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1 Introduction

Shape is a fundamental property of objects observed in images, and is often
defined as the appearance of their outlines. In the case of two dimensional images,
the outlines of objects form planar open and closed curves. In the case of three
dimensional images, such as medical ones including magnetic resonance images
(MRIs), the outlines of structures form surfaces. Due to improvements in imaging
technology, shape datasets have become ubiquitous in many different applications
including biology, medicine, biometrics, graphics, bioinformatics, and many others.
As a result, statistical shape analysis is an emerging discipline within statistics
that seeks to make inferences about a population of objects, represented by their
corresponding shapes. To develop statistical procedures applicable to shapes, one
must first represent them mathematically; this is not a simple task. Consider a
lightbulb, for example. The shape of a lightbulb is easily recognizable. However,
it is important to note that if the lightbulb is moved to a different location in the
image, rotated, or re-scaled, its shape does not change. Thus, mathematically, shape
is a property of an object, which is invariant when the object is translated in space,
rotated, or re-scaled. Because of these required invariances, new tools for analyzing
shapes are required. That is, standard univariate or multivariate statistical methods
are often not directly applicable in this context, because shape spaces are nonlinear
and follow a quotient structure. Additionally, shape analysis often requires tools
from functional data analysis (Ramsay and Silverman 2005) due to the infinite
dimensionality of shape representation spaces. The goal of statistical shape analysis
is to reproduce basic statistical techniques while taking into account these extra
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challenges. The developed techniques can then be used in real-life applications,
most notably in medical imaging, where the shapes of anatomical structures can
potentially be used to diagnose and monitor various types of diseases.

Many methods have been developed to analyze the shapes of objects observed
in images. In the case of surfaces, one of the most popular approaches in medical
imaging studies shapes of objects by embedding them in volumes and deforming
the volumes (Beg et al. 2005; Grenander and Miller 1998; Joshi et al. 1997) (termed
deformable templates and Large Deformation Diffeomorphic Metric Mapping or
LDDMM). Others have studied 3D shape variability using level sets (Malladi
et al. 1996), medial axes (Bouix et al. 2001; Gorczowski et al. 2010), or point
clouds via the iterative closest point algorithm (Almhdie et al. 2007). The case of
curves has also been considered under many different representations. In statistics,
the most widely-used method was developed by Kendall (1984), where shapes
were represented using a finite set of “important” points known as landmarks.
The landmarks can be selected manually or automatically. Most often, they are
provided by an application domain expert and correspond to similar salient features
across a population of shapes; such landmarks are referred to as anatomical. On
the other hand, mathematical landmarks correspond to points which in some sense
capture the most important properties of the shapes (e.g., peaks and valleys).
By reducing the representation of an object to a set of landmarks, one can alter
multivariate statistical techniques to account for desired shape invariances, and use
them for shape analysis. Developments of these techniques are described in many
places (Bookstein 1986; Dryden and Mardia 1992, 1998; Small 1996).

The ability to apply classical multivariate analyses to landmark shapes is
intriguing, but not without drawbacks. Landmark-based methods require the user
to summarize the full outline of an object into a finite set of points. This leads to a
loss of information, which may affect statistical conclusions. In addition, selecting
landmarks is not a simple task; it is not clear how many points should be selected,
or if there is an “optimal” configuration of points which best represents the objects’
outlines. One could select a large number of landmarks to better approximate
the shape; however, this leads to a very high-dimensional problem, which can be
quite challenging computationally. To overcome these challenges, several groups
proposed methods that retain all information provided about the object’s outline.
In this setting, one defines infinite-dimensional representations, which additionally
requires invariance to re-parameterizations of the functions representing the curve or
surface (in addition to the similarity group, which includes translation, rotation and
scale). In the case of curves, parameterization determines how fast it is traversed.
In the case of surfaces, parameterization defines its grid or mesh. Thus, changing
the parameterization of curves or surfaces is a shape preserving transformation.
In a statistical shape analysis context, re-parameterizing an object can be used
to determine which geometric features of objects are in correspondence with
each other.

