
Controlling Some Statistical Properties
of Business Rules Programs

Olivier Wang1,2(B) and Leo Liberti2

1 IBM France, 9 Rue de Verdun, 94250 Gentilly, France
2 CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France

{olivier.wang,leo.liberti}@polytechnique.edu

Abstract. Business Rules programs encode decision-making processes
using “if-then” constructs in a way that is easy for non-programmers to
manipulate. A common example is the process of automatic validation of
a loan request for a bank. The decision process is defined by bank man-
agers relying on the bank strategy and their own experience. Bank-side,
such processes are often required to meet goals of a statistical nature,
such as having at most some given percentage of rejected loans, or having
the distribution of requests that are accepted, rejected, and flagged for
examination by a bank manager be as uniform as possible. We propose
a mathematical programming-based formulation for the cases where the
goals involve constraining or comparing values from the quantized out-
put distribution. We then examine a simulation for the specific goals of
(1) a max percentage for a given output interval and (2) an almost uni-
form distribution of the quantized output. The proposed methodology
rests on solving mathematical programs encoding a statistically super-
vised machine learning process where known labels are an encoding of
the required distribution.

Keywords: Distribution learning · Mixed-integer programming · Sta-
tistical goals · Business Rules

1 Introduction

Business Rules (BR) are a “programming for non programmers” paradigm that
is often used by large corporations to store industrial process knowledge formally.
BR replaces the two most abstract concepts of programming, namely loops and
function calls, by means of an implicit outer loop and meta-variables used within
a set of easy-to-manage “if-then” type instructions. BR interpreters are imple-
mented by all BR management systems, e.g. [14]. BR programs are often used
by corporations to encode their policies and empirical knowledge: given some
technical input, they produce a decision, often in the form of a YES/NO output.
Corporations often require their internal processes to perform according to a
prescribed statistical behavior, which could be imposed because of strategy or
by law. This required behavior is typically independent of the BR input data.
The problem is then to parametrize the BR program so it will behave as pre-
scribed on average, while still providing meaningful YES/NO answers on given
inputs.
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 263–276, 2017.
https://doi.org/10.1007/978-3-319-69404-7_19



264 O. Wang and L. Liberti

In [30] we studied a simplified version of the problem where the statistical
behavior was limited to a given mean. In this paper we provide a solution method-
ology for a more general (and difficult) case, where the statistical behavior is
described by a given discrete distribution. We achieve this goal by encoding a
Machine Learning (ML) procedure by means of a Mathematical Program (MP) of
the Mixed-Integer Linear Programming (MILP) type. The ML procedure relies on
non-input specific labels that encode the given knowledge about the distribution.
Controlling the statistical behavior of a complex process such as a BR program is
a very hard task, and to the best of our knowledge this work is the first of its kind
in this respect. Methodologically speaking, we think our MILP formulation is also
innovative in that it encodes an ML training process having labels which, instead
of applying to individual inputs, apply to the entire input distribution at once.
Such an ML process bypasses the usual difficulties of trying to label the training
set data, thereby being more practical for industrial applications.

The motivation for this study is a real industrial need expressed by IBM
(which co-funds this work) with respect to their BR package ODM. Our previ-
ous paper [30] laid some of the groundwork, limited to the most basic statistical
indicator (the mean of a distribution). Though that was a necessary step to the
current work, the methodology described herein is the first to actually address
the need expressed by industry: we feel this is one of the main feature that sets
this work apart from our previous work. We still rely on MILP-based methodol-
ogy, but now the input is a whole discrete distribution, the cardinality of which
largely determines the size of the new MILP formulations presented below. Our
tests show that this has an acceptable impact on empirical solution complexity.

As an experimental illustration, we consider the two cases of the statistical
behavior being (1) a maximum percentage of a certain output value and (2) the
output values being distributed in a fashion close to the uniform distribution,
for integer outputs. We provide an optimization based approach to solving the
learning problem for each of those cases, then examine some test results.

