
this bound be improved? This is briefly discussed in [13] in the present setting,
but we would also like to consider other, possibly similar mechanisms that may
present a better security bound; for instance, would a full state refresh yield a
better bound? A full state refresh however, enables in practise an adversary to
more easily affect or even set the state of the generator.

A GLEGqD ,i∗(A,D)

Below the full game GLEGqD,i∗(A,D) is given, as in [13, Definition 3, p. 10] and
following on from Definition 6:

Let D be a distribution sampler, A an adversary and fix an i∗ ∈ [qD]. Let
QD be the set of all input-output pairs of permutation queries made by D and
by all Sj for j ∈ [qD]/{i∗}.
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Then D is said to be a (qD, qπ)-legitimate distribution sampler if for every
adversary A making qπ queries and every i∗ ∈ [qD], all possible values of
(Ij)j∈[qD]/(i∗), (γ1, z1), . . . , (γqD , zqD ), VA , QD potentially output by the above
game with positive probability,

Pr
[

Ii∗ = x | (Ij)j �=i∗ , (γ1, z1), . . . , (γqD , zqD ), VA , QD
]

≤ 2−γi∗ ,

for all x ∈ {0, 1}.

B Proof of next Security

Proof. Lemma 1

These algorithms are set up so that on input s0
$← {0, 1}n, next0 is precisely

the next function on input s0 while next2 has the same distribution as (Un, Ur).
nextπ1 will be used as a hybrid game. Thus, by the triangle inequality,

AdvdistA (next(s0), (Un, Ur)) ≤ AdvdistA (nextπ0 (s0), nextπ1 (s0))

+ AdvdistA (nextπ1 (s0), next2(s0)).

What follows is to prove the bound using the H-coefficient technique. As
described in Sect. 2.4, we assume that A is deterministic and makes qπ non-
repeating queries to the permutation π, denoted as

τA := (x1, y1, z1), . . . , (xqπ
, yqπ

, zqπ
)
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where ∀i ∈ [1, . . . , qπ],

yi = π(xi),
zi = yi ⊕ (0r‖x̂i).

In addition to the challenge, the adversary in this distinguishing game is also
given several other pieces of information at the end of the game, after all queries
to π have been made, but before the adversary must output her decision. For-
mally, A is given ŝ0 and t′ := (S‖(ŝ0 ⊕ ̂S)) which it can compute for itself
but is given for clarity. This completes the definition of a transcript for these
experiments,

τ := ((x1, y1, z1), . . . , (xqπ
, yqπ

, zqπ
), ŝ0, t′, (S, T )).

We say a transcript τ is compatible with nextπ0 (s0) if it can be output in the
experiment where A receives nextπ0 (s0). Since nextπ1 (s0) and next2(s0) differ only
by replacing real output with random, it’s clear that if a transcript is compatible
with nextπ0 (s0) then it is compatible with nextπ1 (s0) and next2(s0).

What follows is bounding the probability of different transcripts from each
experiment.

Lemma 4. For the experiments nextπ0 (s0), nextπ1 (s0) as described above,

AdvdistA (nextπ0 (s0), nextπ1 (s0)) ≤
(

2 − 1
2r

)

qπ

2c−1
+ 0 =

(

2 − 1
2r

)

qπ

2c−1
.

Proof. First we define the bad transcripts for this pair of experiments:

Definition 10 (Bad transcripts TB for (nextπ0 (s0)nextπ1 (s0))). A compatible
transcript as above, is called a bad transcript if any of the following occur:

State Collision (SC): ∃j ∈ [qπ] such that xj = (T‖ŝ0),
Image Collision (IC): ∃j ∈ [qπ] such that yj = t′,

The set of bad transcripts is denoted TB .
Let X0, Y0 be the random variables outputting transcripts that describe when

A interacts with nextπ0 (s0) and nextπ1 (s0) respectively.

Lemma 5. For an adversary making no more than qπ ≤ 2c−1 queries to an
oracle in the experiment next1(s0),

Pr [Y0 ∈ TB] ≤
(

2 − 1
2r

)

qπ

2c−1
.

Proof. Note that if Y0 ∈ TB then SC ∨ IC must occur.

Pr [Y0 ∈ TB ] ≤ Pr [SC] + Pr [IC | ¬SC] ,
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The first probability is relatively easy to bound,

Pr [SC] ≤ qπ

2c−1
. (B.1)

Since the adversary is given T at the start of the game and s0 is uniformly
distributed over all the 2c n-bit strings with outer bits equal to T , and recalling
that qπ ≤ 2c−1, the probability that A’s i-th query is of the form ((T‖ŝ0), yi, zi)
is 1

2c−i+1 . More formally, let Pr [wini] := Pr [xi = (T‖ŝ0)], then

Pr [win] ≤
qπ
∑

i=1

Pr [wini] =
qπ
∑

i=1

1
2c − i + 1

≤
qπ
∑

i=1

1
2c − 2c−1

=
qπ

2c−1
.

The second, since SC has not occurred, must be where the adversary is
interacting with nextπ1 (s0) where T was chosen uniformly at random from r-bit
strings, and as such, was not used to produce S. There is the situation that the
randomly chosen T matches the real value of s0 which is reflected in the factor
of

(

1 − 1
2r

)

.
The second probability is similar, in that the adversary has knowledge of S,

with (S‖(ŝ0 ⊕ ̂S)) uniformly distributed over all the 2c n-bit strings with outer
bits equal to S. It is also assumed that a SC has not occurred, meaning nothing
beyond ŝ0 is known about s0, then similarly to above,

Pr [IC | ¬SC] ≤
(

1 − 1
2r

)

qπ

2c−1
. (B.2)

Equation (B.2), together with Eq. (B.1) complete the lemma.

Lemma 6. For all compatible transcripts τ ∈ TG,

Pr [X0 = τ ] = Pr [Y0 = τ ] .

Proof. For all τ ∈ TG (and for π
$← Pn),

Pr [X0 = τ ] =

Pr [∀i ∈ [qπ], π(xi) = yi] · Pr
[

π(s0) =
(

S‖(ŝ0 ⊕ ̂S)
)

| ¬SC ∨ ¬IC
]

=
1
2r

2r (2n − qπ − 1)!
2n!

= Pr [Y1 = τ ] .

Putting Lemmas 5 and 6 together yields the result.

Next, we prove the following:

Lemma 7. For the experiments nextπ1 (s0), next2(s0) as described above and by
Theorem1,

AdvdistA (nextπ1 (s0), next2(s0)) ≤ 3qπ

2c−1
+ 0 =

3qπ

2c−1
.
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Proof. This time, the transcript is slightly different, in that the adversary is
given the entire s0 at the end of her queries to π, so

τ := ((x1, y1, z1), . . . , (xqπ
, yqπ

, zqπ
), s0, t′, (S, T )).

Comparing the distributions of these two experiments yields one more bad event,
along with a modified state collision and unchanged image collision:

Definition 11 (Bad transcripts TB for (nextπ1 (s0),next2(s0))). A compatible
transcript as above, is called a bad transcript if any of the following occur:

State Collision (SC): ∃j ∈ [qπ] such that xj = s0,

Image Collision (IC): ∃j ∈ [qπ] such that yj = t′,
Inversion (IN): ∃j ∈ [qπ] such that zj = S.

The set of bad transcripts is denoted TB .
Let X1, Y1 be the random variables outputting transcripts that describe when

A interacts with nextπ1 (s0) and next2(s0) respectively.

Lemma 8. For an adversary making no more than qπ ≤ 2c−1 queries to an
oracle in the experiment next2(s0),

Pr [Y1 ∈ TB ] ≤ qπ

2n−1
+

(

2 − 1
2r

)

qπ

2c−1
=

2qπ

2c−1
.

Proof. Note that if Y1 ∈ TB then SC ∨ IC ∨ IN must occur.

Pr [Y1 ∈ TB ] ≤ Pr [SC] + Pr [IC | SC] + Pr [IN | ¬SC ∧ ¬IC] ,

The first probability is similar to before, but this time the adversary knows
that S (with high probability) was not queried to π to produce the challenge.
This results in the following:

Pr [SC] ≤ qπ

2n−1
.

The second probability is similar to the case where an IC occurs in a tran-
script in either nextp0(s0) or nextπ1 (s0). Once again since ŝ0 is uniformly distrib-
uted over {0, 1}c, the probability that any of the adversary’s queries (xi) = yi

or π−1(yi) = xi is such that yi = (S‖̂S ⊕ ŝ0) is at most 1
2c−i+1 resulting in the

bound qπ

2c−1 . It is also assumed that a SC has not occurred, meaning nothing
beyond ŝ0 is known about s0. Thus,

Pr [IC | ¬SC] ≤
(

1 − 1
2r

)

qπ

2c−1
.

Lastly, if neither a SC or IC has occurred, the probability of an IN can be
expressed as

Pr
[

π−1(S‖ŷi) =
(

x̂i‖(ŷi ⊕ ̂S)
)]

,

which again is bounded by qπ

2c−1 and together with the other events, yields the
desired bound.
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Lemma 9. For all compatible transcripts τ ∈ TG,

Pr [X1 = τ ] = Pr [Y1 = τ ] .

For all τ ∈ TG (and for π
$← Pn),

Proof.

Pr [X1 = τ ] = Pr [∀i ∈ [qπ], π(xi) = yi] · Pr
[
π(s0) =

(
S‖(ŝ0 ⊕ Ŝ)

)
| ¬SC ∨ ¬IC ∨ ¬IN

]

=
(2n − qπ − 1)!

2n!
=

(2n − qπ)!

2n
· 1

2n − qπ
= Pr [Y1 = τ ] .

Putting Lemmas 8 and 9 together yields the result.
Finally, these two lemmas complete the proof of the security of next. ��
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Abstract. The purpose of this paper is to investigate fixed-point arith-
metic in ring-based Somewhat Homomorphic Encryption (SHE) schemes.
We provide three main contributions: firstly, we investigate the repre-
sentation of fixed-point numbers. We analyse the two representations
from Dowlin et al., representing a fixed-point number as a large integer
(encoded as a scaled polynomial) versus a polynomial-based fractional
representation. We show that these two are, in fact, isomorphic by pre-
senting an explicit isomorphism between the two that enables us to map
the parameters from one representation to another. Secondly, given a
computation and a bound on the fixed-point numbers used as inputs
and scalars within the computation, we achieve a way of producing lower
bounds on the plaintext modulus p and the degree of the ring d needed
to support complex homomorphic operations. Finally, as an application
of these bounds, we investigate homomorphic image processing.

1 Introduction

The efficiency of Somewhat Homomorphic Encryption (SHE) schemes has
improved dramatically in the seven years since their discovery by Gentry in
2009 [7]. The main effort in research now is to obtain practical schemes for a
given class of interesting functions; since practical Fully Homomorphic Encryp-
tion seems out of reach using existing techniques.

When proposing to use SHE schemes in an application a key issue is how to
map the data types of the application to the supported data types of the SHE
scheme. Most theoretical treatments consider SHE schemes which work over
bits, and the application is assumed to be the evaluation of some binary circuit.
In practice this is likely to be very costly, and so some authors have considered
other scenarios in which the computations are performed over arithmetic circuits
or polynomial rings [6,8,11].

At their heart almost all SHE schemes make use of a plaintext space Rp,
which is the reduction modulo p of a polynomial ring over the integers R. We
shall refer to p as the plaintext modulus, which is often selected to be a prime.
The ring is frequently selected to be the ring of integers of a cyclotomic number
field; i.e.

R = Z[X]/Φm(X).
c© Springer International Publishing AG 2017
R. Avanzi and H. Heys (Eds.): SAC 2016, LNCS 10532, pp. 401–422, 2017.
https://doi.org/10.1007/978-3-319-69453-5_22
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In considering an application one has a number of factors to balance; first the
SHE multiplicative depth of the functions which can be evaluated; secondly the
plaintext modulus p and thirdly the security level required. These all imply
bounds on the degree of the ring one is using; and hence the efficiency of the
application1. Of importance in what follows is that an SHE scheme has a maxi-
mum multiplicative depth limiting what can be evaluated. In practice this con-
sists of a number of levels, where each ciphertext is associated to a specific level.
Multiplication of ciphertexts at levels i0 and i1 results in a ciphertext at level
max(i0, i1) + 1; whereas scalar multiplication is equivalent to the addition of
roughly half a level. Once the maximum level is obtained, no further homomor-
phic operations are possible.

The first obvious method is to move away from binary circuits is to consider
plaintext moduli other than p = 2, and hence to evaluate arithmetic circuits.
Indeed the first application of SHE schemes to obtain an efficiency improvement
upon other technologies did precisely this; for example the use of large plaintext
moduli p in the SPDZ protocol [5]. However, using arithmetic circuits is also
limited. For example, suppose one wished to perform integer arithmetic. In that
case, naively increasing p to a large enough value to cope with the largest integer
the application could obtain would impose considerable performance penalties.

One can think of using a large plaintext modulus p as using a plaintext space
which is long and thin. Some authors have tried to balance the choice of p and
the degree d of the ring R to obtain more efficient representation of integers,
akin to a more short and fat plaintext space [11]. A problem overlooked by
many authors is how to select p and d to enable such a plaintext representation
of integer valued payloads; and in particular to bound p and d as a complex
homomorphic operation is performed. This is the first problem we consider in
this paper. Given a computation on integers, and a bound on the input integers,
we are able to produce lower bounds on p and d needed to support such a
homomorphic calculation. Our main general technical contribution is to derive
such lower bounds on p and d.

Given an ability to process plaintext messages consisting of large integers the
next task is to process fixed-point numbers. A number of authors have consid-
ered methodologies for this, most notably Dowlin et al. [6]. Dowlin et al. present
two efficient methods to represent fixed-point numbers. In the first they encode
a fixed point number as a scaled integer (which they then encode as a polyno-
mial), whilst in the second they utilize a fractional representation (also based on
polynomials). The advantage of the former method is that it is easier to analyse
and it can be applied for any polynomial plaintext ring Rp. However, it also
requires complex bookkeeping of the homomorphic ciphertexts during a calcula-
tion to ensure that the fixed-point numbers are correctly scaled. The fractional
representation avoids such bookkeeping, but it appears harder to analyse so as
to derive parameters which will support the homomorphic operations. Further,
it requires R to be selected to be a cyclotomic ring Z[X]/Φm(X), where m is

1 In this paper we will ignore issues such as SIMD operations obtained by selecting p
and m in a special manner, see [4,8,12] for details.
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a power of two. We show that the two representations are in fact isomorphic,
when used with the same power of two cyclotomic ring; we present a concrete
isomorphism between the two underlying rings and hence are able to map our
parameters from the first representation to the second.

As a way of illustrating the use of our bounds, in AppendixA we analyse
a relatively complex but useful fixed-point algorithm namely the Fast Fourier
Transform (FFT). This is needed to perform applications such as homomorphic
image processing. When examining fixed point algorithms for addition and mul-
tiplication it is be immediately seen that one needs to consider the homomorphic
levels which a given calculation will consume. However, additionally, one must
also consider how much the fixed point calculation increases the demands on the
plaintext space, with repeated scalar multiplication being particularly costly.
This is particularly interesting for the FFT algorithm, since at its heart it is a
linear operation performed in a recursive manner (with an FFT of size n reduced
to two FFTs of size n/2). This recursion decreases the number of scalar multi-
plications needed, but increases the depth of the scalar multiplications needed.
The naive Fourier Transform is also a linear operation, but it consists of only
scalar multiplications of depth one. Thus one has a trade off between reducing
the number of operations against the required depth. In spite of the independent
usefulness of computing the FFT homomorphically, we underline that this is just
a minor application of our bounds, given as a purely illustrative example.

Thus in AppendixA we consider the homomorphic evaluation of an FFT
operation in a standard image processing pipeline. We examine the resulting
homomorphic algorithms, given bounds on the plaintext spaces derived from our
earlier analysis, and present runtimes obtained from an implementation using
the HElib library [9]. Whilst we are not able to process large images in the
encrypted domain, one notes that processing of tiny (32× 32 pixel) images have
found application in some domains, e.g. [13]. In addition, even when processing
large images, they are often divided into smaller patches during the processing
pipeline.

2 Integer Arithmetic

We first consider the simpler case of integer arithmetic; it will turn out that
once this is solved fixed-point arithmetic can be built on top of the integer
arithmetic. We wish to process an arithmetic circuit over the integers where the
input encrypted integers, and scalars, come from multiple ranges [−Li, . . . , Li]
(Li ≥ 0). Allowing different ranges for different inputs and scalars will result
in more accurate bounds when we come to consider the FFT algorithm later.
Clearly as the circuit is computed the bound on the size of the integers increases,
and it is this growth in size which we need to deal with if we are to be able to
cope with integers encrypted via our SHE scheme.

As a warm up we consider the simpler case where we wish to compute a
“regular” integer circuit which consists of at most A ≥ 0 additions at each “level”
in the circuit, and then, at each level, a layer of multiplications are performed.
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The multiplicative depth of the circuit will be denoted by M ≥ 1. In addition, to
simplify this initial discussion, we assume all scalars and inputs are in the same
range, i.e. we fix Li = L for all i. Clearly the output values from such a circuit
will have absolute value bounded by

LA,M
max :=

(
2
∑M

i=1 2i·A
)

· L2M = 2A(2M+1−2) · L2M . (1)

As explained in the introduction, natively the SHE scheme will encrypt polyno-
mials modulo p, with degree bounded by d. The obvious natural encoding for
integers is the scalar encoding method. In this encoding method an integer is
encoded as the constant polynomial, then integer addition and multiplication
become addition and multiplication modulo p. To ensure correctness we then
require that p > 2 · LA,M

max , and hence p has to be very large indeed. This would
make the SHE scheme highly inefficient, even for very low depth circuits.

2.1 Representing Integers as Polynomials

This led some authors, e.g. [11], to introduce the following method of encoding
an integer, which we call the non-balanced base-B encoding method. We encode
integers as an integer polynomial in base B, for some base value B to be deter-
mined. The polynomial will have negative coefficients for negative integers, and
positive coefficients for positive integers. Thus we encode the integer as a poly-
nomial with coefficients in the range [−(B − 1), . . . , (B − 1)]. In particular this
implies an integer in the range [−Li, . . . , Li] on input is encoded as a polynomial
of degree at most

dnon−Bal
i = �log Li/ log B�.

We are interested in how the infinity norm, and degree, of the polynomials
increases as we pass through the circuit. Where for a polynomial P (X) = p0 +
p1 · X + · · · pd · Xd we have ‖P‖∞ = maxi=0,...,d |pi|. Thus for this input/scalar
integer at circuit level 0 the infinity norm of our polynomials is bounded by
Bnon−Bal

i,0 = B − 1.
Another method, considered in [6], is the balanced base-B encoding. The

integer is now encoded as a polynomial with coefficients in the range [−(B −
1)/2, . . . , (B − 1)/2] for an odd integer B ≥ 3. Any polynomial can now have
both non-negative and negative coefficients. This method overcomes a limitation
of the previous method that wasted part of the plaintext space by allowing only
polynomials with coefficients of the same sign. At level 0, our integer is encoded
as a polynomial of degree at most

dBali = �log(2 · Li + 1)/ log B� − 1. (2)

The infinity norm of our input polynomials is bounded by BBal
i,0 = (B − 1)/2.

In a later section we outline how to obtain bounds on the degree and infinity
norm of the polynomials as we perform a calculation via an integer circuit. It will
turn out that the optimal choice in the above two polynomial representations
is to use the balanced base B = 3 representation, so in particular we select
BBal

i,0 = 1 for the rest of this paper.
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3 Fixed-Point Arithmetic

In this section we present two encoding methods for fixed-point arithmetic, intro-
duced in [6], we then show that these two representations are isomorphic. To illus-
trate the techniques, we will use the two fixed-point numbers below throughout

y = 6.370370 . . . =
172
27

and y′ = 2.6666666 . . . =
8
3
,

which in balanced base B = 3 representation are given by

y = 110.101 and y′ = 10.1,

where 1 = −1. The first method represents the fixed-point number as an integer,
along with a “scaling parameter”. Thus the fixed point number y is represented as
the integer 172, along with a scaling factor of −3. The integer 172 being encoded
as a polynomial via the balanced base-B encoding of the previous section.

The second encoding method takes the integer and fractional part of the
fixed point number seperately; it then encodes each part as polynomial (via
the balance base-B representation of the associated integer) and then finally
encoding the integer part in the lower plaintext coefficients, and the fractional
part in the upper plaintext coefficients.

3.1 Balanced Base-B Encoding

The first method we use to represent a fixed-point number uses two integers,
one representing the number and the one representing by which power of B one
needs to decode. Thus this method requires a level of book keeping in order to
keep track of the second integer. Let y be a real fixed-point number, and denote
by y = y+.y− its integer and fractional parts (upto desired precision) in balanced
base-B representation. We then let I+ be one less than the number of integer
digits and I− be equal to the number of fractional digits; thus we can write

y+ = bI+ · BI+
+ bI+−1 · BI+−1 + · · · + b1 · B + b0,

y− = b−I− · B−I−
+ b−I−+1 · B−I−+1 + · · · + b−2 · B−2 + b−1 · B−1

where bi ∈ [−(B − 1)/2, . . . , (B − 1)/2]. Thus we can express y as

y =
I+∑

i=−I−
bi · Bi.

We then represent y as the pair of integers (y · BI−
, I−) = (ŷ, i). The integer

ŷ can then be represented by a polynomial q(X), by replacing B in the above
expression by X, to obtain the final representation (q, i). Thus we have

q0(X) = bI+ · XI+
+ bI+−1 · XI+−1 + · · · + b1 · X + b0,

q1(X) = b−I− + b−I−+1 · X + · · · + b−2 · XI−−2 + b−1 · XI−−1,

q(X) = q0(X) · Xi + q1(X).
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The degree of the polynomial q(X) above is deg(q) = I− + I+, and to recover
the fixed-point number y from a pair (q, i) we compute y = q(B) · B−i. For our
two example fixed-point numbers above we have y ≡ (q, i) and y′ ≡ (q′, i′) where
i = 3 and i′ = 1 and

q(X) = (X2 − X) · X3 + (X2 + 1) = X5 − X4 + X2 + 1,

q′(X) = X · X − 1 = X2 − 1.

Given this encoding we can now define how to perform basic arithmetic on the
encoding.

Addition: Suppose we have two pairs (q, i) and (q′, i′) encoding the fixed-
point numbers y and y′, respectively. Write them as above, namely q(X) =
q0(X) · Xi + q1(X) and similarly for q′(X). Now if i 
= i′, this means that
the encodings are not at the same “fixed-point level”2 and thus the numbers
they represent are expressed with a different number of significant digits. Thus,
before adding two encodings we must ensure that they are at the same level, by
multiplying one by a suitable power of X. Thus if we let I = max(i, i′), we have
that (q, i) + (q′, i′) = (Q, I), where

(Q, I) =

{
(q + q′ · XI−i′

, i) if i > i′

(q′ + q · XI−i, i′) if i′ ≥ i.

To see that this indeed corresponds to fixed-point addition, notice that, assuming
i ≥ i′, that

Q(B) · B−I = (q + q′ · BI−i′
) · B−I = q · B−I + q′ · BI−i′ · B−I

= q · B−i + q′ · B−i′
= y + y′.

For our two example numbers we have, i = 3 > i′ = 1, so that

Q = q + q′ · X2 = (X5 − X4 + X2 + 1) + (X2 − 1) · X2 = X5 + 1,

and I = max(3, 1) = 3. To check correctness, notice that Q(B) · B−3 = B2 +
B−3 = 9 + 1/27 = 9.037037 . . . as required.

Multiplication: Multiplication is more straightforward, we simply perform
(
q, i

) · (
q′, i′

)
=

(
q · q′, i + i′

)
= (Q, I),

with correctness being obvious. For our two example fixed-point numbers we
have the product representation being given by

Q = (X5 − X4 + X2 + 1) · (X2 − 1)

= X7 − X6 − X5 + 2 · X4 − 1

and I = i + i′ = 3 + 1 = 4. To check the correctness we note that Q(B) · B−4 =
1376/34 = 16.987654 . . . as required.
2 Not to be confused with the associated level in the SHE scheme once we encrypt the

polynomial.
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The Ring R1: We now define a ring R1 out of the above operations. We define
the underlying ring as pairs (q, i) where q ∈ Z[X]/Φm(X) and i ∈ Z/φ(m)Z,
where φ(·) denotes the Euler’s totient function, where in practice we will take m
to be a power of two. We define addition and multiplication as above, but now
take the resulting pair modulo Φm(X) and φ(m).

Theorem 1. With the above definitions R1 is a ring.

Proof. The additive identity in R1 is the pair (0, 0), which corresponds to the
fixed-point number 0. The additive inverse of any element (q, i) ∈ R1 is (−q, i).
It is clear that these two elements sum up to (0, 0). Thus R1 is an additive group;
the fact that it is abelian is immediate.

The multiplicative identity is (1, 0), corresponding to the fixed-point number
1. The associativity of the multiplication is trivially implied by associativity of
(modular) polynomial multiplication and (modular) integer addition. We show
that distributivity of multiplication over addition holds, thus completing the
proof.

Let (q1, i1), (q2, i2) and (q3, i3) be three elements of R1. Without loss of gen-
erality, assume that i2 ≥ i3, then

(
q1, i1

) · (
(q2, i2) + (q3, i3)

)
= (q1, i1) · (q2 + q3 · Xi2−i3 , i2)

= (q1 · q2 + q1 · q3 · Xi2−i3 , i1 + i2)

=
(
q1 · q2 + q1 · q3 · Xi1+i2−i1−i3 ,

max(i1 + i2, i1 + i3)
)

= (q1 · q2, i1 + i2) + (q1 · q3, i1 + i3)
= (q1, i1) · (q2, i2) + (q1, i1) · (q3, i3). ��

This representation of fixed-point numbers in the ring R1 enables us to bound
the degree of the polynomial and the coefficients, after a number of homomorphic
operations, relatively easily, using the techniques in the next section. Of course
it also implies that if we perform too many operations the degree of q will
become too large and the polynomial will wrap around modulo Φm(X). Thus
the complexity of the operations one performs not only provides a lower bound on
p, i.e. an upper bound on the polynomial coefficients, but also a lower bound on
the ring degree. These bounds enable us to set parameters for the SHE scheme.
However, in performing homomorphic operations we not only need, for each pair
(q, i), to keep the ciphertext corresponding to the plaintext q, but we also need
to keep track (in the clear) of the value i.

3.2 Fractional Encoding

The second method we use to represent fixed-point numbers dispenses with the
need to keep the second component i of our first representation. On the other
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hand it requires us to work in the cyclotomic ring R = Z[X]/(Xn + 1), where
n is a power of two. Again we let y = y+.y− denote the fixed-point number as
above, written in balanced base-B representation with I+ + 1 digits in y+ and
I− digits in y−. We again write

y+ = bI+ · BI+
+ bI+−1 · BI+−1 + · · · + b1 · B + b0,

y− = b−I− · B−I−
+ b−I−+1 · B−I−+1 + · · · + b−2 · B−2 + b−1 · B−1,

where bi ∈ [−(B − 1)/2, . . . , (B − 1)/2]. We then encode the fixed-point number
y in the ring R by the polynomial

p =
∑
i≤I+

Xibi −
∑

0<i≤I−
Xn−ib−i

= p0(X) + p1(X) · Xn−d1 , (3)

where p0(X) =
∑

i≤I+ Xibi and p1(X) = −∑
0<i≤I− b−i · XI−−i, with d0 and

d1 − 1 being the degrees of p0(X) and p1(X), respectively. Thus d0 = I+ is one
less than the number of digits in the integer part y+ and d1 = I− is the number
of digits in the fractional part y−.

Given a polynomial q(X) of this form we can recover the fixed-point number
it represents. We will need to know an upper bound for our calculation on p0(X),
which can be easily calculated from the formulae below. We then take p(X) and
split it into two polynomials p0 and p1 as in Eq. 3 (using the upper bound on
the degree of p0(X) to resolve any ambiguity). We can then recover y by setting

y = p0(B) − p1(B) · B−d1 ,

where we utilize the ring equation Xn + 1 = 0.
For our two example numbers y = 6.370370 . . . and y′ = 2.666666 . . . we have

y represented by p, and y′ represented by p′, where

p = (X2 − X) − (X2 + 1) · Xn−3

p′ = X − (−1) · Xn−1.

In both the cases above we have that, in terms of the representation (q = q0 ·
Xi +q1, i) of, say, y from Sect. 3.1, we have p0 = q0 and p1 = q1. We have d0 = 2,
d′
0 = 1, d1 = 3 and d′

1 = 1.
Our second ring R2 is the representation above, i.e. the set of polynomials

modulo Xn + 1, which is trivially a ring. We now show that addition and multi-
plication in this ring corresponds to addition and multiplication of the encoded
fixed point values.

Addition: Let p(X) = p0(X) + p1(X) · Xn−d1 and p′(X) = p′
0(X) + p′

1(X) ·
Xn−d′

1 be two polynomials as described above, encoding y and y′, respectively. To
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perform addition we simply add the associated polynomials as follows, without
loss of generality, assume that d1 ≥ d′

1,

p + p′ = (p0 + p1 · Xn−d1) + (p′
0 + p′

1 · Xn−d′
1)

= (p0 + p′
0) + P1 · Xn−d1 = P0 + P1 · Xn−d1 ,

where P0 has degree max(d0, d′
0) and P1 has degree max(d1, d′

1). The polynomial
P1 will in fact be P1 = p1 + p′

1 · Xd1−d′
1 .

For our two example numbers, their addition therefore has the encoding

p + p′ =
(
(X2 − X) − (X2 + 1) · Xn−3

)
+

(
X − (−1) · Xn−1

)

= X2 − Xn−1 − Xn−3 + Xn−1 = X2 − Xn−3,

which agrees with the numerical value of their sum.

Multiplication: Let p(X) = p0(X)+p1(X)·Xn−d1 and p′(X) = p′
0(X)+p′

1(X)·
Xn−d′

1 be as above. We write p0 · p′
1 = r0 + r1 · Xd′

1 and p′
0 · p1 = r′

0 + r′
1 · Xd1 ,

where deg(r0) ≤ d′
1 − 1, deg(r1) ≤ d0 + d′

1 − d′
1 = d0, deg(r′

0) ≤ d1 − 1, and
deg(r′

1) ≤ d′
0 + d1 − d1 = d′

0, Then the product y · y′ is encoded by the product
of the two polynomials modulo Xn + 1,

p · p′ =
(
p0 + p1 · Xn−d1

) ·
(
p′
0 + p′

1 · Xn−d′
1

)

= p0 · p′
0 + p0 · p′

1 · Xn−d′
1 + p′

0 · p1 · Xn−d1 + p1 · p′
1 · X2n−d1−d′

1

= p0 · p′
0 + p1 · p′

1 · X2n−d1−d′
1

+ (r0 + r1 · Xd′
1) · Xn−d′

1 + (r′
0 + r′

1 · Xd1) · Xn−d1

= p0 · p′
0 + p1 · p′

1 · Xn−d1−d′
1 · Xn

+ r0 · Xn−d′
1 + r1 · Xn + r′

0 · Xn−d1 + r′
1 · Xn

= (p0 · p′
0 − r1 − r′

1) +
(
−p1 · p′

1 + r0 · Xd1 + r′
0 · Xd′

1

)
· Xn−d1−d′

1

= P0(X) + P1(X) · Xn−d2 ,

where deg(P0) = max(deg(p0 ·p′
0),deg r1,deg r′

1) = max(d0+d′
0, d0, d

′
0) = d0+d′

0,
and deg(P1) ≤ d2 = max(deg(p1 ·p′

1), d1+deg r0, d
′
1+deg r′

0) = max(d1+d′
1, d1+

d′
1 − 1, d′

1 + d1 − 1) = d1 + d′
1.

For our two example numbers, we have

p · p′ =
(
(X2 − X) − (X2 + 1) · Xn−3) · (X − (−1) · Xn−1)

= (X3 − X2) + (X2 − X) · Xn−1 + (−X3 − X) · Xn−3 + (−X2 − 1) · X2·n−4

= (X3 − X2) + (X5 − X4) · Xn−4 + (−X4 − X2) · Xn−4 + (X2 + 1) · Xn−4

= (X3 − X2) + (X − 1) · Xn − Xn − X2 · Xn−4 + (X2 + 1) · Xn−4

= (X3 − X2 − X + 2) + Xn−4

= P0 + P1 · Xn−d2 ,
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where d2 = d1 + d′
1 = 3 + 1 = 4. To check this gives the correct value we note

that
P0(3) − P1(3) · 3−4 =

1376
81

.

3.3 Relating R1 to R2

The ring representation of fixed-point numbers in the ring R1 allows us to bound
the resulting degree and infinity norm of the associated polynomials encoding the
fixed-point numbers (see the next section). In addition, it allows a wide choice of
underlying rings, which could enable SIMD computation of specific fixed-point
operations. However, it requires the “bookkeeping” of the base power that is
needed to map the encoded integer into a fixed-point number.

The ring R2 on the other hand requires no such bookkeeping, although lim-
ited book keeping is needed to ensure decoding after decryption works correctly.
Additionally, it requires that we work in the ring defined by polynomial arith-
metic modulo Xn +1, where n is a power of two. A major drawback seems to be
that one cannot derive obvious bounds on the degree and coefficients in the frac-
tional representation, something which is crucial in order to set parameters of
the SHE scheme. However, such bounds can be derived for the fractional repre-
sentation, since this representation is isomorphic to the representation using the
ring R1, and the isomorphism presents a one-to-one direct relationship between
the coefficients of the polynomials in each representation.

Let φ be as follows (from now on),

φ :
{

R1 → R2

(q = q0 · Xi + q1, i) �→ q0 − q1 · Xn−i

Theorem 2. If R is defined by Z[X]/(Xn + 1), then φ is a ring isomorphism.

Proof. First note that

1. φ(1R1) = φ(1, 0) = φ(1 · X0 + 0) = 1 − 0 · X0 = 1 = 1R2 .
2. Let (q, i) and (q′, i′) in R1; without loss of generality assume i ≥ i′. Then

(q, i) + (q′, i′) = q + q′ · Xi−i′
=: (Q, i). Then

φ(Q, i) = φ(q + q′ · Xi−i′
, i)

= φ
(
q0 · Xi + q1 + (q′

0 · Xi′
+ q′

1) · Xi−i′
, i

)

= φ
(
(q0 + q′

0) · Xi + (q1 + q′
1 · Xi−i′

), i
)

= (q0 + q′
0) + (q1 + q′

1 · Xi−i′
) · Xn−i

= q0 + q1 · Xn−i + q′
0 + q′

1 · Xn−i′

= φ(q, i) + φ(q′, i′).

Notice that in the above, we have implicitly made use of additive property
of R2.
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3. Let q, q′ be as above.

φ(q, i) · φ(q′, i′) = (q0 − q1 · Xn−i) · (q′
0 − q′

1 · Xn−i′
)

= q0 · q′
0 − q0 · q′

1 · Xn−i′ − q′
0 · q1 · Xn−i + q1 · q′

1 · Xn−I ,

where I = i + i′. Now computing (q, i) · (q′, i′) first,

q · q′ = q0 · q′
0 · XI + q0 · q′

1 · Xi + q′
0 · q1 · Xi′

+ q1 · q′
1.

Now viewing this as the pair (Q = q · q′ mod Xn + 1, i + i′ mod n) =(
(q0 · q′

0 + q1 · q′
1 · Xn−i−i′

) · Xi+i′
) + (q0 · q′

1 · Xi + q′
0 · q1 · Xi′

), i + i′
)
, we

obtain the following.

φ(q · q′, I) = φ
(
(q0 · q′

0 + q1 · q′
1 · Xn−i−i′

) · Xi+i′

+ (q0 · q′
1 · Xi + q′

0 · q1 · Xi′
), I

)

= q0 · q′
0 + q1 · q′

1 · Xn−i−i′ − (q0 · q′
1 · Xi + q′

0 · q1 · Xi′
) · Xn−I

= q0 · q′
0 − q0 · q′

1 · Xn−i′ − q′
0 · q1 · Xn−i + q1 · q′

1 · Xn−I

= φ(q, i) · φ(q′, i′),

so that φ is indeed a homomorphism between R1 and R2.

To finish the proof, we show that φ is bijective. For any y = q0 + q1 · Xn−d1 in
R2, we have that (q, d1) = (q0 · Xd1 + q1, d1) maps to y so that the mapping
is surjective. To see that it is injective, suppose for p, p′ ∈ R1 we have that
φ(p) = φ(p′) = z ∈ R2. Remember that both the rings contain encoding of
fractional numbers written in balanced base B. Recall also that we recover the
integers by simply evaluating (in our case) z(B) = a ∈ Q, and since this is well-
defined, a is unique. Now encode a in the ring R1; the encoding operation (for
both rings) is well-defined, therefore a will have an unique image in the ring R1

and thus p = p′. It follows that φ is an isomorphism. ��

4 Bounds on Integer Arithmetic

Considering the balanced base B method for encoding integers as polynomials
we need to estimate, for a given calculation, a lower bound on p and d. This is
to determine parameters our SHE scheme needs to enable a given calculation to
be performed correctly. In previous works this problem was not addressed. In
this section we provide a methodology to produce tight bounds on the size of p,
for any given computation.

To perform our analysis, we first note that as we pass through a general
integer circuit each encrypted polynomial expression we are processing will be
of the form

M∑
d=0

( ∑
d1<d2<...<dt

( ∑
e1+e2+···+ek=d

(
c∗

t∏
i=1

pei

di,∗

)))
.
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where t is the number of distinct ranges [−Li, . . . , Li] for input/scalar values.
pdi,∗ is a polynomial of degree di with infinity norm BBal

i,0 = 1. The c∗ are
some constants and the value M is the maximal depth. Here we count scalar
multiplication as consuming one level of depth. If we wish to determine the
infinity norm of such a term we can simplify the discussion by just considering
terms of the form

t∏
i=1

(1 + x + x2 + . . . + xdi)ei .

Indeed we define

c[(d1,e1),...,(dt,et)] =
∥∥∥

t∏
i=1

(1 + x + x2 + . . . + xdi)ei

∥∥∥
∞

.

In what follows, to ease discussion, the subscript indices are ordered such that

di · ei ≤ (di+1 · ei+1) and in the case of equality di < di+1.

For two terms of the form c[(d1,e1),...,(dt,et)] and c[(d1,e′
1),...,(dt,e′

t)]
we define

c[(d1,e1),...,(dt,et)] ⊗ c[(d1,e′
1),...,(dt,e′

t)]
= c[(d1,e1+e′

1),...,(dt,et+e′
t)]

.

We can now bound the infinity norm of any polynomial P obtained in evaluating
the integer circuit by an expression of the form

LP =
∑

e1,...,et

a[(d1,e1),...,(dt,et)] · c[(d1,e1),...,(dt,et)],

where a[(d1,e1),...,(dt,et)] are constants depending on the precise polynomial P ,
and we think of this (for now) as a formal sum in the variables c[(d1,e1),...,(dt,et)].
For an input or scalar value from the range [−Li, . . . , Li] the infinity norm of
the polynomial P0 is bounded by

LP0 = c[(d1,0),...,(di−1,0), (di,1), (di+1,0),...,(dt,0)].

We can derive upper bounds on the infinity norm of the polynomials as we pass
through the integer circuit using the following rules. Given upper bounds on the
infinity norm of polynomials P and P ′ in this form given by

LP =
∑

e1,...,et

a[(d1,e1),...,(dt,et)] · c[(d1,e1),...,(dt,et)],

LP ′ =
∑

e′
1,...,e′

t

a[(d1,e′
1),...,(dt,e′

t)]
· c[(d1,e′

1),...,(dt,e′
t)]

,

we can derive upper bounds on the infinity norm of the sum and the product of
these polynomials terms via the equations

LP+P ′ = LP + LP ′ ,

LP ·P ′ =
∑

e1,...,et,e′
1,...,e′

t

(
a[(d1,e1),...,(dt,et)] · a[(d1,e′

1),...,(dt,e′
t)]

)

· (
c[(d1,e1),...,(dt,et)] ⊗ c[(d1,e′

1),...,(dt,e′
t)]

)
.
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Is it clear that the degree of the sum of two polynomials is the maximum of the
degrees, and the degree of the product is the sum of the degrees.

4.1 Bounding c[(d1,e1),...,(dt,et)]

To use these bounds we eventually obtain a formal expression for infinity norm
of the output of the circuit consisting of a linear polynomial in the terms
c[(d1,e1),...,(dt,et)]. We thus are left with simply bounding c[(d1,e1),...,(dt,et)]. We
perform this bounding at the end, rather than as we go, as these leads to much
tighter bounds on the infinity norm of the output polynomial.

We first present some basic facts on the case of a single pair of terms (d, e).
Let d, e ≥ 0 be integers, and define ai for 0 ≤ i ≤ d · e as

(1 + x + x2 + . . . + xd)e =
d·e∑
i=0

ai · xi. (4)

We then define

cd,e =
∥∥∥(1 + x + x2 + . . . + xd)e

∥∥∥
∞

= max
0<i<d·e

ai.

Naively we can obtain upper and lower bounds on cd,e as follows:

(d + 1)e

d · e + 1
≤ cd,e ≤ (d + 1)e

.

The upper bound is obtained by evaluating (4) at x = 1 and the lower bound is
obtained from the upper bound by noting that there are only d ·e+1 coefficients
ai in (4). We have the trivial bounds cd,0 = cd,1 = 1 and cd,2 = (d + 1).

The parameter cd,e is also of interest in probability theory and bounds on its
value have been previously analysed [1,10]. The following upper bound follows
from the main theorem in [10] (see also [1] for a relation between the parameter
cm,n and the main parameter studied in [10]).

Theorem 3. If e 
= 2 or d ∈ {1, 2, 3}, then

cd,e <

√
6

π · d · e · (d + 2)
· (d + 1)e. (5)

The above upper bound is optimal in the following sense [10, Remark (a)].

Corollary 1. lime→∞
√

e·cd,e
(d+1)e =

√
6

π·d·(d+2) .

Although it is unknown whether the above convergence is uniform as d varies as
well.

Given this bound on terms cd,e we can now derive bounds on our terms
c[(d1,e1),...,(dt,et)] as follows. Recalling our ordering of the pairs in the subscript



414 A. Costache et al.

of di · ei ≤ (di+1 · ei+1) and in the case of equality, di < di+1. We (recursively)
use the following bound, where dk is the first value of di in the subscript for
which the associated ek value is non-zero,

c[(d1,e1),...,(dt,et)] ≤ (dk · ek + 1) · cdk,ek
· c[(d1,e′

1),...,(dt,e′
t)]

, (6)

where e′
i = ei except that e′

k = 0.

4.2 Applying the Bounds

We can now estimate the size of p and d needed to ensure correctness when
evaluating our example balanced integer circuit that consists of M levels and A
additions per level. The infinity norm bound on our polynomials becomes

BM = cd,2M · 2A(2M+1−2),

assuming the input values are in the range [−L, . . . , L] and using a balanced
base-3 representation of the input values, so d = dBal = �log(2 ·L+1)/ log 3�−1.
The degree bound for our circuit output value is dout = 2M · d. From Theorem 3,
a sharp upper bound on BM (for M > 1, or d > 3 if M = 1) is

BM <

√
6

π · 2M · d(d + 2)
· (d + 1)2

M · 2A(2M+1−2).

To ensure correctness, when we encrypt and manipulate these polynomials homo-
morphically, we need to ensure that our SHE scheme supports a plaintext with
p > 2 · BM and deg(R) > dM . The most stringent constraint is that on p, and
we give examples in Subsect. 4.3 below.

Of course given a specific circuit we could derive other values of dM and BM ,
the above are just examples in the case of our regular circuit with multiplicative
depth M and A additions per level. See the appendix for an application where
our more general analysis becomes applicable.

4.3 Lower Bounds on p for Regular Circuits

Tables 2, 3 and 4 list the size in bits of the smallest prime satisfying the above
b:unds and also the degree bound dM = 2M · d0 for small values of A and M
for balanced base encoding with B = 3, 5 and 7 and L = 219. For the sake of
comparison, we give also give Table 1 that suggests the size of the primes for
the non-balanced base encoding for B = 2 and L = 219. It is evident that using
balanced base encoding with B = 3 yields the smallest primes, although large
multiplicative depth is hard to support in any method.

It should be noted that with current SHE schemes a ciphertext modulus
over 256 bits in length seems currently infeasible for moderately sized circuits
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Table 1. Size (in bits) of the smallest p and the degree bounds for non-balanced
encoding with B = 2 and L = 219.

M 1 2 3 4 5 6 7 8 9 10

A = 0 6 14 31 65 133 271 547 1100 2206 4418

A = 1 8 20 45 95 195 397 801 1610 3228 6464

A = 2 10 26 59 125 257 523 1055 2120 4250 8510

A = 3 12 32 73 155 319 649 1309 2630 5272 10556

A = 4 14 38 87 185 381 775 1563 3140 6294 12602

A = 5 16 44 101 215 443 901 1817 3650 7316 14648

A = 6 18 50 115 245 505 1027 2071 4160 8338 16694

A = 7 20 56 129 275 567 1153 2325 4670 9360 18740

A = 8 22 62 143 305 629 1279 2579 5180 10382 20786

A = 9 24 68 157 335 691 1405 2833 5690 11404 22832

A = 10 26 74 171 365 753 1531 3087 6200 12426 24878

dM 38 76 152 304 608 1216 2432 4864 9728 19456

Table 2. Size (in bits) of the smallest p and the degree bounds for balanced encoding
with B = 3 and L = 219.

M 1 2 3 4 5 6 7 8 9 10

A = 0 5 12 26 55 114 232 468 942 1888 3783

A = 1 7 18 40 85 176 358 722 1452 2910 5829

A = 2 9 24 54 115 238 484 976 1962 3932 7875

A = 3 11 30 68 145 300 610 1230 2472 4954 9921

A = 4 13 36 82 175 362 736 1484 2982 5976 11967

A = 5 15 42 96 205 424 862 1738 3492 6998 14013

A = 6 17 48 110 235 486 988 1992 4002 8020 16059

A = 7 19 54 124 265 548 1114 2246 4512 9042 18105

A = 8 21 60 138 295 610 1240 2500 5022 10064 20151

A = 9 23 66 152 325 672 1366 2754 5532 11086 22197

A = 10 25 72 166 355 734 1492 3008 6042 12108 24243

dM 24 48 96 192 384 768 1536 3072 6144 12288

to be evaluated. Thus it is clear that if anything but small values of M are
to be considered one needs a different way of encoding fixed-point numbers.
One such possibility is via multiple encryptions using different plaintext moduli,
and then to use the Chinese Remainder Theorem to recover the final plaintext
polynomial.



416 A. Costache et al.

Table 3. Size (in bits) of the smallest p and the degree bounds for balanced encoding
with B = 5 and L = 219.

M 1 2 3 4 5 6 7 8 9 10

A = 0 7 14 31 64 130 263 529 1062 2129 4264

A = 1 9 20 45 94 192 389 783 1572 3151 6310

A = 2 11 26 59 124 254 515 1037 2082 4173 8356

A = 3 13 32 73 154 316 641 1291 2592 5195 10402

A = 4 15 38 87 184 378 767 1545 3102 6217 12448

A = 5 17 44 101 214 440 893 1799 3612 7239 14494

A = 6 19 50 115 244 502 1019 2053 4122 8261 16540

A = 7 21 56 129 274 564 1145 2307 4632 9283 18586

A = 8 23 62 143 304 626 1271 2561 5142 10305 20632

A = 9 25 68 157 334 688 1397 2815 5652 11327 22678

A = 10 27 74 171 364 750 1523 3069 6162 12349 24724

dM 16 32 64 128 256 512 1024 2048 4096 8192

Table 4. Size (in bits) of the smallest p and the degree bounds for balanced encoding
with B = 7 and L = 219.

M 1 2 3 4 5 6 7 8 9 10

A = 0 8 16 34 70 143 289 582 1169 2342 4689

A = 1 10 22 48 100 205 415 836 1679 3364 6735

A = 2 12 28 62 130 267 541 1090 2189 4386 8781

A = 3 14 34 76 160 329 667 1344 2699 5408 10827

A = 4 16 40 90 190 391 793 1598 3209 6430 12873

A = 5 18 46 104 220 453 919 1852 3719 7452 14919

A = 6 20 52 118 250 515 1045 2106 4229 8474 16965

A = 7 22 58 132 280 577 1171 2360 4739 9496 19011

A = 8 24 64 146 310 639 1297 2614 5249 10518 21057

A = 9 26 70 160 340 701 1423 2868 5759 11540 23103

A = 10 28 76 174 370 763 1549 3122 6269 12562 25149

dM 14 28 56 112 224 448 896 1792 3584 7168
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A Homomorphic Image Processing via the Fourier
Transform

A standard image processing pipeline is to take an image (consisting of n pixels),
pass it into the frequency domain by applying the Fourier transform, apply an
operation in the Fourier domain, and then map back to the image space by
applying the inverse Fourier transform. The operation in the Fourier domain in
its simplest form could be the Hadamard component wise multiplication of the
data by a fixed matrix. For example this is used when applying Gabor filters,
which feature prominently in applications that are motivated by biological vision.

In this section we examine the application of our fixed-point analysis to the
case of image processing in which both the initial image and the Hadamard
transformation data are encrypted using a SHE scheme. It is well known that
the Fourier transform is a linear operation, and hence only requires (in theory)
an additively homomorphic encryption scheme to obtain an encrypted version.
However, our requirement that the processing in the frequency domain is also
unknown to the evaluator implies that our overall operation is non-linear.

Previous authors have examined homomorphic evaluation of the Fourier
transform [2,3]. Indeed by exploiting the linear nature of the calculation they uti-
lized an encoding of fixed-point numbers via scaled integers. Then they used the
additively homomorphic Paillier encryption algorithm to perform the homomor-
phic evaluation of the Fourier transform. This has a number of disadvantages.
Firstly by encoding in a purely integer manner the Paillier plaintext modulus
space N increases dramatically if one is to perform an FFT, followed by a lin-
ear map, followed by an inverse FFT. In addition it requires all homomorphic
operations in an application to be linear.

For means of comparison of parameters with prior work [2,3], which used
Paillier encryption and only processed a single FFT operation, we also provide
a comparison of parameters in that case.