Several authors have studied this new set of shape frameworks in-depth. Zahn
and Roskies (1972) and Klassen et al. (2004) in the case of curves, and Brechbühler
et al. (1995) and Styner et al. (2006) in the case of surfaces, achieve parameterization
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invariance through normalization (to arc-length for curves and equal area for
surfaces). Unfortunately, these methods do not match geometric features of objects
across a population of shapes, and thus result in suboptimal correspondences and
subsequent statistical results (Kurtek et al. 2011b, 2012a,b; Srivastava et al. 2011).
On the other hand, there is a set of methods in the statistics literature that seek
“optimal” correspondences across a population of shapes; these methods are based
on elastic metrics and are thus referred to as elastic in short. Instead of normalizing
parameterizations, they seek a “best” re-parameterization to match one object to
another. This process is often also referred to as registration. Such methods have
been developed for statistical shape analysis of curves in Younes (1998), Younes
et al. (2008), Joshi et al. (2007), Srivastava et al. (2011) and Kurtek et al. (2012b),
and surfaces in Kurtek et al. (2010, 2011a,b, 2012a), Jermyn et al. (2012) and Samir
et al. (2014). One of the main benefits of using elastic methods for shape analysis is
that the metric used to calculate distances between shapes measures the amount of
bending and stretching required to deform one object into another, thus providing a
natural interpretation. However, elastic metrics in general are very difficult to work
with due to their complex structure (Mio et al. 2007). Recent approaches developed
elastic representations of curves and surfaces that greatly simplify the problem at
hand (Jermyn et al. 2012; Kurtek et al. 2010; Srivastava et al. 2011).

In this manuscript, we describe an approach to statistical shape analysis that
unifies the recent elastic method with previous landmark-based approaches. As
mentioned earlier, relying on landmarks reduces the amount of information used in
statistical analyses. However, while elastic shape analysis overcomes this problem,
these methods treat all points as equally important. Thus, if special landmark
locations (e.g., anatomical features) are known, standard elastic shape analysis
methods are not able to emphasize these points. Thus, the ability to combine elastic
shape analysis with landmark information allows us to overcome both drawbacks.
As a motivating example, in medical imaging, an anatomical structure of interest is
often represented as a surface. Additionally, the doctor marks special points on the
structure, which can be used to detect abnormalities. These points (landmarks) are
certainly valuable for statistical inferences, and thus including them in the analysis
is necessary.

As another motivating example, consider the dog shapes shown in Fig. 1. In the
left panel is a representation of the dog via a curve while in the right panel we show
the outline of a dog as a surface. In both cases, it appears natural to place anatomical
landmarks at the dogs’ legs, tail and snout. In the surface case, one can also clearly
see the dog’s ears where additional landmarks can be marked. All of these points
are important to representing the structure of the full dog outline, and should thus
be incorporated into the shape analysis framework. Additionally, good landmark
correspondences across shapes provide improved registration over unconstrained
elastic methods as shown by Strait et al. (2017) and Kurtek et al. (2013a).

The idea of incorporating landmark constraints into elastic representations of
shape had not been explored much in the past. Liu et al. (2010) imposed soft
landmark constraints on the analysis by augmenting the elastic shapes with an
auxiliary function constructed using the landmark locations. Two recent papers



200 J. Strait and S. Kurtek

Fig. 1 Landmark-
constrained curve and surface
representations of a dog.
Landmarks segment the full
curve outline of the dog into
six pieces. Landmarks are
shown as black points on the
curve or surface

provide statistical shape analysis tools for both (curves and surfaces) that are able
to incorporate hard landmark constraints into elastic representations (Kurtek et al.
2013a; Strait et al. 2017). The methods presented in this manuscript are largely
based on those works. The rest of this paper is organized as follows. In Sect. 2, we
present tools for landmark-constrained registration and elastic comparison of shapes
of curves and surfaces. Sect. 3 provides methods for averaging and summarization
of variability of a sample of shapes. Throughout these two sections we illustrate the
approach using multiple examples. Finally, we give a brief summary in Sect. 4.

2 Landmark-Constrained Shape Analysis

In this section, we describe a landmark-constrained elastic shape analysis frame-
work for curves and surfaces. We begin by briefly discussing a technical issue that
arises when using standard L

2-based methods in this setting. We describe this issue
for curves only, but note that it also arises in the same way for surfaces.

Let F represent an appropriate representation space of curves made precise
later. Also, let � be the set of all diffeomorphisms of the curve domain. The set
� contains all possible re-parameterizations of curves, and for an object f 2 F and
an element � 2 � , f ı � represents its re-parameterization. Given this setup, many
works in literature adopt the standard approach of measuring distances between
elements of F using the L

2 norm. Unfortunately, this framework is inappropriate
for statistical shape analysis of parameterized curves as was previously shown in
multiple places (Kurtek et al. 2010; Srivastava et al. 2011; Younes 1998). We
elaborate next. Let f1; f2 2 F be two parameterized curves, and � 2 � a re-
parameterization function. Then, it is easy to show that the L2 norm is not preserved
under the action of � , i.e., kf1 �f2k ¤ kf1 ı� �f2 ı�k. Thus, in this setup, a common
re-parameterization of two curves changes the distance between them (this is also
termed “lack of isometry”). This theoretical problem prevents one from defining
a parameterization-invariant statistical framework for shape analysis. Thus, in the
following sections, we describe an approach which uses new representations of
curves and surfaces that satisfy this property under the L

2 metric. Furthermore, we



Landmark-Constrained Statistical Shape Analysis of Elastic Curves and Surfaces 201

show that one can seamlessly incorporate hard landmark constraints into these repre-
sentations. For more detailed descriptions of these methods please refer to Srivastava
et al. (2011), Strait et al. (2017), Jermyn et al. (2012) and Kurtek et al. (2013a).