1.1 Preliminaries

We formally represent a BR program as an ordered list of sentences of the form:

if cond(p, x) then
x ← act(p, x)

end if

where p is a control parameter vector (with c components) which encodes a
possible “tuning” of the program (e.g. thresholds which can be adjusted by the
user), x ∈ X ⊆ R

d is a variable vector representing intermediate and final stages
of computation, cond is a boolean function, and act a function with values in X.
We call rule such a sentence, condition an expression cond(p, x) and action an
instruction x ← act(p, x), which indicates a modification of the value of x. We
write the final value of the variable x as xf = P (p, q), where P represents the
BR program and q is an input parameter vector representing a problem instance
and equal to the initial value of x. Although in general BR programs may have



Controlling Some Statistical Properties of Business Rules Programs 265

any type of output, we consider only integer outputs, since BR programs are
mostly used to take discrete decisions. We remark that p, x are symbolic vectors
(rather than numeric vectors) since their components are decision variables.

BR programs are executed in an external loop construct which is transparent
to the user. Without getting into the details of BR semantics, the loop executes
a single action from a BR whose condition is True at each iteration. Which BR is
executed depends on a conflict resolution strategy with varying complexity. De
Sainte-Marie et al. [23] describe typical operational semantics, including conflict
resolution strategy, for industrial BR management systems. In this paper, the
list of rules is ordered and the loop executes the first BR of the list with a
condition evaluating to True at each iteration. The loop only terminates once
every condition of the BRs is False. We proved in [29] that there is a universal
BR program which can simulate any Turing Machine (TM), which makes the
BR language Turing-complete.

We consider the problem where the q ∈ Q are the past, known instances
of the BR program, and the outputs P (p, q) of those instances are divided into
N evenly sized intervals [H0,H1], . . . , [HN−1,HN ], forming a quantized output
distribution. Denoting ν1(p), . . . , νN (p) the number of outputs in these categories,
we can formalize the problem as:

min
p,x

‖p − p0‖1
C (ν1(p), . . . , νN (p))

}
(1)

where ‖ ·‖1 is the L1 norm and C is a constraint or set of constraints. While this
formulation uses the number of outputs rather than the probabilities themselves,
the relation between the two is simply a ratio of 1/m, where m = card(Q) is
the number of training data points.

In this paper, we suppose that P1 and P2 are BR programs with a rule set
{Rr | r ≤ ρ} containing rules of the form:

if Lr ≤ x ≤ Gr then
x ← Arx + Br

end if

with Lr, Gr, Br ∈ R and Ar ∈ {0, 1}d×d. We note R = {1, . . . , ρ} and D =
{1, . . . , d}.

We discuss the concrete example of banks using a BR program in order to
decide whether to grant a loan to a customer or not. The BR program depends
on a variable vector x and initializes its parameter vector (a component of which
is an income level threshold) to p0. A BR program P1 is used to decide whether
a first bank will investigate the loan request further or simply accept the auto-
mated decision taken by an expert system, and therefore has a binary output
value. This bank’s high-level strategy requires that no more than 50% of loans
are treated automatically, but P1 currently treats 60%. Another bank instead
uses a BR program P2 to accept, reject, or assign a bank manager to the loan
request, and therefore has a ternary return value, represented by an integer in
{0, 1, 2}. That bank’s strategy requires that the proportion of each output is



266 O. Wang and L. Liberti

{1/3, 1/3, 1/3}, but it is currently {1/4, 1/4, 1/2}. Our aim is in each case to
adjust p, e.g. modifying the income level, so that the BR program satisfies the
bank’s goal regarding automatic loan treatment. This adjustment of parameters
could be required after a change of internal or external conditions, for example.

The first scenario can be formulated as:

min
p,x

‖p − p0‖1
Eq∈Q

[
P1(p, q)

] ≤ g

}
(2)

where P1 has an output in {0, 1}, g ∈ [0, 1] is the desired max percentage of 1
outputs, the q ∈ Q are the past known instances of the BR program, ‖ · ‖1 is
the L1 norm, p, q must satisfy the semantics of the BR program P (p, q) when
executed within the loop of a BR interpreter and E is the usual notation for the
expected value.