A.1 The Mixed Fourier Transform Algorithm

The standard method to apply the (radix-2) Fourier transform3 is to use the Fast
Fourier Transform (FFT) which is a recursive algorithm requiring O(log n) depth
of scalar multiplications and a total of O(n · log n) scalar multiplications in total.
As we have seen the need to perform a large depth of scalar multiplications
will imply a large plaintext modulus for our SHE scheme. The naive method of
performing the Fourier transform is to simply apply a matrix-vector product.
This requires only depth one of scalar multiplications but on the other hand
requires O(n2) scalar multiplications. We will refer to this method as the Naive
Fourier Transform (NFT).

There is an obvious balance to be struck here, which we present in Fig. 1. This
is an algorithm, which we dub the Mixed Fourier Transform (MFT) algorithm.

3 Other FFT’s, e.g. the radix-4 method, can be analysed using similar techniques to
those in this paper.
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MFT (x, n,B)

if n ≤ B then
for 0 ≤ k ≤ n − 1 do

yk

∑n−1
j=0 xj · exp(−2 · π · √−1 · j · k/n).

end for
else

m n/2.
z0, · · · , zn/2−1 MFT ((x0, x2, x4, . . . , xn−2), m,B).
zn/2, · · · , zn MFT ((x1, x3, x5, . . . , xn−1), m,B).
for 0 ≤ k ≤ n/2 − 1 do

s exp(−2 · π · √−1 · k/n) · zk+n/2.
t zk.
yk t + s.
yk+n/2 t − s.

end for
end if
return y

Fig. 1. The Mixed Fourier Transform algorithm

It executes standard recursive FFT algorithm down to a given depth �log2(B)�,
and then at this lower level executes the naive Fourier transform method.

When we execute MFT (x, n, 1) we perform the full traditional Fast Fourier
Transform method, while when we execute MFT (x, n, n) we perform the Naive
Fourier Transform method. All values of B in between execute a hybrid app-
roach. By varying B we can trade a reduced depth of scalar multiplications for
an increased total number of multiplications. It is obvious that the depth of
scalar multiplications required is given by

depth(n,B) = log2(n) − log2(B) + 1.

Computing the total number of scalar multiplications requires a little more
thought. For n = 2N and B = 2B , the first level of the FFT operation has

mults(n,B) = 2 · mults(n/2,B) + 2N−1

multiplications. Doing FFT until we reach B gives

mults(n,B) = 2N−B · mults(B,B) + (N − B) · 2N−1.

Solving this yields

mults(n,B) = n · B + (log2(n) − log2(B)) · n

2
as the number of multiplications performed in a MFT circuit.

A.2 Comparison with Prior Work

In [2,3] the authors present work on implementing a radix-2 FFT in the
encrypted domain using the Paillier encryption algorithm. As a means of com-
parison of their work with ours we examine how their Paillier parameters would
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compare to our Ring-LWE parameters in their setting. The first key aspect is
the precision of the input values, the roots of unity and the output precision.
Both [2,3] and ourselves use a fixed-point encoding in which precision is never
lost. But if one implemented FFT on a machine with b bits of floating point
precision one would loose precision as the calculation proceeds. This means that
to obtain the same output as running in the clear on a standard machine using
floating point arithmetic, we can adapt the precision of the roots of unity.

In particular, we let b1 denote the bits of precision in the input data (which is
typically eight), b2 denote the bits of precision in the roots of unity and b denote
the bits of equivalent output bits of precision in an in-the-clear implementation.
Then [2,3] show that for a single iteration of the FFT algorithm on data of size
2v, one can take

b2 =
⌈
b − v

2
+

1
2

⌉
.

Using this they are able to implement the FFT in the encrypted domain using
a Paillier modulus of bit size

nP ≥ v + α · b2 + b1 + 4,

where α = 1 for the Naive Fourier Transform, and α = v − 2 for the full FFT;
they do not consider a Mixed Fourier Transform.

As a means of comparison we look at the same situation using our polyno-
mial encoding for use in the Ring-LWE system. The degrees of the associated
polynomials to encode the input data and the roots of unity, in balanced base-3
encoding, are

di = �log(2 · 2bi + 1)/ log 3� − 1.

Applying the analysis from Sect. 4 to a single Fourier Transform execution, we
can obtain formulae for the infinity norm of the resulting polynomials via a
computer algebra system in the form of a linear sum of terms the following form

c[(d1,1),(d2,e2)],

where 0 ≤ e2 ≤ depth(n,B). Note that e1 = 1 as we are only executing a single
FFT operation.

Then using (5) and (6) and the fact that cd,1 = 1 we can give an upper bound
on this quantity

c[(d1,1),(d2,e2)] ≤ c · (d1 + 1) · (d2 + 1)e2 ,

where

c =

√
6

π · d2 · e2 · (d2 + 2)
.

Hence, we can upper bound the linear sum and so lower bound the plaintext
modulus p needed for the SHE scheme to ensure correctness. A similar method
allows us to upper bound the degree of the resulting polynomials. This itself leads
to a lower bound on the ring dimension deg(R) needed for the SHE scheme. We
summarize the results in Table 5 for emulating b = 32 bits of floating point
precision and b1 = 8 bit inputs.
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Table 5. Comparing Paillier vs Ring-LWE encoding parameters for a single NFT/FFT
execution for b = 32

n b2 d1 d2 FFT NFT

log2 p ≥ deg(R) ≥ nP ≥ log2 p ≥ deg(R) ≥ nP ≥
64 30 5 19 35 138 138 11 24 48

256 29 5 18 45 167 194 13 23 49

1024 28 5 18 56 203 246 15 23 50

A.3 FFT-Hadamard-iFFT Pipeline

We now turn to investigating the FFT-Hadamard-iFFT standard image process-
ing pipeline. Since we apply two Fourier transforms the precision of the roots of
unity we take to be

b2 =
⌈
b − v +

1
2

⌉
,

in order to retain the same precision as b bits of floating point precision on a
standard machine.

Applying the analysis from Sect. 4 again, we obtain formulae for the infinity
norm of the resulting polynomials in the form of a linear sum of terms of the
following form

c[(d1,2),(d2,e2)],

where 0 ≤ e2 ≤ depth(n,B). Then using Eqs. 5 and 6, and the fact that cd,2 =
(d + 1) we now upper bound this quantity via

c[(5,2),(10,e2)] ≤
{

36 If e2 = 1,
c · (2 · 5 + 1) · (5 + 1) · (10 + 1)e2 Otherwise,

where

c =

{√
6

π·10·e2·(10+2) If e2 > 2,

1 Otherwise.

Hence, we can upper bound the linear sum and so lower bound the plaintext
modulus p needed for the SHE scheme to ensure correctness. This results in the
parameters given in Table 6.

We then took these bounds and instantiated an SHE system to evaluate the
pipeline using the HElib library [9]. The HElib library implements the BGV
[4,8] Somewhat Homomorphic Encryption scheme, but restricts the plaintext
modulus to be at most 64 bits in length. Hence, our experiments are limited to
this reduced size of plaintext space.

In this scheme a plaintext m ∈ Rp is encrypted as a pair of elements in
(c0, c1) ∈ R2

q , such that

c0 − sk · c1 = m + p · ε (mod q),
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Table 6. Parameters for the FFT-Hadamard-iFFT pipeline

n b2 d1 d2 FFT B = 1 B =
√
n NFT B = n

log2 p ≥ deg(R) ≥ log2 p ≥ deg(R) ≥ log2 p ≥ deg(R) ≥
16 29 5 18 54 190 37 118 25 46

64 27 5 17 74 248 49 146 29 44

256 25 5 16 93 298 61 170 33 42

1024 23 5 15 112 340 72 190 37 40

where sk is the secret key (a short element in Rq) and ε is a short “noise” element
in Rq. As homomorphic operations progress the value q of the ciphertext is
reduced, until it can be reduced no more. At this point, operations cease to be
possible. The reduction in q enables the noise value to be controlled, and each
reduction in q is said to consume a homomorphic “level”. Note, that the HElib
library due to its choice of moduli for each level actually consumes multiple
“internal levels” for each of these “external levels”.

In Table 7 we present our implementation results using the HElib. In each
case we used the plaintext modulus size derived from the Table 6. We note that in
all cases HElib selects a ring dimension for security reasons which is much larger
than we need for our application. This last fact means that by careful choice of
the plaintext modulus one can process many such operations in parallel using
standard SIMD tricks; with the amortization constant being (roughly) the actual
degree of R divided by the lower bound from Table 6. We note that we cannot
obtain results for the larger plaintext spaces as HElib has a restriction of 60 bits
on the plaintext modulus. In future work we aim to remove this restriction by
utilizing a different SHE library. All run times measure the time in seconds to
evaluate the FFT-Hadamard-iFFT pipeline in the homomorphic domain, and
they are obtained on a machine with six Intel Xeon E5 2.7 GHz processors, and
with 64 GB RAM.

Table 7. Results for homomorphically evaluating a full image processing pipeline

n B deg(R) log2 q HElib
levels

Amortization
amount

CPU
time

Amortized
time

16 1 32768 710 33 172 188 1.09

16 4 32768 451 19 277 147 0.53

16 16 16384 192 9 356 106 0.3

64 8 32768 622 30 224 1500 6.69

64 64 16384 192 10 372 1582 4.25

256 256 16384 278 11 390 34876 89.4
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Abstract. Since Gentry’s breakthrough work in 2009, homomorphic
cryptography has received a widespread attention. Implementation of a
fully homomorphic cryptographic scheme is however still highly expen-
sive. Somewhat Homomorphic Encryption (SHE) schemes, on the other
hand, allow only a limited number of arithmetical operations in the
encrypted domain, but are more practical. Many SHE schemes have been
proposed, among which the most competitive ones rely on Ring Learning
With Errors (RLWE) and operations occur on high-degree polynomials
with large coefficients. This work focuses in particular on the Chinese
Remainder Theorem representation (a.k.a. Residue Number Systems)
applied to the large coefficients. In SHE schemes like that of Fan and
Vercauteren (FV), such a representation remains hardly compatible with
procedures involving coefficient-wise division and rounding required in
decryption and homomorphic multiplication. This paper suggests a way
to entirely eliminate the need for multi-precision arithmetic, and presents
techniques to enable a full RNS implementation of FV-like schemes. For
dimensions between 211 and 215, we report speed-ups from 5× to 20×
for decryption, and from 2× to 4× for multiplication.

Keywords: Lattice-based cryptography · Homomorphic encryption ·
FV · Residue Number Systems · Software implementation

1 Introduction

Cryptographers’ deep interests in lattices are for multiple reasons. Besides pos-
sessing highly desirable post-quantum security features, lattice-based cryptog-
raphy relies on simple structures, allowing efficient asymptotic complexities,
and is quite flexible in practice. In addition to encryption/signature schemes
[7,15,18,21,22,25], identity-based encryption [8], multilinear maps [10,16], lat-
tices are also involved in homomorphic encryption (HE). The discovery of this
property by Gentry in 2009 [12], through the use of ideal rings, is a major

c© Springer International Publishing AG 2017
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breakthrough which has opened the door to many opportunities in terms of
applications, especially when coupled with cloud computing.

HE is generally composed of a basic layer, which is a Somewhat Homomor-
phic Encryption scheme (SHE). Such a scheme allows us to compute a limited
number of additions and multiplications on ciphertexts. This can be explained
by the fact that any ciphertext contains an inherent noise which increases after
each homomorphic operation. Beyond a certain limit, the noise becomes too
large to allow a correct decryption. This drawback may be tackled by using
bootstrapping, which however constitutes a bottleneck in terms of efficiency.
Further improvements of noise management [5,6] have been suggested so that,
in practice, and given an applicative context, it may be wiser to select an efficient
SHE with parameters enabling a sufficient number of operations. For instance,
schemes like FV [9] and YASHE [4] have been implemented and tested for eval-
uating the SIMON Feistel Cipher [17]. Among the today’s more practical SHE
schemes, FV is arguably one of the most competitive. This scheme is being cur-
rently considered by major stakeholders, such as the European H2020 HEAT
consortium [26], as a viable candidate for practical homomorphic encryption.

Our Contribution. This work focuses on practical improvement of SHE
schemes, in particular FV. Despite the fact that the security of YASHE has been
called into question recently [1], this scheme can also benefit from the present
work. These schemes handle elements of a polynomial ring Zq[X]/(Xn +1). The
modulus q can be chosen as the product of some small moduli fitting with prac-
tical hardware requirements (machine word, etc.). This enables us to avoid the
need of multi-precision arithmetic in almost the whole scheme. However, this
CRT representation (a.k.a. Residue Number Systems, or RNS) is hardly com-
patible with a couple of core operations: coefficient-wise division and rounding,
occurring in multiplication and decryption, and a noise management technique
within homomorphic multiplication, relying on the access to a positional number
system.

We show how to efficiently avoid any switch between RNS and the positional
system for performing these operations. We present a full RNS variant of FV and
analyse the new bounds on noise growth. A software implementation highlights
the practical benefits of the new RNS variant.

It is important to note that this work is related to the arithmetic at the coef-
ficient level. Thus, the security features of the original scheme are not modified.

Outline. Section2 provides some preliminaries about FV and RNS. Section 3
provides a full RNS variant of decryption. Section 4 gives a full RNS variant of
homomorphic multiplication. Results of a software implementation are presented
in Sect. 5. Finally, some conclusions are drawn.
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2 Preliminaries

Proofs of lemmas, propositions and theorems of this article can be found in its
extended version [2].

Context. High-level operations occur in a polynomial ring R = Z[X] /(Xn +1)
with n a power of 2. R is one-to-one mapped to integer polynomials of degree
strictly smaller than n. Most of the time, elements of R are denoted by lower-
case boldface letters and identified by their coefficients. Polynomial arithmetic
is done modulo (Xn +1). The infinity norm of a = (a0, . . . , an−1) ∈ R is defined
by ‖a‖∞ = max0�i�n−1(|ai|). Ciphertexts will be managed as polynomials (of
degree 1) in R[Y ]. For ct ∈ R[Y ], we note ‖ct‖∞ = maxi ‖ct[i]‖∞, ct[i] being
the coefficient of degree i in Y . The multiplicative law of R[Y ] is denoted by �.

Behind lattice-based cryptosystems in general, and FV in particular, lies the
principle of noisy encryption. Additionally to the plaintext, a ciphertext contains
a noise (revealed by using the secret key) which grows after each homomorphic
operation. Since the homomorphic multiplication involves multiplications in R,
it is crucial that the size of a product in R does not increase too much. This
increase is related to the ring constant δ = sup{‖f ·g‖∞/‖f‖∞ · ‖g‖∞ : (f , g) ∈
(R \ {0})2}. It means that ‖f · g‖∞ � δ‖f‖∞ · ‖g‖∞. For the specific ring R
used here, δ is equal to n.

For our subsequent discussions on decryption and homomorphic multiplica-
tion, we denote the “Division and Rounding” in R[Y ] (depending on parameters
t, q which are defined thereafter) by:

DRi : ct =
i∑

j=0

ct[j]Y j ∈ R[Y ] �→
i∑

j=0

⌊
t

q
ct[j]

⌉
Y j ∈ R[Y ]. (1)

The notation � t
qc�, for any c ∈ R (e.g. ct[j] in (1)), means a coefficient-wise

division-and-rounding.

Plaintext and Ciphertext Spaces. The plaintext space is determined by an
integer parameter t (t � 2). A message is an element of Rt = R/(tR), i.e. a
polynomial of degree at most n − 1 with coefficients in Zt. The notation [m]t
(resp. |m|t) means that coefficients lie in [−t/2, t/2) (resp. [0, t)). Ciphertexts will
lie in Rq[Y ] with q a parameter of the scheme. On one side, some considerations
about security imply a relationship between q and n which, for a given degree
n, establish an upper bound for log2(q) (cf. (6) in [9]). On the other side, the
ratio Δ = � q

t � will basically determine the maximal number of homomorphic
operations which can be done in a row to ensure a correct decryption.

RNS Representation. Beyond the upper bound on log2(q) due to security
requirements, the composition of q has no restriction. So, q can be chosen as a
product of small pairwise coprime moduli q1 . . . qk. The reason for such a choice
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is the Chinese Remainder Theorem (CRT) which offers a ring isomorphism Zq
∼→∏k

i=1 Zqi
. Thus, the CRT implies the existence of a non-positional number system

(RNS) in which large integers (mod q) are mapped to sets of small residues.
Furthermore, the arithmetic modulo q over large integers can be substituted
by k independent arithmetics in the small rings Zqi

. The isomorphism can be
naturally extended to polynomials: Rq 	 Rq1 × . . . × Rqk

. It means that RNS
can be used at the coefficient level to accelerate the arithmetic in Rq.

In the rest of the paper, the letter q may refer either to the product q1 . . . qk

or to the “RNS base” {q1, . . . , qk}. Symbol ν denotes the “width” of the moduli.
In other words, from now on, any modulus m (should it belong to q or to any
other RNS base) is assumed to verify m < 2ν .

Asymmetric Keys. The secret key s is picked up in R according to a discrete
distribution χkey on R (in practice, bounded by Bkey = 1, i.e. ‖s‖∞ � 1).

For creating the public key, an “error” distribution χerr over R is used. In
practice, this is a discrete distribution statistically close to a Gaussian (with
mean 0 and standard deviation σerr) truncated at Berr (e.g. Berr = 6σerr). χerr

is related to the hardness of the underlying (search version of) RLWE problem
(for which the purpose is, given samples ([−(ais + ei)]q,ai) with ei ← χerr and
a ← U(Rq), to find s; U(Rq) is the uniform distribution on Rq). The public
key pk is created as follows: sample a ← U(Rq) and e ← χkey, then output
pk = (p0,p1) = ([−(as + e)]q,a).

Encryption, Addition, Inherent Noise of a Ciphertext. Encryption and
homomorphic addition are already fully compliant with RNS arithmetic. They
are recalled hereafter:

– EncFV([m]t): from samples e1,e2 ← χerr, u ← χkey, output
ct = (ct[0], ct[1]) = ([Δ[m]t + p0u + e1]q, [p1u + e2]q).

– AddFV(ct1, ct2): output ([ct1[0] + ct2[0]]q, [ct1[1] + ct2[1]]q).

By definition, the inherent noise of ct (encrypting [m]t) is the polynomial v
such that [ct(s)]q = [ct[0] + ct[1]s]q = [Δ[m]t + v]q. Thus, it is revealed by
evaluating ct ∈ Rq[Y ] on the secret key s.

Elementary Operations. A basic word will fit in ν bits. In RNS, an “inner
modular multiplication” (IMM) in a small ring like Zm is a core operation. If
EM stands for an elementary multiplication of two words, in practice an IMM
is costlier than an EM. But it can be well controlled. For instance, the moduli
provided in NFLlib library [19] (cf. Sect. 5) enable a modular reduction which
reduces to one EM followed by a multiplication modulo 2ν . Furthermore, the cost
of an inner reduction can be limited by using lazy reduction, e.g. during RNS
base conversions used throughout this paper. NTT and invNTT denote the Number
Theoretic Transform and its inverse in a ring Rm for a modulus m. They enable
an efficient polynomial multiplication (NTT, invNTT ∈ O(n log2(n))).



A Full RNS Variant of FV Like SHE Schemes 427

3 Towards a Full RNS Decryption

This section deals with the creation of a variant of the original decryption func-
tion DecFV, which will only involve RNS representation. The definition of DecFV
is recalled hereafter.

– DecFV(ct = (c0, c1) ∈ Rq[Y ]): compute [DR0([ct(s)]q)]t =
[⌊

t
q [c0 + c1s]q

⌉]

t
.

The idea is that computing [c0 + c1s]q = [Δ[m]t + v]q reveals the noise. If this
noise is small enough, and given that [m]t has been scaled by Δ, the function DR0
allows to cancel the noise while scaling down Δ[m]t to recover [m]t. Concretely,
decryption is correct as long as ‖v‖∞ < (Δ − |q|t)/2, i.e. the size of the noise
should not go further this bound after homomorphic operations.

The division-and-rounding operation makes DecFV hardly compatible with
RNS at a first sight. Because RNS is of non positional nature, only exact integer
division can be naturally performed (by multiplying by a modular inverse). But
it is not the case here. And the rounding operation involves comparisons which
require to switch from RNS to another positional system anyway, should it be a
classical binary system or a mixed-radix one [11]. To get an efficient RNS variant
of DecFV, we use an idea of [3]. To this end, we introduce relevant RNS tools.

3.1 Fast RNS Base Conversion

At some point, the decryption requires, among others, a polynomial to be con-
verted from Rq to Rt. To achieve such kind of operations as efficiently as possi-
ble, we suggest to use a “fast base conversion”. In order to convert residues of
x ∈ [0, q) from base q to a base B (e.g. {t}) coprime to q, we compute:

FastBconv(x, q,B) =

(
k∑

i=1

∣∣∣∣xi
qi

q

∣∣∣∣
qi

× q

qi
mod m

)

m∈B
. (2)

This conversion is relatively fast. This is because the sum should ideally be
reduced modulo q in order to provide the exact value x; instead, (2) provides
x+αxq for some integer αx ∈ [0, k−1]. Computing αx requires costly operations
in RNS. So this step is by-passed, at the cost of an approximate result.

FastBconv naturally extends to polynomials of R by applying it coefficient-
wise.

3.2 Approximate RNS Rounding

The above mentioned fast conversion allows us to efficiently compute an approx-
imation of � t

q [c0 + c1s]q� modulo t. The next step consists in correcting this
approximation.

First, we remark that |ct(s)|q can be used instead of [ct(s)]q. Indeed, the
difference between these two polynomials is a multiple of q. So, the division-
and-rounding turns it into a polynomial multiple of t, which is cancelled by the
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last reduction modulo t. Second, a rounding would involve, at some point, a
comparison. This is hardly compatible with RNS, so it is avoided. Therefore, we
propose to simplify the computation, albeit at the price of possible errors, by
replacing rounding by flooring. To this end, we use the following formula:

⌊
t

q
|ct(s)|q

⌋
=

t|ct(s)|q − |t · ct(s)|q
q

.

The division is now exact, so it can be done in RNS. Since this computation
has to be done modulo t, the term t|ct(s)|q cancels. Furthermore, the term
(|t · ct(s)|q mod t) is obtained through a fast conversion.

Lemma 1 sums up the strategy by replacing |ct(s)|q by γ|ct(s)|q, where γ is
an integer which will help in correcting the approximation error.

Lemma 1. Let ct be such that [ct(s)]q = Δ[m]t + v + qr, and let vc := tv −
[m]t|q|t. Let γ be an integer coprime to q. Then, for m ∈ {t, γ}, the following
equalities hold modulo m:

FastBconv(|γt · ct(s)|q, q, {t, γ}) × | − q−1|m =
⌊
γ

t

q
[ct(s)]q

⌉
− e

= γ ([m]t + tr) +
⌊
γ
vc

q

⌉
− e

(3)

where each integer coefficient of the error polynomial e ∈ R lies in [0, k].

The error e is due to the fast conversion and the replacement of rounding by
flooring. It is the same error for residues modulo t and γ. The residues modulo
γ will enable a fast correction of it and of the term �γ vc

q � at a same time. Also,
note that r vanishes since it is multiplied by both t and γ.

3.3 Correcting the Approximate RNS Rounding

The next step is to show how γ in (3) can be used to correct the term (�γ vc

q �−e).
It can be done efficiently when the polynomial vc is such that ‖vc‖∞ � q( 12 −ε),
for some real number ε ∈ (0, 1/2].

Lemma 2. Let ‖vc‖∞ � q( 12 − ε), e ∈ R with coefficients in [0, k], and γ an
integer. Then,

γε � k ⇒
[⌊

γ
vc

q

⌉
− e

]

γ

=
⌊
γ
vc

q

⌉
− e. (4)

Lemma 2 enables an efficient and correct RNS rounding as long as k(12 −
‖vc‖∞

q )−1 ∼ γ has the size of a modulus. Concretely, one computes (3) and
uses the centered remainder modulo γ to obtain γ ([m]t + tr) modulo t, which
reduces to γ[m]t mod t. And it remains to multiply by |γ−1|t to recover [m]t.
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3.4 A Full RNS Variant of DecFV

The new variant of the decryption is detailed in Algorithm1. The main mod-
ification for the proposed RNS decryption is due to Lemma2. As stated by
Theorem 1, given a γ, the correctness of rounding requires a new bound on the
noise to make the γ-correction technique successful.

Theorem 1. Let ct(s) = Δ[m]t + v (mod q). Let γ be a positive integer
coprime to t and q such that γ > 2k/(1 − t|q|t

q ). For Algorithm1 returning [m]t,
it suffices that v satisfies the following bound:

‖v‖∞ � q

t

(
1
2

− k

γ

)
− |q|t

2
. (5)

There is a trade-off between the size of γ and the bound in (5). Ideally, γ ∼ 2k
at the price of a (a priori) quite small bound on the noise. But by choosing
γ ∼ 2p+1k for p < ν − 1 − log2(k)� (i.e. γ < 2ν is a standard modulus), the
bound (Δ(1 − 2−p) − |q|t)/2 for a correct decryption should be close to the
original bound (Δ − |q|t)/2 for practical values of ν. A concrete estimation of γ
in Sect. 5.1 will show that γ can be chosen very close to 2k in practice, and thus
fitting on a basic word by far.

Algorithm 1. DecRNS(ct, s, γ)
Require: ct an encryption of [m]t, and s the secret key, both in base q; an integer γ

coprime to t and q
Ensure: [m]t
1: for m ∈ {t, γ} do
2: s(m) ← FastBconv(|γt · ct(s)|q, q, {m}) × | − q−1|m mod m
3: end for
4: s̃(γ) ← [s(γ)]γ
5: m(t) ← [(s(t) − s̃(γ)) × |γ−1|t]t
6: return m(t)

3.5 Staying in RNS is Asymptotically Better

In any decryption technique, (ct(s) mod q) has to be computed first. To optimize
this polynomial product, one basically performs kNTT → knIMM → kinvNTT.
For next steps, a simple strategy is to compute (� t

q [ct(s)]q� mod t) by doing
an RNS-to-binary conversion in order to perform the division and rounding. By
denoting xi = |ct(s) qi

q |qi
, one computes

∑k
i=1 xi

q
qi

mod q, compares it to q/2 so
as to center the result, and performs division and rounding. Hence, the division-
and-rounding requires O(k2n)EM. In practice, security analysis (cf. e.g. [4,9,17])
requires that kν = log2(q)� ∈ O(n). So, the cost of leaving RNS to access a
positional system is dominant in the asymptotic computational complexity.

Staying in RNS enables to get a better asymptotic complexity. Indeed, it is
easy to see that Algorithm 1 requires O(kn) operations (excluding the polyno-
mial product). Thus, the cost of NTT is dominant in this case. By considering
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k ∈ O(n), we deduce C(DecFV) ∈ O(n3), while C(DecRNS) ∈ O(n2 log2(n)). But
the hidden constant in “k ∈ O(n)” is small, and the NTT, common to both vari-
ants, should avoid any noticeable divergence (cf. Sect. 5.4) for practical ranges
for parameters.

In order to provide optimized RNS variants of decryption, we make two
remarks. First, the reduction modulo q is unnecessary. Indeed, any extra multiple
of q in the sum

∑k
i=1 xi

q
qi

is multiplied by t
q , making the resulting term a

multiple of t, which is not affected by the rounding and is finally cancelled
modulo t. Second, it is possible to precompute t

q as a multiprecision floating
point number in order to avoid a costly integer division. But given the first
remark, it suffices to precompute the floating point numbers Qi ∼ t

qi
with 2ν +

log2(k)− log2(t) bits (∼2 words) of precision. In this case, using standard double
or quadruple (depending on ν) precision is sufficient. Finally, it is sufficient to
compute �∑k

i=1 xiQi� mod t. This represents about 2knEM. Reducing modulo t
is nearly free of cost when t is a power of 2.

A second optimized RNS variant, with only integer arithmetic, is based on
Algorithm 1, in which γ is assumed to be coprime to t. It is possible to be slightly
more efficient by noticing that the coprimality assumption can be avoided. This
is because the division by γ is exact. To do it, the for loop can be done modulo
γ × t. For instance, even if t is a power of 2, one can choose γ as being a power
of 2 too, and use the following lemma to finish the decryption efficiently.

Lemma 3. Let γ be a power of 2. Let z := |γ[m]t + �γ vc

q � − e|γt coming from
(3) when computed modulo γt. If γ satisfies (4), then (� denotes the right bit-
shifting, and v1 is the polynomial with all its coefficients being equal to 1)

[
(z + γ

2v1) � log2(γ)
]
t
= [m]t. (6)

Lemma 3 can be adapted to other values for γ. The important remark is that
[m]t is contained in the �log2(t)� + 1 most significant bits of (z + γ

2v1) mod γt.
So, by choosing γ as a power of 2, a simple bit shifting enables to recover these
bits. Finally, as soon as γt fits in 1 word, the cost of such variant (besides
the polynomial product) reduces to knIMM, or simply to knEM modulo 2log2(γt)

whenever t is a power of 2.

Remark 1. In previous discussion, the product γt is assumed fitting in one
machine word to simplify complexity analysis. However, for some applications,
the plaintext modulus t can be bigger than a machine word (e.g. homomorphic
neural networks [13], where t > 280). In such cases, either the plaintexts directly
lie in Rt, or t can be decomposed in a product of smaller moduli t1, . . . , t�,
enabling the use of RNS for encoding plaintexts (and then allowing better homo-
morphic multiplicative depth for a given dimension n). In the first case, the opti-
mized RNS decryption (given by Lemma 3) remains available, but the residues
modulo t should be handled with several words. In the second case, a plaintext
is recovered by decrypting its residue modulo each of the ti. These � decryptions
can be done as in Lemma 3, by using γ as a power of 2 (whatever the ti’s are).
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Finally, the plaintext is reconstructed from residues modulo the ti’s by using
a classical RNS to binary conversion. However, this conversion is only related
to the way the plaintexts are encoded. This is not handled by RNS decryption
described in this paper, which only deals with representation of ciphertexts (i.e.
modulo q).

4 Towards a Full RNS Homomorphic Multiplication

4.1 Preliminaries About MultFV

Below, we recall the main mechanisms of the homomorphic multiplication MultFV
from [9]. More precisely, we focus on the variant with version 1 for relinearisation
step. First, two functions, of which the purpose is to limit a too rapid noise
growth during a multiplication, are recalled (these functions will be denoted as in
[4]). They are applicable to any a ∈ R, for any radix ω, and with the subsequent
parameter �ω,q = �logω(q)� + 1. Dω,q is a decomposition in radix base ω, while
Pω,q gets back powers of ω which are lost within the decomposition process.

∀a ∈ R,

{
Dω,q(a) = ([a]ω, [�aω−1�]ω, . . . , [�aω−(�ω,q−1)�]ω) ∈ R�ω,q

ω

Pω,q(a) = ([a]q, [aω]q, . . . , [aω�ω,q−1]q) ∈ R�ω,q
q

. (7)

In particular, for any (a, b) ∈ R2, 〈Dω,q(a),Pω,q(b)〉 ≡ ab mod q.
Next, MultFV is built as follows (rlkFV is a public relinearisation key):

– rlkFV =
(
[Pω,q(s2) − (−→e + s−→a )]q,−→a

)
where −→e ← χ

�ω,q
err , −→a ← U(Rq)�ω,q ,

– RelinFV(c0, c1, c2, rlkFV):
compute ([c0 + 〈Dω,q(c2), rlkFV[0]〉]q, [c1 + 〈Dω,q(c2), rlkFV[1]〉]q),

– MultFV(ct1, ct2): denote ct� = ct1 � ct2 (degree-2 element of R[Y ]),
• Step 1: c̃tmult = [DR2(ct�)]q = ([DR0(ct�[i])]q)i∈{0,1,2},
• Step 2: ctmult = RelinFV(c̃tmult).

There are two main obstacles to a full RNS variant. First, the three calls to DR0
in Step 1, for which the context is different than for the decryption. While in
the decryption we are working with a noise whose size can be controlled, and
while we are reducing a value from q to {t}, here the polynomial coefficients
of the product ct1 � ct2 have kind of random size modulo q (for each integer
coefficient) and have to be reduced towards q. Second, the function Dω,q (in
RelinFV) requires, by definition, an access to a positional system (in radix base
ω), which is hardly compatible with RNS.

4.2 Auxiliary RNS Bases

Step 1 requires to use enough moduli to contain any product, in R[Y ] (i.e. on Z),
of degree-1 elements from Rq[Y ]. So, we need an auxiliary base B, additionally
to the base q. We assume that B contains � moduli (while q owns k elements).
A sufficient size for � will be given later. An extra modulus msk is added to B
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to create an extended base Bsk. It will be used for a transition between the new
steps 1 and 2. Computing the residues of ciphertexts in Bsk is done through a
fast conversion from q. In order to reduce the extra multiples of q (called “q-
overflows” in further discussions) this conversion can produce, a single-modulus
base m̃ is introduced. All these bases are assumed to be pairwise coprime.

Reducing (mod q) a Ciphertext in Bsk. A FastBconv from q can create
q-overflows (i.e. unnecessary multiples of q) in the output. To limit the impact
on noise growth (because of division by q in step 1), we give an efficient way to
reduce a polynomial c+qu in Bsk. It should be done prior to each multiplication.
For that purpose, we use the residues modulo m̃ as it is described in Algorithm 2.

Algorithm 2. SmMRqm̃((c′′
m)m∈Bsk∪{m̃}): Small Montgomery Reduction mod q

Require: c′′ in Bsk ∪ {m̃}
Ensure: c′ in Bsk, with c′ ≡ c′′m̃−1 mod q, ‖c′‖∞ � ‖c′′‖∞

m̃
+ q

2

1: rm̃ ← [−c′′
m̃/q]m̃

2: for m ∈ Bsk do
3: c′

m ← |(c′′
m + qrm̃)m̃−1|m

4: end for
5: return c′ in Bsk

Lemma 4. On input c′′
m = |[m̃c]q+qu|m for all m ∈ Bsk∪{m̃}, with ‖u‖∞ � τ ,

and given a parameter ρ > 0, then Algorithm2 returns c′ in Bsk with c′ ≡ c
mod q and ‖c′‖∞ � q

2 (1 + ρ) if m̃ satisfies:

m̃ρ � 2τ + 1. (8)

To use this fast reduction, the ciphertexts have to be handled in base q through
the Montgomery [20] representation with respect to m̃ (i.e. |m̃c|q instead of
|c|q). This can be done for free of cost during the base conversions (in (2),
multiply residues of c by precomputed | m̃qi

q |qi
instead of | qi

q |qi
). Since {m̃} is a

single-modulus base, conversion of rm̃ from {m̃} to Bsk (l. 3 of Algorithm 2) is
a simple copy-paste when m̃ < mi. Finally, if SmMRqm̃ is performed right after a
FastBconv from q (for converting |m̃c|q), τ is nothing but k.

4.3 Adapting the First Step

We recall that originally this step is the computation of [DR2(ct�)]q. Unlike
the decryption, a γ-correction technique does not guarantee an exact rounding.
Indeed, for the decryption we wanted to get DR0([ct(s)]q), and through s we had
access to the noise of ct, on which we have some control. In the present context,
we cannot ensure a condition like ‖[t · ct�]q‖∞ � q( 12 − ε), for some ε−1 ∼ 2ν ,
which would enable the use of an efficient γ-correction. Thus, we suggest to
perform a simple uncorrected RNS flooring. For that purpose, we define:

∀a ∈ R, fastRNSFloorq(a,m) := (a − FastBconv(|a|q, q,m)) × |q−1|m mod m.
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Algorithm 2 should be executed first. Consequently, by Lemma4, if m̃ satisfies
the bound in (8) for a given parameter ρ > 0, we assume having, in Bsk, the
residues of ct′

i (≡cti mod q) such that:

‖ct′
� := ct′

1 � ct′
2‖∞ � δ q2

2 (1 + ρ)2. (9)

The parameter ρ is determined in practice. Notice that, in base q, ct′
i and cti

are equal.

Lemma 5. Let the residues of ct′
i ≡ cti mod q be given in base q ∪ Bsk, with

‖ct′
i‖∞ � q

2 (1 + ρ) for i ∈ {1, 2}. Let ct′
� = ct′

1 � ct′
2. Then, for j ∈ {0, 1, 2},

fastRNSFloorq(t · ct′
�[j],Bsk) =

⌊
t

q
ct′

�[j]
⌉

+ bj in Bsk, with ‖bj‖∞ � k. (10)

A first part of the noise growth is detailed in the following proposition.

Proposition 1. Let c̃tmult = DR2(ct′
�) with (9) satisfied, and r∞ := 1+ρ

2 (1 +
δBkey) + 1. Let vi be the inherent noise of ct′

i. Then c̃tmult(s) = Δ [m1m2]t +
ṽmult(mod q) with:

‖ṽmult‖∞ < δt(r∞ + 1
2 )(‖v1‖∞ + ‖v2‖∞) + δ

2 min ‖vi‖∞ + δt|q|t(r∞ + 1)

+ 1
2 (3 + |q|t + δBkey(1 + δBkey)). (11)

4.4 Transitional Step

Lemma 5 states that we have got back DR2(ct′
�)+b in Bsk so far, where we have

denoted (b0, b1, b2) by b. To perform the second step of multiplication, we need
to convert it in base q. However, the conversion has to be exact because extra
multiples of M = m1 . . . m� cannot be tolerated. msk allows us to perform a
complete Shenoy and Kumaresan like conversion [24]. The next lemma describes
such kind of conversion for a more general context where the input can be either
positive or negative, and can be larger, in absolute value, than M .

Lemma 6. Let B be an RNS base and msk be a modulus coprime to M =∏
m∈B m. Let x be an integer such that |x| < λM (for some real number λ � 1)

and whose residues are given in Bsk. Let’s assume that msk satisfies msk �
2(|B| + λ�). Let αsk,x be the following integer:

αsk,x :=
[
(FastBconv(x,B, {msk}) − xsk)M−1

]
msk

. (12)

Then, for x being either positive or negative, the following equality holds:

FastBconvSK(x,Bsk, q) := (FastBconv(x,B, q) − αsk,xM) mod q = x mod q.
(13)

Consequently, since ‖DR2(ct′
�)+b‖∞ � δt q

2 (1+ρ)2 + 1
2 +k, we can establish the

following proposition.
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Proposition 2. Given a positive real number λ, let msk and B be such that:

λM > δt q
2 (1 + ρ)2 + 1

2 + k, msk � 2(|B| + λ�). (14)

Let’s assume that DR2(ct′
�) + b is given in Bsk, with ‖b‖∞ � k. Then,

FastBconvSK(DR2(ct′
�) + b,Bsk, q) = (DR2(ct′

�) + b) mod q.

4.5 Adapting the Second Step

At this point, c̃tmult + b = (c0, c1, c2) is known in base q (c̃tmult := DR2(ct′
�)).

We recall that the original second step of homomorphic multiplication would be
done as follows:

ctmult =
(
[c0 + 〈Dω,q(c2),Pω,q(s2) − (−→e + s−→a )〉]q, [c1 + 〈Dω,q(c2),−→a 〉]q

)

(15)
where −→e ← χ

�ω,q
err , −→a ← U(Rq)�ω,q . The decomposition of c2 in radix ω enables

a crucial reduction of the noise growth due to the multiplications by the terms
ei+sai. It cannot be done directly in RNS as is. Indeed, it would require a costly
switch between RNS and positional representation in radix ω. However, we can
do something very similar. We recall that we can write c2 =

∑k
i=1 |c2 qi

q |qi
×

q
qi

(mod q). If ω has the same order of magnitude than 2ν (size of moduli in q),
we obtain a similar limitation of the noise growth by using the vectors ξq(c2) =
(|c2 q1

q |q1 , . . . , |c2 qk

q |qk
) and PRNS,q(s2) = (|s2 q

q1
|q, . . . , |s2 q

qk
|q), both in Rk. This

is justified by the following lemma.

Lemma 7. For any c ∈ R, 〈ξq(c),PRNS,q(s2)〉 ≡ cs2 mod q.

Thus, we replace the public relinearisation key rlkFV by the following one:
rlkRNS =

(
[PRNS,q(s2) − (−→e + s−→a )]q,−→a

)
. The next lemma helps for providing a

bound on the extra noise introduced by this step.

Lemma 8. Let −→e ← χk
err,

−→a ← U(Rq)k, and c ∈ R. Then,

‖ (〈ξq(c),−(−→e + −→a s)〉 + 〈ξq(c),−→a 〉s) mod q‖∞ < δBerrk2ν . (16)

Remark 2. It is still possible to add a second level of decomposition (like in
original approach, but applied on the residues) to limit a bit more the noise
growth. Furthermore, Sect. 4.6 details how the size of rlkRNS can be reduced in a
similar way that rlkFV could be through the method described in ([4], Sect. 5.4).

Finally, the output of the new variant of multiplication is the following one:

ctmult =
([

c0 + 〈ξq(c2),PRNS,q(s2) − (−→e + −→a s)〉]
q
,
[
c1 + 〈ξq(c2),−→a 〉]

q

)
.

(17)

Proposition 3. Let ctmult be as in (17), and vmult (resp. ṽmult) the inherent
noise of ctmult (resp. c̃tmult). Then ctmult(s) = Δ [m1m2]t + vmult(mod q)
with:

‖vmult‖∞ < ‖ṽmult‖∞ + k(1 + δBkey(1 + δBkey)) + δkBerr2ν+1. (18)

Algorithm 3 depicts the scheme of the new full RNS variant MultRNS.
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Algorithm 3. RNS homomorphic multiplication MultRNS
Require: ct1, ct2 in q
Ensure: ctmult in q

S0: Convert fast ct1 and ct2 from q to Bsk ∪ {m̃}: � ct′′
i = cti + q-overflows

S1: Reduce q-overflows in Bsk: (ct′
i in Bsk) ← SmMRqm̃(((ct′′

i )m)m∈Bsk∪{m̃})
S2: Compute the product ct′

� = ct′
1 � ct′

2 in q ∪ Bsk

S3: Convert fast from q to Bsk to achieve first step (approximate rounding) in Bsk:
(˜ctmult + b = DR2(ct

′
�) + b in Bsk) ← . . . ← FastBconv(t · ct′

�, q, Bsk)
S4: Convert exactly from Bsk to q to achieve transitional step:

(˜ctmult + b in q) ← FastBconvSK(˜ctmult + b, Bsk, q)
S5: Perform second step (relinearisation) in q:

ctmult ← RelinRNS(˜ctmult + b) mod (q1, . . . , qk)

4.6 Reducing the Size of the Relinearization Key rlkRNS

In [4], Sect. 5.4, a method to significantly reduce the size of the public evalu-
ation key evk is described (by truncating the ciphertext) and it is applicable
to the original FV scheme. We provide an efficient adaptation of such kind of
optimization to the RNS variant of the relinearisation step.

We recall that the relinearisation is applied to a degree-2 ciphertext denoted
here by (c0, c1, c2). The initial suggestion was to set to zero, say, the i lowest
significant components of the vector Dω,q(c2). Doing so is equivalent to replacing
c2 by c′

2 = ωi�c2ω−i� = c2 − |c2|ωi . Thus, only the �ω,q − i most significant
components of rlkFV[0] (and then of rlkFV[1]) are required (in other words, when
rlkFV[0] is viewed as an (�q,ω, k) RNS matrix by decomposing each component
in base q, ik entries are set to zero like this). This optimization causes a greater
noise than the one in Lemma 4 of [4]. Given (c0, c1, c2) decryptable under s, the
relinearisation step provides the following ciphertext:

(c̃0, c̃1) := (c0 + 〈Dω,q(c′
2),Pω,q(s2) − (−→e + −→a s)〉, c1 + 〈Dω,q(c′

2),
−→a 〉).

Thus, (c̃0, c̃1)(s) = c0 +c1s+c′
2s

2 −〈Dω,q(c′
2),

−→e 〉 mod q. Consequently, the
extra noise comes from the following term:

‖ − |c2|ωis2 − 〈Dω,q(c′
2),

−→e 〉‖∞ = ‖ − |c2|ωis2 − ∑�ω,q−1
j=i Dω,q(c2)jej‖∞

< δ2ωiB2
key + (�ω,q − i)δωBerr.

(19)

In the present RNS variant, the computation of �c2ω−i� is not straightforward.
This could be replaced by �c2(q1 . . . qi)−1� through a Newton like interpolation
(also known as mixed-radix conversion [11]). Though the result would be quite
similar to the original optimization in terms of noise growth, its efficiency is not
satisfying. Indeed, despite ik entries of the RNS matrix rlkRNS[0] can be set to
zero like this, such a Newton interpolation is intrinsically sequential, while the
division by ωi followed by a flooring is simply achieved by an immediate zeroing
of the lowest significant coefficients in radix ω representation.
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For our approach, we rely on the fact that rlkRNS contains the RLWE-
encryptions of the polynomials |s2 q

qj
|q. Then, we notice that only the jth-residue

of |s2 q
qj

|q can be non zero. So, let’s assume that we want to cancel ik entries in
rlkRNS[0] (as it has been done in rlkFV with the previous optimization). Then we
choose, for each index j, a subset of index-numbers Ij ⊆ [1, k] \ {j} with cardi-
nality i (i.e. at line j of rlkRNS, choose i columns, except the diagonal one; these
terms will be set to zero). Next, for each j, we introduce an RLWE-encryption
of |s2 q

qjqIj
|q, where qIj

=
∏

s∈Ij
qs, which is (|s2 q

qjqIj
− (ej + saj)|q,aj). So

far, the underlying security features are still relevant. Now, it remains to mul-
tiply this encryption by qIj

, which gives in particular |s2 q
qj

− qIj
(ej + saj)|q.

This is the jth-line of the new matrix rlk′
RNS[0]. It is clear that this line contains

zeros at columns index-numbered by Ij . rlkRNS[1] = (a1, . . . ,ak) is replaced by
rlk′

RNS[1] = (|qI1a1|q, . . . , |qIk
ak|q).

Let’s analyse the new noise growth. By evaluating in s the output of relin-
earisation with this new rlk′

RNS, we obtain:

c0 + 〈ξq(c2), rlk′
RNS[0]〉 + (c1 + 〈ξq(c2), rlk′

RNS[1]〉) s
= c0 +

∑k
j=1 |c2 qj

q |qj

(
s2 q

qj
− qIj

(ej + saj)
)

+
(
c1 +

∑k
j=1 |c2 qj

q |qj
qIj

aj

)
s

= c0 + c1s + c2s
2 − ∑k

j=1 |c2 qj

q |qj
qIj

ej .

Consequently, the cancellation of ik terms in the public matrix rlkRNS[0] by
using this method causes an extra noise growth bounded by (this can be fairly
compared to (19) in the case where ω = 2ν , i.e. k = �ω,q):

‖∑k
j=1 |c2 qj

q |qj
qIj

ej‖∞ <
∑k

j=1 δqjqIj
Berr < δk2ν(i+1)Berr.

Therefore, the truncation of ciphertexts can be efficiently adapted to RNS rep-
resentation without causing more significant noise growth.

4.7 About Computational Complexity

In a classical multi-precision (MP) variant, for the purpose of efficiency the
multiplication can involve NTT-based polynomial multiplication to implement
the ciphertext product (e.g. [23] for such kind of implementation on FPGA).
This approach requires the use of a base B′ (besides q) with |B′| = k + 1 for
storing the product. Notice that, in RNS variant, we also have |Bsk| = k+1 (the
same amount of information is kept, but used differently). Thus, it is easy to
show that RNS and MP variants involve the same number of NTT and invNTT
operations in the case �ω,q = k (e.g. the keys rlkFV and rlkRNS have the same
size in this situation). In other words, the same number of polynomial products
is performed in both cases when ω = 2ν .

Above all, the RNS variant enables us to decrease the cost of other parts of
the computation. Despite the fact that the asymptotic computational complexity
of these parts remains identical for both variants, i.e. O(k2n) elementary multi-
plications, the RNS variant only involves single-precision integer arithmetic.
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To sum up, because of a complexity of O(k2n log2(n)) due to the NTT’s,
we keep the same asymptotic computational complexity C(MultFV) ∼

n→+∞
C(MultRNS). However, the most important fact is that multi-precision multipli-
cations within MP variant are replaced in RNS by fast base conversions, which
are simple matrix-vector products. Thus, MultRNS retains all the benefits of RNS
properties and is highly parallelizable.

5 Software Implementation

The C++ NFLlib library [19] was used for efficiently implementing the arith-
metic in Rq. It provides an efficient NTT-based product in Rq for q a product of
30 or 62-bit prime integers, and with degree n a power of 2, up to 215.

5.1 Concrete Examples of Parameter Settings

In this part, we analyse which depth can be reached in a multiplicative tree, and
for which parameters.

The initial noise is at most V = Berr(1 + 2δBkey) [17]. The output of a tree
of depth L has a noise bounded by CL

RNS,1V + LCL−1
RNS,1CRNS,2 (cf. [4], Lemma 9)

with, for the present RNS variant:
⎧
⎨

⎩

CRNS,1 = 2δ2t (1+ρ)
2 Bkey + δt(4 + ρ) + δ

2 ,

CRNS,2 = (1 + δBkey)(δt|q|t 1+ρ
2 + δBkey(k + 1

2 )) + 2δt|q|t + k(δBerr2ν+1 + 1)
+ 1

2 (3 + |q|t).
(20)

We denote by LRNS = max{L ∈ N | CL
RNS,1V + LCL−1

RNS,1CRNS,2 � q
t (

1
2 − k

γ ) − |q|t
2 }

the depth allowed by MultRNS, when DecRNS is used for decryption.

Table 1. Examples of parameter settings, by
using 30-bit moduli of NFLlib.

For an 80-bit security level and
parameters Bkey = 1, σerr = 8,
Berr = 6σerr, we consider the
security analysis in [17], which pro-
vides ranges for (log2(q), n) (cf.
[17], Table 2). We analyse our
parameters by using the moduli
given in NFLlib, because those
were used for concrete testing. For
a 32-bit (resp. 64) implementa-
tion, a set of 291 30-bit (resp.
1000 62-bit) moduli is available.

These moduli are chosen to enable an efficient modular reduction (cf. [19],
Algorithm 2).