2.1 Unconstrained Representation Spaces of Curves
and Surfaces

Curves Let F denote the space of two-dimensional, absolutely continuous curves
with domain D D Œ0; 1� (planar open curves). The framework is also applicable
to closed curves with domain D D S

1 with minimal changes. Let � D f� W
Œ0; 1� ! Œ0; 1�j�.0/ D 0; �.1/ D 1; 0 < P� < 1g denote the unconstrained re-
parameterization group, where P� is the derivative of � . As stated earlier, this group
does not act on F by isometries under the L2 metric. To circumvent this issue, for a
curve f 2 F , we define the square-root velocity function (SRVF) representation of

curves (Srivastava et al. 2011) as qSRVF.t/ D Pf .t/p
jPf .t/j , where j � j is the Euclidean norm

in R
2. The inverse mapping is defined as f .t/ D f .0/CR t

0
qSRVF.r/jqSRVF.r/jdr; thus,

the mapping from curve to SRVF is a bijection up to a translation. An important fact
about the SRVF is that the action of � becomes .qSRVF; �/ D .qSRVF ı �/

p P� . Note
that the SRVF representation can be used for curves of any dimension, though the
focus here is on two-dimensional curves.

Surfaces In similar fashion, one can define a new representation of surfaces. In
this case, let F represent the space of all smooth embeddings of S

2 in R
3 and

let � be the set of all diffeomorphisms from S
2 to itself. Again, � serves as the

re-parameterization group for spherical surfaces. In this work, we only consider
closed or spherical surfaces, but this framework is readily applicable to other types
of surfaces including quadrilateral, hemispherical, cylindrical, etc. For a closed
surface f 2 F , f ı � represents its re-parameterization (i.e., the action of the
re-parameterization group is the same as in the case of curves). To define a new
representation of surfaces that allows parameterization-invariant shape analysis, let
n.s/ D @f

@u .s/ � @f
@v

.s/ 2 R
3 denote the normal vector to the surface at the point

s D .u; v/ 2 S
2. Jermyn et al. (2012) defined the square-root normal field (SRNF) as

qSRNF.s/ D n.s/pjn.s/j , where j � j denotes the Euclidean norm in R
3. If a surface f is re-

parameterized to f ı� , then its SRNF is given by .qSRNF; �/ D .qSRNFı�/
p

J� , where
J� is the determinant of the Jacobian of � . Note that unlike in the case of curves,
inversion of SRNFs cannot be performed analytically. The numerical inversion of
SRNFs has been considered by Xie et al. (2014) and Laga et al. (2017), and is
a difficult computational problem. As defined here, SRNFs are only applicable to
shape analysis of two-dimensional surfaces embedded in R

3.

Advantages of SRVFs and SRNFs There are two main benefits of these new
mathematical representations of curves and surfaces: (1) the group � acts on the
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space of SRVFs or SRNFs by isometries under the L
2 metric, and (2) the L

2

metric on the space of SRVFs (SRNFs) corresponds to an elastic metric (partial
elastic metric) on the original space of absolutely continuous curves (smooth
surfaces). In both cases, the resulting representation space after transformation is
L

2, henceforth denoted by Q. The relationship of these two representations to
elastic metrics is an important property as they provide a measure of the amount
of bending and stretching to deform one curve/surface into another. This allows
natural interpretation of the shape distance between objects as well as natural shape
deformation paths as will be seen in later sections. Further details on the elastic
metric can be found in Srivastava et al. (2011), Mio et al. (2007) and Kurtek et al.
(2012b). Note that whenever our discussion applies to either the SRVF or SRNF, we
use q without the superscript to denote the representation.

Definition of the Pre-shape Space Recall that shape is defined as a property of
an object that is invariant to translation, scale, rotation and re-parameterization. The
SRVF and SRNF representations, and associated elastic metrics, are automatically
invariant to translation due to their definition through first derivatives only. For
curves, scale invariance in this framework is achieved by re-scaling to unit length viaR 1

0
jPf .t/jdt D R 1

0
jqSRVF.t/j2dt D kqSRVFk2 D 1. For surfaces, we re-scale them to

have unit area:
R
S2 jn.s/jds D R

S2 jqSRNF.s/j2ds D kqSRNFk2 D 1. Thus, the resulting
SRVFs or SRNFs lie on the unit Hilbert sphere, which forms the pre-shape space:
C D fq 2 Qjkqk D 1g (in the case of closed curves there is an additional closure
condition). We refer to C as the pre-shape space because up to this point, we have
only accounted for translation and scaling variabilities. Invariance to rotation and
re-parameterization is obtained differently, using equivalence classes.

