
Roberto Battiti
Dmitri E. Kvasov
Yaroslav D. Sergeyev (Eds.)

 123

LN
CS

 1
05

56

11th International Conference, LION 11
Nizhny Novgorod, Russia, June 19–21, 2017
Revised Selected Papers

Learning and
Intelligent Optimization

Lecture Notes in Computer Science 10556

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Roberto Battiti • Dmitri E. Kvasov
Yaroslav D. Sergeyev (Eds.)

Learning and
Intelligent Optimization
11th International Conference, LION 11
Nizhny Novgorod, Russia, June 19–21, 2017
Revised Selected Papers

123

Editors
Roberto Battiti
University of Trento
Trento
Italy

and

Lobachevsky University of Nizhny
Novgorod

Nizhny Novgorod
Russia

Dmitri E. Kvasov
University of Calabria
Rende
Italy

and

Lobachevsky University of Nizhny
Novgorod

Nizhny Novgorod
Russia

Yaroslav D. Sergeyev
University of Calabria
Rende
Italy

and

Lobachevsky University of Nizhny
Novgorod

Nizhny Novgorod
Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-69403-0 ISBN 978-3-319-69404-7 (eBook)
https://doi.org/10.1007/978-3-319-69404-7

Library of Congress Control Number: 2017956726

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-0259-8603
http://orcid.org/0000-0002-5067-4383
http://orcid.org/0000-0002-1429-069X

Preface

This volume edited by R. Battiti, D.E. Kvasov, and Y.D. Sergeyev contains peer-
reviewed papers from the 11th Learning and Intelligent International Optimization
conference (LION-11) held in Nizhny Novgorod, Russia, during June 19–21, 2017.
The LION-11 conference has continued the successful series of the constantly
expanding and worldwide recognized LION events (LION-1: Andalo, Italy, 2007;
LION-2 and LION-3: Trento, Italy, 2008 and 2009; LION-4: Venice, Italy, 2010;
LION-5: Rome, Italy, 2011; LION-6: Paris, France, 2012; LION-7: Catania, Italy,
2013; LION-8: Gainesville, USA, 2014; LION-9: Lille, France, 2015; LION-10:
Ischia, Italy, 2016). This edition was organized by the Lobachevsky University of
Nizhny Novgorod, Russia, as one of the key events of the Russian Science Foundation
project No. 15-11-30022 “Global Optimization, Supercomputing Computations, and
Applications.” Like its predecessors, the LION-11 international meeting explored
advanced research developments in such interconnected fields as mathematical pro-
gramming, global optimization, machine learning, and artificial intelligence. Russia has
a long tradition in optimization theory, computational mathematics, and “intelligent
learning techniques” (in particular, cybernetics and statistics), therefore, the location of
LION-11 in Nizhny Novgorod was an excellent occasion to meet researchers and
consolidate research and personal links.

More than 60 participants from 15 countries (Austria, Belgium, France, Germany,
Hungary, Italy, Lithuania, Portugal, Russia, Serbia, Switzerland, Taiwan, Turkey, UK,
and USA) took part in the LION-11 conference. Four plenary lecturers shared their
current research directions with the LION-11 participants:

Renato De Leone, Camerino, Italy: “The Use of Grossone in Optimization: A
Survey and Some Recent Results”

Nenad Mladenovic, Belgrade, Serbia: “Less Is More Approach in Heuristic
Optimization”

Panos Pardalos, Gainesville, USA: “Quantification of Network Dissimilarities and
Its Practical Implications”

Julius Žilinskas, Vilnius, Lithuania: “Deterministic Algorithms for Black
Box Global Optimization”

Moreover, three tutorials were also presented during the conference:

Adil Erzin, Novosibirsk, Russia: “Some Optimization Problems in the Wireless
Sensor Networks”

Mario Guarracino, Naples, Italy: “Laplacian-Based Semi-supervised Learning”
Yaroslav Sergeyev, University of Calabria, Italy, and Lobachevsky University of

Nizhny Novgorod, Russia: “Numerical Computations with Infinities and
Infinitesimals”

A total of 20 long papers and 15 short papers were accepted for publication in this
LNCS volume after thorough peer reviewing (up to three review rounds for some
manuscripts) by the members of the LION-11 Program Committee and independent
reviewers. These papers describe advanced ideas, technologies, methods, and appli-
cations in optimization and machine learning. This volume also contains the paper
of the winner (Francesco Romito, Rome, Italy) of the second edition of the
Generalization-Based Contest in Global Optimization (GENOPT: http://genopt.org).

The editors thank all the participants for their dedication to the success of LION-11
and are grateful to the reviewers for their valuable work. The support of the
Springer LNCS editorial staff is greatly appreciated.

The editors express their gratitude to the organizers and sponsors of the LION-11
international conference: Lobachevsky University of Nizhny Novgorod, Russia;
Russian Science Foundation; EnginSoft Company, Italy; NTP Truboprovod, Russia;
and the International Society of Global Optimization. Their support was essential for
the success of this event.

August 2017 Roberto Battiti
Dmitri E. Kvasov

Yaroslav D. Sergeyev

VI Preface

http://genopt.org

Organization

General Chair

Yaroslav Sergeyev University of Calabria, Italy and Lobachevsky
University of Nizhny Novgorod, Russia

Steering Committee

Roberto Battiti (Head) University of Trento, Italy and Lobachevsky
University of Nizhny Novgorod, Russia

Holger Hoos University of British Columbia, Canada
Youssef Hamadi École Polytechnique, France
Mauro Brunato University of Trento, Italy
Thomas Stützle Université Libre de Bruxelles, Belgium
Christian Blum Spanish National Research Council
Martin Golumbic University of Haifa, Israel
Marc Schoenauer Inria Saclay, Île-de-France
Xin Yao University of Birmingham, UK
Benjamin Wah The Chinese University of Hong Kong

and University of Illinois, USA
Yaroslav Sergeyev University of Calabria, Italy and Lobachevsky

University of Nizhny Novgorod, Russia
Panos Pardalos University of Florida, USA

Technical Program Committee

Annabella Astorino ICAR-CNR, Italy
Roberto Battiti University of Trento, Italy and Lobachevsky

University of Nizhny Novgorod, Russia
Bernd Bischl Ludwig Maximilians University Munich, Germany
Christian Blum Spanish National Research Council
Mauro Brunato University of Trento, Italy
Sonia Cafieri École Nationale de l’Aviation Civile, France
Andre de Carvalho University of São Paulo, Brazil
John Chinneck Carleton University, Canada
Andre Cire University of Toronto Scarborough, Canada
Renato De Leone University of Camerino, Italy
Luca Di Gaspero University of Udine, Italy
Bistra Dilkina Georgia Institute of Technology, USA
Adil Erzin Sobolev Institute of Mathematics SB RAS, Russia
Giovanni Fasano University Ca’Foscari of Venice, Italy
Paola Festa University of Naples Federico II, Italy

Antonio Fuduli University of Calabria, Italy
David Gao Federation University, Australia
Martin Golumbic University of Haifa, Israel
Vladimir Grishagin Lobachevsky University of Nizhny Novgorod, Russia
Tias Guns Vrije Universiteit Brussel, Belgium
Youssef Hamadi École Polytechnique, France
Frank Hutter Albert-Ludwigs-Universität Freiburg, Germany
George Katsirelos MIAT-INRA, France
Michael Khachay Krasovsky Institute of Mathematics and Mechanics UB

RAS, Russia
Oleg Khamisov Melentiev Institute of Energy Systems SB RAS, Russia
Yury Kochetov Sobolev Institute of Mathematics SB RAS, Russia
Lars Kotthoff University of British Columbia, Canada
Dmitri Kvasov University of Calabria, Italy and Lobachevsky University

of Nizhny Novgorod, Russia
Dario Landa-Silva The University of Nottingham, UK
Hoai An Le Thi Université de Lorraine, France
Daniela Lera University of Cagliari, Italy
Vasily Malozemov Saint Petersburg State University, Russia
Marie-Eléonore

Marmion
CRISTAL/Inria/Lille University, France

Silvano Martello University of Bologna, Italy
Kaisa Miettinen University of Jyväskylä, Finland
Nenad Mladenovic Mathematical Institute SANU, Serbia
Evgeni Nurminski Far Eastern Federal University, Russia
Barry O’Sullivan University College Cork, Ireland
Panos Pardalos University of Florida, USA
Remigijus Paulavičius Imperial College London, UK and Vilnius University,

Lithuania
Thomas Pock Graz University of Technology, Austria
Mikhail Posypkin Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Oleg Prokopyev University of Pittsburgh, USA
Helena Ramalhinho

Lourenço
Universitat Pompeu Fabra, Spain

Massimo Roma Sapienza University of Rome, Italy
Francesca Rossi University of Padova, Italy and Harvard University, USA
Valeria Ruggiero University of Ferrara, Italy
Horst Samulowitz IBM T.J. Watson Research Center, USA
Marc Schoenauer Inria Saclay, Île-de-France
Meinolf Sellmann General Electric Global Research, USA
Yaroslav Sergeyev

(Chair)
University of Calabria, Italy and Lobachevsky

University of Nizhny Novgorod, Russia
Carlos Soares University of Porto, Portugal
Alexander Strekalovskiy Matrosov Institute for System Dynamics and Control

Theory SB RAS, Russia
Thomas Stützle Université Libre de Bruxelles, Belgium

VIII Organization

Éric Taillard University of Applied Science of Western Switzerland
Tatiana Tchemisova University of Aveiro, Portugal
Gerardo Toraldo University of Naples Federico II, Italy
Michael Trick Carnegie Mellon University, USA
Daniele Vigo University of Bologna, Italy
Petr Vilím IBM Czech, Czech Republic
Luca Zanni University of Modena and Reggio Emilia, Italy
Anatoly Zhigljavsky Cardiff University, UK
Antanas Žilinskas Vilnius University, Lithuania
Julius Žilinskas Vilnius University, Lithuania

Additional Reviewers

Steven Adriaensen
Yair Censor
Elena Chistyakova
Ivan Davydov
Alessandra De Rossi
Giuseppe Fedele
Jonathan Gillard

Marat Mukhametzhanov
Duy Nhat Phan
Soumyendu Raha
Ivan Takhonov
Ider Tseveendorj
Vo Xuanthanh

Local Organization Committee

Roman Strongin (Chair) Lobachevsky University of Nizhny Novgorod, Russia
Victor Kasantsev

(Vice-chair)
Lobachevsky University of Nizhny Novgorod, Russia

Vadim Saygin
(Vice-chair)

Lobachevsky University of Nizhny Novgorod, Russia

Konstantin Barkalov Lobachevsky University of Nizhny Novgorod, Russia
Lev Afraimovich Lobachevsky University of Nizhny Novgorod, Russia
Dmitri Balandin Lobachevsky University of Nizhny Novgorod, Russia
Victor Gergel Lobachevsky University of Nizhny Novgorod, Russia
Vladimir Grishagin Lobachevsky University of Nizhny Novgorod, Russia
Dmitri Kvasov Lobachevsky University of Nizhny Novgorod, Russia
Iosif Meerov Lobachevsky University of Nizhny Novgorod, Russia
Grigory Osipov Lobachevsky University of Nizhny Novgorod, Russia
Mihail Prilutskii Lobachevsky University of Nizhny Novgorod, Russia
Alexadner Sysoyev Lobachevsky University of Nizhny Novgorod, Russia
Dmitri Shaposhnikov Lobachevsky University of Nizhny Novgorod, Russia
Ekaterina Goldinova Lobachevsky University of Nizhny Novgorod, Russia

Organization IX

Acknowledgements. The organization of the LION-11 conference was supported by
the Russian Science Foundation, project No. 15-11-30022 “Global optimization,
supercomputing computations, and applications”. The organizers also gratefully
acknowledge the support of the following sponsors: EnginSoft company, Italy; NTP
Truboprovod, Russia; and the International Society of Global Optimization.

X Organization

Contents

Long Papers

An Importance Sampling Approach to the Estimation
of Algorithm Performance in Automated Algorithm Design 3

Steven Adriaensen, Filip Moons, and Ann Nowé

Test Problems for Parallel Algorithms of Constrained Global Optimization. . . 18
Konstantin Barkalov and Roman Strongin

Automatic Configuration of Kernel-Based Clustering:
An Optimization Approach. 34

Antonio Candelieri, Ilaria Giordani, and Francesco Archetti

Solution of the Convergecast Scheduling Problem on a Square
Unit Grid When the Transmission Range is 2 . 50

Adil Erzin

A GRASP for the Minimum Cost SAT Problem . 64
Giovanni Felici, Daniele Ferone, Paola Festa, Antonio Napoletano,
and Tommaso Pastore

A New Local Search for the p-Center Problem Based on the Critical
Vertex Concept. 79

Daniele Ferone, Paola Festa, Antonio Napoletano,
and Mauricio G.C. Resende

An Iterated Local Search Framework with Adaptive Operator
Selection for Nurse Rostering . 93

Angeliki Gretsista and Edmund K. Burke

Learning a Reactive Restart Strategy to Improve Stochastic Search 109
Serdar Kadioglu, Meinolf Sellmann, and Markus Wagner

Efficient Adaptive Implementation of the Serial Schedule Generation
Scheme Using Preprocessing and Bloom Filters . 124

Daniel Karapetyan and Alexei Vernitski

Interior Point and Newton Methods in Solving High Dimensional
Flow Distribution Problems for Pipe Networks . 139

Oleg O. Khamisov and Valery A. Stennikov

http://dx.doi.org/10.1007/978-3-319-69404-7_1
http://dx.doi.org/10.1007/978-3-319-69404-7_1
http://dx.doi.org/10.1007/978-3-319-69404-7_2
http://dx.doi.org/10.1007/978-3-319-69404-7_3
http://dx.doi.org/10.1007/978-3-319-69404-7_3
http://dx.doi.org/10.1007/978-3-319-69404-7_4
http://dx.doi.org/10.1007/978-3-319-69404-7_4
http://dx.doi.org/10.1007/978-3-319-69404-7_5
http://dx.doi.org/10.1007/978-3-319-69404-7_6
http://dx.doi.org/10.1007/978-3-319-69404-7_6
http://dx.doi.org/10.1007/978-3-319-69404-7_7
http://dx.doi.org/10.1007/978-3-319-69404-7_7
http://dx.doi.org/10.1007/978-3-319-69404-7_8
http://dx.doi.org/10.1007/978-3-319-69404-7_9
http://dx.doi.org/10.1007/978-3-319-69404-7_9
http://dx.doi.org/10.1007/978-3-319-69404-7_10
http://dx.doi.org/10.1007/978-3-319-69404-7_10

Hierarchical Clustering and Multilevel Refinement for the Bike-Sharing
Station Planning Problem . 150

Christian Kloimüllner and Günther R. Raidl

Decomposition Descent Method for Limit Optimization Problems 166
Igor Konnov

RAMBO: Resource-Aware Model-Based Optimization with Scheduling
for Heterogeneous Runtimes and a Comparison with Asynchronous
Model-Based Optimization . 180

Helena Kotthaus, Jakob Richter, Andreas Lang, Janek Thomas,
Bernd Bischl, Peter Marwedel, Jörg Rahnenführer, and Michel Lang

A New Constructive Heuristic for the No-Wait Flowshop
Scheduling Problem. 196

Lucien Mousin, Marie-Eléonore Kessaci, and Clarisse Dhaenens

Sharp Penalty Mappings for Variational Inequality Problems 210
Evgeni Nurminski

A Nonconvex Optimization Approach to Quadratic Bilevel Problems 222
Andrei Orlov

An Experimental Study of Adaptive Capping in irace 235
Leslie Pérez Cáceres, Manuel López-Ibáñez, Holger Hoos,
and Thomas Stützle

Duality Gap Analysis of Weak Relaxed Greedy Algorithms 251
Sergei P. Sidorov and Sergei V. Mironov

Controlling Some Statistical Properties of Business Rules Programs 263
Olivier Wang and Leo Liberti

GENOPT Paper

Hybridization and Discretization Techniques to Speed Up Genetic
Algorithm and Solve GENOPT Problems. 279

Francesco Romito

Short Papers

Identification of Discontinuous Thermal Conductivity Coefficient
Using Fast Automatic Differentiation. 295

Alla F. Albu, Yury G. Evtushenko, and Vladimir I. Zubov

Comparing Two Approaches for Solving Constrained Global
Optimization Problems. 301

Konstantin Barkalov and Ilya Lebedev

XII Contents

http://dx.doi.org/10.1007/978-3-319-69404-7_11
http://dx.doi.org/10.1007/978-3-319-69404-7_11
http://dx.doi.org/10.1007/978-3-319-69404-7_12
http://dx.doi.org/10.1007/978-3-319-69404-7_13
http://dx.doi.org/10.1007/978-3-319-69404-7_13
http://dx.doi.org/10.1007/978-3-319-69404-7_13
http://dx.doi.org/10.1007/978-3-319-69404-7_14
http://dx.doi.org/10.1007/978-3-319-69404-7_14
http://dx.doi.org/10.1007/978-3-319-69404-7_15
http://dx.doi.org/10.1007/978-3-319-69404-7_16
http://dx.doi.org/10.1007/978-3-319-69404-7_17
http://dx.doi.org/10.1007/978-3-319-69404-7_18
http://dx.doi.org/10.1007/978-3-319-69404-7_19
http://dx.doi.org/10.1007/978-3-319-69404-7_20
http://dx.doi.org/10.1007/978-3-319-69404-7_20
http://dx.doi.org/10.1007/978-3-319-69404-7_21
http://dx.doi.org/10.1007/978-3-319-69404-7_21
http://dx.doi.org/10.1007/978-3-319-69404-7_22
http://dx.doi.org/10.1007/978-3-319-69404-7_22

Towards a Universal Modeller of Chaotic Systems 307
Erik Berglund

An Approach for Generating Test Problems of Constrained
Global Optimization . 314

Victor Gergel

Global Optimization Using Numerical Approximations of Derivatives 320
Victor Gergel and Alexey Goryachih

Global Optimization Challenges in Structured Low Rank Approximation 326
Jonathan Gillard and Anatoly Zhigljavsky

A D.C. Programming Approach to Fractional Problems 331
Tatiana Gruzdeva and Alexander Strekalovsky

Objective Function Decomposition in Global Optimization. 338
Oleg V. Khamisov

Projection Approach Versus Gradient Descent for Network’s Flows
Assignment Problem . 345

Alexander Yu. Krylatov and Anastasiya P. Shirokolobova

An Approximation Algorithm for Preemptive Speed Scaling Scheduling
of Parallel Jobs with Migration . 351

Alexander Kononov and Yulia Kovalenko

Learning and Intelligent Optimization for Material Design Innovation 358
Amir Mosavi and Timon Rabczuk

Statistical Estimation in Global Random Search Algorithms
in Case of Large Dimensions . 364

Andrey Pepelyshev, Vladimir Kornikov, and Anatoly Zhigljavsky

A Model of FPGA Massively Parallel Calculations
for Hard Problem of Scheduling in Transportation Systems 370

Mikhail Reznikov and Yuri Fedosenko

Accelerating Gradient Descent with Projective Response
Surface Methodology. 376

Alexander Senov

Emmental-Type GKLS-Based Multiextremal Smooth Test Problems
with Non-linear Constraints . 383

Ya.D. Sergeyev, D.E. Kvasov, and M.S. Mukhametzhanov

Author Index . 389

Contents XIII

http://dx.doi.org/10.1007/978-3-319-69404-7_23
http://dx.doi.org/10.1007/978-3-319-69404-7_24
http://dx.doi.org/10.1007/978-3-319-69404-7_24
http://dx.doi.org/10.1007/978-3-319-69404-7_25
http://dx.doi.org/10.1007/978-3-319-69404-7_26
http://dx.doi.org/10.1007/978-3-319-69404-7_27
http://dx.doi.org/10.1007/978-3-319-69404-7_28
http://dx.doi.org/10.1007/978-3-319-69404-7_29
http://dx.doi.org/10.1007/978-3-319-69404-7_29
http://dx.doi.org/10.1007/978-3-319-69404-7_30
http://dx.doi.org/10.1007/978-3-319-69404-7_30
http://dx.doi.org/10.1007/978-3-319-69404-7_31
http://dx.doi.org/10.1007/978-3-319-69404-7_32
http://dx.doi.org/10.1007/978-3-319-69404-7_32
http://dx.doi.org/10.1007/978-3-319-69404-7_33
http://dx.doi.org/10.1007/978-3-319-69404-7_33
http://dx.doi.org/10.1007/978-3-319-69404-7_34
http://dx.doi.org/10.1007/978-3-319-69404-7_34
http://dx.doi.org/10.1007/978-3-319-69404-7_35
http://dx.doi.org/10.1007/978-3-319-69404-7_35

Long Papers

An Importance Sampling Approach
to the Estimation of Algorithm Performance

in Automated Algorithm Design

Steven Adriaensen(B), Filip Moons, and Ann Nowé

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
steven.adriaensen@vub.be

Abstract. In this paper we consider the problem of estimating the rel-
ative performance of a given set of related algorithms. The predominant,
general approach of doing so involves executing each algorithm instance
multiple times, and computing independent estimates based on the per-
formance observations made for each of them. A single execution might
be expensive, making this a time-consuming process. We show how an
algorithm in general can be viewed as a distribution over executions;
and its performance as the expectation of some measure of desirability
of an execution, over this distribution. Subsequently, we describe how
Importance Sampling can be used to generalize performance observa-
tions across algorithms with partially overlapping distributions, amor-
tizing the cost of obtaining them. Finally, we implement the proposed
approach as a Proof of Concept and validate it experimentally.

Keywords: Performance evaluation · Algorithms · Importance Sam-
pling · Programming by Optimization · Automated algorithm synthesis

1 Introduction

Often, there are many ways to solve a given problem. However, not all of these
are equally “good”. In the Algorithm Design Problem [2,14] (ADP) we are to
find the “best” way to solve a given problem; e.g. using the least computational
resources (time, memory etc.), and/or maximizing the quality of the solutions
obtained. In a sense it is the problem of “how to best solve a given problem”.

To date, algorithms for many real-world problems are most commonly
designed following a manual, ad-hoc, trial & error approach, making algorithm
design a tedious and costly process, often leading to mediocre results. Recently,
Programming by Optimization [8] (PbO) was proposed as an alternative design
paradigm. In PbO, difficult choices are deliberately left open at design time, thus
programming a family of algorithms (design space), rather than a single algo-
rithm. Subsequently, optimization methods are applied to automatically deter-
mine the best algorithm instance (design) for a specific use-case. Often, the latter

Steven Adriaensen is funded by a Ph.D. grant of the Research Foundation Flanders
(FWO).

c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 3–17, 2017.
https://doi.org/10.1007/978-3-319-69404-7_1

4 S. Adriaensen et al.

requires evaluating each design numerous times, as we are typically interested
in performance across multiple inputs and observations thereof might be noisy.
In turn, a single evaluation can be expensive as it involves algorithm execution,
followed by some sort of quantification of its desirability. As the design space
considered is often huge, this quickly becomes a time-consuming process.

In this paper we propose a novel way of estimating the relative performance of
a given set of related algorithms, targeted at reducing the number of evaluations
needed to solve a given ADP, i.e. solve it faster. This approach is based on the
observation that different algorithm instances in the design space might, with
some likelihood, generate the exact same execution, i.e. perform the exact same
sequence of instructions. Some motivating examples are the following:

– Conditional parameters in algorithm configuration [10]: Often not all para-
meters are used during every execution of an algorithm, i.e. the likelihood of
an execution does only depend on the values of those parameters that were
actually used.

– Selecting a cooling schedule for Simulated Annealing [15] (SA): A cooling
schedule, determines the likelihood of accepting worsening proposals in SA
at each point in time. Most schedules, at each iteration i, accept a worsen-
ing proposals with a probability 0 < pi < 1, i.e. can generate any possible
execution.

The crux is that even though an execution e might have been obtained using
some design c, it might as well (with some likelihood) have been generated
using a different design c′. As such, the observed desirability of e does not only
provide information about the performance of c, but also about that of c′. In
this work we describe how Importance Sampling (IS) can be used to combine all
performance observations relevant to an algorithm, into a consistent estimator
of its performance, assuming we are able to compute the (relative) likelihood of
generating a given execution, using a given design.

The remainder of this paper is structured as follows. First, in Sect. 2, we
formally define the ADP and related concepts such as the design space, desir-
ability of an execution and algorithm performance. Subsequently, in Sect. 3.1, we
summarize contemporary approaches to performance estimation in PbO; before
introducing our IS approach in Sect. 3.2, discussing its benefits in Sect. 4 and
examining its theoretical feasibility in Sect. 5. Finally, we discuss some chal-
lenges encountered when trying to implement IS in practice, and how we have
addressed these in the implementation of a Proof of Concept in Sect. 6, which
we validate experimentally in Sect. 7, before concluding in Sect. 8.

2 The Algorithm Design Problem (ADP)

Informally, we refer to the ADP as any attempt to (automatically) decide how
to best solve a given problem. In the following, we formalize this notion and
introduce concepts and notation used throughout this article.

An IS Approach to the Estimation of Algorithm Performance 5

Let C be the set of alternative algorithm instances considered, i.e. the design
space. Let D denote a distribution over X, the set of possible inputs (e.g. problem
instances to be solved and budgets available for doing so). Let E be the execu-
tion space, i.e. the set of all possible executions of any c ∈ C, on any x ∈ X.
Let Pr(e|c) denote the likelihood that executing algorithm instance c, on an
input x ∼ D, results in an execution e, and f : E → R a function quantifying
the desirability of an execution. We define algorithm performance as a function
o : C → R:

o(c) =
∑

e∈E

Pr(e|c)f(e). (1)

i.e. every algorithm instance in the design space can be viewed as a distribution
over executions, whose performance corresponds to the expectation of f , over
this distribution (as illustrated in Fig. 2). Remark that executing an algorithm
instance (on x ∼ D) corresponds to sampling from its corresponding distribution.
The objective in the ADP is to find c∗ = arg maxc∈C o(c).

Design Space (C)

Execution Space (E)

Performance Space ()

o

Pr

f

Fig. 1. A diagram showing how Pr and
f relate designs to their performance.

f(
e)

Executions (E)

P
r(

e|
c)

c1 c2

Fig. 2. Distribution perspective

Thus far, optimizers of choice for PbO have been algorithm configurators,
i.e. “Programming by Configuration” (PbC). Here, alternative designs are rep-
resented as configurations and configurators search the space of configurations C
for one maximizing performance. As such, the ADP is treated as an Algorithm
Configuration Problem [10] (ACP). Our formulation above is very similar and
can in fact be seen as a simplified, specialization of the ACP. The most relevant
difference, in context of this paper, lies in our definition of o. As argued in [2],
PbC treats algorithm evaluation as a (stochastic) black box function C → R.
Above, we define this mapping as a consequence of algorithm execution (see
Fig. 1), i.e. our choice of design c affects execution e in a particular way (Pr),
which in turn relates to its observed desirability (f). The performance estimation
technique proposed in this paper exploits this feature, assuming Pr (and f) to
be computable (black box) functions. In Sect. 5 we argue why this assumption
is reasonable in context of PbO.

6 S. Adriaensen et al.

3 Performance Estimation in PbO

3.1 Prior Art

Computing o(c) exactly, e.g. using (1), is often intractable due to the size of
E. As such, general configuration frameworks rely on estimates õ(c). Most (e.g.
[3,10,12]) maintain an independent sample average as performance estimate for
each design c. They obtain a set of executions E′

c by repeatedly evaluating c
(see Figs. 3 and 4) and estimate o(c) as õ(c) = ō(c) = 1

|E′
c|

∑
e∈E′

c
f(e). Here, so

called Sequential Model-Based Optimization (SMBO) frameworks are a notable
exception (e.g. SMAC [9]). SMBO frameworks maintain a regression model
M : C → R (a.k.a. response surface model) trained using all previous per-
formance observations. As such M gives us a performance prediction for any
design. Note that these predictions are, to the best of our knowledge, only used
to guide the search (identify unexplored, potentially interesting areas in the con-
figuration space), i.e. to decide on which design to evaluate next. The choice of
incumbent, i.e. which design to return as solution at any time, is based solely on
performance observations obtained using the design itself.

c c

f(
e)

Executions (E)

P
r(

e
c)

Fig. 3. Two different designs

c c

f(
e)

Executions (E)

P
r(

e
c)

Fig. 4. Two similar designs (color
figure online)

3.2 An Importance Sampling Approach

The use of independent estimates is reasonable if the distributions in the design
space are disjoint, as in Fig. 3. However, in what follows, we will argue that we
can do better if two or more distributions overlap, as in Fig. 4, i.e. if there exists
an execution that can be generated by at least two different algorithm instances:
∃ e ∈ E ∧ ci, cj ∈ C : Pr(e|ci) ∗ Pr(e|cj) > 0. When distributions overlap,
evaluations of one design, potentially provide information about another. As
evaluations can be extremely expensive, we would like to maximally utilize the
information they provide; e.g. in Fig. 4, also use the red crosses to estimate the
expectation over the blue distribution and vice versa.

An IS Approach to the Estimation of Algorithm Performance 7

Importance Sampling (IS) is a general technique for estimating properties
of one distribution, using samples generated by another. IS originates from the
field of rare event sampling [6], where some events might strongly affect some
statistic, yet only occur rarely under the nominal distribution P. To reduce
the estimation error on the sample average, it is beneficial to draw samples
from a different distribution G, called the importance or generating distribution,
which increases the likelihood of sampling these important events. To account
for having sampled from this other distribution, we have to adjust our estimate
by weighing observations by the likelihood ratio (P

G). In this paper, we propose
a different use of IS, i.e. to combine all performance observations f(e) relevant
for a design c (i.e. Pr(e|c) > 0) into a consistent estimator of its performance.
Concretely, let E′ be the sample of executions obtained thus far, with E′ ∼ G
(e.g. see Fig. 5), the IS estimate of the performance of any c is then given by

õ(c) = ô(c) =
∑

e∈E′ wc(e) ∗ f(e)∑
e∈E′ wc(e)

with wc(e) =
Pr(e|c)
G(e)

. (2)

where G(e) is the likelihood of generating e using G. While the estimate of each
design c is based on the same E′; the weight function wc will be different, weighing
performance observations according to their relevance to c; e.g. in Fig. 6, observa-
tions on the left and right hand side are more relevant for c1 and c2 respectively.
ô(c) is a consistent estimate of o(c), as long as wc(e) is bounded, ∀ e ∈ E. In prac-
tice, it is also important that we can actually compute G(e) for any e. We will
discuss the choice of G in more detail in Sect. 6.1, but for now it should be clear
that both conditions are met if G is some mixture of all c ∈ C, i.e.

G(e) =
∑

c∈C

λ(c) ∗ Pr(e|c). (3)

where λ(c) > 0 is the likelihood that c is used. Note that wc(e) ≤ 1
λ(c) holds.

Furthermore, remark that if distributions do not overlap, wc(e) = 1
λ(c) and ō = ô.

c1 c2

f(
e)

Executions (E)

P
r(

e|
c)

Fig. 5. G as equal mixture

w
c

c1 c2

f(
e)

Executions (E)

Fig. 6. Design specific weights

8 S. Adriaensen et al.

4 Envisioned Benefits

In this section we will discuss the benefits of using IS (2) to estimate algorithm
performance in an ADP setting. In addition, we will illustrate some of these
experimentally for the abstract setup shown in Figs. 2, 3, 4, 5 and 6. Here, our
design space consists of 2 normal distributions c1 = N (μ1, 1) and c2 = N (μ2, 1).
Our objective is to determine which of these has the greatest mean, based on
samples E′ generated by alternately sampling each. To make this more challeng-
ing we add uniform white noise in [−1, 1] to these observations. Results shown
are averages of 1000 independent runs, generating 1000 samples each. Obviously,
this particular instance is not representative for the ADP. Nonetheless, we would
like to argue that the observations in this section generalize to the full ADP set-
ting; e.g. computing Pr requires us to actually know μ, i.e. o, this however is a
peculiarity of this simple setup and is definitely not the case in general (see also
Sect. 5). As IS treats Pr as a black box, this fact did not affect the generality of
our results. For the critical reader, an analogous argument is made in [1] using
a somewhat more realistic ADP, “benchmark 1” (see Sect. 7.1), as a running
example.

First, IS increases data-efficiency. By using a single performance observation
in the estimation of many designs, we amortize the cost of obtaining it, and will
need less evaluations to obtain similarly accurate estimates. Figure 7 illustrates
this, comparing estimation errors |ō(c2)− o(c2)| (dashed line) and |ô(c2)− o(c2)|
(full lines) respectively, after x evaluations, for multiple setups with different
Δ = μ2−μ1. Clearly, if Δ is large, the distributions for c1 and c2 do not overlap,
i.e. samples from c1 are not relevant for c2 and ō
 ô. However, the lower Δ, the
greater the overlap. As Δ approaches 0, observations become equally relevant
for both designs and only half the evaluations are needed to obtain similarly
accurate estimates.

Related, yet arguably more important in an optimization setting, is that we
can determine more quickly which of 2 similar designs performs better, i.e. have a
more reliable gradient to guide the search. As similar designs share performance
observations, their estimation errors will be correlated, i.e. the error on rela-
tive performance will be smaller. In the extreme case where distributions fully

Fig. 7. Absolute estimation error Fig. 8. Gradient accuracy

An IS Approach to the Estimation of Algorithm Performance 9

overlap (e.g. Δ = 0), performance estimates are the same. Figure 8 illustrates
this, comparing the fraction of the runs for which ō(c1) < ō(c2) (dashed lines)
and ô(c1) < ô(c2) (full lines) holds after x evaluations, for different Δ. For high
Δ values both perform good, as o(c1) � o(c2). However, for Δ approaching 0,
designs become more similar, and the independent estimate of c1 is frequently
better, even after many evaluations. However, ô(c1) < ô(c2) holds, even for small
Δ, after only a few evaluations. In summary, using IS we generally expect to need
less evaluations to solve a given ADP, where at least two or more designs overlap.

Thus far we have discussed why one would use IS estimates, as opposed to
independent sample averages. But how about using regression model predictions
instead? Similar to IS, these allow one to generalize observations beyond the
design used to obtain them, as such improving data-efficiency. The main dif-
ference is that IS is model-free. By choosing a regression model, one introduces
model-bias, i.e. makes prior assumptions about what the fitness landscape (most
likely) looks like. Clearly, the specific assumptions are model-specific. As para-
metric models (e.g. linear, quadratic) typically impose very strict constraints,
mainly nonparametric models (e.g. Random Forests [5], Gaussian Processes [13])
are used in general ADP settings. While nonparametric models are more flexi-
ble, they nonetheless hinge on the assumption that the performance of similar
designs is correlated (i.e. smoothness), which is in essence reasonable, however
the key issue is that this similarity measure is defined in representation space.
Small changes in representation (e.g. a configuration) might result in large per-
formance differences, while large changes may not.

Using IS estimates, similar designs will also have similar estimates, but rather
than being based on similarity in representation space, they are based on simi-
larity in execution space. In fact, we can derive similarity measures for designs
based on the overlap of their corresponding distributions of executions. This is
interesting in analysis, but can also be used in solving the ADP; e.g. to maintain
the diversity in a population of designs. One way to measure overlap would be
by computing the Bhattacharyya Coefficient [4].

To conclude this section, the use of the proposed IS approach does not exclude
the use of regression models. Both approaches are complementary, as different
executions might have a similar desirability, something one could learn based on
correlations in performance observations.

5 Theoretical Feasibility

In what follows we will examine whether it is at all possible to compute ô,
what information is required for doing so, and whether this information can be
reasonably assumed to be available in a PbO context.