Similarly, the second scenario where P2 has an output in {1, . . . , N} and
the desired output is as close to a uniform distribution as possible can be for-
malized as:

min
p,x

‖p − p0‖1
∀s, t ∈ {1, . . . , N},

∣∣νs − νt
∣∣ ≤ 1

}
(3)

Note that the solution to this problem is not always a truly uniform distribu-
tion, simply because there is no guarantee that m is divisible by N . However,
it will always be as close as possible to a uniform distribution, since the con-
straint imposes that all the outputs will be reached by either floor(m/N) or
ceil(m/N) data points. Again, we use whole numbers (of outputs in a given
interval) instead of frequencies to be able to employ integer decision variables.

Such problems could be solved heuristically by treating P1 or P2 as a black-
box, or by replacing it by means of a simplified model, such as e.g. a low-degree
polynomial. We approach this problem as in [30]: we model the algorithmic
dynamics of the BR by means of MIP constraints, in view to solving those
equations with an off-the-shelf solver. That this should be possible at all in full
generality stems from the fact that Mathematical Programming (MP) is itself
Turing-complete [16].

We make a number of simplifying assumptions in order to obtain a practi-
cally useful methodology, based on solving a Mixed-Integer Linear Programming
(MILP) reformulation of these equations using a solver such as CPLEX [13]:

1. We suppose Q is small enough that solving the MILP is (relatively) compu-
tationally cheap.

2. We assume finite BR programs with a known bound (n − 1) on the number
of iterations of the loop for any input q (industrial BR programs often have
a low value of n relative to the number of rules). This in turn implies that
the values taken by x during the execution of the BR program are bounded.
We assume that M � 1 is an upper bound of all absolute values of all p, q,
and x, as well as any other values appearing in the BR program. It serves as
a “big M” for the MP described in the rest of the paper.



Controlling Some Statistical Properties of Business Rules Programs 267

3. We assume that the conditions and actions of the BR program give rise to
constraints for which an exact MILP reformulation is possible. In order to
have a linear model, each BR must thus be “linear”, i.e. have the form:

if L ≤ x ≤ G then
x ← Ax + B

end if

with L,G,B ∈ R
d and A ∈ {0, 1}d×d. In general, Ah,k may have values in R

if it is not a parameter and xh has only integer values.

1.2 Related Works

We follow the formalism used in [30] pertaining to Business Rules (BR) programs
and their statistical behavior.

Business Rules (also known as Production Rules) are well studied as a knowl-
edge representation system [8,10,18], originating as a psychological model of
human behavior [20,21]. They have further been used to encode expert systems,
such as MYCIN [6,27], EMYCIN [6,25], OPS5 [5,11], or more recently ODM [14]
or OpenRules [22]. On business side of things, they have been defined broadly
and narrowly in many different ways [12,15,24]. We consider Business Rules as
a computational tool, which to the best of our knowledge has not been explored
in depth before.

Supervised Learning is also a well studied field of Machine Learning, with
many different formulations [3,17,26,28]. A popular family of algorithms for the
classification problem uses Association Rules [1,19]. Such Rule Learning is not
to be confused with the problem treated in this article, which is more a regres-
sion problem than a classification problem. There exist many other algorithms
for Machine Learning, from simple linear regression to neural networks [2] and
support vector machines [9]. When the learner does not have as many known
output values as it has items in the training set, the problem is known as Semi-
Supervised Learning [7]. Similarly, there has been research into machine learning
when the matching of the known outputs values to the inputs is not certain [4].
A previous paper has started to explore the Learning problem when the known
information does not match to a single input [30].

2 Learning Goals with Histograms

In the rest of this paper, we concatenate indices so that (Lr)k = Lrk, (Gr)k =
Grk, (Ar)h,k = Arhk and (Br)k = Brk. We assume that rules are feasible,
i.e. ∀r, k ∈ R × D,Lk ≤ Gk. In the rest of this section, we suppose that the
dimension of p is c = 1, making p a scalar, and that p takes the place of A111.
Similar sets of constraints exists for when the parameter p takes the place of
a scalar in Br, Lr or Gr. Additional parameters correspond to additional con-
straints that mirror the ones used for the first parameter.