2.2 Landmark-Constrained Shape Space for Curves

We begin by introducing landmark constraints into the SRVF representation as
they play an important role in the rotation and re-parameterization steps. Suppose
that in addition to the curve f , we are given k discrete landmarks marked on f ,
ff .t1/; : : : ; f .tk/g 2 R

2. Also, let SO.2/ denote the group of all rotations in 2D
(also called the special orthogonal group). To take into consideration the landmark
constraints that were marked on the curve f , we must redefine the set of allowed
re-parameterizations as a subgroup of the unconstrained re-parameterization group
� whose elements respect landmark matching. For this purpose, we define �0 D
f� W Œ0; 1� ! Œ0; 1�j�.0/ D 0; �.1/ D 1; 0 < P� < 1; �.ti/ D ti; i D
1; : : : ; kg � � as the landmark-constrained re-parameterization group. Applying
two elements, O 2 SO.2/ and � 2 �0, to a curve f yields the transformed
curve O.f ı �/, where the landmark points remain unmoved; the SRVF of this
transformed curve is given by O.qSRVF ı �/

p P� . Then, the landmark-constrained
shape space, denoted by S , is defined by the set of equivalence classes ŒqSRVF� D
fO.qSRVF ı �/

p P� jO 2 SO.2/; � 2 �0g (note that these SRVF equivalence classes



Landmark-Constrained Statistical Shape Analysis of Elastic Curves and Surfaces 203

correspond to equivalence classes on the space of the original curves given by
Œf � D fO.f ı �/jO 2 SO.2/; � 2 �0g). Thus, the landmark-constrained shape space
is a quotient space: S D C =.SO.2/��0/. The equivalence classes ŒqSRVF� represent
the landmark-constrained shapes uniquely, and the shape space S provides the
desired invariances to translation, scaling, rotation, and landmark-constrained re-
parameterization.

Next, we define a suitable metric on S . As mentioned earlier, an important
property of the elastic metric on the space of absolutely continuous curves is that,
under the SRVF representation, it is equivalent to the standard L

2 metric (Srivastava
et al. 2011). We begin by defining the elastic distance between two curves using
their SRVF representation on C . Since the pre-shape space C is a Hilbert sphere,
the geodesic distance between two curves represented via their SRVFs q1; q2 2 C
is given by dC .qSRVF

1 ; qSRVF
2 / D � D cos�1.hqSRVF

1 ; qSRVF
2 i/, where h�; �i is the L

2

inner product; the corresponding geodesic path (optimal deformation path) is given
analytically by ˛.qSRVF

1 ; qSRVF
2 /.�/ D 1

sin.�/
.sin..1��/�/qSRVF

1 Csin.��/qSRVF
2 /; � 2

Œ0; 1�. The rotation and landmark-constrained re-parameterization groups act on C
by isometries, which allows the L

2 metric to descend from the pre-shape space to
the quotient shape space. Then, the landmark-constrained geodesic distance in the
shape space S is given by:

d.Œf1�; Œf2�/ � dS .ŒqSRVF
1 �; ŒqSRVF

2 �/ D min
O2SO.2/; �2�0

dC .qSRVF
1 ; O.qSRVF

2 ı �/
p P�/:

(1)

The optimization over SO.2/ and �0 is often referred to as the registration process,
which aligns geometric features across shapes. The optimal rotation is found
using Procrustes analysis, which involves singular value decomposition (SVD).
To optimize over �0, one can take a product space approach where the complete
optimization problem is separated into an optimization over the unconstrained re-
parameterization group � for each segment formed using the landmark constraints
(see left panel of Fig. 1). See Strait et al. (2017) and Robinson (2012) for the
implementation details. Once the optimal pair .O�; ��/ is found, one can compute
the geodesic path in the SRVF shape space using ˛.qSRVF

1 ; O�.qSRVF
2 ı ��/

p P��/,
and map it back to the space of absolutely continuous curves for visualization
purposes. This procedure provides the landmark-constrained elastic geodesic path
and distance between shapes of two curves.