Clearly, we can compute ô if we are able to calculate the weights wc(e) for
any e ∈ E′ and c ∈ C. From (2) and (3) it follows that the ability to compute
Pr(e|c), i.e. the likelihood of generating an execution e, using configuration c, on

10 S. Adriaensen et al.

x ∼ D, is a sufficient condition.1 Here, Pr can be viewed as encoding how design
decisions affected algorithm execution. In [2] it was argued that this information
is available in a PbO context, and can therefore be exploited without loss of gen-
erality. In the remainder of this section we will briefly sketch how Pr(e|c) could
be computed in general. Please, bear in mind that the IS approach described
in this paper does not require Pr to be computed as described below, and in
specific scenarios it can often be done more time/space/information efficiently.

In [2] algorithm design is viewed as a sequential decision problem. Intuitively,
we start execution, leaving design choices open. We continue execution as long
as the next instruction does not depend on the decisions made for any of these.
If it does, a choice point is reached and we must decide which of the possi-
ble instructions (A) to execute next. This process continues until termination.
Our objective is to make these decisions as to maximize the desirability of the
execution f . Any candidate design c ∈ C corresponds to a policy of the form
πc : Ω × A → [0, 1], where πc(ω, a) indicates the likelihood of making decision
a in execution context ω using design c. Here, ω “encodes” the features of the
input and execution so far, on which the decision made by any of the designs
of interest (i.e. C) depends. For instance, in our conditional parameter exam-
ple from Sect. 1, choice points correspond to the (first) use of a parameter, A
to its possible values and each ω ∈ Ω encodes the parameter used. In our SA
example, choice points correspond to the acceptance decisions faced every itera-
tion, A = {accept, reject} and each ω ∈ Ω encodes the magnitude of worsening
proposed and the time elapsed/remaining.

Let Ψ(e) be the likelihood of any stochastic events2 that occurred during an
execution e. The likelihood of generating e using c with x ∼ D is given by

Pr(e|c) = D(x)Ψ(e)
n∏

i=1

πc(ωi, ai). (4)

where x is the input used, ai the decision made in the ith choice point and ωi

the context in which it was encountered. Computing (4) requires D(x) and Ψ(e)
to be known explicitly, which is not always the case in practice. Luckily, it can
be shown (proof in [1]) that we can ignore D(x) and Ψ(e) in practice, i.e. use
Pr(e|c) =

∏n
i=1 πc(ωi, ai) instead to compute wc(e), as doing so will make both

nominator, Pr(e|c), and denominator, G(e), D(e)Ψ(e) times too small, and as
such their ratio, wc(e), correct. In summary, to compute ô, the ability to compute
πc (∀c ∈ C) and store (�a, �ω, f(e)) ∀e ∈ E′, suffices in general.

6 The Proof of Concept

Thus far we have introduced a novel performance estimation technique in
Sect. 3.2, discussed its potential merits in Sect. 4 and established its theoreti-
cal feasibility in Sect. 5. In what follows we wish to convince the reader that it is
1 However, it is not a necessary one. It can be shown (proof in [1]) that the ability to

compute only the relative likelihood Pr(e|c)
Pr(e|c′) (∀e ∈ E ∀c, c′ ∈ C) suffices.

2 In a deterministic setting Ψ(e) = 1.

An IS Approach to the Estimation of Algorithm Performance 11

in fact practical. First, in Sect. 6.1, we discuss some challenges encountered when
using IS estimates in practice, in an ADP setting, and how we have addressed
them in the implementation of a Proof of Concept (PoC).

While performance estimation is a key, it is also only one piece of the puzzle.
The ADP is a search problem, i.e. we must search the design space for the design
maximizing performance. In Sect. 6.2 we describe the high-level search strategy
used in our PoC. As a whole, our PoC resembles a simple SMBO-like framework,
using importance sampling estimates, in place of regression model predictions,
to guide its search. To complement this description and facilitate reproduction,
the source code of our PoC is made publicly available.3

6.1 Practical Challenges

Choice of G: As mentioned in Sect. 3.2, we choose a mixture of C as our G
(see (3)). Two issues arise when trying to decide what values λ(c) should take.
First, C might be extremely large, making (3) expensive to compute. Second,
we want to make λ(c) dependent on E′, e.g. to focus computational efforts on
unexplored/promising parts of the design space. In our PoC, we view G, at any
point, as the distribution that generated E′, as opposed to the one that will be
used to generate future executions. To this purpose, we keep track of C ′ the
designs used to generate E′ and use λ(c) = n(c)

|E′| , where n(c) is the number of
executions performed using c. As such, we can at any point in the search process
freely select which design to evaluate next, yet have a consistent estimate for
any c for which lim|E′|→∞

n(c)
|E′| > ε > 0. This roughly corresponds to what is

known in IS literature as an Adaptive Defensive Mixture approach [7].

Measuring Estimate Quality: In most state-of-the-art configurators, search
is not only guided by performance predictions, but also the accuracy of those pre-
dictions is taken into account. Sample size N and variance σ2 are two classical
indicators of the accuracy of a sample average. From the Central Limit Theorem
(CLT) it follows that given a sufficiently large sample F ∼ F , its sample average
F̄ ∼ N

(
μ(F), σ(F)2

N

)
. As such σ(F)√

N
, a.k.a. the Standard Error (SE), can be used

as a measure of uncertainty. As σ(F) is typically unknown, its sample estimate
(std) is used instead. Sadly, the CLT does not directly apply to IS estimates, and
predicting their expected accuracy has been an active research area. In our PoC,
we use SE as a measure of uncertainty nonetheless, assuming that it is a reasonable
heuristic, despite the lack of theoretical guarantees. However, what is the sample
size, and how to estimate the standard deviation, of an IS estimate? IS estimates
are all based on the same samples E′, however not all of these are relevant for all
designs. In fact, a few observations Ec′ ⊆ E′ might dominate ô(c). In our PoC we
estimate |Ec′|, a.k.a. the effective sample size, using the formula below

N̂(c) =
(
∑

e∈E′ wc(e))2∑
e∈E′ wc(e)2

. (5)

3 github.com/Steven-Adriaensen/IS4APE.

http://github.com/Steven-Adriaensen/IS4APE

12 S. Adriaensen et al.

As estimate for the standard deviation we use

ŝtd(c) =

√∑
e∈E′ wc(e) ∗ (f(e) − ô(c))2∑

e∈E′ wc(e)
. (6)

which is the standard deviation of the distribution over E′, where the relative
likelihood of drawing e ∈ E′ is given by wc(e). Remark that if designs are disjoint,
both (5) and (6) reduce to their sample average equivalents N and std.

Computational Overhead: As discussed before, the use of IS estimates as
described in this paper is beneficial in case of overlap and reduces to an ordinary
sample average otherwise. However, computing an IS estimate is computation-
ally more intensive, increasing the overhead. Again, as long as this overhead is
reasonable compared to the cost of an evaluation, performance gains may be
significant. Naively computing ô(c) using (2) would take O(|E′||C ′|). Further-
more, we need to recompute ô(c) every time E′ and thus G changes. In our
PoC, we memoize and update G(e), which can be done in O(|E′|) for any new
e, allowing us to compute ô(c) in O(|E′|). A hidden constant is the cost of com-
puting Pr(e|c), which may be significant in some ADPs. One solution would be
to memoize them as well. A final issue is that Pr(e|c) might be extremely small,
yet relevant, because Pr(e|c′) may be even smaller for all other c′. To avoid
underflows, one could use log(Pr(e|c)) instead.

Algorithm 1. high-level search strategy for our PoC
1: function PoC(x,cinit,GP,LP,f ,Pr,Z,NProp,PSize,MaxEvals)
2: cinc ← cinit
3: M̂ ← IS〈f, Pr, ∅, ∅〉
4: Cpool ← ∅

5: for eval = 1 : MaxEvals do
6: P ← equal mixture of GP and LP(cinc)
7: Cprop ∼ P with |Cprop| = NProp
8: cinc ← arg maxc′∈Cprop∪{cinc} M̂.lbZ(c′)
9: Cpool ← arg maxPSize

c′∈Cpool∪Cprop
M̂.EI(c′)

10: c ← arg maxc′∈Cpool∪{cinc} M̂.EI(c′)
11: e ← execute(c,x)
12: M̂ ← IS〈f, Pr, E′ ∪ {e}, C′ ∪ {c}〉
13: cinc ← arg maxc′∈Cpool∪{cinc} M̂.lbZ(c′)
14: end for
15: return cinc
16: end function

6.2 High-Level Search Strategy

Finally, we describe the high-level search strategy used in our PoC (see
Algorithm 1). When implementing a search strategy we were faced with the

An IS Approach to the Estimation of Algorithm Performance 13

following design choices: Given our observations thus far, which design should
we evaluate next? On which input? What is our incumbent? Decisions made for
all of these are critical in the realization of a framework competitive with the
state-of-the-art. As this paper is about performance estimation, which is largely
orthogonal to these other decisions, doing so was not our main objective; e.g. to
keep it simple our PoC currently only supports optimization on a single input.4

In the remainder of this section we briefly discuss the decisions made for the
other two, followed by a detailed description of the high-level search strategy as
a whole.

Choice of Incumbent: Clearly, we would like our incumbent (cinc) to be the
best design encountered thus far. However, since we only have an estimate of
performance, we also need to take estimate accuracy into account, making it
a multi-objective problem. In our PoC, we measure the uncertainty about the
estimate as ûnc(c) =

̂std(c)√
N̂(c)

and update the incumbent each time we come

across a design c with greater l̂bZ(c) = ô(c) − Z ∗ ûnc(c), where Z ∈ [0,+∞[is
a scalarization factor, passed as an argument to the framework (default 1.96).
Here, l̂bZ(c) can be seen as an approximate lower bound of the confidence interval
for ô with z-score Z (default
 95% confidence interval).

Choice of Design to be Evaluated Next: To decide which design to use
to generate the next execution, we use the Expected Improvement (EI) crite-
rion [11], also used in SMAC. At each point, we attempt to evaluate the design,
which maximizes the Expected (positive) Improvement over our incumbent:

̂EI(c) = (ô(c) − ô(cinc)) ∗ Φ

(

ô(c) − ô(cinc)

ûnc(c)

)

+ ûnc(c) ∗ φ

(

ô(c) − ô(cinc)

ûnc(c)

)

. (7)

where φ and Φ are the standard normal density and cumulative distribution
functions. ÊI will be high for designs estimated to perform well and for those
with high estimated uncertainty; and as such this criterion offers an automatic
balance between exploration and exploitation.

Line by Line Description: At line 2 we initialize the incumbent to be the
design cinit passed as starting point to the solver. At line 3 we initialize the IS
“model”, denoted by M̂ , and defined as a 4-tuple IS〈f, Pr,E′, C ′〉, where E′ is
the sample of executions generated thus far and C ′ the bag of designs used to
generate them. Initially E′ = C ′ = ∅. Remark that M̂ captures all information
required to compute ô and ûnc and as such ÊI and l̂bZ .

Each iteration, we consider designs Cpool ⊆ C as candidates to be evaluated
next. Ideally Cpool = C, however as C might be huge, this may be intractable. On
4 As this input may be a “random input generator” (e.g. D) we in essence do not lose

any generality here.

14 S. Adriaensen et al.

the other hand, we often lack the prior knowledge to manually select Cpool ⊂ C.
Therefore we adapt Cpool dynamically with |Cpool| ≤ PSize (default 10). At line 4
we initialize Cpool to be empty. Each iteration, at lines 6–7, we sample NProp
(default 100) designs (Cprop) from P, a distribution over C, to be considered
for inclusion in Cpool. Here, P is an equal mixture of 2 distributions passed as
arguments to the framework, which can be used to inject heuristic information:

– Global Prior (GP): A distribution over C, allowing the user to encode prior
knowledge about where good designs are most likely located in C.

– Local Prior (LP): A distribution over C, conditioned on cinc, allowing the
user to encode prior knowledge of how cinc can most likely be improved.

Note that our search strategy only interacts with C through these distributions,
making it design representation independent. In particular, it does not assume
them to be configurations, let alone makes any assumptions about the type of
parameters. At line 8 we update cinc to be the design with the greatest l̂bZ in
Cprop ∪{cinc}. Having generated Cprop, we must decide whether to include them
in Cpool or not. At line 9 we update Cpool as the PSize designs from Cprop∪Cpool

with maximal ÊI. At line 10 we select the design to be evaluated next as the
design in Cpool ∪ {cinc} maximizing ÊI, we evaluate this design at line 11 by
executing it on given input x and we update E′, C ′ (i.e. M̂) accordingly at
line 12. At line 13, we update cinc w.r.t. the new M̂ . Finally, after MaxEvals
iterations, we return cinc at line 15.

7 Experiments

In this section, we briefly evaluate the PoC, described previously, experimentally.
We detail our setup in Sect. 7.1 and discuss our results in Sect. 7.2.

7.1 Experimental Setup

Benchmark: We consider micro-benchmark 1 from [2] as ADP (see Fig. 9). It
consists of a simple loop of at most 20 iterations. At each iteration i we encounter
a choice point and have to decide whether to continue the loop (ai = 1) or
not (ai = 0), if we do, we receive a “reward” ri drawn from N (1, 4), otherwise
execution terminates. The desirability of the execution is simply the sum of these
rewards, i.e. f(e) =

∑20
i=1 ri. The only input is the random generator rng used to

generate the stochastic events during the execution. Every design is represented
as a configuration �c (with |�c| = 20), where each parameter value ci ∈ [0, 1]
indicates the likelihood of continuing the loop at iteration i. Since one of the
optimizers in our baseline (ParamILS) does not support continuous parameters,
we also consider a discretized variant, where the range of each parameter is
{0, 0.1, ..., 0.9, 1} resulting in a total of 1120 configurations.

We used benchmark 1 because it is conceptually simple and the actual per-
formance can be computed as o(�c) =

∑20
i=1

∏i
j=1 cj . Clearly, we have chosen a

benchmark in which the design space is huge, yet is rendered tractable thanks

An IS Approach to the Estimation of Algorithm Performance 15

to the high similarity between designs, making it an ideal use-case for the pro-
posed IS approach. Remark that the optimal design is c∗ : ci = 1,∀i with
o(c∗) = 20. Also, executions are cheap, allowing us to repeat our experiments
multiple times to filter out the noise in our observations. While this bench-
mark exhibits various other specific features, making it trivial to solve, the only
information required/exploited by the IS approach is Pr and f , which it treats
as black box functions. In order to compute these, we stored the number of
iterations performed (#it), and the sum of rewards received (sum r), for each
execution. The latter equals f(e), while the former suffices to compute Pr as

Pr(e|�c) =

{
(1 − c#it+1)

∏#it
i=1 ci 0 ≤ #it ≤ 19∏#it

i=1 ci #it = 20

Baseline: We compare the performance of our PoC to that of 2 state-of-the-art
configurators, (Focused) ParamILS [10] and SMAC [9], chosen as representatives
for the use of independent sample averages and regression models respectively.
We perform 1000 independent runs of 10000 evaluations for every framework,
using their default parameter settings and cinit : ci = 0.5,∀i. For a fair compari-
son we chose the global and local prior (GP,LP) to be uninformative, uniform
and one-exchange distributions respectively. As a consequence, the local and
global search operators used by all 3 frameworks are essentially the same.

7.2 Results and Discussion

Figure 10 shows the (actual) performance of the incumbent obtained by each
framework, after x evaluations, averaged over 1000 runs. Both SMAC and our
PoC were evaluated on both the continuous (full line) and discretized (dashed
line) setup, ParamILS only on the latter.

In the discretized setup we find that ParamILS nor SMAC found the optimal
solution (c∗) within 10000 evaluations, obtaining an average performance of 2
and 6 respectively. Our PoC required only about 10 and 50 evaluations respec-
tively to obtain a similar performance, and the vast majority of the runs found

inputs: rng, c; outputs: #it, sum_r;
sum_r = 0;
i = 1;
while i ≤ 20 do
 if rng.unif(0,1) < c

i
then

sum_r = sum_r + rng.gaus(1,2);
 i = i + 1;

else
break;

end if
end while
#it = i-1;

increments f(e)

choice point

μ σ

Fig. 9. Code for benchmark 1

1 10 100 1000 10000
0

2

4

6

8

10

12

14

16

18

20

Evaluations (E')

o(
 i

nc
)

o(c*)
PoC (disc.)
PoC (cont.)
SMAC (disc.)
SMAC (cont.)
ParamILS

Fig. 10. Results for benchmark 1

16 S. Adriaensen et al.

c∗ within the 2000 first evaluations (the worst needed 7573 evaluations). In the
continuous setting both SMAC and our PoC performed (only) slightly worse
than in the discretized setup.

Note that the results for ParamILS are worse than those reported in [2] and
that our PoC performs worse than WB-PURS described therein. This because
only deterministic policies, i.e. ci ∈ {0, 1} ∀i, were considered5 in [2], and there-
fore the design space was much smaller (220 vs. 1120), yet included c∗.

Finally, note that the run times differed for all 3 frameworks. A run using our
PoC, ParamILS and SMAC took on average about 5, 20 and 30 min respectively
on our machine. However, as a single evaluation takes virtually no time, compar-
ing optimizers on this benchmark based on actual run times would be unfair, and
bias results towards those optimizers having the lowest overhead (e.g. least IO
operations), which is furthermore very machine dependent. The actual overhead
per evaluation was small for all frameworks (30–180 ms), and as such negligible,
as long as an evaluation takes at least a few seconds, which is typically the case
in more realistic ADP settings.

8 Conclusion

In this paper we proposed a novel way of estimating the performance of a family
of related algorithms. Here, we viewed algorithms as distributions of executions;
and algorithm performance as the expectation of some measure of the desirability
of an execution, over this distribution. We showed how Importance Sampling (IS)
can be used to generalize performance observations across algorithms with par-
tially overlapping distributions, amortizing the cost of obtaining them. Finally,
we described the implementation of an actual framework using this technique,
which we validated experimentally.

This framework, while presenting a few interesting ideas of its own (e.g.
the use of prior distributions to inject prior knowledge), is merely a Proof of
Concept (PoC), and misses some features commonly found in state-of-the-art
configurators, such as optimization across a set of training inputs, preliminary
cutoff of poor executions and parallel execution support. Extending our PoC to
support these features is a work in progress. We will also look into integrating
IS into existing frameworks, e.g. to automatically exploit the conditionality of
parameters. The latter should be relatively straightforward, as all we need to
do is keep track of which parameters were actually used during an execution
e, and determine whether a configuration c has the correct values for these
(Pr(e|c) = 1) or not (Pr(e|c) = 0). Finally, we also plan to investigate the use of
IS in an analysis context, where one is interested in approximating the response
surface as a whole, rather than finding its highest peak.

The experimental validation presented in this paper is minimal and is by
no means intended as a proof of the “superiority” of the proposed approach in
real-world ADP settings. Rather, the crux of this paper was to present a novel

5 As WB-PURS does not support stochastic policies it was not be included as baseline.

An IS Approach to the Estimation of Algorithm Performance 17

and interesting idea in a technically sound manner, and to show that it is at
least possible to implement it in practice. That being said, we see no reason why
we would not be able to improve performance in more realistic ADP settings.
Clearly, the potential gain crucially depends on the design space considered, if
all designs are sufficiently different, we can do no better, but overhead aside, we
see no reason why we would do worse either, as all estimators presented in this
paper, reduce to their sample average equivalents in this case.

References

1. Supplementary Material (2017). http://ai.vub.ac.be/node/1566
2. Adriaensen, S., Nowé, A.: Towards a white box approach to automated algorithm

design. In: International Joint Conference on Artificial Intelligence (IJCAI), pp.
554–560 (2016)

3. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the
automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol.
5732, pp. 142–157. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04244-7 14

4. Bhattacharyya, A.: On a measure of divergence between two multinomial popula-
tions. Sankhyā Indian J. Stat. 7, 401–406 (1946)

5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
6. Denny, M.: Introduction to importance sampling in rare-event simulations. Eur. J.

Phys. 22(4), 403 (2001)
7. Hesterberg, T.: Weighted average importance sampling and defensive mixture dis-

tributions. Technometrics 37(2), 185–194 (1995)
8. Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)
9. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization

for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol.
6683, pp. 507–523. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3 40

10. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Intell. Res. 36(1), 267–306 (2009)

11. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

12. López-Ibánez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package,
iterated race for automatic algorithm configuration. Technical report, Universit
Libre de Bruxelles (2011)

13. Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press, Cambridge
(2006)

14. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
15. Van Laarhoven, P.J., Aarts, E.H.: Simulated annealing. In: van Laarhoven, P.J.M.,

Aarts, E.H.L. (eds.) Simulated Annealing: Theory and Applications, pp. 7–15.
Springer, Dordrecht (1987). doi:10.1007/978-94-015-7744-1 2

http://ai.vub.ac.be/node/1566
http://dx.doi.org/10.1007/978-3-642-04244-7_14
http://dx.doi.org/10.1007/978-3-642-25566-3_40
http://dx.doi.org/10.1007/978-94-015-7744-1_2

Test Problems for Parallel Algorithms
of Constrained Global Optimization

Konstantin Barkalov(B) and Roman Strongin

Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
barkalov@vmk.unn.ru, strongin@unn.ru

Abstract. This work considers the problem of building a class of test
problems for global optimization algorithms. The authors present an
approach to building multidimensional multiextremal problems, which
can clearly demonstrate the nature of the best current approximation,
regardless of the problems dimensionality. As part of this approach, the
objective function and constraints arise in the process of solving an auxil-
iary approximation problem. The proposed generator allows the problem
to be simplified or complicated, which results in changes to its dimen-
sionality and changes in the feasible domain. The generator was tested by
building and solving 100 problems using a parallel global optimization
index algorithm. The algorithm’s results are presented using different
numbers of computing cores, which clearly demonstrate its acceleration
and non-redundancy.

Keywords: Global optimization · Multiextremal functions · Non-
convex constraints

1 Introduction

One of the general approaches to studying and comparing multiextremal opti-
mization algorithms is based on applying these methods to solve a set of test prob-
lems, selected at random from a certain specially constructed class. In this case,
each test problem can be viewed as a random function created by a special gen-
erator. Using multiextremal optimization algorithms with large samples of such
problems allows the operating characteristics of the methods to be evaluated (the
likelihood of properly identifying the global optimizer within a given number of
iterations), thus characterizing the efficiency of each particular algorithm.

The generator for one-dimensional problems was suggested by Hill [1]. These
test functions are typical for many engineering problems; they are particularly
reminiscent of reduced stress functions in problems with multiple concentrated
loads (see [2] for example). Another widely known class of one-dimensional test
problems is produced using a generator developed by Shekel [3].

A special GLOBALIZER software suite [4] was developed to study vari-
ous one-dimensional algorithms with random samples of functions produced by
the Hill and Shekel generators. A comprehensive description of this system, its
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 18–33, 2017.
https://doi.org/10.1007/978-3-319-69404-7_2

Test Problems for Parallel Algorithms of Constrained Global Optimization 19

capabilities and example uses is provided in [5]. It should be noted that the Hill
functions were successfully used in the design of a one-dimensional constrained
problem generator with controlled measure of a feasible domain [6].

Another generator for random samples of two-dimensional test functions,
successfully used in the studies by a number of authors, was developed and
investigated in [7–10]. A generator for functions with arbitrary dimensionality
was suggested in [11]. It was used to study certain multidimensional algorithms
as described in [12–15]. Well-known collections of test problems for constrained
global optimization algorithms were proposed in [16,17].

All of these generators produce the function to be optimized. In the case
when the dimensionality is greater than two the optimization process itself can-
not be clearly observed. In this regard, it is interesting to examine a different
approach, initiated in [5]. In this approach, the objective function appears as
a solution to a certain supporting approximation problem, which allows the
nature of the best current estimate and the final result to be observed, regard-
less of the number of variables. Complicating the problem statement (including
non-convex constraints) results in an increase of its dimensionality. In fact, the
proposed generator produces an approximation problem to which the objective
function is related.

2 Problem Statement

Let’s consider the mathematical model of a charged particle moving through a
magnetic field along the u axis in the form

mü = −eu + F (1)

where m > 0 is the particles mass, u(t) is the particle’s current position at a
moment of time t ≥ 0, −eu – is an attractive force affecting the particle, F is an
external force applied to the particle along u axis (control action). It is assumed
that control action F is a function of time and is represented as

F = m

n∑

i=1

Ai sin(ωit + ϕi).

Here n > 0 is the dimensionality of the vectors ω and determines the number of
frequencies in the control action.

Substituting ω2
0 = e/m the Eq. (1) is reduced to a known equation of forced

oscillations

ü + ω2
0u =

n∑

i=1

Ai sin(ωit + ϕi). (2)

The problem is to find own frequency, control action and initial conditions such
that:

20 K. Barkalov and R. Strongin

1. at t ∈ [a, b] the particle would deviate from the position q0 by no more than
δ > 0;

2. at t = t1, t2, t3, the particle would deviate from positions q1, q2, q3 respectively
by no more than δ > 0;

3. at t = t3 the particle speed would be maximized.

This problem statement can be interpreted as follows: the trajectory of particle
movement u(t) shall pass within a “tube”, then through the three “windows”,
with maximum slope in the last of the “windows”. The illustration in Fig. 1
shows a graph of the function u(t) of the solution to problem (2), which passes
through the “tube” and “windows” shown in the chart by dashed lines.

Fig. 1. Problem solution u(t)

Thus, for a particle of a given mass m > 0 it is necessary to determine its
own frequency ω0, the amplitudes Ai, frequencies ωi and phases ϕi of the control
action, as well as the initial conditions u0 = u(0), u̇0 = u̇(0) for the Eq. (2), such
that conditions 1–3 are true.

Using the following notation for the Eq. (2) solution

u(t, ω, c) =
n∑

i=0

[c2i+1 sin(ωit) + c2i+2 cos(ωit)] , (3)

where c = (c1, . . . , c2n+2), ω = (ω0, ω1, . . . , ωn), we can represent the original
problem as a constrained maximization problem with parameters c and ω:

|u̇(t3, ω, c)| → max
|u(ti, ω, c) − qi| ≤ δ, i = 1, 2, 3, (4)
|u(t, ω, c) − q0| ≤ δ, t ∈ [a, b].

Test Problems for Parallel Algorithms of Constrained Global Optimization 21

Solving the optimization problem (4) and finding the vectors ω, c the solution
to the original problem (2) can be written in accordance with the following
relationships:

u0 =
∑n

i=0 c2i+2, u̇0 =
∑n

i=0 c2i+1ωi

Ai =
(
ω2
0 − ω2

i

) √
c22i+1 + c22i+2, 1 ≤ i ≤ n, (5)

ϕi = arcsin c2i+2√
c22i+1+c22i+2

, 1 ≤ i ≤ n.

As follows from formula (3), the parameters c are included in the equation
solution linearly, and the parameters ω – non-linearly. Given the constraints (4)
this allows the problem to be reformulated and c to be found without using a
numerical optimization method.

Let’s consider a set of points (τj , uj), 0 ≤ j ≤ m, with the coordinates defined
as follows:

τj = a + jh, uj = q0, 0 ≤ j ≤ m − 3, (6)
τm−2 = t1, um−2 = q1,

τm−1 = t2, um−1 = q2,

τm = t3, um = q3,

where h = (b − a)/(m − 3), i.e. the first m − 3 points are located at equal
distances in the center of the “tube”, the other three align with the centers of
the “windows”.

The requirement is that the trajectory of particle u(t) passes “near” the
points (τj , uj), 0 ≤ j ≤ m. If the measure of deviation from the points is defined
as the sum of the squared deviations

Δ(c, ω) =
m∑

j=0

[uj − u(τj , ω, c)]2 ,

then the parameters c can be found (given fixed values of ω), by solving the least
squares problem

c∗(ω) = arg min Δ(c, ω). (7)

According to the least squares method, the solution to problem (7) can be
obtained by solving a system of linear algebraic equations regarding the unknown
c, which can be done, e.g., by Gaussian elimination.

It should also be considered that the components of frequency vector ω can
be placed in ascending order, so as to avoid duplicate solutions corresponding to
the vector ω with similar components in different order. In addition, it is natural
to assume that frequencies in the control action must not just be ordered but
differ by a certain positive value, as an actual physical device can only generate

22 K. Barkalov and R. Strongin

control signals with a certain precision. This assumption can be represented in
the form of a requirement for the following inequalities to be true:

ωi−1(1 + α) − ωi(1 − α) ≤ 0, 1 ≤ i ≤ n. (8)

Here α ∈ (0, 1) is a parameter reflecting the precision of signal generation by the
control device.

Then the original problem can be reformulated as follows:

ω∗ = arg max
ω∈Ω

|u̇(t3, ω, c∗(ω))| (9)

ωi−1(1 + α) − ωi(1 − α) ≤ 0, 1 ≤ i ≤ n,
|u(ti, ω, c∗(ω)) − qi| ≤ δ, i = 1, 2, 3,

max
t∈[a,b]

u(t, ω, c∗(ω)) − min
t∈[a,b]

u(t, ω, c∗(ω)) ≤ δ,

where c∗(ω) is determined from (7), and the number of constraints will be depen-
dent on the number of frequencies n in the control action.

Figure 1 shows trajectory u(t), which corresponds to the solution to problem
(9) with parameters a = 1, b = 10, t1 = 13, t2 = 16.65, t3 = 18, q0 = q3 = 0,
q1 = 7.65, q2 = −9.86. The solution (with three significant digits)

u(t) = 34.997 sin(0.01t − 0.061) + 11.323 sin(0.902t − 0.777)
− 19.489 sin(1.023t + 0.054) + 9.147 sin(1.139t + 0.633)

is determined by the optimal vectors ω∗ = (0.01, 0.902, 1.023, 1.139) and c∗ =
(34.93,−2.151,−8.075,−7.936, 19.461, 1.048,−7.375, 5.411). As follows from (5),
the original problem with the solution u(t) is noted as

ü + 10−4u = − 9.213 sin(0.902t − 0.777) − 20.383 sin(1.023t + 0.054)
− 11.842 sin(1.139t + 0.633),

u0 = −3.62, u̇0 = 4.556.

3 Generating a Series of Problems

The numeric experiments described below used a generator based on the approx-
imation problem from Sect. 2. Apparently, the variation in any parameter of the
original problem (2) will change the optimization problem (9), so it is sufficient
to vary just a few of them.

The centers of the first two “windows”, i.e. the pairs (t1, q1) and (t2, q2),
were chosen as the parameters for determining the specific problem statement.
The values q1 and q2 were chosen independently and uniformly from the ranges

Test Problems for Parallel Algorithms of Constrained Global Optimization 23

[1, 10] and [−10,−1], respectively. The values t1 and t2 were dependent: first, the
value t1 was chosen from the range [b + 1, t3 − 2], then, the value t2 was chosen
from the range [t1 + 1, t3 − 1]. All other parameters in problem (2) were fixed:
a = 1, b = 10, t3 = 18, q0 = q3 = 0, δ = 0.3. Parameter α from (8) was chosen
at 0.05. The number of points in the additional grid (6) for solving the least
square problem (7) was set at 20. The problem of one-dimensional maximization
and minimization from (9) were solved by a scanning over a uniform grid of 100
nodes within the interval [a, b].

An important feature determining the existence of a feasible solution for the
problem being considered is the number and range of frequency variation in the
vector ω. If the range is too small, or the number of frequencies is insufficient,
the feasible domain in the problem (9) will be empty. In the experiments carried
out, the number of frequencies was chosen to be n = 3, which corresponds to
ω = (ω0, ω1, ω2, ω3), while the variable frequency change range was set from 0.01
to 2, i.e. ωi ∈ [0.01, 2], 0 ≤ i ≤ 3.

Let’s note some important properties of the problems produced by the gen-
erator under consideration.

Remark 1. Problem constraints (9) are different in terms of the time required
to verify them. For example, checking each of the first n constraints in (9) (let’s
call these constraints geometric)

ωi−1(1 + α) − ωi(1 − α) ≤ 0, 1 ≤ i ≤ n,

requires performing only three operations with real numbers. Testing other con-
straints (we will call them the main constraints)

|u(ti, ω, c∗(ω)) − qi| ≤ δ, i = 1, 2, 3,

max
t∈[a,b]

u(t, ω, c∗(ω)) − min
t∈[a,b]

u(t, ω, c∗(ω)) ≤ δ

is far more labor-intensive. First, this requires producing a system of linear
equations to solve the problem (7) (∼m(2n + 2)2 computing of sin and cos).
Second, this system needs to be solved (∼ 2

3 (2n+2)3 operations on real numbers).
Third, two one-dimensional optimization problems need to be solved at the last
constraint in (9) (∼100 computing of sin and cos).

Remark 2. The problems are characterized by multiextremal constraints,
which form a non-convex feasible domain. For example, Fig. 2 show level lines
for the functions in the right-hand sides of the main constraints for one of the
problems, while Fig. 3 shows level lines of the objective function. These lines are
provided within the feasible domain of the geometric constraints.

24 K. Barkalov and R. Strongin

Fig. 2. Level lines for the main constraints

Fig. 3. Level lines for the objective function

Test Problems for Parallel Algorithms of Constrained Global Optimization 25

Remark 3. Increasing the frequency change range results in new solutions
appearing in an area of higher frequencies; the feasible domain of the optimiza-
tion problem becomes multiply connected. For example, Fig. 4 shows two trajec-
tories, the solid line corresponds to the vector ω = (0.01, 0.902, 1.023, 1.139) and
solution

u(t) = 34.997 sin(0.01t − 0.061) + 11.323 sin(0.902t − 0.777)
− 19.489 sin(1.023t + 0.054) + 9.147 sin(1.139t + 0.633)

obtained at ωi ∈ [0.01, 2], 0 ≤ i ≤ 3, dashed line corresponds to the frequency
vector ω = (1.749, 1.946, 2.151, 2.377) and solution

u(t) = 5.434 sin(1.749t + 0.832) + 12.958 sin(1.946t + 0.241)
+ 11.844 sin(2.151t − 1.377) + 4.302 sin(2.377t + 0.501)

obtained at ωi ∈ [0.01, 4], 0 ≤ i ≤ 3. Obviously, the second solution is better, as
the trajectory at the last point has the largest slope.

Fig. 4. Solutions with different frequencies

These optimization problem properties allow us to conclude that this gener-
ator may be applied for testing parallel global optimization algorithms. Inter-
ested readers may find the review of approaches to parallelization of optimiza-
tion algorithms in [18]. In this study we will use a parallel algorithm based on
information-statistical approach [5,19].

26 K. Barkalov and R. Strongin

4 Parallel Global Optimization Index Algorithm

Let’s consider a multiextremal optimization problem in the form

ϕ(y∗) = min {ϕ(y) : y ∈ D, gj(y) ≤ 0, 1 ≤ j ≤ m}, (10)

where the search domain D is represented by a hyperparallelepiped

D =
{
y ∈ RN : ai ≤ yi ≤ bi, 1 ≤ i ≤ N

}
. (11)

Suppose, that the objective function ϕ(y) (henceforth denoted by gm+1(y)) and
the left-hand sides gj(y), 1 ≤ j ≤ m, of the constraints satisfy Lipschitz condi-
tion

|gj(x1) − gj(x2)| ≤ Lj ‖y1 − y2‖ , 1 ≤ j ≤ m + 1, y1, y2 ∈ D.

with respective constants Lj , 1 ≤ j ≤ m + 1, and may be multiextremal. Then,
it is suggested that even a single computing of a problem function value may
be a time-consuming operation since it is related to the necessity of numerical
modeling in the applied problems (see, for example, [20,21]).

Using a continuous single-valued mapping y(x) (Peano-type space-filling
curve) of the interval [0, 1] onto D from (11), a multidimensional problem (10)
can be reduced to a one-dimensional problem

ϕ(y(x∗)) = min {ϕ(y(x)) : x ∈ [0, 1], gj(y(x)) ≤ 0, 1 ≤ j ≤ m}, (12)

The reduction of dimensionality matches the multidimensional problem with
a Lipschitzian objective function and Lipschitzian constraints with a one-
dimensional problem where the respective functions satisfy the uniform Hölder
condition (see [5]), i.e.

|gj(y(x1)) − gj(y(x2))| ≤ Kj |x1 − x2|1/N
, x1, x2 ∈ [0, 1], 1 ≤ j ≤ m + 1.