Table 1 lists parameters when q and B are built with the 30-bit moduli of
NFLlib. These parameters were determined by choosing the largest ρ (up to
2k − 1) allowing to reach the depth LRNS. Lstd corresponds to the bounds given
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in [17] for a classical approach. Sufficient sizes for γ and msk (allowing, for msk,
to have |B| = k through (14) after having chosen for q the k greatest available
moduli) are provided. For these specific parameters, the new bounds on the noise
for RNS variant cause a smaller depth in only one case.

5.2 Influence of m̃ Over Noise Growth

After a fast conversion from q, ciphertexts in Bsk can contain q-overflows and
verify ‖ct′

i‖∞ < q
2 (1 + τ). In a multiplicative tree without any addition, τ �

2k − 1. By applying Algorithm2, this bound decreases to q
2 (1 + ρ), for some

0 < ρ � 2k − 1. Having ρ = 2k − 1 in Table 1 means it is unnecessary to
use SmMRqm̃ to reach the best depth. It happens only three times. Most of the
time, doing such reduction is necessary before a multiplication so as to reach the
highest depth. Moreover, choosing a lower ρ (i.e. higher m̃) than necessary can
decrease the size of γ and msk (as shown in Table 1, one set of parameters leads
to log2(msk)� = 31, avoiding the use of a 30-bit modulus; this can be solved by
taking a larger m̃).
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lo
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2
(‖

n
o
is
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)

Limit (388)

m̃ = 0

m̃ = 28

m̃ = 216

Fig. 1. Example of noise growth; n = 213, log2(q) =
390 (ν = 30, k = 13), t = 2, σerr = 8, Bkey = 1
(dashed line: bound using (20); plain line: measure-
ments).

To illustrate the impact
of SmMRqm̃, Fig. 1 depicts
the noise growth for m̃ ∈
{0, 28, 216}. Given Table 1,
m̃ = 28 is sufficient in such
scenario to reach LRNS = 13.
Against a computation with
no reduction at all (m̃ =
0, implying LRNS = 11 in
this case), choosing m̃ = 28

implies an average reduction
of 25%. By using m̃ = 216, we
gain around 32%. Therefore,
SmMRqm̃ has been systemat-
ically integrated within the
implementation of MultRNS
for timing measurements in
next part.

5.3 Some Remarks

Convenient m̃ and γ. Given values of ρ in Table 1, m̃ = 28 (resp. m̃ = 216)
satisfies, by far, any set of analysed parameters. This enables an efficient and
straightforward modular arithmetic through standard types like uint8 t (resp.
uint16 t) and a type conversion towards the signed int8 t (resp. int16 t)
immediately gives the centered remainder. Parameter analysis with such m̃ shows
that γ = 28 is sufficient to ensure a correct decryption for all configurations.
A reduction modulo γ can then be achieved by a simple type conversion to
uint8 t.
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Tested Algorithms. The code1 we compared with was implemented in the context
of HEAT [26]. It is based on NFLlib too. Multi-precision arithmetic is handled
with GMP 6.1.0 [14], and multiplications by t

q are performed with integer divisions.
MultMP and DecMP denote functions from this code.

MultRNS was implemented as described by Algorithm 3. Could the use of
SmMRqm̃ be avoided to reach the maximal theoretical depth, it was however
systematically used. Its cost is negligible and it enables a noticeable decrease
of noise growth.

Two variants of DecRNS (cf. Sect. 3.5) have been implemented. Depending
on ν, the one with floating point arithmetic (named DecRNS-flp thereafter) uses
double (resp. long double) for double (resp. quadruple) precision, and then
does not rely on any other external library at all.

5.4 Results

The tests have been run on a laptop, running under Fedora 22 with Intel R©

Core
TM

i7-4810MQ CPU @ 2.80 GHz and using GNU compiler g++ version
5.3.1. Hyper-Threading and Turbo Boost were deactivated. The timings have
been measured on 212 decryptions/multiplications for each configuration.
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Fig. 2. Decryption time (t = 210), with
ν = 30 (plain lines) and ν = 62 (dashed
lines).
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Fig. 3. Multiplication time (t = 210), with
ν = 30 (plain lines) and ν = 62 (dashed
lines).

Figure 2 presents timings for DecMP, DecRNS and DecRNS-flp, and Fig. 3 depicts
timings for MultMP and MultRNS. Both figures gather data for two modulus sizes:
ν = 30 and ν = 62. Step 2 of MultMP uses a decomposition in radix-base ω = 232

when ν = 30, and ω = 262 when ν = 62. The auxiliary bases Bsk and B′ involved
in MultRNS and MultMP contain k + 1 moduli each. Table 2 shows which values
of k have been tested (depending on n). Multiplication timing for (n, ν, k) =
(211, 62, 1) is not given since L = 1 already causes decryption failures.

It has to be noticed that the performance are mainly due to NFLlib. The
contributions appear in the speed-ups between RNS and MP variants.

1 https://github.com/CryptoExperts/FV-NFLlib.

https://github.com/CryptoExperts/FV-NFLlib
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Table 2. Parameter k used in the tests (i.e. �log2(q)� = kν).

log2(n) 11 12 13 14 15

k (ν = 30) 3 6 13 26 53

k (ν = 62) 1 3 6 12 25

In Fig. 3, the convergence of complexities of MultRNS and MultMP (as explained
in Sect. 4.7) is noticeable. The new algorithm presented in this paper allows
speed-ups from 4.3 to 1.7 for degree n from 211 to 215 when ν = 30, and from
3.6 to 1.9 for n from 212 to 215 when ν = 62.

In Fig. 2, the two variants of decryption described in Sect. 3.5 are almost
equally fast. Indeed, they perform the same number of elementary (floating point
or integer) operations. Between degree 211 and 215, the RNS variants allow
speed-ups varying from 6.1 to 4.4 when ν = 30, and from 20.4 to 5.6 when
ν = 62. All the implemented decryption functions take as input a ciphertext in
NTT representation. Thus, only one invNTT is performed (after the product of
residues) within each decryption. As explained (cf. Sect. 3.5), despite a better
asymptotic computational complexity for RNS decryption, the efficiency remains
in practice highly related to this invNTT procedure, even maybe justifying the
slight convergence between MP and RNS decryption times observed in Fig. 2.

6 Conclusion

In this paper, the somewhat homomorphic encryption scheme FV has been fully
adapted to Residue Number Systems. Prior to this work, RNS was used to
accelerate polynomial additions and multiplications. However, the decryption
and the homomorphic multiplication involve operations at the coefficient level
which are hardly compatible with RNS, such as division and rounding.

Our proposed solutions overcome these incompatibilities, without modifying
the security features of the original scheme. As a consequence, we have provided
a SHE scheme which only involves RNS arithmetic. It means that only single-
precision integer arithmetic is required, and the new variant fully benefits from
the properties of RNS, such as parallelization.

The proposed scheme has been implemented in software using C++. Because
arithmetic on polynomials (in particular polynomial product) is not concerned by
the new optimizations provided here, the implementation has been based on the
NFLlib library, which embeds a very efficient NTT-based polynomial product. Our
implementation has been compared to a classical version of FV (based on NFLlib,
and GMP). For degrees from 211 to 215, the new decryption (resp. homomorphic
multiplication) offers speed-ups from 20 to 5 (resp. 4 to 2) folds for cryptographic
parameters.

Further work should demonstrate the high potential of the new variant by
exploiting all the concurrency properties of RNS, in particular through dedicated
hardware implementations.
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Abstract. We explore further the hardness of the non-dual discrete vari-
ant of the Ring-LWE problem for various number rings, give improved
attacks for certain rings satisfying some additional assumptions, con-
struct a new family of vulnerable Galois number fields, and apply some
number theoretic results on Gauss sums to deduce the likely failure of
these attacks for 2-power cyclotomic rings and unramified moduli.

1 Introduction

Lattice-based cryptography was introduced in the mid 1990s in two different
forms, independently by Ajtai-Dwork [1] and Hoffstein-Pipher-Silverman [12].
Thanks to the work of Stehlé-Steinfeld [19], we now understand the NTRU
cryptosystem introduced by Hoffstein-Pipher-Silverman to be a variant of a
cryptosystem which has security reductions to the Ring Learning With Errors
(RLWE) problem. The RLWE problem was introduced in [14] as a version of the
LWE problem [17]: both problems have reductions to hard lattice problems and
thus are interesting for practical applications in cryptography. RLWE depends
on a number ring R, a modulus q, and an error distribution. As such, it has
added structure (the ring), which allows for greater efficiency, but also in some
cases additional attacks.

The hardness of RLWE is crucial to cryptography, in particular as the basis
of numerous homomorphic encryption schemes [2–6,13,19]. One main theoretical
result in this direction is the security reduction theorem in [14], which reduces
certain GapSVP problems in ideal lattices over R to RLWE, when the RLWE
error distribution is sufficiently large and of a prescribed form. Although so far in
practical cryptographic applications only cyclotomic rings are used, it is impor-
tant to study the hardness of RLWE for general number rings, moduli and error
distributions, so as to understand the boundaries of security in the parameter
space. Recently, new attacks on the so-called non-dual discrete variant of the
RLWE problem for certain number rings, error distributions, and special moduli
were introduced [7–11]. The RLWE problem reduces to its discrete variant; and
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R. Avanzi and H. Heys (Eds.): SAC 2016, LNCS 10532, pp. 443–462, 2017.
https://doi.org/10.1007/978-3-319-69453-5_24



444 H. Chen et al.

the non-dual RLWE problem is equivalent to the dual problem up to a change
in the error distribution, so that non-dual RLWE may be viewed simply as a
certain choice of error distribution in the parameter space of RLWE. The term
RLWE is sometimes reserved for spherical Gaussian distributions.

This paper is an extension of [9], and here we explore further the hardness
of the non-dual discrete variant of the RLWE problem for various number rings.
We:

1. construct a new family of vulnerable Galois number fields,
2. improve the runtime of the attacks for certain rings satisfying some additional

assumptions, and
3. apply some number theoretic results on Gauss sums to deduce the likely

failure of these attacks for 2-power cyclotomic rings.

In cryptographic applications, it is most efficient to sample the error dis-
tribution coordinate-wise according to a polynomial basis for the ring. For 2-
power cyclotomic rings, which are monogenic with a well-behaved power basis,
it is justified to sample the RLWE error distribution directly in the polynomial
basis for the ring, according to results in [5,10,14], where this error distribution
choice is called Polynomial Learning With Errors (PLWE). Precisely, the PLWE
(polynomial error), RLWE (meaning a spherical Gaussian), and non-dual RLWE
problems are equivalent up to a scaling and rotation of the error distribution for
2-power cyclotomic fields. However, in general number rings the error distrib-
ution may be distorted by a general linear transformation when moving from
one problem to another [11]. For certain choices of ring and modulus, efficient
attacks on PLWE were presented in [10]. In [11], these attacks were extended to
apply to the decision version of the non-dual RLWE problem in certain rings,
and in [8,9], attacks on the search version of the RLWE problem for certain
choices of ring and modulus were presented.

1.1 Summary of Contributions

– In Sect. 3, we present an improvement to the attack in [9, Sect. 4] and use it
to dramatically cut down the runtime of the attacks on the weak instances
found in [9, Sect. 5].

– In Sect. 4, we present a new infinite family of Galois number fields vulnerable
to our attack in [9, Sect. 4], where the relative standard deviation parameter
is allowed to grow to infinity, and we give a table of examples.

– In Sect. 5, we analyze the security of 2-power cyclotomic fields with unramified
moduli under our attack. We prove Theorem3, which gives an upper bound
on the statistical distance between an approximated non-dual RLWE error
distribution, reduced modulo a prime ideal q, and the uniform distribution
on R/q. We conclude that the 2-power cyclotomic rings are safe against our
attack when the modulus q is unramified with small residue degree (1 or 2),
and is not too large (q < m2).
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2 Background

2.1 Discrete Gaussian on Lattices

Recall that a lattice in R
n is a discrete subgroup of R

n of rank n. For r > 0, let
ρr(x) = e−||x||2/r2

.

Definition 1. For a lattice Λ ⊂ R
n and r > 0, the discrete Gaussian distribu-

tion on Λ with width r is:

DΛ,r(x) =
ρr(x)

∑
y∈Λ ρr(y)

, ∀x ∈ Λ.

2.2 Non-dual RLWE

A non-dual discrete RLWE instance is specified by a ring R, a positive integer
q and an error distribution χ over R. Here R is normally taken to be the ring of
integers of some number field K of degree n. The integer q, called the modulus,
is often taken to be a prime number. We then fix an element s ∈ R/qR called
the secret.

Let ι : K → R
n be the adjusted canonical embedding defined as follows.

Suppose σ1, . . . , σr1 , σr1+1, . . . , σn are the distinct embeddings of K, such that
σ1, · · · , σr1 are the real embeddings and σr1+r2+j = σr1+j for 1 ≤ j ≤ r2. We
define ι : K → R

n by

x �→ (σ1(x), · · · , σr1(x),
√

2Re(σr1+1(x)),
√

2Im(σr1+1(x)), · · · ,√
2Re(σr1+r2(x)),

√
2Im(σr1+r2(x))).

Then the non-dual discrete RLWE error distribution is the discrete Gaussian
distribution Dι(R),r.

Definition 2. Fix R, q, r as above. Let Rq denote the quotient ring R/qR. Then
a non-dual RLWE sample is a pair

(a, b = as + e) ∈ Rq × Rq,

where the first coordinate a is chosen uniformly at random in Rq, and e is a
sampled from the discrete Gaussian Dι(R),r, considered modulo q.

Definition 3 (Non-dual Search RLWE). Given arbitrarily many non-dual
RLWE samples, determine the secret s.

Definition 4 (Non-dual Decision RLWE). Given arbitrarily many samples
in Rq × Rq, which are either non-dual RLWE samples for a fixed secret s, or
uniformly random samples, determine which.
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2.3 Comparing RLWE with Non-dual RLWE

In the original work [14], the RLWE problem is introduced using the dual ring
R∨. Specifically, for the discrete variant, s ∈ R∨

q := R∨/qR∨, and an RLWE
sample is taken to be of the form

(a, b = as + e) ∈ Rq × R∨
q ,

where e is sampled from Dι(R∨),r, then considered modulo q.
If the dual ring R∨ is principal as a fractional ideal, i.e., R∨ = tR, then each

non-dual instance is equivalent to a dual instance, by mapping a sample (a, b) to
(a, tb), and vice versa. If R∨ is not principal, there are still inclusions R∨ ⊂ t1R
and R ⊂ t2R

∨, so that one can reduce dual and non-dual versions of the problem
to one another. In either case, the reduction comes at the cost of distorting the
error distribution.

For the infinite family constructed in Sect. 4, the dual ring R∨ is indeed
principal (see Lemma 3 in Sect. 4). Note that multiplying by this field element
t changes a spherical Gaussian to an elliptical Gaussian, so the two equivalent
instances will have different error shapes.

Elliptical Gaussians are the most important class of error distributions for
general rings, since in [14, Theorem 4.1], the reduction from hard lattice problems
is to a class of RLWE problems where the distributions are elliptical Gaussians.
Theorem 5.2 of [14] provides a further security reduction to decision RLWE with
spherical Gaussian errors, but it is only stated for cyclotomic rings.

2.4 Comparing Discrete and Continuous Errors

Restricting now to the non-dual setup, there are still two variants of RLWE based
on the form of the spherical errors: the continuous variant samples errors from
spherical Gaussian on the space KR = ι(K ⊗Q R) (here we extend ι linearly), so
that samples have the form

(a, b = as + e) ∈ Rq × KR/qR,

whereas the discrete variant samples from a discrete Gaussian DιR,r on the
lattice R, as defined above.

There is no known equivalence between the discrete problem and its con-
tinuous counterpart in general. However, the continuous problem reduces to
the discrete one. Specifically, given a continuous sample (a, b) ∈ Rq × KR/qR,
one can perform a rounding on the second coordinate to get a discrete sample
(a, [b]) ∈ Rq × Rq. However, there is no obvious map in the reverse direction.

2.5 Search and Decision RLWE Problems

Let q be a prime ideal of K lying above q; then the RLWE problem modulo q
means discovering s mod q from arbitrarily many RLWE samples. In [14] the
authors gave a polynomial time reduction from search to decision for cyclotomic
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number fields and totally split primes, using the RLWE modulo q as an interme-
diate problem. Their proof can be applied to prove a similar search-to-decision
reduction for non-dual RLWE, when the underlying number field is Galois and
the modulus q is unramified [9,10]. Moreover, the search-to-decision is most effi-
cient when the residue degree of q is small. What is important in our paper is
that for the instances in Sects. 3 and 4, our attacks on RLWE modulo q could
be efficiently transferred to attack the search problem.

2.6 Comparing Non-dual RLWE with PLWE for 2-Power
Cyclotomic Fields

For cryptographic applications, it is perhaps natural to consider the PLWE error
distribution on R: assuming the ring R is monogenic, i.e., R = Z[x]/(f(x)), then
a sample from the PLWE error distribution is e =

∑n−1
i=0 eix

i, where the ei are
“small errors”, sampled independently from some error distribution over Z (e.g.
a discrete Gaussian distribution).

In general number fields, a PLWE distribution differs greatly from the non-
dual RLWE distribution (see [ELOS] for an effort to quantify the distance
between the two distributions using spectral norms). However, for 2-power cyclo-
tomic fields it turns out that the two error distributions are equivalent up to a
factor of

√
n. Since this fact is used in Sect. 5, we give a proof below.

Lemma 1. Let m = 2d be a power of 2 and let R = Z[ζm]. Consider the PLWE
error distribution on R, i.e. samples e =

∑n−1
i=0 eiζ

i
m, where n = m/2 and each

ei follows the discrete Gaussian DZ,r. Then this PLWE distribution is equal to
the non-dual RLWE distribution Dι(R),r

√
n.

Proof. For an element x =
∑n−1

i=0 xiζ
i
m ∈ R, the probability of x being sampled

by the PLWE distribution is proportional to
∏n−1

i=0 ρr(xi) =
∏n−1

i=0 e−x2
i /r2

=
e−||x||2/r2

. On the other hand, one checks that ||ι(x)|| =
√

n||x||. So the above
probability is proportional to e−||ι(x)||2/nr2

, which is the exactly the same for the
distribution Dι(R),r

√
n. This completes the proof.

2.7 Scaling Factors

As pointed out in [11], when analyzing the non-dual RLWE error distribution,
one needs to take into account the sparsity of the lattice ι(R), measured by its
covolume in R

n. This covolume is equal to |disc(K)|1/2. In light of this, we define
the scaled error width to be

r0 =
r

|disc(K)| 1
2n

.
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2.8 Overview of Attack

We briefly review the method of attack in Sect. 4 of [9]. The basic principle of
this family of attacks is to find a homomorphism

ρ : Rq → F

to some small finite field F , such that the error distribution on Rq is transported
by ρ to a non-uniform distribution on F . In this case, errors can be distinguished
from elements uniformly drawn from Rq by a statistical test in F , for example,
by a χ2-test. The existence (or non-existence) of such a homomorphism depends
on the parameters of the field, prime, and distribution in the setup of RLWE.
In this section, we will describe parameters under which such a map exists.

Once such a map is known, the basic method of attack on Decision RLWE
is as follows:

1. Apply ρ to samples (a, b) in Rq × Rq, to obtain samples in F × F .
2. Guess the image of the secret ρ(s) in F , calling the guess g.
3. Compute the distribution of ρ(b) − ρ(a)g for all the samples. If g = ρ(s), this

is the image of the distribution of the errors. Otherwise it is the image of a
uniform distribution.

4. If the image looks uniform, try another guess g until all are exhausted. If any
non-uniform distribution is found, the samples are RLWE samples. Otherwise
they are not.

Whenever q is a prime ideal lying above q, then reduction modulo q is a valid
map

ρ : Rq → Rq

for the attack above. This attack targets the RLWE modulo q problem for some
prime q lying above q, and as noted above, it can be turned into an attack on
the search variant of the problem, whenever q is unramified and K is Galois.

2.9 Comparison to Related Works

In an independent preprint [7] which appeared on eprint around the same time
as our preprint, Castryck et al. also constructed an infinite family of vulnerable
Galois number fields, where the error width can be taken to be O(|disc(K)| 1

n −ε)
for any ε > 0. The asymptotic error width they obtained is wider than in our
infinite family in Sect. 2. However, the method of attack is an errorless LWE lin-
ear algebra attack (based on short vectors), whereas our family is not susceptible
to a linear algebra attack, and requires the novel techniques presented here and
in [9].

3 An Improved Attack Using Cosets

In this section, we describe an improvement to our chi-square attack on RLWE
mod q outlined in Sect. 2.8 for a special case. As a result, we have an updated
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version of [9, Table 1], where we attacked each instance in the table in much
shorter time. Note that the complexity of the previous attack in this special case
is O(nq3). In contrast, our new attack has complexity O(nq2).

To clarify, the special case we consider in this section is characterised by the
following assumptions (we need not be in the special family of the next section):

– The modulus q is a prime of residue degree 2 in the number field K.
– There exists a prime ideal q above q such that the map ρ : Rq → Rq satisfies

the following property: Let e ∈ Rq be taken from the discrete RLWE error
distribution. The probability that ρ(e) lies in the prime subfield Fq of Fq2 is
computationally distinguishable from 1/q.

Granting these assumptions, we can distinguish the distribution of the
“reduced error” ρ(e) from the uniform distribution on Fq2 . More precisely, the
attack in [9] works exactly as we described in Sect. 4: with access to Ω(q) sam-
ples, one loops over all q2 possible values of ρ(s). It detects the correct guess
ρ(s) based on a chi-square test with two bins Fq and Fq2\Fq.

The distinguishing feature of the improved attack is to loop over the cosets
of Fq of Fq2 instead of the whole space. Fix t1, · · · tq to be a set of coset repre-
sentatives for the additive group Fq2/Fq. Recall that s denotes the secret and
ρ : Rq → Rq

∼= Fq2 is a reduction map modulo some fixed prime ideal q lying
above q. Then there exists a unique index i such that ρ(s) = s0 + ti for some
s0 ∈ Fq. Our improved attack will recover s0 and ti separately.

We start with an identity b = as + e, where a, b, s, e ∈ Fq2 . We will regard s
as fixed and a, b, e as random variables, such that a is uniformly distributed in
Fq2\Fq and b is uniformly distributed in Fq2 . The reason why a is not taken to
be uniform will become clear later in this section. We use a bar to denote the
Frobenius automorphism, i.e.,

ā
def
= aq, ∀a ∈ Fq2 .

Then b̄ = ās̄ + ē. Using the identity s = s0 + ti and subtracting, we obtain
b̄ − b − ati + ati = s0(ā − a) + ē − e. Since a �= ā, we can divide through by ā − a
and get

b̄ − b − ati + ati
ā − a

= s0 +
ē − e

ā − a
. (**)

Now for each 1 ≤ j ≤ q, we can compute

mj(a, b) :=
b̄ − b − atj + atj

ā − a

with access to a and b, but without knowledge of s or s0. Note that mj is in the
prime field Fq by construction.

Proposition 1. For each 1 ≤ j ≤ q,

(1) If j �= i, then mj(a, b) is uniformly distributed in Fq, for RLWE samples
(a, b).
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(2) If j = i, then mj(a, b) = s0 + ē−e
ā−a .

We postpone the proof of Proposition 1 until the end of this section. Assuming
the proposition, our improved attack works as follows: for 1 ≤ j ≤ q, we compute
a set of mj from the samples. To avoid dividing by zero, we ignore the samples
with ρ(a) ∈ Fq (which happens with probability 1/q since ρ(a) is uniformly
distributed). We then run a chi-square test on the mj values. If j �= i, then the
distribution should be uniform; if j = i, then P (mi = s0) = P (e ∈ Fq), which
by our assumption is larger than 1/q. Hence if we plot the histogram of the mi

computed from the samples, we will see a spike at s0. So we could recover s0 as
the element with the highest frequency, and output ρ(s) = s0 + ti. We give the
pseudocode of the attack below.

Algorithm 1. Improved chi-square attack on RLWE modulo q)
Input: K – a number field; R – the ring of integers of K; q – a prime ideal in K above

q with residue degree 2; S – a collection of M RLWE samples; β > 0 – the parameter
used for comparing χ2 values.

Output: a guess of the value s (mod q), or NOT-RLWE, or INSUFFICIENT-
SAMPLES
Let G ← ∅.
for j in 1, . . . , q do

Ej ← ∅.
for a, b in S do

ā, b̄ ← a (mod q), b (mod q).

mj ← b̄−b−atj+atj

ā−a
.

add mj to Ej .
end for
Run a chi-square test for uniform distribution on Ej .
if χ2(Ej) > β then

s0 := the element(s) in Ej with highest frequency.
s ← s0 + tj , add s to G.

end if
end for
if G = ∅ then

return NOT-RLWE
else if G = {s} is a singleton then

return s
else

return INSUFFICIENT-SAMPLES
end if

We analyze the complexity of our improved attack. There are q iterations,
each operating on O(q) samples, and reduction of each sample is O(n). So our
new attack has complexity O(nq2).
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3.1 Examples of Successful Attacks

To illustrate the idea, we apply our improved attack to the instances in Table
1 of [9]. Comparing the last column with the current Table 1, we see that the
runtime has been improved significantly.

Table 1. RLWE instances under our improved attack

n q f r0 No. samples Old runtime
(in minutes)

New runtime
(in minutes)

40 67 2 2.51 22445 209 3.5

60 197 2 2.76 3940 63 2.4

60 617 2 2.76 12340 8.2 × 105 (est.) 21.3

80 67 2 2.51 3350 288.6 0.5

90 2003 2 3.13 60090 6.6 × 104 (est.) 305

96 521 2 2.76 15630 4.5 × 103 (est.) 21.7

100 683 2 2.76 20490 1.6 × 104(est.) 36.5

144 953 2 2.51 38120 342.6 114.5

3.2 Proof of Proposition 1

For notational convenience, we let Aq denote the set Fq2\Fq.

Lemma 2. Let the random variable a be uniformly distributed in Aq. Suppose e
is a random variable with value in Fq2 independent of a. Fix δ ∈ Aq and s0 ∈ Fq.
Then

mδ = gδ + s0 +
ē − e

ā − a

is uniformly distributed in Fq. Here

gδ =
aδ − aδ

ā − a
.

Proof. Since the uniform distribution is invariant under translation, we may
assume s0 = 0. We introduce a new set V = {x ∈ Fq2 : x̄ = −x}. We claim
that for any c, d ∈ V with c �= 0, we have P (ā − a = c, aδ − aδ = d) = 1

q(q−1) .
To prove the claim, note that V is an Fq-vector space of dimension one, and we
have the following Fq-linear map fδ : Fq2 → V 2.

fδ : a �→ (ā − a, aδ − aδ).

First we show fδ is injective: if fδ(a) = 0, then a ∈ Fq and thus a(δ̄ − δ) = 0, so
a = 0. By dimension counting, fδ is an isomorphism. Restricting to Aq, we see
that fδ|Aq

gives an isomorphism between Aq and (V \{0}) × V . This proves the
claim.
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Let e′ = ē−e
ā−a . For any z ∈ Fq, we have

P (gδ + e′ = z)

=
∑

x+y=z

P (gδ = x, e′ = y)

=
∑

x+y=z

∑

c∈V \{0}
P (āδ − aδ = xc, ē − e = yc, ā − a = c)

=
∑

x+y=z,c∈V \{0}
P (āδ − aδ = xc, ā − a = c)P (ē − e = yc)

=
1

q(q − 1)

∑

y∈Fq,c∈V \{0}
P (ē − e = yc)

=
1

q(q − 1)
· (q − 1)

∑

c′∈V

P (ē − e = c′)

=
1
q
.

Proof (of Proposition 1). The second claim follows directly from (1). For the first
claim, let δ = ti − tj . Then mj ∼ gδ + s0 + ē−e

ā−a , where gδ = aδ−aδ
ā−a . Now the first

claim is precisely Lemma 2.

4 Infinite Family of Vulnerable Galois RLWE Instances

Recall that a number field K of degree n is Galois if it has exactly n automor-
phisms. In this section, we describe Galois number fields which are vulnerable to
the attack outlined in Sect. 2.8. In contrast to the vulnerable instances found by
computer search in Sect. 5 of [9], in this section we explicitly construct infinite
families of such fields with flexible parameters. Furthermore, the attacks of [9]
were successful only on instances where the size of the distribution (in the form
of the scaled standard deviation) is a small constant, where as in this paper the
scaled standard deviation parameter can be taken to be o(|d|1/4), where d is an
integer parameter and can go to infinity.

To set up, let p be an odd prime and let d > 1 be a squarefree integer such
that d is coprime to p and d ≡ 2, 3 mod 4. We choose an odd prime q such that

(1) q ≡ 1 (mod p).
(2)

(
d
q

)
= −1 (equivalently, the prime q is inert in Q(

√
d)).

Remark 1. Fix a pair (p, d) that satisfies the conditions described above. By
quadratic reciprocity, condition (2) on q above is a congruence condition modulo
4d. So by Dirichlet’s theorem on primes in arithmetic progressions, there exists
infinitely many primes q satisfying both (1) and (2).

Let M = Q(ζp) be the p-th cyclotomic field and L = Q(
√

d). Let K = M · L
be the composite field and let OK denote its ring of integers.
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Theorem 1. Let K and q be as above, and Rq defined as in the preliminaries in
terms of K and q. Suppose q is a prime ideal in K lying over q. We consider the
reduction map ρ : R/qR → R/qR ∼= Fqf , where f is the residue degree. Suppose
D is the RLWE error distribution with error width r such that r < 2

√
πd. Let

β = min

{(√
4πed

r
e− 2πd

r2

)n

, 1

}

.

Then, for x ∈ Rq drawn according to D, we have ρ(x) ∈ Fq with probability at
least 1 − β.

Example 1. As a sample application of the theorem, we take d = 4871, r = 68.17
and p = 43. Then we computed β = 0.11 . . .. So if x ∈ Rq is drawn from the
error distribution, then ρ(x) ∈ Fq with probability at least 0.88.

Lemma 3. Under the notation above, we have

(1) K/Q is a Galois extension.
(2) [K : Q] = [M : Q][L : Q] = 2(p − 1).
(3) The prime q has residue degree 2 in K.
(4) OK = OM · OL = Z[ζp,

√
d].

(5) |disc(OK)| = p2(p−2)(4d)(p−1).

Proof. (1) follows from the fact that K is a composition of Galois extensions M
and L; (2) is equivalent to M ∩ L = Q, which holds because L/Q is unramified
away from primes dividing 2d and M/Q is unramified away from p; for (3), note
that our assumptions imply that q splits completely in M and is inert in L, hence
the claim. The claims (4) and (5) follow directly from [15, II. Theorem 12], and
the fact that disc(OM ) = pp−2 and disc(OL) = 4d are coprime.

The following lemma is a standard upper bound on the Euclidean lengths
of samples from discrete Gaussians. It can be deduced directly from [16,
Lemma 2.10].

Lemma 4. Suppose Λ ⊆ R
n is a lattice. Let DΛ,r denote the discrete Gaussian

over Λ of width r. Suppose c is a positive constant such that c > r√
2π

. Let v be
a sample from DΛ,r. Then

Prob(||v||2 > c
√

n) ≤ Cn
c/r,

where Cs = s
√

2πe · e−πs2
.

Proof (of Theorem). Part (3) of Lemma 3 implies that

1, ζp, . . . , ζ
p−2
p ;

√
d, . . . , ζp−2

p

√
d (*)

is an integral basis of R = OK . By our assumptions, we have R/qR ∼= Fq2 , the
finite field of q2 elements. Under the map ρ, the first (p−1) elements of the basis
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reduce to Fq, and the rest reduce to the complement Fq2\Fq, because d is not a
square modulo q.

Let n = p−1 be the degree of M over Q. Then the extension K/Q has degree
2n. We denote the elements in (*) by v1, . . . , vn and w1, . . . , wn. Then ||ι(vi)|| =√

2n, while ||ι(wi)|| =
√

2nd. We compute the root volume c := (vol(R))1/n. It
is a general fact that vol(R) = |disc(R)| 1

2 , so we have

c = |disc(R)| 1
2n =

√
2p

p−2
2(p−1) d

1
4 .

So when d � p, we have ||vi|| � c � ||wi||. We have a decomposition R = V ⊕W ,
where V and W are free abelian groups with bases v1, . . . , vn and w1, . . . , wn,
respectively. The embeddings of V and W are orthogonal subspaces, because
Tr(viw̄j) = 0 for all i, j. For any element e ∈ R, we can write e = e1 + e2

√
d

where e1, e2 are elements of Z[ζp], and it follows that ||e||2 = ||e1||2 + d||e2||2. In
particular, if e2 �= 0, then ||e|| ≥ √

2nd.
By applying Lemma 4 with c =

√
2d, the assumptions in the statement of

our theorem imply that the probability that the discrete Gaussian Dι(R),r will
output a sample with e2 �= 0 is less than β. So the statement of theorem follows,
since e2 = 0 implies ρ(e) ∈ Fq, i.e., the image of e lies in the prime subfield.

Therefore, we can specialize the general attack in this situation as follows.
Given a set S of samples (a, b) ∈ (R/qR)2, we loop through all q2 possible guesses
g of the value s mod q and compute eg = ρ(b) − gρ(a). We then perform a chi-
square test on the set {eg : (a, b) ∈ S}, using two bins Fq and Fq2\Fq. If the
samples are not taken from the RLWE distribution, or if the guess is incorrect, we
expect to obtain uniform distributions; for the correct guess, we have eg = ρ(e),
and by the above analysis, if the error parameter r0 is sufficiently small, then
the chi-square test might detect non-uniformness, since the portion of elements
that lie in Fq might be larger than 1/q.

The theoretical time complexity of our attack is O(nq3): the loop runs
through q2 possible guesses. In each passing of the loop, the number of sam-
ples we need for the chi-square test is O(q), and the complexity of computing
the map ρ on one sample is O(n). Note that using the techniques in Sect. 3 of
this paper, we could reduce the complexity to O(nq2).

Remark 2. It is easy to verify that if a triple (p, q, d) satisfies our assumptions,
then so does (p, q, d + 4kq) for any integer k, as long as d + 4kq is square free.
This shows one infinite family of Galois fields vulnerable to our attack.

4.1 Examples

Table 2 records some of the successful attacks we performed on the instances
described previously. In each row of Table 2, the degree of the number field is
2(p − 1). Note that the runtimes are computed based on the improved version
of the attack described in Sect. 3 of this paper. Also, by varying the parameters
p and d, we can find vulnerable instances with r0 → ∞. For example, any
r0 = o(d1/4/

√
p) will suffice.
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Remark 3. From Table 2, we see that the attack in practice seems to work better
(i.e., we can attack larger width r) than what is predicted in Theorem1. As a
possible explanation, we remark that in proving the theorem we bounded the
probability of e2 = 0 from below. However, the condition e2 = 0 is sufficient but
not necessary for ρ(e) to lie in Fq, so our estimation may be a very loose one.

Table 2. New vulnerable Galois RLWE instances

p d q r0 r No. samples Runtime (in seconds)

31 4967 311 8.94 592.94 3110 144.92

43 4871 173 8.97 694.94 1730 6.44

61 4643 367 8.84 815.11 3670 205.28

83 4903 167 8.94 963.84 1670 5.74

103 4951 619 8.94 1076.32 6190 579.77

109 4919 1091 8.94 1105.44 10910 1818.82

151 100447 907 14.08 4356.02 9070 1394.18

181 100267 1087 14.11 4777.17 10870 1973.47

4.2 Remarks on Other Possible Attacks

First, we note that the instances we found in this section are not directly attack-
able using linear algebra, as in the recent paper [8]. The reason is that although
the last n/2-coordinates of the error e under the basis (*) are small integers, they
are nonzero most of the time, so it is not clear how one can extract exact linear
equations from the samples. On the other hand, note that for linear equations
with small errors, there is the attack on the search RLWE problem proposed
by Arora and Ge. However, the attack requires O(nd−1) samples and solving a
linear system in O(nd) variables. Here d is the width of the discrete error: for
example, if the error can take values 0, 1, 2,−1,−2, then d = 5. Thus the attack
of Arora and Ge becomes impractical when n is larger than 102 and d ≥ 5, say.
In contrast, the complexity of our attack depends linearly on n and quadratically
on q. In particular, it does not depend on the error size (although the success
rate does depend on the error size).

5 Security of 2-Power Cyclotomic Rings with Unramified
Moduli

In this section we provide some numerical evidence that for 2-power cyclotomic
rings, the image of a fairly narrow RLWE error distribution modulo an unram-
ified prime ideal q of residue degree one or two is practically indistinguishable
from uniform, implying that the 2-power cyclotomic rings are protected against
the family of attacks in this paper.
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We restrict ourselves to 2-power cyclotomic rings because the geometry is
simple, namely the discrete Gaussian distribution Dι(R),

√
nr over the ring is

equivalent to a PLWE distribution, where each coefficient of the error is sampled
independently from a discrete Gaussian DZ,r over the integers.

To further aid the analysis, we make another simplifying assumption by
replacing DZ,r in the PLWE distribution described above by a “shifted binomial
distribution”. This allows a closed form formula for a bound on the statistical
distance, and hence eases the analysis.

Let m = 2d for some integer d ≥ 1 and let K = Q(ζm) be the m-th cyclotomic
field, with degree n = m/2. Let q be a prime such that q ≡ 1 (mod m). Finally,
let q be a prime ideal above q.

Now we introduce a class of “shifted binomial distributions”.

Definition 5. For an even integer k ≥ 2, let Vk denote the distribution over Z

such that for every t ∈ Z,

Prob(Vk = t) =

{
1
2k

(
k

t+ k
2

)
if |t| ≤ k

2

0 otherwise

We will abuse notation and also use Vk to denote the reduced distribution Vk

(mod q) over Fq, and let νk denote its probability density function. Figure 1
shows a plot of ν8.

Fig. 1. Probability density function of V8

Definition 6. Let k ≥ 2 be an even integer. Then a sample from the distribution
Pm,k is

e =
n−1∑

i=0

eiζ
i
m,

where the coefficients ei are sampled independently from Vk.

5.1 Bounding the Distance from Uniform

We recall the definition and key properties of Fourier transform over finite fields.
Suppose f is a real-valued function on Fq. The Fourier transform of f is defined
as
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f̂(y) =
∑

a∈Fq

f(a)χy(a),

where χy(a) := e2πiay/q.
Let u denote the probability density function of the uniform distribution

over Fq, that is u(a) = 1
q for all a ∈ Fq. Let δ denote the characteristic function

of the one-point set {0} ⊆ Fq. Recall that the convolution of two functions
f, g : Fq → R is defined as (f ∗g)(a) =

∑
b∈Fq

f(a− b)g(b). We list without proof
some basic properties of the Fourier transform.

1. δ̂ = qu; û = δ.
2. f̂ ∗ g = f̂ · ĝ.
3. f(a) = 1

q

∑
y∈Fq

f̂(y)χy(a) (the Fourier inversion formula).

The following is a standard result.

Lemma 5. Suppose F and G are independent random variables with values in
Fq, having probability density functions f and g. Then the density function of
F + G is equal to f ∗ g. In general, suppose F1, . . . , Fn are mutually indepen-
dent random variables in Fq, with probability density functions f1, . . . , fn. Let f
denote the density function of the sum F =

∑
Fi, then f = f1 ∗ · · · ∗ fn.

The Fourier transform of νk has a nice closed-form formula, as below.

Lemma 6. For all even integers k ≥ 2, ν̂k(y) = cos
(

πy
q

)k

.

Proof. We have

2k · ν̂k(y) =
∑

m∈Z/qZ

⎛

⎝
∑

a∈Z:|aq+m|≤k/2

(
k

aq + m + k
2

)
⎞

⎠ e−2πiym/q

=

k
2∑

m=− k
2

(
k

m + k
2

)

e2πiym/q

= e−πiyk/q
k∑

m′=0

(
k

m′

)

e2πiym′/q

= e−πiyk/q(1 + e2πiy/q)k = (2 cos(πy/q))k.

Dividing both sides by 2k gives the result.

Next, we concentrate on the “reduced distribution” Pm,k (mod q). Note that
there is a one-to-one correspondence between primitive m-th roots of unity in
Fq and the prime ideals above q in Q(ζm). Let α be the root corresponding to
our choice of q. Then a sample from Pm,k (mod q) is of the form
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eα =
n−1∑

i=0

αiei (mod q),

where the coordinates ei are independently sampled from Vk. We abuse notations
and use eα to denote its own probability density function.

Lemma 7

êα(y) =
n−1∏

i=0

cos
(

αiπy

q

)k

.

Proof. This follows directly from Lemma 6 and the independence of the coordi-
nates ei.

Lemma 8. Let f : Fq → R be a function such that
∑

a∈Fq
f(a) = 1. Then for

all a ∈ Fq, the following holds.

|f(a) − 1/q| ≤ 1
q

∑

y∈Fq,y �=0

|f̂(y)|. (1)

Proof. For all a ∈ Fq,

f(a) − 1/q = f(a) − u(a)

=
1
q

∑

y∈Fq

(f̂(y) − û(y))χy(a)

=
1
q

∑

y∈Fq

(f̂(y) − δ(y))χy(a)

=
1
q

∑

y∈Fq,y �=0

f̂(y)χy(a). (since f̂(0) = 1)

Now the result follows from taking absolute values on both sides, and noting
that |χy(a)| ≤ 1 for all a and all y.

Taking f = eα in Lemma 8, we immediately obtain

Theorem 2. The statistical distance between eα and u satisfies

Δ(eα, u) ≤ 1
2

∑

y∈Fq,y �=0

|êα(y)|. (2)

Now let ε(m, q, k, α) denote the right hand side of (2), i.e.,

ε(m, q, k, α) =
1
2

∑

y∈Fq,y �=0

n−1∏

i=0

cos
(

αiπy

q

)k

.
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To take into account all prime ideals above q, we let α run through all primitive
m-th roots of unity in Fq and define

ε(m, q, k) := max{ε(m, q, k, α) : α has order m in (Fq)∗}.

If ε(m, q, k) is negligibly small, then the distribution Pm,k (mod q) will be
computationally indistinguishable from uniform. We will prove the following
theorem.

Theorem 3. Let q,m be positive integers such that q is a prime, m is a power

of 2, q ≡ 1 mod m and q < m2. Let β = 1+
√

q

m

2 ; then 0 < β < 1 and

ε(m, q, k) ≤ q − 1
2

β
km
4 .

In particular, if βk/4 < 1
2 , then the theorem says that ε(m, q, k) = O(q2−m)

as m → ∞.

Corollary 1. The statistical distance between Pm,k modulo q and a uniform
distribution is bounded above, independently of the choice of q above q, by

q − 1
2

(
1 +

√
q

m

2

) km
4

.

To prepare proving the theorem, we set up some notations of Shparlinski in
[18]. Let Ω = (ωj)∞

j=1 be a sequence of real numbers and let m be a positive
integer. We define the following quantities:

– LΩ(m) =
∏m

j=1(1 − exp(2πiωj))

– SΩ(m) =
∑m

j=1 exp(2πiωj).

The following lemma is a special case of [18, Theorem 2.4].

Lemma 9
|LΩ(m)| ≤ 2m/2(1 + |SΩ(m)|/m)m/2.

Proof (of Theorem 3). We specialize the above discussion to our situation, where
m is a power of 2 and n = m/2. We fix ωk = αk−1y

q + 1/2, where we abuse
notations and let α denote a lift of α ∈ Fq to Z.

Lemma 10. We have

|LΩ(n)| = 2n

∣
∣
∣
∣
∣
∣

n−1∏

j=0

cos
(

αjπy

q

)
∣
∣
∣
∣
∣
∣

and |LΩ(m)| = |LΩ(n)|2.
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Proof. We have LΩ(n) =
∏n

j=1(1 − e2πi(αj−1y/q+1/2)) =
∏n−1

j=0 (1 + e2πiαjy/q).

So |LΩ(n)| =
∏n−1

j=0 |e−πiαjy/q + eπiαjy/q)| =
∏n−1

j=0 2|Re(eπiαjy/q)| = 2m|∏n−1
j=0

cos(αjπy/q)|. A similar argument with n replaced by m shows that |LΩ(m)| =
2m|∏m−1

j=0 cos(αjπy/q)|. Since αn ≡ −1 mod q we have cos(αj+nπy/q) =
cos(αjπy/q) for 0 ≤ j ≤ n − 1. The claim now follows.

On the other hand, we have SΩ(m) = −∑m−1
j=0 exp

(
2πiαjy

q

)
, and standard

bound on Gauss sums says that |SΩ(m)| ≤ q1/2. Now combining Lemmas 9 and
10, we get ∣

∣
∣
∣
∣

n−1∏

i=0

cos
(

αiπy

q

)∣
∣
∣
∣
∣
≤ βn/2

for β as defined in the statement of the theorem and for any nonzero y ∈ Fq.
Our result in the theorem now follows from taking both sides to k-th power and
summing over y.

5.2 Numerical Distance from Uniform

We have computed ε(m, q, k) for various choices of parameters. Smaller values
of ε imply that the error distribution looks more uniform when transferred to
R/q, rendering the instance of RLWE invulnerable to the attacks in [9].

The data in Table 3 shows that when n ≥ 100 and the size of the modulus
q is polynomial in n, the statistical distances between Pm,k (mod q) and the
uniform distribution are negligibly small. Also, note that we fixed k = 2, and
the epsilon values becomes even smaller when k increases.

For each instance in Table 3, we also generated the actual RLWE samples
(where we fixed r0 =

√
2π) and ran the chi-square attack of [9] using confidence

level α = 0.99. The column labeled “χ2” contains the χ2 values we obtained,
and the column labeled “uniform?” indicates whether the reduced errors are
uniform. We can see from the data how the practical situation agrees with our
analysis on the approximated distributions.

Table 3. Values of ε(m, q, 2) and the χ2 values

m (n = m/2) q −[log2(ε(m, q, 2))] χ2 Uniform?

64 193 40 167.6 Yes

128 1153 97 1125.6 Yes

256 3329 194 3350.0 Yes

512 10753 431 10732.8 Yes

It is possible to generalize our discussion in this section to primes of arbitrary
residue degree f , in which case the Fourier analysis will be performed over the
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field Fqf . The only change in the definitions would be χy(a) = e
2πiTr(ay)

q . Here
Tr : Fqf → Fq is the trace function. Similarly, we have

ê′
α(y) =

n∏

i=1

cos
(

πTr(αiy)
q

)k

.

Table 4 contains some data for primes of degree two.

Table 4. Values of ε(m, q, 2) for primes of degree two

m (n = m/2) q −[log2(ε(m, q, 2))]

64 383 31

128 1151 54

256 1279 159

512 5583 341
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Abstract. We give one- and two-dimensional scalar multiplication algo-
rithms for Jacobians of genus 2 curves that operate by projecting to
Kummer surfaces, where we can exploit faster and more uniform pseudo-
multiplication, before recovering the proper “signed” output back on the
Jacobian. This extends the work of López and Dahab, Okeya and Saku-
rai, and Brier and Joye to genus 2, and also to two-dimensional scalar
multiplication. The technique is especially interesting in genus 2, because
Kummer surfaces can outperform comparable elliptic curve systems.

Keywords: Kummer surface · Genus 2 · Scalar multiplication · Signa-
tures · Pseudomultiplication · Uniform · Constant-time

1 Introduction

In this article we show how to exploit Gaudry’s fast, uniform Kummer surface
arithmetic [14] to carry out full scalar multiplications on genus 2 Jacobians.
This brings the speed and side-channel security of Kummers, so far only used
for Diffie–Hellman implementations, to implementations of other discrete-log-
based cryptographic protocols including signature schemes.

To make things precise, let JC be the Jacobian of a genus 2 curve C over a
finite field Fq of characteristic >3 (with ⊕ denoting the group law on JC , and �
the inverse). We want to compute scalar multiplications

(m,P ) �−→ [m]P := P ⊕ · · · ⊕ P
︸ ︷︷ ︸

m times

for m ∈ Z≥0 and P ∈ JC(Fq)

which are at the heart of all discrete logarithm and Diffie–Hellman problem-
based cryptosystems. If the scalar m is secret, then [m]P must be computed in
a uniform and constant-time way to protect against even the most elementary
side-channel attacks. This means that the execution path of the algorithm must
be independent of the scalar m (we may assume that the bitlength of m is fixed).
c© Springer International Publishing AG 2017
R. Avanzi and H. Heys (Eds.): SAC 2016, LNCS 10532, pp. 465–481, 2017.
https://doi.org/10.1007/978-3-319-69453-5_25
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The quotient Kummer surface KC := JC/ 〈±1〉 identifies group elements with
their inverses (this is the genus-2 analogue of projecting elliptic curve points onto
the x-coordinate). If P is a point on JC , then ±P denotes its image in KC . Scalar
multiplication on JC induces a well-defined pseudomultiplication

(m,±P ) �−→ ±[m]P for m ∈ Z≥0 and P ∈ JC(Fq),

which can be computed using differential addition chains in the exact analogue
of x-only arithmetic for elliptic curves. This suffices for implementing protocols
like Diffie–Hellman key exchange which only involve scalar multiplication, as
Bernstein’s Curve25519 software did for elliptic curves [1]. But we emphasize
that KC is not a group, and its lack of a group operation prevents us instantiating
many group-based protocols in KC (see [25, Sect. 5]).

It has long been known that x-only pseudomultiplication can be used for
full scalar multiplication on elliptic curves: López and Dahab [19] (followed by
Okeya and Sakurai [22] and Brier and Joye [4]) showed that the auxiliary values
computed by the x-only Montgomery ladder can be used to recover the missing
y-coordinate, and hence to compute full scalar multiplications on elliptic curves.
The main innovation of this paper is to extend this technique from elliptic curves
to genus 2, and from one- to two-dimensional scalar multiplication. This allows
cryptographic protocols instantiated in genus-2 Jacobians to delegate their scalar
multiplications to faster, more uniform Kummer surfaces.

In the abstract, our algorithms follow the same common pattern:

1. Project the inputs from JC to KC ;
2. Pseudomultiply in KC using a differential addition chain, such as the Mont-

gomery ladder [21] or Bernstein’s binary chain [2];
3. Recover the correct preimage for the full scalar multiplication in JC from the

outputs of the pseudomultiplication, using our new Algorithm 2.