2.3 Landmark-Constrained Shape Space for Surfaces

In contrast to the elastic curve framework, it is not a simple task to invert an arbitrary
SRNF to obtain its original surface (Laga et al. 2017; Xie et al. 2014). Thus, in this
case, we work directly in the space of smooth surfaces under the pullback of the L

2

metric from the SRNF space; this is the previously mentioned partial elastic metric
(Jermyn et al. 2012). We provide some details next.
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Throughout this section, with a slight abuse of notation, we use C as the pre-
shape space of smooth surfaces rather than their SRNF representations. Let each
surface f 2 C be annotated by k landmark points. Let s1; : : : ; sk be the locations of
these landmarks on S

2 such that f .si/ 2 R
3, i D 1; : : : ; k are the given landmarks

on the parameterized surface f . To form the landmark constrained shape space we
define �0 D f� W S2 ! S

2j� is a diffeomorphism; �.si/ D si; i D 1; : : : ; kg � �

as the landmark-constrained re-parameterization group for spherical surfaces. The
rotation group SO.3/ acts on the pre-shape space as .O; f / D Of ; the constrained
re-parameterization group �0 acts on C as before by composition .f ; �/ D .f ı �/.
Then, an equivalence class of a surface f is given by Œf � D fO.f ı�/jO 2 SO.3/; � 2
�0g, and represents a landmark-constrained shape of a spherical surface uniquely.
The set of all such equivalence classes is defined to be the landmark-constrained
elastic shape space denoted by S . As in the case of curves, because SO.3/ and �0

act on C by isometries, the partial elastic metric descends from the pre-shape space
to the quotient space S .

The shape geodesic between two landmark-constrained surfaces f1 and f2, such
that fj.si/, i D 1; : : : ; k, and j D 1; 2, denote the landmarks on them, is defined as:

dS .Œf1�; Œf2�/ D min
O2SO.3/; �2�0

0

B
B
B
B
@

min
F W Œ0; 1� ! C

F.0/ D f1; F.1/ D O.f2 ı �/

�Z 1

0

hh dF

dt
.t/;

dF

dt
.t/ii.1=2/ dt

�

1

C
C
C
C
A

;

(2)

where F.t/ is a path in C and hh�; �ii is the partial elastic metric. The quantity
LŒF� D R 1

0
hh dF

dt .t/; dF
dt .t/ii.1=2/dt denotes the length of the path F. The inside

minimization problem seeks the shortest path (geodesic) between f1 and O.f2 ı �/

in C ; the solution can be found using a path-straightening algorithm (Klassen and
Srivastava 2006; Kurtek et al. 2012a; Samir et al. 2014). In the presented results,
we approximate the geodesic using a straight line path. The outside minimization
problem seeks an optimal landmark-constrained registration between f1 and f2,
which is a search for an optimal rotation O� 2 SO.3/ and an optimal landmark-
constrained re-parameterization �� 2 �0. The search for O� is again performed
using Procrustes analysis. To find ��, we require two steps: (1) an initialization that
matches given landmark points on f1 and f2, and (2) a gradient descent search over
�0 that finds the optimal landmark-constrained re-parameterization. We begin with
a description of the first step.

Initial Landmark Matching First, we must find two initial diffeomorphisms
�1; �2 W S

2 ! S
2 that map the selected landmarks on surfaces f1 and f2 with

locations fQs1; : : : Qskg 2 S
2 and fNs1; : : : Nskg 2 S

2, respectively, to a standard set of
landmarks (s1; : : : ; sk 2 S

2). We briefly describe this procedure for �1. In general,
the deformations between the landmarks can be very large. Thus, we divide the
original problem into l smaller deformation steps. We first connect each pair of
matched landmarks on S

2 with a geodesic (great circle) and sample it uniformly
using l steps. Then, we begin by solving for the first small deformation that matches
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the first point to the second point on this geodesic path for all landmarks. Let �j be
the tangent vector to S

2 at Qsj such that exp Qsj
.�j/ D sj; exp denotes the exponential

map on the unit two-sphere. For brevity, we do not provide the full expression for
the exponential map, but note that it is available analytically. Then, using a Gaussian
kernel, we define a vector field over S2 according to V.s/ D Pk

jD1 K.s; sj/�j in such
a way that V.sj/ D �j. This is a simple interpolation step that uses the landmark
vector fields to define a full vector field over S

2. The desired small deformation
at each point s is obtained by computing exps.Vs/. This is repeated for each of
the l small steps. The desired large deformation �1, which guarantees that the
landmarks on f1 are matched exactly to the standard landmarks, is obtained through
composition of the l small deformations. The procedure can be repeated for the
second surface f2 in the same manner. This general procedure is also described in
Kurtek et al. (2013a).

Gradient Descent Optimization Over �0 One can perform the optimization over
�0 directly as suggested by Eq. (2). However, the correspondence between the
partial elastic metric on the space of smooth closed surfaces and the L

2 metric on
the space of SRNFs allows us to greatly simplify the problem. Given two surfaces f1
and f2 with matched landmarks, the optimization over �0 is solved using the energy
E�id .�/ D kqSRNF

1 � �qSRNF
2

.�/k2, where qSRNF
1 ; qSRNF

2 are the SRNFs of f1 and

f2 and �qSRNF
2

.�/ D .qSRNF
2 ı �/

p
J� . An algorithm for finding optimal landmark-

constrained re-parameterizations of surfaces via this energy is given in Kurtek et al.
(2013a, 2010, 2011b) and is omitted here for brevity. We refer the interested reader
to those papers for the details.