Here N is the dimensionality of the original multidimensional problem, and the
coefficients Kj are related to Lipschitz constants Lj with formulae

Kj ≤ 2Lj

√
N + 3, 1 ≤ j ≤ m + 1.

The issues around the numeric construction of a Peano-type curve and the cor-
responding theory are considered in detail in [5,19]. Here we can just state that
the numerically computed curve (evolvent) is an approximation of the theoreti-
cal Peano curve with a precision at least 2−m for each coordinate (the parameter
m is called the evolvent density).

Let’s introduce the classification of points x from the search domain [0, 1]
using the index ν = ν(x). This index ν is determined by the following conditions:

gj(y(x)) ≤ 0, 1 ≤ j ≤ ν − 1, gν(y(x)) > 0,

Test Problems for Parallel Algorithms of Constrained Global Optimization 27

where the last inequality is negligible if ν = m + 1, and meets the inequalities
1 ≤ ν = ν(x) ≤ m + 1. This classification produces a function

f(y(x)) = gν(y(x)), ν = ν(x),

which is determined and computed along the interval [0, 1]. Its value in a point
x is either the value of the left part of the constraint violated at this point (in
the case, when ν ≤ m), or the value of the objective function (in the case, when
ν = m + 1). Therefore, determining the value f(y(x)) is reduced to a sequential
computation of the values

gj(y(x)), 1 ≤ j ≤ ν = ν(x),

i.e. the subsequent value gj+1(y(x)) is only computed if gj(y(x)) ≤ 0. The com-
putation process is completed either when the inequality gj(y(x)) > 0 becomes
true, or when the value of ν(x) = m + 1 is reached.

The procedure called trial at point x automatically results in determining
the index ν for this point. The pair of values

z = gν(y(x)), ν = ν(x), (13)

produced by the trial in point x ∈ [0, 1], is called the trial result.
A serial index algorithm for solving one-dimensional conditional optimization

problems (12) is described in detail in [6]. This algorithm belongs to a class of
characteristical algorithms (see [7]). It can be parallelized using the approach
described in [7] for solving unconstrained global optimization problems. Let’s
briefly describe the rules of the resulting parallel index algorithm (PIA).

Suppose we have p ≥ 1 computational elements (e.g., CPU cores), which
can be used to run p trials simultaneously. In the first iteration of the method,
p trials are run in parallel at various random points xi ∈ (0, 1), 1 ≤ i ≤ p.
Suppose n ≥ 1 iterations of the method have been completed, and as a result
of which, trials were carried out in k = k(n) points xi, 1 ≤ i ≤ k. Then the
points xk+1, . . . , xk+p of the search trials in the next (n + 1)-th iteration will be
determined according to the rules below.

1. Renumber the points x1, . . . , xk from previous iterations with lower indices,
lowest to highest coordinate values, i.e.

0 = x0 < x1 < . . . < xi < . . . < xk < xk+1 = 1, (14)

and match them with the values zi = gν(y(xi)), ν = ν(xi), 1 ≤ i ≤ k,
from (13), calculated at these points; points x0 = 0 xk+1 = 1 are introduced
additionally; the values z0 zk+1 are indeterminate.

2. Classify the numbers i, 1 ≤ i ≤ k, of the trial points from (14) by the number
of problem constraints fulfilled at these points, by building the sets

Iν = {i : 1 ≤ i ≤ k, ν = ν(xi)} , 1 ≤ ν ≤ m + 1, (15)

28 K. Barkalov and R. Strongin

containing the numbers of all points xi, 1 ≤ i ≤ k, with the same values of
ν. The end points x0 = 0 and xk+1 = 1 are interpreted as those with zero
indices, and they are matched to an additional set I0 = 0, k + 1.
Identify the maximum current value of the index

M = max {ν = ν(xi), 1 ≤ i ≤ k} . (16)

3. For all values of ν, 1 ≤ ν ≤ m + 1, calculate the values

μν = max

{
|zi − zj |

(xi − xj)
1/N

: i, j ∈ Iν , j < i

}
. (17)

If the set Iν contains less than two elements or μν from (17) equals zero, then
assume μν = 1.

4. For all non-empty sets Iν , 1 ≤ ν ≤ m + 1, determine the values

z∗
ν =

{
−εν , ν < M,

min {gν(xi) : i ∈ Iν}, ν = M,
(18)

where M is the maximum current value of the index, and the vector

εR = (ε1, . . . , εm) , (19)

with positive coordinates is called the reserve vector and is used as a para-
meter in the algorithm.

5. For each interval (xi−1, xi),1 ≤ i ≤ k + 1, calculate the characteristic R(i):

R(i) = Δi +
(zi − zi−1)2

(rνμν)2Δi
− 2

zi + zi−1 − 2z∗
ν

rνμν
, ν = ν(xi−1) = ν(xi),

R(i) = 2Δi − 4
zi − z∗

ν

rνμν
, ν(xi−1) < ν(xi) = ν,

R(i) = 2Δi − 4
zi−1 − z∗

ν

rνμν
, ν = ν(xi−1) > ν(xi).

where Δi = (xi − xi−1)1/N , and the values rν > 1, 1 ≤ ν ≤ m + 1, are used
as parameters in the algorithm.

6. Reorder the characteristics R(i), 1 ≤ i ≤ k + 1, from highest to lowest

R(t1) ≥ R(t2) ≥ . . . ≥ R(tk) ≥ R(tk+1) (20)

and choose p largest characteristics with interval numbers tj , 1 ≤ j ≤ p.
7. Carry out p new trials in parallel at the points xk+j , 1 ≤ j ≤ p, calculated by

the formulae

xk+j =
xtj

+xtj−1

2 , ν(xtj−1) 	= ν(xtj
),

xk+j =
xtj

+xtj−1

2 − sign(ztj
−ztj−1)

2rν

[|ztj
−ztj−1|
μν

]N

, ν(xtj−1) = ν(xtj
) = ν.

Test Problems for Parallel Algorithms of Constrained Global Optimization 29

The algorithm stops if the condition Δtj
≤ ε becomes true for at least one

number tj , 1 ≤ j ≤ p; here ε > 0 has an order of magnitude of the desired
coordinate accuracy.

Let’s formulate the conditions for algorithm convergence. For this, in addition
to the exact solution y∗ of the problem (10), we will also consider the ε-reserved
solution, determined by the conditions

ϕ(yε) = min {ϕ(y) : y ∈ D, gj(y) ≤ −εj , 1 ≤ j ≤ m},

where ε1, . . . , εm are positive numbers (“reserves” for each constraint). Let’s also
introduce the set

Yε = {y ∈ D : gj(y) ≤ 0, ϕ(y) ≤ ϕ(yε)} (21)

of all feasible points for the problem (10), which are no worse (in terms of the
objective function’s value) than ε-reserved solution.

Using this notation, the convergence conditions can be formulated as the
theorem below.

Theorem. Suppose the following conditions are true:

1. The problem (10) has ε-reserved solution yε.
2. Each function gj(y), 1 ≤ j ≤ m + 1, satisfies Lipschitz condition with the

respective constant Lj .
3. The parameters εj , 1 ≤ j ≤ m, from (19) have the values of the respective

coordinates from the reserve vector εR.
4. For the values μν from (17) starting from a certain iteration, the following

inequalities are true:

rνμν > 23−1/NLν

√
N + 3, 1 ≤ ν ≤ m + 1.

5. Each iteration uses a fixed number of computational elements p, 1 < p < ∞,
and each trial is completed by a single computational element within a finite
time.

Then any accumulation point ȳ of the sequence
{
yk

}
generated by parallel

index method while solving the problem (10) is admissible and satisfies the
conditions

ϕ(ȳ) = inf
{
ϕ(yk) : gj(yk) ≤ 0, 1 ≤ j ≤ m, k = 1, 2, . . .

} ≤ ϕ(yε).

i.e., ȳ belongs to the set Yε from (21).
These convergence conditions proceed from the theorem of convergence of

the serial index algorithm [5] and the theorem of convergence of a synchronous
characteristical algorithm [7].

30 K. Barkalov and R. Strongin

5 Results of Numerical Experiments

The procedure applied to evaluate the efficiency of the algorithm uses an oper-
ating characteristics method, originally described in [22], which consists of the
following.

Suppose a problem from the series under consideration be solved by a certain
algorithm. The problem is associated with the sequence of trial points

{
y(xk)

}

produced by the algorithm. The sequence is truncated either when a trial point
falls (for the first time) into a certain ε-vicinity of the solution y∗ or when a
certain number of trials K does not produce such a point. In our experiments
we used K = 106.

The results obtained by solving all problems in a series by means of the
algorithm is represented by the function P (k) defined as the fraction of problems
in which some trial point fall within the given ε-neighborhood of the solution
in the first k steps. This function is called the operating characteristic of the
algorithm.

Since the specification of an ε-vicinity requires that y∗ be known, its value
was estimated in advance (for each problem) by searching through all nodes of a
uniform grid (defined on the search domain), e.g. with a step 10−2 by coordinates.

As discussed above (see Remark 1 from Sect. 3), the constraints in the prob-
lem being addressed have a different nature. The first three constraints are geo-
metric, and checking whether they are feasible is not hard. Checking other con-
straints is far more labor-intensive. Therefore, when building operating charac-
teristics for this class of problems, we will only consider the trials that resulted
in checking labor-intensive constraints. The trials that were completed while
checking geometric constraints are not included in the total number of trials.

The experiments were carried out for the parallel index algorithm (PIA)
described above, with the number of used cores p varying from 1 to 8. The
parameters used were rν = 2.5, 1 ≤ ν ≤ 8. Components of the reserve vector
from (19) were selected adaptively under the rule εν = 0.005μν , 1 ≤ ν ≤ 7,
where μν is from (17) (see [5] for a justification of this component selection
for the reserve vector). Computing experiments were carried out on one of the
nodes of a high-performance cluster of the Nizhny Novgorod State University.
The cluster node includes Intel Sandy Bridge E5-2660 2.2 GHz CPU and 64 Gb
RAM. For implementation of the parallel algorithm OpenMP was used.

The algorithm’s operating characteristics when using different number of
computing cores p obtained with a series of 100 problems, are shown in Fig. 5.
The location of the curves shows that any of the parallel algorithms solve 100%
of the problems in less than 7 · 105 trials, with more than 80% of the problems
completing within 2 · 105 trials. The operating characteristics also show that the
algorithm is non-redundant – the number of trials in the parallel algorithm does
not grow (compared to serial algorithm) when additional cores are employed.

Now let’s evaluate the speedup achieved by using a parallel index algorithm,
depending on the number p of computing cores used. Table 1 shows the aver-
age number of iterations n(p) performed by the algorithm when solving a series
of 100 problems, and speedup by the iterations s(p) of a parallel algorithm.

Test Problems for Parallel Algorithms of Constrained Global Optimization 31

Fig. 5. Operating characteristics of PIA, which uses p cores

Table 1. Speedup of the algorithm

p n(p) s(p)

1 241239 –

2 94064 2.56

4 45805 5.27

8 22628 10.66

The results show that the speedup is greater than the number of cores used
(hyper-acceleration). This situation is explained by the fact that the algorithm
performs an adaptive evaluation of the behavior of the objective function (calcu-
lating the lower bounds for the Lipschitz constant (17) and the current minimum
value (18)). For example, if the Lipschitz constant is better estimated in a paral-
lel version, then the parallel algorithm using p cores can be accelerated by more
than p times.

6 Conclusion

In summary, we must note that the method proposed in this work to generate
multidimensional conditional global optimization problems allows:

– clear visualization of the best current estimate and the final solution to the
problem, regardless of the number of variables;

– increased dimensionality of the optimization problem being addressed by
varying the original approximation problem;

– control of the feasible domain by adding extra non-convex constraints.

32 K. Barkalov and R. Strongin

The functions included in the optimization problem are computationally inten-
sive, which also differentiates the mechanism proposed from other known mech-
anisms.

The proposed generator was used to build and subsequently solve 100 prob-
lems using a parallel index algorithm. The operating characteristics of the par-
allel algorithm have been built, clearly demonstrating its non-redundancy.

Acknowledgments. This study was supported by the Russian Science Foundation,
project No. 16-11-10150.

References

1. Hill, J.D.: A search technique for multimodal surfaces. IEEE Trans. Syst. Sci.
Cybern. 5(1), 2–8 (1969)

2. Toropov, V.V.: Simulation approach to structural optimization. Struct. Optim. 1,
37–46 (1989)

3. Shekel, J.: Test functions for multimodal search technique. In: Proceedings of the
5th Princeton Conference on Information Science Systems, pp. 354–359. Princeton
University Press, Princeton (1971)

4. Strongin, R.G., Gergel, V.P., Tropichev, A.V.: Globalizer. Investigation of mini-
mizing sequences generated by global search algorithms for univariate functions.
User’s guide. Nizhny Novgorod University Press, Nizhny Novgorod (1995)

5. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints:
Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

6. Barkalov, K.A., Strongin, R.G.: A global optimization technique with an adaptive
order of checking for constraints. Comput. Math. Math. Phys. 42(9), 1289–1300
(2002)

7. Grishagin, V.A., Sergeyev, Y.D., Strongin, R.G.: Parallel characteristical algo-
rithms for solving problems of global optimization. J. Glob. Optim. 10(2), 185–206
(1997)

8. Sergeyev, Y.D., Grishagin, V.A.: Sequential and parallel algorithms for global opti-
mization. Optim. Methods Softw. 3, 111–124 (1994)

9. Sergeyev, Y.D., Grishagin, V.A.: Parallel asynchronous global search and the
nested optimization scheme. J. Comput. Anal. Appl. 3(2), 123–145 (2001)

10. Gergel, V., Grishagin, V., Gergel, A.: Adaptive nested optimization scheme for
multidimensional global search. J. Glob. Optim. 66(1), 35–51 (2016)

11. Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Software for generation of
classes of test functions with known local and global minima for global optimiza-
tion. ACM Trans. Math. Softw. 29(4), 469–480 (2003)

12. Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions
and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

13. Lera, D., Sergeyev, Y.D.: Lipschitz and Holder global optimization using space-
filling curves. Appl. Numer. Math. 60(1–2), 115–129 (2010)

14. Paulavicius, R., Sergeyev, Y., Kvasov, D., Zilinskas, J.: Globally-biased DISIMPL
algorithm for expensive global optimization. J. Glob. Optim. 59(2–3), 545–567
(2014)

15. Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth
diagonal auxiliary functions. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 99–
111 (2015)

Test Problems for Parallel Algorithms of Constrained Global Optimization 33

16. Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained
Global Optimization Algorithms. LNCS, vol. 455. Springer, Heidelberg (1990).
doi:10.1007/3-540-53032-0

17. Floudas, C.A., et al.: Handbook of Test Problems in Local and Global Optimiza-
tion. Springer, New York (1999). doi:10.1007/978-1-4757-3040-1

18. Pardalos, P.M., Phillips, A.T., Rosen, J.B.: Topics in Parallel Computing in Math-
ematical Programming. Science Press, New York (1992)

19. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimiza-
tion Exploiting Space-Filling Curves. Springer, New York (2013). doi:10.1007/
978-1-4614-8042-6

20. Gergel, V.P., Kuzmin, M.I., Solovyov, N.A., Grishagin, V.A.: Recognition of sur-
face defects of cold-rolling sheets based on method of localities. Int. Rev. Autom.
Control 8(1), 51–55 (2015)

21. Modorskii, V.Y., Gaynutdinova, D.F., Gergel, V.P., Barkalov, K.A.: Optimization
in design of scientific products for purposes of cavitation problems. In: Simos, T.E.
(ed.) ICNAAM 2015. AIP Conference Proceedings, vol. 1738 (2016). Article No.
400013

22. Grishagin, V.A.: Operating characteristics of some global search algorithms. Probl.
Stoch. Search 7, 198–206 (1978). (in Russian)

http://dx.doi.org/10.1007/3-540-53032-0
http://dx.doi.org/10.1007/978-1-4757-3040-1
http://dx.doi.org/10.1007/978-1-4614-8042-6
http://dx.doi.org/10.1007/978-1-4614-8042-6

Automatic Configuration of Kernel-Based
Clustering: An Optimization Approach

Antonio Candelieri1(&), Ilaria Giordani1, and Francesco Archetti1,2

1 Dipartimento di Informatica Sistemistica e Comunicazione, DISCo,
Università di Milano Bicocca, 20126 Milan, Italy

antonio.candelieri@unimib.it
2 Consorzio Milano Ricerche, via R. Cozzi 53, 20125 Milan, Italy

Abstract. This paper generalizes a method originally developed by the authors
to perform data driven localization of leakages in urban Water Distribution
Networks. The method is based on clustering to perform exploratory analysis
and a pool of Support Vector Machines to process on line sensors readings. The
performance depends on certain hyperparameters which have been considered as
decision variables in a sequential model based optimization process. The
objective function is related to clustering performance, computed through an
external validity index defined according to the leakage localization goal. Thus,
as usual in hyperparameters tuning of machine learning algorithms, the objective
function is black box. In this paper it is shown how a Bayesian framework offers
not only a good performance but also the flexibility to consider in the opti-
mization loop also the automatic configuration of the algorithm. Both Gaussian
Processes and Random Forests have been considered to fit the surrogate model
of the objective function, while results from a simple grid search have been
considered as baseline.

Keywords: Hyperparameters optimization � Sequential model based
optimization � Kernel based clustering � Leakage localization

1 Introduction

In this paper we consider a machine learning model based on clustering and Support
Vector Machine (SVM) classification, and its application to leakage localization in an
urban water distribution network.

Machine learning based approaches for analytically localizing leaks in a Water
Distribution Network (WDN) have been proposed, mostly based on the idea that leaks
can be detected by correlating actual modifications in flow and pressure within the
WDN to the output of a simulation model whose parameters are set to evaluate the
effect induced by a leak in a specific location and with a specific severity [1–6].

This paper is based on an analytical framework that uses: (1) extensive simulation
of leaks for data generation; (2) kernel-based clustering to group leaks implying similar
variations in pressure and flow; (3) classification learning (i.e. SVM) to discover the
relation linking variations in pressure and flow to a limited set of probably leaky pipes.

© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 34–49, 2017.
https://doi.org/10.1007/978-3-319-69404-7_3

The main contribution of this paper is the formulation of the algorithm configu-
ration problem and a proposal of a global optimization strategy to solve it.

Automatic configuration of machine learning algorithms has been attracting a
growing attention [7]: the use of default parameters, as pointed out in [8], can result in a
poor generalization performance. Grid search, the most widely used strategy for
hyperparameters optimization, is hardly feasible for more than 2 or 3 parameters. For
these reasons optimization methods have been widely proposed. Classical optimization
cannot be used as the performance measures are typically black-box functions, and/or
multimodal, whose derivatives are not available. For these reasons, global optimization
is now widely accepted as the main computational framework for hyperparameters
optimization and algorithm configuration.

Global optimization [9–11] methods fall in 3 large families. The first is Partitional
Methods which offer global convergence properties and guaranteed accuracy estima-
tion of the global solutions, e.g., in the case of Lipschitz global optimization [12, 13].
A significant application of these methods to hyperparameter optimization is given, e.g.
in [14] for the case of SVM regression or in [15] for the case of signal processing. The
second family is Random Search [16–18] and the related metaheuristics like simulated
annealing, evolutionary/genetic algorithms, multistart&clustering, largely applied in
global optimization. Random Search has recently received fresh attention from the
machine learning community and increasingly considered as a baseline for global
optimization as in Hyperband [19, 20] which considers randomly sampled configura-
tions and relies on a principled early stopping rule to evaluate each configuration and
compares its performance to Bayesian Optimization (BO).

BO represents the third family which came to dominate the landscape of hyper-
parameter optimization in the machine learning community [21–23]. First proposed in
[24], BO is a sequential model based approach: its key ingredients are a probabilistic
model which captures our beliefs – given the evaluations already performed – and an
acquisition function which computes the “utility” of each candidate point for the next
evaluation of f. The Bayesian framework is particularly useful when evaluations of f are
costly, no derivatives are available and/or f is nonconvex/multimodal.

Very relevant to the authors activity is that the BO can be applied to “unusual” design
spaces which involve categorical or conditional variables. This capability makes BO the
natural solution when not only the hyperparameters but also the specific algorithm itself
to be automatically selected in the so called algorithmic configuration [25].

The rest of the paper is organized as follows: Sect. 2 describes the hydraulic
simulation model, the general algorithmic structure and the formulation of the per-
formance measure of the clustering. Section 3 is devoted to the sequential model based
optimization for the hyperparameters optimization and the description of the software
environment utilized. Section 4 analyzes the computational performance of different
strategies while Sect. 5 contains concluding remarks.

Automatic Configuration of Kernel-Based Clustering 35

2 Material and Methods

In this paper the reference application domain is an urban WDN. Water network design
and optimization of the operations (pump scheduling) has received a lot of attention in
the Operation Research literature [26].

The elements of the network are subject to failures, not uncommon given the
typically old age of the infrastructure. Breakages of pipes, in particular, generate bursts
and leaks which can inhibit supply service of the network (or a subnetwork) and induce
substantial loss of water, with an economic loss (no-revenue water), water quality
problems and unnecessary increase in energy costs.

The state of the WDN is usually monitored by a number of sensors which record
flows and pressures. When a leak occurs, sensors record a variation from normal
operating values. We named the vector of deviations the “signature” of the leak.

The main aim of the proposed machine learning approach is to use this “signature”
to identify the location of the leak. Therefore, the basic idea is to move between the
“physical space” (pipes of the WDN) and the space of leak “signatures” to infer a
possible relation – both direct and inverse – between causes (leaks on pipes) and effects
(variations in flow and pressure at the monitoring points).

Although data could be gathered looking at historical leakage events, they would be
too sparse and of poor quality. Thus, a hydraulic simulation software is used to gen-
erate a wide set of data emulating the data from sensors according to different “leakage
scenarios” in the WDN, consisting in placing, in turn, a leak on each pipe and varying
its severity in a given range. Our choice of simulator is EPANET 2.0, widely used for
modeling WDNs and downloadable for free from the Environmental Protection
Agency web site (http://www.epa.gov/nrmrl/wswrd/dw/epanet.html).

In this paper we focus on optimizing, throughout Sequential Model Based Opti-
mization (SMBO) [27], a set of design variables which are hyperparameters of a
machine learning based system which, given a new leak signature, infers its location as
a limited set of probably leaky pipes. Learning is performed on a dataset obtained as
vectors of N components, where N is the overall number of sensors (N = Np + Nf, with
Np = number of pressure sensors and Nf number of flow sensors), that is the Input
Space. According to the Fig. 1, learning is performed in two stages: one unsupervised,
aimed at grouping together similar “signatures” to reduce the number of different
“effects”, and one supervised, aimed at estimating the group of signatures which the
signature of a real leak belongs to. This allows for retrieving only the scenarios related
to the signatures in that cluster and, therefore, leaky pipes associated to those
signatures.

The basic idea of the analytical framework has been presented in [28–30], where
Spectral Clustering (SC) is used for the unsupervised learning phase and Support
Vector Machine (SVM) classification is used for the supervised learning phase. The
cluster assignment provided to each instance (i.e. signature) is used as label to train the
SVM classifier. While the clustering is used to model the direct relation from leak
scenario (i.e. leaky pipe and leak severity) to a group of similar signatures, the SVM
inverts this relation. Thus, when a reading from sensors is acquired, the variations with
respect to the faultless WDN model are computed and the resulting “signature” is given

36 A. Candelieri et al.

http://www.epa.gov/nrmrl/wswrd/dw/epanet.html

as input to the trained SVM which assigns the most probable cluster the signature
belongs to. Finally, the pipes relative to the scenarios in that cluster are selected as
“leaky pipes”.

Although SC proved to be effective, it is computationally expensive and, in this
study, we propose to replace SC with a Kernel k-means algorithm and apply SMBO to
optimally tune its hyperparameters. This allows to reduce the computational burden
induced and to infer the similarity measure – even non-linear – directly from data and
implicitly through the “kernel trick”, instead to define a priori a similarity measures for
weighting edges of the affinity graph. It has been already reported in literature that an
“equivalence” exists between SC and kernel k-means [31]. In particular, a Radial Basis
Function (RBF) kernel has been chosen, characterized by its hyperparameter r. The
other hyperparameter is, naturally, the optimal number k of clusters.

Moreover, it is important to highlight that adoption of RBF kernels in global
optimization algorithms has been also investigated, and compared with statistical
models [32].

2.1 Notation

The WDN can be represented through a graph: G ¼ V jEh i, where:
• V is the set of “junctions”, which are consumption points, reservoirs, tanks, emitters

as well as simple junctions between two pipes;
• E is the set of “links”, which are pipes, pumps or valves.

Fig. 1. Overall machine learning based leakage localization system

Automatic Configuration of Kernel-Based Clustering 37

Let us denote with
�E � E

the set of pipes within the set of links. Furthermore, let us denote with

A ¼ a1; . . .; alf g

the set of “severities” of the (simulated) leaks. Then, the set of “Leakage Scenarios”
can be defined as follows:

S ¼ �E � A

where se;a 2 S is related to a leak on the pipe e 2 �E with severity a 2 A.
Finally, the “signature” of a leak, that is the effect induced by specific leakage

scenario, is defined as:

we;a ¼ f se;a
� �

with f(.) a function to compute, through EPANET, the expected variations of pressure
and flow at the sensors locations.

Clustering is performed on “signatures”, therefore every cluster Ck is a set of
signatures (i.e. similar effects due to different leaks):

Ck ¼ xe;a 2 R
N ;xe;a ¼ f se;a

� �
; e 2 �E; a 2 A

� �
:

It is important to highlight that the clustering procedure used is “crispy”, so

Ci \C j ¼ ; 8i 6¼ j:

Many clustering quality measures are given in the literature [33], divided between
“internal” – basically related to inter- and intra- distances – and “external” – which
need a set of labeled examples and treat the clustering as a classification problem.
External measures are domain specific therefore more effective in our case but they
cannot be used because as remarked above historically are sparse, unbalanced and poor
quality. For these reasons we have defined ad hoc composite index to address the
leakage localization objective. In particular, to obtain an effective and efficient local-
ization of possible leaks into a WDN, clusters have to satisfy the following properties:

• The set of pipes candidate as leaky must be as limited as possible, for every cluster;
• The signatures of scenarios associated to a given pipe should be spread as less as

possible among different clusters.

We refer to the first property as “compactness” and to the second one as a proxy of
“accuracy”.

38 A. Candelieri et al.

Before to present the final index, the two following sets have to be defined:

�Ek ¼ e 2 �E : 9a 2 A : xe;a ¼ f se;a
� � 2 Ck

� �

and

Sk;a ¼ se;a 2 S; e 2 �E : xe;a ¼ f se;a
� � 2 Ck

� �
:

The index for evaluating the fitness of clustering is the composition of two different
measures:

I ¼ IC þ IP
2

where IC measures the “compactness” of the cluster in terms of number of pipes
identified as probably leaky with respect to the overall number of pipes in the WDN,
while IP measures a sort of “accuracy” that the leak is in the set of pipes identified as
leaky instead to be on other pipes.

More in detail the two measures are computed as follows:

IC ¼
PK

k¼1 I
k
C
�Ek
�� ��

PK
k¼1

�Ekj j

where

IkC ¼
�Ej j � �Ek

�� ��
�Ej j � 1

and

IP ¼ avgkI
k
P

where

IkP ¼
1
Aj j
P

a2A Sk;a
�� ��

�Ekj j :

Let us suppose that Ck contains only signatures associated to all the scenarios
related to only one pipe e� 2 �E, then:

• �Ek
�� �� ¼ 1, because �Ek ¼ e�f g;

• Sk;a
�� �� ¼ 1, because 8a 2 A; Sk;a ¼ s 2 S : 9!e� 2 �E : x ¼ f se�;a

� � 2 Ck
� �

;

• IkP ¼
1
Aj j Aj j
�Ekj j ¼ 1.

Automatic Configuration of Kernel-Based Clustering 39

On the other side, let us suppose that Ck contains signatures associated to |A|
different pipes with |A| different severities, then:

• �Ek
�� �� ¼ Aj j, for the hypothesis;

• Sk;a
�� �� ¼ 1, because 8a 2 A; Sk;a ¼ s 2 S : 9!e� 2 �E : x ¼ f se�;a

� � 2 Ck
� �

;
•

P
a2A Sk;a

�� �� ¼ Aj j;
• IkP ¼

1
Aj j Aj j
�Ekj j ¼ 1

Aj j\1.

In general, �Ek
�� �� can be greater than Aj j; in the worst case �Ek

�� �� � Aj j, thus IkP � 1.

2.2 The Case Study and the Data Generation Process

In the following Fig. 2 the specific WDN considered in this study is reported. It is a
District Metered Area (DMA), namely “Neptun”, of the urban WDN in Timisoara,
Romania, and was a pilot of the European Project ICeWater.

Neptune consists of 335 junctions (92 are consumption points) and 339 pipes. In
the proposed approach, EPANET is used to simulate a wide set of leakage scenarios,
consisting in placing, in turn, a leak on each pipe and varying its severity in a given
range.

At the end of each run, EPANET provides pressures and flows at each junction and
pipe, respectively, and, therefore, also at the monitoring points (i.e. sensors). Variations
in pressure and flow induced by a leak (i.e. signature of the leak) are computed with
respect to the simulation of the faultless WDN. Finally, a dataset is obtained having as
many instances as number-of-pipelines times number-of-discharge-coefficient-values.

2.3 Kernel K-means

The kernel k-means algorithm [34] is a generalization of the standard k-means algorithm.
By implicitly mapping points to a higher-dimensional space, kernel k-means can

Fig. 2. The District Metered Area (DMA) “Neptun” of the urban WDN in Timisoara, Romania:
the WDN case study considered in this paper

40 A. Candelieri et al.

discover clusters that are non-linearly separable in input space. This provides a major
advantage over standard k-means, and allows us to cluster points if we are given a
positive definite matrix of similarity values.

A general weighted kernel k-means objective is mathematically equivalent to a
weighted graph partitioning objective [31]; this equivalence has an important conse-
quence: in cases where eigenvector computation is prohibitive, kernel k-means elim-
inates the need for any eigenvector computation required by graph partitioning.

Given a set of vectors x1, x2,…, xn, the kernel k-means objective can be written as a
minimization of:

XK

k¼1

X

x2Ck

U xi � �xkð Þk k2

where U xð Þ is a (non-linear) function mapping vectors xi from the Input Space to the
Feature Space, and where �xk is the centroid of cluster Ck.

Expanding U xi � �xkð Þk k2 in the objective function, one can obtain:

U xið ÞU xið Þ �
2
P

xj2Ck U xið ÞU xj
� �

Ckj j þ
P

xj;xi2Ck U xj
� �

U xið Þ
Ckj j2 :

Therefore, only inner products are used in the computation of the Euclidean dis-
tance between every vector and the centroid of the cluster Ck. As a conclusion, given a
kernel matrix K, where Kij = U xið ÞU xj

� �
, these distances can be computed without

knowing explicit representations of U xð Þ.

3 Hyperparameter Optimization of the Unsupervised
Learning Phase of the Machine Learning Pipeline

Although the overall analytical leakage localization is composed of two learning stages,
the focus of this paper is on the optimization of hyperparameters of the first unsu-
pervised learning phase (i.e. Kernel k-means clustering).

Clustering of leak signatures is aimed at grouping together similar “effects” induced
by different (simulated) leaks. This allows to implement the second supervised learning
phase considering a limited number of labels (i.e. the number of clusters instead of the
number of pipes of the WDN). Previous Fig. 1 summarizes the overall machine
learning based leakage localization approach – where Kernel k-means clustering
replaces Spectral Clustering used in the preliminary papers.

3.1 Hyperparameters in the Pipeline: The Design Variables

The number and type of hyperparameters in the overall machine learning pipeline
depends on the specific software used for kernel-based clustering and SVMclassification.

Automatic Configuration of Kernel-Based Clustering 41

Since the focus of this paper is to replace the original SC phase with a kernel-based
k-means, just the two following hyperparameters are taken into account:

• The number k of clusters – a discrete decision variable (i.e. an integer);
• The value of the RBF kernel’s parameter r – a continuous decision variable.

The SVM hyperparameters are not part of the optimization process in this paper.

3.2 Clustering Performance: The Objective Function

The objective function, that is the clustering performance index I defined in previous
Sect. 2.1, is black-box. To compute it, the execution of the kernel k-means is per-
formed on the entire dataset, given k and r, along with the calculation of IC and IP.

3.3 Sequential Model Based Optimization

The generic Sequential Model Based Optimization (SMBO) [27] consists in:

1. starting with an initial set of evaluations of the objective function;
2. fitting a regression model (i.e. surrogate of objective function) based on the overall

set of evaluations performed so far;
3. querying the regression model to propose a new, promising point, usually through

the optimization of an “acquisition function” (or “infill criterion”);
4. evaluating objective function at the new point and adding the results to the set of

evaluations;
5. if a given termination criterion (e.g. maximum number of evaluations of the

objective function) is not satisfied, then return to step 2.

Several adaptations and extensions, e.g., multi-objective optimization [36], multi-
point proposal [37, 38], more flexible regression models [27] or alternative ways to
calculate the infill criterion [39] have been investigated recently, as reported in [40].
A specific application domain for SMBO is the hyperparameter optimization for
machine learning algorithms [41–43], where the algorithm is a “black-box” and the
objective function is one or multiple performance measure(s).

3.3.1 Building the Surrogate of the Objective Function: Gaussian
Processes and Random Forest
Generation of a surrogate of the objective function is one the first choices in designing
a SMBO process. Selection of the specific regression model to use can be suggested by
the search space spanned by the decision variables. Kriging [35], based on Gaussian
Processes (GP), is usually recommended, but, in the case the search space also includes
categorical parameters, Random Forests (RF) are a plausible alternative [27] as they
can handle such parameters directly.

In this study, two hyperparameters are considered: the number k of clusters – which
is an integer categorical variable – and r, the internal parameter of the kernel clustering –
which is a continuous variable. Although RF should be preferable, due to the nature of
the hyperparameter k, also GP has been investigated in this study. The initial design
consists of 220 evaluations obtained through Latin Hypercube Sampling (LHS).

42 A. Candelieri et al.

3.3.2 Acquisition Function: Confidence Bound
The acquisition function is the mechanism which guides the optimization process,
implementing the trade-off between exploitation (choosing the new point in regions
which are “promising” according to the current knowledge) and exploration (choosing
the new point in less explored regions). This trade-off is usually achieved by com-
bining, into a single formula, both the posterior mean and posterior standard deviation,
as estimated through the surrogate model. A number of acquisition functions have been
proposed in literature, such as Probability of Improvement (PoI), Expected Improve-
ment (EI) and Confidence Bound (CB). In this study the Upper Confidence Bound
(UCB) is used as the goal is to maximize the clustering performance index I. The
guiding principle behind CB is to be optimistic in the face of uncertainty.

Finding the next promising point requires solving an optimization problem where
the objective function is the acquisition function. Anyway, it can be considered
inexpensive with respect to the original optimization problem. The so called “focus
search” algorithm, proposed in [44], is a generic approach able to deal with numeric
parameter spaces, categorical parameter spaces, as well as mixed and hierarchical
spaces. This is the procedure adopted in this study.