More concretely, if JC is a genus-2 Jacobian admitting a fast Kummer surface
as in Sect. 2, and B ⊂ JC(Fq) is the set of Definition 1, then our main results are

Theorem 1 (Project + Montgomery ladder + Recover): If P is a point in
JC(Fq) \ B then for any β-bit integer m, Algorithm 3 computes [m]P in
(7β + 115)M + (12β + 8)S + (12β + 4)mc + (32β + 79)a + 2I.

Theorem 2 (Project + Bernstein’s binary chain + Recover): If P and Q are
points in JC(Fq)\B with P ⊕Q and P �Q not in B and m and n are positive
β-bit integers, then Algorithm 4 computes [m]P ⊕ [n]Q in (14β + 203)M +
(20β + 16)S + (16β + 16)mc + (56β + 138)a + 3I.

Both algorithms are uniform with respect to their scalars. The two-dimensional
multiscalar multiplications of Theorem 2 appear explicitly in many crypto-
graphic protocols (such as Schnorr signature verification), but they are also a
key ingredient in endomorphism-accelerated one-dimensional scalar multiplica-
tion techniques like GLV [13] and its descendants.1

1 Our techniques should readily extend to the higher-dimensional differential addition
chains described by Brown [5]. We do not investigate this here.
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There are two key benefits to this approach: speed and uniformity. For speed,
we note that Gaudry’s Kummer arithmetic is markedly faster than full Jacobian
arithmetic, and competitive Diffie–Hellman implementations have shown that
Kummer-based scalar multiplication software can outperform its elliptic equiv-
alent [3]. Our results bring this speed to a wider range of protocols, such as
ElGamal and signature schemes. Indeed, the methods described below (includ-
ing Algorithms 2 and 3) have already been successfully put into practice in a fast
and compact implementation of Schnorr signatures for microcontrollers [23], but
without any proof of correctness or explanation of the algorithms2; this article
provides that proof, and detailed algorithms to enable further implementations.

The second benefit is side-channel protection. Fast, uniform, constant-time
algorithms for elliptic curve scalar multiplication are well-known and widely-
used. In contrast, for genus 2 Jacobians, the uniform and constant-time require-
ments are problematic: conventional Cantor arithmetic [6] and its derivatives [16]
are highly susceptible to simple side-channel attacks. The explicit formulæ
derived for generic additions in Jacobians fail to compute correct results when
one or both of the inputs are so-called “special” points (essentially, those corre-
sponding to degree-one divisors on C). While special points are rare enough that
random scalar multiplications never encounter them, they are plentiful enough
that attackers can easily mount exceptional procedure attacks [17], forcing soft-
ware into special cases and using timing variations to recover secret data. It has
appeared impossible to implement traditional genus 2 arithmetic in a uniform
way without abandoning all hope of competitive efficiency [10]. The Jacobian
point recovery method we present in Sect. 3 solves the problem of uniform genus 2
arithmetic (at least for scalar multiplication): rather than wrestling with the spe-
cial cases of Cantor’s algorithm on JC , we can pseudomultiply on the Kummer
and then recover the correct image on JC .

Remark 1. Robert and Lubicz [20] use similar techniques to speed up their arith-
metic for general abelian varieties based on theta functions, viewing the results
of the Montgomery ladder on a g-dimensional Kummer variety K as a point on
the corresponding abelian variety A embedded in K2. In contrast to our method,
Robert and Lubicz cannot treat A as a Jacobian (since general abelian varieties
of dimension g > 3 are not Jacobians); so in the case of genus g = 2, there is no
explicit connection with any curve C, and the starting and finishing points do not
involve the Mumford representation. Kohel [18] explores similar ideas for elliptic
curves, leading to an interesting interpretation of Edwards curve arithmetic.

Remark 2. Since our focus here is on fast cryptographic implementations, for
lack of space, in this article we restrict our attention to curves and Jacobians
whose Kummer surfaces have so-called “fast” models (see Sect. 2). This implies
that all of our Jacobians have full rational 2-torsion. Our techniques general-
ize without any difficulty to more general curves and Kummer surfaces, and
then replacing the fast Kummer operations described in Appendix A with more

2 The implementation in [23] was based on a much longer draft version of this paper.
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general methods wherever they appear in Algorithms 3 and 4 yields efficient,
uniform scalar multiplication algorithms for any genus 2 Jacobian.

Notation. As usual, M, S, I, and a denote the costs of one multiplication, squar-
ing, inversion, and addition in Fq, respectively; for simplicity, we assume subtrac-
tion and unary negation in Fq also cost a. We let mc denote the cost of multipli-
cation by the theta constants a, b, c, d, A,B,C,D of Sect. 2 and their inverses (we
aim to make these as small as possible). We assume we have efficient constant-
time conditional selection and swap routines: SELECT(b, (X0,X1)) returns Xb,
and SWAP(b, (X0,X1)) returns (Xb,X1−b) (see Appendix B for sample code).

2 Genus 2 Jacobians with fast Kummer Surfaces

Suppose we have a, b, c, and d in Fq \ {0} such that if we set

A := a + b + c + d B := a + b − c − d

C := a − b + c − d D := a − b − c + d

then abcdABCD 
= 0 and CD/(AB) = α2 for some α in Fq. Setting

λ := a/b · c/d μ := c/d · (1 + α)/(1 − α) ν := a/b · (1 + α)/(1 − α)

we define an associated genus 2 curve C in Rosenhain form:

C : y2 = f(x) = x(x − 1)(x − λ)(x − μ)(x − ν)

so f(x) = x5 + f4x
4 + f3x

3 + f2x
2 + f1x with f4 = −(λ + μ + ν + 1), f3 =

λμ + λν + λ + μν + μ + ν, f2 = −(λμν + λμ + λν + μν), f1 = λμν.
Elements of JC(Fq) are presented in their standard Mumford representation:

P ∈ JC(Fq) ←→ 〈a(x) = x2 + a1x + a0, b(x) = b1x + b0〉
where a1, a0, b1, and b0 are in Fq and b(x)2 ≡ f(x) (mod a(x)). The group law
on JC is typically computed using Cantor’s algorithm, specialized to genus 2.
Here we suppose we have a function JacADD : (P,Q) �→ P ⊕ Q which computes
the group law as in [16, Eq. (12)] at a cost of 22M + 2S + 1I + 27a.

The fast Kummer surface for C is the quartic surface Kfast
C ⊂ P

3 defined by

Kfast
C :

(

(X2 + Y 2 + Z2 + T 2)
−F (XT + Y Z) − G(XZ + Y T ) − H(XY + ZT )

)2

= EXY ZT (1)

where

F =
a2 − b2 − c2 + d2

ad − bc
, G =

a2 − b2 + c2 − d2

ac − bd
, H =

a2 + b2 − c2 − d2

ab − cd
,

and E = 4abcd (ABCD/((ad − bc)(ac − bd)(ab − cd)))2. These surfaces were
algorithmically developed by the Chudnovskys [8], and introduced in cryptog-
raphy by Gaudry [14]; here we use the “squared-theta” model of [9, Chap. 4].
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Cryptographic parameters for genus-2 Jacobians equipped with fast Kummers
can be (and have been) computed: the implementation of [23] uses the parame-
ters from [15] in the algorithms presented below.

The map Project : JC → Kfast
C mapping P to ±P is classical (cf. [9,

Sect. 5.3]), and implemented by Algorithm 1. It is not uniform or constant-time,
but it does not need to be: in most applications the input points are already
public.

Algorithm 1. Project: JC → Kfast
C .

Input: P ∈ JC(Fq)
Output: ±P ∈ Kfast

C (Fq)
Cost: 8M + 1S + 4mc + 14a, assuming precomputed λμ, λν.

1 if P = 0 then return (a : b : c : d)
2 else if P = 〈x − u, v〉 then
3 (t1, t2, t3, t4) ← (u − 1, u − λ, u − μ, u − ν) // 4a

4 return (a · t1 · t3 : b · t2 · t4 : c · t1 · t4 : d · t2 · t3) // 4M+4mc

5 else (generic case P = 〈x2 + a1x + a0, b1x + b0〉)
6 (t1, t2, t3) ← (a1 + λ, a1 + 1, b20) // 1S+2a

7 (t4, t5) ← (a0 · (a0 − μ) · (t1 + ν), a0 · (a0 − λν) · (t2 + μ)) // 4M+4a

8 (t6, t7) ← (a0 · (a0 − ν) · (t1 + μ), a0 · (a0 − λμ) · (t2 + ν)) // 4M+4a

9 return (a · t4 + t3, b · t5 + t3, c · t6 + t3, d · t7 + t3) // 4mc+4a

Table 1 summarizes the key standard operations on Kfast
C and their costs

(for detailed pseudocode, see Appendix A). The pseudo-doubling xDBL is correct
on all inputs; the pseudo-additions xADD∗, xADD and combined pseudo-double-
and-add xDBLADD are correct for all inputs provided the difference point has
no coordinate equal to zero. Since almost all difference points are fixed in our
algorithms, and these “bad” points are extremely rare (there are only O(q) of
them, versus O(q2) other points), we simply prohibit them as input: Definition 1
identifies their preimages in JC for easy identification and rejection.

Definition 1. Let B ⊂ JC(Fq) be the set of elements P whose images ±P in
Kfast

C have a zero coordinate; or equivalently, P = 〈x2 + a1x + a0, b1x + b0〉 with

1. (μa1 + a0)(1(a1 + λ + ν) + a0) + (λμ − λν + μν − 1μ)a0 + λμν = 0, or
2. (νa1 + a0)(λ(a1 + 1 + μ) + a0) − (λν − μν + 1μ − 1ν)a0 + λμν = 0, or
3. (νa1 + a0)(1(a1 + λ + μ) + a0) − (λμ − λν − μν + 1ν)a0 + λμν = 0, or
4. (μa1 + a0)(λ(a1 + 1 + ν) + a0) − (λμ − μν − 1μ + 1ν)a0 + λμν = 0.

To optimize pseudo-additions, we define a mapping Wrap : (x : y : z : t) �→
(x/y, x/z, x/t) (for (x : y : z : y) not in B). To Wrap one Kummer point costs
7M+1I, but saves 7M in every subsequent pseudo-addition with that point as its
difference. In Algorithm 4 we need to Wrap four points; Wrap4 does this with a
single shared inversion, for a total cost of 37M + 1I.
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Table 1. Operations on Kfast
C and JC . All but JacADD are uniform. The operations

xADD∗, xADD, and xDBLADD require P � Q /∈ B.

Algorithm Operation: Input �→ Output M S mc a I

JacADD (P, Q) �→ P ⊕ Q 22 2 0 27 1

xDBL ±P �→ ±[2]P 0 8 8 16 0

xADD∗ (±P, ±Q, ±(P � Q)) �→ ±(P ⊕ Q) 14 4 4 24 0

xADD (±P, ±Q, Wrap(±(P � Q))) �→ ±(P ⊕ Q) 7 4 4 24 0

xDBLADD (±P, ±Q, Wrap(±(P � Q))) �→ (±[2]P, ±(P ⊕ Q)) 7 12 12 32 0

Wrap (x : y : z : t) �→ (x/y, x/z, x/t) 7 0 0 0 1

Wrap4 (±Pi)
4
i=1 �→ (Wrap(±Pi))

4
i=1 37 0 0 0 1

3 Point Recovery in Genus 2

Our aim is to compute scalar multiplications (m,P ) �→ R = [m]P on JC .
Projecting to KC yields ±P , and then pseudomultiplication (which we will
describe below) gives ±R = ±[m]P ; but it can also produce ±(R ⊕ P ) as an
auxiliary output. We will reconstruct R from this data, by defining a map

Recover : (P,±P,±R,±(R ⊕ P )) �−→ R for P and R ∈ JC .

The map JC → Kfast
C factors through the “general Kummer” Kgen

C , another
quartic surface in P

3 defined (as in [7, Chap. 3], taking f6 = f0 = 0 and f5 = 1,
and using coordinates ξi, to avoid confusion with Kfast

C ) by

Kgen
C : K2(ξ1, ξ2, ξ3)ξ24 + K1(ξ1, ξ2, ξ3)ξ4 + K0(ξ1, ξ2, ξ3) = 0 (2)

where K2 = ξ22 − 4ξ1ξ3, K1 = −2(f1ξ21 + f3ξ1ξ3 + f5ξ
2
3)ξ2 − 4ξ1ξ3(f2ξ1 + f4ξ3),

and K0 = (f1ξ21 − f3ξ1ξ3 + f5ξ
2
3)

2 − 4ξ1ξ3(f1ξ2 + f2ξ3)(f4ξ1 + f5ξ2). While fast
Kummers offer significant gains in performance and uniformity, this comes at
the price of full rational 2-torsion: hence, not every Kummer can be put in
fast form. But the general Kummer exists for all genus 2 curves, not just those
admitting a fast Kummer; roughly speaking, Kgen

C is the analogue of the x-line of
the Weierstrass model of an elliptic curve, while Kfast

C corresponds to the x-line
of a Montgomery model.3 As such, Kgen

C is much more naturally related to the
Mumford model of JC ; so it makes sense to map our recovery problem from Kfast

C
into Kgen

C and then recover from Kgen
C to JC .

3 The use of Kgen
C in cryptography was investigated by Smart and Siksek [25]

and Duquesne [12]. The polynomials defining pseudo-operations on Kgen
C (see [7,

Sect. 3.4]) are hard to evaluate quickly, and do not offer competitive performance.
However, they are completely compatible with our Project-pseudomultiply-Recover
pattern, and we could use them to construct uniform and constant-time scalar mul-
tiplication algorithms for genus 2 Jacobians that do not admit fast Kummers.
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The map π : JC → Kgen
C is described in [7, Eqs. (3.1.3–5)]; it maps generic

points 〈x2 + a1x + a0, b1x + b0〉 in JC to (ξ1 : ξ2 : ξ3 : ξ4) in Kgen
C , where

(ξ1 : ξ2 : ξ3 : ξ4) = (1 : −a1 : a0 : b21 + (a2
1 − a0)a1 + a1(f3 − f4a1) − f2). (3)

Projecting onto the (ξ1 : ξ2 : ξ3)-plane yields a natural double cover ρ : Kgen
C →

P
2; comparing with (3), we see that ρ ◦ π corresponds to projecting onto the

a-polynomial of the Mumford representation.

Proposition 1. Suppose P = 〈x2 + aP
1 x + aP

0 , bP
1 x + bP

0 〉 and R = 〈x2 + aR
1 x+

aR
0 , bR

1 x + bR
0 〉 are in JC(Fq). Let (ξR

1 : ξR
2 : ξR

3 : ξR
4 ) = π(R) in Kgen

C , and let
(ξ⊕

1 : ξ⊕
2 : ξ⊕

3 ) = ρ(π(P ⊕ R)) and (ξ�
1 : ξ�

2 : ξ�
3 ) = ρ(π(P � R)) in P

2. Let
Z1 = ξR

2 + aP
1 ξR

1 , Z2 = ξR
3 − aP

0 ξR
1 , and Z3 = −(aP

1 ξR
3 + aP

0 ξR
2 ). Then

(ξR
1 )2(bR

1 , bR
0 ) = (G3, G4)

(

ξR
2 Z1 − ξR

1 Z2 −ξR
1 Z1

−ξR
3 Z1 ξR

1 Z2

)

(4)

where G3 and G4 satisfy

C(G3, G4) = D(G1, G2)
(

ξ⊕
1 ξ�

3 − ξ⊕
3 ξ�

1 ξ⊕
2 ξ�

3 − ξ⊕
3 ξ�

2

ξ⊕
2 ξ�

1 − ξ⊕
1 ξ�

2 ξ⊕
3 ξ�

1 − ξ⊕
1 ξ�

3

)

(5)

where ξR
1 D = Z2

2 − Z1Z3 and G1 and G2 satisfy

D(G1, G2) = (bP
1 , bP

0 )
(

Z2 aP
0 Z1

Z1 −aP
1 Z1 − Z2

)

(6)

and

C =
−2D

(

2ξ⊕
1 ξ�

1 G2
2 − (ξ⊕

2 ξ�
1 + ξ⊕

1 ξ�
2 )G1G2 + (ξ⊕

3 ξ�
1 + ξ⊕

1 ξ�
3 )G2

1

)

G2
1 + G2

3

.

Proof. This is a disguised form of the geometric group law on JC (cf. [7,
Sect. 1.2]). The points P and R correspond to unique degree-2 divisor classes
on C: say,

P ←→ [(uP , vP ) + (u′
P , v′

P )] and R ←→ [(uR, vR) + (u′
R, v′

R)].

(We do not compute the values of uP , vP , u′
P , v′

P , uR, vR, u′
R, and v′

R, which are
generally in Fq2 ; they are purely formal devices here.) Let

E1 =
vP

(uP − u′
P )(uP − uR)(uP − u′

R)
, E2 =

v′
P

(u′
P − uP )(u′

P − uR)(u′
P − u′

R)
,

E3 =
vR

(uR − u′
P )(uR − uP )(uR − u′

R)
, E4 =

v′
R

(u′
R − uP )(u′

R − u′
P )(u′

R − uR)
.
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The functions G1 := E1 + E2, G2 := u′
P E1 + uP E2, G3 := E3 + E4, and

G4 := u′
RE3 +uRE4 are functions of P and R, because they are symmetric with

respect to (uP , vP ) ↔ (u′
P , v′

P ) and (uR, vR) ↔ (u′
R, v′

R). Now, the geometric
expression of the group law on JC states that the cubic polynomial4

l(x) = E1(x − u′
P )(x − uR)(x − u′

R) + E2(x − uP )(x − uR)(x − u′
R)

+ E3(x − uP )(x − u′
P )(x − u′

R) + E4(x − uP )(x − u′
P )(x − uR)

= (G1x − G2)(x2 + aR
1 x + aR

0 ) + (G3x − G4)(x2 + aP
1 x + aP

0 )

satisfies 	(x) ≡ b(x) mod a(x) when 〈a(x), b(x)〉 is any of P , R or �(R ⊕ P ).
Together with b(x)2 ≡ f(x) (mod a(x)), which is satisfied by every 〈a(x), b(x)〉
in JC , this gives (after some tedious symbolic manipulations, or, alternatively,
by Littlewood’s principle) the relations (4), (5), and (6). ��

The two Kummers are related by a linear projective isomorphism τ : Kfast
C

∼→
Kgen

C , which maps (X : Y : Z : T ) to (ξ1 : ξ2 : ξ3 : ξ4) = (X : Y : Z : T )Mτ

where

Mτ =

⎛

⎜

⎜

⎜

⎜

⎝

1 λ−μν
λ−ν

λν(1−μ)
λ−ν

λν(λ−μν)
λ−ν

a(1−μ)
b(λ−ν)

a(λ−μν)
b(λ−ν)

a
b μ aμ(λ−μν)

b(λ−ν)
a(μ−λ)
c(λ−ν)

a(μν−λ)
c(λ−ν)

aλμ(ν−1)
c(λ−ν)

aλμ(μν−λ)
c(λ−ν)

a(ν−1)
d(λ−ν)

a(μν−λ)
d(λ−ν)

aν(μ−λ)
d(λ−ν)

aν(μν−λ)
d(λ−ν)

⎞

⎟

⎟

⎟

⎟

⎠

.

The map ρ◦τ : Kfast
C → P

2 is defined by the matrix M ′
τ formed by the first three

columns of Mτ . The inverse isomorphism τ−1 : Kgen
C → Kfast

C is defined by any
scalar multiple of M−1

τ , and then ±P = τ−1(π(P )) for all P in JC .

Proposition 2. Let P and R be in JC(Fq). Given (P,±P,±R,±(R⊕P )), Algo-
rithm 2 computes R in 107M + 11S + 4mc + 81a + 1I.

Proof. We have aR
1 = −ξR

2 and aR
0 = ξR

3 ; it remains to compute bR
1 and bR

0 using
Proposition 1, maintaining the notation of its proof. Let E := ξR

1 ((DG1)2 +
(DG3)2), Δ := D2

(

2ξ⊕
1 ξ�

1 G2
2 − (ξ⊕

2 ξ�
1 + ξ⊕

1 ξ�
2 )G1G2 + (ξ⊕

3 ξ�
1 + ξ⊕

1 ξ�
3 )G2

1

)

, and
F := −2(ξR

1 )2DΔ. Note that C = F/(ξR
1 E) and ξR

1 (DG3)2 = ξR
1 (ξR

4 D +
f1Z1Z2 + f2Z

2
2 + f3Z2Z3 + f4Z

2
3 ) + (ξR

3 Z2 + ξR
2 Z3)Z3. Now, to Algorithm 2:

Lines 1–4 compute π(R), ρ(π(P ⊕ R)), and ρ(π(P � R)).5 Then Lines 5–6 com-
pute D(G1, G2) from (bP

1 , bP
0 ); Lines 7–8 compute C(G3, G4) from D(G1, G2);

Lines 9–13 compute F (bP
1 , bP

0 ) from EC(G3, G4). Finally, Lines 14–19 compute
F and its inverse and renormalize, yielding R. ��

4 The cubic curve y = �(x) is analogous to the line through P , R, and �(R ⊕ P ) in
the classic elliptic curve group law.

5 Okeya and Sakurai noticed that the formulæ for y-coordinate recovery on Mont-
gomery curves are simpler if ±(R�P ) is also known [22, pp. 129–130]; here, we take
advantage of an analogous simplification in genus 2.
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Algorithm 2. Recover: Recovery from Kfast
C to JC .

Input: (P, ±P , ±R, ±(R⊕P )) ∈ JC × (Kfast
C )3 for P and (unknown) R in JC .

Output: R ∈ JC .
Cost: 107M + 11S + 4mc + 81a + 1I, assuming precomputed Mτ .

1 ±(R � P ) ← xADD∗(±R, ±P, ±(R ⊕ P )) // 14M+8S+4mc+24a

2 (ξR
1 : ξR

2 : ξR
3 : ξR

4 ) ← ±R · Mτ // 15M+12a

3 (ξ⊕
1 : ξ⊕

2 : ξ⊕
3 ) ← ±(R ⊕ P ) · M ′

τ // 11M+9a

4 (ξ�
1 : ξ�

2 : ξ�
3 ) ← ±(R � P ) · M ′

τ // 11M+9a

5 (Z1,Z2,Z3) ← (aP
1 · ξR

1 + ξR
2 , ξR

3 − aP
0 · ξR

1 , −(aP
0 · ξR

2 + aP
1 · ξR

3 )) // 4M+4a

6 (DG1,DG2) ← (Z2 · bP
1 + Z1 · bP

0 , (Z1 · aP
0 · bP

1 − Z1 · aP
1 + Z2) · bP

0 ) // 6M+3a

7 (Y13,Y21,Y23) ← (ξ⊕
1 · ξ�

3 − ξ⊕
3 · ξ�

1 , ξ⊕
2 · ξ�

1 − ξ⊕
1 · ξ�

2 , ξ⊕
2 · ξ�

3 − ξ⊕
3 · ξ�

2 ) // 6M+3a

8 (CG3,CG4) ← (DG1 · Y13 + DG2 · Y21,DG1 · Y23 − DG2 · Y13) // 4M+2a

9 xiD ← Z2
2 − Z1 · Z3 // 1M+1S+1a

10 E ← ξR
1 · ((f3 · Z3 + f2 · Z2 + f1 · Z1) · Z2 + DG2

1) + ξR
4 · xiD // 6M+1S+4a

11 E ← E + Z3 · (Z3 · (f4 · ξR
1 + ξR

2 ) + Z2 · ξR
3 ) // 4M+3a

12 xiFb1 ← E · ((Z1 · ξR
2 − Z2 · ξR

1 ) · CG3 − Z1 · ξR
3 · CG4) // 6M+2a

13 xiFb0 ← E · (Z2 · ξR
1 · CG4 − Z1 · ξR

1 · CG3) // 5M+1a

14 Delta ← DG1 · (CG3 + 2ξ⊕
1 · (DG1 · ξ�

3 + DG2 · ξ�
2 )
)
+2DG2

2 · ξ⊕
1 · ξ�

1 // 6M+1S+5a

15 F ← −2xiD · ξR
1 · Delta // 2M+2a

16 invxiF ← 1/(F · ξR
1 ) // 1M + 1I

17 invxi ← F · invxiF // 1M

18 (aR
1 , aR

0 , bR
1 , bR

0 ) ← (−invxi · ξR
2 , invxi · ξR

3 , invxiF · xiFb1, invxiF · xiFb0) // 4M+1a

19 return 〈x2 + aR
1 x + aR

0 , bR
1 x + bR

0 〉

Remark 3. Algorithm 2 assumes that P is not a special point in JC , and that ±R
is not the image of a special point R ∈ JC . This assumption is reasonable for
all cryptographic intents and purposes, since P is typically an input point to a
scalar multiplication routine (that, if special, can be detected and rejected), and
R is a secret multiple of P (that will be special with negligible probability). For
completeness, we note that if either or both of P or R is special, then we can
still use Algorithm 2 by translating the input points by a well-chosen 2-torsion
point, and updating the output appropriately by the same translation (we recall
that on the fast Kummer, all 16 of the two-torsion points are rational, which
gives us plenty of choice here). A fully-fledged implementation could be made
to run in constant-time (for all input and output points) by always performing
these translations and choosing the correct inputs and outputs using bitmasks.

Remark 4. Gaudry computes the preimages in JC for points in Kfast
C in [14,

Sect. 4.3]; but this method (which is analogous to computing (x, y) and (x,−y)
on an elliptic curve given x and y2 = x3 + ax + b) cannot tell us which of the
two preimages is the correct image for a given scalar multiplication on JC .
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4 Uniform One-Dimensional Scalar Multiplication

We are finally ready for scalar multiplication. Algorithm 3 lifts the Montgomery
ladder [21] pseudomultiplication (m,±P ) �→ ±[m]P on Kfast

C to a full scalar
multiplication (m,P ) �→ [m]P on JC , generalizing the methods of [19,22], and [4].
It is visibly uniform with respect to (fixed-length) m.

Algorithm 3. One-dimensional uniform scalar multiplication on JC via
Project, the Montgomery ladder, and Recover

Input: An integer m =
∑β−1

i=0 mi2
i ≥ 0, with mβ−1 �= 0; a point P ∈ JC(Fq) \ B

Output: [m]P
Cost: (7β + 115)M + (12β + 8)S + (12β + 4)mc + (32β + 79)a + 2I

1 ±P ← Project(P ) // 8M+1S+4mc+14a

2 xP ← Wrap(±P ) // 7M+1I

3 (t1, t2) ← (±P, xDBL(±P )) // 8S+8mc+16a

4 for i = β − 2 down to 0 do
5 (t1, t2) ← SWAP(mi, (t1, t2))
6 (t1, t2) ← xDBLADD(t1, t2, xP) // 7M+12S+12mc+32a

7 (t1, t2) ← SWAP(mi, (t1, t2))

8 end
9 return Recover(P, ±P, t1, t2) // 107M+11S+4mc+81a+1I

Theorem 1 (Project + Montgomery ladder + Recover). Let m > 0 be a
β-bit integer, and P a point in JC(Fq). Algorithm 3 computes [m]P using one
Project, one Wrap, one xDBL, β − 1 xDBLADDs, and one Recover; that is, in
(7β + 115)M + (12β + 8)S + (12β + 4)mc + (32β + 79)a + 2I.

Proof. Lines 3–7 are the Montgomery ladder; after each of the β−1 iterations we
have t1 = ±[�m/2i�]P and t2 = ±[�m/2i�+1]P , so (t1, t2) = (±[m]P,±[m+1]P )
at Line 8, and Recover(P,±P, t1, t2) = [m]P . ��

If the base point P is fixed then we can precompute Lines 1–3 in Algorithm 3,
thus saving 15M + 9S + 10mc + 30a + 1I in subsequent calls.

5 Uniform Two-Dimensional Scalar Multiplication

Algorithm 4 defines a uniform two-dimensional scalar multiplication for com-
puting [m]P ⊕ [n]Q, where P and Q (and P ⊕ Q and P � Q) are in JC \ B
and m =

∑β−1
i=0 mi2i and n =

∑β−1
i=0 ni2i are β-bit scalars (with mβ−1 and/or

nβ−1 not zero). The inner pseudomultiplication on Kfast
C is based on Bernstein’s

binary differential addition chain [2, Sect. 4].6 It is visibly uniform with respect

6 The elliptic curve x-line version of this pseudomultiplication was used in [11].
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to (fixed-length) multiscalars (m,n); while this is unnecessary for signature veri-
fication, where multiscalars are public, it is useful for GLV-style endomorphism-
accelerated scalar multiplication with secret scalars.

Recall the definition of Bernstein’s chain: for each pair of non-negative inte-
gers (A,B), we have two differential chains C0(A,B) and C1(A,B) with

C0(0, 0) = C1(0, 0) := ((0, 0), (1, 0), (0, 1), (1,−1)) ,

and then defined mutually recursively for A 
= 0 and/or B 
= 0 by

CD(A,B) := Cd(�A/2�, �B/2�) || (O,E,M)

where || is concatenation, d = (D +1)(A−�A/2�+1)+D(B −�B/2�) (mod 2),
and O, E, and M (the “odd”, “even”, and “mixed” pairs) are

O := (A + (A + 1 mod 2), B + (B + 1 mod 2)), (7)
E := (A + (A + 0 mod 2), B + (B + 0 mod 2)), (8)
M := (A + (A + D mod 2), B + (B + D + 1 mod 2)). (9)

By definition, (O,E,M) contains three of the four pairs (A,B), (A + 1, B),
(A,B + 1), and (A + 1, B + 1); the missing pair is (A + (A + D + 1 mod 2), B +
(B + D mod 2)). The differences M − O, M − E, and O − E depend only on D
and the parities of A and B, as shown in Table 2.

Table 2. The differences between M , O, and E as functions of D and A, B (mod 2).

A (mod 2) B (mod 2) O − E M − O M − E

0 0 (1, 1) (D − 1, −D) (D, 1 − D)

0 1 (1, −1) (D − 1, D) (D, D − 1)

1 0 (−1, 1) (1 − D, −D) (−D, 1 − D)

1 1 (−1, −1) (1 − D, D) (−D, D − 1)

Theorem 2 (Project + Bernstein’s binary chain + Recover). Let P
and Q be in JC(Fq); let m and n be positive integers, with β the bitlength of
max(m,n). Algorithm 4 computes [m]P⊕[n]Q using one JacADD, three Projects,
one Wrap4, one xADD∗, β − 1 xADDs, β xDBLADDs, and one Recover; that is,
(14β + 203)M + (20β + 16)S + (16β + 16)mc + (56β + 138)a + 3I.

Proof. Consider Cm0(m,n) = C0(0, 0)||(Oβ−1, Eβ−1,Mβ−1)|| · · · ||(O0, E0,M0).
It follows from (7), (8), and (9) that (m,n) is one of O0, E0, or M0 (and parity
tells us which one). On the other hand, we have

Cdi
(�m/2i�, �n/2i�) = Cdi+1(�m/2i+1�, �n/2i+1�) || (Oi, Ei,Mi) (10)
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Algorithm 4. Two-dimensional uniform scalar multiplication on JC via
Project, Bernstein’s two-dimensional “binary” differential addition chain,
and Recover.
Input: m =

∑β−1
i=0 mi2

i and n =
∑β−1

i=0 ni2
i with mβ−1nβ−1 �= 0;

P, Q ∈ JC(Fq) \ B such that P ⊕ Q /∈ B and P � Q /∈ B
Output: [m]P ⊕ [n]Q
Cost: (14β + 203)M + (20β + 16)S + (16β + 16)mc + (56β + 138)a + 3I

1 S ← JacADD(P, Q) // 28M+2S+35a+1I

2 (±P, ±Q, ±S) ← (Project(P ), Project(Q), Project(S)) // 24M+3S+12mc+42a

3 ±D ← xADD∗(±P, ±Q, ±S) // 14M+8S+4mc+24a

4 (xP, xQ, xS, xD) ← Wrap4(±P, ±Q, ±S, ±D) // 37M+1I

5 d0 ← m0

6 for i ← 1 up to β − 1 do di ← di−1 + (di−1 + 1)(mi−1 + mi) + di−1(ni−1 + ni)
7 U0 ← SELECT(nβ−1, (xP, xQ))
8 U1 ← SELECT(mβ−1nβ−1, (U0, xS))
9 (U2,U3) ← SWAP(dβ−1, (xP, xQ))

10 (U4,U5) ← SELECT(dβ−1(mβ−1 + nβ−1) + mβ−1 + 1, ((xP,U3), (xQ, xD)))
11 (U6,U7) ← SELECT(mβ−1(nβ−1 + 1), ((xS,U2), (U4, xS)))
12 (Eβ−1,U8) ← xDBLADD(U1,U7,U5) // 7M+12S+12mc+32a

13 (Oβ−1,Mβ−1) ← SWAP(dβ−1(mβ−1 + nβ−1) + mβ−1 + 1, (U6,U8))
14 for i ← β − 2 down to 0 do
15 Oi ← xADD(Oi+1,Ei+1, SELECT(mi + ni, (xS, xD))) // 7M+8S+4mc+24a

16 V0 ← SELECT((di + 1)(mi+1 + mi) + di(ni+1 + ni), (Oi+1,Ei+1))
17 (V1,V2) ← SWAP(mi + mi+1 + ni + ni+1, (V0,Mi+1)))
18 (Ei,Mi) ← xDBLADD(V1,V2, SELECT(di, (xP, xQ))) // 7M+12S+12mc+32a

19 end
20 (W0,W1) ← SWAP(m0, (O0,E0))
21 (W2,W3,W4,W5) ← SELECT(m0 + n0, ((S, xS,W0,W1), (P, xP,M0,W0)))
22 return Recover(W2,W3,W4,W5) // 107M+11S+4mc+81a+1I

for 0 ≤ i ≤ β − 2, where the bits di are defined by d0 = m0 and di := di−1 +
(di−1 + 1)(mi−1 + mi) + di−1(ni−1 + ni) for i > 0. The definition of the chains,
Table 2, and considerations of parity yield the following relations which allow us
to construct each triple (Oi, Ei,Mi) from its antecedent (Oi+1, Ei+1,Mi+1):

1. Oi = Oi+1 + Ei+1, with Oi+1 − Ei+1 = ±(1, 1) if mi = ni and ±(1,−1) if
mi 
= ni.

2. Ei = 2Ei+1 if (mi, ni) = (mi+1, ni+1); or 2Oi+1 if mi+1 
= mi and ni+1 
= ni;
or 2Mi+1 otherwise.

3. If di = 0 then Mi = Mi+1 + X, where X = Ei+1 if mi+1 = mi, or Oi+1 if
mi+1 
= mi; and Mi+1 − X = ±(0, 1).

4. If di = 1 then Mi = Mi+1 + X, where X = Ei+1 if ni+1 
= ni, or Oi+1 if
ni+1 = ni; and Mi+1 − X = ±(1, 0).

We can therefore compute ±R = ±([m]P ⊕ [n]Q) by mapping each pair (a, b)
in Cm0(m,n) to ±([a]P ⊕ [b]Q). Lines 1–4 (pre)compute the required difference
points ±P , ±Q, ±S = ±(P ⊕ Q), and ±D = ±(P � Q). Lines 5–6 compute all
of the di. After initializing the first nontrivial segment (Oβ−1, Eβ−1,Mβ−1) in
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Lines 7–13, the main loop (Lines 14–18) derives the following segments using the
rules above. Table 3 gives the state of the final segment (O0, E0,M0) immediately
after the loop. In each case, we can recover [m]P ⊕[n]Q using the call to Recover
specified by the corresponding row, as is done in Lines 19–21. ��

Table 3. The state of Algorithm 4 after the main loop.

(m0, n0) O0 E0 M0 if d0 = 0 M0 if d0 = 1 R = [m]P ⊕ [n]Q

(0, 0) ±(R ⊕ S) ±R ±(R ⊕ Q) ±(R ⊕ P ) Recover(S, ±S, E0, O0)

(0, 1) ±(R ⊕ P ) ±(R ⊕ Q) ±R ±(R ⊕ S) Recover(P, ±P, M0, O0)

(1, 0) ±(R ⊕ Q) ±(R ⊕ P ) ±(R ⊕ S) ±R Recover(P, ±P, M0, E0)

(1, 1) ±R ±(R ⊕ S) ±(R ⊕ P ) ±(R ⊕ S) Recover(S, ±S, O0, E0)

If the points P and Q are fixed then we can precompute Lines 1–4 in Algo-
rithm 4, thus saving 103M + 13S + 16mc + 101a + 2I in subsequent calls.

Remark 5. There are faster two-dimensional differential addition chains that are
non-uniform, such as Montgomery’s PRAC Algorithm [26, Chap. 3], which might
be preferred in scenarios where the multiscalars are not secret (such as signa-
ture verification). However, PRAC is not well-suited to our recovery technique,
because its outputs do not “differ” by an element with known preimage in JC .

A Fast Kummer Arithmetic

We recall the formulæ for operations on fast Kummers from [14, Sect. 3.2]. To
simplify the presentation of our algorithms, we define three operations on points
in P

3 (or more precisely, on 4-tuples of elements of Fq). First, M : P3 ×P
3 → P

3

multiplies the corresponding coordinates of a pair of points:

M : ((x1 : y1 : z1 : t1), (x2 : y2 : z2 : t2)) �−→ (x1x2 : y1y2 : z1z2 : t1t2),

costing 4M. The special case (x1 : y1 : z1 : t1) = (x2 : y2 : z2 : t2) is denoted by

S : (x : y : z : t) �−→ (x2 : y2 : z2 : t2),

costing 4S. Finally, the Hadamard transform7 is defined by

H : (x : y : z : t) �−→ (x′ : y′ : z′ : t′) where

⎧

⎪
⎪
⎨

⎪
⎪
⎩

x′ = x + y + z + t,
y′ = x + y − z − t,
z′ = x − y + z − t,
t′ = x − y − z + t.

The Hadamard transform can easily be implemented with 8a.
7 Note (A : B : C : D) = H((a : b : c : d)); dually, (a : b : c : d) = H((A : B : C : D)).
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Algorithm 5. xADD∗: Differential addition on Kfast
C .

Input: (±P, ±Q, (x� : y� : z� : t�) = ±(P � Q)) for some P, Q in JC(Fq) with
P � Q /∈ B.

Output: ±(P ⊕ Q) ∈ Kfast
C .

Cost: 14M + 8S + 4mc + 24a
1 (V1,V2) ← (H(S(±P )), H(S(±Q))) // 8S+16a

2 V3 ← M(V1,V2) // 4M

3 V4 ← H(M(V3, (1/A : 1/B, 1/C, 1/D)) // 4mc+8a

4 (C1, C2) ← (x� · y�, z� · t�) // 2M

5 return M(V4, (y� · C2, x� · C2, t� · C1, z� · C1)) // 8M

Algorithm 6. xDBL: Pseudo-doubling on Kfast
C .

Input: ±P in Kfast
C for P in JC(Fq).

Output: ±[2]P
Cost: 8S + 8mc + 16a

1 V1 ← H(S(±P )) // 4S+8a

2 V2 ← S(V1) // 4S

3 V3 ← H(M(V2, (1/A : 1/B : 1/C : 1/D))) // 4mc+8a

4 return M(V4, (1/a : 1/b : 1/c : 1/d)) // 4mc

Algorithm 7. Wrap: (x : y : z : t) �→ (x/y, x/z, x/t).
Input: (xP : yP : zP : tP ) = ±P for P in JC(Fq) \ B
Output: (x/y, x/z, x/t) ∈ F

3
q.

Cost: 7M + 1I
1 V1 ← y · z // 1M

2 V2 ← x/(V1 · t) // 2M+1I

3 V3 ← V2 · t // 1M

4 return (V3 · z,V3 · y,V1 · V2) // 3M

The basic (unoptimized) pseudo-addition operation is xADD∗ (Algorithm 5).
The pseudo-doubling operation is xDBL (Algorithm 6).

Lines 4 and 5 of Algorithm 5 compute the point (y�z�t� : x�z�t� : x�y�t� :
x�y�z�), which is projectively equivalent to (1/x� : 1/y� : 1/z� : 1/t�), but
requires no inversions (note that this is generally not a point on KC). This is the
only point in our pseudoarithmetic where the third argument (x� : y� : z� : t�)
appears. In practice, the pseudoadditions used in our scalar multiplication all
use a fixed third argument, so it makes sense to precompute this “inverted”
point and to scale it by x� so that the first coordinate is 1, thus saving 7M in
each subsequent pseudo-addition for a one-off cost of 1I. The resulting data can
be stored as the 3-tuple (x�/y�, x�/z�, x�/t�), ignoring the trivial first coor-
dinate: this is the wrapped form of ±(P � Q). The function Wrap (Algorithm 7)
applies this transformation; we also include Wrap4 (Algorithm 8), which simul-
taneously Wraps four points using a single shared inversion.
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Algorithm 8. Wrap4: four simultaneous Kummer point wrappings
Input: (±P, ±Q, ±S, ±D) for P, Q, S, D in JC(Fq) \ B
Output: Wrap(±P ), Wrap(±Q), Wrap(±S), Wrap(±D)
Cost: 37M + 1I

1 (c1, c2, c3, c4) ← (yP · zP , yQ · zQ, yS · zS , yD · zD) // 4M

2 (f1, f2, f3, f4) ← (c1 · tP , c2 · tQ, c3 · tS , c4 · tD) // 4M

3 (g1, g2) ← (f1 · f2, f3 · f4) // 2M

4 I ← 1/(g1 · g2) // 1M+1I

5 (h1, h2) ← (g1 · I, g2 · I) // 2M

6 (e1, e2, e3, e4) ← (xP · f2 · h2, xQ · f1 · h2, xS · f4 · h1, xD · f3 · h1) // 8M

7 (r1, r2, r3, r4) ← (e1 · tP , e2 · tQ, e3 · tS , e4 · tD) // 4M

8 return (r1 · zP , r1 · yP , c1 · e1), (r2 · zQ, r2 · yQ, c2 · e2), (r3 · zS , r3 · yS , c3 · e3),
(r4 · zD, r4 · yD, c4 · e4) // 12M

Algorithm 9. xADD: Differential addition on Kfast
C with wrapped difference.

Input: (±P, ±Q, (x�/y�, x�/z�, x�/t�) = Wrap(±(P � Q))) for P , Q in
JC(Fq) with P � Q /∈ B

Output: ±(P ⊕ Q) ∈ Kfast
C .

Cost: 7M + 8S + 4mc + 24a
1 (V1,V2) ← (H(S(±P )), H(S(±Q))) // 8S+16a

2 V3 ← M(V1,V2) // 4M

3 V4 ← H(M(V3, (1/A : 1/B, 1/C, 1/D)) // 4mc+8a

4 return M(V4, (1 : x�/y�, x�/z�, x�/t�)) // 3M

Algorithm 10. xDBLADD: Combined differential double-and-add on Kfast
C .

Input: (±P, ±Q, (x�/y�, x�/z�, x�/t�) = Wrap(±(P � Q))) for P , Q in
JC(Fq) with P � Q /∈ B.

Output: (±[2]P, ±(P ⊕ Q))
Cost: 7M + 12S + 12mc + 32a

1 (V1,V2) ← (H(S(±P )), H(S(±Q))) // 8S + 16a
2 (V1,V2) ← (S(V1), M(V1,V2)) // 4M + 4S
3 (V1,V2) ← (M(V1, (

1
A

: 1
B

: 1
C

: 1
D

)), M(V2, (
1
A

: 1
B

: 1
C

: 1
D

))
)

// 8mc
4 (V1,V2) ← (H(V1), H(V2)) // 16a
5 return (M(V1, (

1
a

: 1
b

: 1
c

: 1
d
)), M(V2, (1 :

x�
y� :

x�
y� :

x�
t� ))) // 3M + 4mc

We can now define xADD (Algorithm 9), an optimized pseudo-addition using
a Wrapped third argument, and xDBLADD (Algorithm 10), which is an optimized
combined pseudo-doubling-and-addition.

B Constant-Time Conditional Swaps and Selects

Our algorithms are designed to be a basis for uniform and constant-time imple-
mentations. As such, to avoid branching, we require constant-time conditional
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swap and selection routines. These are standard techniques, and can be imple-
mented in many ways; Algorithms 11 and 12 give example pseudocode as an
illustration of these techniques.

Algorithm 11. SWAP: Constant-time conditional swap.
Input: b ∈ {0, 1} and a pair (X0, X1) of objects encoded as n-bit strings
Output: (Xb, X1−b)

1 b ← (b, . . . , b)n

2 V ← b and (X0 xor X1) // bitwise and, xor; do not short-circuit and

3 return (X0 xor V, X1 xor V)

Algorithm 12. SELECT: Constant-time conditional selection.
Input: b ∈ {0, 1} and a pair (X0, X1) of objects encoded as n-bit strings
Output: Xb

1 b ← (b, . . . , b)n

2 V ← b and (X0 xor X1) // bitwise and, xor; do not short-circuit and

3 return X0 xor V
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Abstract. Efficient implementations of public-key cryptographic algo-
rithms on general-purpose computing devices, facilitate the applications
of cryptography in communication security. Existing solutions work in
two different directions: implementations on GPUs achieve high through-
put but great latency, while those on CPUs are with low throughput and
small latency. Intel Xeon Phi is the first highly parallel coprocessor of
Many Integrated Core (MIC) architecture, with up to 61 cores and one
512-bit Vector Processing Unit (VPU) in each core, which offers the
potential to achieve both high throughput and small latency. In this
paper, we propose a vector-oriented Montgomery multiplication design
based on vector carry propagation chain (VCPC) method to fully exploit
the computing power of vector instructions on Intel Xeon Phi. Two key
features of our design sharply reduce the number of instructions: (1)
organizing the additions in Montgomery multiplication to be four VCPCs
for saving the overhead of handling carry bits; (2) computing the inter-
mediate scalar variable q in every round without breaking the flow of
VCPCs. Furthermore, we offer the optimal Montgomery multiplication
implementation of our design on Intel Xeon Phi, which make VPUs fully
pipelined and maintain carry bits in vector mask registers. Based on the
above, we implement RSA named PhiRSA and evaluate it on Intel Xeon
Phi 7120P. For 1024, 2048 and 4096-bit RSA, PhiRSA performs 258,370,
41,803 and 5,358 decryptions per second, and the latencies are 0.94, 5.84
and 45.54 ms, respectively. These results achieve 4.1 to 8.5 times perfor-
mance of the existing RSA implementations on Intel Xeon Phi, exhibit
high throughput comparable to those on GPUs but with much less par-
allel tasks, and small latency comparable to those on CPUs.
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1 Introduction

The computing power of general-purpose processors is enhanced by different
parallelism designs. Firstly, single-instruction-multiple-data (SIMD) enables the
elements of a vector to be processed in parallel. General-purpose CPUs are usu-
ally equipped with vector instruction extensions, such as Intel MMX/SSE/AVX,
ARM NEON and AMD 3DNow. Graphics processing units (GPUs) follow a dif-
ferent parallelism structure, single-instruction-multiple-thread (SIMT), where
thousands of independent threads execute the same instructions concurrently.
Finally, simultaneous-multithreading (SMT) is adopted by both CPUs and
GPUs, to enable instructions from multiple threads (in a GPU thread block
or a CPU core) to be executed in any given pipeline stage at a time.

The GPUs’ potential on public-key cryptographic computing has been inves-
tigated for several years. Thread-level parallelism and thousands of scalar stream
processors in GPUs, produce very high throughput on a great number of simulta-
neous tasks, but greater latency than the scalar-instruction cryptographic imple-
mentations in CPUs [22]. Note that the frequency of GPUs is much lower than
that of general-purpose CPUs, for example, Intel Core i7 CPU reaches up to
3.5 GHz while NVIDIA Tesla K20 is only 706 MHz [30]. The deficiency on latency
limits the applications of GPUs as public-key cryptographic engines in many
scenarios.

In 2012 November, Intel announced the first product family of Many Inte-
grated Core (MIC) architectures, named Intel Xeon Phi. Xeon Phi provides an
opportunity to implement public-key algorithms in a high-throughput and low-
latency way. For example, Xeon Phi 7120P consists of 61 cores, and each core
is shipped with (a) 512-bit SIMD unit, 16-way 32-bit vector instructions, and
(b) 4-way SMT unit, 4 hyperthreads on one core for instruction pipelining. Intel
Xeon Phi, with the computing power in tera floating-point operations per second
(FLOPS), has been applied in the fields of supercomputing, such as molecular
dynamics in [25], sparse matrix multiplication in [27] and large integer arith-
metic in [8,16]. In fact, similar 512-bit SIMD units are supported in Intel Xeon
Skylake and Skylake-E CPUs and will be in Intel Cannonlake CPUs.

This paper presents the first implementation of public-key cryptographic
algorithms with 512-bit SIMD instructions on Xeon Phi, called PhiRSA. In
particular, we evaluate 1024-bit, 2048-bit and 4096-bit RSA on vector instruc-
tions. PhiRSA fully exploits the computing power of Xeon Phi 7120P with the
following designs. Firstly, to perform 512-bit Montgomery multiplication (see
Algorithm 1 for details), the most expensive step of RSA, the intermediate prod-
ucts are organized into four 512-bit vectors; then, these vectors are added using
the vector-add-with-carry instruction vpadcd in each round of the Montgomery
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multiplication’s main loop. After n rounds, the corresponding 512-bit vector in
each round composes a vector carry propagation chain (VCPC). This design
exploits the vector mask registers and does not need to handle the carry bits
after each addition in a round. Secondly, we exploit vector instructions to com-
pute q (see Algorithm 3 for details), without breaking the flow of VCPCs. When
a vector is used to compute q, the carry bit takes effect as the write-mask which
is read-only in the operation; therefore, the correct q is obtained in the each
round of VCPCs but does not break the chains.

The features of SIMD are fully exploited in PhiRSA, as our design magnifies
the advantages of vector instruction extensions of Xeon Phi. Our method outper-
forms greatly the commonly-used redundant representation method in [3,5,10–
12,21]. To avoid handling the carry bits after large-integer addition during Mont-
gomery multiplication, redundant representation stores only 29-bit operands in
each 64-bit element of vectors; then, every product of two elements multiplica-
tion is 58-bit and the additional 6 bits are used to hold addition carries without
overflow. So, it requires extra instructions and vectors to finish the computations.