2.4 Motivating Examples

Landmark-Constrained Curves The utility of landmark-constrained shape anal-
ysis for curves is presented in Fig. 2 for two complicated outlines of elephants.
These elephants are fairly similar with two noticeable differences. First, the trunk
of the first elephant is oriented downwards, but upwards for the second one. Also,
the first elephant has four distinct legs (with very wide gaps in-between), while the
second elephant has no gap between the second and third legs; visually, this feature
looks like one large leg, although it is obvious that it should represent two legs.
By identifying these special, salient features (i.e., the feet and trunk) as landmarks,
we force them to be in correspondence. In some cases, this is a necessary constraint
to enforce, as a standard unconstrained elastic shape analysis framework may not
know how to handle the lack of a gap between the two legs on the second elephant
or the very different orientations of the trunks.

The landmark-constrained geodesic distance between this pair of shapes is
0.7803, which provides an accurate measure of their shape differences; this claim
is supported by the image displayed in the bottom panel of Fig. 2, which shows
seven equally-spaced points along the shape space geodesic path where the initial
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Fig. 2 Top left: Outlines of two elephants used for shape comparison. The starting point
(a landmark) is shown in red, while additional landmarks are in green. Top right: Correspondence
of features between the two elephants and the optimal landmark-constrained re-parameterization
function. Bottom: Landmark-constrained geodesic path between the two elephants, with landmarks
marked along the path

shape is the first elephant and the final shape is the second elephant. This path shows
how one can optimally deform the first elephant into the second, while preserving
the landmarks (marked by points in the figure); it represents a natural deformation
between the two given elephant shapes. The landmarks remain in correspondence
throughout, and one can clearly see the expected shift in the orientation of the
trunk as well as the reasonable transformation from being able to see all four legs
distinctly to the gap disappearing between the middle two legs.

The top-right panel of Fig. 2 shows two additional plots associated with the
landmark-constrained elastic matching obtained for the two elephants. The left plot
shows the correspondence of points on the first elephant (red) to the points on the
second elephant (blue); the landmark-constrained analysis ensured that geometric
features around the trunks and legs match each other well. The right plot shows
the optimal matching function (landmark-constrained diffeomorphism). Deviations
from a straight, 45ı line indicate the elastic nature of the matching problem.

Landmark-Constrained Surfaces Figure 3 displays a motivating example for the
surface case. In the top left panel, we show two highly articulated surfaces of
a standing cat and a standing horse. On top of each surface, we marked seven
landmark points corresponding to natural features of the two animals (ears, legs
and tail; the landmark on the tail of the horse is occluded). In the bottom panel,
we show the initial landmark matching procedure. The leftmost spherical domain
contains the two sets of landmarks as given on the surfaces (red for cat and black
for horse). First, we compute an optimal rotation of the domain to match the two
landmark sets as well as possible (this is an area-preserving element of � ). The
result is given on the middle sphere. Note that the landmarks are now closer than
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Fig. 3 Motivating example for landmark-constrained elastic shape analysis of spherical surfaces

previously. Finally, we compute the nonlinear, large deformation that matches the
two sets of landmarks exactly. For reference, we still show the original landmark
locations. We also display an intermediate matching result in magenta. After
initial landmark matching, we compute the landmark-constrained registration and
geodesic between the two surfaces. The geodesic path is displayed in the top right
panel of the figure. The path preserves important features of the two animal models;
the two surfaces naturally deform into each other.

2.5 Additional Examples

Figure 4 provides four additional examples of geodesic paths on the landmark-
constrained shape space of curves. All examples in this manuscript were generated
using the MPEG-7 dataset.1 All of these examples were selected because of the
potential for ambiguities in the matching of features using unconstrained elastic
shape analysis (i.e., without landmarks). The first example compares two octopi,
where the arms are in drastically different locations. Without the ability to constrain
the comparison at the arm locations, the result may not display a natural path
between the two shapes. However, placing eight meaningful landmarks allows for
the geodesic path to show a natural movement of the octopus arms. Next to the
octopus example is a comparison of two crowns, the first of which has five distinct
tips, while the second one appears to have more than five tips. The landmark

1http://www.dabi.temple.edu/~shape/MPEG7/dataset.html.

http://www.dabi.temple.edu/~shape/MPEG7/dataset.html
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Fig. 4 Landmark-constrained geodesic paths for several examples from the MPEG-7 dataset.
Corresponding landmarks are marked along each path

Fig. 5 Landmark-constrained geodesic paths for several examples from the TOSCA and SHREC
2007 datasets

constraints in this case allow the extra tips to grow out of the gaps between tips in
the first crown. The last two comparisons consider cows and butterflies, respectively.
As in the previous examples, the addition of landmarks to the elastic representation
provides valid deformations between shapes.