3.3.3 Termination Criterion
Several termination criteria are possible: the maximum number of function evaluations
is a very common choice. Other possibilities are a limit over the wall clock time, no
improvements in the “best seen” (i.e. the best value of objective function seen so far)
after a given number of consecutive SMBO iterations, or the difference from the
optimum – when known – is lower than a given threshold. Other more sophisticated
criteria have been also proposed, e.g. in [44] a Resource-Aware Model-Based Opti-
mization framework that leads to efficient utilization of parallel computer architectures
through resource-aware scheduling strategies, while in [45] the Lipschitz continuity
assumption, quite realistic for many practical black-box problems, is considered for
obtaining a global optimum estimates after performing a limited number of functions
evaluations.

The termination criteria defined in this study is the maximum number of functions
evaluations: this choice allows for an easy comparison between GP and RF based
SMBO as well as between SMBO and a simple grid search.

3.3.4 Software Environment
The implementation of the hyperparameters optimization proposed in this study has
been based on the R software environment. The recently proposed toolbox “mlrMBO”
[40] has been used to implement the SMBO process, along with the kernel k-means
algorithm, namely “kkmeans”, provided by the R package “kernlab”.

mlrMBO is a flexible and comprehensive R toolbox for model-based optimization
(MBO). It can deal with both single- and multi-objective optimization, as well as
continuous, categorical, mixed and conditional parameters. Additional features include
multi-point batch proposal, parallelization, visualization, logging and error-handling.
Very important, mlrMBO is implemented in a modular fashion, such that single
components can be easily replaced or adapted by the user for specific use cases.

Automatic Configuration of Kernel-Based Clustering 43

4 Results and Discussion

This section summarizes the results obtained. The experimental setting consists in:

• Grid search vs SMBO (using both GP and RF to generate the surrogate of the
objective function): with k = 3,…, 13 and r in [0.00001, 0.1], with 70 values for r,
equally distributed in the range, are used for the grid search;

• Maximization of the index I used to measure the performance of clustering output
with respect to leakage localization properties (as defined in Sect. 2.1):
– Termination criteria, based on a limit on the number of function evaluations: 770

function evaluations (equals to the number of configurations into the grid),
where 220 are used as initial design.

The following Table 1 summarizes the results obtained:

• The “best seen” of the performance index I, over the 770 function evaluations;
• Values of the hyperparameters, K* and r*, associated to the best seen;
• Overall execution time (sec), computed as total on all the 770 evaluations;
• Last iteration with improvement of the clustering performance index I.

SMBO using RF proved to be the most effective strategy. In particular, it was able
to identify a hyperparameters configuration of the kernel k-means “outside the grid”
and associated to the highest value of the clustering performance index I.

On the contrary, SMBO using GP was not able to converge to a better hyperpa-
rameters configuration than the one identified by the grid search. This was probably due
to the nature of k, indeed RF is usually preferred to GP in the case of categorical
variables.

The following Fig. 3 compares the convergence of the different approaches. SMBO
with GP converges very fast – after 388 evaluations of the objective function no more
improvements are obtained, even if the best seen value of I is lower than the one
obtained through the grid search.

It is important to highlight that SMBO with RF provides the following benefits:

• it is able to find a hyperparameters configuration outperforming grid search – as well
as SMBO with GP – in terms of effectiveness (clustering performance index, I);

Table 1. Results: best performance, hyperparameter configuration, time and iterations among
the three approaches (Grid Search, GP- and RF- based SMBO)

Clustering performance
I (best seen)

k* r* Time
(sec)

Last iteration with
improvement

Grid
search

0,516 3 0,0000100 6165,03 NA

GP 0,505 3 0,0055322 9704,88 388
RF 0,556 3 0,0000112 12317,92 687

44 A. Candelieri et al.

• a hyperparameters configuration outperforming the grid search can be obtained after
only 338 function evaluations, well lower the limit on the number of evaluations.

The second point is really important: although the best seen after 338 evaluations is
lower than the final one, this means that the SMBO with RF outperforms grid search
also in terms of efficiency, just using about half of the maximum number of evaluations
available. Indeed, even with a more tightening termination criteria (e.g. 385 evalua-
tions, that is 770/2), without any modification to the grid search, SMBO with RF
should was able to outperform grid search, with a consequent drastic reduction of the
wall clock time, too (approximately 3370 s).

Finally, to further highlight the benefits provided by SMBO for hyperparameters
configuration, we decided “to give more chances” to the grid search, increasing the
number of configurations to 2310 (770 � 3) by choosing 210 values for r, equally
distributed, in the range 0.00001 to 0.1. As result, the grid search was not able to
improve in terms of clustering performance index I even if the overall wall clock time
went from 6165,63 s to 17555,37 s.

This further result confirms the main drawback of the grid search for hyperpa-
rameters optimization: it performs many function evaluations in non-promising areas of
the search space, basically wasting computational resources.

With respect to the SVM, it has been trained according to the cluster assignment
provided by the kernel k-means – instead of SC. The same SVM configuration used in
the previous study was adopted. Classification performances were similar, slightly
better in the case of the kernel k-means, confirming the equivalence between SC and
kernel k-means while enabling a significant reduction in terms of computational
complexity in the clustering procedure.

Fig. 3. Best seen over the iterations for SMBO with RF, SMB with GP and the best value
obtained over the grid search (independent on the iterations)

Automatic Configuration of Kernel-Based Clustering 45

5 Conclusions

Any performance comparison between Bayesian Optimization and other global opti-
mization strategies can be only platform and problem dependent and thus difficult to
generalize: in [19] it is stated that “random search offers a simple, parallelizable and
theoretically sound launching point” while Bayesian Optimization may offer “improved
empirical accuracy” but “its selection models are intrinsically sequential and thus
difficult to parallelize”. The main problem is that Bayesian Optimization scales poorly
with the number of dimensions: in [46] it is stated that “the approach is restricted to
problems of moderate dimensions up to 10 dimensions” and a random embedding is
proposed to identify a work space of a much smaller number of dimensions. Other
proposal to scale Bayesian Optimization to higher dimensions are in [19, 47].

The computational results reported in this paper substantiate the known fact that the
Bayesian framework is suitable to objective functions which are costly to evaluate and
black box. Moreover, they can be applied to “unusual” design spaces which involve
categorical or conditional inputs and are therefore able to deal with such diverse
domains as A/B testing, recommender systems, reinforcement learning, environmental
monitoring, sensor networks, preference learning and interactive interfaces.

The next activities will leverage the capability RF based SMBO to handle condi-
tional parameters as well; we will also consider the optimization of the whole machine
learning pipeline, moving towards an automatic algorithm configuration setting.

References

1. Xia, L., Xiao-dong, W., Xin-hua, Z., Guo-jin, L.: Bayesian theorem based on-line leakage
detection and localization of municipal water supply network. Water Wastewater Eng. 12
(2006)

2. Sivapragasam, C., Maheswaran, R., Venkatesh, V.: ANN-based model for aiding leak
detection in water distribution networks. Asian J. Water Environ. Pollut. 5(3), 111–114
(2007)

3. Xia, L., Guo-jin, L.: Leak detection of municipal water supply network based on the
cluster-analysis and fuzzy pattern recognition. In: 2010 International Conference on
E-Product E-Service and E-Entertainment (ICEEE), vol. 1(5), pp. 7–9 (2010)

4. Lijuan, W., Hongwei, Z., Hui, J.: A leak detection method based on EPANET and genetic
algorithm in water distribution systems. In: Wu, Y. (ed.) Software Engineering and
Knowledge Engineering: Theory and Practice. AISC, vol. 114, pp. 459–465. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-03718-4_57

5. Nasir, A., Soong, B.H., Ramachandran, S.: Framework of WSN based human centric cyber
physical in-pipe water monitoring system. In: 11th International Conference on Control,
Automation, Robotics and Vision, pp. 1257–1261 (2010)

6. Soldevila, A., Fernandez-Canti, R.M., Blesa, J., Tornil-Sin, S., Puig, V.: Leak localization in
water distribution networks using Bayesian classifiers. J. Process Control 55, 1–9 (2017)

7. Franzin, A., Cáceres, L.P., Stützle, T.: Effect of Transformations of Numerical Parameters in
Automatic Algorithm Configuration, IRIDIA Technical Report 2017-006 (2017)

8. Bagnall, A., Cawley, G.C.: On the Use of Default Parameter Settings in the Empirical
Evaluation of Classification Algorithms. arXiv:1703.06777v1 [cs.LG] (2017)

46 A. Candelieri et al.

http://dx.doi.org/10.1007/978-3-642-03718-4_57
http://arxiv.org/abs/1703.06777v1

9. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints -
Sequential and Parallel Algorithms. Springer, US (2000)

10. Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer, US (2008)
11. Locatelli, M., Schoen, F.: Global Optimization - Theory, Algorithms and Applications.

MOS-SIAM Series on Optimization. Society for Industrial & Applied Mathematics,
Philadelphia (2013)

12. Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set
of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

13. Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth diagonal
auxiliary functions. Commun. Nonlinear Sci. Numer. Simul. 21(1), 99–111 (2015)

14. Barkalov, K., Polovinkin, A., Meyerov, I., Sidorov, S., Zolotykh, N.: SVM regression
parameters optimization using parallel global search algorithm. In: Malyshkin, V. (ed.) PaCT
2013. LNCS, vol. 7979, pp. 154–166. Springer, Heidelberg (2013). doi:10.1007/978-3-642-
39958-9_14

15. Gillard, J.W., Kvasov, D.E.: Lipschitz optimization methods for fitting a sum of damped
sinusoids to a series of observations. Stat. Interface 10, 59–70 (2017)

16. Zabinsky, Z.B.: Stochastic Adaptive Search for Global Optimization, vol. 72. Springer,
New York (2013)

17. Steponavičė, I., Shirazi-Manesh, M., Hyndman, R.J., Smith-Miles, K., Villanova, L.: On
sampling methods for costly multiobjective black-box optimization. In: Pardalos, P.M.,
Zhigljavsky, A., Zilinskas, J. (eds.) Advances in Stochastic and Deterministic Global
Optimization. SOIA, vol. 107, pp. 273–296. Springer, Cham (2016). doi:10.1007/978-3-
319-29975-4_15

18. Csendes, T., Pál, L., Sendin, J.O.H., Banga, J.R.: The GLOBAL optimization method
revisited. Optim. Lett. 2(4), 445–454 (2008)

19. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: A Novel
Bandit-Based Approach to Hyperparameter Optimization. arXiv preprint arXiv:1603.06560
(2016)

20. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and
robust automated machine learning. In: Advances in Neural Information Processing
Systems, pp. 2962–2970 (2015)

21. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of
the loop: A review of bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)

22. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning
algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)

23. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement
learning. arXiv preprint arXiv:1012.2599 (2010)

24. Mockus, J.: On Bayesian methods of optimization. In: Dixon, L.C.W., Szegö, G.P. (eds.)
Towards Global Optimization. North-Holland, Amsterdam (1975)

25. Stützle, T.: Automated algorithm configuration: advances and prospects. In: Camacho, D.,
Braubach, L., Venticinque, S., Badica, C. (eds.) Intelligent Distributed Computing VIII. SCI,
vol. 570, p. 5. Springer, Cham (2015). doi:10.1007/978-3-319-10422-5_2

26. Mala-Jetmarova, H., Sultanova, N., Savic, D.: Lost in optimization of water distribution
systems? a literature review of system operations. Environ. Modell. Softw. 93, 209–254
(2017)

27. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general
algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–
523. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3_40

Automatic Configuration of Kernel-Based Clustering 47

http://dx.doi.org/10.1007/978-3-642-39958-9_14
http://dx.doi.org/10.1007/978-3-642-39958-9_14
http://dx.doi.org/10.1007/978-3-319-29975-4_15
http://dx.doi.org/10.1007/978-3-319-29975-4_15
http://arxiv.org/abs/1603.06560
http://arxiv.org/abs/1012.2599
http://dx.doi.org/10.1007/978-3-319-10422-5_2
http://dx.doi.org/10.1007/978-3-642-25566-3_40

28. Candelieri, A., Soldi, D., Archetti, F.: Cost-effective sensors placement and leak localization
- The Neptun pilot of the ICeWater project. J. Water Supply: Res. Technol. AQUA 64(5),
567–582 (2015)

29. Candelieri, A., Soldi, D., Conti, D., Archetti, F.: Analytical leakages localization in water
distribution networks through spectral clustering and support vector machines. The icewater
approach. Procedia Eng. 89, 1080–1088 (2014)

30. Candelieri, A., Archetti, F., Messina, E.: Improving leakage management in urban water
distribution networks through data analytics and hydraulic simulation. WIT Trans. Ecol.
Environ. 171, 107–117 (2013)

31. Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normalized cuts.
In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 551–556 (2004)

32. Žilinskas, A.: On similarities between two models of global optimization: statistical models
and radial basis functions. J. Global Optim. 48(1), 173–182 (2010)

33. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J.M., Perona, I.: An extensive
comparative study of cluster validity indices. Pattern Recogn. 46(1), 243–256 (2013)

34. Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel
eigenvalue problem. Neural Comput. 10, 1299–1319 (1998)

35. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Global Optim. 13(4), 455–492 (1998)

36. Horn, D., Wagner, T., Biermann, D., Weihs, C., Bischl, B.: Model-based multi-objective
optimization: taxonomy, multi-point proposal, toolbox and benchmark. In: Gaspar-Cunha,
A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 64–78.
Springer, Cham (2015). doi:10.1007/978-3-319-15934-8_5

37. Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize optimization.
In: Tenne, Y., Goh, C.K. (eds.) Computational Intelligence in Expensive Optimization
Problems. ALO, vol. 2, pp. 131–162. Springer, Heidelberg (2010). doi:10.1007/978-3-642-
10701-6_6

38. Bischl, B., Wessing, S., Bauer, N., Friedrichs, K., Weihs, C.: MOI-MBO: multiobjective
infill for parallel model-based optimization. In: Pardalos, Panos M., Resende, M.G.C.,
Vogiatzis, C., Walteros, J.L. (eds.) LION 2014. LNCS, vol. 8426, pp. 173–186. Springer,
Cham (2014). doi:10.1007/978-3-319-09584-4_17

39. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyperparameter
optimization. In: Advances in Neural Information Processing Systems, pp. 2546–2554
(2011)

40. Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., Lang, M.: mlrMBO: A Modular
Framework for Model-Based Optimization of Expensive Black-Box Functions. arXiv
preprint arXiv:1703.03373 (2017)

41. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: Combined selection
and hyperparameter optimization of classification algorithms. In: Proceedings of
ACM SIGKDD, pp. 847–855 (2013)

42. Lang, M., Kotthaus, H., Marwedel, P., Weihs, C., Rahnenführer, J., Bischl, B.: Automatic
model selection for high-dimensional survival analysis. J. Stat. Comput. Simul. 85(1), 62–76
(2015)

43. Horn, D., Bischl, B.: Multi-objective parameter configuration of machine learning
algorithms using model-based optimization. In: 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), pp. 1–8 (2016)

48 A. Candelieri et al.

http://dx.doi.org/10.1007/978-3-319-15934-8_5
http://dx.doi.org/10.1007/978-3-642-10701-6_6
http://dx.doi.org/10.1007/978-3-642-10701-6_6
http://dx.doi.org/10.1007/978-3-319-09584-4_17
http://arxiv.org/abs/1703.03373

44. Richter, J., Kotthaus, H., Bischl, B., Marwedel, P., Rahnenführer, J., Lang, M.: Faster
model-based optimization through resource-aware scheduling strategies. In: Festa, P.,
Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 267–273. Springer,
Cham (2016). doi:10.1007/978-3-319-50349-3_22

45. Kvasov, D.E., Sergeyev, Y.D.: Deterministic approaches for solving practical black-box
global optimization problems. Adv. Eng. Softw. 80, 58–66 (2015)

46. Wang, Z., Zoghi, M., Hutter, F., Matheson, D., De Freitas, N.: Bayesian optimization in high
dimensions via random embeddings. In: AAAI Press/International Joint Conferences on
Artificial Intelligence (2013)

47. Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast Bayesian Optimization of
Machine Learning Hyperparameters on Large Datasets. arXiv:1605.07079 (2017)

Automatic Configuration of Kernel-Based Clustering 49

http://dx.doi.org/10.1007/978-3-319-50349-3_22
http://arxiv.org/abs/1605.07079

Solution of the Convergecast Scheduling
Problem on a Square Unit Grid When

the Transmission Range is 2

Adil Erzin(B)

Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, Russia
adilerzin@math.nsc.ru

Abstract. In this paper a conflict-free data aggregation problem, known
as a Convergecast Scheduling Problem, is considered. It is NP-hard in
the arbitrary wireless network. The paper deals with a special case of
the problem when the communication graph is a square grid with unit
cells and when the transmission range is 2 (in L1 metric). Earlier for
the case under consideration we proposed a polynomial time algorithm
with a guaranteed accuracy bound. In this paper we have shown that
the proposed algorithm constructs an optimal solution to the problem.

Keywords: Wireless networks · Data aggregation · Conflict-free
scheduling

1 Introduction

In the wireless sensor networks (WSN) the data collected by the sensors should
be delivered to the analytical center. The process of transferring the packets
of information from the sensors in such a center - a base station (BS) is called
an aggregation of the data. Aggregation time (or latency), i.e. a period during
which the data from all sensors fall in the BS, is the most important criterion in
the quick response networks. The shorter aggregation time the more effectively
WSN can react to the possible events.

A synthesis of the network through which the data is transmitted, as a rule,
carried out object to the criterion of minimum communication power consump-
tion [1–3]. As a result, a constructed communication graph (CG) is highly sparse.
Consequently, not all vertices (sensors) can transmit the collected data directly
to the BS. Packets from the most vertices are going through the other vertices,
and the path from some vertex to the BS may consist of a big number of edges.
In the formulations of the aggregation problem the volume of the transmitted
data, as usually, does not taken into account. So the packets are considered to be
equal in length for all vertices of the CG, and each packet is transmitted along
any edge during one time round (slot).

In the majority of the wireless networks, an element (vertex or node) cannot
transmit and receive packets at the same time (half duplex mode), and a vertex
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 50–63, 2017.
https://doi.org/10.1007/978-3-319-69404-7_4

Solution of the Convergecast Scheduling Problem 51

cannot receive more than one packet simultaneously. Moreover, due to the need of
energy saving, each sensor sends the packet once during the aggregation period
(session). This means that the packets are transmitted along the edges of a
desired aggregation tree (AT) rooted in BS, and an arbitrary vertex in the AT
must first receive the packets from all its children, and only then can send the
aggregated packet to its parent node. So, we assume that the arcs of the AT are
oriented towards the root (BS), and if the AT is known, then the partial order
on the set of arcs of the AT is known too.

In the most WSNs, the sensors use a common radio frequency to transmit
the messages. So, if in the sensor’s reception area are working more than one
transmitter, then (due to the radio wave interference phenomenon), the receiver
cannot get any correct data packet. Such a situation is called a conflict or a
collision.

In the conflict-free data aggregation problem it is necessary to find an aggre-
gation tree and a conflict-free schedule of minimal length [4–6]. This problem is
known as a Convergecast Scheduling Problem (CSP), and it is NP-hard even in
the case when the AT is given [7].

If the AT is known, it is possible to construct a graph of conflicts (GC) as
follows. Each node in the GC is associated with the arc in the AT. Two vertices in
the GC are linked by an edge, if the simultaneous transmission of the respective
arcs in the AT implies a conflict. There is an arc going from the node i to the
node j in the GC, if the end of the arc i coincides with the beginning of the arc
j in the AT.

It is obvious that the CSP in the case of a given AT reduces to the problem
of mixed coloring of the GC [8], which is also NP-hard, and stated as follows. Let
the mixed graph G = (V,A∪E) with vertex set V , the set of arcs A and the set of
edges E is given. Graph G is k-colorable if exists a function f : V → {1, . . . , k}.
In the problem of mixed graph coloring it is required to find a minimal k, for
which exists such k-coloring, that if two vertices i and j are joined by an edge
(i, j) ∈ E, then f(i) �= f(j), and if there is an arc (i, j) ∈ A, then f(i) < f(j).

The problem of conflict-free data aggregation has been intensively studied
by both theoreticians and practitioners [1–3,6–8,10,11]. A number of heuristic
algorithms was proposed to construct an approximate solution [4–6,9–12]. For
some of them the guaranteed accuracy bounds in terms of degree and radius
of the CG were found [13]. To assess the quality of the other heuristics the
numerical experiments were carried out [4,9].

The literature also addresses the special cases of the problem. For example,
when the conflicts occur only between the children of common parent in the AT
[9]. Such a situation occurs when the sensors use different radio frequencies for data
transmission [12]. In this case, if AT is given, the problem can be solved in a poly-
nomial time, but when AT is a desired tree the problem remains NP-hard [14].

In [15] a special case of CG in the form of a unit square grid, in which in
each node a sensor is located, and the transmission range of each sensor is 1, is
considered. A simple polynomial algorithm for constructing an optimal solution
to this problem was proposed. In [7] a similar problem in the case when the

52 A. Erzin

transmission distance d is an arbitrary integer not less than 1 was considered. On
the one hand the increase of d can reduce the length of the schedule, but on the
other hand the number of collisions increases too. The methods of constructing
a conflict-free schedule of the data transmission with the guaranteed accuracy
bounds depending on d are proposed. In particular, for the case when d = 2
was proposed an algorithm which on the (n + 1) × (m + 1) grid, where n and
m are even, and the BS is in the origin (0, 0), building a schedule of length
(n + m)/2 + 3.

In this paper, we show that the lower bound for the length of the schedule
when the communication graph is a unit square grid and the transmission range
of sensors is 2 (in L1 metric), is (n+m)/2+3, i.e. the considered special case of
the problem is polynomially solvable, and the algorithm proposed in [7] builds
an optimal solution to the problem.

2 General Problem Formulation

Let a communication graph (CG), in which the vertices are the images of the
sensors, and two vertices are connected by an edge if a communication between
the sensors can be carried out in both directions, is given. Among the vertices
we distinguish a base station (BS) into which the data from all vertices should
be delivered. We assume that:

– a time is discrete;
– a transmission time of any packet along any edge of the CG is one time round;
– a sensor cannot receive and transmit at the same time round;
– a sensor cannot receive more than one packet during one time round;
– each sensor transmits packet only once during the aggregation session;
– a subset of vertices may transmit simultaneously if that does not entail a

conflict;

The CSP is to find a feasible data transmission schedule of minimum length.
To illustrate the problem, let us refer to the Fig. 1. Figure 1a shows an example

of a CG, in which BS is marked in yellow and the AT – in the bold lines. If in this
CG transfers, for example, red vertex, then it is heard by 5 other vertices. Figure 1b
shows a feasible schedule, where the number inside the vertex is the time round
of transmission of this vertex. The length of the schedule in Fig. 1b is 6.

According to the CG a graph of conflicts (GC) can be constructed (see.
Fig. 2). Some edges (dashed in Fig. 2b) can be deleted, since the corresponding
conflicts are taken into account by the transmission order. For example, the
transmission of vertex 8 precedes the transmission of node 3, then the edge
(8, 3) can be eliminated. Figure 2c shows a feasible mixed coloring of the vertices
of the GC, in which the color number corresponds to the transfer round when
the corresponding vertex sends a packet (in Fig. 2c the number of each node is
the number of the color).

As noted above, the CSP in general and in many special cases is NP-hard.
However, in some special cases, the problem is polynomially solvable. This is so,

Solution of the Convergecast Scheduling Problem 53

Fig. 1. (a) CG and AT (bold lines); (b) Feasible schedule of length 6. (Color figure
online)

Fig. 2. (a) CG and AT; (b) Graph of Conflicts (GC); (c) Feasible coloring. (Color
figure online)

for example, when the CG is the unit square grid, and a transmission distance
is 1 [15]. In this paper, we are interested in the problem when a CG is also a
unit square grid, but the transmission distance is 2 (in L1 metric). In [7] for the
(n + 1) × (m + 1) grid with the BS at the origin (0, 0) and when transmission
distance equals 2, an algorithm for constructing a schedule, the length of which
(when n and m are even) equals (n + m)/2 + 3, is proposed.

3 CSP in the Unit Square Grid When the Transmission
Distance is 2

Let us consider a grid graph (Fig. 3a), in which each node (x, y), x =
0, 1, . . . , n, y = 0, 1, . . . ,m contains a sensor. Transmission distance of each
vertex is 2 (in L1 metric). Each sensor must send the collected data to the base
station (BS), which is located at the origin (for simplicity). The time of arrival
of the last packet in the BS is the aggregation time or the schedule length. We
denote the minimum length of the schedule as L(n,m).

54 A. Erzin

Fig. 3. (a) Grid graph; (b) Conflict (infeasible) transmissions; (c) Conflict-free (feasi-
ble) transmissions. (Color figure online)

The restrictions from the previous section naturally have to be met also. For
example, in Fig. 3b the unacceptable transmissions are displayed (the transmis-
sions shown by arrows of the same color cannot be performed simultaneously).
And in Fig. 3c the conflict-free transmissions are indicated (the arrows of the
same color) which can be performed simultaneously.

3.1 The Exact Lower Bound for the Schedule Length

The further results are valid (with minor adjustments) for the arbitrary n and
m, but in this paper for the sake of simplicity and brevity, we set n and m to
be even.

Definition 1. The distance from the vertex to the BS is the minimum number
of transmissions from this vertex.

Then the vertex (x, y), x = 0, 1, . . . , n, y = 0, 1, . . . ,m, is at a distance
](x + y)/2[, where]a[is the smallest integer not less than a.

Obviously, the length of the schedule cannot be less than D = (n + m)/2,
because the most remote vertex (n,m) is located at the distance D, and the
packet form it could be delivered to the BS at least during D time rounds.

Fairly obvious the next.

Property 1. If at least two vertices in the arbitrary graph are at the distance R
from the BS, then the aggregation time cannot be less than R + 1.

Since in the considered grid three vertices are at the distance D from the BS,
then follows the obvious.

Corollary 1. The aggregation time in the unit square grid (n + 1) × (m + 1)
with the BS at the origin (0, 0), when the transmission distance is 2, is at least
D + 1.

Solution of the Convergecast Scheduling Problem 55

Based on the Property 1 it is also easy to prove.

Corollary 2. The aggregation time in the unit square grid (n + 1) × (m + 1)
with the BS at the origin (0, 0), when the transmission distance is 2, is at least
D + 2.

The main purpose of this paper is to prove the following

Lemma 1. The aggregation time in the unit square grid (n+ 1) × (m+ 1) with
the BS at the origin (0, 0), when the transmission distance is 2, is at least D+3.

Proof. We first consider the different (up to symmetry) transmissions from the
vertex (n,m) at the moment (time round) 1 (Fig. 4). At that, let us encode each
possible action (transmission) as a (t = a; b), where a is a time round, and b
is the number/code of the allowable transmission. For example, when (t = 1; 0)
in Fig. 4 the vertex (n,m) is silent (don’t send a packet), and if (t = 1; 1) it
transfers the packet to another blue vertex which is also located at the distance
D from the BS (the origin).

In the figures the node with the red circle cannot transmit a packet during
the moments 1, 2, . . . , t, but vertex with the green circle can transmit at the time
round t. For example, in the case (t = 1; 1) the receiver may hear 6 extra vertices
besides the sender. Thus, these vertices (5 yellow and one blue) must be silent
and in Fig. 4 they have the red circles.

Fig. 4. Possible transmissions from the vertex (n,m) at the moment 1. (Color figure
online)

When we proved the statement, we have considered all possible cases (more
than 100 000), but they, of course, cannot be presented all in a single paper, so
here we will describe only a few of them as the examples. So, we present not a
complete proof, but only illustrate the proof. The analysis of all cases is planned
to place in Internet in the foreseeable future.

Case (t= 1;0). Let us consider the possible actions of the vertex (n−1,m) at the
time round 1 (Fig. 5), and then consider the case (t = 1; 0.0.0) in detail (when
all blue nodes (at the distance D) are silent (Fig. 6) at the moment 1).

The possible actions of the vertex (n,m) at the time round 2 are shown in
Fig. 7.

Consider the possible actions of the vertex (n,m) at the time 2 (Fig. 7), and
the detailed case (t = 2; 0) when the node (n,m) is silent. Consider the behavior

56 A. Erzin

Fig. 5. Possible transmissions from the node (n− 1,m) at the moment 1, when vertex
(n,m) is silent.

Fig. 6. Possible transmissions from the node (n,m−1) at the moment 1, when vertices
(n,m) and (n− 1,m) are silent. (Color figure online)

Fig. 7. Possible transmissions from the node (n,m) at the moment 2, when all blue
nodes were silent at moment 1. (Color figure online)

of the vertex (n − 1,m) at the time round 2. If it is silent, then after two time
rounds remain at least two vertices at the distance D, which have not started
transmitting. Therefore, by Property 1, the length of the schedule cannot be less
than 2 + D + 1 = D + 3 (Fig. 8).

Solution of the Convergecast Scheduling Problem 57

Fig. 8. Possible transmissions from the node (n−1,m) at the moment 2, when all blue
nodes were silent at moment 1, and vertex (n,m) is silent at moment 2. (Color figure
online)

Let us consider the case (t = 2; 0.1). Since the vertex (n,m) is silent, then,
according to Property 1, both vertices (n − 1,m) and (n,m − 1) must transmit.
The transmission cases are shown in Fig. 9.

Fig. 9. Possible transmissions from the node (n,m − 1) at the moment 2 in case (t =
2; 0.1).

Further, as an example, we consider in detail the case (t = 2; 0.1.1). At
the moment 3 the vertex (n,m) must transmit a packet, else the length of the
schedule will be at least D + 3. The possible transmissions are shown in Fig. 10.

In the case (t = 3; 2) after the time round 3 remain at least 3 yellow vertices
(at the distance D − 1) which has not transmitted, so the schedule length is at
least 3+D−1+1 = D+3. The case (t = 3; 1) we will examine in detail. If after
the 3rd time round remain at least 2 yellow vertices (at the distance D−1), then
the length of the schedule cannot be less than D + 3. To avoid this the circled
vertices (Fig. 11) in the case (t = 1; 0.0.0) must send the packets and this can
be done at the time round 1 in the manner shown in Fig. 11 by blue arrows. But
then the other yellow vertices, which are outlined in the case (t = 3; 1) will not
be able transmitting before the 3rd time round. However, at the moment 3 they
all cannot transmit the packets. As a result, after the 3rd time round at least
two nodes at the distance D − 1 will not start transmission and therefore the
schedule length is not less than D + 3.

58 A. Erzin

Fig. 10. Possible transmissions from the node (n,m) at the moment 3 in case (t =
2; 0.1.1).

Fig. 11. Transmissions in the cases (t = 1; 0.0.0), (t = 2; 0.1.1), (t = 3; 1). (Color
figure online)

Let us consider one more case.

Case (t = 1;3). In this case, at the first time round the vertices (n − 1,m) and
(n,m− 1) cannot transmit. The possible transmissions from the node (n− 1,m)
at the moment 2 are shown in Fig. 12.

Next, consider, for example, the case (t = 2; 1.1) in Fig. 13. The possible
transmissions from the node (n − 1,m − 1) at the time round 3 are shown in
Fig. 14.

The cases (t = 3; 1) – (t = 3; 7) are simple, since after the 3rd time round
remain at least two vertices at the distance D− 1, which have not yet broadcast
and Property 1 implies that the length of the schedule is not less than D + 3.

The case (t = 3; 0), when the node (n− 1,m− 1) is silent, is difficult. Let us
consider it. That after the 3rd moment remains not more than one silent yellow
vertex (at a distance D − 1), it is necessary to send the packets from all other
yellow vertices (at the distance D − 1), except the vertex (n − 1,m − 1), not
later than at the time round 3. From the vertices (n − 2,m), (n − 2,m − 1),
(n− 1,m− 2) and (n,m− 2) the packets can be sent only at the moment 3, and
the only way to do so is shown in Fig. 15 (t = 3; 0) with the blue arrows. Then
from the vertices (n − 3,m) and (n,m − 3) the packets can be sent only at the
moment 1, for example, as it is shown in Fig. 15 (t = 1; 3) with the blue arrows.
Let us consider the moment 4 and the variants of sending a packet from the
vertex (n− 1,m− 1). If this node will not send the packet at the moment 4, the
schedule length cannot be less than D+3. The possible transmissions are shown
in Fig. 16. As a result, after the 4th time round at least two green nodes (at the
distance D−2) remain silent. So (by Property 1), we have that the length of the
schedule is at least 4 + D − 2 + 1 = D + 3.

Solution of the Convergecast Scheduling Problem 59

Fig. 12. Possible transmissions from the node (n− 1,m) at the moment 2.

Fig. 13. Possible transmissions from the node (n,m− 1) in the case (t = 2; 1).

Fig. 14. Possible transmissions from the node (n − 1,m − 1) at the moment 3 in the
case (t = 2; 1.1).

The author have considered all possible transmission from the vertices at a
distance of at least D − 2 from the BS (the origin), and it is shown that the
length of the schedule cannot be less than D + 3, which proves the lemma.

60 A. Erzin

Fig. 15. Cases (t = 1; 3), (t = 2; 1.1) and (t = 3; 0). (Color figure online)

Fig. 16. Possible transmissions from the node (n− 1,m− 1) at the moment 4. (Color
figure online)

3.2 Algorithm A

In this section, we present a version of the pseudo-code of the algorithm A which
is proposed in [7]. The set of vertices with identical ordinates for convenience we
call a layer.

Algorithm A.
Step 1. Set t = 1.
Send from all even vertices (0,m− 1), (2,m− 1), . . . , (n,m− 1) at the layer

m − 1 the packets up to a distance 1 to the corresponding vertices at the layer
m.

Send from all vertices at the layer m − 3 the packets down to a distance of
2, i.e., to the corresponding nodes at the layer m − 5.

Send from all even vertices (0, 1), (2, 1), . . . , (n, 1) at the layer 1 the packets
up to a distance 1 to the corresponding vertices at the layer 2.

Step 2. Set t = 2.
Send from all odd vertices (1,m − 1), (3,m − 1), . . . , (n − 1,m − 1) at the

layer m − 1 the packets up to a distance of 1 to the corresponding vertices at
the layer m.

Send from all vertices at the layer m − 5 the packets down to a distance of
2, i.e. to the corresponding vertices at the layer m − 7.

Send from all odd vertices (1, 1), (3, 1), . . . , (n − 1, 1) at the layer 1 the
packets up to a distance 1 to the corresponding nodes at the layer 2.

Step 3. Set t = t + 1 and k = m − 2(t − 3).
Send from all vertices at the layer k the packets down to a distance 2 to the

corresponding vertices at the layer k − 2.
Send from all vertices at the layer k − 2t− 1 the packets down to a distance

of 2 to the corresponding nodes at the layer k − 2t − 3.
If k − 2t − 1 > 3, then go to Step 3.

Solution of the Convergecast Scheduling Problem 61

Step 4. Set t = t + 1 and k = m − 2(t − 3).
Send from all vertices at the layer k the packets down at distance 2 to the

corresponding vertices at the layer k − 2.
Send from all even vertices (0, 3), (2, 3), . . . , (n, 3) at the layer 3 the packets

down to a distance 1 to the corresponding vertices at the layer 2.
Step 5. Set t = t + 1 and k = m − 2(t − 3).
Send from all vertices at the layer k the packets down at distance 2 to the

corresponding vertices at the layer k − 2.
Send from all odd vertices (1, 3), (3, 3), . . . , (n−1, 3) at the layer 3 the packets

down to a distance 2 to the corresponding nodes at the layer 2.
Step 6. Set t = t + 1 and k = m − 2(t − 3).
Send from all vertices at the layer k the packets down at distance 2 to the

corresponding vertices at the layer k − 2.
If k > 2, then go to Step 6.
After t = m/2 + 2 time rounds we have a linear graph with n + 1 vertices

(vertex 0 is a BS), which consists of the set of vertices with the coordinates
(x, 0), x = 0, 1, . . . , n, and wherein the distance between the adjacent vertices is
1. We enumerate the vertices of this graph, starting from the BS, by the natural
numbers 0, 1, . . . , n.