268 O. Wang and L. Liberti

This formalization is taken from [30], in which we have also proved that the
set of constraints described in Fig. 1 models the execution of such a BR program.
The iterations of the execution loop are indexed by i ∈ I = {1, . . . , n} where n−1
is the upper bound on the number of iterations, the final value of x corresponds
to iteration n. We use an auxiliary binary variable yir with the property: yir = 1
iff the rule Rr is executed at iteration i. The other auxiliary binary variables yU

ir

and yL
ir are used to enforce this property.

We note (C1), (C2), etc. the constraints related to the evolution of the exe-
cution and (IC1), (IC2), etc. the constraints related to the initial conditions of
the BR program:

– (C1): represents the evolution of the value of the variable x
– (C2): represents the property that at most one rule is executed per iteration
– (C3): represents the fact that a rule whose condition is False cannot be exe-

cuted
– (C4)–(C6) represent the fact that only the first rule whose condition is True

can be executed
– (IC1) through (IC3) represent the initial value of a
– (IC4) represents the initial value of x.

Fig. 1. Set of constraints modeling the execution of a BR program (e ∈ R
d is the

all-one vector).



Controlling Some Statistical Properties of Business Rules Programs 269

2.1 A MIP for Learning Quantized Distributions

The Mixed-Integer Program from Fig. 2 models the problem from Eq. 1. We
index the instances in Q with j ∈ J = {1, . . . , m}. We also limit ourselves to
solutions which result in computations that terminate in less than n − 1 rule
executions. As modifying the parameter means modifying the BR program, the
assumptions made regarding the finiteness of the program might not be verified
otherwise.

We note O = {1, . . . , N}, such that ∀t ∈ O, νt = card{j ∈ J | x1
n,j ∈

[Ht−1,Ht]}. We enforce this definition of νt by using an auxiliary binary variable
stj with the property: stj = 1 iff x1

n,j ∈ [Bt−1, Bt]. The other auxiliary binary
variables sUtj and sLtj are used to enforce this property.

The constraints are mostly similar to the ones in Fig. 1. We simply add the
goal of minimizing the variation of the parameter value and the constraints
C (ν1(p), . . . , νN (p)) from Eq. 1. The new constraints are:

– (C7) represents the need for the computation to have terminated after n − 1
executions

– (C8)–(C12) represents the definition of ν1, . . . , νN
– (IC4’) represents (IC4) with an additional index j.

Fig. 2. Mixed-Integer Program solving Eq. 1.



270 O. Wang and L. Liberti

That solving the MIP in Fig. 2 also solves the original Eq. 1 is a direct con-
sequence of the fact that the constraints in Fig. 1 simulate P (p, q). The proof is
simple since (C8) through (C12) trivially represent the definition of ν1, . . . , νN .
A similar MIP can be obtained when p has values in different part of the BRs,
from which a more complex MILP is obtained for when p is non-scalar. However,
this formulation is still quite abstract, as it depends heavily on the form of C .
In fact, it can almost always be simplified given a particular constraint over the
quantized distribution, as we see in the rest of this section.

2.2 A MILP for the Max Percentage Problem

A constraint programming formulation of Eq. 2 is the Mixed-Integer Linear Pro-
gram (MILP) described in Fig. 3. In the case of the Max Percentage problem,
we can linearize the MIP in Fig. 2 as well as remove some superfluous variables,
since only one of the νt is relevant.

We now note e = (1, . . . , 1) ∈ R
d the vector of all ones. We use the auxiliary

variables w ∈ R
I×J×R and z ∈ R

I×J×R×D2
such that wijr = (Arx

ij + Br −
xi,j)yijr (i.e. wijr = Arx

i,j + Br − xi,j , the difference between the new and the
old values of xj) and zijrhk = arhkx

i,j
k .

Any constraints numbered as before fulfills the same role. The additional
constraints are:

– (C1’1), (C1’2), (C1’3), (C1’4) and (C1’5) represent the linearization of (C1)
from Fig. 1

– (C8’) represents the goal from Eq. 2, that is a constraint over the average of
the final values of x. It replaces C (ν1, . . . , νN ) and all the constraints used to
define νt from the MIP in Fig. 2.