Next, we provide several examples of landmark-constrained geodesic paths
(approximated using linear paths) between shapes of very complex spherical
surfaces including dogs, cats, horses and human bodies. The models used in all
of the examples in this manuscript were obtained from the TOSCA (Bronstein et al.
2008) and SHREC 2007 (Girogi et al. 2007) databases. The results are presented in
Fig. 5. We do not show the marked landmarks in these cases, which were chosen as
extreme points on the surfaces, i.e., legs, ears, tails, etc. In all examples, geometric
features are nicely preserved along the geodesic paths. Furthermore, all of the
deformations are natural: movement of arms and legs reflects our intuition. For
example, the first path deforms a sitting dog into a laying dog. Note that at each
point along the path the head of the dog is slightly lowered while the front limbs
simply extend out. Figure 6 presents two examples where we compare landmark-
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Fig. 6 Comparison of two landmark-constrained elastic geodesic paths (top) to their uncon-
strained elastic counterparts (bottom)

constrained geodesics (top) to unconstrained ones (bottom). It is clear that, in both
examples, landmarks add valuable information, which improves the comparison of
the given shapes.

3 Statistical Analysis of Landmark-Constrained Shapes

In this section, we provide two useful tools for statistical shape analysis of
landmark-constrained curves and surfaces: computing the sample mean and sum-
marizing variability using tangent principal component analysis (tPCA).

3.1 Sample Averaging

We begin by defining an intrinsic mean called the Karcher mean. Let ff1; f2; : : : ; fng
denote a sample of curves or surfaces. Then, the sample Karcher mean is given
by ŒNf � D arg minŒf �2S

Pn
iD1 d.Œf �; Œfi�/2. A gradient-based approach for finding the

Karcher mean is given in Dryden and Mardia (1998) and Le (2001), and is omitted
here for brevity; a specific implementation of this algorithm for SRVFs and SRNFs
can be found in Kurtek et al. (2013b) and Kurtek et al. (2016), respectively. Further
theoretical results and properties of Karcher means are given in Bhattacharya
(2008), Bhattacharya and Bhattacharya (2012) and Bhattacharya and Lin (2017).
Note that the resulting Karcher mean is defined as an entire equivalence class, which
is how we defined shapes. For visualization purposes and subsequent covariance
computation, we select one representative element Nf 2 ŒNf �. Next, we present several
averaging results for landmark-constrained shapes of curves and closed surfaces.
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3.1.1 Examples

We present two examples of Karcher averaging for a collection of landmark-
constrained curves. Figure 7 shows the first example: a sample of 20 bones with
different features. Some of the bones are slightly bent, and the edges of the bones
vary from sharp to smooth. Four landmarks were selected on each bone. Two
elastic averages are displayed; the middle average was computed without landmark
constraints, while the right one includes landmarks. In this case, the two averages are
somewhat similar; they both indeed look like bones, and it appears as if averaging
over a somewhat large sample size has “smoothed” out any unusual features that a
few of the bones may have. The difference in the two averages being fairly small
suggests that landmark information may not be as crucial in this example.

The second example features a sample of 12 camels displayed in Fig. 8; these
camels vary in the number of clearly visible legs as well as the number of humps
the animal has. Unconstrained Karcher averaging (without landmarks) does not
preserve the legs well, as shown in the middle panel of Fig. 8. Thus, landmark-

Fig. 7 Left: Sample of 20 bone curves. Middle: Average of bones without landmark constraints.
Right: Average of landmark-constrained bones (with landmarks annotated in black)

Fig. 8 Left: Sample of 12 camel outlines. Middle: Average of camels without landmark con-
straints. Right: Average of landmark-constrained camels (with landmarks annotated in black)
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Fig. 9 Left: Sample of eight horse surfaces. Right: Landmark-constrained average of the eight
horse shapes

constrained Karcher averaging appears to be a better option to preserve as many
features in the camels as possible. Six landmarks were selected on each camel
(one for each of the four legs and one for each of the two possible humps). The
landmark-constrained average camel shape is shown in the right panel of Fig. 8.
Since all but two of the camels have two humps, the average also has two distinct
humps. However, the Karcher mean’s legs show some signs of occlusion as the
gap (particularly in the front pair of legs) is fairly small. This is inherited from the
camels in the sample which share that property. For both examples, the gradient
descent algorithm converged after approximately 500 iterations.

Finally, we close this section with one example of averaging shapes of landmark-
constrained surfaces. The example is presented in Fig. 9 and considers a sample
of eight horse shapes. The horses mostly differ in their pose. We selected eight
landmarks on each horse corresponding to the two ears, the snout, the four legs
and the tail. The resulting average is presented in the right panel. It is a nice
representative of the given data where all features have been preserved. The pose
of the average horse is approximately neutral.