Step 7. Set t = t + 1.
Send the packets from the odd vertices n−1, n−7, . . . , n−6k−1, . . . , 1, k ≤

(n − 2)/6, at the distance 1 to the right, and the packets from the odd vertices
n − 3, n − 9, . . . , n − 6k − 4, . . . , 3, k ≤ (n − 7)/6, send left at a distance of 1.

Step 8. Set t = t + 1.
Send the packets from the odd vertices that were silent during the previous

steps, to the left at a distance of 1.
Send a packet from the vertex n to the vertex n − 2.
Set k = n.
Step 9. Set t = t + 1 and k = k − 2.
Send a packet from the vertex k to the vertex k − 2.
If k > 2, then go to Step 9.
Stop.

Note that the vertical aggregation is carried out with time complexity O(m),
and the horizontal aggregation is carried out with time complexity O(n). There-
fore, the complexity of algorithm A is O(n + m).

Algorithm A returns a schedule which length is D + 3. From Lemma 1 we
know that the aggregation time cannot be less than D + 3. Hence, the following
theorem holds.

Theorem 1. Algorithm A builds an optimal conflict-free schedule of data aggre-
gation in the unit square grid (n + 1) × (m + 1), with even n and m, with the
BS at the origin (0, 0) and a transmission distance equals 2, the length of which
is (n + m)/2 + 3.

62 A. Erzin

4 Conclusion

In this paper we found an exact lower bound for the length of the conflict-free
schedule of data aggregation in the unit square grid (unit disk graph in L1 metric)
when the transmission range of each vertex is 2. This lower bound coincides with
the length of the schedule constructed by algorithm A in a polynomial time.
Consequently, polynomial time algorithm A constructs an optimal schedule, the
length of which is L(n,m) = (n + m)/2 + 3.

Acknowledgments. This work was supported by RFBR (grant 16-07-00552) and
the Ministry of Education and Science of the Republic of Kazakhstan (project No.
0115PK00550).

References

1. Erzin, A., Plotnikov, R.: Using VNS for the optimal synthesis of the communication
tree in wireless sensor networks. Electro. Notes Discrete Math. 47, 21–28 (2015)

2. Erzin, A., Plotnikov, R., Mladenovic, N.: Variable neighborhood search variants
for min-power symmetric connectivity problem. Comput. Oper. Res. 78, 557–563
(2017)

3. Plotnikov, R., Erzin, A., Mladenovic, N.: Variable neighborhood search-based
heuristics for min-power symmetric connectivity problem in wireless networks.
In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.)
DOOR 2016. LNCS, vol. 9869, pp. 220–232. Springer, Cham (2016). doi:10.1007/
978-3-319-44914-2 18

4. De Souza, E., Nikolaidis, I.: An exploration of aggregation convergecast scheduling.
Ad Hoc Netw. 11, 2391–2407 (2013)

5. Malhotra, B., Nikolaidis, I., Nascimento, M.A.: Aggregation convergecast schedul-
ing in wireless sensor networks. Wirel. Netw. 17, 319–335 (2011)

6. Cheng, C.-T., Tse, C.K., Lau, F.C.M.: A delay-aware data collection network struc-
ture for wireless sensor networks. IEEE Sens. J. 11(3), 699–710 (2011)

7. Erzin, A., Pyatkin, A.: Convergecast scheduling problem in case of given aggre-
gation tree. The complexity status and some special cases. In: 10th International
Symposium on Communication Systems, Networks and Digital Signal Processing,
Article 16, 6 p. IEEE-Xplore, Prague (2016)

8. Hansen, P., Kuplinsky, J., De Werra, D.: Mixed graph colorings. Math. Methods
Oper. Res. 45, 145–160 (1997)

9. Incel, O.D., Ghosh, A., Krishnamachari, B., Chintalapudi, K.: Fast data collection
in tree-based wireless sensor networks. IEEE Trans. Mob. Comput. 11(1), 86–99
(2012)

10. Wang, P., He, Y., Huang, L.: Near optimal scheduling of data aggregation in wire-
less sensor networks. Ad Hoc Netw. 11, 1287–1296 (2013)

11. Li, H., Hua, Q.-S., Wu, C., Lau, F.C.M.: Minimum-Latency Aggregation Schedul-
ing in Wireless Sensor Networks under Physical Interference Model. HKU CS Tech-
nical report TR-2010-07, Source: DBLP (2010)

12. Ghods, F., Yousefi, H., Mohammad, A., Hemmatyar, A., Movaghar, A.: MC-MLAS:
multi-channel minimum latency aggregation scheduling in wireless sensor networks.
Comput. Netw. 57, 3812–3825 (2013)

http://dx.doi.org/10.1007/978-3-319-44914-2_18
http://dx.doi.org/10.1007/978-3-319-44914-2_18

Solution of the Convergecast Scheduling Problem 63

13. Xu, X., Li, X.-Y., Mao, X., Tang, S., Wang, S.: A delay-efficient algorithm for data
aggregation in multihop wireless sensor networks. IEEE Trans. Parallel Distrib.
Syst. 22, 163–175 (2011)

14. Slater, P.J., Cockayne, E.J., Hedetniemi, S.T.: Information dissemination in trees.
SIAM J. Comput. 10(4), 692–701 (1981)

15. Gagnon, J., Narayanan, L.: Minimum latency aggregation scheduling in wireless
sensor networks. In: Gao, J., Efrat, A., Fekete, S.P., Zhang, Y. (eds.) ALGOSEN-
SORS 2014. LNCS, vol. 8847, pp. 152–168. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46018-4 10

http://dx.doi.org/10.1007/978-3-662-46018-4_10
http://dx.doi.org/10.1007/978-3-662-46018-4_10

A GRASP for the Minimum Cost SAT Problem

Giovanni Felici1, Daniele Ferone2, Paola Festa2(B), Antonio Napoletano2,
and Tommaso Pastore2

1 Institute for Systems Analysis and Computer Science,
IASI-CNR, 00185 Rome, Italy
giovanni.felici@iasi.cnr.it

2 Department of Mathematics and Applications, University of Napoli Federico II,
Compl. MSA, Via Cintia, 80126 Napoli, Italy

{daniele.ferone,paola.festa,antonio.napoletano2,tommaso.pastore}@unina.it

Abstract. A substantial connection exists between supervised learn-
ing from data represented in logic form and the solution of the Mini-
mum Cost Satisfiability Problem (MinCostSAT). Methods based on such
connection have been developed and successfully applied in many con-
texts. The deployment of such methods to large-scale learning problem is
often hindered by the computational challenge of solving MinCostSAT,
a problem well known to be NP-complete. In this paper, we propose
a GRASP-based metaheuristic designed for such problem, that proves
successful in leveraging the very distinctive structure of the MinCost-
SAT problems arising in supervised learning. The algorithm is equipped
with an original stopping criterion based on probabilistic assumptions
which results very effective for deciding when the search space has been
explored enough. Although the proposed solver may approach MinCost-
SAT of general form, in this paper we limit our analysis to some instances
that have been created from artificial supervised learning problems, and
show that our method outperforms more general purpose well established
solvers.

Keywords: Hard combinatorial optimization · SAT problems ·
GRASP · Local search · Probabilistic stopping criterion · Approximate
solutions

1 Introduction

Propositional Satisfiability (SAT) and its derivations are well known problems
in logic and optimization, and belong to the special class of NP-complete prob-
lems [11]. Beside playing a special role in the theory of complexity, they often
arise in applications, where they are used to model complex problems whose
solution is of particular interest.

One such case surfaces in logic supervised learning. Here, we have a dataset of
samples, each represented by a finite number of logic variables, and a particular
extension of the classic SAT problem - the Minimum Cost Satisfiability Problem

c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 64–78, 2017.
https://doi.org/10.1007/978-3-319-69404-7_5

A GRASP for the Minimum Cost SAT Problem 65

(MinCostSAT) - can be used to iteratively identify the different clauses of a
compact formula in Disjunctive Normal Form (DNF) that possesses the desirable
property of assuming the value True on one specific subset of the dataset and
the value False on the rest.

The use of MinCostSAT for learning propositional formula from data is
described in [6,25], and its description is beyond the scope of this paper. Suffice
it to say, however, that there are several reasons that motivate the validity of
such an approach to supervised learning, and that it proved to be very effective
in several applications, particularly on those derived from biological and medical
data analysis [1,3,4,27–29].

One of the main drawbacks of the approach described in [6] lies in the diffi-
culty of solving MinCostSAT exactly or with an appropriate quality level. Such
drawback is becoming more and more evident as, in the era of Big Data, the
size of the datasets that one is to analyze steadily increases. Feature selection
techniques may be used to reduce the space in which the samples are represented
(one such method specifically designed for data in logic form is described in [2]).

While the literature proposes both exact approaches ([10,20,25,26]) and
heuristics ([23]), still the need for efficient MinCostSAT solvers remains, and
in particular for solvers that may take advantage of the specific structure of
those MinCostSAT representing supervised learning problems.

In this paper, we try to fill this gap and propose a GRASP-based metaheuris-
tic designed to solve MinCostSAT problems that arise in supervised learning. In
doing so, we developed a new probabilistic stopping criterion that proves to be
very effective in limiting the exploration of the solution space - whose explosion
is a frequent problem in metaheuristic approaches. The method has been tested
on several instances derived from artificial supervised problems in logic form,
and successfully compared with four established solvers in the literature (Z3
from Microsoft Research [19], bsolo [12], MiniSat+ [5], and PWBO [15–17]).

The paper is organized as follows. Section 2 presents a very simple formula-
tion of the problem; Sect. 3 describes the architecture of the GRASP algorithm;
Sect. 4 is devoted to the explanation of the probabilistic stopping criterion, while
experimental results and conclusions are covered in Sects. 5 and 6, respectively.

2 Mathematical Formulation of the Problem

The Minimum Cost SAT Problem (MinCostSAT) - also known as Binate Cover-
ing Problem - is a special case of the well known Boolean Satisfiability Problem.
Given a set of n boolean variables X = {x1, . . . , xn}, a non-negative cost func-
tion c : X �→ R

+ such that c(xi) = ci ≥ 0, i = 1, . . . , n, and a boolean formula
ϕ(X) expressed in CNF, the MinCostSAT problem consists in finding a truth
assignment for the variables in X such that the total cost is minimized while

66 G. Felici et al.

ϕ(X) is satisfied. Accordingly, the mathematical formulation of the problem is
given as follows:

(MinCostSAT) z = min
n∑

i=1

cixi

subject to:
ϕ(X) = 1,

xi ∈ {0, 1}, ∀i = 1, . . . , n.

It is easy to see that a general SAT problem can be reduced to a MinCostSAT
problem whose costs ci are all equal to 0. Furthermore, the decision version of
the MinCostSAT problem is NP-complete [10]. While the boolean satisfiability
problem is an evergreen in the landscape of scientific literature, MinCostSAT
has received less attention.

3 A GRASP for MinCostSAT

GRASP is a well established iterative multistart metaheuristic method for diffi-
cult combinatorial optimization problems [7]. The reader can refer to [8,9] for a
study of a generic GRASP metaheuristic framework and its applications.

Such method is characterized by the repeated execution of two main phases:
a construction and a local search phase. The construction phase iteratively adds
one component at a time to the current solution under construction. At each iter-
ation, an element is randomly selected from a restricted candidate list (RCL),
composed by the best candidates, according to some greedy function that mea-
sures the myopic benefit of selecting each element.

Once a complete solution is obtained, the local search procedure attempts
to improve it by producing a locally optimal solution with respect to some suit-
ably defined neighborhood structure. Construction and local search phases are
repeatedly applied. The best locally optimal solution found is returned as final
result. Figure 1 depicts the pseudo-code of a generic GRASP for a minimization
problem.

In order to allow a better and easier implementation of our GRASP, we
treat the MinCostSAT as particular covering problem with incompatibility con-
straints. Indeed, we consider each literal (x,¬x) as a separate element, and a
clause is covered if at least one literal in the clause is contained in the solution.
The algorithm tries to add literals to the solution in order to cover all the clauses
and, once the literal x is added to the solution, then the literal ¬x cannot be
inserted (and vice versa). Therefore, if the literal x is in solution, the variable
x is assigned to true and all clauses covered by x are satisfied. Similarly, if the
literal ¬x is in solution, the variable x is assigned to false, and clauses containing
¬x are satisfied.

The construction phase adds a literal at a time, until all clauses are covered
or no more literals can be assigned. At each iteration of the construction, if a

A GRASP for the Minimum Cost SAT Problem 67

1 Algorithm GRASP(β)
2 x∗ ← Nil ;
3 z(x∗) ← +∞ ;
4 while a stopping criterion is not satisfied do
5 Build a greedy randomized solution x ;
6 x ← LocalSearch(x) ;
7 if z(x) < z(x∗) then
8 x∗ ← x ;
9 z(x∗) ← z(x) ;

10 return x∗

Fig. 1. A generic GRASP for a minimization problem.

clause can be covered only by a single literal x – due to the choices made in
previous iterations – then x is selected to cover the clause. Otherwise, if there
are not clauses covered by only a single literal, the addition of literals to the
solution takes place according to a penalty function penalty(·), which greedily
sorts all the candidates literals, as described below.

Let cr(x) be the number of clauses yet to be covered that contain x. We then
compute:

penalty(x) =
c(x) + cr(¬x)

cr(x)
. (1)

This penalty function evaluates both the benefits and disadvantages that
can result from the choice of a literal rather than another. The benefits are
proportional to the number of uncovered clauses that the chosen literal could
cover, while the disadvantages are related to both the cost of the literal and
the number of uncovered clauses that could be covered by ¬x. The smaller the
penalty function penalty(x), the more favorable is the literal x. According to the
GRASP scheme, the selection of the literal to add is not purely greedy, but a
Restricted Candidate List (RCL) is created with the most promising elements,
and an element is randomly selected among them. Concerning the tuning of the
parameter β, whose task is to adjust the greediness of the construction phase,
we performed an extensive analysis over a set of ten different random seeds.
Such testing showed how a nearly totally greedy setup (β = 0.1) allowed the
algorithm to attain better quality solutions in smallest running times.

Let |C| = m be the number of clauses. Since |X| = 2n, in the worst case
scenario the loop while (Fig. 2, line 3) in the construct-solution function
pseudo-coded in Fig. 2 runs m times and in each run the most expensive opera-
tion consists in the construction of the RCL. Therefore, the total computational
complexity is O(m · n).

In the local search phase, the algorithm uses a 1-exchange (flip) neighborhood
function, where two solutions are neighbors if and only if they differ in at most one
component. Therefore, if there exists a better solution x̄ that differs only for one
literal from the current solution x, the current solution s is set to s̄ and the proce-
dure restarts. If such a solution does not exists, the procedure ends and returns the

68 G. Felici et al.

1 Function construct-solution(C, X, β)
/* C /*sesualcderevocnufotesehtsi

/* X /*slaretiletadidnacfotesehtsi

2 s ← ∅ ;
3 while C �= ∅ do
4 if c ∈ C can be covered only by x ∈ X then
5 s ← s ∪ {x};
6 X ← X \ {x, ¬x};
7 C ← C \ {c̄ | x ∈ c̄};

8 else
9 compute penalty(x) ∀ x ∈ X;

10 th ← min
x∈X

{penalty(x)} + β(max
x∈X

{penalty(x)} − min
x∈X

{penalty(x)}) ;

11 RCL ← { x ∈ X : penalty(x) ≤ th } ;
12 x̂ ← rand(RCL) ;
13 s ← s ∪ {x̂};
14 X ← X \ {x̂, ¬x̂};
15 C ← C \ {c̄ | x̂ ∈ c̄};

16 return s

Fig. 2. Pseudo-code of the GRASP construction phase.

current solution s. The local search procedure would also re-establish feasibility
if the current solution is not covering all clauses of ϕ(X). During our experimen-
tation we tested the one-flip local search using two different neighborhood explo-
ration strategies: first improvement and best improvement. With the former strat-
egy, the current solution is replaced by the first improving solution found in its
neighborhood; such improving solution is then used as a starting point for the next
local exploration. On the other hand, with the best improvement strategy, the cur-
rent solutionx is replacedwith the solution x̄ ∈ N (x) corresponding to the greatest
improvement in terms of objective function value; x̄ is then used as a starting point
for the next local exploration. Our results showed how the first improvement strat-
egy is slightly faster, as expected, while attaining solution of the same quality of
those given by the best improvement strategy. Based on this rationale, we selected
first improvement as exploration strategy in our testing phase.

4 Probabilistic Stopping Rule

Although being very fast and effective, most metaheuristics present a shortcom-
ing in the effectiveness of their stopping rule. Usually, the stopping criterion
is based on a bound on the maximum number of iterations, a limit on total
execution time, or a given maximum number of consecutive iterations with-
out improvement. In this paper, we propose a probabilistic stopping criterion,
inspired by [21].

The stopping criterion is composed of two phases, described in the next
subsections. It can be sketched as follows. First, let X be a random variable

A GRASP for the Minimum Cost SAT Problem 69

representing the value of a solution obtained at the end of a generic GRASP
iteration. In the first phase – the fitting-data procedure – the probabil-
ity distribution fX (·) of X is estimated, while during the second phase –
improve-probability procedure – the probability of obtaining an improvement
of the current solution value is computed. Then, accordingly to a threshold, the
algorithm either stops or continues its execution.

4.1 Fitting Data Procedure

The first step to be performed in order to properly represent the random vari-
able X with a theoretical distribution consists in an empirical observation of
the algorithm. Examining the objective function values obtained at the end
of each iteration, and counting up the respective frequencies, it is possible to
select a promising parametric family of distributions. Afterwards, by means of
a Maximum Likelihood Estimation (MLE), see for example [22], a choice is made
regarding the parameters characterizing the best fitting distribution of the cho-
sen family.

In order to carry on the empirical analysis of the objective function value
obtained in a generic iteration of GRASP, which will result in a first guess
concerning the parametric family of distributions, we represent the data obtained
in the following way.

Let I be a fixed instance and F the set of solutions obtained by the algo-
rithm up to the current iteration, and let Z be the multiset of the objective
function values associated to F . Since we are dealing with a minimum optimiza-
tion problem, it is harder to find good quality solutions, whose cost is small in
term of objective function, rather than expensive ones. This means that during
the analysis of the values in Z we expect to find an higher concentration of
elements between the mean value μ and the max(Z). In order to represent the
values in Z with a positive distribution function, that presents higher frequencies
in a right neighborhood of zero and a single tail which decays for growing values
of the random variable, we perform a reflection on the data in Z by means the
following transformation:

z̄ = max(Z) − z, ∀ z ∈ Z. (2)

The behaviour of the distribution of z̄ in our instances has then a very recog-
nizable behaviour. A representative of such distribution is given in Fig. 3 where
the histogram of absolute and relative frequencies of z̄ are plotted. It is easy
to observe how the gamma distribution family represents a reasonable educated
guess for our random variable.

Once we have chosen the gamma distribution family, we estimate its parame-
ters performing a MLE. In order to accomplish the estimation, we collect an initial
sample of solution values and on-line execute a function, developed in R (whose
pseudo-code is reported in Fig. 4), which carries out the MLE and returns the
characteristic shape and scale parameters, k and θ, which pinpoint the specific
distribution of the gamma family that best suits the data.

70 G. Felici et al.

Fig. 3. Empirical analysis of frequencies of the solutions.

1 Function fitting-data(Z̄)

/* Z̄ is the initial sample of the objective function values */

2 foreach z ∈ Z̄ do
3 z = max(Z̄) − z;
4 {k, θ} ← MLE(Z, ”gamma”);
5 return {k, θ}

Fig. 4. Fitting data procedure.

4.2 Improve Probability Procedure

The second phase of the probabilistic stop takes place once that the probability
distribution function of the random variable X , fX (·) has been estimated.

Let ẑ be the best solution value found so far. It is possible to compute an
approximation of the probability of improving the incumbent solution by

p = 1 −
∫ max(Z)− ẑ

0

fX (t) dt. (3)

The result of the procedures fitting-data and improve-probability con-
sists in an estimate of the probability of incurring in an improving solution in
the next iterations. Such probability is compared with a user-defined threshold,
α, and if p < α the algorithm stops. More specifically, in our implementation
the stopping criterion works as follows:

(a) let q be an user-defined positive integer, and let Z̄ be the sample of initial
solution values obtained by the GRASP in the first q iterations;

(b) call the fitting-data procedure, whose input is Z̄ is called one-off to esti-
mate shape and scale parameters, k and θ, of the best fitting gamma distri-
bution;

(c) every time that an incumbent is improved, improve-probability proce-
dure (pseudo-code in Fig. 5) is performed and the probability p of further
improvements is computed. If p is less than or equal to α the stopping crite-
rion is satisfied. For the purpose of determining p, we have used the function
pgamma of R package stats.

A GRASP for the Minimum Cost SAT Problem 71

1 Function improve-probability(k, θ, z∗)
/* z∗ /*tnebmucniehtfoeulavehtsi

2 p ← pgamma(z∗, shape = k, scale = θ);
3 return p

Fig. 5. Improve probability procedure.

5 Results

Our GRASP has been implemented in C++ and compiled with gcc 5.4.0 with
the flag -std=c++14. All tests were run on a cluster of nodes, connected by
10 Gigabit Infiniband technology, each of them with two processors Intel Xeon
E5-4610v2@2.30 GHz.

We performed two different kinds of experimental tests. In the first one, we
compared the algorithm with different solvers proposed in literature, without
use of probabilistic stop. In particular, we used: Z3 solver freely available from
Microsoft Research [19], bsolo solver kindly provided by its authors [12], the
MiniSat+ [5] available at web page http://minisat.se/, and PWBO available
at web page http://sat.inesc-id.pt/pwbo/index.html. The aim of this first set
of computational experiment is the evaluation of the quality of the solutions
obtained by our algorithm within a certain time limit. More specifically, the
stopping criterion for GRASP, bsolo and PWBO is a time limit of 3 h, for Z3
and MiniSat+ is the reaching of an optimal solution.

Z3 is a satisfiability modulo theories (SMT) solver from Microsoft Research
that generalizes boolean satisfiability by adding equality reasoning, arithmetic,
fixed-size bit-vectors, arrays, quantifiers, and other useful first-order theories.
Z3 integrates modern backtracking-based search algorithm for solving the CNF-
SAT problem, namely DPLL-algorithm; in addition it provides a standard search
pruning methods, such as two-watching literals, lemma learning using conflict
clauses, phase caching for guiding case splits, and performs non-chronological
backtracking.

bsolo [12,13] is an algorithmic scheme resulting from the integration of sev-
eral features from SAT-algorithms in a branch-and-bound procedure to solve the
binate covering problem. It incorporates the most important characteristics of a
branch-and-bound and SAT algorithm, bounding and reduction techniques for
the former, and search pruning techniques for the latter. In particular, it incor-
porates the search pruning techniques of the Generic seaRch Algorithm-SAT
proposed in [14].

MiniSat+ [5,24] is a minimalistic implementation of a Chaff-like SAT solver
based on the two-literal watch scheme for fast boolean constraint propagation
[18], and conflict clauses driven learning [14]. In fact the MiniSat solver provides
a mechanism which allows to minimize the clauses conflicts.

PWBO [15–17] is a Parallel Weighted Boolean Optimization Solver. The
algorithm uses two threads in order to simultaneously estimate a lower and an
upper bound, by means of an unsatisfiability-based procedure and a linear search,

http://minisat.se/
http://sat.inesc-id.pt/pwbo/index.html

72 G. Felici et al.

respectively. Moreover, learned clauses are shared between threads during the
search.

For testing, we have initially considered the datasets used to test feature
selection methods in [2], where an extensive description of the generation pro-
cedure can be found. Such testbed is composed of 4 types of problems (A,B,C,D),
for each of which 10 random repetitions have been generated. Problems of type
A and B are of moderate size (100 positive examples, 100 negative examples, 100
logic features), but differ in the form of the formula used to classify the samples
into the positive and negative classes (the formula being more complex for B
than for A). Problems of type C and D are much larger (200 positive exam-
ples, 200 negative examples, 2500 logic features), and D has a more complex
generating logic formula than C.

Table 1 reports both the value of the solutions and the time needed to achieve
them (in the case of GRASP, it is average over ten runs).1 For problems of
moderate size (A and B), the results show that GRASP finds an optimal solution
whenever one of the exact solvers converges. Moreover, GRASP is very fast in
finding the optimal solution, although here it runs the full allotted time before
stopping the search. For larger instances (C and D), GRASP always provides a
solution within the bounds, while two of the other tested solvers fail in doing so
and the two that are successful (bsolo, PWBO) always obtain values of inferior
quality.

The second set of experimental tests was performed for the purpose of evaluat-
ing the impact of the probabilistic stopping rule. In order to do so, we have chosen
five different values for threshold α, two distinct sizes for the set Z̄ of initial solu-
tion, and executed GRASP using ten different random seeds imposing a maximum
number of iterations as stopping criterion.This experimental setup yielded for each
instance, and for each threshold value, 20 executions of the algorithm. About such
runs, the data collected were: the number of executions in which the probabilis-
tic stopping rule was verified (“stops”), the mean value of the objective function
of the best solution found (μz), and the average computational time needed (μt).
To carry out the evaluation of the stopping rule, we executed the algorithm only
using the maximum number of iterations as stopping criterion for each instance
and for each random seed. About this second setup, the data collected are, as for
the first one, the objective function of the best solution found (μẑ) and the aver-
age computational time needed (μt̂). For the sake of comparison, we considered the
percentage gaps between the results collected with and without the probabilistic
stopping rule. The second set of experimental tests is summarized in Table 2 and
in Fig. 7. For each pair of columns (3,4), (6,7), (9,10), (12, 13), the table reports the
percentage of loss in terms of objective function value and the percentage of gain
in terms of computation times using the probabilistic stopping criterion, respec-
tively. The analysis of the gaps shows how the probabilistic stop yields little or no
changes in the objective function value while bringing dramatic improvements in
the total computational time.

1 For missing values, the algorithm was not able to find the optimal solution in 24 h.

A GRASP for the Minimum Cost SAT Problem 73

Table 1. Comparison between GRASP and other solvers.

GRASP Z3 bsolo MiniSat+ pwbo-2T

Inst. Time Value Time Value Time Value Time Value Time Value

A1 6.56 78.0 10767.75 78.0 0.09 78.0 0.19 78.0 0.03 78.0

A2 1.71 71.0 611.29 71.0 109.59 71.0 75.46 71.0 121.58 71.0

A3 0.64 65.0 49.75 65.0 598.71 65.0 10.22 65.0 5.14 65.0

A4 0.18 58.0 4.00 58.0 205.77 58.0 137.82 58.0 56.64 58.0

A5 0.29 66.0 69.31 66.0 331.51 66.0 9.03 66.0 30.64 66.0

A6 21.97 77.0 5500.17 77.0 328.93 77.0 32.82 77.0 359.97 77.0

A7 0.21 63.0 30.57 63.0 134.20 63.0 19.34 63.0 24.12 63.0

A8 0.25 62.0 6.57 62.0 307.69 62.0 16.84 62.0 11.81 62.0

A9 12.79 72.0 1088.83 72.0 3118.32 72.0 288.76 72.0 208.63 72.0

A10 0.33 66.0 42.23 66.0 62.03 66.0 37.75 66.0 1.81 66.0

B1 6.17 78.0 8600.60 78.0 304.36 78.0 121.25 78.0 20.01 78.0

B2 493.56 80.0 18789.20 80.0 4107.41 80.0 48.21 80.0 823.66 80.0

B3 205.37 77.0 7037.00 77.0 515.25 77.0 132.74 77.0 1.69 77.0

B4 38.26 77.0 7762.03 77.0 376.00 77.0 119.49 77.0 1462.18 77.0

B5 19.89 79.0 15785.35 79.0 3025.26 79.0 214.52 79.0 45.05 79.0

B6 28.45 76.0 4087.14 76.0 394.45 76.0 162.31 76.0 83.72 76.0

B7 129.76 78.0 10114.84 78.0 490.30 78.0 266.25 78.0 455.92 81.0∗
B8 44.42 76.0 5186.45 76.0 5821.19 76.0 1319.21 76.0 259.07 76.0

B9 152.77 80.0 14802.00 80.0 5216.95 82.0 36.28 80.0 557.02 80.0

B10 7.55 73.0 1632.87 73.0 760.28 79.0 370.30 73.0 72.09 73.0

C1 366.24 132.0 86400 – 8616.25 178.0* 86400 – 343.38 178.0∗
C2 543.11 131.0 86400 – 323.90 150.0* 86400 – 1742.68 174.0∗
C3 5883.6 174.1 86400 – 6166.06 177.0* 86400 – 421.64 177.0∗
C4 4507.63 176.3 86400 – 6209.69 178.0* 86400 – 2443.20 177.0∗
C5 5707.51 171.2 86400 – 314.18 179.0* 86400 – 67.73 178.0∗
C6 6269.91 172.1 86400 – 1547.90 177.0* 86400 – 2188.82 177.0∗
C7 6193.15 165.9 86400 – 794.90 177.0* 86400 – 730.36 178.0∗
C8 596.58 137.0 86400 – 306.27 169.0* 86400 – 837.71 178.0∗
C9 466.3 136.0 86400 – 433.32 179.0* 86400 – 3455.92 178.0∗
C10 938.54 136.0 86400 – 3703.94 180.0* 86400 – 4617.24 179.0∗
D1 3801.61 145.3 86400 – 307.25 175.0* 86400 – 127.69 180.0∗
D2 2040.64 139.0 86400 – 7704.92 177.0* 86400 – 2327.23 177.0∗
D3 1742.78 143.0 86400 – 309.10 145.0* 86400 – 345.97 178.0∗
D4 1741.95 135.0 86400 – 6457.79 177.0* 86400 – 295.76 178.0∗
D5 1506.22 134.0 86400 – 6283.27 178.0* 86400 – 238.81 173.0∗
D6 1960.87 144.5 86400 – 309.11 173.0* 86400 – 2413.42 178.0∗
D7 1544.42 143.0 86400 – 4378.73 179.0* 86400 – 1250.07 178.0∗
D8 1756.15 144.0 86400 – 1214.97 179.0* 86400 – 248.85 179.0∗
D9 2779.38 137.0 86400 – 303.11 146.0* 86400 – 4.73 179.0∗
D10 5896.86 149.0 86400 – 319.45 170.0* 86400 – 1239.93 176.0∗
Y 16.05 0.0 0.73 0.0 9411.06 974* 1.96 0 0.23 0.0

*sub-optimal solution

– no optimal solution found in 24 h

74 G. Felici et al.

Table 2. Probabilistic stop on instances A, B, C and D.

threshold α inst %-gap z %-gap t(s) inst %-gap z %-gap t(s) inst %-gap z %-gap t(s) inst %gap z %gap t(s)

5 · 10−2 A1 -0.0 83.1 B1 -2.1 87.1 C1 -6.6 76.0 D1 -5.0 79.3

1 · 10−2 A1 -0.0 83.1 B1 -2.1 87.1 C1 -6.6 76.1 D1 -5.0 79.3

5 · 10−3 A1 -0.0 83.0 B1 -2.1 87.1 C1 -5.0 74.8 D1 -4.9 78.7

1 · 10−3 A1 -0.0 2.5 B1 -2.1 87.1 C1 -3.8 70.7 D1 -1.7 58.9
5 · 10−4 A1 -0.0 -15.3 B1 -2.1 87.2 C1 -2.6 70.2 D1 -1.2 49.0

1 · 10−4 A1 -0.0 -11.8 B1 -0.5 86.1 C1 -1.3 52.5 D1 -0.2 31.6

5 · 10−2 A2 -0.0 84.0 B2 -0.7 87.0 C2 -3.5 76.0 D2 -0.1 79.1

1 · 10−2 A2 -0.0 84.1 B2 -0.7 87.0 C2 -3.5 76.2 D2 -0.1 79.1

5 · 10−3 A2 -0.0 83.6 B2 -0.7 86.9 C2 -3.5 76.7 D2 -0.1 79.1

1 · 10−3 A2 -0.0 84.0 B2 -0.7 87.0 C2 -1.9 76.4 D2 -0.1 79.1

5 · 10−4 A2 -0.0 84.9 B2 -0.7 87.0 C2 -1.9 76.1 D2 -0.1 75.7

1 · 10−4 A2 -0.0 57.9 B2 -0.1 71.3 C2 -1.9 65.2 D2 -0.1 53.5

5 · 10−2 A3 -0.0 83.4 B3 -2.7 87.0 C3 -2.7 76.3 D3 -1.8 75.2

1 · 10−2 A3 -0.0 83.8 B3 -2.7 87.0 C3 -2.1 73.0 D3 -1.8 75.2

5 · 10−3 A3 -0.0 82.9 B3 -2.7 87.0 C3 -1.7 68.0 D3 -1.7 74.8

1 · 10−3 A3 -0.0 8.3 B3 -2.6 86.6 C3 -0.6 40.9 D3 -0.8 38.5
5 · 10−4 A3 -0.0 -1.6 B3 -2.0 84.1 C3 -0.0 28.3 D3 -0.5 19.1

1 · 10−4 A3 -0.0 -6.8 B3 -0.7 58.4 C3 -0.0 9.9 D3 -0.3 14.5

5 · 10−2 A4 -0.0 86.4 B4 -2.3 86.9 C4 -4.3 78.8 D4 -2.2 75.0

1 · 10−2 A4 -0.0 6.4 B4 -2.3 86.9 C4 -3.3 68.0 D4 -2.2 70.9
5 · 10−3 A4 -0.0 3.5 B4 -2.3 86.9 C4 -2.2 63.9 D4 -2.2 66.8

1 · 10−3 A4 -0.0 1.4 B4 -2.3 87.0 C4 -1.0 51.2 D4 -2.0 41.0
5 · 10−4 A4 -0.0 5.6 B4 -2.3 86.9 C4 -0.8 48.6 D4 -1.2 29.1

1 · 10−4 A4 -0.0 6.4 B4 -0.6 74.8 C4 -0.3 38.1 D4 -1.2 18.9

5 · 10−2 A5 -0.0 87.6 B5 -0.7 86.6 C5 -2.6 79.7 D5 -5.6 75.2

1 · 10−2 A5 -0.0 12.2 B5 -0.7 86.6 C5 -1.5 71.5 D5 -4.9 75.1

5 · 10−3 A5 -0.0 12.5 B5 -0.7 86.6 C5 -0.4 68.1 D5 -4.9 75.2

1 · 10−3 A5 -0.0 12.4 B5 -0.7 86.6 C5 -0.2 53.2 D5 -4.7 67.6
5 · 10−4 A5 -0.0 12.3 B5 -0.6 86.3 C5 -0.0 46.8 D5 -3.8 60.0

1 · 10−4 A5 -0.0 12.5 B5 -0.1 19.0 C5 -0.0 33.2 D5 -3.3 49.8

5 · 10−2 A6 -0.9 87.2 B6 -0.8 86.6 C6 -3.3 79.9 D6 -7.9 76.0

1 · 10−2 A6 -0.9 87.2 B6 -0.8 86.6 C6 -2.0 70.5 D6 -5.9 74.8
5 · 10−3 A6 -0.9 87.2 B6 -0.8 86.6 C6 -1.3 65.4 D6 -5.0 74.0

1 · 10−3 A6 -0.8 87.1 B6 -0.7 86.3 C6 -0.2 49.6 D6 -2.5 71.1
5 · 10−4 A6 -0.5 86.8 B6 -0.1 72.1 C6 -0.2 39.9 D6 -2.5 71.2
1 · 10−4 A6 -0.0 66.1 B6 -0.0 7.6 C6 -0.0 36.6 D6 -2.5 67.3

5 · 10−2 A7 -0.0 87.5 B7 -3.1 86.2 C7 -3.8 74.4 D7 -6.5 75.5
1 · 10−2 A7 -0.0 11.7 B7 -3.1 86.2 C7 -2.4 65.7 D7 -5.3 72.1

5 · 10−3 A7 -0.0 11.7 B7 -3.1 86.2 C7 -1.9 60.7 D7 -4.0 68.0

1 · 10−3 A7 -0.0 11.3 B7 -3.1 86.2 C7 -0.8 43.0 D7 -2.8 61.2

5 · 10−4 A7 -0.0 11.5 B7 -3.0 86.0 C7 -0.0 36.4 D7 -2.2 60.6
1 · 10−4 A7 -0.0 11.4 B7 -0.8 75.8 C7 -0.0 14.0 D7 -2.2 57.4

5 · 10−2 A8 -0.0 88.1 B8 -1.5 86.7 C8 -3.6 73.9 D8 -11.5 76.2
1 · 10−2 A8 -0.0 88.1 B8 -1.5 86.7 C8 -3.3 74.7 D8 -6.7 73.4

5 · 10−3 A8 -0.0 88.1 B8 -1.5 86.7 C8 -3.3 74.4 D8 -6.7 73.4
1 · 10−3 A8 -0.0 16.4 B8 -1.2 86.4 C8 -3.3 73.7 D8 -4.4 68.2

5 · 10−4 A8 -0.0 16.6 B8 -0.8 74.5 C8 -3.2 65.6 D8 -3.4 67.9
1 · 10−4 A8 -0.0 16.5 B8 -0.0 7.8 C8 -2.2 60.5 D8 -2.4 64.9

5 · 10−2 A9 -0.0 88.0 B9 -1.9 85.9 C9 -4.1 75.3 D9 -2.1 75.2
1 · 10−2 A9 -0.0 88.0 B9 -1.9 85.9 C9 -2.7 74.8 D9 -2.1 75.2

5 · 10−3 A9 -0.0 88.0 B9 -1.9 85.9 C9 -1.1 74.4 D9 -2.1 75.2
1 · 10−3 A9 -0.0 16.0 B9 -1.9 85.9 C9 -1.1 66.6 D9 -2.1 75.2
5 · 10−4 A9 -0.0 16.0 B9 -1.7 84.9 C9 -0.2 56.5 D9 -2.1 67.7

1 · 10−4 A9 -0.0 15.9 B9 -0.5 45.2 C9 -0.2 55.7 D9 -1.9 60.4

5 · 10−2 A10 -0.0 83.3 B10 -0.3 87.7 C10 -0.4 76.3 D10 -7.1 73.7

1 · 10−2 A10 -0.0 75.4 B10 -0.3 87.6 C10 -0.4 76.2 D10 -6.9 73.8
5 · 10−3 A10 -0.0 0.5 B10 -0.3 87.7 C10 -0.3 67.9 D10 -6.4 73.1
1 · 10−3 A10 -0.0 -5.4 B10 -0.3 87.6 C10 -0.3 48.0 D10 -4.5 62.0

5 · 10−4 A10 -0.0 -4.8 B10 -0.0 87.4 C10 -0.3 48.0 D10 -4.3 57.3
1 · 10−4 A10 -0.0 -4.7 B10 -0.0 35.7 C10 -0.2 27.0 D10 -3.1 38.6

A GRASP for the Minimum Cost SAT Problem 75

0.05 0.01 0.005 0.001 5e−04 1e−04

0
5

10
15

20

Number of stops

Thresholds

of

 s
to

ps

0.05 0.01 0.005 0.001 5e−04 1e−04

−1
2

−1
0

−8
−6

−4
−2

0

Objective function gaps

Thresholds

%
−g

ap

0.05 0.01 0.005 0.001 5e−04 1e−04

0
20

40
60

80

Time gaps

Thresholds

%
−g

ap

Fig. 6. Experimental evaluation of the probabilistic stopping rule. In each boxplot,
the boxes represent the first and the second quartile; solid line represent median while
dotted vertical line is the full variation range. Plots vary for each threshold α. The dots
connected by a line represent the mean values.