We implement 1024/2048-bit Montgomery multiplication (and then
2048/4096-bit RSA) based on 512-bit vectors. Two (or four) 512-bit vectors
compose a 1024-bit (or 2048-bit) large integer, and the specific vector instruc-
tion valignd is used to right shift multiple 512-bit vectors of the large integer
during the main loop of Montgomery multiplication. The operations of right shift
and assignment are performed in only one vector instruction, for each 512-bit
vector.

Meanwhile, the benefit of SMT is also kept in PhiRSA. The execution order
of vector instructions is manually optimized to fully activate the pipeline of
vector processing units (VPUs). When 4 threads are launched to perform RSA
computations, the VPU utilization exceeds 90%, that is, almost one instruction
is executed in each cycle.

Our contributions are as follows. Firstly, the vector-oriented designs are pro-
posed to fully exploit the computing power of vector instructions for RSA. Sec-
ondly, we implement these designs on Intel Xeon Phi 7120P efficiently. To the
best of our knowledge, this is the first implementation of public-key cryptogra-
phy on Intel Xeon Phi. The experimental results exhibit both high throughput
and low latency: for 1024-bit, 2048-bit and 4096-bit RSA, PhiRSA achieves the
throughput of 258370, 41803 and 5358 decryptions per second with 244 paral-
lel tasks, and the latency of 0.94 ms, 5.84 ms and 45.54 ms, respectively. This
throughput is about 40 times of OpenSSL [23] on a single core of Intel Haswell
i7-4770R, and the latency is about 5 times. Our throughput is higher than the
best implementation [32] on GPUs [32], and the latency is reduced to about 25%
only.

The rest of the paper is organized as follows. Section 2 is the related work. The
preliminaries about Intel Xeon Phi and Montgomery multiplication are presented
in Sect. 3. Section 4 describes the design of our Montgomery multiplication. In
Sect. 5, we show how to implement Montgomery multiplication and RSA on Intel
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Xeon Phi. In Sect. 6, performance results of our Montgomery multiplication and
RSA implementations are given and compared with other works. We conclude
in Sect. 7.

2 Related Work

There have been amount of studies using vector instructions to implement large
integer multiplication, Montgomery multiplication and public-key cryptography.
These works can be classified into three groups. The first group and also the main
choice is storing the large integers in vectors horizontally for fine-grained paral-
lel. Intel SSE2 instruction set has been exploited for large integer multiplication
in [21] and cryptographic pairing computation in [11]. Redundant representation
method proposed in [21] is widely used in vector implementations to help delay
the carry propagation. Intel AVX2 instruction set is also applied to modular expo-
nentiation in [12] and Curve25519 implementation in [10]. ARM NEON instruc-
tion set is explored to implement Montgomery multiplication in [28], Curve41417
in [3] and RSA in [29]. On Cell platform, an approach to implement Montgomery
multiplication is described in [5]. The second group is splitting the Montgomery
multiplication into two parts to compute in parallel. This approach is studied in
[6] for 2-way vector instruction sets like Intel SSE2 and ARM NEON. The third
group is using the vector instructions to carry out multiple tasks in parallel. Com-
puting multiple Montgomery multiplications simultaneously in vector elements is
investigated on Intel SSE2 instruction set in [24] and the Cell processor in [4].

Many previous studies have proved that GPUs are suitable for asymmetric
cryptography. Most of them are based on the integer computing power of GPU,
such as [1,31]. The floating-pointing power is also explored in [2,32]. For 2048-bit
RSA GPU implementation, the highest throughput is reported in [32] and the
lowest latency is obtained by [31].

Intel Xeon Phi is launched as a brand-new high performance computing plat-
form, which performance has been evaluated in [9]. Large integer multiplication
is firstly evaluated on Intel Xeon Phi in [16]. This work implements multiplication
by using the usual redundant representation method described in [12]. While the
study in [7] firstly implements multiplication and RSA based on the idea of carry
propagation and endeavors to minimize memory footprints for reducing memory
accesses. However, the results of these two studies are barely satisfactory and
the computing power of Intel Xeon Phi has not been fully exploited.

3 Preliminaries

3.1 Overview of Intel Xeon Phi

Intel Xeon Phi comprises of up to 61 cores and every core possesses arithmetic
logic units (ALUs) and one 512-bit VPU which provides the major computing
power. The cores are in-order and pipelined. Each core supports four hyper-
threads to keep the execution units busy and hide memory access latencies.
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If the instructions are fully pipelined, the throughput of VPUs gets up to one
vector instruction per cycle. There are L1 cache and L2 cache in each core and
GDDR5 memory on board. The coprocessor communicates with the host through
Peripheral Component Interconnect Express (PCIe) interface. The coprocessor
OS based on an open-source Linux kernel runs on the coprocessor to manage
resources and process applications. There are two predominant programming
models for Intel Xeon Phi, offload execution mode and native execution mode.
In native execution mode, the application is cross-compiled and runs directly on
the coprocessor OS.

Intel Xeon Phi Instruction Set Architecture [13] introduces 512-bit vector
instructions operating on thirty-two 512-bit vector registers (zmm0-zmm31),
and offers eight 16-bit vector mask registers (k0-k7) for conditional operations
on data elements within vector registers. One vector register consists on either
sixteen 32-bit elements or eight 64-bit elements while the vector instructions
executive operations on each element. The vector mask registers have many
applications, the major is playing as write-mask to protect elements in the des-
tination from updates during the execution of any operations. If a write mask
bit is zero, the corresponding destination element is not modified. Vector mask
registers can also be used for keeping carry bits, borrow bits and comparison
results. Intel Xeon Phi does not support MMX, SSE and AVX instruction set,
but introduces amount of novel vector instructions. For example, the vector-
add-with-carry instruction vpadcd is extremely useful in large integer arithmetic,
presented as follows.

vpadcd (zmm2/memory), k2, zmm1{k1}

This instruction performs an element-by-element three-input addition between
int32 vector zmm1, a int32 vector in memory or int32 vector zmm2, and the
carry bits in k2. The result is written into zmm1, and the carry bits produced
by the addition are written into k2. The instruction performing is controlled by
the write-mask k1. Some other vector instructions are used in this paper. The
instruction vpmulhud and vpmulld perform element-by-element multiplications
between int32 vectors and store the high 32-bit result or the low 32-bit result
respectively. The instruction vpermd performs an element permutation by using
int32 vector elements as source indices. The instruction valignd concatenates
and shifts right several 32-bit elements from two vectors.

3.2 Montgomery Multiplication

The major computations of RSA are modular multiplication. The modular reduc-
tion would be very costly if performing division operations. Montgomery multi-
plication [20] is proposed to replace division operations by cheaper multiplication
and shifting operations. Let M be an odd modulus, R = 2n and M < R, Mont-
gomery multiplication is defined as MontMul(A, B) = A · B · R−1 (mod M).
The process of calculating A ·B (mod M) based on Montgomery multiplication
can be computed as follows: ˜A = MontMul(A, R2), ˜B = MontMul(B, R2),
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then ˜C = MontMul( ˜A, ˜B), finally C = MontMul( ˜C, 1), C is the result. If
executing a sequence of modular multiplications, such as the modular expo-
nentiation, one modular multiplication only needs to perform one Montgomery
multiplication. Koḑ et al. proposed an interleaved Montgomery multiplication,

Algorithm 1. Montgomery multiplication CIOS method [19]
Input: Modulus M , R = 2nw, R > M , gcd(M, R) = 1, 2w is radix, n is digits number

0 � A,B < M , B =
∑n−1

i=0 bi2
iw, µ = −M−1 mod 2w

Output: S = A · B · R−1 (mod M), 0 � S < M .
1: S ← 0
2: for i from 0 to n − 1 do
3: S ← S + A · bi
4: q ← S[0] · µ mod 2w

5: S ← S + M · q
6: S ← S/2w

7: end for
8: if S � M then
9: S ← S − M

10: end if
11: return S

named Coarsely Integrated Operand Scanning (CIOS) method [19] described in
Algorithm 1. This method interleaves multiplication and Montgomery reduction,
which is suitable to be implemented by vector instructions.

4 Montgomery Multiplication Design

In this section, we describes Montgomery multiplication design based on vector
carry propagation chain (VCPC) method and the computation the intermedi-
ate scalar variable q. Then, we analyse the expected performance of our design
and compare with the redundant representation method in [12]. Especially, we
give out the vector length Montgomery multiplication (Algorithm 3) in Section
Appendix as an example.

4.1 Vector Carry Propagation Chain Method

(1) Four VCPCs. As described in Algorithm 1, the main computations of
Montgomery Multiplication CIOS Method are S ← S +A · bi and S ← (S +M ·
q). Note that, this two formulas perform the same computation with different
operands. The computing process is to multiply a vector with an element, then
add the multiplication product to the sum vector S. We exploit Intel Xeon Phi
vector instructions to carry out this computation. The logic instructions are
used in this section for better clarification. We use Mullow, Mulhigh and Vadc
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standing for vpmulhud, vpmulld and vpadcd. We assume that the length of S is
equal to one vector. The formula S ← S + A · bi is computed in the following
steps.

T ← Broadcast(bi)
L ← Mullow(A, T )
H ← Mulhigh(A, T )
S ← S + L

S ← S + H

The step 1 and step 2 are easy to be carried out, but the products L and
H are not the final multiplication product and the least significant element of
H is aligned with the 2nd less significant element of L. The step 3 and step 4
must be computed by using Vadc instruction. We focus on L and S, extract the
corresponding computations from Montgomery multiplication in Algorithm 1.
As the integer L in i-th loop is higher one element than the integer L in (i-1)-th
loop, and also S shift to the right for a element, so L is aligned to S at all times.
We use Vadc instruction to overwrite the upper computing process 1 and will
demonstrate computing process 2 completes the same calculation as computing
process 1:

for i from 0 to n − 1
T ← Broadcast(bi)
L ← Mullow(A, T )
S ← V adc(S, k1, L)
S ← Rshift(Zero, S, 1)

k1 is a vector mask register for storing carry. Rshift is used to stand for valignd
which concatenates two vector and shifts the whole long vector to the right in
32-bit elements, stores the lower vector to the destination register. We observe
that in each loop before performing Vadc, S, k1 and L are all aligned, so they
can be add together by using Vadc directly. After performing Vadc, the carry
bits in k1 are propagated forward in a element. While after performing Rshift
in this loop and Mullow in the next loop, L and S are also higher a element
than before. So when it is to perform Vadc in the next loop, L, S and k1 are all
aligned, and can be add together by using Vadc directly. So computing process
2 has completed the calculation in computing process 1, except has not added
the carry k1 back to S after the last round of the loop.

Based on all the above observation, we propose the notion Vector Carry
Propagation Chain (VCPC), which describes a process: a group of vectors like
S, L and a carry like k1 are added together in a chain to propagate k1 forward in
a element after each round. Propagating carry k1 only need one Vadc instruction
in a round of VCPC and adding k1 back to S is only performed at the end of
VCPC (also known as handing carry). So VCPC very efficiently works out the
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carry propagation problem (the carry needs to propagate to the higher element).
The strategy of VCPC is just propagating carry forward, delaying to handle it.

We propose a design as named VCPC method to overwrite major computa-
tions of Algorithm 1 by using VCPC.

The computing process 3 comprises four VCPCs. The VCPC 1 is Vadc(S,
k0, L), L is the product of Mullow(A, bi). The VCPC 2 is Vadc(S, k1, L), L is
the product of Mullow(M, q). The VCPC 3 is Vadc(S, k2, H), H is the product of
Mulhigh(A, bi). The VCPC 4 isVadc(S, k3, H), H is the product ofMulhigh(M, q).
4 VCPCs uses 4 vector mask registers k0, k1, k2 and k3 to propagating 4 carries
respectively.

for i from 0 to n − 1
L ← Mullow(A, bi)
S ← Vadc(S, k0, L)
L ← Mullow(M, q)
S ← Vadc(S, k1, L)
S ← Rshift(Zero, S, 1)
H ← Mulhigh(A, bi)
S ← Vadc(S, k2, H)
H ← Mulhigh(M, q)
S ← Vadc(S, k3, H)

VCPC 1 and VCPC 2 are performed before S shifting to the right, because
the L computed in two VCPCs are aligned to S before shift. While H computed
in VCPC 3 and VCPC 4 are aligned to S after shift, so VCPC 3 and VCPC 4
are performed after S shifting to the right. At the start of each round, there are
vector S and four carries k0, k1, k2 and k3, and k0 and k1 are aligned to S, the
lowest bit of k2 and k3 are aligned to the second less significant element of S.
In the end of each round, S and carries k0, k1, k2 and k3 are all move to more
significant position in a element, and also maintain that k0 and k1 are aligned
to S, the lowest bit of k2 and k3 are aligned to the 2nd less significant element
of S. So the four VCPCs in computing process 3 can be maintained to end of
the loop.

(2) Handling Tail. At the end of our Montgomery multiplication design, han-
dling tail must be performed, which includes two steps: handling carry and reduc-
ing S. Handling carry is used to add all the carry vectors produced by VCPCs
to the sum vectors S. First, we add carry vectors to a vector which initial value
is zero. Then, we add this vector to S. As Intel Xeon Phi does not have the
instruction to shift vector mask register, we use the LMove to copy the carry to
the general purpose register and perform left shift, then copy the carry back to
the vector mask register. In the worst case, it will need to perform s− 1 rounds
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move-shift-move operations, but usually only need one round. As presented in
Algorithm 1, reducing S is used to ensure the output of Montgomery multipli-
cation is smaller than modulus M. For the constant running time, reducing S
is always performed. We use vector-sub-with-borrow instruction vpsbbd to per-
form subtraction just like addition. Handling borrow requires s − 1 rounds in
the worst case, and performs two rounds in a greater chance. For performance
reasons, the rounds of move-shift-move are not constant. While attackers can
hardly get useful information from the running time of move-shift-move.

4.2 Computing q

The intermediate scalar variable q is produced and used for multiplications in
Algorithm 1. q is computed as q ← S[0] · µ mod 2w, which is very easy to be
computed in other Montgomery multiplication design, such as redundant repre-
sentation method. But in our Montgomery multiplication design, computing q
is not easy as the carries are maintaining for propagation.

Note that, q computation is carried out by Q ← Mullow(S,U), U =
Broadcast(µ), q = Q[0]. But if we only perform this operation, q may be not
correct. As we analyse the relations between q, four VCPCs and four carries,
we can see that VCPC 2 and VCPC 4 need q to compute multiplications, and
VCPC 2 propagates k1. If k1 has not be added to S (k1 propagates forward),
the S[0] may not be right since without being added carry bit k1[0]. So there is
a contradiction that computing q requires k1 propagation forward, while prop-
agating k1 (VCPC2) requires computing q first. If we add zero vector, k1 to S
to obtain the right S, the k1 would propagate forward without adding with the
product of Mullow(M, q), which will break the VCPC 2, also destruct the VCPC
method.

The obvious solution is trial addition which performs an addition to acquire
the right S[0] and does not modify k1. As depicted in Sect. 3, vpadcd is a three-
operand instruction, carry k2 (see Sect. 3) is the source operand also the des-
tination operand which means that the old value in k2 will be destructed by
the new value. So k1 in VCPC2 must be copied for trial addition which need
two operations copying of k1 and adding the new carry register to S. The draw-
backs of trial addition are requiring an extra copy instruction, what’s worse, an
additional vector mask register (only 8 vector mask registers in a core [26]).

We propose an artistic method to compute q by using write-mask vector.
The right counting process of q in VCPC method is q ← (S[0] + k1[0]) · µ, we
rewrite it as q ← S[0] · µ + k1[0] · µ. We implements this formula by following
two instructions:

Q ← Mullow(S, U)
Q ← Vadd(Q, U){k1}

Vadd is a normal vector addition instruction without carry. We use k1 as write-
mask for Vadd. if k1[0] is 1, Q[0] will add a µ; if k1[0] is 0, Q[0] will not be
modified, so the value of q is correct. As the write mask is read-only, it would
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not be modified. Our method does not require an extra move instruction, also no
need for an extra vector mask register. The most interesting idea of our method
is using the carry vector as write-mask vector.

4.3 Performance Analysis

In this section, we analyse the performance of our Montgomery multiplication
design (VCPC method) and compare with Redundant Representation (RR)
method which is presented in [12].

We assume the length of element is w, the number of elements in a vector is
n, the length of a vector is s (s = w ∗n) and the length of arguments is l. So the
number of rounds in our design is �l/w�. And the number of vectors is �l/s�. So
in every rounds, it needs to perform 2 ∗ �l/s� Mullow, 2 ∗ �l/s� Mulhigh, 4 ∗ �l/s�
Vadc, �l/s� RShift, 2 operations to compute the intermediate scalar variable q
and 2 Broadcast (bi and q), which is equal to 9∗ �l/s�+4. Therefore, for VCPC
method, the total number of instructions is about �l/w� ∗ (9 ∗ �l/s� + 4) (not
including handling tail, which does not need many instructions).

RR method has two drawbacks: the first is need double spaces to store all
the arguments and temporal variables, the second is the several high bits needed
to be reserved for storing carries which can not involve in multiplications. For
example, for 1024-bit Montgomery multiplication, RR method divides all the
arguments and temporal variables into 29-bit parts for remaining high 6-bit (in
64-bit element) to maintain carries. So RR method need more than double vec-
tors to store the arguments and variables than VCPC method. For RR method,
we assume the number of reserve bits is t (in 32-bit element), which generally
meets 2 ∗ �l/w� � 2t, otherwise it needs to perform cleanup operation during
Montgomery multiplication. The number of rounds in RR method is �l/(w− t)�.
The number of vectors is 2 ∗ �l/((w − t) ∗ n)� = 2 ∗ �l/(s − t ∗ n)�. So in every
rounds, it need to carry out 4 ∗ �l/(s− t ∗ n)� multiplications, 4 ∗ �l/(s− t ∗ n)�
additions, 2 ∗ �l/(s− t ∗n)� RShift, 2 operations to compute q and 2 Broadcast,
which is equal to 10∗�l/(s− t∗n)�+4. Hence, for RR method, the total number
of instructions is �l/(w − t)� ∗ (10 ∗ �l/(s − t ∗ n)� + 4).

Table 1. Comparison with redundant representation method

RR method VCPC method

Vector number 2 ∗ �l/(s − t ∗ n)� �l/s�
Instructions/round 10 ∗ �l/(s − t ∗ n)� + 4 9 ∗ �l/s� + 4

Round �l/(w − t)� �l/w�
Instructions �l/(w − t)� ∗ (10 ∗ �l/(s − t ∗ n)� + 4) �l/w� ∗ (9 ∗ �l/s� + 4)

As presented in Table 1, compared with RR method, VCPC method needs
less rounds and less instructions in each round. Consequently, VCPC method
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needs less instructions than RR method. For example, we want to compute
1024-bit Montgomery multiplication on Intel Xeon Phi. The element length w
is 32, element number in a vector n is 16, the vector length s is 512, the length
of arguments l is 1024, the number of reserve bit t is 3 (in 32-bit element). So
VCPC method requires 32 rounds, 22 instructions in each round, so that requires
about 704 instructions. RR method requires 36 rounds, 34 instructions in each
round, so that requires about 1224 instructions. VCPC method only needs a
factor of 0.58 instructions than RR method.

5 Implementation

In this section, we describe the implementations of Montgomery multiplication
and RSA on Intel Xeon Phi. We choose assembly language instead of intrinsics
in C language to implement Montgomery multiplication for fully controlling
registers. Besides, we choose native execution mode [26] for our implementations
as the ultimate performance can be evaluated in this mode.

5.1 Montgomery Multiplication Implementation

We implement 512-bit, 1024-bit and 2048-bit Montgomery multiplication on Intel
Xeon Phi. Although our design provides the scheme with minimal instruction
number, the implementation must be optimized to make the execution cycle
approach to the instruction number. Two implementation issues are mainly con-
cerned: making VPUs fully pipelined and maintaining carry bits in vector mask
registers.

(1) Making VPUs Fully Pipelined. Data-dependencies in the instruction
flow may cause pipeline stalls of VPUs. If an instruction about to be executed has
to wait for the operands written by the previous instruction for several cycles,
in the meantime no other instructions enter the pipeline, the cycles of VPUs
will be wasted and performance will be compromised. First of all, we need to
investigate the latency of instructions we used. As presented in [15], most vector
instructions are four-cycle latency. We measure vector instruction latency by
ourselves. The assessment results are presented in Table 2.

Table 2. The latencies of vector instructions on Intel Xeon Phi

Instruction vpmulhud vpmulld vpadcd vpermd valignd

Cycles 4 4 4 6 7

As every core of Intel Xeon Phi has four hyperthreads, the four-cycle instruc-
tions (vpmulhud, vpmulld and vpadcd) can be fully pipelined, even though the
instructions are data-dependent. But data-dependent vpermd and valignd are
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not easily pipelined. We observe that if vpermd and valignd do not use the data
produced by the prior instruction, they can be fully pipelined. As the cores of
Intel Xeon Phi are in-order, every vector instruction will be performed in terms
of the sequence in the assembly code. So we manually adjust the sequence of
instructions in our Montgomery multiplication implementation. The assembly
code of one round in 512-bit Montgomery multiplication is presented in ASM
Code 1. We insert the data-independent instructions (green ones) into the posi-
tions of pipeline stalls (red ones). Then we carry out four threads on one core
as each thread executes ASM Code 1 repetitively, the result shows that the exe-
cution only requires 12.2 cycles per round which means the utilization of VPUs
reaches 98%.

ASM Code 1 Adjusted
1: vpmulld %zmm2{aaaa}, %zmm1, %zmm10
2: vpadcd %zmm10, %k0, %zmm0
3: vpmulld %zmm0, %zmm4, %zmm6
4: vpaddd %zmm6, %zmm4, %zmm6{%k2}
5: vpmulhud %zmm2{aaaa}, %zmm1, %zmm11
6: vpermd %zmm6, %zmm5, %zmm6
7: vpmulld %zmm6, %zmm3, %zmm12
8: vpadcd %zmm12, %k2, %zmm0
9: vpmulhud %zmm6, %zmm3, %zmm13

10: valignd $1, %zmm0, %zmm5, %zmm0
11: vpadcd %zmm11, %k1, %zmm0
12: vpadcd %zmm13, %k3, %zmm0

(2) Maintaining Carry Bits in Vector Mask Registers. As 2048-bit Mont-
gomery multiplication has sixteen VCPCs, it will produce sixteen carry vector
every round. However, each core of Intel Xeon Phi has only eight vector mask reg-
isters. Although the instruction kmov can move data between vector mask regis-
ters and general purpose registers, frequent exchanging data will rouse gigantic
performance loss. So maintaining carry bits in vector mask registers is essential.
We split 2048-bit Montgomery multiplication implementation into four parts and
every parts is similar to 1024-bit Montgomery multiplication implementation but
without handling tail phase. Outside of these four parts, we need to handle carry
bits two times. As every parts have eight VCPCs and the computation of scalar
variable q will not break the flow of VCPCs, all carry bits in every round can be
kept in vector mask registers.

5.2 RSA Implementation

We apply our Montgomery multiplication implementation to realize PhiRSA
based on CRT method [18], which computes m-bit RSA by performing two
(m/2)-bit Montgomery exponentiations. We also utilize m-ary method [17] to
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accelerate Montgomery exponentiations with the precomputed table. 25-ary
method is applied for 1024-bit RSA and 26-ary method is applied for 2048-
bit RSA and 4096-bit RSA. To complete CRT method, we implement a school-
book multiplication, addition and subtraction on Intel Xeon Phi. The differences
between implementations of multiplication and Montgomery multiplication are
that the multiplication implementation has only two VCPCs, don’t need to shift
right every round and must save the double size product. Our multiplication
implementation is very efficient as it also make VPUs fully pipelined.

6 Experimental Results

In this section, we conduct the experiments to evaluate our Montgomery multi-
plication implementations and RSA implementations on Intel Xeon Phi 7120P
processor (1.33 GHz), and compare with the other studies on Xeon Phi, CPUs
and GPUs. The configurations of our evaluation platform are described as fol-
lows: the coprocessor is Intel Xeon Phi 7120P, the host CPU is Intel Xeon E5
2697v2, the operating system is RedHat 6.4, and the compiler is Intel Composer
XE 2013.

6.1 Implementation Result

We execute 244 threads running on 61 cores and bind four threads to each core
for 4-way hyper-threading to avoid the performance loss of the thread migra-
tion. Vector Instruction Number in table indicates the number of assembly
instructions and Execution Cycles denotes the real execution time. If VPUs
reach the maximum performance that one instruction per cycle, VPU Uti-
lization is 100%. We also evaluate the throughput and the latency. Through-
put/Thread denotes the performance of one thread, which is equal to Through-
put/244. Table 3 summarizes the performance of 512-bit, 1024-bit and 2048-
bit Montgomery multiplication implementations. It shows that VPU Utiliza-
tions of all the implementations are above 92%. Note that, Execution Cycles
are almost four times of Vector Instruction Number which dues to four
threads performing on one core for pipelining. So VPU Utilization are equal
to 4(V ectorInstructionNumber)/(ExecutionCycles). Table 4 shows evaluation
results of 1024-bit, 2048-bit and 4096-bit RSA. VPU Utilizations of RSA imple-
mentations are also above 90%.

6.2 Comparisons with the Previous Works on Intel Xeon Phi

(1) Comparison with the Implementation of Redundant Representa-
tion. The work in [16] applies redundant representation method to implement
multiplication, which only provides the number of instructions. As the compu-
tation of the schoolbook multiplication is about one half of Montgomery mul-
tiplication, we double the instruction number in [16] for a rough comparison.
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Table 5 shows that our implementation needs no more than one tenth of instruc-
tions compared with their implementation. The major reason is that our Mont-
gomery multiplication design requires less instructions than redundant repre-
sentation method inherently. Another reason is this generation Intel Xeon Phi
(Knights Corner, KNC) does not support the multiplication instruction like
vpmuludq in AVX2 [14] which needed in redundant representation method. So
our design is not only better than redundant representation method but more
suitable for Intel Xeon Phi (KNC).

Table 3. Performance of Montgomery multiplication on Intel Xeon Phi

Montgomery multiplication

512-bit 1024-bit 2048-bit

Thread number 244 244 244

Core number 61 61 61

Vector instruction number 218 724 2797

Execution cycles 948 3076 12211

VPU utilization 92% 94% 92%

Throughput (106/s) 343.78 105.73 26.64

Throughput/thread (106/s) 1.41 0.43 0.11

Latency (µs) 0.71 2.31 9.16

Table 4. Performance of RSA decryption on Intel Xeon Phi

RSA decryption

1024-bit 2048-bit 4096-bit

Window size: 5 Window size: 6 Window size: 6

Thread number 1 244 1 244 1 244

Core number 1 61 1 61 1 61

Vector instruction number
(106/op)

0.28 0.28 1.82 1.82 13.7 13.7

Execution cycles (106/op) 0.91 1.26 3.97 7.78 29.71 60.66

VPU utilization 31% 90% 46% 94% 46% 90%

Throughput (/s) 1466 258370 336 41803 45 5358

Throughput/thread (/s) 1466 1059 336 171 45 22

Latency (ms) 0.68 0.94 2.98 5.84 22.29 45.54
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Table 5. Comparisons with the implementation of redundant representation on Intel
Xeon Phi

512-bit MontMul
(instructions)

1024-bit
MontMul
(instructions)

2048-bit
MontMul
(instructions)

Keliris et al. [12] (Scaled) 3846 9498 28776

Our VCPC method 218 724 2797

(2) Comparison with the Implementation of Carry Propagation.
The work in [7] firstly uses carry propagation to implement multiplication

and RSA on Intel Xeon Phi 5110P. As described in Table 6, the throughput in
[7] is scaled to Intel Xeon Phi 7120P. Our implementations achieve 4.1 to 8.5
times performance of the scaled results. There are three possible reasons: (1) the
Extract and Store operations are very cost; (2) using multiplication to compute
Montgomery multiplication is not the best way; (3) intrinsics in C language can
not fully control registers.

Table 6. Comparison with the implementation of carry propagation on Intel Xeon Phi

512-bit RSA-1024
throughput (/s)

1024-bit
RSA-2048
throughput (/s)

2048-bit
RSA-4096
throughput (/s)

Chang et al. [7] (Scaled) 1310 7217 30282

Our VCPC method 5358 41803 258370

6.3 Comparisons with the Implementations on CPUs and GPUs

Table 7 shows the comparisons with the best implementations on CPUs and
GPUs. Compared with CPU implementation in OpenSSL [23] which evaluated
on Intel i7 4770R, the throughput of our implementation is about 40 times
of a single CPU core, and the latency is about 5 times. The throughput of
one core on Intel Xeon Phi is about a factor of 0.6 compared with one CPU
core, which is due to the higher frequency of CPU core (3.2 GHz). On GPU
platform, the integer implementation in [31] has the lowest latency so far which
evaluated on NVIDIA GT 750m, and the floating-pointing implementation in [32]
has the highest throughput until now which evaluated on NVIDIA GTX Titan.
Compared with [31], the throughput of our implementation is about 7 times, and
the latency is no more than 90%. And compared with [32], the throughput of our
implementation is about 1.07 times, and the latency is only 26%. So PhiRSA has
the advantage on achieving high throughput and small latency simultaneously.
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Table 7. Comparisons with the implementations on CPUs and GPUs

RSA decryption OpenSSL 1.0.1f
[23]

Yang et al. [31] Zheng et al. [32] Our native
implementa-
tions

Platform Intel Haswell NVIDIA GT NVIDIA GTX Intel Xeon Phi

i7 4770R 750m Titan 7120P

Core number 4 384 2688 61

Frequency
(GHz)

3.2 0.967 0.836 1.33

Computing
power (SP
GFLOPS)

410 743 4500 2600

RSA-1024
throughput (/s)

25850 34981 - 234981

RSA-2048
throughput (/s)

3427 5244 38975 41803

RSA-4096
throughput (/s)

485 - - 5358

RSA-1024
latency (ms)

0.16 2.6 - 1.04

RSA-2048
latency (ms)

1.17 6.5 22.47 5.84

RSA-4096
latency (ms)

8.26 - - 45.54

7 Conclusions

In this contribution, we propose a novel vector-oriented Montgomery multiplica-
tion design and implementation to fully exploit the computing power of vector
instructions on Intel Xeon Phi. Based on the above, we implement RSA named
PhiRSA. PhiRSA is much better than the existing RSA implementations on
Intel Xeon Phi which attains 4.1 to 8.5 times performance. Our results also
demonstrate that Intel Xeon Phi can be used to achieve both high throughput
and small latency for RSA. On Intel Xeon Phi 7120P, PhiRSA achieves high
throughput comparable to the implementations on GPUs but with much less
parallel tasks, and small latency comparable to the implementations on CPU.
PhiRSA and our Montgomery multiplication implementation can be applied to
implement other cryptographic algorithms as primitives. We will also integrate
PhiRSA into OpenSSL in the future.

A Appendix

Algorithm 3 is vector length Montgomery multiplication.
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Algorithm 3. Vector length Montgomery multiplication
Input: 2w is radix, n is element number, vector size is s = n ∗ w

R = 2s, Modulus M is s-bit number, M < R,

gcd(M, R) = 1, µ = −M−1 mod 2w

A, B are s-bit number, 0 � A,B < M , B =
∑n−1

i=0 bi2
iw

Output: S = A · B · R−1 (mod M), 0 � S < M

1: k0 ← 0, k1 ← 0, k2 ← 0, k3 ← 0

2: S ← 0, Zero ← 0,

3: U ← Broadcast(µ)

/* VCPC Phase */

4: for i from 0 to n − 1 do

5: T ← Broadcast(bi)

/* VCPC 1: S + k0 = S + k0 + Low(A · bi) */

6: L ← Mullow(A, T )

7: (S, k0) ← Vadc(S, k0, L)

/* q ← (S[0] + k1[0]) · µ */

8: Q ← Mullow(S, U)

9: Q ← Vadd(Q, U){k1}
10: Q ← Broadcast(Q[0])

/* VCPC 2: S + k1 = S + k1 + Low(M · q) */

11: L ← Mullow(M, Q)

12: (S, k1) ← Vadc(S, k1, L)

/* Right Shift: S = S � 1 element */

13: S ← RShift(Zero, S, 1)

/* VCPC 3: S + k2 = S + k2 + High(A · bi) */

14: H ← Mulhigh(A, T )

15: (S, k2) ← Vadc(S, k2, H)

/* VCPC 4: S + k3 = S + k3 + High(M · q) */

16: H ← Mulhigh(M, Q)

17: (S, k3) ← Vadc(S, k3, H)

18: end for

/* Tail Phase */

/* Handling carry */

19: (T, k0) ← Vadc(Zero, k0, Zero)

20: (S, k1) ← Vadc(S, k1, T )

21: (T, k1) ← Vadc(Zero, k1, Zero)

22: (T, k2) ← Vadc(T, k2, Zero)

23: H ← Rshift(Zero, S, 1)

24: (H, k3) ← Vadc(H, k3, T )

25: for i from 0 to n − 2 do

26: if k3 = 0 then

27: BREAK

28: end if

29: (H, k3) ← Vadc(H, k3, Zero)

30: k3 ← Lmove(k3)

31: end for

32: S ← Rshift(S, zero, 1)

33: S ← Rshift(H, S, n − 1)

/* Reducing */

34: if H[n − 1] = 1 then

35: (S, k0) ← Vsbb(S, k0, M)

36: H ← Rshift(Zero, H, n − 1)

37: H ← Rshift(H, S, 1)

38: for i from 0 to n-2 do

39: if k0 = 0 then

40: BREAK

41: end if

42: (H, k0) ← Vsbb(H, k0, Zero)

43: k0 ← Lmove(k0)

44: end for

45: end if

46: S ← Rshift(S, zero, 1)

47: S ← Rshift(H, S, n − 1)

48: return S.
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Abstract. We present a high-speed, high-security implementation of
the recently proposed elliptic curve FourQ (ASIACRYPT 2015) for 32-
bit ARM processors with NEON support. Exploiting the versatile and
compact arithmetic of this curve, we design a vectorized implementation
that achieves high-performance across a large variety of ARM platforms.
Our software is fully protected against timing and cache attacks, and
showcases the impressive speed of FourQ when compared with other
curve-based alternatives. For example, one single variable-base scalar
multiplication is computed in about 235,000 Cortex-A8 cycles or 132,000
Cortex-A15 cycles which, compared to the results of the fastest genus 2
Kummer and Curve25519 implementations on the same platforms, offer
speedups between 1.3x–1.7x and between 2.1x–2.4x, respectively. In com-
parison with the NIST standard curve K-283, we achieve speedups above
4x and 5.5x.

Keywords: Elliptic curves · FourQ · ARM · NEON · Vectorization ·
Efficient software implementation · Constant-time.

1 Introduction

In 2013, ARM surpassed the 50 billion mark of processors shipped worldwide,
consolidating its hegemony as the most widely used architecture in terms of
quantity [22]. One of the main drivers of this success has been the explosive
growth of the mobile market, for which the Cortex-A and Cortex-M architec-
tures based on the ARMv7 instruction set became key technologies. In partic-
ular, the Cortex-A series include powerful yet power-efficient processors that
have successfully hit the smartphone/tablet/wearable mass market. For exam-
ple, Cortex-A7 based SOCs power the Samsung Gear S2 (2015) smartwatch
and the Microsoft Lumia 650 (2016) smartphone; Cortex-A8 and Cortex-A9
cores can be found in the Motorola Moto 360 (2014) smartwatch and the Sam-
sung Galaxy Light (2013) smartphone, respectively; and Cortex-A15/Cortex-A7
(big.LITTLE) based SOCs power the Samsung Galaxy S5 (2014) and the Sam-
sung Galaxy A8 (2015) smartphones. Many of these Cortex-A microarchitectures
come equipped with a NEON engine, which provides advanced 128-bit Single
Instruction Multiple Data (SIMD) vector instructions. Thus, these low-power
c© Springer International Publishing AG 2017
R. Avanzi and H. Heys (Eds.): SAC 2016, LNCS 10532, pp. 501–519, 2017.
https://doi.org/10.1007/978-3-319-69453-5_27
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RISC-based ARM platforms with NEON support have become an attractive
platform for deploying and optimizing cryptographic computations.

Costello and Longa [12] recently proposed a highly efficient elliptic curve,
dubbed FourQ, that provides around 128 bits of security and enables the
fastest curve-based scalar multiplications on x64 software platforms by combin-
ing a four-dimensional decomposition based on endomorphisms [16], the fastest
twisted Edwards formulas [18], and the efficient yet compact Mersenne prime
p = 2127 − 1. In summary, the results from [12] show that, when computing
a single variable-base scalar multiplication, FourQ is more than 5 times faster
than the widely used NIST curve P-256 and more than 2 times faster than
Curve25519 [4]. In comparison to other high-performance alternatives such as
the genus 2 Kummer surface proposed by Gaudry and Schost [17], FourQ is, in
most cases, more than 1.2x faster on x64 processors. For all of these comparisons,
Costello and Longa’s FourQ implementation (i) does not exploit vector instruc-
tions (in contrast to Curve25519 and Kummer implementations that do [7,11]),
and (ii) is only optimized for x64 platforms. Therefore, the deployment and eval-
uation of FourQ on 32-bit ARM processors with NEON support, for which the
use of vector instructions pose a different design paradigm, is still missing.

In this work, we engineer an efficient NEON-based implementation of FourQ
targeting 32-bit ARM Cortex-A microarchitectures that are based on the
widely used ARMv7 instruction set. Our design, although intended for high-
performance applications, is not exclusive to only one microarchitecture; we
analyze the different features from multiple Cortex-A microarchitectures and
come up with an implementation that performs well across a wide range of
ARM platforms. Specifically, our analysis includes four popular ARM proces-
sor cores: Cortex-A7, A8, A9 and A15. In addition, our implementation runs
in constant-time, i.e., it is protected against timing and cache attacks [19], and
supports the three core elliptic curve-based computations found in most crypto-
graphic protocols (including Diffie-Hellman key exchange and digital signatures):
variable-base, fixed-base and double-scalar multiplication. By considering these
design decisions and functionality, we expect to ultimately produce practical
software that can be used in real-world applications. Our code has been made
publicly available as part of version 2.0 of FourQlib [13].

Our benchmark results extend FourQ’s top performance to 32-bit ARM
processors with NEON, and demonstrate for the first time FourQ’s vectorization
potential. For example, on a 2.0 GHz Odroid XU3 board powered by a Cortex-
A15 CPU, our software computes a variable-base scalar multiplication in only
132,000 cycles (or 66µs for a throughput above 15,150 operations/second). This
result is about 1.7x faster than the Kummer implementation from [7], about 1.8x
faster than the GLV+GLS based implementation from [15], about 2.4x faster
than the Curve25519 implementation from [9], and about 5.6x faster than the
implementation of the standardized NIST curve K-283 from [10]. As in our case,
all of these implementations are state-of-the-art, exploit NEON instructions and
are protected against timing and cache attacks. See Sect. 5 for complete bench-
mark results.
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The paper is organized as follows. In Sect. 2, we provide relevant details about
FourQ. In Sect. 3, we describe the 32-bit ARM architecture using NEON with
focus on the targeted Cortex-A processors. We describe our vectorized NEON
design and optimizations in Sect. 4 and, finally, Sect. 5 concludes the paper with
the analysis and benchmark results.

2 The FourQ Curve

This section describes FourQ, where we adopt the notation from [12] for the most
part. FourQ [12] is defined as the complete twisted Edwards [6] curve given by

E/Fp2 : − x2 + y2 = 1 + dx2y2, (1)

where the quadratic extension field Fp2 = Fp(i) for i2 = −1 and p = 2127−1, and
d = 125317048443780598345676279555970305165 · i + 4205857648805777768770.

The Fp2 -rational points lying on the curve Eq. (1) form an abelian group
for which the neutral element is OE = (0, 1) and the inverse of a point (x, y)
is (−x, y). The cardinality of this group is #E(Fp2) = 392 · N , where N is a
246-bit prime; thus, the prime-order subgroup E(Fp2)[N ] can be used to build
cryptographic systems.

FourQ is equipped with two efficiently computable endomorphisms, ψ and φ,
which give rise to a four-dimensional decomposition m �→ (a1, a2, a3, a4) ∈ Z

4 for
any integer m ∈ [1, 2256) such that 0 ≤ ai < 264 for i = 1, . . . , 4 and such that
a1 is odd. This decomposition enables a four-dimensional variable-base scalar
multiplication with the form

[m]P = [a1]P + [a2]φ(P ) + [a3]ψ(P ) + [a4]φ(ψ(P )),

for any point P ∈ E(Fp2)[N ].
The details of FourQ’s variable-base scalar multiplication based on the four-

dimensional decomposition are shown in Algorithm1. The curve arithmetic is
based on Hisil et al. explicit formulas that use extended twisted Edwards coor-
dinates [18]: any projective tuple (X : Y : Z : T ) with Z �= 0 and T = XY/Z
corresponds to an affine point (x, y) = (X/Z, Y/Z). Note that these formulas
are also complete on E , which means that they work without exceptions for all
points in E(Fp2).

The execution of Algorithm 1 begins with the computation of the endo-
morphisms ψ and φ, and the computation of the 8-point precomputed table
(Steps 1−2). These precomputed points are stored in coordinates (X +Y, Y −X,
2Z, 2dT ) for efficiency. Scalar decomposition and multiscalar recoding are then
applied to the input scalar m at Steps 3 and 4 as described in [12, Proposition
5] and [12, Algorithm 1], respectively. Finally, the main loop consists of 64 iter-
ations each computing a point doubling (Step 7) and a point addition with a
point from the precomputed table (Step 8). Following [12], the next coordinate
representations are used throughout the algorithm: R1 : (X,Y,Z, Ta, Tb), such
that T = Ta · Tb, R2 : (X + Y, Y − X, 2Z, 2dT ), R3 : (X + Y, Y − X,Z, T ) and
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Algorithm 1. FourQ’s scalar multiplication on E(Fp2)[N ] (from [12]).
Input: Point P ∈ E(Fp2)[N ] and integer scalar m ∈ [0, 2256).
Output: [m]P.

Compute endomorphisms:
1: Compute φ(P ), ψ(P ) and ψ(φ(P )).
Precompute lookup table:
2: Compute T [u] = P + [u0]φ(P ) + [u1]ψ(P ) + [u2]ψ(φ(P )) for u = (u2, u1, u0)2 in
0 ≤ u ≤ 7.

Write T [u] in coordinates (X + Y, Y − X, 2Z, 2dT ).
Scalar decomposition and recoding:
3: Decompose m into the multiscalar (a1, a2, a3, a4) as in [12, Proposition 5].
4: Recode (a1, a2, a3, a4) into (d64, . . . , d0) and (m64, . . . , m0) using [12, Algorithm 1].

Write si = 1 if mi = −1 and si = −1 if mi = 0.
Main loop:
5: Q = s64 · T [d64]
6: for i = 63 to 0 do
7: Q = [2]Q
8: Q = Q + si · T [di]
9: return Q

R4 : (X,Y,Z). In the main loop, point doublings are computed as R1 ← R4

and point additions as R1 ← R1 × R2, where the input using R1 comes from
the output of a doubling (after ignoring coordinates Ta and Tb) and the input
using R2 is a precomputed point from the table.

3 ARM NEON Architecture

The 32-bit RISC-based ARM architecture, which includes ARMv7, is the most
popular architecture in mobile devices. It is equipped with 16 32-bit registers
(r0-r15) and an instruction set supporting 32-bit operations or, in the case
of Thumb and Thumb2, a mix of 16- and 32-bit operations. Many ARM cores
include NEON, a powerful 128-bit SIMD engine that comes with 16 128-bit
registers (q0-q15) which can also be viewed as 32 64-bit registers (d0-d31).
NEON includes support for 8-, 16-, 32- and 64-bit signed and unsigned integer
operations. For more information, refer to [2].

The following is a list of basic data processing instructions that are used
in our NEON implementation. Since our design is based on a signed integer
representation (see Sect. 4), most instructions below are specified with signed
integer datatypes (denoted by .sXX in the instruction mnemonic). All of the
timings provided correspond to Cortex-A8 and A9 (see [1,3]).

– vmull.s32 performs 2 signed 32 × 32 multiplications and produces 2 64-bit
products. When there are no pipeline stalls, the instruction takes 2 cycles.
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– vmlal.s32 performs 2 signed 32×32 multiplications, produces 2 64-bit prod-
ucts and accumulates the results with 2 64-bit additions. It has a cost similar
to vmull.s32, which means that additions for accumulation are for free.

– vadd.s64 and vsub.s64 perform 1 or 2 signed 64-bit additions (resp. sub-
tractions). When there are no pipeline stalls, the instruction takes 1 cycle.

– vshl.i32 performs 2 or 4 32-bit logical shifts to the left by a fixed value.
When there are no pipeline stalls, the instruction takes 1 cycle.

– vshr.s64 and vshr.u64 perform 1 or 2 64-bit arithmetic and logical (resp.)
shifts to the right by a fixed value. It has a cost similar to vshl.i32.

– vand.u64 performs a bitwise logical and operation. It has a cost similar to
vadd.s64.

– vbit inserts each bit from the first operand into the destination operand if the
corresponding bit in the second operand is 1. Otherwise, the destination bit
remains unchanged. When there are no pipeline stalls, the instruction takes
1 cycle if operands are 64-bit long and 2 cycles if operands are 128-bit long.

Multiply and multiply-and-add instructions (vmull.s32 and vmlal.s32)
have latencies of 6 cycles. However, if a multiply-and-add follows a multiply
or another multiply-and-add that depends on the result of the first instruction
then a special forwarding enables the issuing of these instructions back-to-back.
In this case, a series of multiply and multiply-and-add instructions can achieve
a throughput of two cycles per instruction.

3.1 Targeted Platforms

Our implementation is optimized for the 32-bit Cortex-A series with ARMv7 sup-
port, with a special focus on Cortex-A7, A8, A9 and A15 cores. Next, we describe
the most relevant architectural features that are considered in the design of our
NEON-based software to achieve a consistent performance across microarchitec-
tures.

Cortex-A7. This microarchitecture has in-order execution, partial dual-issue
and a NEON engine capable of executing (at most) one NEON arithmetic oper-
ation per cycle.

Cortex-A8. This microarchitecture has the NEON pipeline logically behind
the integer pipeline. Once NEON instructions flow through the integer pipeline,
they are stored in a queue getting ready for execution. This queue accumulates
instructions faster than what it takes to execute them, which means that the inte-
ger pipeline can execute ARM instructions in the background while the NEON
unit is busy. This is exploited in Sect. 4.2 to boost the performance of the Fp2

implementation by mixing ARM and NEON instructions. Cortex-A8 also has
highly flexible dual-issue capabilities that support many combinations of ARM
and NEON instructions; for example, Cortex-A8 can issue a NEON load/store
instruction with a NEON arithmetic instruction in one cycle. The NEON engine
has one execution port for arithmetic instructions and one execution port for
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load/store/permute instructions; this enables back-to-back execution of pairs of
NEON {load/store, arithmetic} instructions (see Sect. 4.2).

Cortex-A9. This microarchitecture no longer has the NEON unit (with a
detached NEON queue) behind the integer unit as in Cortex-A8. This signif-
icantly reduces the cost of NEON to ARM data transfers, but also reduces the
efficiency gain obtained by mixing ARM and NEON instructions. In addition,
NEON on Cortex-A9 has some limitations: load/store instructions have longer
latency, and there is no dual-issue support. To minimize the inefficiency of the
load/store port it is possible to interleave these instructions with other instruc-
tions, as detailed in Sect. 4.2.
Cortex-A15. This microarchitecture has out-of-order execution on both ARM
and NEON units. The NEON engine, which is fully integrated with the ARM
core, is capable of executing two operations per cycle. The ARM and NEON
load/store ports are also integrated. In many platforms, Cortex-A15 cores are
paired with Cortex-A7 cores to form powerful heterogeneous systems (a.k.a.
big.LITTLE).

4 Vectorization Using NEON

The basic feature to consider in a NEON-based design is that vector multiplica-
tion is capable of working over two pairs of 32-bit values to produce one pair of
64-bit products.

In our preliminary analysis, we considered two approaches for vectorization:

– Vectorization across different Fp2 multiplications and squarings inside point
formulas.

– Vectorization across different field multiplications inside Fp2 multiplications
and squarings.

The first option has the disadvantage that pairing of Fp2 operations inside
point addition and doubling formulas is not perfect and would lead to sub-
optimal performance. E.g., the 3 squarings in the doubling formula would be
computed either as 2 pairs of squarings (increasing the cost in 1 squaring) or as
1 pair of squarings and 1 pair of multiplications, using any available multiplica-
tion (degrading the speed of 1 squaring). This approach also puts extra pressure
on register allocation, which can potentially lead to a high number of memory
accesses. In contrast, the second approach can benefit from the availability of
independent operations over Fp inside the Fp2 arithmetic. Both multiplications
and squarings over Fp2 naturally contain pairs of field multiplications; all mul-
tiplications are independent from each other and, therefore, can be optimally
paired for NEON vector multiplication.

We chose the second vectorization option for our implementation, which is
described next.
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4.1 Vectorization of F(2127 − 1)2 Arithmetic

For our design we use radix t = 226 and represent a quadratic extension field
element c = a+b·i ∈ Fp2 using a = a0+a1t+a2t

2+a3t
3+a4t

4 and b = b0+b1t+
b2t

2+b3t
3+b4t

4. In a similar fashion to Naehrig et al.’s interleaving strategy [21],
in our implementation the ten-coefficient vector representing element c is stored
“interleaved” as (b4, a4, b3, a3, b2, a2, b1, a1, b0, a0) in little endian format, i.e., a0

and b4 are stored in the lowest and highest memory addresses, respectively. Each
coefficient is signed and occupies 32 bits in memory; however, when fully reduced,
coefficients a0, b0, . . . , a3, b3 have values in the range [0, 226) and coefficients a4

and b4 have values in the range [0, 223).
Using the representation above, addition and subtraction of two elements

in Fp2 are simply done with 2 128-bit vector addition instructions (resp. sub-
tractions) and 1 64-bit vector addition instruction (resp. subtraction) using the
NEON instruction vadd.s32 (resp. vsub.s32). The corresponding results are
immediately produced in the interleaved representation.