The MILP from Fig. 3 finds a value of p that satisfies Eq. 2. This is again
derived from the fact that Fig. 1 simulates a BR program, and from the trivial
proof that (C1’1), (C1’2), (C1’3), (C1’4) and (C1’5) represent the linearization
of (C1).

2.3 A MILP for the Almost Uniform Distribution Problem

As before, we exhibit in Fig. 4 a MILP that solves Eq. 3. Any constraints num-
bered as before fulfills the same role. The additional constraints are:

– (C8”) through (C10”) represent the adaptation of (C8) through (C10) to the
relevant case of integer outputs

– (C13) represents the equivalent to C from Eq. 3.

This MILP is obviously equivalent to solving Eq. 3, since it is for the most part
a straight linearization of the MIP in Fig. 2.



Controlling Some Statistical Properties of Business Rules Programs 271

Fig. 3. MILP formulation for solving Eq. 2.

Fig. 4. MILP formulation for solving Eq. 3.



272 O. Wang and L. Liberti

3 Implementation and Experiments

We use a Python script to randomly generate samples of 100 instances of P1

and P2 for different numbers of control parameters c, each instance having a
corresponding set of inputs with d = 3, n = 10 and m = 100. The number
of control parameters serves as an approximation of the complexity of the BR
program to optimize: a more complex program will have more buttons to adjust,
thus increasing the complexity, yet be more likely to have the goal be reachable
at all, i.e. have the MILP be feasible. We define the space X as X ⊆ R×R×Z.
The BR programs are sets of ρ = 10 rules, where Lr, Gr, Br are vectors of
scalars in an interval range and Ar are d×d matrices of binary variables. In P1,
we use range = [0, 1] and in P2, we use range = [0, 3]. All input values q are
generated using a uniform distribution in range.

We use these BR programs to study the computational properties of the
MILP. The value of M used is customized according to each constraint, and is
ultimately bounded by 6 and 16 in P1 and P2 respectively (strictly greater than
five times the range of possible values for x). We write the MILP as an AMPL
model, and solve it using the CPLEX solver on a Dell PowerEdge 860 running
CentOS Linux.

3.1 The Max Percentage Problem

We observe the proportion of solvable instances of P1 for c between 5 and 10
and c = 15 in Table 1. We use the MILP in Fig. 3 to solve Eq. 2 with the goal
set to g = 0.5.

An instance is considered solvable if CPLEX reports an integer optimal solu-
tion or a (non-)integer optimal solution. We separate the instances where the
optimal value is 0 from the others, as those indicate that the randomly generated
BR program already fulfill the goal condition. We expect around fifty of those
for any value of c.

In Fig. 5, we observe both the success rate and the average solving time when
considering only the non-trivial, non-timed out instances of P1. The success rate
increases steadily, as expected. The solving time seems to indicate a non-linear
increase for c greater than 6, even with its values being somewhat unreliable due
to the small sample. Knowing that average industrial BRs are more complex
than our toy examples, regularly having thousands of rules, this approach to the
Maximum Percentage problem does not seem applicable to industrial cases.

Table 1. Experimental values for the maximum percentage problem.

Number of control parameters c 5 6 7 8 9 10 15

Trivial solvable instances (objective = 0) 52 53 49 49 58 48 46

Non-trivial solvable instances (objective �= 0) 5 6 5 13 6 6 8

Infeasible instances 43 43 40 36 31 35 14

Timed out instances 0 0 7 2 5 11 32



Controlling Some Statistical Properties of Business Rules Programs 273

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5 7 9 11 13 15

so
lv

in
g 

 ti
m

e 
(s

)

number of control parameters c

Fig. 5. Average solution time over P1 for varying values of c in seconds.

3.2 The Almost Uniform Distribution Problem

We observe the proportion of solvable instances of P2 for c between 5 and 10 and
c = 15 in Table 2. We use the MILP in Fig. 4 to solve Eq. 3 with N = 2. Again,
we separate instances where the goal is already achieved before optimization,
identifiable by being solved quickly with a value of p = p0, i.e. an optimal value
of zero.