The experimental evaluation of the probabilistic stop is summarized in the
three distinct boxplots of Fig. 6. Each boxplot reports a sensible information
related to the impact of the probabilistic stop, namely: the number of times
the probabilistic criterion has been satisfied, the gaps in the objective function
values, and the gaps in the computation times obtained comparing the solutions
obtained with and without the use of the probabilistic stopping rule. Such infor-
mation are collected, for each instance, as averages of the data obtained over 20
trials in the experimental setup described above. The first boxplot depicts the
number of total stops recorded for different values of threshold α. Larger values
of α, indeed, yield a less coercive stopping rule, thus recording an higher number
of stops. Anyhow, even for the smallest, most conservative α, the average number
of stops recorded is close to 50% of the tests performed. In the second boxplot,
the objective function gap is reported. Such gap quantifies the qualitative wors-
ening in quality of the solutions obtained with the probabilistic stopping rule.

76 G. Felici et al.

Fig. 7. Comparison of objective function values and computation times obtained with
and without probabilistic stopping rule for different threshold values.

The gaps yielded show how even with the highest α, the difference in solution
quality is extremely small, with a single minimum of −11.5% for the instance D8,
and a very promising average gap, slightly below −2%. As expected, decreasing
the α values the solutions obtained with and without the probabilistic stopping
rule will align with each other, and the negative gaps will accordingly grow up to
approximately −1%. The third boxplot shows the gaps obtained in the compu-
tation times. The analysis of such gaps is the key to realistically appraise the
actual benefit provided by the use of the probabilistic stopping rule. Observing
the results reported, it is possible to note how even in the case of the smallest
threshold, i.e., using the most strict probabilistic stopping criterion, the stops
recorded are such that an average time discount close to the 40% is encountered.
A more direct display of this time gaps can be obtained straightly considering
the total time discount in seconds: with the smallest α we have experienced a
time discount of 4847.6 s over the 11595.9 total seconds needed for the execution
without the probabilistic stop. Analyzing in the same fashion the values obtained
under the largest threshold, we observed an excellent average discount just over
80%, which quantified in seconds amounts to an astonishing total discount of
8919.64 s over the 11595.9 total seconds registered for the execution without the
probabilistic stop.

A GRASP for the Minimum Cost SAT Problem 77

6 Conclusions

In this paper, we have investigated a strategy for a GRASP heuristic that solves
large sized MinCostSAT. The method adopts a straight-forward implementation
of the main ingredients of the heuristic, but proposes a new probabilistic stopping
rule. Experimental results show that, for instances belonging to particular class
of MinCostSAT problems, the method performs very well and the new stopping
rule provides a very effective way to reduce the number of iterations of the
algorithm without observing any significant decay in the value of the objective
function.

The work presented has to be considered preliminary, but it clearly indi-
cates several research directions that we intend to pursue: the refinement of the
dynamic estimate of the probability distribution of the solutions found by the
algorithm, the comparative testing of instances of larger size, and the extension
to other classes of problems. Last, but not least, attention will be directed toward
the incorporation of the proposed heuristic into methods that are specifically
designed to extract logic formulas from data and to the test of the performances
of the proposed algorithm in this setting.

Acknowledgements. This work has been realized thanks to the use of the S.Co.P.E.
computing infrastructure at the University of Napoli FEDERICO II.

References

1. Arisi, I., D’Onofrio, M., Brandi, R., Felsani, A., Capsoni, S., Drovandi, G., Felici,
G., Weitschek, E., Bertolazzi, P., Cattaneo, A.: Gene expression biomarkers in the
brain of a mouse model for alzheimer’s disease: Mining of microarray data by logic
classification and feature selection. J. Alzheimer’s Dis. 24(4), 721–738 (2011)

2. Bertolazzi, P., Felici, G., Festa, P., Fiscon, G., Weitschek, E.: Integer programming
models for feature selection: new extensions and a randomized solution algorithm.
Eur. J. Oper. Res. 250(2), 389–399 (2016)

3. Bertolazzi, P., Felici, G., Weitschek, E.: Learning to classify species with barcodes.
BMC Bioinform. 10(14), S7 (2009)

4. Cestarelli, V., Fiscon, G., Felici, G., Bertolazzi, P., Weitschek, E.: CAMUR: knowl-
edge extraction from RNA-seq cancer data through equivalent classification rules.
Bioinformatics 32(5), 697–704 (2016)

5. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. J. Satisf.
Boolean Model. Comput. 2, 1–26 (2006)

6. Felici, G., Truemper, K.: A minsat approach for learning in logic domains.
INFORMS J. Comput. 14(1), 20–36 (2002)

7. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J.
Glob. Optim. 6(2), 109–133 (1995)

8. Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP - part I: algo-
rithms. Int. Trans. Oper. Res. 16(1), 1–24 (2009)

9. Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP - part II: appli-
cations. Int. Trans. Oper. Res. 16(2), 131–172 (2009)

78 G. Felici et al.

10. Fu, Z., Malik, S.: Solving the minimum-cost satisfiability problem using SAT based
branch-and-bound search. In: 2006 IEEE/ACM International Conference on Com-
puter Aided Design, pp. 852–859, November 2006

11. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W.H. Freeman,
New York (2002)

12. Manquinho, V.M., Marques-Silva, J.P.: Search pruning techniques in SAT-based
branch-and-bound algorithms for the binate covering problem. IEEE Trans. Com-
put. Aided Des. Integr. Circ. Syst. 21(5), 505–516 (2002)

13. Manquinho, V.M., Flores, P.F., Silva, J.P.M., Oliveira, A.L.: Prime implicant com-
putation using satisfiability algorithms. In: Ninth IEEE International Conference
on Tools with Artificial Intelligence, 1997 Proceedings, pp. 232–239. IEEE (1997)

14. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

15. Martins, R., Manquinho, V., Lynce, I.: Clause sharing in deterministic parallel
maximum satisfiability. In: RCRA International Workshop on Experimental Eval-
uation of Algorithms for Solving Problems with Combinatorial Explosion (2012)

16. Martins, R., Manquinho, V.M., Lynce, I.: Clause sharing in parallel MaxSAT.
In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 455–460. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34413-8 44

17. Martins, R., Manquinho, V.M., Lynce, I.: Parallel search for maximum satisfiabil-
ity. AI Commun. 25(2), 75–95 (2012)

18. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation
Conference, DAC 2001, pp. 530–535. ACM, New York (2001)

19. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

20. Pipponzi, M., Somenzi, F.: An iterative algorithm for the binate covering problem.
In: Proceedings of the European Design Automation Conference, EDAC 1990, pp.
208–211, March 1990

21. Ribeiro, C.C., Rosseti, I., Souza, R.C.: Probabilistic stopping rules for GRASP
heuristics and extensions. Int. Trans. Oper. Res. 20(3), 301–323 (2013)

22. Scholz, F.W.: Maximum likelihood estimation (2004)
23. Servit, M., Zamazal, J.: Heuristic approach to binate covering problem. In: Pro-

ceedings The European Conference on Design Automation, pp. 123–129, March
1992

24. Sorensson, N., Een, N.: Minisat v1.13 - a sat solver with conflict-clause minimiza-
tion. Technical report (2005(53))

25. Truemper, K.: Design of Logic-Based Intelligent Systems. Wiley-Interscience Pub-
lication, Wiley (2004)

26. Villa, T., Kam, T., Brayton, R.K., Sangiovanni-Vincenteili, A.L.: Explicit and
implicit algorithms for binate covering problems. IEEE Trans. Comput. Aided
Des. Integr. Circ. Syst. 16(7), 677–691 (1997)

27. Weitschek, E., Felici, G., Bertolazzi, P.: MALA: a microarray clustering and clas-
sification software. In: 2012 23rd International Workshop on Database and Expert
Systems Applications, pp. 201–205, September 2012

28. Weitschek, E., Fiscon, G., Felici, G.: Supervised DNA barcodes species classifica-
tion: analysis, comparisons and results. BioData Min. 7(1), 4 (2014)

29. Weitschek, E., Lo Presti, A., Drovandi, G., Felici, G., Ciccozzi, M., Ciotti, M.,
Bertolazzi, P.: Human polyomaviruses identification by logic mining techniques.
Virol. J. 9(1), 58 (2012)

http://dx.doi.org/10.1007/978-3-642-34413-8_44
http://dx.doi.org/10.1007/978-3-540-78800-3_24

A New Local Search for the p-Center Problem
Based on the Critical Vertex Concept

Daniele Ferone1, Paola Festa1(B), Antonio Napoletano1,
and Mauricio G.C. Resende2

1 Department of Mathematics and Applications, University of Napoli Federico II,
Compl. MSA, Via Cintia, 80126 Naples, Italy

{daniele.ferone,paola.festa,antonio.napoletano2}@unina.it
2 Mathematical Optimization and Planning, Amazon.com, Seattle, USA

resendem@amazon.com

Abstract. For the p-center problem, we propose a new smart local
search based on the critical vertex concept and embed it in a GRASP
framework. Experimental results attest the robustness of the proposed
search procedure and confirm that for benchmark instances it converges
to optimal or near/optimal solutions faster than the best known state-
of-the-art local search.

1 Introduction

The p-center problem is one of the best-known discrete location problems first
introduced in the literature in 1964 by Hakimi [13]. It consists of locating p facil-
ities and assigning clients to them in order to minimize the maximum distance
between a client and the facility to which the client is assigned (i.e., the clos-
est facility). Useless to say that this problem arises in many different real-world
contexts, whenever one designs a system for public facilities, such as schools or
emergency services.

Formally, we are given a complete undirected edge-weighted bipartite graph
G = (V ∪ U,E, c), where

– V = {1, 2, . . . , n} is a set of n potential locations for facilities;
– U = {1, 2, . . . ,m} is a set of m clients or demand points;
– E = {(i, j)| i ∈ V, j ∈ U} is a set of n × m edges;
– c : E �→ R

+ ∪{0} is a function that assigns a nonnegative distance cij to each
edge (i, j) ∈ E.

The p-center problem is to find a subset P ⊆ V of size p such that its weight,
defined as

C(P) = max
i∈U

min
j∈P

cij (1)

is minimized. The minimum value is called the radius. Although it is not a
restrictive hypothesis, in this paper we consider the special case where V = U

c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 79–92, 2017.
https://doi.org/10.1007/978-3-319-69404-7_6

80 D. Ferone et al.

is the vertex set of a complete graph G = (V,E), each distance cij represents
the length of a shortest path between vertices i and j (cii = 0), and hence the
triangle inequality is satisfied.

In 1979, Kariv and Hakimi [16] proved that the problem is NP -hard, even in
the case where the input instance has a simple structure (e.g., a planar graph
of maximum vertex degree 3). In 1970, Minieka [20] designed the first exact
method for the p-center problem viewed as a series of set covering problems. His
algorithm iteratively chooses a threshold r for the radius and checks whether all
clients can be covered within distance r using no more than p facilities. If so, the
threshold r is decreased; otherwise, it is increased. Inspired by Minieka’s idea,
in 1995 Daskin [3] proposed a recursive bisection algorithm that systematically
reduces the gap between upper and lower bounds on the radius. More recently,
in 2010 Salhi and Al-Khedhairi [26] proposed a faster exact approach based on
Daskin’s algorithm that obtains tighter upper and lower bounds by incorporat-
ing information from a three-level heuristic that uses a variable neighborhood
strategy in the first two levels and at the third level a perturbation mechanism
for diversification purposes.

Recently, several facility location problems similar to the p-center have been
used to model scenarios arising in financial markets. The main steps to use such
techniques are the following: first, to describe the considered financial market
via a correlation matrix of stock prices; second, to model the matrix as a graph,
stocks and correlation coefficients between them are represented by nodes and
edges, respectively. With this idea, Goldengorin et al. [11] used the p-median
problem to analyze stock markets. Another interesting area where these problems
arise is the manufacturing system with the aim of lowering production costs [12].

Due to the computational complexity of the p-center problem, several approx-
imation and heuristic algorithms have been proposed for solving it. By exploiting
the relationship between the p-center problem and the dominating set prob-
lem [15,18], nice approximation results were proved. With respect to inapprox-
imability results, Hochbaum and Shmoys [15] proposed a 2-approximation algo-
rithm for the problem with triangle inequality, showing that for any δ < 2 the
existence of a δ-approximation algorithm would imply that P = NP .

Although interesting in theory, approximation algorithms are often outper-
formed in practice by more straightforward heuristics with no particular perfor-
mance guarantees. Local search is the main ingredient for most of the heuristic
algorithms that have appeared in the literature. In conjunction with various tech-
niques for escaping local optima, these heuristics provide solutions which exceed
the theoretical upper bound of approximating the problem and derive from ideas
used to solve the p-median problem, a similar NP -hard problem [17]. Given a set
F of m potential facilities, a set U of n users (or customers), a distance function
d : U × F �→ R, and a constant p ≤ m, the p-median problem is to determine
a subset of p facilities to open so as to minimize the sum of the distances from
each user to its closest open facility. For the p-median problem, in 2004 Resende
and Werneck [25] proposed a multistart heuristic that hybridizes GRASP with
Path-Relinking as both, intensification and post-optimization phases. In 1997,

A New Local Search for the p-Center Problem 81

Hansen and Mladenović [14] proposed three heuristics: Greedy, Alternate, and
Interchange (vertex substitution). To select the first facility, Greedy solves a
1-center problem. The remaining p−1 facilities are then iteratively added, one at
a time, and at each iteration the location which most reduces the maximum cost
is selected. In [5], Dyer and Frieze suggested a variant, where the first center is
chosen at random. In the first iteration of Alternate, facilities are located at p
vertices chosen in V , clients are assigned to the closest facility, and the 1-center
problem is solved for each facility’s set of clients. During the subsequent itera-
tions, the process is repeated with the new locations of the facilities until no more
changes in assignments occur. As for the Interchange procedure, a certain pat-
tern of p facilities is initially given. Then, facilities are moved iteratively, one by
one, to vacant sites with the objective of reducing the total (or maximum) cost.
This local search process stops when no movement of a single facility decreases
the value of the objective function. A multistart version of Interchange was also
proposed, where the process is repeated a given number of times and the best
solution is kept. The combination of Greedy and Interchange has been most
often used for solving the p-median problem. In 2003, Mladenović et al. [21]
adapted it to the p-center problem and proposed a Tabu Search (TS) and a
Variable Neighborhood Search (VNS), i.e., a heuristic that uses the history of
the search in order to construct a new solution and a competitor that is not
history sensitive, respectively. The TS is designed by extending Interchange to
the chain-interchange move, while in the VNS, a perturbed solution is obtained
from the incumbent by a k-interchange operation and Interchange is used to
improve it. If a better solution than the incumbent is found, the search is recen-
tered around it. In 2011, Davidović et al. [4] proposed a Bee Colony algorithm, a
random search population-based technique, where an artificial system composed
of a number of precisely defined agents, also called individuals or artificial bees.

To the best of our knowledge, most of the research effort devoted towards
the development of metaheuristics for this problem has been put into the design
of efficient local search procedures. The purpose of this article is propose a new
local search and to highlight how its performances are better than best-known
local search proposed in literature (Mladenović et al.’s [21] local search based on
VNS strategy), both in terms of solutions quality and convergence speed.

The remainder of the paper is organized as follows. In Sect. 2, a GRASP con-
struction procedure is described. In Sect. 3, we introduce the new concept of
critical vertex with relative definitions and describe a new local search algorithm.
Computational results presented in Sect. 4 empirically demonstrate that our local
search is capable of obtaining better results than the best known local search,
and they are validated by a statistical significance test. Concluding remarks are
made in Sect. 5.

2 GRASP Construction Phase

GRASP is a randomized multistart iterative method proposed in Feo and
Resende [6,7] and having two phases: a greedy randomized construction phase

82 D. Ferone et al.

and a local search phase. For a comprehensive study of GRASP strategies and
their variants, the reader is referred to the survey papers by Festa and Resende
[9,10], as well as to their annotated bibliography [8].

Starting from a partial solution made of 1 ≤ randElem ≤ p facilities ran-
domly selected from V , our GRASP construction procedure iteratively selects
the remaining p−randElem facilities in a greedy randomized fashion. The greedy
function takes into account the contribution to the objective function achieved
by selecting a particular candidate element. In more detail, given a partial solu-
tion P , |P | < p, for each i ∈ V \ P , we compute w(i) = C(P ∪ {i}). The pure
greedy choice would consist in selecting the vertex with the smallest greedy func-
tion value. This procedure instead computes the smallest and the largest greedy
function values:

zmin = min
i∈V \P

w(i); zmax = max
i∈V \P

w(i).

Then, denoting by μ = zmin + β(zmax − zmin) the cut-off value, where β is a
parameter such that β ∈ [0, 1], a restricted candidate list (RCL) is made up of
all vertices whose greedy value is less than or equal to μ. The new facility to be
added to P is finally randomly selected from the RCL.

The pseudo-code is shown in Fig. 1, where α ∈ [0, 1].

Function greedy-randomized-build(G = 〈V,E,C〉 , p, α, β)
1 P ← ∅ ;
2 randElem := �α · p� ;
3 for k = 1, . . . , randElem do // random component

4 f ← SelectRandom(V \ P);
5 P ← P ∪ {f} ;

6 while |P | < p do
7 zmin ← +∞ ;
8 zmax ← −∞ ;
9 for i ∈ V \ P do

10 if zmin > C(P ∪ {i}) then
11 zmin ← C(P ∪ {i}) ;
12 if zmax < C(P ∪ {i}) then
13 zmax ← C(P ∪ {i}) ;

14 μ ← zmin + β(zmax − zmin) ;
15 RCL ← {i ∈ V \ P | C(P ∪ {i}) ≤ μ} ;
16 f ← SelectRandom(RCL) ;
17 P ← P ∪ {f};

18 return P ;

Fig. 1. Pseudo-code of the greedy randomized construction.

A New Local Search for the p-Center Problem 83

3 Plateau Surfer: A New Local Search Based
on the Critical Vertex Concept

Given a feasible solution P , the Interchange local search proposed by Hansen
and Mladenović [14] consists in swapping a facility f ∈ P with a facility f /∈ P
which results in a decrease of the current cost function. Especially in the case of
instances with many vertices, we have noticed that usually a single swap does not
strictly improve the current solution, because there are several facilities whose
distance is equal to the radius of the solution. In other words, the objective
function is characterized by large plateaus and the Interchange local search
cannot escape from such regions. To face this type of difficulties, inspired by
Variable Formulation Search [22,23], we have decided to use a refined way for
comparing between valid solutions by introducing the concept of critical vertex.
Given a solution P ⊆ V , let δP : V �→ R

+ ∪ {0} be a function that assigns
to each vertex i ∈ V the distance between i and its closest facility according
to solution P . Clearly, the cost of a solution P can be equivalently written as
C(P) = max{δP (i) : i ∈ V }. We also give the following definition:

Definition 1 (Critical vertex). Let P ⊆ V be a solution whose cost is C(P).
For each vertex i ∈ V , i is said to be a critical vertex for P , if and only if
δP (i) = C(P).

In the following, we will denote with maxδP = |{i ∈ V : δP (i) = C(P)}| the
number of vertices whose distance from their closest facility results in the objec-
tive function value corresponding to solution P . We define also the comparison
operator <cv, and we will say that P <cv P ′ if and only if maxδP < maxδ′

P
.

P P̄

N (y1)

y1

N (y2)

y2

N (y3)

y3

xi1

xj1

xk1

xl1

C(P)

N (y2)

y2

N (ȳ3)

ȳ3

N (y1)

y1C(P̄)
xi1

xj1

xk1

xl1

Fig. 2. An example of how the local search works. In this case, the algorithm switches
from solution P to solution P̄ . In P̄ , a new facility ȳ3 is selected in place of y3 in
P , ȳ3 attracts one of the “critical vertices” from the neighborhood of the facility y1.
Although the cost of the two solutions is the same, the algorithm selects the new
solution P̄ because maxδP̄

< maxδP .

84 D. Ferone et al.

The main idea of our plateau surfer local search is to use the concept of
critical vertex to escape from plateaus, moving to solutions that have either
a better cost than the current solution or equal cost but less critical vertices.
Figure 2 shows a simple application of the algorithm, while in Figs. 3 and 4, for
four benchmark instances, both Mladenović’s local search and our local search
are applied once taken as input the same starting feasible solution. It is evident
that both the procedures make the same first moves. However, as soon as a
plateau is met, Mladenović’s local search ends, while our local search is able to
escape from the plateau moving to other solutions with the same cost value,

Fig. 3. Plateau escaping. The behavior of our plateau surfer local search (in red) com-
pared with the Mladenović’s one (in blue). Both algorithms work on the same instances
taking as input the same starting solution. Filled red dots and empty blue circles indi-
cate the solutions found by the two algorithms. Mladenović local search stops as soon
as the first plateau is met. (Color figure online)

A New Local Search for the p-Center Problem 85

Fig. 4. Plateau escaping. The behavior of our plateau surfer local search (in red) com-
pared with the Mladenović’s one (in blue) on other two different instances. (Color figure
online)

and restarting the procedure from a new solution that can lead to a strict cost
function improvement.

Let us analyze in more detail the behavior of our local search, whose pseudo-
code is reported in Fig. 5. The main part of the algorithm consists in the portion of
the pseudo-code that goes from line 7 to line 14. Starting from an initial solution
P , the algorithm tries to improve the solution replacing a vertex j /∈ P with a
facility i ∈ P . Clearly, this swap is stored as an improving move if the new solution
P̄ = P \{i}∪{j} is strictly better than P according to the cost functionC. IfC(P̄)
is better than the current cost C(P), then P̄ is compared also with the incumbent

86 D. Ferone et al.

Function plateau-surfer-local-search(G = 〈V,A,C〉 , P, p)
1 repeat
2 modified := false;
3 forall i ∈ P do
4 best flip := best cv flip := NIL;
5 bestNewSolValue := C(P);
6 best cv := maxδ(P̄);
7 forall j ∈ V \ P do
8 P̄ := P \ {i} ∪ {j};
9 if C(P̄) < bestNewSolValue then

10 bestNewSolValue := C(P̄);
11 best flip := j;

12 else if best flip = NIL and maxδ(P̄) < best cv then
13 best cv := maxδ(P̄);
14 best cv flip := j;

15 if best flip
= NIL then
16 P := P \ {i} ∪ {best flip};
17 modified := true;

18 else if best cv flip
= NIL then
19 P := P \ {i} ∪ {best cv flip};
20 modified := true;

21 until modified = false;
22 return P ;

Fig. 5. Pseudocode of the plateau surfer local search algorithm based on the critical
vertex concept.

solution and if it is the best solution found so far, the incumbent is update and
the swap that led to this improvement stored (lines 9–11).

Otherwise, the algorithm checks if it is possible to reduce the number of
critical vertices. If the new solution P̄ is such that P̄ <cv P , then the algorithm
checks if P̄ is the best solution found so far (line 12), the value that counts the
number of critical vertices in a solution is update (line 13), and the current swap
stored as an improving move (line 14).

To study the computational complexity of our local search, let be n = |V |
and p = |P |, the number of vertices in the graph and the number of facilities in
a solution, respectively. The loops at lines 3 and 7 are executed p and n times,
respectively. The update of the solution takes O(n). In conclusion, the total
complexity is O(p · n2).

4 Experimental Results

In this section, we describe computational experience with the local search pro-
posed in this paper. We have compared it with the local search proposed by
Mladenović et al. [21], by embedding both in a GRASP framework.

A New Local Search for the p-Center Problem 87

The algorithms were implemented in C++, compiled with gcc 5.2.1 under
Ubuntu with -std=c++14 flag. The stopping criterion is maxTime = 0.1·n+0.5·
p. All the tests were run on a cluster of nodes, connected by 10 Gigabit Infiniband
technology, each of them with two processors Intel Xeon E5-4610v2@2.30 GHz.

Table 1 summarizes the results on a set of ORLIB instances, originally intro-
duced in [1]. It consists of 40 graphs with number of vertices ranging from 100 to
900, each with a suggested value of p ranging from 5 to 200. Each vertex is both
a user and a potential facility, and distances are given by shortest path lengths.
Tables 2 and 3 report the results on the TSP set of instances. They are just sets
of points on the plane. Originally proposed for the traveling salesman problem,
they are available from the TSPLIB [24]. Each vertex can be either a user or
an open facility. We used the Mersenne Twister random number generator by
Matsumoto and Nishimura [19]. Each algorithm was run with 10 different seeds,
and minimum (min), average (E) and variance (σ2) values are listed in each
table. The second to last column lists the %-Gap between average solutions. To
deeper investigate the statistical significance of the results obtained by the two
local searches, we performed the Wilcoxon test [2,27].

Generally speaking, the Wilcoxon test is a ranking method that well applies
in the case of a number of paired comparisons leading to a series of differences,
some of which may be positive and some negative. Its basic idea is to substitute
scores 1, 2, 3, . . . , n with the actual numerical data, in order to obtain a rapid
approximate idea of the significance of the differences in experiments of this
kind.

More formally, let A1 and A2 be two algorithms, I1, . . . , Il be l instances of
the problem to solve, and let δAi

(Ij) be the value of the solution obtained by
algorithm Ai (i = 1, 2) on instance Ij (j = 1, . . . , l). For each j = 1, . . . , l, the
Wilcoxon test computes the differences Δj = |δA1(Ij) − δA2(Ij)| and sorts them
in non decreasing order. Accordingly, starting with a smallest rank equal to 1, to
each difference Δj , it assigns a non decreasing rank Rj . Ties receive a rank equal
to the average of the sorted positions they span. Then, the following quantities
are computed

W+ =
∑

j=1,...,l : Δj>0

Rj ,

W− =
∑

j=1,...,l : Δj<0

Rj .

Under the null hypothesis that δA1(Ij) and δA2(Ij) have the same median
value, it should result that W+ = W−. If the p-value associated to the experi-
ment is less than an a priori fixed significance level α, then the null hypothesis
is rejected and the difference between W+ and W− is considered significant.

The last column of each table lists the p-values where the %-Gap is significant,
all the values are less than α = 0.01. This outcome of the Wilcoxon test further
confirms that our local search is better performing than the local search proposed
by Mladenović et al.

88 D. Ferone et al.

Table 1. Results on ORLIB instances.

Instance GRASP + mladenovic GRASP + plateau-surfer %-Gap p-value

min E σ2 min E σ2

pmed01 127 127 0 127 127 0 0.00

pmed02 98 98 0 98 98 0 0.00

pmed03 93 93.14 0.12 93 93.54 0.25 0.43

pmed04 74 76.21 1.33 74 74.02 0.04 −2.87 1.20E−16

pmed05 48 48.46 0.43 48 48 0 −0.95

pmed06 84 84 0 84 84 0 0.00

pmed07 64 64.15 0.27 64 64 0 −0.23

pmed08 57 59.39 1.36 55 55.54 0.73 −6.48 3.37E−18

pmed09 42 46.87 2.83 37 37.01 0.01 −21.04 2.80E−18

pmed10 29 31.21 0.81 20 20.01 0.01 −35.89 9.38E−19

pmed11 59 59 0 59 59 0 0.00

pmed12 51 51.89 0.1 51 51.41 0.24 −0.93

pmed13 42 44.47 0.73 36 36.94 0.06 −16.93 1.04E−18

pmed14 35 38.59 3.24 26 26.85 0.13 −30.42 2.11E−18

pmed15 28 30.23 0.7 18 18 0 −40.46 1.09E−18

pmed16 47 47 0 47 47 0 0.00

pmed17 39 40.71 0.23 39 39 0 −4.20 8.69E−20

pmed18 36 37.95 0.29 29 29.41 0.24 −22.50 6.37E−19

pmed19 27 29.32 0.42 19 19.13 0.11 −34.75 6.25E−19

pmed20 25 27.05 0.99 14 14 0 −48.24 1.46E−18

pmed21 40 40 0 40 40 0 0.00

pmed22 39 40.06 0.24 38 38.94 0.06 −2.80 1.30E−18

pmed23 30 32.02 0.44 23 23.21 0.17 −27.51 7.16E−19

pmed24 24 25.38 0.34 16 16 0 −36.96 4.37E−19

pmed25 22 22.62 0.24 11 11.89 0.1 −47.44 2.77E−19

pmed26 38 38 0 38 38 0 0.00

pmed27 33 33.96 0.06 32 32 0 −5.77 2.15E−22

pmed28 26 26.78 0.17 19 19 0 −29.05 2.20E−20

pmed29 23 23.43 0.31 13 13.68 0.22 −41.61 8.00E−19

pmed30 20 21.18 0.47 10 10 0 −52.79 6.50E−19

pmed31 30 30 0 30 30 0 0.00

pmed32 30 30.37 0.23 29 29.62 0.24 −2.47

pmed33 23 23.76 0.2 16 16.28 0.2 −31.48 4.31E−19

pmed34 21 22.42 0.66 11 11.56 0.25 −48.44 1.59E−18

pmed35 30 30.01 0.01 30 30 0 −0.03

pmed36 28 29.37 0.31 27 27.65 0.23 −5.86 4.52E−18

pmed37 23 24.07 0.37 16 16 0 −33.53 2.74E−19

pmed38 29 29 0 29 29 0 0.00

pmed39 24 25.08 0.11 23 23.98 0.02 −4.39 4.68E−21

pmed40 20 21.81 0.43 14 14 0 −35.81 5.14E−19

Average −16.78

A New Local Search for the p-Center Problem 89

Table 2. Results on TSPLIB instances (1)