For the case of multiplication and squaring, we base the implementation on a
schoolbook-like multiplication that includes the reduction modulo p = 2127 − 1.
Given two field elements a = a0 + a1t + a2t

2 + a3t
3 + a4t

4 and b = b0 + b1t +
b2t

2 + b3t
3 + b4t

4, multiplication modulo (2127 − 1) can be computed by

c0 = a0b0 + 8(a1b4 + a4b1 + a2b3 + a3b2)
c1 = a0b1 + a1b0 + 8(a2b4 + a4b2 + a3b3)
c2 = a0b2 + a2b0 + a1b1 + 8(a3b4 + a4b3) (2)
c3 = a0b3 + a3b0 + a1b2 + a2b1 + 8(a4b4)
c4 = a0b4 + a4b0 + a1b3 + a3b1 + a2b2.

Next, we show how to use (2) in the vectorized computation of multiplication
and squaring over Fp2 . Note that the operation sequences below are designed to
maximize performance and to fit all intermediate computations in the 16 128-bit
NEON registers at our disposal.

Multiplication in Fp2 . Let A = (b4, a4, b3, a3, b2, a2, b1, a1, b0, a0) and B =
(d4, c4, d3, c3, d2, c2, d1, c1, d0, c0) be coefficient vectors that represent elements
(a+b · i) ∈ Fp2 and (c+d · i) ∈ Fp2 , respectively. To multiply these two elements,
we first shift A to the left by 3 bits to obtain

t1 = (8b4, 8a4, . . . , 8b1, 8a1, 8b0, 8a0),

which requires 1 64-bit and 2 128-bit vector shifts using vshl.i32.
We then compute the first three terms of the multiplications bc = b × c and

bd = b× d, by multiplying in pairs (b0d0, b0c0), (8b1d4, 8b1c4), (8b4d1, 8b4c1) and
so on, and accumulating the intermediate values to produce

(bd0, bc0) = (b0d0 + 8b1d4 + . . . + 8b3d2, b0c0 + 8b1c4 + . . . + 8b3c2)
(bd1, bc1) = (b0d1 + b1d0 + . . . + 8b3d3, b0c1 + b1c0 + . . . + 8b3c3)
(bd2, bc2) = (b0d2 + b2d0 + . . . + 8b4d3, b0c2 + b2c0 + . . . + 8b4c3).
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The computation above is executed using (2). In total (including the missing
two terms that are computed later on), it requires 25 vector multiplications: 5 are
computed using vmull.s32 and 20 are computed using vmlal.s32. Additions
are not counted because they are virtually absorbed by the multiply-and-add
instructions.

Then, we compute the five terms of the multiplications ac = a × c and
ad = a×d. Similarly to above, we compute pairwise multiplications (a0d0, a0c0),
(8a1d4, 8a1c4), (8a4d1, 8a4c1) and so on, and accumulate the intermediate values
to produce

(ad0, ac0) = (a0d0 + 8a1d4 + . . . + 8a3d2, a0c0 + 8a1c4 + . . . + 8a3c2)
(ad1, ac1) = (a0d1 + a1d0 + . . . + 8a3d3, a0c1 + a1c0 + . . . + 8a3c3)
(ad2, ac2) = (a0d2 + a2d0 + . . . + 8a4d3, a0c2 + a2c0 + . . . + 8a4c3)
(ad3, ac3) = (a0d3 + a3d0 + . . . + 8a4d4, a0c3 + a3c0 + . . . + 8a4c4)
(ad4, ac4) = (a0d4 + a4d0 + . . . + a2d2, a0c4 + a4c0 + . . . + a2c2).

As before, this vectorized schoolbook computation requires 25 multiplications:
5 computed using vmull.s32 and 20 computed using vmlal.s32.

The intermediate values computed so far are subtracted and added to obtain
the first three terms of the results r = ac − bd and s = ad + bc. This requires
3 64-bit vector additions using vadd.s64 and 3 64-bit vector subtractions using
vsub.s64:

(s0, r0) = (ad0 + bc0, ac0 − bd0)
(s1, r1) = (ad1 + bc1, ac1 − bd1)
(s2, r2) = (ad2 + bc2, ac2 − bd2).

We then compute the remaining two terms in the computation of bc = b × c
and bd = b × d (i.e., (bd3, bc3) and (bd4, bc4)) as follows

(bd3, bc3) = (b0d3 + b3d0 + . . . + 8b4d4, b0c3 + b3c0 + . . . + 8b4c4)
(bd4, bc4) = (b0d4 + b4d0 + . . . + b2d2, b0c4 + b4c0 + . . . + b2c2).

Finally, we complete the computation with the last two terms of the results
r = ac − bd and s = ad + bc. This involves 2 64-bit vector additions using
vadd.s64 and 2 64-bit vector subtractions using vsub.s64:

(s3, r3) = (ad3 + bc3, ac3 − bd3)
(s4, r4) = (ad4 + bc4, ac4 − bd4).

The coefficients in the resulting vector (s4, r4, . . . , s0, r0) need to be reduced
before they are used by subsequent multiplications or squarings. We explain this
process below, after discussing squarings in Fp2 .

Squaring in Fp2 . Let A = (b4, a4, b3, a3, b2, a2, b1, a1, b0, a0) be a coefficient
vector representing an element (a+ b · i) in Fp2 . To compute the squaring of this
element we first shift its coefficients to the right to obtain
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t1 = (0, b4, 0, b3, 0, b2, 0, b1, 0, b0),

which requires 1 64-bit and 2 128-bit vector shifts using vshr.u64.
Then, A is subtracted and added with t1 to obtain

t2 = (b4, a4 − b4, b3, a3 − b3, b2, a2 − b2, b1, a1 − b1, b0, a0 − b0)
t3 = (b4, a4 + b4, b3, a3 + b3, b2, a2 + b2, b1, a1 + b1, b0, a0 + b0),

which requires 1 64-bit and 2 128-bit vector additions using vadd.s32 and 1
64-bit and 2 128-bit vector subtractions using vsub.s32.

We then shift A to the left by one bit with 1 64-bit and 2 128-bit vector shifts
using vshl.i32, as follows

t4 = (2a4, 0, 2a3, 0, 2a2, 0, 2a1, 0, 2a0, 0).

We perform a bitwise selection over t2 and t4 using 3 vbit instructions to
obtain

t5 = (2a4, a4 − b4, 2a3, a3 − b3, 2a2, a2 − b2, 2a1, a1 − b1, 2a0, a0 − b0).

We then shift the result by 3 bits to the left using 1 64-bit and 2 128-bit
vector shifts with vshr.u64, as follows

t6 = (16a4, 8(a4 − b4), 16a3, 8(a3 − b3), 16a2, 8(a2 − b2), 16a1, 8(a1 − b1), 16a0, 8(a0 − b0)).

We then compute the five terms of the multiplications r = (a + b) × (a − b)
and s = 2a × b. As before, we compute pairwise multiplications (2a0b0, (a0 −
b0)(a0 + b0)), (16a1b4, 8(a1 − b1)(a4 + b4)), (16a4b1, 8(a4 − b4)(a1 + b1)) and so
on, and accumulate the intermediate values to produce

(s0, r0) = (2a0b0 + . . . + 16a3b2, (a0 − b0)(a0 + b0) + . . . + 8(a3 − b3)(a2 + b2))
(s1, r1) = (2a0b1 + . . . + 16a3b3, (a0 − b0)(a1 + b1) + . . . + 8(a3 − b3)(a3 + b3))
(s2, r2) = (2a0b2 + . . . + 16a4b3, (a0 − b0)(a2 + b2) + . . . + 8(a4 − b4)(a3 + b3))
(s3, r3) = (2a0b3 + . . . + 16a4b4, (a0 − b0)(a3 + b3) + . . . + 8(a4 − b4)(a4 + b4))
(s4, r4) = (2a0b4 + . . . + 2a2b2, (a0 − b0)(a4 + b4) + . . . + (a2 − b2)(a2 + b2)).

As before, this computation follows (2) and involves 5 multiplications using
vmull.s32 and 20 multiplications using vmlal.s32. The reduction procedure
that needs to be applied to the output vector (s4, r4, . . . , s0, r0) before subsequent
multiplications or squarings is described next.

Coefficient Reduction. After computing a multiplication or squaring over Fp2 ,
resulting coefficients must be reduced to avoid overflows in subsequent opera-
tions. Given a coefficient vector (s4, r4, . . . , s0, r0), coefficient reduction can be
accomplished by applying a chain of shifts, additions and logical and instructions
using the flow (s0, r0) → (s1, r1) → (s2, r2) → (s3, r3) → (s4, r4) → (s0, r0).
In total, this requires 7 vector shifts using vshr.s64, 6 vector and operations
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using vand.u64, and 6 vector additions using vadd.s64. This chain of oper-
ations, however, introduces many data hazards that can stall the pipeline for
several cycles. In our implementation, for computations in which instruction
rescheduling is unable to eliminate most of these data hazards, we switch to a
different alternative that consists of splitting the computation in the following
two propagation chains: (s0, r0) → (s1, r1) → (s2, r2) → (s3, r3) → (s4, r4), and
(s3, r3) → (s4, r4) → (s0, r0). Even though this approach increases the oper-
ation count in 1 vector shift, 1 vector addition and 1 vector and, it allows to
speed up the overall computation because both chains can be interleaved, which
eliminates all data hazards.

Vector-Instruction Count. Based on the operation description above, multi-
plication over Fp2 involves 11 shifts, 7 logical and instructions, 17 additions and
50 multiplications. Similarly, squaring over Fp2 involves 17 shifts, 7 logical and
instructions, 3 bit-selection instructions, 13 additions and 25 multiplications.
These counts include coefficient reduction.

4.2 Additional Optimizations to the Fp2 Implementation

As explained in Sect. 3.1, the ARM architecture with NEON support opens the
possibility of optimizing software by exploiting the instruction-level parallelism
between ARM and NEON instruction sets. We remark, however, that the capa-
bility of boosting performance by exploiting this feature strongly depends on
the specifics of the targeted microarchitecture and application. For example,
microarchitectures such as Cortex-A8 have a relatively large NEON instruction
queue that keeps the NEON execution units busy once it is filled; when this
happens the ARM core can execute ARM instructions virtually in parallel. In
contrast, other microarchitectures such as Cortex-A7 and Cortex-A15 exhibit a
more continuous flow of instructions to the NEON execution ports, which means
that gaining efficiency from mixing ARM and NEON instructions gets signifi-
cantly more challenging. This is especially true for implementations that rely on
the full power of vector instructions. We note, however, that the technique could
still be beneficial for implementations that generate enough pipeline stalls. In
this case, NEON pipeline stalls could give enough room for ARM instructions
to run while the NEON engine recovers (e.g., see [15]).

In the case of our NEON implementation, careful scheduling of instructions
was effective in dealing with most latency problems inside the Fp2 functions
and, thus, we were able to minimize the occurrence of pipeline stalls. We verified
experimentally that this makes very difficult to obtain any additional speedup
by mixing ARM and NEON instructions on microarchitectures such as Cortex-
A7 and A15. In the case of microarchitectures that are more favorable to the
instruction mixing technique (e.g., Cortex-A8 and A9), we applied the following
approach. We use NEON to perform the relatively expensive multiplications and
squarings over Fp2 , and ARM to execute the simpler additions and subtractions
(or any combination of these operations). To do this, we inserted add/sub ARM
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code into the larger NEON-based functions, carefully interleaving NEON and
ARM instructions.

We verified that instantiating NEON-based multiplications and squarings
that include ARM-based additions or subtractions effectively reduces the cost
of these smaller operations. We do even better by suitably merging additions
and subtractions inside NEON functions. Specifically, we have identified and
implemented the following combinations of operations over Fp2 after analyzing
twisted Edwards point doubling and addition formulas:

– MulAdd: multiplication a × b using NEON, addition c + d using ARM.
– MulSub: multiplication a × b using NEON, subtraction c − d using ARM.
– MulDblSub: multiplication a× b using NEON, doubling/subtraction 2× c− d

using ARM.
– MulAddSub: multiplication a × b using NEON, addition c + d and subtraction

c − d using ARM.
– SqrAdd: squaring a2 using NEON, addition c + d using ARM.
– SqrAddSub: squaring a2 using NEON, addition c + d and subtraction c − d

using ARM.

In our software, the use of these functions is optional. Users can enable this
optimization by setting a command flag called “MIX ARM NEON”. Following
the details above, we suggest turning this flag on for Cortex-A8 and A9, and
turning it off for Cortex-A7 and A15. See AppendixA for details about the use
of these functions inside point doubling and addition.

Additionally, we improve the performance of multiplication and squaring over
Fp2 even further by interleaving load/store operations with arithmetic opera-
tions. As explained in Sect. 3.1, microarchitectures such as Cortex-A8 are capa-
ble of executing one load or store instruction and one arithmetic instruction
back-to-back. On the other hand, Cortex-A9 load/store instructions suffer from
longer latencies. It is quite fortunate that, in both cases, suitable interleaving
of load/store instructions with other non-memory instructions does benefit per-
formance (albeit under different circumstances). We observed experimentally
that some newer processors such as Cortex-A15 are negatively impacted by such
interleaving. Since in our code input loading and output storing only occur at
the very top and at the very bottom of Fp2 arithmetic functions, resp., it was
straightforward to create two different execution paths with minimal impact to
code size. The path selection is done at compile time: users can enable the opti-
mization by setting a command flag called “INTERLEAVE”. We suggest turning
this flag on for Cortex-A7, A8 and A9, and turning it off for Cortex-A15.

4.3 Putting Pieces Together

We now describe the implementation details of other necessary operations, and
explain how these and our vectorized functions are assembled together to com-
pute Algorithm 1.
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Since our vectorization approach is applied at the Fp2 level, most high-level
functions in the scalar multiplication remain unchanged for the most part (rel-
ative to a non-vectorized implementation). Hence, in our software, endomor-
phism and point formulas, which are used for table precomputation and in the
main loop of Algorithm1 (Steps 1−2, 7−8), are implemented with only a few
minor modifications in comparison with the original explicit formulas. Refer
to AppendixA for the modified doubling and addition formulas used in our
implementation.

The functions for scalar decomposition and recoding (Steps 3−4) are directly
implemented as detailed in [12, Proposition 5] and [12, Algorithm 1], respectively.
To extract points from the precomputed table, which is required at Step 8, we
carry out a linear pass over the full content of the table performing bitwise selec-
tions with vbit instructions. At each step, a mask computed in constant-time
determines if a given value is “taken” or not. Inversion over Fp2 , which is required
for final conversion to affine coordinates at the very end of Algorithm1, involves
the computation of field multiplications and squarings. For these operations, we
represent a field element a as a coefficient vector (a4, a3, a2, a1, a0), and apply
the schoolbook computation (2) (exploiting the typical savings for the case of
squarings). In this case, vector multiplications are applied over pairs of internal
integer multiplications. This pairing is not optimal, but the effect over the overall
cost is relatively small.

Finally, we implemented straightforward functions to convert back and forth
between our Fp2 vector representation and the canonical representation. These
functions are required just once at the beginning of scalar multiplication to
convert the input point to vector representation, and once at the very end to
convert the output point to canonical representation. In addition, we need to
perform one conversion from Fp2 to Fp vector representation (and one conversion
back) when computing a modular inversion during the final conversion to affine
coordinates.

In order to protect against timing and cache attacks, our implementation does
not contain branches that depend on secret data and does not use secret mem-
ory addresses. For the most part, the elimination of secret branches is greatly
facilitated by the regular structure of FourQ’s algorithms [12], whereas the elim-
ination of secret memory addresses is done by performing linear passes over the
full content of tables in combination with some masking technique.

5 Implementation and Results

In this section, we carry out a theoretical analysis on the core scalar multi-
plication operations and then present benchmark results on a large variety of
ARM Cortex-A based platforms: a 0.9 GHz Raspberry Pi 2 with a Cortex-A7
processor, a 1.0 GHz BeagleBone board with a Cortex-A8 processor, a 1.7 GHz
Odroid X2 with a Cortex-A9 processor and a 2.0 GHz Odroid XU3 with a Cortex-
A15 processor. All of these ARM-based devices come equipped with a NEON
vector unit. The software was compiled with GNU GCC v4.7.2 for the case of
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Raspberry Pi and BeagleBone, and with GNU GCC v4.8.2 for the case of the
Odroid devices. We report the average of 104 operations which were measured
with the clock gettime() function and scaled to clock cycles using the proces-
sor frequency.

Next, we analyze the different scalar multiplications when using FourQ.

Variable-Base Scalar Multiplication. Following Algorithm 1, this opera-
tion involves the computation of 1 φ endomorphism, 2 ψ endomorphisms and 7
points additions in the precomputation stage; 64 doublings, 64 additions and 65
constant-time 8-point table lookups (denoted by lut8) in the evaluation stage;
and, finally, 1 inversion and 2 multiplications over Fp2 for converting the final
result to affine coordinates. This represents a cost of 1i + 842m + 283s +
950.5a + 65lut8 or 3948M + 128S + 4436A + 65lut8 (considering that 1m
= 4M + 2A using schoolbook multiplication and that 1s = 2M + 3A1). This
operation count does not include other relatively small computations, such as
decomposition and recoding. We consider that field inversion of an element a is
computed as a2127−3 mod (2127 − 1) using a fixed chain consisting of 12 modular
multiplications and 126 modular squarings.

Fixed-Base Scalar Multiplication. We implemented this operation using
the mLSB-set comb method proposed by Faz-Hernández, Longa and Sánchez
(see [14, Algorithm 5]). Recall that scalars are in the range [0, 2256). By apply-
ing a relatively inexpensive Montgomery reduction, a given input scalar can
be reduced to the range [0, N) and, thus, fix the maximum scalar bitlength
to t = 249. As an example, consider the table parameters w = 5 and v = 5.
In this case, the mLSB-set comb method costs � 249

w·v 	 − 1 = 9 doublings and
v� 249

w·v 	 − 1 = 49 mixed additions using v · 2w−1 = 80 points computed offline.
Since precomputed points are stored in coordinates (x + y, y − x, 2t) the storage
requirement is 7.5 KB and the operation cost is roughly given by 1i + 372m +
36s + 397a + 49lut16 or 1574M + 128S + 1648A + 49lut16. This estimate
does not include the cost of scalar recoding and conversion.

Double-Scalar Multiplication. We implemented this operation using width-
w non-adjacent form (wNAF) with interleaving [16]. Given a computation with
the form [k]P + [l]Q, scalars k and l can be split in four 64-bits sub-scalars
each using FourQ’s decomposition algorithm. After converting the eight sub-
scalars to w-NAF, we compute an 8-way multiscalar multiplication as the main
operation. As an example, consider window parameters wP = 8 and wQ = 4
(this assumes that the point P is known in advance, which typically happens
in signature verification algorithms). In this case, the computation involves 4

1 I, M, S and A represent the cost of modular inversion, multiplication, squaring and
addition using p = 2127 − 1 (resp.); i, m, s and a represent the cost of inversion,
multiplication, squaring and addition over F(2127−1)2 (resp.).
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doublings and 4 · (2wQ−2 − 1) = 12 additions (for the online precomputation),
4 · ( 64

wP+1 ) = 32 mixed additions, 4 · ( 64
wQ+1 )− 1 = 52 additions and 63 doublings

(for the evaluation stage) using 4 · 2wP −2 = 256 points computed offline. Again,
we store points in coordinates (x+y, y−x, 2t). This fixes the storage requirement
to 24 KB; the operation cost is roughly 1i + 951m + 268s + 1034a or 4354M +
128S + 4776A. This estimate does not include the cost of 2 scalar decompositions
and 8 recordings to wNAF. E.g., assuming that 1S = 0.8M and 1A = 0.1M,
double-scalar multiplication is expected to be roughly 10% more expensive than
variable-base on FourQ.

5.1 Results

Table 1 includes benchmark results of our vectorized FourQ implementation for
computing all of the core scalar multiplication operations. The results highlight
the efficiency gain that can be obtained through the use of fixed-base scalar mul-
tiplications (e.g., during signature generation or ephemeral Diffie-Hellman key
generation) using a relatively small amount of precomputation. Most notably,
these results show for the first time the potential of using FourQ for signature
verification: one double-scalar multiplication is, in most cases, less than 15%
more expensive than single variable-base scalar multiplication.

Table 1. Performance results (in terms of thousands of cycles) of core scalar multi-
plication operations on FourQ with protection against timing and cache attacks on
various ARM Cortex-A processors with NEON support. Results were rounded to the
nearest 103 clock cycles. For this benchmark, fixed-base scalar multiplication used a
precomputed table of 80 points (7.5 KB of storage) and double-scalar multiplication
used a precomputed table of 256 points (24 KB of storage).

Scalar multiplication Cortex-A7 Cortex-A8 Cortex-A9 Cortex-A15

[k]P , variable base 373 235 256 132

[k]P , fixed base 204 144 145 84

[k]P + [l]Q 431 269 290 155

In Table 2, we compare our results for variable-base scalar multiplication with
other NEON-based implementations in the literature. We include results for the
twisted Edwards GLV+GLS curve defined over F(2127−5997)2 that was proposed
by Longa and Sica [20] and the genus 2 Kummer surface defined over F2127−1 that
was proposed by Gaudry and Schost [17]. These two curves, which we refer to as
“GLV+GLS” and “Kummer”, were the previous speed-record holders before the
advent of FourQ. Our comparisons also include the popular Montgomery curve
known as “Curve25519”, which is defined over F2255−19 [4], and two binary curve
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Table 2. Performance results (expressed in terms of thousands of clock cycles) of
state-of-the-art implementations of various curves targeting the 128-bit security level
for computing variable-base scalar multiplication on various ARM Cortex-A proces-
sors with NEON support. Results were rounded to the nearest 103 clock cycles. The
benchmarks for FourQ were done on a 0.9 GHz Raspberry Pi 2 (Cortex-A8), a 1.0 GHz
BeagleBone (Cortex-A8), a 1.7 GHz Odroid X2 (Cortex-A9) and a 2.0 GHz Odroid
XU3 (Cortex-A15). Cortex-A8 and A9 benchmarks for the Kummer implementation [7]
and Cortex-A8, A9 and A15 benchmarks for the Curve25519 implementation [9] were
taken from eBACS [8] (computers “h7beagle”, “h7green” and “sachr”), while Cortex-
A7 benchmarks for Kummer and Curve25519 and Cortex-A15 benchmarks for Kummer
were obtained by running eBACS’ SUPERCOP toolkit on the corresponding targeted
platform. The benchmarks for the GLV-GLS curve were taken directly from [15], and
the benchmarks for the binary Koblitz curve K-283 and the binary Edwards curve
B-251 were taken directly from [10].

Work Curve Cortex Cortex Cortex Cortex

A7 A8 A9 A15

This work FourQ 373 235 256 132

Bernstein et al. [7] Kummer 580 305 356 224

Faz-Hernández et al. [15] GLV+GLS - - 417 244

Bernstein et al. [9] Curve25519 926 497 568 315

Câmara et al. [10] B-251 - 657 789 511

Câmara et al. [10] K-283 - 934 1,148 736

alternatives: the binary Edwards curve defined over F2251 [5], referred to as “B-
251”, and the NIST’s standard Koblitz curve K-283 [23], which is defined over
the binary field F2283 .

Using the operation counts above and those listed in [12, Table 2], one can
determine that FourQ’s variable-base scalar multiplication is expected to be
roughly 1.28 times faster than Kummer’s ladder computation (assuming that 1I
= 115M, 1S = 0.8M, 1A = 0.1M and 1 word-mul = 0.25M). Our actual results
show that FourQ is between 1.3 and 1.7 times faster than Bernstein et al.’s
Kummer implementation [7] on different ARM microarchitectures. Therefore,
FourQ performs even better than expected, demonstrating that its efficient and
compact arithmetic enable vector-friendly implementations. These results also
highlight the effectiveness of the techniques described in Sect. 4.2.

In comparison to Curve25519, our NEON implementation is between 2.1
and 2.5 times faster when computing variable-base scalar multiplication. Our
implementation is also significantly faster than state-of-the-art NEON imple-
mentations using binary curves; e.g., it is between 4 and 5.6 times faster than
the implementation based on the NIST’s standard K-283 curve.

In some cases, even larger speedups are observed for scenarios in which one
can exploit precomputations. For example, for signature signing one can leverage



516 P. Longa

the efficiency of fixed-base scalar multiplications to achieve between factor-2.1
and factor-2.8 speedups in comparison to the Kummer surface from [17], which
does not support these efficient operations that exploit precomputations.

Acknowledgments. We thank Craig Costello for his valuable comments.

A Algorithms for Point Operations

The basic point doubling and addition functions used in the NEON implementa-
tion are shown in Algorithms 2 and 3, respectively. When selector “MIX ARM
NEON” is enabled, the algorithms use the functions with the labels on the right
(MulAddSub, SqrAdd, etc.), which mix ARM and NEON instructions as described
in Sect. 4.2.

Algorithm 2. Point doubling using homogeneous/extended homogeneous coor-
dinates on E .
Input: P = (X1, Y1, Z1) ∈ E(Fp2).
Output: 2P = (X2, Y2, Z2, T2,a, T2,b) ∈ E(Fp2).

1: if MIX ARM NEON = true then
2: t1 = X2

1 , X2 = X1 + Y1 {SqrAdd}
3: t2 = Y 2

1

4: Z2 = Z2
1 , T2,b = t1 + t2, t1 = t2 − t1 {SqrAddSub}

5: T2,a = X2
2

6: Y2 = t1 × T2,b, t2 = 2Z2 − t1 {MulDblSub}
7: Z2 = t1 × t2, T2,a = T2,a − T2,b {MulSub}
8: X2 = t2 × T2,a

9: else
10: t1 = X2

1

11: t2 = Y 2
1

12: X2 = X1 + Y1

13: T2,b = t1 + t2
14: t1 = t2 − t1
15: t2 = Z2

1

16: T2,a = X2
2

17: t2 = t2 + t2
18: t2 = t2 − t1
19: T2,a = T2,a − T2,b

20: Y2 = t1 × T2,b

21: X2 = t2 × T2,a

22: Z2 = t1 × t2
23: endif
24: return 2P = (X2, Y2, Z2, T2,a, T2,b).
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Algorithm 3. Point addition using extended homogeneous coordinates on E .
Input: P, Q ∈ E(Fp2) such that P = (X1, Y1, Z1, T1,a, T1,b) and Q = (X2 + Y2, Y2 −
X2, 2Z2, 2dT2).
Output: P + Q = (X3, Y3, Z3, T3,a, T3,b) ∈ E(Fp2).

1: if MIX ARM NEON = true then
2: T3,a = T1,a × T1,b, T3,b = X1 + Y1, Y3 = Y1 − X1 {MulAddSub}
3: t1 = 2Z2 × Z1

4: Z3 = (2dT2) × T3,a

5: X3 = (X2 + Y2) × T3,b, t2 = t1 − Z3, t1 = t1 + Z3 {MulAddSub}
6: Y3 = (Y2 − X2) × Y3

7: Z3 = t1 × t2, T3,a = X3 + Y3, T3,b = X3 − Y3

8: X3 = T3,b × t2
9: Y3 = T3,a × t1

10: else
11: t1 = X1 + Y1

12: t2 = Y1 − X1

13: t3 = T1,a × T1,b

14: t4 = 2Z2 × Z1

15: Z3 = (2dT2) × t3
16: X3 = (X2 + Y2) × t1
17: Y3 = (Y2 − X2) × t2
18: T3,a = X3 + Y3

19: T3,b = X3 − Y3

20: t3 = t1 − Z3

21: t1 = t1 + Z3

22: X3 = T3,b × t3
23: Z3 = t3 × t4
24: Y3 = T3,a × t4
25: endif
26: return P + Q = (X3, Y3, Z3, T3,a, T3,b).
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Abstract. Lattice-based cryptography has recently emerged as a prime
candidate for efficient and secure post-quantum cryptography. The two
main hard problems underlying its security are the shortest vector prob-
lem (SVP) and the closest vector problem (CVP). Various algorithms
have been studied for solving these problems, and for SVP, lattice sieving
currently dominates in terms of the asymptotic time complexity: one can
heuristically solve SVP in time 20.292d+o(d) in high dimensions d [Becker–
Ducas–Gama–Laarhoven, SODA’16]. Although several SVP algorithms
can also be used to solve CVP, it is not clear whether this also holds for
heuristic lattice sieving methods. The best time complexity for CVP is
currently 20.377d+o(d) [Becker–Gama–Joux, ANTS’14].

In this paper we revisit sieving algorithms for solving SVP, and study
how these algorithms can be modified to solve CVP and its variants as
well. Our first method is aimed at solving one problem instance and min-
imizes the overall time complexity for a single CVP instance with a time
complexity of 20.292d+o(d). Our second method minimizes the amortized
time complexity for several instances on the same lattice, at the cost
of a larger preprocessing cost. Using nearest neighbor searching with a
balanced space-time tradeoff, with this method we can solve the closest
vector problem with preprocessing (CVPP) with 20.636d+o(d) space and
preprocessing, in 20.136d+o(d) time, while the query complexity can be fur-
ther reduced to 20.059d+o(d) at the cost of 2d+o(d) space and preprocessing,
or even to 2εd+o(d) for arbitrary ε > 0, at the cost of preprocessing time
and memory complexities of (1/ε)O(d).

For easier variants of CVP, such as approximate CVP and bounded
distance decoding (BDD), we further show how the preprocessing method
achieves even better complexities. For instance, we can solve approximate
CVPP with large approximation factors κ with polynomial-sized advice
in polynomial time if κ = Ω(

√
d/ log d). This heuristically closes the gap

between the decision-CVPP result of [Aharonov–Regev, FOCS’04] (with
equivalent κ) and the search-CVPP result of [Dadush–Regev–Stephens-
Davidowitz, CCC’14] (which required larger κ).
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1 Introduction

Hard lattice problems. Lattices are discrete subgroups of R
d. More con-

cretely, given a basis B = {b1, . . . , bd} ⊂ R
d, the lattice L = L(B) generated

by B is defined as L(B) =
{∑d

i=1 λibi : λi ∈ Z

}
. Given a basis of a lattice

L, the Shortest Vector Problem (SVP) asks to find a shortest non-zero vec-
tor in L under the Euclidean norm, i.e., a non-zero lattice vector s of norm
‖s‖ = λ1(L) := minv∈L\{0} ‖v‖. Given a basis of a lattice and a target vector
t ∈ R

d, the Closest Vector Problem (CVP) asks to find a vector s ∈ L closest to
t under the Euclidean distance, i.e. such that ‖s − t‖ = minv∈L ‖v − t‖.

These two hard problems are fundamental in the study of lattice-based cryp-
tography, as the security of these schemes is directly related to the hardness of
SVP and CVP in high dimensions. Various other hard lattice problems, such as
Learning With Errors (LWE) and the Shortest Integer Solution (SIS) problem
are closely related to SVP and CVP, and many reductions between these and
other hard lattice problems are known; see e.g. [LvdPdW12, Fig. 3.1] or [Ste16]
for an overview. These reductions show that being able to solve CVP efficiently
implies that almost all other lattice problems can also be solved efficiently in
the same dimension, which makes the study of the hardness of CVP even more
important for choosing parameters in lattice-based cryptography.

Algorithms for SVP and CVP. Although SVP and CVP are both central
in the study of lattice-based cryptography, algorithms for SVP have received
somewhat more attention, including a benchmarking website to compare differ-
ent algorithms [SG15]. Various SVP methods have been studied which can solve
CVP as well, such as enumeration (see e.g. [Kan83,FP85,GNR10,MW15]), dis-
crete Gaussian sampling [ADRS15,ADS15], constructing the Voronoi cell of the
lattice [AEVZ02,MV10a], and using a tower of sublattices [BGJ14]. On the other
hand, for the asymptotically fastest method in high dimensions for SVP1, lattice
sieving, it is not known how to solve CVP with similar costs as SVP.

After a series of theoretical works on constructing efficient heuristic siev-
ing algorithms [NV08,MV10b,WLTB11,ZPH13,Laa15a,LdW15,BGJ15,BL16,
BDGL16] as well as practical papers studying how to speed up these algo-
rithms even further [MS11,Sch11,Sch13,BNvdP14,FBB+14,IKMT14,MTB14,
MODB14,MLB15,MB16,MLB16], the best time complexity for solving SVP
currently stands at 20.292d+o(d) [BDGL16,MLB16]. Although for various other
methods the complexities for solving SVP and CVP are similar [GNR10,MV10a,
ADS15], one can only guess whether the same holds for lattice sieving methods.

1 To obtain provable guarantees, sieving algorithms are commonly modified to facil-
itate a somewhat artificial proof technique, which drastically increases the time
complexity beyond e.g. the discrete Gaussian sampler and the Voronoi cell algo-
rithm [AKS01,NV08,PS09,MV10b]. On the other hand, if some natural heuristic
assumptions are made to enable analyzing the algorithm’s behavior, then sieving
clearly outperforms these methods. We focus on heuristic sieving in this paper.
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To date, the best heuristic time complexity for solving CVP in high dimensions
stands at 20.377d+o(d), due to Becker–Gama–Joux [BGJ14].

1.1 Contributions

In this paper we revisit heuristic lattice sieving algorithms, as well as the recent
trend to speed up these algorithms using nearest neighbor searching, and we
investigate how these algorithms can be modified to solve CVP and its general-
izations. We present two different approaches for solving CVP with sieving, each
of which we argue has its own merits.

Adaptive sieving. In adaptive sieving, we adapt the entire sieving algorithm to
the problem instance, including the target vector. As the resulting algorithm is
tailored specifically to the given CVP instance, this leads to the best asymptotic
complexity for solving a single CVP instance out of our two proposed meth-
ods: 20.292d+o(d) time and space. This method is very similar to solving SVP
with lattice sieving, and leads to equivalent asymptotics on the space and time
complexities as for SVP. The corresponding space-time tradeoff is illustrated in
Fig. 1, and equals that of [BDGL16] for solving SVP.

Non-adaptive sieving. Our main contribution, non-adaptive sieving, takes a
different approach, focusing on cases where several CVP instances are to be
solved on the same lattice. The goal here is to minimize the costs of computa-
tions depending on the target vector, and spend more time on preprocessing the
lattice, so that the amortized time complexity per instance is smaller when solv-
ing many CVP instances on the same lattice. This is very closely related to the
Closest Vector Problem with Preprocessing (CVPP), where the difference is that
we allow for exponential-size preprocessed space. Using nearest neighbor tech-
niques with a balanced space-time tradeoff, we show how to solve CVPP with
20.636d+o(d) space and preprocessing, in 20.136d+o(d) time. A continuous tradeoff
between the two complexities can be obtained, where in the limit we can solve
CVPP with (1/ε)O(d) space and preprocessing, in 2εd+o(d) time. This tradeoff is
depicted in Fig. 1.

A potential application of non-adaptive sieving is as a subroutine within enu-
meration methods. As described in e.g. [GNR10], at any given level in the enu-
meration tree, one is attempting to solve a CVP instance in a lower-dimensional
sublattice of L, where the target vector is determined by the path chosen from
the root to the current node in the tree. That means that if we can preprocess
this sublattice such that the amortized time complexity of solving CVPP is
small, then this could speed up processing the bottom part of the enumeration
tree. This in turn might help speed up the lattice basis reduction algorithm
BKZ [Sch87,SE94,CN11], which commonly uses enumeration as its SVP sub-
routine, and is key in assessing the security of lattice-based schemes. As the
preprocessing needs to be performed once, CVPP algorithms with impractically
large preprocessing costs may not be useful, but we show that with sieving the
preprocessing costs can be quite small.
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Fig. 1. Heuristic complexities for solving the Closest Vector Problem (CVP), the Clos-
est Vector Problem with Preprocessing (CVPP), Bounded Distance Decoding with Pre-
processing (δ-BDDP), and the Approximate Closest Vector Problem with Preprocess-
ing (κ-CVPP). The red curve shows CVP complexities of Becker–Gama–Joux [BGJ14].
The left blue curve denotes CVP complexities of adaptive sieving. The right blue curve
shows exact CVPP complexities using non-adaptive sieving. Purple curves denote relax-
ations of CVPP corresponding to different parameters δ (BDD radius) and κ (approx-
imation factor). Note that exact CVPP corresponds to δ-BDDP with δ = 1 and to
κ-CVPP with κ = 1. (Color figure online)

Outline. The remainder of the paper is organized as follows. In Sect. 2 we
describe some preliminaries, such as sieving algorithms and a useful result on
nearest neighbor searching. Section 3 describes adaptive sieving and its analy-
sis for solving CVP without preprocessing. Section 4 describes the preprocessing
approach to solving CVP, with complexity analyses for exact CVP and some of
its relaxations.

2 Preliminaries

2.1 Lattice Sieving for Solving SVP

Heuristic lattice sieving algorithms for solving the shortest vector problem all
use the following basic property of lattices: if v,w ∈ L, then their sum/difference
v±w ∈ L is a lattice vector as well. Therefore, if we have a long list L of lattice
vectors stored in memory, we can consider combinations of these vectors to
obtain new, shorter lattice vectors. To make sure the algorithm makes progress
in finding shorter lattice vectors, L needs to contain a lot of lattice vectors;
for vectors v,w ∈ L of similar norm, the vector v − w is shorter than v,w
iff the angle between v,w is smaller than π/3, which for random vectors v,w
occurs with probability (3/4)d/2+o(d). The expected space complexity of heuristic
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sieving algorithms follows directly from this observation: if we draw (4/3)d/2+o(d)

random vectors from the unit sphere, we expect a large number of pairs of
vectors to have angle less than π/3, leading to many short difference vectors. This
is exactly the heuristic assumption used in analyzing these sieving algorithms:
when normalized, vectors in L follow the same distribution as vectors sampled
uniformly at random from the unit sphere.

Heuristic 1. When normalized, the list vectors w ∈ L behave as i.i.d. uniformly
distributed random vectors from the unit sphere Sd−1 := {x ∈ R

d : ‖x‖ = 1}.
Therefore, if we start by sampling a list L of (4/3)d/2+o(d) long lattice vectors,
and iteratively consider combinations of vectors in L to find shorter vectors, we
expect to keep making progress. Note that naively, combining pairs of vectors in
a list of size (4/3)d/2+o(d) ≈ 20.208d+o(d) takes time (4/3)d+o(d) ≈ 20.415d+o(d).

The Nguyen-Vidick sieve. The heuristic sieve algorithm of Nguyen and
Vidick [NV08] starts by sampling a list L of (4/3)d/2+o(d) long lattice vectors,
and uses a sieve to map L, with maximum norm R := maxv∈L ‖v‖, to a new
list L′, with maximum norm at most γR for γ < 1 close to 1. By repeatedly
applying this sieve, after poly(d) iterations we expect to find a long list of lattice
vectors of norm at most γpoly(d)R = O(λ1(L)). The final list is then expected to
contain a shortest vector of the lattice. Algorithm3 in AppendixA describes a
sieve equivalent to Nguyen-Vidick’s original sieve, to map L to L′ in |L|2 time.

Micciancio and Voulgaris’ GaussSieve. Micciancio and Voulgaris used a
slightly different approach in the GaussSieve [MV10b]. This algorithm reduces
the memory usage by immediately reducing all pairs of lattice vectors that are
sampled. The algorithm uses a single list L, which is always kept in a state
where for all w1,w2 ∈ L, ‖w1 ±w2‖ ≥ ‖w1‖, ‖w2‖, and each time a new vector
v ∈ L is sampled, its norm is reduced with vectors in L. After the norm can
no longer be reduced, the vectors in L are reduced with v. Modified list vectors
are added to a stack to be processed later (to maintain the pairwise reduction-
property of L), and new vectors which are pairwise reduced with L are added to
L. Immediately reducing all pairs of vectors means that the algorithm uses less
time and memory in practice, but at the same time Nguyen and Vidick’s heuristic
proof technique does not apply here. However, it is commonly believed that the
same bounds (4/3)d/2+o(d) and (4/3)d+o(d) on the space and time complexities
hold for the GaussSieve. Pseudocode of the GaussSieve is given in Algorithm4
in AppendixA.

2.2 Nearest Neighbor Searching

Given a data set L ⊂ R
d, the nearest neighbor problem asks to preprocess L

such that, when given a query t ∈ R
d, one can quickly return a nearest neighbor

s ∈ L with distance ‖s − t‖ = minw∈L ‖w − t‖. This problem is essentially
identical to CVP, except that L is a finite set of unstructured points, rather
than the infinite set of all points in a lattice L.
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Locality-Sensitive Hashing/Filtering (LSH/LSF). A celebrated technique
for finding nearest neighbors in high dimensions is Locality-Sensitive Hashing
(LSH) [IM98,WSSJ14], where the idea is to construct many random partitions
of the space, and store the list L in hash tables with buckets corresponding to
regions. Preprocessing then consists of constructing these hash tables, while a
query t is answered by doing a lookup in each of the hash tables, and searching
for a nearest neighbor in these buckets. More details on LSH in combination
with sieving can be found in e.g. [Laa15a,LdW15,BGJ15,BL16].

Similar to LSH, Locality-Sensitive Filtering (LSF) [BDGL16,Laa15b] divides
the space into regions, with the added relaxation that these regions do not have
to form a partition; regions may overlap, and part of the space may not be
covered by any region. This leads to improved results compared to LSH when L
has size exponential in d [BDGL16,Laa15b]. Below we restate one of the main
results of [Laa15b] for our applications. The specific problem considered here
is: given a data set L ⊂ Sd−1 sampled uniformly at random, and a random
query t ∈ Sd−1, return a vector w ∈ L such that the angle between w and
t is at most θ. The following result further assumes that the list L contains
n = (1/ sin θ)d+o(d) vectors.

Lemma 1. [Laa15b, Corollary 1] Let θ ∈ (0, 1
2π), and let u ∈ [cos θ, 1/ cos θ].

Let L ⊂ Sd−1 be a list of n = (1/ sin θ)d+o(d) vectors sampled uniformly at
random from Sd−1. Then, using spherical LSF with parameters αq = u cos θ and
αu = cos θ, one can preprocess L in time n1+ρu+o(1), using n1+ρu+o(1) space, and
with high probability answer a random query t ∈ Sd−1 correctly in time nρq+o(1),
where:

nρq =
(

sin2 θ (u cos θ + 1)
u cos θ − cos 2θ

)d/2

, nρu =
(

sin2 θ

1 − cot2 θ (u2 − 2u cos θ + 1)

)d/2

.

(1)

Applying this result to sieving for solving SVP, where n = sin(π
3 )−d+o(d) and

we are looking for pairs of vectors at angle at most π
3 to perform reductions,

this leads to a space and preprocessing complexity of n0.292d+o(d), and a query
complexity of 20.084d+o(d). As the preprocessing in sieving is only performed once,
and queries are performed n ≈ 20.208d+o(d) times, this leads to a reduction of the
complexities of sieving (for SVP) from 20.208d+o(d) space and 20.415d+o(d) time,
to 20.292d+o(d) space and time [BDGL16].

3 Adaptive Sieving for CVP

We present two methods for solving CVP using sieving, the first of which we call
adaptive sieving – we adapt the entire sieving algorithm to the particular CVP
instance, to obtain the best overall time complexity for solving one instance.
When solving several CVP instances, the costs roughly scale linearly with the
number of instances.
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Algorithm 1. The adaptive Nguyen-Vidick sieve for finding closest vectors
Require: Lists L0, Lt ⊂ L containing (4/3)d/2+o(d) vectors at distance ≤ R from 0, t
Ensure: Lists L′

0, L′
t ⊂ L contain (4/3)d/2+o(d) vectors at distance ≤ γR from 0, t

1: Initialize empty lists L′
0, L′

t

2: for each (w1,w2) ∈ L0 × L0 do
3: if ‖w1 − w2‖ ≤ γR then
4: Add w1 − w2 to the list L′

0

5: for each (w1,w2) ∈ Lt × L0 do
6: if ‖(w1 − w2) − t‖ ≤ γR then
7: Add w1 − w2 to the list L′

t

8: return (L′
0, L′

t)

Using one list. The main idea behind this method is to translate the SVP
algorithm by the target vector t; instead of generating a long list of lattice
vectors reasonably close to 0, we generate a list of lattice vectors close to t, and
combine lattice vectors to find lattice vectors even closer vectors to t. The final
list then hopefully contains a closest vector to t.

One quickly sees that this does not work, as the fundamental property of
lattices does not hold for the lattice coset t+L: if w1,w2 ∈ t+L, then w1±w2 /∈
t+L. In other words, two lattice vectors close to t can only be combined to form
lattice vectors close to 0 or 2t. So if we start with a list of vectors close to t,
and combine vectors in this list as in the Nguyen-Vidick sieve, then after one
iteration we will end up with a list L′ of lattice vectors close to 0.

Using two lists. To make the idea of translating the whole problem by t work
for the Nguyen-Vidick sieve, we make the following modification: we keep track
of two lists L = L0 and Lt of lattice vectors close to 0 and t, and construct
a sieve which maps two input lists L0, Lt to two output lists L′

0, L′
t of lattice

vectors slightly closer to 0 and t. Similar to the original Nguyen-Vidick sieve,
we then apply this sieve several times to two initial lists (L0, Lt) with a large
radius R, to end up with two lists L0 and Lt of lattice vectors at distance at
most approximately

√
4/3 · λ1(L) from 0 and t2. The argumentation that this

algorithm works is almost identical to that for solving SVP, where we now make
the following slightly different heuristic assumption.

Heuristic 2. When normalized, the list vectors L0 and Lt in the modified
Nguyen-Vidick sieve both behave as i.i.d. uniformly distributed random vectors
from the unit sphere.

The resulting algorithm, based on the Nguyen-Vidick sieve, is presented in
Algorithm 1.

2 Observe that by the Gaussian heuristic, there are (4/3)d/2+o(d) vectors in L within
any ball of radius

√
4/3 · λ1(L). So the list size of the NV-sieve will surely decrease

below (4/3)d/2 when R <
√

4/3 · λ1(L).



530 T. Laarhoven

Main result. As the (heuristic) correctness of this algorithm follows directly
from the correctness of the original NV-sieve, and nearest neighbor techniques
can be applied to this algorithm in similar fashion as well, we immediately obtain
the following result. Note that space-time tradeoffs for SVP, such as the one
illustrated in [BDGL16, Fig. 1], similarly carry over to solving CVP, and the
best tradeoff for SVP (and therefore CVP) is depicted in Fig. 1.

Theorem 1. Assuming Heuristic 2 holds, the adaptive Nguyen-Vidick sieve with
spherical LSF solves CVP in time T and space S, with

S = (4/3)d/2+o(d) ≈ 20.208d+o(d), T = (3/2)d/2+o(d) ≈ 20.292d+o(d). (2)

An important open question is whether these techniques can also be applied
to the faster GaussSieve algorithm to solve CVP. The GaussSieve seems to make
even more use of the property that the sum/difference of two lattice vectors is
also in the lattice, and operations in the GaussSieve in L cannot as easily be
mimicked for the coset t + L. Solving CVP with the GaussSieve with similar
complexities is left as an open problem.

4 Non-adaptive Sieving for CVPP

Our second method for finding closest vectors with heuristic lattice sieving fol-
lows a slightly different approach. Instead of focusing only on the total time
complexity for one problem instance, we split the algorithm into two phases:

– Phase 1: Preprocess the lattice L, without knowledge of the target t;
– Phase 2: Process the query t and output a closest lattice vector s ∈ L to t.

Intuitively it may be more important to keep the costs of Phase 2 small, as the
preprocessed data can potentially be reused later for other instances on the same
lattice. This approach is essentially equivalent to the Closest Vector Problem
with Preprocessing (CVPP): preprocess L such that when given a target vector
t later, one can quickly return a closest vector s ∈ L to t. For CVPP however the
preprocessed space is usually restricted to be of polynomial size, and the time
used for preprocessing the lattice is often not taken into account. Here we will
keep track of the preprocessing costs as well, and we do not restrict the output
from the preprocessing phase to be of size poly(d).

Algorithm description. To minimize the costs of answering a query, and to
do the preprocessing independently of the target vector, we first run a standard
SVP sieve, resulting in a large list L of almost all short lattice vectors. Then,
after we are given the target vector t, we use L to reduce the target. Finally,
once the resulting vector t′ ∈ t + L can no longer be reduced with our list, we
hope that this reduced vector t′ is the shortest vector in the coset t+ L, so that
0 is the closest lattice vector to t′ and s = t− t′ is the closest lattice vector to t.
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Algorithm 2. Non-adaptive sieving (Phase 2) for finding closest vectors
Require: A list L ⊂ L of αd/2+o(d) vectors of norm at most α · λ1(L), and t ∈ R

d

Ensure: The output vector s is the closest lattice vector to t (w.h.p.)
1: Initialize t′ ← t
2: for each w ∈ L do
3: if ‖t′ − w‖ ≤ ‖t′‖ then
4: Replace t′ ← t′ − w and restart the for-loop
5: return s = t − t′

The first phase of this algorithm consists in running a sieve and storing the
resulting list in memory (potentially in a nearest neighbor data structure for
faster lookups). For this phase either the Nguyen-Vidick sieve or the GaussSieve
can be used. The second phase is the same for either method, and is described
in Algorithm 2 for the general case of an input list essentially consisting of the
αd+o(d) shortest vectors in the lattice. Note that a standard SVP sieve would
produce a list of size (4/3)d/2+o(d) corresponding to α =

√
4/3.

List size. We first study how large L must be to guarantee that the algorithm
succeeds. One might wonder why we do not fix α =

√
4/3 immediately in Algo-

rithm2. To see why this choice of α does not suffice, suppose we have a vector
t′ ∈ t + L which is no longer reducible with L. This implies that t′ has norm
approximately

√
4/3 · λ1(L), similar to what happens in the GaussSieve. Now,

unfortunately the fact that t′ cannot be reduced with L anymore, does not imply
that the closest lattice point to t′ is 0. In fact, it is more likely that there exists
an s ∈ t + L of norm slightly more than

√
4/3 · λ1(L) which is closer to t′, but

which is not used for reductions.
By the Gaussian heuristic, we expect the distance from t and t′ to the lattice

to be λ1(L). So to guarantee that 0 is the closest lattice vector to the reduced
vector t′, we need t′ to have norm at most λ1(L). To analyze and prove correct-
ness of this algorithm, we will therefore prove that, under the assumption that
the input is a list of the αd+o(d) shortest lattice vectors of norm at most α ·λ1(L)
for a particular choice of α, w.h.p. the algorithm reduces t to a vector t′ ∈ t+L
of norm at most λ1(L).