In Fig. 6, we display the success rate and average solving time over the non-
timed out, non-presolved instances for all three values of c. We observe a sharply
non-linear progression, with the average problem taking about nine minutes with
15 control parameters. Knowing that average industrial BRs are much more
complex than our toy examples, regularly having thousands of rules, we conclude
that this method can only be used infrequently, if at all.

Table 2. Experimental values for the almost uniform distribution problem.

Number of control parameters c 5 6 7 8 9 10 15

Trivial solvable instances (objective = 0) 8 2 1 1 4 7 4

Non-trivial solvable instances (objective �= 0) 9 2 8 5 4 15 32

Infeasible instances 83 96 91 93 92 77 63

Timed out instances 0 0 0 1 0 1 1



274 O. Wang and L. Liberti

0

100

200

300

400

500

600

5 7 9 11 13 15

so
lv

in
g 

 ti
m

e 
(s

)

number of control parameters c

Fig. 6. Average solution time over non-trivial solvable P2 for varying values of c.

4 Conclusion, Discussion and Future Work

We have presented a learning problem of unusual type, that of supervised learn-
ing with statistical labels. We have further explored a particular subset of those
problems, those where the labels apply to a quantized output distribution. This
new approach is easily applied to practical applications in industry where control
parameters must be learned to satisfy a given goal. We have given a mathemat-
ical programming algorithm that solves such a learning problem given a linear
BR program. Depending on the specific learning problem, the mathematical
program might be easy or difficult to solve. We examined two example learn-
ing problems with practical applications for which the learning is equivalent to
solving a MILP.

We observe that, though one could detect a visual similarity in the plots
presented in Figs. 5 and 6, we believe that this similarity is only apparent. In
fact, the error bars (which measure the standard deviation of the solution time
over the instance subclass corresponding to a given size of parameters) point
out that the “hard cases” (with high values of solution times) are also the cases
where the error bars are longest. In other words, this “similarity” is simply a
result of outliers in the corresponding peaks.

The experimental results indicate the general feasibility of this type of app-
roach. It is clear that, due to the exponential nature of Branch-and-Bound (BB,
the algorithm solving the MILPs), the performance will scale up poorly with



Controlling Some Statistical Properties of Business Rules Programs 275

the size of the BR program: but this can currently be said of most MILPs. This
issue, which certainly requires more work, can possibly be tackled by pursu-
ing some of the following ideas: more effective BB-based or formulation-based
heuristics (also called mat-heuristics in the literature), cut generation based on
problem structure, and decomposition. The latter, specifically, looks promising
as the structure of the BR program is, up to the extent provided by automatic
translation based on parsing trees, carried over to the resulting MILP.

Other avenues of research are in extending this statistical learning approach
in other directions, e.g. learning other moments, or given quantiles in continuous
distributions. Statistical goal learning problems are an apparently unexplored
area of ML that has eminently practical applications.

Acknowledgments. The first author (OW) is supported by an IBM France/ANRT
CIFRE Ph.D. thesis award.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data, pp. 207–
216. ACM, New York (1993)

2. Atiya, A.: Learning Algorithms for Neural Networks. Ph.D. thesis, California Insti-
tute of Technology, Pasadena, CA (1991)

3. Bakir, G., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., Vishwanathan,
S.: Predicting Structured Data (Neural Information Processing). The MIT Press,
Cambridge (2007)

4. Brodley, C., Friedl, M.: Identifying mislabeled training data. J. Artif. Intell. Res.
11, 131–167 (1999)

5. Brownston, L., Farrell, R., Kant, E., Martin, N.: Programming Expert Systems
in OPS5: An Introduction to Rule-Based Programming. Addison-Wesley, Boston
(1985)

6. Buchanan, B., Shortliffe, E. (eds.): Rule Based Expert Systems: The Mycin Experi-
ments of the Stanford Heuristic Programming Project (The Addison-Wesley Series
in Artificial Intelligence). Addison-Wesley, Boston (1984)

7. Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning. The MIT Press,
Cambridge (2010)

8. Clancey, W.: The epistemology of a rule-based expert system: a framework for
explanation. Artif. Intell. 20(3), 215–251 (1983)

9. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

10. Davis, R., Buchanan, B., Shortliffe, E.: Production rules as a representation for a
knowledge-based consultation program. Artif. Intell. 8(1), 15–45 (1977)

11. Forgy, C.: OPS5 User’s Manual. Department of Computer Science, Carnegie-Mellon
University, Pittsburgh (1981)

12. Knolmayer, G., Herbst, H.: Business rules. Wirtschaftsinformatik 35(4), 386–390
(1993)

13. IBM: ILOG CPLEX 12.2 User’s Manual. IBM (2010)
14. IBM: Operational Decision Manager 8.8 (2015)



276 O. Wang and L. Liberti

15. Kolber, A., et al.: Defining business rules - what are they really? Project Report
3, The Business Rules Group (2000)

16. Liberti, L., Marinelli, F.: Mathematical programming: turing completeness and
applications to software analysis. J. Comb. Optim. 28(1), 82–104 (2014)

17. Liu, T.Y.: Learning to rank for information retrieval. Found. Trends Inf. Retriev.
3(3), 225–331 (2009)

18. Lucas, P., Gaag, L.V.D.: Principles of Expert Systems. Addison-Wesley, Boston
(1991)

19. Malioutov, D.M., Varshney, K.R.: Exact rule learning via boolean compressed sens-
ing. In: Dasgupta, S., McAllester, D. (eds.) Proceedings of the 30th International
Conference on Machine Learning (ICML 2013). JMLR: Workshop and Conference
Proceedings, vol. 28, pp. 765–773. JMLR, Brookline (2013)

20. Newell, A.: Production systems: models of control structures. In: Chase, W. (ed.)
Visual Information Processing. Proceedings of the Eighth Annual Carnegie Sym-
posium on Cognition, pp. 463–526. Academic Press, New York (1973)

21. Newell, A., Simon, H.: Human Problem Solving. Prentice-Hall, Upper Saddle River
(1972)

22. OpenRules Inc.: OpenRules User Manual, Monroe (2015)
23. Paschke, A., Hallmark, G., De Sainte Marie, C.: RIF production rule dialect,

2nd edn. W3C recommendation, W3C (2013). http://www.w3.org/TR/2013/
REC-rif-prd-20130205/

24. Ross, R.: Principles of the Business Rule Approach. Addison-Wesley, Boston (2003)
25. Scott, A., Bennett, J., Peairs, M.: The EMYCIN Manual. Department of Computer

Science, Stanford University, Stanford (1981)
26. Settles, B.: Active learning literature survey. Computer Sciences Technical Report

1648, University of Wisconsin-Madison (2009)
27. Shortcliffe, E.: Computer-Based Medical Consultations: MYCIN. Elsevier,

New York (1976)
28. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
29. Wang, O., Ke, C., Liberti, L., de Sainte Marie, C.: The learnability of business

rules. In: International Workshop on Machine Learning, Optimization, and Big
Data (MOD 2016) (2016)

30. Wang, O., Liberti, L., D’Ambrosio, C., de Sainte Marie, C., Ke, C.: Controlling
the average behavior of business rules programs. In: Alferes, J.J.J., Bertossi, L.,
Governatori, G., Fodor, P., Roman, D. (eds.) RuleML 2016. LNCS, vol. 9718, pp.
83–96. Springer, Cham (2016). doi:10.1007/978-3-319-42019-6 6

http://www.w3.org/TR/2013/REC-rif-prd-20130205/
http://www.w3.org/TR/2013/REC-rif-prd-20130205/
http://dx.doi.org/10.1007/978-3-319-42019-6_6

	Controlling Some Statistical Properties of Business Rules Programs
	1 Introduction
	1.1 Preliminaries
	1.2 Related Works

	2 Learning Goals with Histograms
	2.1 A MIP for Learning Quantized Distributions
	2.2 A MILP for the Max Percentage Problem
	2.3 A MILP for the Almost Uniform Distribution Problem

	3 Implementation and Experiments
	3.1 The Max Percentage Problem
	3.2 The Almost Uniform Distribution Problem

	4 Conclusion, Discussion and Future Work
	References