Instace p GRASP + mladenovic GRASP + plateau-surfer %-Gap p-value

min E σ2 min E σ2

pcb3038 50 534.48 608.49 1068.09 355.68 374.66 51.05 −38.43 3.90E−18

100 399.49 481.75 1285.58 259.67 270.2 17.56 −43.91 3.90E−18

150 331.62 428.69 1741.11 206.71 215.78 23.73 −49.67 3.90E−18

200 301.01 386.56 3161.87 177.79 190.88 10.4 −50.62 3.90E−18

250 292.48 359.59 3323.62 155.03 163.75 19.24 −54.46 3.90E−18

300 261.28 349.42 2902.71 143.39 151.89 10.04 −56.53 3.90E−18

350 258.82 336.08 3755.72 123.85 136.22 22.45 −59.47 3.90E−18

400 249.78 337.14 4033.46 119.07 122.31 1.2 −63.72 3.90E−18

450 214.97 321.36 3373.23 115 117 0.6 −63.59 3.90E−18

500 209.35 299.4 3378.98 102 110.38 5.78 −63.13 3.90E−18

pr1002 10 3056.55 3313.49 10132.77 2616.3 2727.45 2260.95 −17.69 3.90E−18

20 2404.16 2668.29 8244.65 1806.93 1886.89 1516.07 −29.28 3.90E−18

30 2124.26 2358.07 4432.11 1456.02 1505.55 910.93 −36.15 3.89E−18

40 1960.23 2172.63 7831.77 1253.99 1302.76 751.62 −40.04 3.90E−18

50 1755.7 1992.08 5842.66 1097.72 1156.77 815.35 −41.93 3.90E−18

60 1697.79 1865.5 5872.47 1001.25 1042.82 257.42 −44.1 3.89E−18

70 1569.24 1736.41 4078.39 900 954.04 307.65 −45.06 3.89E−18

80 1486.61 1633.87 3278.4 851.47 889.5 407.29 −45.56 3.88E−18

90 1350.93 1543.17 3922.25 764.85 809.78 382.29 −47.52 3.89E−18

100 1312.44 1472.47 2616 743.3 767.62 77.4 −47.87 3.89E−18

pr439 10 2575.12 2931.83 38470.59 1971.83 1972.28 19.61 −32.73 3.79E−18

20 1940.52 2577.03 23638.88 1185.59 1194.12 124.58 −53.66 3.71E−18

30 1792.34 2510.91 23692.47 886 919.1 442.37 −63.4 3.89E−18

40 1525.2 2413.33 53876.4 704.45 728.19 39.31 −69.83 3.88E−18

50 1358.54 2252.46 89633.71 575 595.4 64.21 −73.57 3.82E−18

60 1386.09 2170.85 110065.93 515.39 537.66 75.43 −75.23 3.89E−18

70 1370.45 1898.53 116167.77 480.23 499.65 4.93 −73.68 3.73E−18

80 1140.18 1815.1 118394.68 424.26 440.27 166.06 −75.74 3.89E−18

90 1191.9 1699.64 91388.99 400 406.17 31.71 −76.1 3.88E−18

100 1190.85 1679.73 94076.45 375 384.27 98.91 −77.12 3.89E−18

rat575 10 81.32 92.98 9.27 73 74.71 0.79 −19.65 3.90E−18

20 68.07 73.86 3.7 50.54 53.04 0.63 −28.19 3.90E−18

30 59.81 64.61 3.67 41.79 43.53 0.47 −32.63 3.90E−18

40 54.13 58.37 3.43 36.12 37.43 0.29 −35.87 3.90E−18

50 47.68 53.78 3.56 32.45 33.36 0.17 −37.97 3.90E−18

60 45.62 50.03 3.21 29.15 30.17 0.19 −39.7 3.90E−18

70 43.68 46.96 2.97 27 27.78 0.13 −40.84 3.90E−18

80 39.81 44.2 2.75 25.02 25.99 0.11 −41.2 3.90E−18

90 38.48 41.98 2.06 23.85 24.4 0.07 −41.88 3.90E−18

100 37.01 39.93 1.4 22.2 23.01 0.08 −42.37 3.89E−18

rat783 10 102.22 110.93 13.17 83.49 87.82 1.65 −20.83 3.90E−18

20 80.53 88.56 7.68 59.68 62.8 1.41 −29.09 3.90E−18

30 69.58 76.92 7.87 49.25 51.48 0.74 −33.07 3.90E−18

40 62.97 69.63 4.62 42.05 44.27 0.53 −36.42 3.90E−18

50 59.41 65.26 5.59 38.29 39.6 0.42 −39.32 3.90E−18

60 54.82 60.35 4.77 34.48 35.92 0.24 −40.48 3.90E−18

70 49.4 56.56 7.48 32.06 33.11 0.24 −41.46 3.90E−18

80 48.51 53.76 4.03 29.55 30.94 0.21 −42.45 3.90E−18

90 46.07 51.82 3.53 28.18 28.85 0.11 −44.33 3.90E−18

100 43.97 49.5 4.68 26.31 27.49 0.14 −44.46 3.90E−18

Average −46.84

90 D. Ferone et al.

Table 3. Results on TSPLIB instances (2)

Instance p GRASP + mladenovic GRASP + plateau-surfer %-Gap p-value

min E σ2 min E σ2

rl1323 10 3810.84 4185.89 24655.46 3110.57 3241.79 3290.56 −22.55 3.90E−18

20 2996.4 3348.31 23183.21 2090.87 2236.28 2798.56 −33.21 3.90E−18

30 2689.44 2979.79 14205.75 1730.78 1808.94 1544.85 −39.29 3.90E−18

40 2337.92 2712.93 14193.05 1479.24 1576.25 1710.4 −41.9 3.90E−18

50 2195.91 2462.95 9835.09 1300 1363.88 950.66 −44.62 3.90E−18

60 2021.87 2278.94 16400.27 1181.3 1244.03 657.55 −45.41 3.90E−18

70 1900.77 2128.45 11883.58 1076.2 1127.98 475.13 −47 3.90E−18

80 1866.8 2033.24 4501.73 988.87 1048.87 438.82 −48.41 3.89E−18

90 1634.37 1966.13 4643.42 935.02 978.6 289.18 −50.23 3.89E−18

100 1631.5 1909.56 8483.55 886.85 914 238.2 −52.14 3.89E−18

u1060 10 3110.65 3373.87 7541.61 2301.7 2440 599.42 −27.68 3.86E−18

20 2652.6 2818.37 5787.51 1650.34 1749.15 2814.03 −37.94 3.90E−18

30 2501.72 2684.87 3811.23 1302.94 1373.21 912.92 −48.85 3.90E−18

40 2442.07 2616.15 5267.85 1118.59 1176.14 593.6 −55.04 3.90E−18

50 2378.36 2591.96 7266.77 950.66 1021.55 418.91 −60.59 3.90E−18

60 2301.83 2602.13 13579.82 860.49 919.97 374.54 −64.65 3.90E−18

70 2378.36 2606.64 10944.09 790.13 828.16 441.03 −68.23 3.90E−18

80 2351.82 2622.32 12980.39 720.94 753.64 306.94 −71.26 3.90E−18

90 2248.61 2562.01 10260.36 667.55 708.04 107.79 −72.36 3.90E−18

100 2060.29 2494.08 11025.91 632.11 653.15 110.65 −73.81 3.90E−18

110 2049.18 2444.22 10385.95 570.49 613.02 148.7 −74.92 3.90E−18

120 2122.97 2406.19 9191.4 570 579.93 96.23 −75.9 3.90E−18

130 1839.55 2390.82 12029.95 538.82 561.62 78.78 −76.51 3.90E−18

140 1924.48 2316.25 12982.87 500.39 527.66 172.51 −77.22 3.90E−18

150 1942.27 2300.45 13245.06 499.65 503.26 20.49 −78.12 3.90E−18

u1817 10 592.97 646.89 325 466.96 485.44 104.33 −24.96 3.90E−18

20 462.3 564.44 560.9 330.2 348.15 53.96 −38.32 3.90E−18

30 418.91 530.34 1018.29 265.19 283.4 58.43 −46.56 3.90E−18

40 407.19 526.44 956.01 232.25 245.78 43.42 −53.31 3.90E−18

50 330.21 507.52 2889.76 204.79 217.05 26.96 −57.23 3.90E−18

60 352.88 497.35 3539.09 184.91 197.26 21.79 −60.34 3.90E−18

70 321.27 477.43 4139.93 170.39 181.53 13.67 −61.98 3.90E−18

80 289.61 445.35 4866.81 154.5 166.46 22.68 −62.62 3.90E−18

90 283.99 422.34 3828.2 148.11 153.5 13.72 −63.65 3.90E−18

100 283.99 416.69 2660.21 136.79 146.67 7.4 −64.8 3.90E−18

Average −54.9

A New Local Search for the p-Center Problem 91

5 Concluding Remarks

In this paper, we presented a new local search heuristic for the p-center problem,
whose potential applications appear in telecommunications, in transportation
logistics, and whenever one must to design a system to organize some sort of
public facilities, such as, for example, schools or emergency services.

The computational experiments show that the proposed local search is capa-
ble to reduce the number of local optimum solutions using the concept of critical
vertex, and it improves the results of the best local search for the problem.

Future lines of work will be focused on a deeper investigation of the robustness
of our proposal by applying it on further instances coming from financial markets
and manufacturing systems.

Acknowledgements. This work has been realized thanks to the use of the S.Co.P.E.
computing infrastructure at the University of Napoli FEDERICO II.

References

1. Beasley, J.: A note on solving large p-median problems. Eur. J. Oper. Res. 21,
270–273 (1985)

2. Coffin, M., Saltzman, M.: Statistical analysis of computational tests of algorithms
and heuristics. INFORMS J. Comput. 12(1), 24–44 (2000)

3. Daskin, M.: Network and Discrete Location: Models, Algorithms, and Applications.
Wiley, New York (1995)

4. Davidović, T., Ramljak, D., Šelmić, M., Teodorović, D.: Bee colony optimization
for the p-center problem. Comput. Oper. Res. 38(10), 1367–1376 (2011)

5. Dyer, M., Frieze, A.: A simple heuristic for the p-centre problem. Oper. Res. Lett.
3(6), 285–288 (1985)

6. Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult set
covering problem. Oper. Res. Lett. 8, 67–71 (1989)

7. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. J. Global
Optim. 6, 109–133 (1995)

8. Festa, P., Resende, M.: GRASP: an annotated bibliography. In: Ribeiro, C.,
Hansen, P. (eds.) Essays and Surveys on Metaheuristics, pp. 325–367. Kluwer Aca-
demic Publishers, London (2002)

9. Festa, P., Resende, M.: An annotated bibliography of GRASP - part I: algorithms.
Int. Trans. Oper. Res. 16(1), 1–24 (2009)

10. Festa, P., Resende, M.: An annotated bibliography of GRASP - part II: applica-
tions. Int. Trans. Oper. Res. 16(2), 131–172 (2009)

11. Goldengorin, B., Kocheturov, A., Pardalos, P.M.: A pseudo-boolean approach to
the market graph analysis by means of the p-median model. In: Aleskerov, F.,
Goldengorin, B., Pardalos, P.M. (eds.) Clusters, Orders, and Trees: Methods and
Applications. SOIA, vol. 92, pp. 77–89. Springer, New York (2014). doi:10.1007/
978-1-4939-0742-7 5

12. Goldengorin, B., Krushinsky, D., Pardalos, P.M.: Application of the PMP to cell
formation in group technology. In: Goldengorin, B., Krushinsky, D., Pardalos, P.M.
(eds.) Cell Formation in Industrial Engineering. SOIA, vol. 79, pp. 75–99. Springer,
New York (2013). doi:10.1007/978-1-4614-8002-0 3

http://dx.doi.org/10.1007/978-1-4939-0742-7_5
http://dx.doi.org/10.1007/978-1-4939-0742-7_5
http://dx.doi.org/10.1007/978-1-4614-8002-0_3

92 D. Ferone et al.

13. Hakimi, S.: Optimum locations of switching centers and the absolute centers and
medians of a graph. Oper. Res. 12(3), 450–459 (1964)

14. Hansen, P., Mladenović, N.: Variable neighborhood search for the p-median. Locat.
Sci. 5(4), 207–226 (1997)

15. Hochbaum, D., Shmoys, D.: A best possible heuristic for the k-Center problem.
Math. Oper. Res. 10(2), 180–184 (1985)

16. Kariv, O., Hakimi, S.: An algorithmic approach to network location problems.
Part I: the p-centers. SIAM J. Appl. Math. 37(3), 513–538 (1979)

17. Kariv, O., Hakimi, S.: An algorithmic approach to network location problems.
Part II: the p-medians. SIAM J. Appl. Math. 37(3), 539–560 (1979)

18. Martinich, J.S.: A vertex-closing approach to the p-center problem. Nav. Res.
Logist. 35(2), 185–201 (1988)

19. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. 8(1), 3–30 (1998)

20. Minieka, E.: The m-center problem. SIAM Rev. 12(1), 138–139 (1970)
21. Mladenović, N., Labbé, M., Hansen, P.: Solving the p-center problem with Tabu

Search and variable neighborhood search. Networks 42(April), 48–64 (2003)
22. Mladenovic, N., Urosevic, D., Prez-Brito, D., Garca-Gonzlez, C.G.: Variable neigh-

bourhood search for bandwidth reduction. Eur. J. Oper. Res. 200(1), 14–27 (2010)
23. Pardo, E.G., Mladenovi, N., Pantrigo, J.J., Duarte, A.: Variable formulation search

for the cutwidth minimization problem. Appl. Soft Comput. 13(5), 2242–2252
(2013)

24. Reinelt, G.: TSPLIB—A traveling salesman problem library. ORSA J. Comput.
3(4), 376–384 (1991)

25. Resende, M., Werneck, R.: A hybrid heuristic for the p-median problem. J. Heuris-
tics 10(1), 59–88 (2004)

26. Salhi, S., Al-Khedhairi, A.: Integrating heuristic information into exact methods:
the case of the vertex p-centre problem. J. Oper. Res. Soc. 61(11), 1619–1631
(2010)

27. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83
(1945)

An Iterated Local Search Framework with
Adaptive Operator Selection for Nurse Rostering

Angeliki Gretsista(B) and Edmund K. Burke

School of Electronic Engineering and Computer Science,
Queen Mary University of London, London, UK

{a.gretsista,vp-se}@qmul.ac.uk

Abstract. Considerable attention has been paid to selective hyper-
heuristic frameworks for addressing computationally hard scheduling
problems. By using selective hyper-heuristics, we can derive benefits from
the strength of low level heuristics and their components at different
stages of the heuristic search. In this paper, a simple, general and effec-
tive selective hyper heuristic is presented. We introduce an iterated local
search based hyper-heuristic framework that incorporates the adaptive
operator selection scheme to learn through the search process. The con-
sidered iterative approach employs an action selection model to decide
the perturbation strategy to apply in each step and a credit assignment
module to score its performance. The designed framework allows us to
employ any action selection model and credit assignment mechanism
used in the literature. Empirical results and an analysis of six differ-
ent action selection models against state-of-the-art approaches, across
39 problem instances, highlight the significant potential of the proposed
selection hyper-heuristics. Further analysis on the adaptive behavior of
the model suggests that two of the six models are able to learn the best
performing perturbation strategy, resulting in significant performance
gains.

Keywords: Nurse rostering · Personnel scheduling · Hyper-heuristics ·
Action selection models

1 Introduction

One of the main motivations for the development of hyper-heuristics was to
develop search algorithms that can operate with a certain degree of gen-
erality [1,2]. Hyper-heuristics can be considered to be “high level” general
approaches that are able to select or generate low-level heuristics, whilst restrict-
ing the need to use domain knowledge [3]. In particular, selection hyper-heuristics
choose heuristics from a predefined set of low level heuristics within a framework,
where the aim is to determine a sequence of perturbations that provide efficient
solutions for a given problem. On the other hand, the idea behind generative
hyper-heuristics is to develop new heuristics based on the basic components of
the input low level heuristics [3].
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 93–108, 2017.
https://doi.org/10.1007/978-3-319-69404-7_7

94 A. Gretsista and E.K. Burke

Nurse rostering is a well-known and well-studied personnel scheduling prob-
lem. The main objective is to assign the appropriate level of qualified nurses
to shifts to cover the demand across different medical wards in a hospital, with
respect to a diverse set of hard and soft constraints [4]. Representative constraints
capture work regulations, employee preferences and fairness of allocation regard-
ing weekend/night shifts or leave and days off [5]. To address nurse rostering
problems, researchers have proposed a wide variety of methodologies including
hyper-heuristics. In the recent work of Asta et al. [6], a tensor based algorithm
is embodied to an online learning selection hyper-heuristic framework. In [7] Lü
and Hao present an algorithm that takes two neighborhood moves and adaptively
switches between search strategies by considering their search history. Other
recent approaches constitute evolutionary perturbative hyper-heuristics [8], har-
mony search-based hyper-heuristics [9] and hybrid approaches [10–12].

Several publications have appeared in recent years proposing selective hyper-
heuristics to address problems across different domains. Representative works
can be the sequence-based selection hyper heuristic, which is motivated by
the hidden Markov model [13], the PHunter [14], the Fair-Share Iterated Local
Search [15], as well as the GIHH [16], the winner of the CHeSC 2011 [17] com-
petition. The latter, is a characteristic example of a quite effective, yet highly
complex, state-of-the-art hyper-heuristic. GIHH incorporates a dynamic heuris-
tic selection mechanism and a move acceptance strategy, which evolves based on
the properties of the current search landscape. We can observe that many of the
best performing selective hyper-heuristics are developed based on the Iterated
Local Search (ILS) algorithm. The ILS algorithm is driven by the alternation
between intensification, intensive search of the neighborhood for locating locally
optimal solutions, and diversification, in order to “jump” to new unexplored
neighborhoods that can lead to better local optima. Determining the appropri-
ate amount of diversification re-actively is essential for effective search [18].

In this study, we incorporate the adaptive operator selection paradigm in
the main structure of an ILS algorithm to re-actively identify the most effec-
tive perturbation strategy. The proposed approach is a generic hyper-heuristic
framework, namely the Iterated Local Search based hyper-heuristic framework
(HHILS). HHILS incorporates an action selection mechanism to learn and adap-
tively select the most efficient low-level perturbation heuristic and a credit assign-
ment module to empirically estimate the quality of the selected perturbation
according to its ability to improve the incumbent solution. We utilize six state-
of-the-art action selection models that result in six HHILS variants and compare
them to eight state-of-the-art hyper-heuristics, on a set of 39 challenging nurse
problem instances. The experimental results clearly justify the potential of the
proposed framework.

The remainder of the paper is organized as follows: The nurse rostering prob-
lem is briefly described in Sect. 2. The proposed hyper-heuristic framework is
presented in Sect. 3 where the main algorithm with the credit assignment and
the action selection procedures are briefly explained in Sects. 3.1 and 3.2 respec-
tively. Section 4 presents the experimental setup in Sect. 4.1 and the results in

An Iterated Local Search Framework with Adaptive Operator Selection 95

Sect. 4.2. Finally, Sect. 5 concludes with a summary of the experimental findings
of this work and provides some pointers for future work.

2 The Nurse Rostering Problem

In this paper, we use the model proposed in [10] to address the nurse rostering
problem. To capture a large variety of different constraints the model adopts
only one hard constraint, i.e., each employee can be assigned only one shift
per day. It incorporates the remaining constraints as soft constraints in the
objective function. Thus, the objective function is a weighted sum of the soft
constraints, in which the associated weights take high or low values depending
on their importance. Note that, associating a very high weight to a constraint
is analogous to considering it as hard, whilst associating a very low value is
analogous to discarding the specific constraint. This formulation also facilitates
the easy integration of additional constraints based on the needs of different
hospitals.

The soft constrains can be categorized in coverage constraints, where two
or more nurses are associated, and in employee working constraints, that refer
to each employee separately. Mainly, the coverage constraints ensure that the
required number of employees is working over each shift. Coverage constraints
can be also exploited to select skilled or qualified staff for specific shifts. Likewise,
the employee’s working constraints refer to the preference of each employee. The
aim at this point is to satisfy the individual nurse by being flexible to decide
her own schedule. For instance, we aim to be able to identify specific workload,
to incorporate preferred days off, to select the most convenient shift pattern, to
define vacations and so on.

3 The Proposed Approach

The proposed framework incorporates the adaptive operator selection paradigm
[19] within the main structure of an ILS algorithm. HHILS replaces the appli-
cation of a single perturbation heuristic of the ILS algorithm with an action
selection mechanism that adaptively selects among various low-level perturba-
tion heuristics. The applied perturbation heuristic is followed by the local search
and acceptance procedures of ILS and then is scored based on its ability to
improve the incumbent solution. As such, the proposed framework adaptively
learns which is the most effective perturbation heuristic to apply during search.
A description of the framework and its main characteristics can be briefly out-
lined as follows.

Algorithm 1 demonstrates the main algorithmic steps of the developed frame-
work. As a first step, HHILS initializes all the required modules and data struc-
tures. This step also comprises the input of the chosen action selection and the
credit assignment module (line 1). Next, HHILS initializes a solution for the
given problem instance (line 2). The initial solution can be randomly gener-
ated or constructed based on a constructive heuristic, depending on the problem

96 A. Gretsista and E.K. Burke

Algorithm 1. Pseudo code of the proposed HHILS framework.
1: Initialise the action selection, and the credit assignment module as well as create

all data structures required by HHILS.
2: scur ← GenerateInitialSolution() /* Generate Initial Solution: Initialise or con-

struct a solution for the problem instance at hand. */
3: while termination criteria do not hold do
4: selectedllh ← ActionSelection(str) /* Action Selection: Select a low-level

heuristic with the str-th action selection model (Section 3.2). */
5: stmp ← ApplyAction(scur, selectedllh) /* Perturbation: Perturb the current

solution (scur) with the selected low-level heuristic (selectedllh). */
6: stmp ← ApplyLocalSearch(stmp) /* Local Search: Apply a local search proce-

dure on the temporary solution stmp. */
7: scur ← AcceptanceCriterion(scur, stmp) /* Acceptance: Accept which solution,

between scur, and stmp, will survive to the next iteration based on an Acceptance
criterion. */

8: CreditAssignment(selectedllh) /* Credit Assignment: Score the used action
(selectedllh) based on feedback from the problem at hand (Section 3.1).*/

9: end while
10: Return: the best solution found so far scur.

at hand. After having the initial solution, each iteration of HHILS operates five
main steps. There is a set S which includes the k available perturbation low-level
search heuristics, S = {llh1, llh2, . . . , llhk}. HHILS exploits an action selection
method (ActionSelection(str)) to predict and select the most fitting perturba-
tion low-level search heuristic included in S for the next step (line 4, see Sect. 3.2
for details). Having selected the perturbation low-level heuristic (selectedllh), a
new solution, stmp, is generated by applying the selectedllh perturbation heuris-
tic to the current solution scur (line 5). After the perturbation, the new solution
(stmp) is refined by a local search method, ApplyLocalSearch(stmp) (line 6). The
local search procedure utilizes a set of greedy local search heuristics which are
applied in an iterative way. More specifically, given a list L of the λ available
local search heuristics, L = {l1, l2, . . . , lλ}, at each repetition, a local search is
selected in a uniform random way to be applied to the current solution. If the
selected local search heuristic is not able to provide a better position for the
stmp, it is excluded from L, and another local search heuristic is selected. This
continues until an improved solution has been produced. By the end of the iter-
ative local search process, the result will be the incumbent solution (stmp). In
the next step, HHILS will decide the best solution, between scur and stmp, to
use for the next iteration through the AcceptanceCriterion(scur, stmp) proce-
dure (line 7). Here, we have adopted a Simulating Annealing acceptance rule
to allow worsening moves being accepted with a probability. The acceptance
probability can be calculated as p = e(f(scur)−f(stmp))/(T ·μi), where f(scur) and
f(stmp) are the objective values of the incumbent (scur) and temporary (stmp)
solutions, T is the temperature value with T ∈ R, (here is fixed to T = 2) and
μi is the mean improvement of the improving iterations [15]. The value μ essen-
tially normalizes the objective value difference by a quantity that is not problem

An Iterated Local Search Framework with Adaptive Operator Selection 97

dependent. In the last step, HHILS assigns a score to the utilized low-level per-
turbation heuristics (selectedllh) involved based on its performance (incumbent
improvement) through the credit assignment module CreditAssignment
(selectedllh) (line 8).

Four different perturbation strategies are used here, one from the mutation
and three from the ruin and recreate categories. The mutation heuristic (HM)
randomly un-assigns shifts based on an intensity parameter respecting the fea-
sibility of the solution. The three ruin and recreate heuristics (HR1–HR3) are
all inspired by the one proposed in [20]. HR1 unassigns all shifts of random
employees from the schedule and recreates the schedule by prioritizing the objec-
tives related to weekdays and then to weekends. Then, greedy procedures are
used to satisfy the remaining objectives. A hill climbing procedure is employed
to improve the quality of the roster. HR1 destroys the solution by removing
the schedule of a medium number of employees. HR2 adopts a similar proce-
dure accepting a greater change to the solution, proportional to the number of
employees in the schedule, while HR3 slightly perturbs the solution by removing
the shifts from only one employee. Five different local searchers are also adopted
LS1–LS5, The first three are using different neighborhood operators from the lit-
erature, i.e., vertical , horizontal and new swaps respectively, while the last two
local searchers follow a variable depth search strategy with different neighbor-
hood operators (LS4: vertical and new, LS5: vertical, horizontal and new) [21].
A detailed description of all the employed low-level heuristics can be found in
the documentation of HyFlex [22].

3.1 Credit Assignment Module

In order to assess the quality of the last action performed each time, a credit
assignment module has been employed. The most conventional way to determine
the impact of each move and assign a credit to it, is to associate the search move
with the solution improvement caused by its application. To this end, we can
calculate the credit of an action based on the improvement of the incumbent
solution weighted by the effort paid to improve it.

More precisely, HHILS rewards each low-level perturbation heuristic accord-
ing to the ability to improve the incumbent solution normalized by the total time
spent to achieve this improvement. Let S = {llh1, llh2, . . . , llhk} be the set of k
available low-level perturbation heuristics and tllhi

be the execution time con-
sumed by action llhi ∈ S to search the solution space. The total time consumed
by action llhi can be calculated according to tllhi

= tllhi
+ tsp

llhi
, where tsp

llhi
is the

execution time consumed by action llhi for the current iteration. The reward rllhi

of action llhi can, therefore, be calculated according to the following equation:
rllhi

= 1+improvementllhi

tllhi
, where improvementllhi

simply counts the number of
times action llhi improves the incumbent solution (i.e., f(scur) < f(stmp), where
scur is the incumbent solution and stmp is the solution produced by the search
operations at the current iteration). Notice that the value “1” in the numerator
is responsible for assigning non-zero rewards to actions that have not yet led

98 A. Gretsista and E.K. Burke

to an improvement of the incumbent. It also helps define the minimal reward
for each action that is proportional to the time spent on searching for a new
(improved or not) solution.

In general, the estimation of the empirical quality of an action has to consider
also that recent rewards influence the quality more than earlier. Thus, it is a
common practice to estimate the empirical quality of an action with a more
accurate and reliable way based on a simple moving average of the current and
past reward values [19,23,24]. As such, the empirical quality qllhi(t) of each action
(llhi) in the current time step (t) is estimated in accordance with the following
relaxation mechanism:

qllhi
(t + 1) = qllhi

(t) + γ(rllhi
(t) − qllhi

(t))
= (1 − γ)qllhi

(t) + γrllhi
(t) (1)

where γ ∈ (0, 1] is the adaptation rate which can amplify the influence of the
most recent rewards over their history (here γ is fixed to 0.1) [19,24].

Notice also, that the credit assignment module could employ any reward value
that can be measured during the search process to score the applied search oper-
ation. Representative examples of such rewards are the fitness improvement [19],
ranking successful movements [19,25], and landscape analysis measures [26].

3.2 Action Selection Methodology

HHILS utilizes an action selection model to select the most suitable perturbation
low-level heuristic to apply during search. The proposed framework can adopt
any available action selection model. Many action selection models have been
proposed in the literature recently. They usually adopt theory and practical
algorithms motivated by different scientific fields, such as statistics, artificial
intelligence, and machine learning. Some recent characteristic examples include
probability matching [24], adaptive pursuit [24], statistical based models [25],
and various reinforcement learning approaches [19,23,27].

Here, we employ six state-of-the-art action selection models with different
characteristics: the baseline model of uniform selection, proportional selection,
Probability Matching [24], Adaptive Pursuit [24], Soft-Max selection [23], and
the Upper Confidence Bound Multi-Armed Bandit model [19,23]. For complete-
ness purposes, we provide a short description of the developed models. A full
description of all models can be found in the original publications [19,23,24].
The first model, uniform selection (US) acts as a baseline model, since it selects
the available actions with equal probability regardless of their empirical quality,
i.e., through a uniform random distribution. It is worth noting that random-
ized models in either the action space or the parameter space of an algorithm
can be seen as essential baseline models [28]. Proportional selection (PS) simply
selects an action proportionally based on its empirical quality, thus the higher the
empirical quality value of an action the higher the probability of being selected.

Probability Matching (PM) and Adaptive Pursuit (AP) [24] are two well-
known and successful probabilistic schemes that update the selection probability

An Iterated Local Search Framework with Adaptive Operator Selection 99

of an action by considering its empirical quality with respect to the remaining
actions. PM updates the probability of each action with respect to its empirical
quality while keeping a minimal probability for all actions to provide them with
the opportunity to be selected regardless of their efficiency [24]. Similarly, AP
adopts a probabilistic scheme with a winner-takes-all strategy, in which only
efficient actions are promoted. AP discards the minimal probability value of each
action to clearly distinguish the efficient from the inefficient actions, which in PM
are treated equally. Thus, instead of proportionally adapting the probabilities
of all available actions, it arises the probability of the best available action, and
reduces the probabilities of the remaining actions.

The final two action selection models come from the field of Reinforcement
Learning techniques, which have been successfully applied as action selection
models [19,23]. Specifically, we employ two well known algorithms in this study,
the Softmax (SM) [23] and the Upper Confidence Bound (UCB1) Multi-armed
Bandit algorithm (MAB) [19,27,29]. The former essentially utilizes a Gibbs dis-
tribution to transform the empirical quality of each action to a probability.
The higher the empirical quality, the higher the probability of an action being
selected. Softmax also utilizes a temperature parameter to amplify or condense
differences between the action probabilities. High temperature values lead to
probabilities which are almost equal for all available actions, whilst low tem-
perature values encourage larger differences. The scheme becomes very greedy
towards selecting the best available action as the temperature value decreases
(tends to zero).

In the multi-armed bandit case the UCB1 algorithm deterministically selects
an action by following the principle of optimism in the face of uncertainty. The
principle acts according to an optimistic guess on the merit of the expected
empirical quality of each action and deterministically selects the action with
the highest guess. When the guess is not correct, the optimistic guess is being
rapidly decreased and the user is compelled to switch to a different action. If
the guess is correct then the user will exploit the associated action and incur
limited regret. “Optimism” can be formulated by an upper confidence bound
that tries to balance the trade-off between exploration and exploitation of the
selection process amongst the available actions. Hence, UCB1 favors the selection
of the action that potentially exhibits the best reward (optimism in the face of
uncertainty), while providing the opportunity for scarcely tried actions to be
applied frequently. It is also worth mentioning that UCB1 is one of the very
successful multi-armed bandit techniques and achieves an optimal regret rate on
the multi-armed bandit formulation [29].

4 Experimental Results

We firstly present the experimental setup of this study (Sect. 4.1), which includes
details about the environment used, the considered problem instances, the pro-
posed as well as the state-of-the-art hyper-heuristics, and the parameter config-
urations of all considered algorithms. We then proceed with the presentation of

100 A. Gretsista and E.K. Burke

the experimental results and thorough statistical analysis of the algorithms on
the given problem instances.

4.1 Experimental Setup

In this experimental study, we develop and evaluate eighteen different hyper-
heuristic approaches. Ten of them are based on the proposed HHILS frame-
work, while the remaining eight are state-of-the-art hyper-heuristics that have
been proposed in the literature. A family of hyper-heuristics can be defined
in the proposed HHILS by adopting different action selection models. In this
study, we develop the following six state-of-the-art action selection models
resulting in the following hyper-heuristics: ILS-US: The HHILS variant that
employs uniform selection among the available perturbation low-level heuris-
tics; ILS-PS: HHILS employing the proportional selection method (roulette
wheel); ILS-AP: HHILS employing the Adaptive Pursuit selection method [24];
ILS-MAB: HHILS employing the Upper Confidence Bound Multi-Armed Ban-
dit method [19,23,27,29]; ILS-PM: HHILS employing the Probability Match-
ing selection method [24]; ILS-SM: HHILS employing the Soft-Max selection
method [23]. The HHILS variants select among four different low-level heuris-
tics (HM, HR1–HR3). To evaluate the effect of the adaptive operator selection
procedure, we develop four different HHILS variants that instead of using the
proposed adaptive procedure, they adopt only one perturbation strategy. As
such, ILS-HM is the HHILS with the HM perturbation heuristic, ILS-HR1 is
the HHILS with the HR1 perturbation heuristic, and so on.

Additionally, we develop and compare the following eight state-of-the-art
hyper-heuristics, that are considered for the diversity of their characteristics and
their high performance: HH1, HH1A: The HH1 and HH1A (HH1adap) pre-
determined sequence non-worsening selection hyper-heuristic for nurse rostering
problems [30]; HH2, HH2A: The HH2 and HH1A (HH2adap) greedy absolute
largest improvement selection hyper-heuristic for nurse rostering problems [30];
PHunter: the Pearl Hunter hyper-heuristic [14]; SSHH: The sequence-based
selection hyper-heuristic with Hidden Markov Model [13]; FSILS: The Fair-
Share hyper-heuristic algorithm [15], which is a state-of-the-art methodology
in the field; GIHH: The GIHH, or Adapt-HH, hyper-heuristic algorithm [16],
which was the winner of the CHESC 2011 competition [17]. Notice that all
hyper-heuristics have been implemented in JAVA using the HyFlex (v1.1) frame-
work [17,22,31,32].

In this study, we use a set of 39 real world nurse rostering problem instances
with different characteristics (Table 1 [10]1), where optimal solutions are known
for the majority of the instances. To acquire equitable comparisons across
all hyper-heuristics, we retain the same common parameters in all proposed
approaches. Additionally, we preserve the default parameters used in the com-
pared algorithms, as defined in the original works [13–16,30].

1 More details can be found in http://www.cs.nott.ac.uk/∼tec/NRP/.

http://www.cs.nott.ac.uk/~tec/NRP/

An Iterated Local Search Framework with Adaptive Operator Selection 101

Table 1. Nurse rostering problem instances used.

BCV-1.8.1, BCV-1.8.2, BCV-1.8.3, BCV-1.8.4, BCV-2.46.1, BCV-2.46.1, BCV-3.46.2, BCV-4.13.1,

BCV-4.13.2, BCV-5.4.1, BCV-6.13.1, BCV-6.13.2, BCV-7.10.1, BCV-8.13.1, BCV-8.13.2,

BCV-A.12.1, BCV-A.12.2, ORTEC01, ORTEC02, GPost, GPost-B, QMC-1, QMC-2,

Ikeg-2Sh-DATA1, Ikeg-3Sh-DATA1, Ikeg-3Sh-DATA1.2, Valouxis-1, WHPP, LLR, Musa, Azaiez,

SINTEF, CHILD-A2, ERMGH-A, ERMGH-B, ERRVH-A, ERRVH-B, MER-A, QMC-A

To evaluate the performance of a hyper-heuristic on each problem instance,
we conducted 31 independent runs. For each of these runs, we considered the
best objective value gained as its performance value, where a lower objective
value denotes better performance. To facilitate comparisons among the consid-
ered hyper-heuristics we utilize the following metrics: (a) the normalized objec-
tive value f(·), to fair compare the results across all problem instances, (b) the
regret of a hyper-heuristic reg, to compare the considered algorithm with the
best performing one, and (c) the davg metric to measure the distance of the aver-
age performance of a hyper-heuristic from the best known solution for a given
instance.

We normalize the objective values in a common range of values by applying
a linear transformation of all the objective values gained, S = [Smin, Smax], to a
normalized range T = [Tmin, Tmax], here T = [0, 1], where Smin is the best known
solution of the considered problem and Smax is maximum objective function
value observed by all utilized hyper-heuristics. The linear transformation can be
calculated according to function f : S → T, f(y) = (y − Smin)/(Smax − Smin),
where y ∈ S ⊂ R is the performance value obtained by a hyper-heuristic on a
given problem instance. For a given algorithm A from a set of n algorithms to
compare A ∈ A = {Aj , j = 1, . . . , n}, and a specific execution run i, we denote
the regret of A as regp

A(i) = fp
A(i) − min∀i,Aj∈A(fp

A), where p is the considered
problem instance, fp

A(i) is the fitness value that has been attained for A at
the i-th run for the problem instance p and min∀i,Aj∈A(fp

A) is the lowest fitness
value across all execution runs of the algorithms included in A. Consequently, reg
denotes the regret preferring an algorithm A to the best performing algorithm for
a specific problem instance. Equivalently, davg is determined as davg = BKS−μ

BKS ,
where BKS is the value of the best known solution according to the literature,
regardless of whether the solution is optimal or not, and μ denotes the average
performance value of the utilized algorithm for all executed runs on a problem
instance. Thus, μ declares the normalized distance of the average performance
of an algorithm from the BKS for a specific instance.

To facilitate fair comparisons, for each hyper-heuristic, each problem instance
and each execution run, we employ the same execution time budget, i.e. 10 min
of CPU time as measured by the benchmarking program provided in HyFlex [17,
22]. All experiments required have been conducted on a high performance cluster
that has computation nodes with Intel Xeon E5645 CPUs and 24 GB of RAM
running GNU/Linux Operating System. For this hardware, the allowed time
limit equals to 646 s (tallowed = 646 s).