To study how to set α, we start with the following elementary lemma regard-
ing the probability of reduction between two uniformly random vectors with
given norms.

Lemma 2. Let v, w > 0 and let v = v · ev and w = w · ew. Then:

Pev,ew∼Sd−1

(
‖v − w‖2 < ‖v‖2

)
∼

[
1 − (

w
2v

)2]d/2+o(d)

. (3)

Proof. Expanding ‖v−w‖2 = v2 +w2 − 2vw 〈ev,ew〉 and ‖v‖2 = v2, the condi-
tion ‖v − w‖2 < ‖v‖2 equals w

2v < 〈ev,ew〉. The result follows from [BDGL16,
Lemma 2.1].
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Under Heuristic 1, we then obtain a relation between the choice of α for the
input list and the expected norm of the reduced vector t′ as follows.

Lemma 3. Let L ⊂ α · Sd−1 be a list of αd+o(d) uniformly random vectors of
norm α > 1, and let v ∈ β · Sd−1 be sampled uniformly at random. Then, for
high dimensions d, there exists a w ∈ L such that ‖v − w‖ < ‖v‖ if and only if

α4 − 4β2α2 + 4β2 < 0. (4)

Proof. By Lemma 2 we can reduce v with w ∈ L with probability similar to
p = [1 − α2

4β2 ]d/2+o(d). Since we have n = αd+o(d) such vectors w, the probability
that none of them can reduce v is (1−p)n, which is o(1) if n � 1/p and 1−o(1) if
n  1/p. Expanding n·p, we obtain the given Eq. (4), where α4−4β2α2+4β2 < 0
implies n � 1/p.

Note that in our applications, we do not just have a list of αd+o(d) lattice
vectors of norm α · λ1(L); for any α0 ∈ [1, α] we expect L to contain α

d+o(d)
0

lattice vectors of norm at most α0 ·λ1(L). To obtain a reduced vector t′ of norm
β · λ1(L), we therefore obtain the condition that for some value α0 ∈ [1, α], it
must hold that α4

0 − 4β2α2
0 + 4β2

0 < 0.
From (4) it follows that p(α2) = α4 − 4β2α2 + 4β2 has two roots r1 < 2 < r2

for α2, which lie close to 2 for β ≈ 1. The condition that p(α2
0) < 0 for some

α0 ≤ α is equivalent to α > r1, which for β = 1+o(1) implies that α2 ≥ 2+o(1).
This means that asymptotically we must set α =

√
2, and use n = 2d/2+o(d)

input vectors, to guarantee that w.h.p. the algorithm succeeds. A sketch of the
situation is also given in Fig. 2a.

Modifying the first phase. As we will need a larger list of size 2d/2+o(d) to
make sure we can solve CVP exactly, we need to adjust Phase 1 of the algorithm
as well. Recall that with standard sieving, we reduce vectors iff their angle is at
most θ = π

3 , resulting in a list of size (sin θ)−d+o(d). As we now need the output
list of the first phase to consist of 2d/2+o(d) = (sin θ′)−d+o(d) vectors for θ′ = π

4 ,
we make the following adjustment: only reduce v and w if their common angle
is less than π

4 . For unit length vectors, this condition is equivalent to reducing v

with w iff ‖v−w‖2 ≤ (2 − √
2) · ‖v‖2. This further accelerates nearest neighbor

techniques due to the smaller angle θ. Pseudocode for the modified first phase
is given in AppendixB.

Main result. With the algorithm in place, let us now analyze its complexity for
solving CVP. The first phase of the algorithm generates a list of size 2d/2+o(d)

by combining pairs of vectors, and naively this can be done in time T1 = 2d+o(d)

and space S = 2d/2+o(d), with query complexity T2 = 2d/2+o(d). Using nearest
neighbor searching (Lemma 1), the query and preprocessing complexities can be
further reduced, leading to the following result.
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√
2 · λ1(L)

0

(a) For solving exact CVP, we must
reduce the vector t to a vector t′ ∈ t+
L of norm at most λ1(L). The nearest
lattice point to t′ lies in a ball of radius
approximately λ1(L) around t′ (blue),
and almost all the mass of this ball is
contained in the (black) ball around 0
of radius

√
2 · λ1(L). So if s ∈ L \ {0}

had lain closer to t′ than 0, we would
have reduced t′ with s, since s ∈ L.

α · λ1(L)

0

λ1(L)

t

t′
λ1(L)

s

√
2 · λ1(L)

β · λ1(L)

t

t′ δ · λ1(L)
s

√
β2 + δ2 · λ1(L)

(b) For variants of CVP, a choice α for
the list size implies a norm β · λ1(L) of
t′. The nearest lattice vector s to t′ lies
within δ · λ1(L) of t′ (δ = 1 for approx-
CVP), so with high probability s has norm
approximately (

√
β2 + δ2) · λ1(L). For δ-

BDD, if
√

β2 + δ2 ≤ α then we expect the
nearest point s to be in the list L. For κ-
CVP, if β ≤ κ, then the lattice vector t−t′

has norm at most κ · λ1(L).

Fig. 2. Comparison of the list size complexity analysis for CVP (left) and
BDD/approximate CVP (right). The point t represents the target vector, and after
a series of reductions with Algorithm 2, we obtain t′ ∈ t + L. Blue balls around t′

depict regions in which we expect the closest lattice point to t′ to lie, where the blue
shaded area indicates a negligible fraction of this ball [BDGL16, Lemma 2]. (Color
figure online)

Theorem 2. Let u ∈ ( 12
√

2,
√

2). Using non-adaptive sieving, we can solve CVP
with preprocessing time T1, space complexity S, and query time complexity T2

as follows:

S = T1 =
(

1
u(

√
2 − u)

)d/2+o(d)

, T2 =

(√
2 + u

2u

)d/2+o(d)

. (5)

Proof. These complexities follow from Lemma 1 with θ = π
4 , noting that the

first phase can be performed in time and space T1 = S = n1+ρu , and the second
phase in time T2 = nρq .
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To illustrate the time and space complexities of Theorem 2, we highlight three
special cases u as follows. The full tradeoff curve for u ∈ (12

√
2,

√
2) is depicted

in Fig. 1.

– Setting u = 1
2

√
2, we obtain S = T1 = 2d/2+o(d) and T2 ≈ 20.2925d+o(d).

– Setting u = 1, we obtain S = T1 ≈ 20.6358d+o(d) and T2 ≈ 20.1358d+o(d).
– Setting u = 1

2 (
√

2 + 1), we get S = T1 = 2d+o(d) and T2 ≈ 20.0594d+o(d).

The first result shows that the query complexity of non-adaptive sieving is never
worse than for adaptive sieving; only the space and preprocessing complexities
are worse. The second and third results show that CVP can be solved in signif-
icantly less time, even with preprocessing and space complexities bounded by
2d+o(d).

Minimizing the query complexity. As u → √
2, the query complexity keeps

decreasing while the memory and preprocessing costs increase. For arbitrary
ε > 0, we can set u = uε ≈ √

2 as a function of ε, resulting in asymptotic
complexities S = T1 = (1/ε)O(d) and T2 = 2εd+o(d). This shows that it is
possible to obtain a slightly subexponential query complexity, at the cost of
superexponential space, by taking ε = o(1) as a function of d.

Corollary 1. For arbitrary ε > 0, using non-adaptive sieving we can solve CVPP
with preprocessing time and space complexities (1/ε)O(d), in time 2εd+o(d). In par-
ticular, we can solve CVPP in 2o(d) time, using 2ω(d) space and preprocessing.

Being able to solve CVPP in subexponential time with superexponential pre-
processing and memory is neither trivial nor quite surprising. A naive approach
to the problem, with this much memory, could for instance be to index the entire
fundamental domain of L in a hash table. One could partition this domain into
small regions, solve CVP for the centers of each of these regions, and store all the
solutions in memory. Then, given a query, one looks up which region t is in, and
returns the answer corresponding to that vector. With a sufficiently fine-grained
partitioning of the fundamental domain, the answers given by the look-ups are
accurate, and this algorithm probably also runs in subexponential time.

Although it may not be surprising that it is possible to solve CVPP in subex-
ponential time with (super)exponential space, it is not clear what the complexi-
ties of other methods would be. Our method presents a clear tradeoff between the
complexities, where the constants in the preprocessing exponent are quite small;
for instance, we can solve CVPP in time 20.06d+o(d) with less than 2d+o(d) mem-
ory, which is the same amount of memory/preprocessing of the best provable
SVP and CVP algorithms [ADRS15,ADS15]. Indexing the fundamental domain
may well require much more memory than this.

4.1 Bounded Distance Decoding with Preprocessing

We finally take a look at specific instances of CVP which are easier than the
general problem, such as when the target t lies unusually close to the lattice.
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This problem naturally appears in practice, when a private key consists of a good
basis of a lattice with short basis vectors, and the public key is a bad basis of the
same lattice. An encryption of a message could then consist of the message being
mapped to a lattice point v ∈ L, and a small error vector e being added to v
(t = v + e) to hide v. If the noise e is small enough, then with a good basis one
can decode t to the closest lattice vector v, while someone with the bad basis
cannot decode correctly. As decoding for arbitrary t (solving CVP) is known to
be hard even with knowledge of a good basis [Mic01,FM02,Reg04,AKKV05], e
needs to be very short, and t must lie unusually close to the lattice.

So instead of assuming target vectors t ∈ R
d are sampled at random, suppose

that t lies at distance at most δ ·λ1(L) from L, for δ ∈ (0, 1). For adaptive sieving,
recall that the list size (4/3)d/2+o(d) is the minimum initial list size one can hope
to use to obtain a list of short lattice vectors; with fewer vectors, one would not
be able to solve SVP.3 For non-adaptive sieving however, it may be possible to
reduce the list size below 2d/2+o(d).

List size. Let us again assume that the preprocessed list L contains almost
all αd+o(d) lattice vectors of norm at most α · λ1(L). The choice of α implies a
maximum norm βα · λ1(L) of the reduced vector t′, as described in Lemma 3.
The nearest lattice vector s ∈ L to t′ lies within radius δ ·λ1(L) of t′, and w.h.p.
s − t′ is approximately orthogonal to t′; see Fig. 2b, where the shaded area is
asymptotically negligible. Therefore w.h.p. s has norm at most (

√
β2

α + δ2) ·
λ1(L). Now if

√
β2

α + δ2 ≤ α, then we expect the nearest vector to be contained
in L, so that ultimately 0 is nearest to t′. Substituting α4 − 4β2α2 + 4β2 = 0
and β2 + δ2 ≤ α2, and solving for α, this leads to the following condition on α.

α2 ≥ 2
3 (1 + δ2) + 2

3

√
(1 + δ2)2 − 3δ2 . (6)

Taking δ = 1, corresponding to exact CVP, leads to the condition α ≥ √
2

as expected, while in the limiting case of δ → 0 we obtain the condition α ≥√
4/3. This matches experimental observations using the GaussSieve, where after

finding the shortest vector, newly sampled vectors often cause collisions (i.e.
being reduced to the 0-vector). In other words, Algorithm2 often reduces target
vectors t which essentially lie on the lattice (δ → 0) to the 0-vector when the
list has size (4/3)d/2+o(d). This explains why collisions in the GaussSieve are
common when the list size grows to size (4/3)d/2+o(d).

Main result. To solve BDD with a target t at distance δ · λ1(L) from the
lattice, we need the preprocessing to produce a list of almost all αd+o(d) vectors
of norm at most α ·λ1(L), with α satisfying (6). Similar to the analysis for CVP,
we can produce such a list by only doing reductions between two vectors if their

3 The recent paper [BLS16] discusses how to use less memory in sieving, by using
triple- or tuple-wise reductions, instead of the standard pairwise reductions. These
techniques may also be applied to adaptive sieving to solve CVP with less memory,
at the cost of an increase in the time complexity.
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angle is less than θ, where now θ = arcsin(1/α). Combining this with Lemma 2,
we obtain the following result.

Theorem 3. Let α satisfy (6) and let u∈(
√

α2−1
α2 ,

√
α2

α2−1 ). Using non-adaptive
sieving, we can heuristically solve BDD for targets t at distance δ · λ1(L) from
the lattice, with preprocessing time T1, space complexity S, and query time com-
plexity T2 as follows:

S =

(
1

1 − (α2 − 1)(u2 − 2u
α

√
α2 − 1 + 1)

)d/2+o(d)

, (7)

T1 = max
{

S, (3/2)d/2+o(d)
}

, T2 =

(
α + u

√
α2 − 1

2α − α3 + α2u
√

α2 − 1

)d/2+o(d)

.

(8)

Proof. These complexities directly follow from applying Lemma 1 with θ =
arcsin(1/α), and again observing that Phase 1 can be performed in time
T1 = n1+ρu and space S = n1+ρu , while Phase 2 takes time T2 = nρq . Note
that we cannot combine vectors whose angles are larger than π

3 in Phase 1,
which leads to a lower bound on the preprocessing time complexity T1 based on
the costs of solving SVP.

Theorem 3 is a generalization of Theorem 2, as the latter can be derived from
the former by substituting δ = 1 above. To illustrate the results, Fig. 1 considers
two special cases:

– For δ = 1
2 , we find α ≈ 1.1976, leading to S ≈ 20.2602d+o(d) and T2 =

20.1908d+o(d) when minimizing the space complexity.
– For δ → 0, we have α → √

4/3 ≈ 1.1547. The minimum space complexity is
therefore S = (4/3)d/2+o(d), with query complexity T2 = 20.1610d+o(d).

In the limit of u →
√

α2

α2−1 we need superexponential space/preprocessing

S,T1 → 2ω(d) and a subexponential query time T2 → 2o(d) for all δ > 0.

4.2 Approximate Closest Vector Problem with Preprocessing

Given a lattice L and a target vector t ∈ R
d, approximate CVP with approx-

imation factor κ asks to find a vector s ∈ L such that ‖s − t‖ is at most a
factor κ larger than the real distance from t to L. For random instances t, by
the Gaussian heuristic this means that a lattice vector counts as a solution iff it
lies at distance at most κ · λ1(L) from t.

List size. Instead of reducing t to a vector t′ of norm at most λ1(L) as is
needed for solving exact CVP, we now want to make sure that the reduced
vector t′ has norm at most κ · λ1(L). If this is the case, then the vector t − t′
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is a lattice vector lying at distance at most κ · λ1(L), which w.h.p. qualifies as
a solution. This means that instead of substituting β = 1 in Lemma 3, we now
substitute β = κ. This leads to the condition that α4

0 − 4κ2α2
0 + 4β2 < 0 for

some α0 ≤ α. By a similar analysis α2 must therefore be larger than the smallest
root r1 = 2κ(κ−√

κ2 − 1) of this quadratic polynomial in α2. This immediately
leads to the following condition on α:

α2 ≥ 2κ
(
κ −

√
κ2 − 1

)
. (9)

A sanity check shows that κ = 1, corresponding to exact CVP, indeed results in
α ≥ √

2, while in the limit of κ → ∞ a value α ≈ 1 suffices to obtain a vector t′

of norm at most κ · λ1(L). In other words, to solve approximate CVP with very
large (constant) approximation factors, a preprocessed list of size (1 + ε)d+o(d)

suffices.

Main result. Similar to the analysis of CVPP, we now take θ = arcsin(1/α) as
the angle with which to reduce vectors in Phase 1, so that the output of Phase 1 is
a list of almost all αd+o(d) shortest lattice vectors of norm at most α·λ1(L). Using
a smaller angle θ for reductions again means that nearest neighbor searching can
speed up the reductions in both Phase 1 and Phase 2 even further. The exact
complexities follow from Lemma 1.

Theorem 4. Using non-adaptive sieving with spherical LSF, we can heuristi-
cally solve κ-CVP with similar complexities as in Theorem3, where now α must
satisfy (9).

Note that only the dependence of α on κ is different, compared to the depen-
dence of α on δ for bounded distance decoding. The complexities for κ-CVP
arguably decrease faster than for δ-BDD: for instance, for κ ≈ 1.0882 we obtain
the same complexities as for BDD with δ = 1

2 , while κ =
√

4/3 ≈ 1.1547 leads
to the same complexities as for BDD with δ → 0. Two further examples are
illustrated in Fig. 1:

– For κ = 2, we have α ≈ 1.1976, which for u ≈ 0.5503 leads to S = T1 =
20.2602d+o(d) and T2 = 20.1908d+o(d), and for u = 1 leads to S = T1 =
20.3573d+o(d) and T2 = 20.0971d+o(d).

– For κ → ∞, we have α → 1, i.e. the required preprocessed list size approaches
2o(d) as κ grows. For sufficiently large κ, we can solve κ-CVP with a pre-
processed list of size 2εd+o(d) in at most 2εd+o(d) time. The preprocessing
time is given by 20.2925d+o(d).

The latter result shows that for any superconstant approximation factor
κ = ω(1), we can solve the corresponding approximate closest vector prob-
lem with preprocessing in subexponential time, with an exponential preprocess-
ing time complexity 20.292d+o(d) for solving SVP and generating a list of short
lattice vectors, and a subexponential space complexity required for Phase 2.
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In other words, even without superexponential preprocessing/memory we can
solve CVPP with large approximation factors in subexponential time.

To compare this result with previous work, note that the lower bound on α
from (9) tends to 1 + 1/(8κ2) + O(κ−4) as κ grows. The query space and time
complexities are further both proportional to αΘ(d). To obtain a polynomial
query complexity and polynomial storage after the preprocessing phase, we can
solve for κ, leading to the following result.

Corollary 2. With non-adaptive sieving we can heuristically solve approximate
CVPP with approximation factor κ in polynomial time with polynomial-sized
advice iff κ = Ω(

√
d/ log d).

Proof. The query time and space complexities are given by αΘ(d), where α =
1+Θ(1/κ2). To obtain polynomial complexities in d, we must have αΘ(d) = dO(1),
or equivalently:

1 + Θ

(
1
κ2

)
= α = dO(1/d) = exp O

(
log d

d

)
= 1 + O

(
log d

d

)
. (10)

Solving for κ leads to the given relation between κ and d.

Apart from the heuristic assumptions we made, this is equivalent to a result
of Aharonov and Regev [AR04], who previously showed that the decision version
of CVPP with approximation factor κ = Ω(

√
d/ log d) can provably be solved in

polynomial time. This further improves upon results of [LLS90,DRS14], who are
able to solve search-CVPP with polynomial time and space complexities for κ =
O(d3/2) and κ = Ω(d/

√
log d) respectively. Assuming the heuristic assumptions

are valid, Corollary 2 closes the gap between these previous results for decision-
CVPP and search-CVPP with a rather simple algorithm: (1) preprocess the
lattice by storing all dO(1) shortest vectors of the lattice in a list; and (2) apply
Algorithm 2 to this list and the target vector to find an approximate closest
vector. Note that nearest neighbor techniques only affect leading constants; even
without nearest neighbor searching this would heuristically result in a polynomial
time and space algorithm for κ-CVPP with κ = Ω(

√
d/ log d).
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A Pseudocode of SVP Algorithms

Algorithms 3 and 4 present pseudo-code for the (sieve part of the) original
Nguyen-Vidick sieve and the GaussSieve, respectively, as described in Sect. 2.
For the Nguyen-Vidick sieve, the presented algorithm is a more intuitive but
equivalent version of the original sieve; see [Laa15a, Appendix B] for details on
this equivalence.
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Algorithm 3. The quadratic Nguyen-Vidick sieve for finding shortest vectors
Require: An input list L ⊂ L of (4/3)d/2+o(d) vectors of norm at most R
Ensure: The output list L′ ⊂ L has (4/3)d/2+o(d) vectors of norm at most γ · R
1: Initialize an empty list L′

2: for each w1,w2 ∈ L do
3: if ‖w1 − w2‖ ≤ γR then
4: Add w1 − w2 to the list L′

5: return L′

Algorithm 4. The GaussSieve algorithm for finding shortest vectors
Require: A basis B of a lattice L(B)
Ensure: The algorithm returns a shortest lattice vector
1: Initialize an empty list L and an empty stack S
2: repeat
3: Get a vector v from the stack (or sample a new one if S = ∅)
4: for each w ∈ L do
5: if ‖v − w‖ ≤ ‖v‖ then
6: Replace v ← v − w
7: if ‖w − v‖ ≤ ‖w‖ then
8: Replace w ← w − v
9: Move w from the list L to the stack S (unless w = 0)

10: if v has changed then
11: Add v to the stack S (unless v = 0)
12: else
13: Add v to the list L (unless v = 0)
14: until v is a shortest vector
15: return v

B Pseudocode of Phase 1 for Non-adaptive Sieving

To generate a list of the αd+o(d) shortest lattice vectors with the GaussSieve,
rather than the (4/3)d/2+o(d) lattice vectors one would get with standard sieving,
we relax the reductions: reducing if ‖v − w‖ < ‖v‖ corresponds to an angle
π/3 between v and w, leading to a list size (1/ sin(π

3 ))d+o(d) = (4/3)d/2+o(d).
To obtain a list of size αd+o(d), we reduce vectors if their angle is less than
θ = arcsin(1/α), which for vectors v,w of similar norm corresponds to the
following condition:

‖v − w‖ <
√

2(1 − cos θ) · ‖v‖ =

√
2 − 2

α

√
α2 − 1 · ‖v‖. (11)

This leads to the modified GaussSieve described in Algorithm 5.
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Algorithm 5. The non-adaptive GaussSieve (Phase 1) for finding closest vectors
Require: A basis B of a lattice L(B), a parameter α > 1
Ensure: The output list L contains αd+o(d) vectors of norm at most α · λ1(L)
1: Initialize an empty list L and an empty stack S
2: Let α0 = max{α,

√
4/3}

3: repeat
4: Get a vector v from the stack (or sample a new one if S = ∅)
5: for each w ∈ L do
6: if ‖v − w‖2 ≤ (2 − 2

α0

√
α2
0 − 1) · ‖v‖2 then

7: Replace v ← v − w
8: if ‖w − v‖2 ≤ (2 − 2

α0

√
α2
0 − 1) · ‖w‖2 then

9: Replace w ← w − v
10: Move w from the list L to the stack S (unless w = 0)
11: if v has changed then
12: Add v to the stack S (unless v = 0)
13: else
14: Add v to the list L (unless v = 0)
15: until v is a shortest vector
16: return L
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[BLS16] Bai, S., Laarhoven, T., Stehlé, D.: Tuple lattice sieving. In: ANTS (2016)
[BNvdP14] Bos, J.W., Naehrig, M., van de Pol, J.: Sieving for shortest vectors in

ideal lattices: a practical perspective. Cryptology ePrint Archive, Report
2014/880, pp. 1–23 (2014)

[CN11] Chen, Y., Nguyên, P.Q.: BKZ 2.0: better lattice security estimates. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
1–20. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 1

[DRS14] Dadush, D., Regev, O., Stephens-Davidowitz, N.: On the closest vector
problem with a distance guarantee. In: CCC, pp. 98–109 (2014)

[FBB+14] Fitzpatrick, R., Bischof, C., Buchmann, J., Dagdelen, Ö., Göpfert, F.,
Mariano, A., Yang, B.-Y.: Tuning GaussSieve for speed. In: Aranha, D.F.,
Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 288–305.
Springer, Cham (2015). doi:10.1007/978-3-319-16295-9 16

[FM02] Feige, U., Micciancio, D.: The inapproximability of lattice and coding
problems with preprocessing. In: CCC, pp. 32–40 (2002)

[FP85] Fincke, U., Pohst, M.: Improved methods for calculating vectors of short
length in a lattice. Math. Comput. 44(170), 463–471 (1985)

[GNR10] Gama, N., Nguyên, P.Q., Regev, O.: Lattice enumeration using extreme
pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
257–278. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 13

[IKMT14] Ishiguro, T., Kiyomoto, S., Miyake, Y., Takagi, T.: Parallel Gauss Sieve
algorithm: solving the SVP challenge over a 128-dimensional ideal lattice.
In: PKC, pp. 411–428 (2014)

[IM98] Indyk, P., Motwani, R.: Approximate nearest neighbors: towards remov-
ing the curse of dimensionality. In: STOC, pp. 604–613 (1998)

[Kan83] Kannan, R.: Improved algorithms for integer programming and related
lattice problems. In: STOC, pp. 193–206 (1983)

[Laa15a] Laarhoven, T.: Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 3–22. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-47989-6 1

[Laa15b] Laarhoven, T.: Tradeoffs for nearest neighbors on the sphere (2015)
[LdW15] Laarhoven, T., Weger, B.: Faster sieving for shortest lattice vectors using

spherical locality-sensitive hashing. In: Lauter, K., Rodŕıguez-Henŕıquez,
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Abstract. In the last few years multivariate public key cryptography
has experienced an infusion of new ideas for encryption. Among these
new strategies is the ABC Simple Matrix family of encryption schemes
which utilize the structure of a large matrix algebra to construct effec-
tively invertible systems of nonlinear equations hidden by an isomor-
phism of polynomials. The cubic version of the ABC Simple Matrix
Encryption was developed with provable security in mind and was pub-
lished including a heuristic security argument claiming that an attack on
the scheme should be at least as difficult as solving a random system of
quadratic equations over a finite field.

In this work, we prove that these claims are erroneous. We present a
complete key recovery attack breaking full sized instances of the scheme.
Interestingly, the same attack applies to the quadratic version of ABC,
but is far less efficient; thus, the enhanced security scheme is less secure
than the original.

Keywords: Multivariate public key cryptography · Differential invari-
ant · MinRank · Encryption

1 Introduction

Classical public key cryptography is mainly based on arithmetic constructions on
Abelson groups. Since the discovery by Shor in the 1990s of efficient algorithms
for factoring and computing discrete logarithms with quantum computers, see
[1], there has been a growing interest in the international community in the task
of constructing algorithms resistant to cryptanalysis with quantum computers.
Indeed, in light of the announcement [?] by the National Institute of Standards
and Technology (NIST) of an imminent call for proposals for post-quantum
standards, the challenge of migrating from the homogeneous heritage of public
key cryptography to a more diverse collection of tools has become mainstream.

One possible candidate for practical, efficient, and nonconforming solutions
to some of the most consequential public key applications is Multivariate Pub-
lic Key Cryptography (MPKC). Multivariate schemes are attractive in certain
applications because of the maleability of the schemes. Different modifications
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of similar ideas can make a scheme more suited to lightweight architectures,
enhance security, or parametrize various aspects of performance.

In addition, MPKC is one among a few serious candidates to have risen to
prominence as post-quantum options. The fundamental problem of solving a
system of quadratic equations is known to be NP-hard, and so in the worst
case, solving a system of generic quadratic equations is unfeasible for a classical
computer; neither is there any indication that the task is easier in the quantum
computing paradigm.

MPKC has experienced a fair amount of success in the realm of digital sig-
natures. Some trustworthy schemes that have survived for almost two decades
include UOV [2], HFE- [3], and HFEv- [4]. Moreover, some of these schemes have
optimizations which have strong theoretical support or have stood unbroken in
the literature for some time. Specifically, UOV has a cyclic variant [5] which
reduces the key size dramatically, and Gui, a new HFEv- scheme, see [6], has
parameters far more appealing than QUARTZ due to greater confidence in the
complexity of algebraically solving the underlying system of equations [7].

The situation with multivariate public key encryption is quite different, how-
ever. Many attempts at multivariate encryption, see [8,9] for example, have
been shown to be weak based on rank or differential weaknesses. Recently, a few
interesting attempts to achieve multivariate encryption have surfaced. ZHFE, see
[10], and the ABC Simple Matrix Scheme, see [11], both use fundamentally new
structures for the derivation of an encryption system. While it was shown that
the best attack known on the Simple Matrix structure, see [12]—which relies
on the differential invariant structure of the central map—supports the claimed
security level of the scheme, a subset of the original authors proposed a cubic
version of the scheme, [13], as a step towards provable security.

In this article, we present a key recovery attack on a full scale version of the
Cubic Simple Matrix encryption scheme, having a complexity on the order of
qs+2 for characteristic p > 3, qs+3 for characteristic 3 and q2s+6 for charac-
teristic 2. Here s is the dimension of the matrices in the scheme, and q is the
cardinality of the finite field used. This technique is an extension and augmen-
tation of the technique of [12], and, similarly, exploits a differential invariant
property of the core map to perform a key recovery attack. We can show that
the attack uses a property which uniquely distinguishes the isomorphism class
of the central map from that of a random collection of formulae.

Specifically, our attack breaks CubicABC (q = 127, s = 7), designed for
80-bit security, in approximately 276 operations (or around 280 if one pessimisti-
cally uses ω = 3 as the linear algebra constant). More convincingly, our attack
completely breaks CubicABC (q = 127, s = 8), designed for 100-bit security,
in approximately 284 operations (or 288 for ω = 3). Furthermore, the attack is
fully parallelizable and requires very little memory; hence, the differential invari-
ant attack is far more efficient than algebraic attacks, the basis for the original
security estimation. Thus, the security claims in [13] are clearly unfounded; in
fact, the cubic version of the scheme, whose security was claimed to be closely
related to an NP-complete problem, is actually less secure than the quadratic
case.
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The paper is organized as follows. In the next section, we present the structure
of the Cubic ABC Simple Matrix encryption scheme. In the following section,
we recall differential invariants and present a natural extension of this notion to
the case of cubic polynomials. The differential invariant structure of the ABC
scheme is derived in the subsequent section and the effect of this structure on
minrank calculations is determined. We next calculate the complexity of the full
attack including the linear algebra steps required to extend the distinguisher
into a key recovery mechanism. Finally, we review these results and discuss the
surprising relationship between the practical security of the Cubic ABC scheme
and its quadratic counterpart.

2 The Cubic ABC Matrix Encryption Scheme

In [13], the Cubic ABC Matrix encryption scheme is proposed. The motiva-
tion behind the scheme is to use a large matrix algebra over a finite field to
construct an easily invertible cubic map. The construction uses matrix multipli-
cation to combine random quadratic formulae and random linear formula into
cubic formulae in a way that allows a user with knowledge of the structure of
the matrix algebra and polynomial isomorphism used to compose the scheme to
invert the map.

Let k = Fq be a finite field. Linear forms and variables over k will be denoted
with lower case letters. Vectors of any dimension over k will be denoted with bold
font, v. Fix s ∈ N and set n = s2 and m = 2s2. An element of Ms(k), Mn(k) or
Mm(k), or the linear transformations they represent, will be denoted by upper
case letters, such as M . When the entries of the matrix are being considered
functions of a variable, the matrix will be denoted M(x). Let φ represent the
vector space isomorphism from Ms×2s(k) to k2s2

sending a matrix to the column
vector consisting of the concatenation of its rows. The output of this map, being
a vector, will be written with bold font; however, to indicate the relationship to
its matrix preimage, it will be denoted with an upper case letter, such as M.

The scheme utilizes an isomorphism of polynomials to hide the internal struc-
ture. Let x =

[
x1, x2, . . . , xn

]� ∈ kn denote plaintext while y =
[
y1, . . . , ym

] ∈
km denotes ciphertext. Fix two invertible linear transformations T ∈ Mm(k)
and U ∈ Mn(k) (One may use affine transformations, but there is no security
or performance benefit in doing so.) Denote the input and output of the central
map by u = Ux and v = T−1(y).

The construction of the central map is as follows. Define three s× s matrices
A, B, and C in the following way:

A =

⎡

⎢
⎢
⎢
⎣

p1 p2 · · · ps

ps+1 ps+2 · · · p2s

...
...

. . .
...

ps2−s+1 ps2−s+2 · · · ps2

⎤

⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎣

b1 b2 · · · bs

bs+1 bs+2 · · · b2s

...
...

. . .
...

bs2−s+1 bs2−s+2 · · · bs2

⎤

⎥
⎥
⎥
⎦

,
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and

C =

⎡

⎢
⎢
⎢
⎣

c1 c2 · · · cs

cs+1 cs+2 · · · c2s

...
...

. . .
...

cs2−s+1 cs2−s+2 · · · cs2

⎤

⎥
⎥
⎥
⎦

.

Here the pi are quadratic forms on u chosen independently and uniformly at
random from among all quadratic forms and the bi and ci are linear forms on u
chosen independently and uniformly at random from among all linear forms.

We define two s × s matrices E1 = AB and E2 = AC. Since A is quadratic
and B and C are linear in ui, E1 and E2 are cubic in the ui. The central map
E is defined by

E = φ ◦ (E1||E2).

Thus E is an m dimensional vector of cubic forms in u. Finally, the public key
is given by F = T ◦ E ◦ U .

Encryption with this system is standard: given a plaintext (x1, . . . , xn), com-
pute (y1, . . . , ym) = F(x1, . . . , xn). Decryption is somewhat more complicated.

To decrypt, one inverts each of the private maps in turn: apply T−1, invert
E , and apply U−1. To “invert” E , one assumes that A(u) is invertible, and forms
a matrix

A−1(u) =

⎡

⎢
⎢
⎢
⎣

w1 w2 · · · ws

ws+1 ws+2 · · · w2s

...
...

. . .
...

ws2−s+1 ws2−s+2 · · · ws2

⎤

⎥
⎥
⎥
⎦

,

where the wi are indeterminants. Then using the relations A−1(u)E1(u) = B(u)
and A−1(u)E2(u) = C(u), we have m = 2s2 linear equations in 2n = 2s2

unknowns wi and ui. Using, for example, Gaussian elimination one can elimi-
nate all of the variables wi and most of the ui. The resulting relations can be
substituted back into E1(u) and E2(u) to obtain a large system of equations in
very few variables which can be solved efficiently in a variety of ways.

3 Subspace Differential Invariants for Cubic Maps

Let f : kn → km be an arbitrary fixed function on kn. Consider the discrete
differential Df(a,x) = f(a + x) − f(a) − f(x) + f(0).

If f is quadratic, we can express the differential as an n-tuple of bilinear
differential coordinate forms in the following way: [Df(a,x)]i = a�Dfix, where
Dfi is a symmetric matrix representation of the action on the ith coordinate
of the bilinear differential. If the function f is cubic Df(a,x) is a symmetric
bi-quadratic function. By the symmetry, it is well defined to compute a second
differential D2f(a,b,x) by computing the discrete differential of Df with respect
to either a or x. In this case, we may consider the second differential as an n-
tuple of trilinear differential coordinate forms by letting D2fi be the symmetric
3-tensor representing the action on the ith coordinate of the trilinear differential.
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In [12], the following definition of a subspace differential invariant was
provided:

Definition 1. A subspace differential invariant of a quadratic map f : kn → km

with respect to a subspace X ⊆ km is a subspace V ⊆ kn with the property
that there exists a W ⊆ kn of dimension at most dim(V ) such that simul-
taneously AV ⊆ W for all A =

∑m
i=1 xiDfi where (x1, . . . , xm) ∈ X, i.e.

A ∈ SpanX(Dfi).

This definition captures the idea of a subspace of the span of the public poly-
nomials acting linearly on a subspace of the plaintext space in the same way.
Such behavior is strange for quadratic maps in general. Furthermore, as shown
in [12], this behavior is computable regardless of the rank of the maps involved.

A natural generalization of this definition is the following:

Definition 2. A subspace differential invariant of a cubic map f : kn → km

with respect to a subspace X ⊆ km is a pair of subspaces (V1, V2) ⊆ (kn)2 for
which there exists a subspace W ⊆ kn with dim(W ) ≤ mindim(Vi) such that for
all A =

∑m
i=1 xiD

2fi where (x1, . . . , xm) ∈ X, for all a ∈ V2, for all b ∈ V2 and
for all x ∈ W⊥ we have that A(a,b,x) = 0.

This definition captures the notion of a subspace of the span of the public cubic
polynomials acting quadratically on a subspace of the plaintext space in the
same way. Such behavior is strange for cubic maps in general.

4 The Differential Invariant Structure of the Cubic ABC
Scheme

4.1 Column Band Spaces

Each component of the central E(u) = E1(u)||E2(u) map may be written as:

E(i−1)s+j =
s∑

l=1

p(i−1)s+lb(l−1)s+j , (1)

for the E1 equations, and likewise, for the E2 equations:

Es2+(i−1)s+j =
s∑

l=1

p(i−1)s+lc(l−1)s+j (2)

where i and j run from 1 to s.
Consider the s sets of s polynomials that form the columns of E1, i.e. for each

j ∈ {1, . . . , s} consider (Ej , Es+j , . . . , Es2−s+j). With high probability, the linear
forms bj , bs+j , . . . , bs2−s+j are linearly independent, and if so the polynomials
may be re-expressed, using a linear change of variables to (u′

1, . . . u
′
s2) where

u′
i = b(i−1)s+ j for i = 1, . . . , s. After the change of variables, the only cubic

monomials contained in (Ej , Es+ j , . . . , Es2 − s+ j) will be those containing at least
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one factor of u′
1, . . . , u

′
s. We can make a similar change of variables to reveal

structure in the s sets of s polynomials that form the columns of E2: Setting
u′

i = c(i−1)s+j for i = 1, . . . , s and a fixed j, the only cubic monomials contained
in (Es2 + j , Es2 + s+ j , . . . , E2s2 − s+ j) will be those containing at least one factor
of u′

1, . . . , u
′
s.

More generally, we can make a similar change of variables to reveal structure
in any of a large family of s dimensional subspaces of the span of the component
polynomials of E1 and E2, which we will call column band spaces in analogy
to the band spaces used to analyze the quadratic ABC cryptosystem in [12].
Each family is defined by a fixed linear combination, (β, γ), of the columns of
E1 and E2:

Definition 3. The column band space defined by the 2s-dimensional linear form
(β, γ) is the space of cubic maps, Bβ,γ , given by:

Bβ,γ = Span(Eβ,γ,1, . . . , Eβ,γ,s)

where

Eβ,γ,i =
s∑

j=1

(βjE(i−1)s+j + γjEs2+(i−1)s+j)

=
s∑

l=1

⎛

⎝p(i−1)s+l

s∑

j=1

(
βjb(l−1)s+j + γjc(l−1)s+j

)
⎞

⎠

Theorem 1. There is a pair of subspaces (V1, V2) ∈ (kn)2 which is a subspace
differential invariant with respect to Bβ,γ for all (β, γ). Moreover, there exists
an x1 ∈ kn such that rank(D2E(x1)) ≤ 2s for all E ∈ Bβ,γ .

Proof. Note that under a change of variables (x1, . . . , xs2) M�−→ (u′
1, . . . u

′
s2), where

u′
i =

∑s
j=1

(
βjb(i−1)s+j + γjc(i−1)s+j

)
for i = 1, . . . , s, the only cubic monomials

contained in the elements of Bβ,γ will be those containing at least one factor of
u′
1, . . . , u

′
s. In such a basis, the second differential of any map in Bβ,γ , and thus

the second differential of E can be visualized as a 3-tensor with a special block
form, see Fig. 1.

Let V be the (s2−s)-dimensional preimage M−1(Span(u′
1, . . . , u

′
s)

⊥). This 3-
tensor D2E may be thought of as a bilnear map which takes two vectors x1,x2 ∈
V , i.e. of the form:

(0, . . . , 0, u′
s+1(xk), . . . , u′

s2(xk))�

to a covector of the form:

(y(u′
1), . . . , y(u′

s), 0, . . . , 0).

Thus, in this basis D2E(x1) is a symmetric matrix which is zero on V × V .
Therefore, rank(D2E(x)) ≤ 2s. One checks that (V, V ) is a subspace differential
with respect to Bβ,γ with W := V ⊥, since dim(W ) = s < s2 − s = dim(V ).
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x1

x2

x3

Fig. 1. 3-tensor structure of the second differential of a band space map. Solid regions
correspond to nonzero coefficients. Transparent regions correspond to zero coefficients.

We will define the term “band-kernel” to describe the space of vectors of the
same form as x1 and x2 in the proof above, i.e.:

Definition 4. The band kernel of Bβ,γ , denoted BKβ,γ , is the space of vectors,
x, such that

u′
i =

s∑

j=1

(
βjb(i−1)s+j(x) + γjc(i−1)s+j(x)

)
= 0

for i = 1, . . . , s.

5 A Variant of MinRank Exploiting the Column Band
Space Structure

A minrank-like attack may be used to locate the column band-space maps
defined in the previous section. In this case, the attack proceeds by selecting
s2-dimensional vectors x1, x2, x3, and x4, setting

2s2
∑

i=1

tiD
2Ei(x1,x2) = 0

2s2
∑

i=1

tiD
2Ei(x3,x4) = 0,

(3)
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and solving for the ti. The attack succeeds when
∑2s2

i=1 tiEi ∈ Bβ,γ and x1, x2,
x3, and x4 are all within the corresponding band kernel. If these conditions are
met, then the rank of the 2-tensor

∑2s2

i=1 tiD
2Ei(xk) for k = 1, 2, 3, 4 will be at

most 2s, and this will be easily detectable.
The attack complexity will be significantly reduced if several of the xk are

set equal to one another. In odd characteristic fields, we can reduce the num-
ber of independently chosen vectors to 2, (for example, by setting x1 = x2 and
x3 = x4.) In characteristic 2, however, the antisymmetry of the 2nd differential
prevents the equation

∑2s2

i=1 tiD
2Ei(x1,x1) = 0 from imposing a nontrivial con-

straint on the ti. Even in characteristic 2, though, the number of independently
chosen vectors can be reduced to 3 (e.g. by setting x1 = x4).

Theorem 2. The probability that 2 randomly chosen vectors, x1 and x2, are
both in the band kernel of some band-space Bβ,γ is approximately 1

q−1 ; The prob-
ability that 3 randomly chosen vectors, x1, x2, and x3, are all in the band kernel
of some band-space Bβ,γ is approximately 1

(q−1)qs .

Proof. The condition that the xk are all contained within a band kernel is that
there be a nontrivial linear combination of the columns of the following matrix
equal to zero (i.e. that the matrix has nonzero column corank):

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1(x1) b2(x1) . . . bs(x1) c1(x1) c2(x1) . . . cs(x1)
bs+1(x1) bs+2(x1) . . . b2s(x1) cs+1(x1) cs+2(x1) . . . c2s(x1)

...
...

. . .
...

...
...

. . .
...

bs2−s+1(x1) bs2−s+2(x1) . . . bs2(x1) cs2−s+1(x1) cs2−s+2(x1) . . . cs2(x1)
b1(x2) b2(x2) . . . bs(x2) c1(x2) c2(x2) . . . cs(x2)

bs+1(x2) bs+2(x2) . . . b2s(x2) cs+1(x2) cs+2(x2) . . . c2s(x2)
...

...
. . .

...
...

...
. . .

...
bs2−s+1(x2) bs2−s+2(x2) . . . bs2(x2) cs2−s+1(x2) cs2−s+2(x2) . . . cs2(x2)

...
...

...
...

...
...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)

In the case with 2 randomly chosen vectors, the matrix is a uniformly random
2s×2s matrix, which has nonzero column corank with probability approximately
1

q−1 . In the case with 3 randomly chosen vectors, the matrix is a uniformly ran-
dom 3s × 2s matrix, which has nonzero column corank with probability approx-
imately 1

(q−1)qs .

Theorem 3. If x1, x2, x3, and x4 are chosen in such a way that all four vectors
are in the band kernel of a column band space Bβ,γ and also that the symmetric
tensor products x1�x2 and x3�x4 are linearly independent from one another and
statistically independent from the private quadratic forms, p(i−1)s+j in the matrix
A, then the tensor products x1 ⊗ x2 and x3 ⊗ x4 are both in the kernel of some
column band-space differential D2E =

∑
Eβ,γ,i∈Bβ,γ

τiD
2Eβ,γ,i with probability

approximately 1
(q−1)qs .
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Proof. A DE meeting the above condition exists iff there is a nontrivial solution
to the following system of equations

∑

Eβ,γ,i∈Bβ,γ

τiD
2Eβ,γ,i(x1,x2) = 0,

∑

Eβ,γ,i∈Bβ,γ

τiD
2Eβ,γ,i(x3,x4) = 0.

(5)

Expressed in a basis (e.g. the u′
i basis used in Definition 4) where the first s

basis vectors are chosen to be outside the band kernel, and the remaining s2 − s
basis vectors are chosen from within the band kernel, the column band-space
differentials, D2Eβ,γ,i are 3-tensors of the form shown in Fig. 1.

Likewise x1, x2, x3, and x4 take the form (0| xk ). The 2-tensors D2Eβ,γ,i(xk)
can then be represented by matrices of the form:

D2Eβ,γ,i(xk) =

⎡

⎢
⎢
⎣

Sk,i Rk,i

R�
k,i 0

⎤

⎥
⎥
⎦ (6)

where Rk,i is a random s × s2 − s matrix and Sk,i is a random symmetric s × s
matrix. Removing the redundant degrees of freedom we have the system of 2s
equations in s variables:

s∑

i=1

τiR1,ix2
� = 0,

s∑

i=1

τiR3,ix4
� = 0.

(7)

This has a nontrivial solution precisely when the following 2s × s matrix has
nonzero column corank:

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

| | |
R1,1x2

� R1,2x2
� . . . R1,sx2

�

| | |
| | |

R3,1x4
� R3,2x4

� . . . R3,sx4
�

| | |

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8)

This is a random matrix over k = Fq, which has nonzero column corank with
probability approximately 1

(q−1)qs , for practical parameters.
To verify that the conditions given in the theorem are sufficient to establish

the randomness of the matrix M , we can give the following explicit expression
for the matrix M , which is most easily derived by applying the product rule for
the discrete differential to Definition 3:
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M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Dp1(x1,x2) Dps+1(x1,x2) · · · Dps2−s+1(x1,x2)
Dp2(x1,x2) Dps+2(x1,x2) · · · Dps2−s+2(x1,x2)

...
...

. . .
...

Dps(x1,x2) Dp2s(x1,x2) · · · Dps2(x1,x2).
Dp1(x3,x4) Dps+1(x3,x4) · · · Dps2−s+1(x3,x4)
Dp2(x3,x4) Dps+2(x3,x4) · · · Dps2−s+1(x3,x4)

...
...

. . .
...

Dps(x3,x4) Dp2s(x3,x4) · · · Dps2(x3,x4)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)

Combining the results of Theorems 2 and 3, we find that for each choice
of the vectors xk, there is a column band-space map among the solutions of
Eq. (3) with probability approximately 1

(q−1)2q2s for even characteristic and
1

(q−1)2qs for odd characteristic. Equation (3) is a system of 2s2 equations in
2s2 variables; one might expect it to generally have a 0-dimensional space of
solutions. In some cases, however, there are linear dependencies among the equa-
tions, due to the fact that the D2Ei are symmetric tensors. In even characteris-
tic, we get 4 linear dependencies: D2Ei(x1,x2)(x1) = 0, D2Ei(x1,x2)(x2) = 0,
D2Ei(x3,x4)(x3) = 0, and D2Ei(x3,x4)(x4) = 0, and an additional linear depen-
dency when we reduce the number of independent vectors to 3 by setting x1 = x4:
D2Ei(x1,x2)(x3) + D2Ei(x3,x4)(x2) = 0, resulting in a 5-dimensional space of
solutions. In characteristic 3, reducing the number of independent vectors to 2
results in 2 linear dependencies among the equations: e.g. setting x1 = x2 and
x3 = x4, we have D2Ei(x1,x2)(x1) = 0 and D2Ei(x3,x4)(x3) = 0. In higher
characteristic, there are no linear dependencies imposed on the equations by
setting x1 = x2 and x3 = x4.

For characteristic 2, finding the expected 1-dimensional space of band-space
solutions in a 5-dimensional space costs q4 + q3 + q2 + q + 1 rank operations,
which in turn cost (s2)ω field operations, where ω ≈ 2.373 is the linear algebra
constant. Likewise, for characteristic 3, finding the expected 1-dimensional space
of band-space solutions in a 2-dimensional space costs q+1 rank operations. Thus
the total cost of finding a column band-space map using our variant of MinRank
is approximately q2s+6s2ω for charactersitic 2, qs+3s2ω for characteristic 3, and
qs+2s2ω for higher characteristic.

6 Complexity of Invariant Attack

The detection of a low rank induced bilinear form D2E(x) already constitutes a
distinguisher from a random system of equations. Extending this calculation to
a full key recovery requires further use of the differential invariant structure of
the public key.

First, note that U is not a critical element of the scheme. If A is a random
matrix of quadratic forms and B and C are random matrices of linear forms,
so are A ◦ U , B ◦ U and C ◦ U for any full rank map U . Thus, since clearly
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T ◦ φ(AB||AC) ◦ U = T ◦ φ((A ◦ U)(B ◦ U)||(A ◦ U)(C ◦ U)), we may absorb the
action of U into A, B, and C, and consider the public key to be of the form:

P (x) = T ◦ φ(AB||AC)(x).

Next, consider a trilinear form D2E in the band space generated by Bβ,γ .
Since the coefficients of D2E are products of coefficients of A and coefficients of
an element of Im(B||C), both of which are uniform i.i.d., there is a change of
basis M in which D2E has the form in Fig. 1 and the nonzero coefficients are
uniform i.i.d.

Consider D2E(x1) and D2E(x2) for x1,x2 in the band kernel corresponding
to Bβ,γ . Being maps from the same band space, there is a basis in which both
D2E(x1) and D2E(x2) have the form in Fig. 2. Thus, with high probability for
s ≥ 2, the kernels of both maps are contained in the corresponding band kernel,
Bβ,γ , and span(ker(D2E(x1) ∪ ker(D2E(x2)) = Bβ,γ .

Fig. 2. Structure of the bilinear forms induced by cubic maps in the same band space.

Remark 1. Here we have utilized a property which explicitly distinguishes dif-
ferential invariant structure from rank structure.

Given the basis for an s2 − s dimensional band kernel BK, we may choose a
basis {v1, . . . , vs} for the subspace of the dual space vanishing on BK. We can
also find a basis Ev1 , . . . , Evs

for the band space itself by solving the linear system
∑

Ei

τiD
2Ei(x11,x12,x13) = 0,

∑

Ei

τiD
2Ei(x21,x22,x23) = 0,

... =
...