3.2 Summarization of Variability

Tangent principal component analysis (tPCA) is a useful way to visualize principal
directions of variability in shape datasets. We first describe this procedure for
landmark-constrained curves. Given the Karcher mean shape, we compute the
shooting vectors vi; i D 1; : : : ; n by projecting all of the SRVFs into the linear
tangent space at Nq, the SRVF of Nf , using the inverse exponential map. At the
implementation stage, the shooting vectors are sampled using N points allowing
us to use multivariate tools on this tangent space to perform tPCA. We first compute
the sample covariance matrix given by K D 1

n�1

Pn
iD1 viv

T
i (assuming that the vis

are stacked into long vectors). The SVD of K is given by K D U†UT , where †

is a diagonal matrix of principal component variances and the columns of U are
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the corresponding principal directions of variation in the data. One can explore the
ith direction Ui by computing 	 D t

p
†iiUi (for some value of t), where †ii is the

ith diagonal element of †. This vector can then be mapped back to the landmark-
constrained shape space via the exponential map and converted to a curve for
visualization. This procedure is greatly simplified by the invertibility of the SRVF.
We can simply perform all of the analysis on the SRVF shape space (quotient space
of the Hilbert sphere with a simple differential geometry), and then map the results
back to the original curve shape space. This is not possible for the case of surfaces
as described next.

The evaluation of the covariance for a collection of landmark-constrained surface
shapes is performed as follows. First, we find the shooting vectors from the

estimated Karcher mean Nf to each of the surfaces in the sample, vi D dF�

i
dt jtD0,

where i D 1; : : : ; n and F� denotes a geodesic path in the landmark-constrained
shape space S (computed using path-straightening as before). To generate a much
lower dimensional, orthonormal basis denoted by fBjjj D 1; : : : ; mg, m � n, we
apply the Gram-Schmidt procedure under the partial elastic metric hh�; �ii to the
observed shooting vectors fvi; i D 1; : : : ; ng. We approximately represent each
original shape using a low dimensional coefficient vector ci D fci;j; j D 1; : : : ; mg,
where ci;j D hhvi; Bjii. The sample covariance matrix can be computed in the
coefficient space as K D 1

n�1

Pn
iD1 cicT

i 2 R
m�m and tPCA can be performed

using K as before. This results in the principal directions of variation in the given
data U and the diagonal matrix of principal component variances †. To explore the
principal direction Ui 2 R

m, we can compute the corresponding shooting vector as
	 D t

p
†ii

Pm
jD1 Ui;jBj (

p
†ii denotes the ith diagonal element of †). One can then

map this vector to a surface f using the exponential map. The exponential map in
this case must be computed under the non-standard partial elastic metric introduced
earlier, which is not a simple task. This can be accomplished using a tool called
parallel transport, which was derived for this representation of surfaces by Xie et al.
(2013). For brevity, we do not provide details here but rather refer the interested
reader to that paper. In the current results, we approximate the exponential map
using a straight line.

3.2.1 Examples

Like in many standard statistical analyses, one may want to understand the
variability in a population given a collection of shapes. This can be done by looking
at principal directions of variation obtained through tPCA. The top panel of Fig. 10
shows the top two principal directions of variation in the bone data. The primary
direction includes a slight bending of the bone, as well as different patterns at
the ends of the bone (especially at the top end). The second direction controls
the thickness of the middle portion of the bone. Similarly, the middle panel of
Fig. 10 displays the two principal directions of variation for the collection of camel
shapes. The primary direction captures the variability in the presence of a gap
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Fig. 10 Visualization of the two principal directions of variation for the bone, camel and horse
examples. From left to right for each direction: �1.5, �1, �0.5, 0 (mean), +0.5, +1, +1.5 standard
deviations from the mean

between the front legs or the rear legs (or both) among the sample of shapes. The
second one appears to capture some more differences in the leg structure as well
as the variability in the humps. Finally, the bottom panel of Fig. 10 displays the
same results for the sample of horse surfaces. The principal direction mainly reflects
the up-down movement of the horse’s head and the pose of the front two legs. The
second direction captures changes in the pose of the back legs and the overall body.

4 Summary

We present a framework for landmark-constrained shape analysis of curves and
surfaces. The framework is based on elastic metrics and corresponding, simplifying
representations termed the square-root velocity function and the square-root normal
field. The elastic metrics combined with anatomical landmarks provide intuitive
correspondences between shapes and result in natural geodesic deformations. We
also provide tools for statistical analysis including averaging and summarization
of variability using tangent principal component analysis. The resulting sample
shape averages and principal directions of variability provide natural summaries
of complex datasets.
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