∑

Ei

τiD
2Ei(xt1,xt2,xt3) = 0,

where t ≈ 2s2 and xij is in the band kernel.
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Since the basis Ev1 , . . . , Evs
is in a single band space, there exists an element

[
b′
1 · · · b′

s

]� ∈ ColSpace(B||C) and two matrices Ω1 and Ω2 such that

Ω1A

⎛

⎜
⎝Ω2

⎡

⎢
⎣

b′
1
...
b′
s

⎤

⎥
⎦

⎞

⎟
⎠ =: A′

⎛

⎜
⎝

⎡

⎢
⎣

v1
...
vs

⎤

⎥
⎦

⎞

⎟
⎠ =

⎡

⎢
⎣

Ev1

...
Evs

⎤

⎥
⎦ .

Solving the above system of equations over Fq[x1, . . . , xs2 ] uniquely determines
A′ in Fq[x1, . . . , xs2 ]/ 〈v1, . . . , vs〉. To recover all of A′, note that the above system
is part of an equivalent key

F = T ′ ◦ A′(B′||C ′)

where
[
v1 · · · vs

]� is the first column of B′.
Applying T ′−1 to both sides and inserting the information we know we may

construct the system
A′(B′||C ′) = T ′−1F (10)

Solving this system of equations modulo 〈v1, . . . , vs〉 for B′, C ′ and T ′−1 we
can recover a space of solutions, which we will restrict by arbitrarily fixing the
value of T ′−1. Note that the elements of T ′−1 are constant polynomials, and
therefore T ′−1(mod 〈v1, . . . , vs〉) is the same as T ′−1. Thus, for any choice of T ′−1

in this space, the second column of T ′−1F is a basis for a band space. Moreover,
the elements v′

s+1, . . . , v
′
2s of the second column of B′(mod 〈v1, . . . , vs〉) are the

image, modulo 〈v1, . . . , vs〉, of linear forms vanishing on the corresponding band
kernel. Therefore, the intersection

⋂s
i=1 ker(vi)∩

⋂2s
i=s+1 ker(v′

i) is the intersection
BK2 ∩ BK1 of the band kernels of our two band spaces.

We can reconstruct the full band kernel of this second band space using the
same method we used to obtain our first band kernel: We take a map E2 from
the second column of T ′−1F , and two vectors xa and xb from BK2 ∩ BK1, and
we compute BK2 = span(ker(D2E2(xa) ∪ ker(D2E2(xb)). We can now solve for
the second column of B′,

[
vs+1 · · · v2s

]�, uniquely over Fq[x1, . . . , xs2 ] (NOT
modulo 〈v1, . . . , vs〉) by solving the following system of linear equations:

vi ≡ v′
i(mod 〈v1, . . . , vs〉)

vi(x1) = 0
vi(x2) = 0

... =
...

vi(xs2−s) = 0

where i = s+1, . . . , 2s, and (x1, . . . ,xs2−s) is a basis for BK2. We can now solve
for A′ (again, uniquely over Fq[x1, . . . , xs2 ]) by solving:

A′

⎛

⎜
⎝

⎡

⎢
⎣

v1
...
vs

⎤

⎥
⎦

⎞

⎟
⎠ ≡

⎡

⎢
⎣

Ev1

...
Evs

⎤

⎥
⎦ (mod 〈v1, . . . , vs〉)
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A′

⎛

⎜
⎝

⎡

⎢
⎣

vs+1

...
v2s

⎤

⎥
⎦

⎞

⎟
⎠ ≡

⎡

⎢
⎣

Evs+1

...
Ev2s

⎤

⎥
⎦ (mod 〈vs+1, . . . , v2s〉)

where
[Evs+1 · · · Ev2s

]� is the second column of T ′−1F . This allows us to solve
Eq. 10 for the rest of B′ and C ′, completing the attack.

The primary cost of the attack involves finding the band space map. The
rest of the key recovery is additive in complexity and dominated by the band
space map recovery; thus, the total complexity of the attack is of the same
order as band space map recovery. Hence, the cost of private key extraction is
approximately q2s+6s2ω for characteristic 2, qs+3s2ω for characteristic 3, and
qs+2s2ω for higher characteristic. We note that with these parameters we can
break full sized instances of this scheme with parameters chosen for the 80-bit
and 100-bit security levels via the criteria presented in [13].

Specifically, our attack breaks CubicABC(q = 127, s = 7), designed for
80-bit security, in approximately 276 operations (or around 280 if one pessimisti-
cally uses ω = 3 as the linear algebra constant). More convincingly, our attack
completely breaks CubicABC(q = 127, s = 8), designed for 100-bit security, in
approximately 284 operations (or 288 for ω = 3). Furthermore, the attack is fully
parallelizable and requires very little memory; hence, the differential invariant
attack is far more efficient than algebraic attacks, the basis for the original secu-
rity estimation. Thus, the security claims in [13] are clearly unfounded; in fact,
the cubic version of the scheme, whose security was claimed to be closely related
to an NP-complete problem, is actually less secure than the quadratic case.

We can explain this dramatic discrepancy on the fact that the parameters in
[13] are derived by assuming that the algebraic attack is the most effective. In
the case of the quadratic ABC scheme, for the proposed parameters, the attack
of [12] was slower than the algebraic attack, though asymptotically faster. In the
case of the Cubic scheme, the attack is actually more efficient, in asymptotics
as well as for practical parameters.

7 Experiments

Using SAGE [14], we performed some minrank computations on small scale
variants of the Cubic ABC scheme. The computations were done on a computer
with a 64 bit quad-core Intel i7 processor, with clock cycle 2.8 GHz. We were
interested in verifying our complexity estimates on the most costly step in the
attack, the MinRank instance, rather than the full attack on the ABC scheme.
Given as input the finite field size q, and the scheme parameter s, we computed
the average number of vectors v required to be sampled in order for the rank of
the 2-tensor D2E(v) to fall to 2s. As explained in Sect. 5, when the rank falls to
this level, we have identified the subspace differential invariant structure of the
scheme and can exploit this structure to attack the scheme. Our results for odd
q are given in Table 1.
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Table 1. Average number of vectors needed for the rank to fall to 2s (for odd q)

s = 3 (q − 1)2qs s = 4 (q − 1)2qs s = 5 (q − 1)2qs

q = 3 14.75 108 333 324 952 972

q = 5 378 2000 9986 10000

q = 7 1688 12348 72951 86436

q = 9 606 46656

q = 11 13574 133100

For higher values of q and s the computations took too long to produce
sufficiently many data points and obtain meaningful results with SAGE. When
q is odd, our analysis predicted the number of vectors needed would be on the
order of (q − 1)2qs. Table 1 shows the comparison between our experiments and
the expected value. We see that for s = 3, the rank fell quicker than expected,
while for s > 3 the results are quite near the predicted value. This is because
when s = 3 our complexity estimates given in Sect. 5 are simply not accurate
enough, which happens for small values of q and/or s.

For even q, we also ran some experiments. We found that for s = 3 and
q = 2, 4, or 8, with high probability only a single vector was needed before the
rank fell to 2s. For s = 4 and s = 5, the computations were only feasible in
SAGE for q = 2. The average number of vectors needed in the s = 4 case was
244, with the expected value being (q − 1)2q2s = 256. With s = 5, the average
number in our experiments was 994 (although the number of trials was small),
with the expected value 1024. For higher values of q and s the computations
took too long to obtain meaningful results.

8 Conclusion

The ABC schemes are very interesting new ideas for multivariate public key
schemes. Essentially all of MPKC can be bisected into big field schemes, utilizing
the structure of an extension of the field used for public calculations, and small
field schemes which require no such extension. (For the purpose of this comment
we consider “medium” field schemes to be big field schemes.)

The ABC cryptosystems present a fundamentally new structure for the devel-
opment of schemes. In fact, if we consider the structure of simple algebras over
the public field (which are surely the only such structures we should consider
for secure constructions) then “big field” and “big matrix algebra” complete the
picture of possible large structure schemes.

It is interesting to note that the authors provide in [13] a heuristic security
argument for the scheme and, as reinforced in the first presentation of the scheme
at [15], suggest that with some work the scheme may be able to be shown prov-
ably secure. The idea behind their argument is at least somewhat reasonable,
if not precise. Their argument essentially amounts to the following: every cubic
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polynomial in the public key is in the ideal generated by the quadratic forms
in A under a certain basis; thus, one might expect the public key to contain a
subset of the information one would obtain by applying one step of a Gröbner
basis algorithm such as F4, see [16].

Unfortunately, this analysis is not very tight. In fact, we exploit the subspace
differential invariant structure inherent to the ABC methodology to show that for
odd characteristic the cubic scheme is less secure than its quadratic counterpart.
We may therefore conclude that any attempt at a secure cubic “big matrix
algebra” scheme must rely on the application of modifiers. The challenge, then,
is to construct such a scheme which is still essentially injective for the purpose
of encryption. Schemes such as this one can never compete with the secure
multivariate options for digital signatures we already know.

We are thus left with the same lingering question that has been asked for the
last two decades: Is secure multivariate encryption possible? Currently there is
a small list of candidates none of which has both been extensively reviewed and
has existed for longer than a few years. If we are to discover a secure multivariate
encryption scheme with a convincing security proof or some other security metric,
it will require some new techniques and new science. Only time will tell.
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Abstract. Pairing based cryptography is in a dangerous position follow-
ing the breakthroughs on discrete logarithms computations in finite fields
of small characteristic. Remaining instances are built over finite fields of
large characteristic and their security relies on the fact the embedding
field of the underlying curve is relatively large. How large is debatable.
The aim of our work is to sustain the claim that the combination of
degree 3 embedding and too small finite fields obviously does not pro-
vide enough security. As a computational example, we solve the DLP on
a 170-bit MNT curve, by exploiting the pairing embedding to a 508-bit,
degree-3 extension of the base field.

Keywords: Discrete logarithm · Finite field · Number Field Sieve ·
MNT elliptic curve

1 Introduction

Pairings were introduced as a constructive cryptographic tool in 2000 by
Joux [31], who proposed a one-round three participants key-exchange. Numer-
ous protocols also based on pairings have been developed since. Beyond efficient
broadcast protocols, prominent applications include Identity-Based Encryp-
tion [13,35,36], or short signatures [14].

The choice of appropriate curves and pairing definitions in the context of
pairing-based cryptography has been the topic of many research articles. An
important invariant is the degree of the embedding field, which measures the
complexity of evaluating pairings, but is also related to the security of sys-
tems (see Sect. 2 for more precisions). The first cryptographic setups proposed
used pairings on supersingular curves of embedding degree 2 defined over a
c© Springer International Publishing AG 2017
R. Avanzi and H. Heys (Eds.): SAC 2016, LNCS 10532, pp. 559–578, 2017.
https://doi.org/10.1007/978-3-319-69453-5_30
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prime field Fp, where p is 512-bit long, so that the pairing embeds into a
1024-bit finite field Fp2 . Another early curve choice is a supersingular elliptic
curve in characteristic three, defined over F397 , of embedding degree 6 (used
e.g. in [14], as well as various implementation proposals, e.g. [10]). More recent
proposals define pairing-friendly ordinary curves over large characteristic fields,
where constraining the embedding degree to selected values is a desired prop-
erty [9,15,16,19,22,23,25,42].

Cryptanalysis of pairings can be attempted via two distinct routes. Either
attack the discrete logarithm problem on the curve, or in the embedding field
of the pairing considered. The former approach is rarely successful, given that
it is usually easy to choose curves which are large enough to thwart O(

√
N)

attacks such as parallel collision search or Pollard rho. Note however that derived
problems such as the discrete logarithm with auxiliary inputs are much easier to
handle, as shown by [46].

Attacking pairings via the embedding field is a strategy known as the
Menezes–Okamoto–Vanstone [41] or Frey–Rück [24] attack, depending on which
pairing is considered. Successful cryptanalyses that follow this strategy have been
described in small characteristic. In [29], for a supersingular curve over F397 , the
small characteristic allowed the use of the Function Field Sieve algorithm [1], and
the composite extension degree was also a very useful property. More recently,
following recent breakthroughs for discrete logarithm computation in small char-
acteristic finite fields [7,27], a successful attack has been reported on a supersin-
gular curve over F21223 , with degree-4 embedding [27]. The outcome of these more
recent works is that curves in small characteristic are now definitively avoided
for pairing-based cryptography.

As far as we know, there is no major record computation of discrete loga-
rithms over pairing-friendly curves in large characteristic using a pairing reduc-
tion in the finite field. The pairing-friendly curves used in practice have a large
embedding field of more than 1024 bits, where computing a discrete logarithm
is still very challenging. A few curves in large characteristic have comparatively
small embedding fields, and were identified as weak to this regard, although
no practical computation to date demonstrated the criticality of this weakness.
This includes the so-called MNT curves defined by Miyaji–Nakabayashi–Takano,
e.g. [42, Example 1], an elliptic curve defined over a 170-bit prime p, and of 508-
bit embedding field Fp3 .

Despite the academic agreement on the fact that the pairing embedding fields
for 170-bit MNT curves in general, and the one just mentioned in particular,
are too small for cryptographic use, recent work like [2] has shown how cryp-
tography relying on overly optimistic hardness assumptions can linger almost
indefinitely in the wild. Demonstrating a practical break is key to really phasing
out such outdated cryptographic choices. As far as we know, an MNT curve
of low embedding degree 3 was never used in pairing-based cryptography, but
was never attacked by a pairing reduction either. In this article, we present our
attack over the weak1 MNT curve [42, Example 1], with p of 170 bits and n = 3.

1 Already described as weak in the paper by the authors.
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We report a discrete logarithm computation in the group of points of this curve
by a pairing reduction, using only a moderate amount of computing power.

In order to attack the discrete logarithm problem in the embedding field,
appropriate variants of the Number Field Sieve must be used. The crucial point
is the adequate choice of a polynomial pair defining the Number Field Sieve
setup, among the various choices proposed in the literature [6,8,32,33,40]. It
is also important to arrange for the computation to take advantage of Galois
automorphisms when available, both within sieving and linear algebra. Last,
some care is needed in order to efficiently compute individual logarithms of
arbitrary field elements.

This article is organized as follows. Section 2 reviews some background and
notations for MNT curves on the one hand, and the Number Field Sieve (NFS)
as a general framework on the other hand. Section 3 discusses in more detail the
various possible choices of polynomial selection techniques for NFS. Section 4
discusses the details of the discrete logarithm computation with NFS, while
Sect. 4.3 defines and solves an arbitrary challenge on the MNT curve.

2 Background and Notations

2.1 Using Pairing Embedding to Break DLP

We follow [12, Chap. IX]. To fix notations, pairings are defined as follows, the
map being bilinear, non-degenerate and computable in polynomial time in the
size of the inputs.

e :
{

E(Fp)[�] × E(Fpn)[�] → μ� ⊂ F
∗
pn

(P,Q) �→ e(P,Q). (1)

Here, μ� is the subgroup of �-th roots of unity, i.e. an element u ∈ μ� satisfies
u� = 1 ∈ F

∗
pn . The integer n is the so-called embedding degree, that is the smallest

integer i for which the �-torsion is contained in Fpi . It has a major impact on
evaluating the difficulty of solving the DLP on the curve.

Let G1 be a generator of E(Fp)[�] and P in the same group, whose dis-
crete logarithm u is sought (so that P = [u]G1). We choose a generator G2 for
E(Fpn)[�]. We observe that

e(P,G2) = e(G1, G2)u

so that u can be recovered as the logarithm of U = e(P,G2) in base T =
e(G1, G2), where both elements belong to the subgroup of order � of F∗

pn . Note
that by construction, � = O(p), so that the Number Field Sieve linear algebra
phase has to be considered modulo �, which is a priori much smaller than the
largest prime order subgroup of F∗

pn , which has size O(pφ(n)).
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2.2 MNT Curves

The Miyaji–Nakabayashi–Takano curves were designed in 2000 in [42] as the
first example of ordinary curves with low embedding degree n = 3, 4, or 6. The
curves were presented as a weak instance of ordinary elliptic curves that should
be avoided in elliptic-curve cryptography because of the Menezes–Okamoto–
Vanstone and Frey–Rück attacks [24,41] that embed the computation of a dis-
crete logarithm from the group of points of the curve to the embedding field
Fpn . At the 80-bit security level which was used in the 2000’s, an elliptic curve
of 160-bit prime order was considered safe, and of at least the same security as
an 1024-bit RSA modulus. However for MNT curves over prime fields of 160 bits,
the MOV and FR reduction attacks embed to finite fields of size 480, 640, or
960 bits, none of which should be considered as having a hard enough DLP. For
these three cases and most of all for n = 3, computing a discrete logarithm in
the embedding field is considerably easier than over the elliptic curve. The con-
clusion of the MNT paper was to advise developers to systematically check that
the embedding degree of an elliptic curve is large enough, to avoid pairing reduc-
tion attacks. The authors also mentioned as a constructive use of their curves
the prequel work of Kasahara, Ohgishi, and Sakai on identity-based encryption
using pairings [35,36]. Some implementations using MNT curves exist, for exam-
ple the Miracl Library proposes software on an MNT curve over a 170-bit prime,
with embedding degree n = 6, providing a 80-bit security level (Table 1).

Table 1. MNT curves as pairing-friendly curves in the 2000’s

Embedding degree n log2 p (#E(Fp)) n log2 p (#Fpn) 80-bit security

3 170 510 No

4 170 680 No

6 170 1020 Yes

Construction of MNT curves. The parameters p, τ , � (base field, trace, and
number of points) of the curve are given by polynomials of degree at most two.
For n = 3, 4, or 6, these are

Embedding degree n p = P (x) τ = Tr(x) #E(Fp) = p + 1 − τ

3 12x2 − 1 ±6x − 1 12x2 ∓ 6x + 1

4 x2 + x + 1 −x, or x + 1 x2 + 2x + 2 or x2 + 1

6 4x2 + 1 1 ± 2x 4x2 ∓ 2x + 1

To generate a curve, one needs to find an integer y of the appropriate size,
such that p = P (y) is prime and #E(Fp) is also prime, or equal to a small
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cofactor times a large prime. To compute the coefficients of the curve equation,
a Pell equation needs to be solved.

The Target curve. Our target will be the MNT curve given in [42, Example 1].
We recall that the curve parameters satisfy

y = −0x732c8cf5f983038060466

p = 12y2 − 1 = 0x26dccacc5041939206cf2b7dec50950e3c9fa4827af of 170 bits
τ = 6y − 1 where τ is the trace of the curve

#E(Fp) = p + 1 − τ = 72 · 313 · � where � is a 156-bit prime
� = 0xa60fd646ad409b3312c3b23ba64e082ad7b354d

The pairing embeds into the prime order � subgroup of the cyclotomic subgroup
of Fp3 , where � divides p2 + p + 1.

2.3 A Brief Overview of NFS-DL

Our target field is Fpn . NFS-DL starts by selecting two irreducible integer poly-
nomials f and g such that ϕ = gcd(f mod p, g mod p) is irreducible of degree
n (construction of f and g is discussed in Sect. 3). We use the representation
Fpn = Fp[x]/(ϕ(x)). Let Kf = Q[x]/(f(x)) = Q(α), and Of be its ring of inte-
gers. Note that because f is not necessarily monic, α might not be an algebraic
integer. Let ρf be the map from Kf to Fpn , sending α to T mod (p, ϕ(T )). We
define likewise Kg = Q(β), together with Og and ρg. This installs the (typical)
commutative diagram in Fig. 1.

Z[x]

Kf Kg

Fpn = Fp[x]/(ϕ(x))

ρf ρg

Fig. 1. NFS-DL diagram for Fpn

Given f and g, we choose a smoothness bound B and build factor bases
Ff (resp. Fg) consisting of prime ideals in Of (resp. Og) of norm less than B,
to which we add prime ideals dividing lc(f) (resp. lc(g)) to take into account
the fact that α and β are not algebraic integers. Then, we collect relations,
that is polynomials φ(x) ∈ Z[x] such that both ideals 〈φ(α)〉 and 〈φ(β)〉 are
smooth, namely factor completely over Ff (resp. Fg). Smoothness is related to
Norm(φ(α)), and in turn to Res(f, φ) since we have

± lc(f)deg(φ) Norm(φ(α)) = Res(f, φ).
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When φ is such that the integers Res(f, φ) and Res(g, φ) are B-smooth (only
prime factors below B), we have a relation:

{
φ(α)Of =

∏
q∈Ff

qvalq(φ(α)),

φ(β)Og =
∏

r∈Fg
rvalr(φ(β))

that are transformed as linear relation between virtual logarithms of ideals [52],
to which are added the so-called Schirokauer maps [51], labelled λf,i for 1≤ i≤rf

where rf is the unit rank of Kf (and the same for g).
To overcome the problem of dealing with fractional ideals instead of integral

ideals, we use the following result from [43] (see also [20]).

Proposition 1. Let f(X) =
∑d

i=0 ciX
i with coprime integer coefficients and α

a root of f . Let

Jf = 〈cd, cdα + cd−1, cdα
2 + cd−1α + cd−2, . . . , cdα

d−1 + cd−1α
d−2 + · · · + c1〉.

Then 〈1, α〉Jf = (1), Jf has norm |cd|, and Jf 〈a − bα〉 is an integral ideal for
integers a and b.

If φ(X) has degree k − 1, we have Norm(Jk−1
f 〈φ(α)〉) = ±Res(f, φ), so that

we can read off the factorization of the integral Jk−1
f 〈φ(α)〉 directly from the

factorization of its norm. A relation can now be written as:

(k − 1) vlog(Jf ) +
∑
q∈Ff

valq(φ(α)) vlog(q) +
rf∑

i=1

λf,i(φ(α)) vlog(λf,i)

≡ (k − 1) vlog(Jg) +
∑
r∈Fg

valr(φ(β)) vlog(r) +
rg∑

i=1

λg,i(φ(β)) vlog(λg,i) mod �.

We select as many φ(x) of degree at most k − 1 (for k ≥ 2 and very often
k = 2) as needed to find #Ff + #Fg + rf + rg + 2 relations. Note that Jf and
Jg are not always prime ideals. Nevertheless since all their prime divisors have a
grouped contribution for each relation, we may count them as single columns. We
may even replace the two columns by one, corresponding to vlog(Jf ) − vlog(Jg)
(e.g. this is done in cado-nfs).

Given sufficiently many equations, the linear system in the virtual logarithms
can be solved using sparse linear algebra techniques such as the Block Wiede-
mann algorithm [18]. When we want to compute the logarithm of a given target,
we need to rewrite some power (or some multiple) of the target as a multiplica-
tive combination of the images in Fpn of the factor base ideals, and use the
precomputed data base of computed logarithms. Section 4 will briefly discusses
algebraic factorization in practice.
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3 Polynomial Selection

The polynomial selection is the first step of the NFS algorithm. Polynomial
selection is rather cheap, but care is needed since the quality of the polynomial
pair it outputs conditions the running time of the three next steps. Section 3.1
below explains the two phases of polynomial selection. In a nutshell, we first
decide from which family the polynomials are chosen, and then we search among
possible solutions for “exceptionally good” polynomials. Note that because all
degree n irreducible polynomials correspond to isomorphic finite fields Fpn , we
are not constrained in the choice of Res(f, g). This degree of freedom allows to
select good polynomials.

As of 2016, the available polynomial selection algorithms are:

– the Conjugation method (Conj) [6, Sect. 3.3], explained in Algorithm1;
– the Generalized Joux–Lercier method (GJL) [6, Sect. 3.2] and [40] that pro-

duces polynomials of unbalanced coefficient sizes;
– the Joux–Lercier–Smart–Vercauteren method (JLSV1) [32, Sect. 2.3], that

produces two polynomials of degree n and coefficient size in O(
√

p) for both
polynomials;

– the second proposition (JLSV2) of the same paper [32, Sect. 3.2];
– the Joux–Pierrot (JP) method for pairing-friendly curves [33] which produces

polynomials equivalent to the Conjugation method for MNT curves;
– the Tower-NFS method (TNFS) of Barbulescu, Gaudry and Kleinjung [8];
– the Sarkar–Singh method that combines and generalizes the GJL and Conju-

gation methods [49].

Remark 1 (Non-applicable methods.). The Extended-TNFS method of Kim and
Kim-Barbulescu and its numerous variants [30,37,38,47,48,50] do not apply to
finite fields of prime extension degree n such as Fp3 . The TNFS method is not
better than the best above methods for our practical case study, as shown in the
paper [8, Sect. 5]. The Sarkar–Singh method [49] has two parameters (d, r): d is
a divisor of n and r ≥ n/d. Since n is prime, the pair (d = 1, r ≥ n) corresponds
to the GJL method and the pair (d = n, r = 1) to the Conjugation method. The
pair (d = n, r = 2) produces a polynomial f of degree 9 and small coefficients,
and a polynomial g of degree 6 and coefficients in O(p1/3). This is not competitive
for our size of parameters n = 3 and p of 170 bits: the cross-over point between
the Conjugation (r = 1) and their method (r = 2) is at log2 p3 = 9592 bits.

Algorithm 1 presents the Conjugation method, which eventually provided
the best yield. Pseudo-code describing the other methods can be found in
AppendixA.

3.1 A First Comparison

The various methods above yield polynomial pairs whose characteristics differ
significantly. Table 2 gives the expected degrees and coefficient sizes. From this
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Algorithm 1. Polynomial selection with the Conjugation method [6, Sect. 3.3]

Input: p prime and n integer
Output: f, g, ψ with f, g ∈ Z[x] irreducible and ψ = gcd(f mod p, g mod p) in

Fp[x] irreducible of degree n
1 repeat
2 Select g1(x), g0(x), two polynomials with small integer coefficients,

deg g1 < deg g0 = n
3 Select a(y) a quadratic, monic, irreducible polynomial over Z with small

coefficients

4 until a(y) has a root y in Fp and ψ(x) = g0(x) + yg1(x) is irreducible in Fp[x]
5 f ← Resy(a(y), g0(x) + yg1(x))
6 (u, v) ← a rational reconstruction of y
7 g ← vg0 + ug1
8 return (f, g, ψ)

data, we can derive bounds on the resultants on both sides of a relation (either
using the coarse bound (deg f + deg φ)!‖f‖∞

deg φ‖φ‖∞
deg f , or finer bounds such

as [11, Theorem 7], as used in [8, Sect. 3.2]). These norms should be minimized
in order to obtain the best running-time for the NFS algorithm. We obtain the
plot of Fig. 2 for the bit-size of the product of norms, similar to [6, Fig. 3].

Table 2. Norm bound w.r.t. Q

Method deg f ‖f‖∞ deg g ‖g‖∞

GJL D + 1 ≥ n + 1 O(log p) D ≥ n O(Q1/(D+1))

JP or Conj 2n O(log p) n O(Q1/(2n))

JLSV1 n O(Q1/(2n)) n O(Q1/(2n))

JLSV2 D ≥ n + 1 O(Q1/(D+1)) n O(Q1/(D+1))

Figure 2 suggests that the GJL method yields the smallest norms for log2 Q =
508. The norms produced with the Conjugation and JLSV1 methods are not very
far however so we compared more precisely these three methods for our 170-bit
parameters. This entails finding competitive polynomial pairs for each method,
and comparing their merits. Estimated bounds as well as experimental values for
the products of norms for log2 Q = 508 are reported in Table 3. Results of sieving
on one slide of special-q is reported in Table 4. The algorithms and computed
polynomials are given in AppendixA. The theoretical bound ‖f‖∞ equals one
bit in the Conjugation and GJL methods whereas in practice to improve the
smoothness properties of f , we have chosen a polynomial with moderately larger
coefficients, and with better α and Murphy’s E values (see [44, Sect. 5.2 Eq. (5.7)]
on Murphy’s E value). The coefficient size of g selected with the GJL, Conj
and JLSV1methods is a few bits larger than the theoretical bound because we
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JP, Conj, (deg f, deg g) = (6, 3)
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JLSV1, (deg f, deg g) = (3, 3)

JLSV2, (deg f, deg g) = (4, 3)

Fig. 2. Norm bound for four polynomial selection methods for Fp3

computed linear combinations of two distinct g, and of f and the initial g in
the JLSV1 case (since they are of same degree). The advantage of the hybrid
Joux–Pierrot method (Algorithm2) in the MNT case is that g can be monic,
which does not allow for linear combinations.

Table 3. Norm bounds in bits for log Q = 508 and log E = 25.25: estimates based on
Table 2, compared to experimental values with our selected polynomials.

Method ‖f‖∞ ‖g‖∞ Norm bound f Norm bound g Product

Bound Exp. Bound Exp. Bound Exp. Bound Exp. Bound Exp.

GJL 1 2 127 130 106 107 206 208 311 314

Conj 1 9 85 86 157 165 163 164 320 328

Hybrid JP 1 12 85 85 157 168 163 164 320 331

JLSV1 85 85 85 86 163 163 163 164 326 327

JLSV2 102 – 102 – 206 – 180 – 386 –

Galois actions. For small extension degrees n ∈ {3, 4, 6} there exist families of
polynomials producing number fields with cyclic Galois groups, and an easy-to-
compute automorphism [21, Prop. 1.2]. Taking polynomials from these families
yields a speed-up in the sieving part as well as in the linear algebra part for the
JLSV1 and Conjugation methods. We take g = x3 − y0x

2 − (y0 + 3)x − 1 for the
Conjugation method, i.e. g0 = x3 − 3x − 1 and g1 = −x2 − x in Algorithm 1.
The Galois action is σ(x) = (−x − 1)/x which is independent of the parameter
y0. In that case, given the factorization for 〈a − bα〉, we can deduce that of

σ(〈a − bα〉) = 〈a − bσ(α)〉 = − 1
α

(b − (−a − b)α).

The same holds on the f side.
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Forming a database of good polynomials f . For the Conjugation method
(and similarly for the competing methods), the early steps in Algorithm1 can be
tabulated in some way, depending only on the extension degree n (and for JLSV1,
also on the size of p, but not its value): we can store a database of f ’s with good
smoothness properties (low α and high Murphy’s E values). Actually we searched
over a(y) = a2y

2 + a1y + a0, where 0 < a2 < 32, |a1| < 32 and |a0| < 512, and
computed f = Resy(a(y), x3 −yx2 − (y+3)x−1). Later, depending on p, we can
continue Algorithm 1 for these precomputed polynomials (test whether a has a
root modulo p).

Note also that in Algorithm1, the rational reconstruction step naturally pro-
duces several quotients u/v, which yield several candidate polynomials g. Small
linear combinations of these polynomials can be tried, in order to improve on
the Murphy’s E value.

3.2 Probing the Sieving Yield

To finalize the comparison between the polynomials, we compared the rela-
tion yield for small special-q ranges sampled over the complete special-q space.
Because the JLSV1 and Conjugation methods feature balanced norms (see
Table 3), we used similar large prime bounds (27 bits) on both sides in both cases,
and allowed two large prime on each side. In contrast, for the GJL method, we
allowed 28-bit large primes on the g side, and chose q to be only on that side. The
Conjugation method (polynomial below) appeared as the best option based on
the seconds/relation measure, given that the overall yield was sufficient. Results
of this test are reported on Table 4.

f = 28x6 + 16x5 − 261x4 − 322x3 + 79x2 + 152x + 28

α(f) = −2.94
log2 ‖f‖∞= 8.33
g = 24757815186639197370442122 x3 + 40806897040253680471775183 x2

−33466548519663911639551183x − 24757815186639197370442122

α(g) = −4.16
log2 ‖g‖∞= 85.08, the optimal being 1

2 log2 p = 85
E(f, g) = 1.31 · 10−12

(2)

4 Solving DLP over Fp3

4.1 Sieving and Linear Algebra

We took a smoothness bound of 50 × 106 on both sides; and all special-q in
[50×106, 227], on both sides. This took roughly 660 core-days, normalized on the
most common hardware used, namely 4-core Intel Xeon E5520 CPUs (2.27GHz).
We collected 57070251 relations, out of which 34740801 were non duplicate.
Filtering produced a 1982791×1982784 matrix M with weight 396558692. Taking
into account the block of 7 Schirokauer maps S, the matrix M‖S is square.

We computed 8 sequences in the Block Wiedemann algorithm, using the
trick mentioned in [18, Sect. 8], as programmed in cado-nfs (rediscovered and
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Table 4. Probed yield for special-q ranges. Cpu time on Intel Xeon E5520 (2.27GHz).

Method Seconds/
relation

Relations/
special-q

Remarks

Generalized
Joux–Lercier

3.48 4.96 0+3 large primes below 228

JLSV1 1.31 4.24 2+2 large primes below 227, orbits
of three special-q batched together

Conjugation 0.91 5.93

further analyzed in [34]). All these sequences can be computed independently.
Computation time for the 8 Krylov sequence was about 250 core-days (Xeon E5-
2650, 2.4GHz, using four 16-core nodes per sequence). Finding the linear (matrix)
generator for the matrices took 75 core-hours, parallelized over 64 cores. Building
the solution cost some more 170 core-days. We reconstructed virtual logarithms
for 15196345 out of the 15206761 factor base elements (99.9%). This was good
enough to start looking for individual logarithms.

4.2 Computing Individual Discrete Logarithms in Fp3

From the linear algebra step, we know how to compute the logarithm modulo �
of any element of Fp3 whose lift in either Kf or Kg factors completely over the
factor base. Lifting in Kf is often convenient because norms are smaller.

The tiny case. A particular element which lifts conveniently in Kf is the common
root t of both polynomials. By construction, its lift α ∈ Kf generates a principal
(fractional) ideal that factors as J−1

f (see Proposition 1) times prime ideals of
norm dividing 28, namely: (α) = I22,0I

−2
2,∞I7,0I

−1
7,∞, where I22,∞I7,∞ corresponds

to Jf and the prime ideals in the right-hand side can be made explicit. Its
logarithm therefore writes as2

log(t) = 2 vlog I2,0 − 2 vlog I2,∞ + vlog I7,0 − vlog I7,∞ +
5∑

i=1

λf,i(α) vlog(λf,i).

λf,1(α) = 0x3720106a3d368d7f731a0757b905778050ae327,

λf,2(α) = 0x1dbeace7d0ec187712ae8afcd6ccdc4db06f781,

λf,3(α) = 0x9c3109f7741d625869f135706be03fc09375450,

λf,4(α) = 0x1e46653b287d99c502a5c6e12ab17a3dd10988c,

λf,5(α) = 0x31628f3e0b491e622946b32f66292c1389a7427.

By construction the value log(t) above is invertible modulo �, and we can freely
normalize our virtual logarithm values so that it is equal to one.
2 The convention in cado-nfs is to take coefficients of largest degree first in the Schi-

rokauer maps computation z �→ 1
�
(z�m−1 − 1) where m = lcml prime, l|�[l : �]. Here

we have m = 1.
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The tame case. Elements whose lifts do not factor completely over any of the
factor base but have only moderate-size outstanding factors can be dealt with
using a classical descent procedure. This finds recursively new relations involving
smaller and smaller primes, until all primes involved belong to the factor base.
Software achieving this exists, such as the las descent program in cado-nfs.

The general case. For computing individual logarithms of arbitrary elements,
we used the boot technique described in [28]. For each target, we compute a
preimage in Z[x] represented by a polynomial of degree at most 5 and coefficients
bounded by p1/3. The norm in Kf of the preimage is O(p2) = O(Q2/3), of
approximately 340 bits. The asymptotic complexity of this step is LQ[1/3, 1.26],
and would be LQ[1/3, 1.132] with one early-abort test (see e.g. [45, Sect. 4.3]
or [3, Chap. 4]). The optimal size of largest prime factors in the decomposition
is given by the formula LQ[2/3, (e2/3)1/3 ≈ 0.529], where e = 2/3 (see [17, Sect.
4]). Applying it for log2 Q = 508 gives a bound of 68 bits and a running-time of
approximately 242 tests. In practice we found very easily initial splittings where
B1 is less than 64 bits, which eased the descent.

4.3 Solving the Challenge

Our main use case for individual logarithm computation in Fp3 is to solve a
DLP challenge on the curve. The challenge definition procedure (described in
the appendix3, the Magma code is also available4) gives:

G1 = (0x106b415d7b4a2d71659ae97440cbb20a6de42d76d69, 0x16d74a2a88e817f1821a1c40e220d34eec93e33cb83),

P = (0x15052ba45717710e6b0cbf8ed89c5c1a0a279480e26, 0x8050f05a231ae1f13e56de1171c108294656052339)

From Sect. 2.1, we need to compute log(GT ) and log(S), where GT =
e(G1, G2) and S = e(P,G2) are given in the Magma verification script(see foot-
note 4) . We searched for randomized values Gr

T and Gr′
T S which were amenable

to the descent procedure. After 32 core-hours looking in the range r ∈ [1, 64000],
we selected the following element

G52154
T = −0x21d517d51512e9 − 0x95233b3af1b3c7 x + 0x8d324ebc7849bb x2

+ 0x18ff0d5ae0b52b x3 + 0x13f711fe92d63cd x4 − 0x15c778630d36920 x5

whose straightforward lift in Kf has 59-bit smooth norm (resultant with f , more
precisely):

0x87ac1a057df9772d1e08d4de56b3e6b5f208710437b5f92ac4a494c318c9781107e00364934e34efa87b26597771c

= 22 · 5 · 72 · 31 · 193 · 277 · 1787 · 12917 · 125789 · 142301513 · 380646221 · 2256567883

·132643203397 · 138019432565816569 · 603094914193031251 · 801060739300538627

3 Sect. B.1 and Sect. B.2 of the pre-proceedings version available at https://hal.inria.
fr/hal-01320496.

4 http://www.lix.polytechnique.fr/∼guillevic/discrete-log/SAC2016-mnt170-verificati
on-script.mag.

https://hal.inria.fr/hal-01320496
https://hal.inria.fr/hal-01320496
http://www.lix.polytechnique.fr/~guillevic/discrete-log/SAC2016-mnt170-verification-script.mag
http://www.lix.polytechnique.fr/~guillevic/discrete-log/SAC2016-mnt170-verification-script.mag
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Virtual logarithms for primes below 50·106 (25.57 bits) were known. The descent
procedure took 13.4 h. Once all logarithms were computed, the value of log(GT )
could be deduced:

log(GT ) = 0x8c58b66f0d8b2e99a1c0530b2649ec0c76501c3 (normalized to log t = 1).

Similarly, we selected

G35313
T S �→ 0x457449569db669 + 0x88c32ec54242fd x − 0x2370c0f5914ba9 x2

+ 0x14c7ccbafc20e2 x3 + 0xde2e21c5f1a4c4 x4 − 0x10b6bfd826db49c x5

whose lift in Kf has norm

−0x44dafd6ec57c91e64567fa045187100da9a98c5c509b388cb61759f345b3ce27226a5e8520be0bd4559acbd538b90

= −24 · 52 · 7 · 643 · 1483 · 2693 · 95617 · 9573331 · 33281579 · 1608560119 · 48867401441

·516931716361 · 896237937459937 · 16606283628226811 · 19530910835315983

the largest factor having 54 bits, a very small size indeed (compared to the 68
bits predicted by theory). The descent procedure for other primes took 10.7
hours. We found that

log(S) = 0x48a6bcf57cacca997658c98a0c196c25116a0aa (normalized to log t = 1).

We eventually found that

logG1
(P ) = 0x711d13ed75e05cc2ab2c9ec2c910a98288ec038 mod �.

5 Conclusion and Future Work

5.1 Consequences for Pairing-Based Cryptography

Our work showed that the choice of embedding degree n and finite field size log pn

should be done carefully. The size of Fpn should be large enough to provide the
desired level of security. We recall these sizes for Fp3 . The recent improvements
of Kim and Kim–Barbulescu [37,38] do not apply to Fpn where n is prime, so
Fp3 is not affected. The asymptotic complexity of the NFS algorithm for Fp3 is
exp

(
(c + o(1))(log pn)1/3(log log pn)2/3

)
= Lp3 [1/3, (64/9)1/3]. Since there is a

polynomial factor hidden in the notation c+o(1), taking log2 Lp3 [1/3, (64/9)1/3]
does not give the exact security level but only an approximation. We may com-
pare our present record with previous records of same size for prime fields Fp

and quadratic fields Fp2 . Kleinjung in 2007 announced a record computation in
a prime field Fp of 530 bits (160 decimal digits) [39]. Barbulescu, Gaudry, Guille-
vic and Morain in 2014 announced a record computation in Fp2 of 529 bits (160
decimal digits) [4]. We compare the timings in Table 5. The timings of relation
collection and linear algebra were not balanced in Kleinjung record: 3.3 years
compared to 14 years and moreover, this is a quite old record so it is not really
possible to compare our record with this one directly. We can compare our record
with the 529-bit Fp2 record computation of 2014 [4]. Our total running-time is
15.5 times longer whereas the finite field is 21 bit smaller.
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Table 5. Comparison of running-time for discrete logarithm records in Fp, Fp2 and
Fp3 of 530, 529, 512 and 508 bits.

record relation collection linear algebra individual log total

Kleinjung [39] 3.3 CPU-years 14 years few hours
530-bit field 3.2 GHz Xeon64 3.2 GHz Xeon64 3.2 GHz Xeon64 17.3 years
Fp, 2007

BGGM [4] 68 core-days=0.19y 30.3 hours few hours 70 days
529-bit field 2.0 GHz E5-2650 NVidia GTX 680 2.0 GHz E5-2650 = 0.2 year
Fp2 , 2014 graphic card

BGGM [5] 850 core-days 5500 core-days few days
512-bit field = 2.33 years = 15 years 17.3 years
Fp3 , 2015 2.4 GHz Xeon E5-2650

this work 660 core-days 423 days 2 days 1085 days
508-bit field =1.81 years = 1.16 years = 2.97 years
Fp3 , 2016 2.27GHz 4-core 2.4 GHz 2.27GHz 4-core

Xeon E5520 Xeon E5-2650 Xeon E5520

5.2 Future Work

We have computed a DLP on an MNT curve with embedding degree 3. What are
the next candidates? We could continue the series in two directions: increasing
the size of pn to 600 bits, in order to compare this new record to the previous
records of the same size, in particular the Fp2 record of 600 bits [6]. We could
conjecture, according to the present record and the size of the norms, that a DLP
record in Fp3 of 600 bits will be more than 15 times harder than in a 600-bit
field Fp2 .

The second direction would be to continue the series of MNT curves, with
n = 4. We found an MNT curve of embedding degree 4 in Miracl (file
k4mnt.ecs). The curve was generated by Drew Sutherland for Mike Scott a
long time ago.

y = 0xf19192168b16c1315d33

p = y2 + y + 1 = 0xe3f367d542c82027f33dc5f3245769e676a5755d

� = 0x6b455e0a014f1e30eaef7300bd4bb4258290fc5

τ = y + 1 = 0xf19192168b16c1315d34

#E(Fp) = y2 + 1 = p + 1 − τ = 2 · 17 · �

Since n is a prime power, we have to adapt the Kim–Barbulescu technique
(dedicated to non-prime power n) to prime-power extension degrees5. We con-
struct Fp4 as Fp2 [x]/(ϕ(x)), where Fp2 = Fp[s]/(h1(s)) and both h1 and ϕ are
of degree 2, and ϕ has coefficients in Fp2 . As a consequence, the polynomials f
and g will have coefficients in Z[s]/(h1(s)) instead of Z. For example, one could
take
5 Right after the submission, several variants of Kim’s Extended TNFS where pro-

posed, that deal with any composite n, in particular prime power n, and generalize
the Sarkar–Singh method [30,47,48,50].
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h1(s) = s2 + 2,
h2(x, t0, s) = x2 + s + t0,

P (t0) = t20 + t0 + 1,
f = Rest0(P (t0), h2(x, t0, s)) = x4 + (2s − 1)x2 − s − 1,
g = h2(x, y, s) = x2 + s + 0xf19192168b16c1315d33.

The major difference is that to be efficient, we have to sieve polynomials of degree
1 with coefficients in Z[s]/(h1(s)), that is elements of the form (a0 +a1s)+(b0 +
b1s)x where the ai’s and bi’s are small rational integers, say |ai|, |bi| ≤ A. For
instance, taking log2(E) = 1.1(log Q)1/3(log log Q)2/3 ≈ 28, we obtain A =
E2/(2 deg h) of 14 bits. The upper bound on the norm would be of 120 bits on
f -side and 219 bits on g-side, the total being roughly of 339 bits. This is 11
bits more than our present record for the 508-bit n = 3 MNT curve (328 bits,
Table 3), but by far much less than with any previous technique applied to that
Fp4 . Norm estimates are provided in Table 6. From a practical point of view, we
would need extensions of the work [26].

Table 6. Norm bound estimates for Fp4 of 640 bits.

Method ‖f‖∞ ‖g‖∞ NBf NBg NBf + NBg

Extended TNFS+hybrid JP 1 80 120 219 339

GJL 1 128 144 243 387

JLSV1 80 80 195 195 390

Sarkar-Singh, d = 2, r = 2 1 107 172 222 394

Hybrid JP–Conj 1 80 159 240 399

JLSV2, D = 6 (D best choice) 91 91 264 206 470

Acknowledgements. The authors are grateful to Pierrick Gaudry for his help in
running the computations.

A Polynomial Selection Methods

We provide in this section the polynomials computed for our Fp3 record with the
other competitive polynomial selection methods that we compared in Sect. 3.

Generalized Joux–Lercier method. The first step of the GJL polynomial selection
algorithm is to choose a polynomial f of degree 4 in our context. We need f to
factor as a linear polynomial times a degree 3 polynomial modulo p, hence we
cannot allow for a degree two subfield, or any of the Galois groups C4, V4 or
D4. We extracted from the Magma number field database the list of irreducible
polynomials of degree 4 and Galois group A4 (of order 12), class number one
and signature (0, 2) (592 polynomials) and (4, 0) (3101 polynomials).
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In the GJL method, the LLL algorithm outputs four polynomials g1, g2, g3
and g4 with small coefficients. To obtain the smallest possible coefficients, we
set the LLL parameters to δ = 0.99999 and η = 0.50001. We compute linear
combinations g =

∑4
i=1 λigi with |λi|‖gi‖∞ ≤ 25 · min1≤i≤4 ‖gi‖∞ (roughly

speaking, |λi| ≤ 32) so that the size of the coefficients of g do not increase too
much, while we can obtain a polynomial g with a better Murphy’s E value.

Then we run the GJL method with our modified post-LLL step for each
polynomial f in our database and we selected the pair with the highest Murphy’s
E value. We obtained

f = x4 − 2x3 + 2x2 + 4x + 2
α(f) = 1.2
log2 ‖f‖∞ = 2
g = 133714102332614336563681181193704960555 x3 + 173818706907699496668994559342802299969 x2

+ 878019651910536420352249995702628405053 x − 185403948115503498471378323785210605885

α(g) = −2.1
log2 ‖g‖∞ = 129.37, the optimal being 3

4 log2 p = 127.5
E(f, g) = 5.08 · 10−13

Joux-Lercier-Smart-Vercauteren method. The Joux-Lercier-Smart-Vercauteren
method (JLSV1) is possibly the most straighforward polynomial selection
method adapted to non-prime finite fields. It is possible to force this method
to pick polynomials f within a specific family, in order to force nice Galois
properties. For example, we may use the form ψ = x3 − tx2 − (t + 3)x − 1.

The enumeration was the largest for the JLSV1 method: we searched over 225

polynomials f in the cyclic family x3−t0x
2−(t0+3)x−1, with a parameter t0 of

84 up to 85 bits. We kept the polynomials whose α value was less than −3.0. We
continued the JLSV1 polynomial selection algorithm selectively for these good
precomputed polynomials. The “initial” g (say g0) produced by the method can
be improved by using instead any linear combination g = λf + μg0 for small λ
and μ, thereby improving the Murphy’s E value. We set |λ|, |μ| ≤ 25.

f = x3 − 30145663100857939296343446 x2 − 30145663100857939296343449 x − 1
α(f) = −3.0
log2 ‖f‖∞= 84.64
g = 30145663100857939299699540 x3 + 46845274144495980578316407 x2

−43591715158077837320782213 x − 30145663100857939299699540

α(g) = −2.8
log2 ‖g‖∞= 85.28, the optimal being 1

2 log2 p = 85
E(f, g) = 1.02 · 10−12

(3)

Conjugation and Joux–Pierrot methods. The Joux-Pierrot method produces
polynomials with the same degree and coefficient properties as the Conjuga-
tion method for MNT curves and that are moreover monic. The polynomials
constructed with the Conjugation method allow a factor two speed-up thanks
to a Galois automorphism. We propose here a hybrid variant in Algorithm2
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for pairing-friendly curves. The conjugation method, in Algorithm1, is the one
which eventually produced the best polynomial pair.

For the Conjugation method as well as the hybrid method of Algorithm2,
and similarly to the JLSV1 method, it is possible to choose polynomials g of the
form ψ = x3 − tx2 − (t + 3)x − 1 to allow a Galois automorphism of degree 3.

Algorithm 2. Variant of Joux–Pierrot and Conjugation methods
Input: p prime, p = P (y) where deg P ≥ 2 and P of tiny coefficients, n integer
Output: f, g ∈ Z[x] irreducible and ψ = gcd(f mod p, g mod p) in Fp[x]

irreducible of degree n
1 repeat
2 Select g1(x), g0(x), two polynomials with small integer coefficients,

deg g1 < deg g0 = n
3 Select small integers a, b, c, d

4 ψ(x) = g0(x) +

(
a + by

c + dy
mod p

)
g1(x)

5 f ← ResY (P (Y ), (c + dY )g0(x) + (a + bY )g1(x))
6 g ← (c + dy)g0(x) + (a + by)g1(x) // g ≡ (c + dy)ψ(x) mod p

7 until ψ(x) is irreducible in Fp[x] and f , g are irreducible in Z[x]
8 return (f, g, ψ)

In practice, in Algorithm 2 one might prefer to constrain d = 0, so that g has
small leading coefficient c. Going further and requiring c = 1 so that g is monic
reduces however too much the possibilities to find a good pair of polynomials.

The following example has been obtained with Algorithm2, searching over
all (a + by)/c with |a|, |b|, |c| ≤ 256.

y = −8702303353090049898316902 is the targeted MNT curve parameter
f = 108x6 + 1116x5 + 3347x4 + 2194x3 − 613x2 − 468x + 108
g = 6x3 + 34809213412360199593267639 x2 + 34809213412360199593267621 x − 6

= 6x3 − (4y − 31)x2 − (4y − 13)x − 6
ϕ = 1

6g mod p = x3 + 151460167298404651346258165094598961506004769966481 x2

+151460167298404651346258165094598961506004769966478 x − 1
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