102 A. Gretsista and E.K. Burke

4.2 Experimental Results and Analysis

Table 2 exhibits summarizing performance statistics for the developed hyper-
heuristics on all considered nurse rostering problem instances, in terms of the
normalized objective (f), the regret (reg) and the davg metrics used. Specifically,
for each algorithm and each metric, the mean (μX), median (mX) and standard
deviation (σX) values are presented, where X ∈ {f, reg, davg}. We divide the
table in three categories, the HHILS variants using single perturbation strategies,
the proposed adaptive HHILS variants and the state-of-the-art hyper-heuristics.
To improve the presentation of the results, we highlight with boldface font the
cases where either the mean or the median metric values indicate best perfor-
mance (i.e., the smallest values) across each category of algorithms.

Table 2. Summarizing statistics of the normalized objective values, regret, and davg

metrics of all hyper-heuristics across all considered problem instances.

Algorithm μf mf σf μreg mreg σreg μdavg mdavg σdavg

ILS-HM 0.1037 0.0162 0.2008 0.0690 0.0040 0.1424 0.0740 0.1670 0.0000

ILS-HR1 0.2758 0.1907 0.2986 0.2497 0.1591 0.2785 0.6253 0.4376 0.9592

ILS-HR2 0.1091 0.0203 0.1993 0.0724 0.0058 0.1433 0.0680 0.1369 0.0192

ILS-HR3 0.1110 0.0181 0.2037 0.0757 0.0066 0.1469 0.0735 0.1456 0.0221

ILS-AP 0.1053 0.0168 0.2016 0.0692 0.0047 0.1438 0.0632 0.1482 0.0135

ILS-MAB 0.1083 0.0185 0.2017 0.0731 0.0069 0.1441 0.0695 0.1410 0.0187

ILS-PM 0.1103 0.0190 0.2025 0.0747 0.0080 0.1451 0.0764 0.1557 0.0115

ILS-PS 0.1065 0.0185 0.2000 0.0713 0.0075 0.1414 0.0692 0.1363 0.0112

ILS-SM 0.1102 0.0196 0.2014 0.0739 0.0073 0.1443 0.0696 0.1458 0.0166

ILS-US 0.1104 0.0199 0.2026 0.0747 0.0084 0.1461 0.0765 0.1435 0.0157

FSILS 0.1114 0.0242 0.1843 0.0776 0.0150 0.1139 0.0904 0.1451 0.0276

GIHH 0.1286 0.0231 0.2070 0.0940 0.0114 0.1524 0.1258 0.1738 0.0545

HH1 0.1409 0.0349 0.2048 0.1087 0.0227 0.1489 0.1622 0.2071 0.0898

HH1A 0.1358 0.0322 0.2005 0.1040 0.0227 0.1409 0.1523 0.1977 0.0755

HH2 0.1334 0.0227 0.2035 0.0994 0.0108 0.1468 0.1321 0.1941 0.0508

HH2A 0.2866 0.1364 0.3151 0.2613 0.1250 0.2921 0.4349 0.4449 0.2222

PHunter 0.1332 0.0219 0.2285 0.1000 0.0122 0.1816 0.1409 0.2409 0.0726

SSHH 0.1320 0.0242 0.2139 0.0992 0.0144 0.1620 0.1467 0.2115 0.0726

Considering the HHILS variants with a single perturbation strategy, Table 2
clearly suggests that the best performing hyper-heuristics are ILS-HM and
ILS-HR2, in terms of mean and median normalized objective values. Notice
also that ILS-HM is the best performing algorithm comparing against all con-
sidered hyper-heuristics. The remaining two cases exhibit large differences in
both mean and median normalized objective values, which indicates that there

An Iterated Local Search Framework with Adaptive Operator Selection 103

is a large difference in the effectiveness of the low-level perturbation strate-
gies. This behavior clearly motivates the proposed approach that endeavors to
learn and identify the best performing perturbation strategy from the available
ones. Regarding the proposed HHILS variants that employ the adaptive oper-
ator selection mechanism, ILS-AP and ILS-PS exhibit the best performance in
terms of the mean and median normalized objective values among the HHILS
variants, respectively. ILS-PM, ILS-SM and ILS-MAB behave similarly with ILS-
US, i.e., with the uniform selection strategy, which indicates that the adaptive
schemes are not capable of identifying and learning the best performing pertur-
bation strategy. However, it can be observed that even a random selection of the
available choices is effective in this set of problem instances. In addition, it is
worth mentioning that all adaptive HHILS variants outperform all state-of-the-
art hyper-heuristics in terms of mean normalized objective values. Among the
state-of-the-art hyper-heuristics the most promising algorithm is FSILS. Notice
that FSILS follows a similar iterated local search based hyper-heuristic that does
not incorporate any learning, or action selection mechanism, to identify the best
perturbation strategy. HHILS uses a different local search procedure (it does not
employ an active list of local searchers) than FSILS and does not incorporate any
restarting mechanism [15]. The good performance of FSILS indicates that the
ILS paradigm is effective in the considered problem instances. The significantly
better performance of HHILS adaptive variants also denotes that the combina-
tion of different perturbation operators and the learning mechanism enhance the
search process. Similar observations can be made for the remaining robustness
metrics, where they suggest that selecting any of the HHILS variants will not
lead to higher regret (or davg) than using the state-of-the-art hyper-heuristics.

To further understand the behavior of the adaptive HHILS variants, Fig. 1
illustrates the selection frequency of the available perturbation strategies across
all problem instances, averaged over all independent runs. It is clear that ILS-AP
and ILS-PS show the largest frequency variation among the available strategies.
In contrast, ILS-MAB, ILS-SM and ILS-PM tend to equally select all available
strategies, making them behave similarly with the ILS-US (uniform selection),
which validates the observed performance values in Table 2.

The application of the Friedman rank sum test [33] clearly suggests that sta-
tistically significant differences in performance occur (p < 0.0001, χ2 = 244.8393
at the 5% significance level) among the considered hyper-heuristics across all
problem instances. Therefore, we carry out a post-hoc analysis by perform-
ing pairwise Wilcoxon-signed rank tests between any two performance samples
obtained by the considered hyper-heuristics. The tests suggest that all proposed
HHILS adaptive variants exhibit significant differences in performance against
all state-of-the-art hyper-heuristics. ILS-AP significantly outperforms all HHILS
variants apart from ILS-PS, which behaves equally well. ILS-MAB, ILS-PM,
ILS-SM behave equally well with ILS-US. Considering the HHILS variants with
single perturbation strategy ILS-HM outperforms all algorithms, while ILS-HR2
behaves equally well with the majority of the HHILS with adaptive strategies,

104 A. Gretsista and E.K. Burke

SINTEF Valouxis−1 WHPP

Musa ORTEC01 ORTEC02 QMC−1 QMC−2 QMC−A

GPost−B Ikeg−2Sh−DATA1 Ikeg−3Sh−DATA1 Ikeg−3Sh−DATA1.2 LLR MER−A

CHILD−A2 ERMGH−A ERMGH−B ERRVH−A ERRVH−B GPost

BCV−6.13.2 BCV−7.10.1 BCV−8.13.1 BCV−8.13.2 BCV−A.12.1 BCV−A.12.2

BCV−3.46.1 BCV−3.46.2 BCV−4.13.1 BCV−4.13.2 BCV−5.4.1 BCV−6.13.1

Azaiez BCV−1.8.1 BCV−1.8.2 BCV−1.8.3 BCV−1.8.4 BCV−2.46.1

ILS
−AP

ILS
−M

AB
ILS

−PM
ILS

−PS
ILS

−SM
ILS

−AP

ILS
−M

AB
ILS

−PM
ILS

−PS
ILS

−SM
ILS

−AP

ILS
−M

AB
ILS

−PM
ILS

−PS
ILS

−SM

ILS
−AP

ILS
−M

AB
ILS

−PM
ILS

−PS
ILS

−SM
ILS

−AP

ILS
−M

AB
ILS

−PM
ILS

−PS
ILS

−SM
ILS

−AP

ILS
−M

AB
ILS

−PM
ILS

−PS
ILS

−SM

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

HM HR1 HR2 HR3

Fig. 1. Frequency graphs of the selected strategies by the adaptive HHILS variants for
all problem instances averaged over all simulations

apart from ILS-AP which is superior. From the state-of-the-art hyper-heuristics
GIHH, PHunter and SSHH behave similarly, while FSILS outperforms them.

To facilitate further comparisons, Table 3 exhibits descriptive statistics in
terms of the best objective values attained by the considered hyper-heuristics
among the majority of the tested problem instances. Notice that, we do not
present results for BCV-5.4.1, BCV-8.13.1, BCV-8.13.2, LLR, Musa, Azaiez
instances, since all hyper-heuristics solved these instances to the best-known
solution without any deviation. The presented results align well with the afore-
mentioned observations, while also suggest that there are instances where a large
deviation in the observed performance among the hyper-heuristics exists (e.g. in
CHILD-A2, ERRVH-A, ERRVH-B, and MER-A). This might also indicate that
these problems are more challenging than others.

An Iterated Local Search Framework with Adaptive Operator Selection 105

T
a
b
le

3
.
S
u
m

m
a
ri

zi
n
g

st
a
ti

st
ic

s
o
f
th

e
o
b
je

ct
iv

e
va

lu
es

fo
r

a
ll

h
y
p
er

-h
eu

ri
st

ic
s

a
cr

o
ss

a
ll

p
ro

b
le

m
in

st
a
n
ce

s
o
n

B
1

se
t.

106 A. Gretsista and E.K. Burke

5 Conclusions

In this study, we proposed a simple and effective Iterated Local Search based
selection hyper-heuristic framework that adopts the adaptive operator selec-
tion paradigm to successfully address a wide variety of nurse rostering problem
instances. It employs an action selection model to select different perturbation
strategies and a credit assignment module to appropriately score them. The pro-
posed framework is able to adopt any action selection model and credit assign-
ment mechanism available in the literature. In this study, we have tested six
different action selection models resulting in new competitive hyper-heuristics.
The high level nature of the framework makes it widely applicable to new or
unseen problem instances/domains without requiring further modifications.

The adaptive characteristics of the proposed framework are investigated by
comparing with its non-adaptive variants, while its performance is evaluated
through comparisons with 8 state-of-the-art hyper-heuristics on 39 different
nurse rostering problem instances. The experimental results suggest that the pro-
posed framework operates significantly better against the state-of-the-art hyper-
heuristics. The proposed adaptive mechanisms seem to be effective across the
majority of the problem instances, with the Adaptive Pursuit and the simple
proportional action selection model to be able to learn and identify the most
promising perturbation strategies. The remaining three considered action selec-
tion models operate similarly with the uniform selection, which indicates that
they are not able to identify the best performing perturbation strategy. However,
even a simple random selection performs significantly better than the majority
of the state-of-the-art algorithms. Therefore, further experimentation and analy-
sis of the adaptive strategies on more nurse rostering problem instances have to
be performed to draw safe conclusions about their behavior. Future work will
also include comparisons with specialized state-of-the-art heuristics developed
for nurse rostering problems.

References

1. Burke, E.K., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-
heuristics: an emerging direction in modern search technology. In: Glover, F.,
Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 457–474. Springer,
Boston (2003). doi:10.1007/0-306-48056-5 16

2. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu,
R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12),
1695–1724 (2013)

3. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A
classification of hyper-heuristic approaches. In: Gendreau, M., Potvin, J.Y. (eds.)
Handbook of Metaheuristics. International Series in Operations Research & Man-
agement Science, vol. 146, pp. 449–468. Springer, Boston (2010). doi:10.1007/
978-1-4419-1665-5 15

4. Burke, E.K., Causmaecker, P.D., Berghe, G.V., Landeghem, H.V.: The state of the
art of nurse rostering. J. Sched. 7(6), 441–499 (2004)

http://dx.doi.org/10.1007/0-306-48056-5_16
http://dx.doi.org/10.1007/978-1-4419-1665-5_15
http://dx.doi.org/10.1007/978-1-4419-1665-5_15

An Iterated Local Search Framework with Adaptive Operator Selection 107

5. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and roster-
ing: a review of applications, methods and models. Eur. J. Oper. Res. 153(1), 3–27
(2004)

6. Asta, S., Özcan, E., Curtois, T.: A tensor based hyper-heuristic for nurse rostering.
Knowl. Based Syst. 98, 185–199 (2016)

7. Lü, Z., Hao, J.K.: Adaptive neighborhood search for nurse rostering. Eur. J. Oper.
Res. 218(3), 865–876 (2012)

8. Rae, C., Pillay, N.: Investigation into an evolutionary algorithm hyperheuristic for
the nurse rostering problem. In: Proceedings of the 10th International Conference
on the Practice and Theory of Automated, PATAT 2014, pp. 527–532 (2014)

9. Anwar, K., Awadallah, M.A., Khader, A.T., Al-betar, M.A.: Hyper-heuristic app-
roach for solving nurse rostering problem. In: 2014 IEEE Symposium on Compu-
tational Intelligence in Ensemble Learning (CIEL), pp. 1–6, December 2014

10. Burke, E.K., Curtois, T.: New approaches to nurse rostering benchmark instances.
Eur. J. Oper. Res. 237(1), 71–81 (2014)

11. Bai, R., Burke, E., Kendall, G., Li, J., McCollum, B.: A hybrid evolutionary app-
roach to the nurse rostering problem. IEEE TEVC 14(4), 580–590 (2010)

12. Burke, E.K., Li, J., Qu, R.: A hybrid model of integer programming and vari-
able neighbourhood search for highly-constrained nurse rostering problems. Eur.
J. Oper. Res. 203(2), 484–493 (2010)

13. Kheiri, A., Keedwell, E.: A sequence-based selection hyper-heuristic utilising a hid-
den Markov model. In: Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, GECCO 2015, pp. 417–424. ACM, New York (2015)

14. Chan, C.Y., Xue, F., Ip, W.H., Cheung, C.F.: A hyper-heuristic inspired by pearl
hunting. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 349–353.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34413-8 26

15. Adriaensen, S., Brys, T., Nowé, A.: Fair-share ILS: a simple state-of-the-art iterated
local search hyperheuristic. In: Proceedings of the 2014 Conference on Genetic and
Evolutionary Computation, GECCO 2014, pp. 1303–1310. ACM (2014)

16. Mısır, M., Verbeeck, K., Causmaecker, P., Berghe, G.: An intelligent hyper-
heuristic framework for CHeSC 2011. In: Hamadi, Y., Schoenauer, M. (eds.)
LION 2012. LNCS, pp. 461–466. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34413-8 45

17. CHeSC 2011 (2011). http://www.asap.cs.nott.ac.uk/external/chesc2011/
18. Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization.

Operations research/Computer Science Interfaces, vol. 45. Springer, Boston (2008).
doi:10.1007/978-0-387-09624-7

19. Fialho, A.: Adaptive operator selection for optimization. Ph.D. thesis, Université
Paris-Sud XI, Orsay, France, December 2010

20. Burke, E.K., Curtois, T., Post, G., Qu, R., Veltman, B.: A hybrid heuristic ordering
and variable neighbourhood search for the nurse rostering problem. Eur. J. Oper.
Res. 188(2), 330–341 (2008)

21. Burke, E.K., Curtois, T., Qu, R., Vanden Berghe, G.: A time predefined variable
depth search for nurse rostering. INFORMS J. Comput. 25(3), 411–419 (2013)

22. CHeSC 2014: The second cross-domain heuristic search challenge (2014). http://
www.hyflex.org/chesc2014/, http://www.hyflex.org/. Accessed 25 Mar 2015

23. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT
Press, Cambridge (1998)

24. Thierens, D.: Adaptive strategies for operator allocation. In: Lobo, F., Lima, C.,
Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms. SCI, vol. 54,
pp. 77–90. Springer, UK (2007). doi:10.1007/978-3-540-69432-8 4

http://dx.doi.org/10.1007/978-3-642-34413-8_26
http://dx.doi.org/10.1007/978-3-642-34413-8_45
http://dx.doi.org/10.1007/978-3-642-34413-8_45
http://www.asap.cs.nott.ac.uk/external/chesc2011/
http://dx.doi.org/10.1007/978-0-387-09624-7
http://www.hyflex.org/chesc2014/
http://www.hyflex.org/chesc2014/
http://www.hyflex.org/
http://dx.doi.org/10.1007/978-3-540-69432-8_4

108 A. Gretsista and E.K. Burke

25. Epitropakis, M.G., Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis,
M.N.: Tracking particle swarm optimizers: an adaptive approach through multino-
mial distribution tracking with exponential forgetting. In: 2012 IEEE Congress on
Evolutionary Computation (CEC), pp. 1–8 (2012)

26. Munoz, M.A., Sun, Y., Kirley, M., Halgamuge, S.K.: Algorithm selection for black-
box continuous optimization problems: a survey on methods and challenges. Inf.
Sci. 317, 224–245 (2015)

27. Fialho, A., Costa, L.D., Schoenauer, M., Sebag, M.: Analyzing bandit-based adap-
tive operator selection mechanisms. Ann. Math. Artif. Intell. 60(1–2), 25–64 (2010)

28. Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Why parameter control mechanisms
should be benchmarked against random variation. In: 2013 IEEE Congress on
Evolutionary Computation (CEC), pp. 349–355, June 2013

29. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

30. Banerjea-Brodeur, M.: Selection hyper-heuristics for healthcare scheduling. Ph.D.
thesis, University of Nottingham, UK, June 2013

31. Asta, S., Özcan, E., Parkes, A.J.: Batched mode hyper-heuristics. In: Nicosia, G.,
Pardalos, P. (eds.) LION 2013. LNCS, vol. 7997, pp. 404–409. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-44973-4 43

32. Ochoa, et al.: HyFlex: a benchmark framework for cross-domain heuristic search.
In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-29124-1 12

33. Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric Statistical Methods, 3rd
edn. Wiley, Hoboken (2013)

http://dx.doi.org/10.1007/978-3-642-44973-4_43
http://dx.doi.org/10.1007/978-3-642-29124-1_12

Learning a Reactive Restart Strategy
to Improve Stochastic Search

Serdar Kadioglu1, Meinolf Sellmann2, and Markus Wagner3(B)

1 Department of Computer Science, Brown University, Providence, RI, USA
serdark@cs.brown.edu

2 Cortlandt Manor, Cortlandt, NY, USA
meinolf@gmail.com

3 Optimisation and Logistics, The University of Adelaide, Adelaide, SA, Australia
markus.wagner@adelaide.edu.au

Abstract. Building on the recent success of bet-and-run approaches for
restarted local search solvers, we introduce the idea of learning online
adaptive restart strategies. Universal restart strategies deploy a fixed
schedule that runs with utter disregard of the characteristics that each
individual run exhibits. Whether a run looks promising or abysmal, it
gets run exactly until the predetermined limit is reached. Bet-and-run
strategies are at least slightly less ignorant as they decide which trial
to use for a long run based on the performance achieved so far. We
introduce the idea of learning fully adaptive restart strategies for black-
box solvers, whereby the learning is performed by a parameter tuner.
Numerical results show that adaptive strategies can be learned effectively
and that these significantly outperform bet-and-run strategies.

Keywords: Restart strategies · Adaptive methods · Parameter tuning

1 Introduction

Restarted search has become an integral part of combinatorial search algorithms.
Even before heavy-tailed runtime distributions were found to explain the massive
variance in search performance [1], in local search restarts were commonly used
as a search diversification technique [2].

Fixed-schedule restart strategies were studied theoretically in [3]. For SAT
and constraint programming solvers, practical studies followed. For example,
one study found that there is hardly any difference between theoretically opti-
mal schedules and simple geometrically growing limits [4]. SAT solvers used
geometrically growing limits for quite some time before the community largely
adapted theoretically optimal schedules (whereby the optimality guarantees are
based on assumptions that actually do not hold for clause-learning solvers where
consecutive restarts are not independent). Audemard and Simon [5] argued that
fixed schedules are suboptimal for SAT solvers and designed adaptive restarts
strategies for one SAT solver specifically.

c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 109–123, 2017.
https://doi.org/10.1007/978-3-319-69404-7_8

110 S. Kadioglu et al.

In this paper, we describe a general methodology for embedding any black-
box optimization solver into an adaptive stochastic restart framework. The
framework monitors certain key performance metrics that are based on the evo-
lution of the objective function values of the solutions found. Based on these
observations, the method then adaptively computes scores that affect the like-
lihood whether we continue the current run beyond the original limit, whether
we start a new run, or whether we continue the best run so far. We employ an
automatic parameter tuner to learn how to adapt these probabilities dependent
on the observed performance metrics.

In the following, we recap the idea of bet-and-run strategies. We continue
with reviewing the recently introduced idea of hyper-parameterizing local search
solvers to achieve superior online adaptive behavior. We then introduce the idea
of using automatic hyper-reactive search tuning for learning adaptive restart
strategies. Finally, we present experimental results that clearly show that adap-
tive search significantly outperforms bet-and-run strategies.

2 Restart Strategies

Nowadays, stochastic search algorithms and randomized search heuristics are
frequently restarted: If a run does not conclude within a pre-determined limit,
we restart the algorithm. This was shown to to help avoid heavy-tailed runtime
distributions [1]. Due to the added complexity of designing an appropriate restart
strategy for a given target algorithm, the two most common techniques used are
to either restarts with a certain probability at the end of each iteration, or to
employ a fixed schedule of restarts.

Some theoretical results exist on how to construct optimal restart strategies.
For example, Luby et al. [3] showed that, for Las Vegas algorithms with known
run time distribution, there is an optimal stopping time in order to minimize the
expected running time. They also showed that, if the distribution is unknown,
there is a universal sequence of running times which is the optimal restarting
strategy up to constant factors.

Fewer results are known for the optimization case. Marti [6] and Lourenco
et al. [7] present practical approaches, and a recent theoretical result is presented
by Schoenauer et al. [8]. Particularly for the satisfiability problem, several studies
make an empirical comparison of a number of restart policies [9,10].

Quite often, classical optimization algorithms are deterministic and thus can-
not be improved by restarts. This also appears to hold for certain popular modern
solvers, such as IBM ILOG CPLEX. However, characteristics can change when
memory constraints or parallel computations are encountered. This was the ini-
tial idea of Lalla-Ruiz and Voß [11], who investigated different mathematical
programming formulations to provide different starting points for the solver.

Many other modern optimization algorithms, while also working mostly deter-
ministically, have some randomized component, for example by choosing a random
starting point. Two very typical uses for an algorithm with time budget t are to
(a) use all of time t for a single run of the algorithm (single-run strategy), or (b) to

Learning a Reactive Restart Strategy to Improve Stochastic Search 111

make a number of k runs of the algorithm, each with running time t/k (multi-run
strategy).

Extending these two classical strategies, Fischetti et al. [12] investigated the
use of the following Bet-and-Run strategy with a total time limit t:

Phase 1 performs k runs of the algorithm for some (short) time limit t1 with
t1 ≤ t/k.

Phase 2 uses remaining time t2 = t − k · t1 to continue only the best run from
the first phase until timeout.

Note that the multi-run strategy of restarting from scratch k times is a special
case by choosing t1 = t/k and t2 = 0 and the single-run strategy corresponds to
k = 1; thus, it suffices to consider different parameter settings of the bet-and-run
strategy to also cover these two strategies.

Fischetti et al. [12] experimentally studied such a Bet-and-Run strategy for
mixed-integer programming. They explicitly introduce diversity in the starting
conditions of the used MIP solver (IBM ILOG CPLEX) by directly accessing
internal mechanisms. In their experiments, k = 5 performed best.

Recently, Friedrich et al. [13] investigated a comprehensive range of Bet-

and-Run strategies on the traveling salesperson problem and the minimum ver-
tex cover problem. Their best strategy was Restarts

40
1%, which in the first phase

does 40 short runs with a time limit that is 1% of the total time budget and
then uses the remaining 60% of the total time budget to continue the best run
of the first phase. They investigated the use of the universal sequence of Luby
et al. [3] as well, using various choices of t1, however, it turned out inferior.

The theoretical analysis is provided by Lissovoi et al. [14], who investigated
Bet-and-Run for a family of pseudo-Boolean functions, consisting of a plateau
and a slope, as an abstraction of real fitness landscapes with promising and
deceptive regions. The authors showed that Bet-and-Run with non-trivial k
and t1 are necessary to find the global optimum efficiently. Also, they showed that
the choice of t1 is linked to properties of the function, and they provided a fixed
budget analysis to guide selection of the bet-and-run parameters to maximise
expected fitness after t = k · t1 + t2 fitness evaluations.

The goal of our present research is to address the two challenges encountered
in previous works: the need to set k and t1 in case of Bet-and-Run, and the
general issue of inflexibility in previous approaches. Our framework can decide
online whether (i) the current run should be continued, (ii) the best run so far
should be continued, or (iii) a completely new run should be started.

3 Learning Dynamic Parameter Updates

Our objective is to provide a generic framework for making restart strategies
adaptive for any optimization solver. To this end we build on the idea to use
parameter tuners for training adaptive search strategies [15,16] and a recently
proposed approach for constructing a hyper-reactive dialectic search solver [17].

112 S. Kadioglu et al.

In [17], an existing local search meta-heuristic called dialectic search [18]
was modified in such a way that the search decisions (when and how much to
diversify, how strongly to intensify, when to restart, etc.) were taken with regard
to the way how the optimization was observed to progress. In essence, the solver
tracked features of the optimization process itself and then tied these to decisions
(such as: which percentage of variables to modify to generate a new start point)
via logistic regression functions. The weights of these functions, one for each
meta-heuristic search decision, then became the hyper-parameters of the solver.

Key to making this work in practice is an effective method for learning the
weights in the logistic regression functions. Since the only immediately mean-
ingful observation is the overall performance of the solver, parameter tuner
GGA [19] was used to “learn” which weights result in good performance.

4 A Hyper-Parameterized Restart Strategy

We now combine the two core ideas presented above. Namely, the idea of consid-
ering a batch of runs with the option to continue some of them, and the idea to
automatically learn which run to continue or whether to start a new run based
on the observed performance characteristics of past runs.

The first ingredient we need are features that somehow give us an idea of the
big picture of what is going on when tackling the instance at hand.

4.1 Features

Whenever a restart decision has to be made, we have three options. We can
either continue the current run, we can continue the best run so far, or we can
start a completely new run. For each of these options we essentially track two
values: The first tells us how good each run looked initially, the second what the
trajectory looks like for making further progress.

For the current run and the best run so far, we record their best objective
function found after the initial limit. For the new run option, we track how well
any new run did after the initial limit and compute the running average.

For the trajectory of the current and the best run, we extrapolate the perfor-
mance improvement achieved between the best solution found in the initial run
and the best performance achieved so far. The extrapolation point is the end of
the remaining time we have for the optimization.

For the new runs, to get an estimate how well we might do if (from now
until the overall time limit is reached) all we did was run new runs, we consider
the standard deviation in objective function performance. Then, we estimate the
trajectory as the average minus the standard deviation times the square root of
two times the logarithm of the number of new runs we can still afford to conduct.
While not exact, this is a lower bound for the minimum of repeated stochastic
experiments for which all we know are the mean and the standard deviation [20].

We thus compute six data points that we can use to decide whether to con-
tinue the current run, give the current best run more time, or start a completely

Learning a Reactive Restart Strategy to Improve Stochastic Search 113

new run. One complication arises. Namely, for different instances, the objec-
tive function values observed will generally operate on vastly different scales.
However, to learn strategies offline, we need to compute weights, and these need
to work with all kinds of instances. Consequently, rather than taking average
and projected objective function values at face value, we first normalize them.

In particular, we consider the three initial values (best found in initial time
interval for current and best, and running average of best found for all new runs)
and normalize them between 0 and 1. That is, we shift and scale these values in
such a way that their smallest will be 0, the largest will be 1, and the last will be
somewhere between 0 and 1. Analogously, we normalize the trajectory values.

On top of the six features thus computed we also use the percentage of
overall time that has already elapsed, the percentage of overall time afforded in
the beginning where all we do is restart a new run every time, and the time a
new run will be given as percentage of total time left. In total we thus arrive at
nine features.

4.2 Turning Features into Scores

Now, to compute the score for each of the three possibilities (continue current
run, continue best run so far, and start a new run) we compute the following
function

pk(f) ← 1
1 + exp(wk

0 +
∑

i fiw
k
i)

,

whereby k ∈ {1, 2, 3} marks whether the function marks the score for continuing
the current run, continuing the best run, or starting a new run, and f ∈ R9

is the feature vector that characterizes our search experience so far. Note that
pk(f) ∈ (0, 1), whereby the function approaches 0 when the weighted sum in
the denominators exponential function goes to infinity, and how the function
approaches 1 when the same sum approaches minus infinity. Finally, note that
we require a total of 30 weights to define the three functions. These weights will
be learned later by a parameter tuner to achieve superior runtime behavior.

4.3 The Reactive Restart Framework

Given the weights wk
i with k ∈ {1, 2, 3} and i ∈ {0, . . . , 9}, we can now define

the framework within which we can embed any black-box optimization solver.1

1 We say black-box because we do not need to know anything about the inner workings
of the solver. However, we make two assumptions. First, that we can set a time limit
to the solver where it stops, and that we can add more time and continue the
interrupted computation later. Second, that whenever the solver stops it returns
information when it found the first solution, when it found the best solution so far,
and what the quality of the best solution found so far is.

114 S. Kadioglu et al.

Algorithm 1. Reactive Restart Framework Algorithm

1: function ReactiveRestarts (S,x,timeout,k,r,w
k∈{1,2,3}
i∈{0,...,9})

2: (initTime, best) ← S(x, newRun, stopAtF irstSolution)
3: interval ← r × initTime
4: b ← S(x, continueLastRun, interval − initTime)
5: elapsedTime ← interval
6: Update(best, b)
7: while elapsedTime ≤ k × timeout do
8: (a, b) ← S(x, interval)
9: elapsedTime ← elapsedTime + interval

10: Update(initTime, best, a, b)
11: interval ← r × initTime

12: Init(F)
13: while elapsedTime ≤ timeout do
14: pk ← 1

1+exp(wk
0+
∑

i wk
i Fi)

∀k ∈ {1, 2, 3}
15: pk ← pk

p1+p2+p3
∀k ∈ {1, 2, 3}

16: pick random x ∈ [0, 1]
17: if x ≤ p1 then
18: b ← S(x, continueBestRun, interval)
19: elapsedTime ← elapsedTime + interval
20: Update(best, b)
21: else if x ≤ p1 + p2 then
22: b ← S(x, continueLastRun, interval)
23: elapsedTime ← elapsedTime + interval
24: Update(best, b)
25: else
26: (a, b) ← S(x, newRun, interval)
27: elapsedTime ← elapsedTime + interval
28: Update(initTime, best, a, b)
29: interval ← r × initTime

30: Update(F)

31: returnbest

We present a stylized version of our framework in Algorithm 1. Given are
a randomized optimization algorithm S, an input x, a timeout, a fraction k ∈
[0, 1], a factor r ≥ 1, and weights w. The framework first runs S on x until a
first solution is computed. It records the time to find this solution and sets the
incremental time interval each run is given to r times this input-dependent value.
Next, S’ run on x is continued until this incremental time interval is reached.
The best solution seen so far is recorded.

Now, the first phase begins, which lasts for the fraction of the total time
allowed as specified by k. In this first phase, we start a new run on x every single
time, whereby we update the best solution seen so far and the time it takes each
time to find a first solution. The function Update is assumed to record the best
solution quality found so far as well as to maintain the running average of the
time it took to compute a first solution for each new run.

Learning a Reactive Restart Strategy to Improve Stochastic Search 115

After the first phase ends, we initialize the features based on the search
experience so far. Then, we enter the main phase. Based on the given weights and
the current features we compute scores for the three options how we can continue
the computation at each step. We then choose randomly and proportionally to
these scores whether we continue the best run so far, the last run, or whether
we begin a new run.

No matter which choice we always keep the best solution found so far up to
date. When we choose to start a new run, we also update the running average of
the times it takes to find a first solution as well as the incremental time interval
that results from this running average times the factor r. Finally, we update the
features and continue until the time has run out.

The last ingredient needed to apply this framework in practice is a method for
learning the weights w. Based on a training set of instances, we compute weights
that result in superior performance using the gender-based genetic algorithm tuner
GGA [19], following the same general approach for tuning hyper-parameterized
search methods as introduced in [17].

5 Experimental Analysis

We now present our numerical analysis. First, we briefly introduce the combina-
torial optimization problems, the solvers, and the instances used in our experi-
ments. Second, we describe our comprehensive data collection, which allows us
to conduct our investigations completely offline, that is, without the need of
running any additional experiments. Third, we present the results of our inves-
tigations which show the effectiveness of our online method.

5.1 Problems and Benchmarks

First, we briefly introduce the two considered NP-complete problems, as well as
the corresponding solvers and benchmarks used in our investigations.

Traveling Salesperson. The Traveling Salesperson Problem (TSP) considers
an edge-weighted graph G = (V,E,w), the vertices V = {1, . . . , n} are referred to
as cities. It asks for a permutation π of V such that

(∑n−1
i=1 w(π(i), π(i + 1))

)
+

w(π(n), π(1)) (the cost of visiting the cities in the order of the permutation and
then returning to the origin π(1)) is minimized.

Natural applications of the TSP are in areas like planning and logistics [21],
but they are also encountered in a large number of other domains, such as genome
sequencing, drilling problems, aiming telescopes, and data clustering [22]. TSP
is one of the most important (and most studied) optimization problems.

We use the Chained-Lin-Kernighan (Linkern) heuristic [23,24], a state-of-
the-art incomplete solver for the Traveling Salesperson problem. Its stochastic
behavior comes from random components during the creation of the initial tour.

The TSPlib is a classic repository of TSP instances [25]. For our investi-
gations, we pick all 112 instances from TSPlib, and as additional challenging
instances ch71009, mona-lisa100k, and usa115475.

116 S. Kadioglu et al.

Minimum Vertex Cover. Finding a minimum vertex cover of a graph is a
classical NP-hard problem. Given an unweighted, undirected graph G = (V,E),
a vertex cover is defined as a subset of the vertices S ⊆ V , such that every edge
of G has an endpoint in S, i.e. for all edges {u, v} ∈ E, u ∈ S or v ∈ S. The
decision problem k-vertex cover decides whether a vertex cover of size k exists.
We consider the optimization variant to find a vertex cover of minimum size.

Applications arise in numerous areas such as network security, scheduling and
VLSI design [26]. The vertex cover problem is also closely related to the problem
of finding a maximum clique. This has a range of applications in bioinformatics
and biology, such as identifying related protein sequences [27].

Numerous algorithms have been proposed for solving the vertex cover prob-
lem. We choose FastVC [28] over the popular NuMVC [29] as a solver for the
minimum vertex cover problem as it works better for massive graphs. FastVC is
based on two low-complexity heuristics, one for initial construction of a vertex
cover, and one to choose the vertex to be removed in each exchanging step, which
involves random draws from a set of candidates.

For our experimental investigations, we select all 86 instances used in [28].
Among these, the number of vertices ranges from about 1000 to over 4 million,
and the number of edges ranges from about 2000 to over 56 million.

5.2 Data Collection

We recorded 10,000 independent, regular runs of the original solvers on each of
the 115 TSP instances and on each of the 86 MVC instances. For TSP, the time
limit per instance was 1 h. For MVC, we allowed 100 s. The runs were conducted
on a compute cluster with Intel Xeon E5620 CPUs (2.4 GHz).

For each run, we make a record whenever a solver finds a better solution,
together with the solution quality. Altogether, the records of our 20,000 runs
take up over 8 GB when GZ-compressed with default settings. We plan to make
these files publicly available (upon finding a suitable webserver) as a resource
for studying the behaviour of these algorithms.

5.3 Training of Hyper

For each of the two benchmarks, we used two thirds of the respectively available
instances for training. That is, we handed the parameterized framework to a
recently improved version of GGA that uses surrogate models to predict where
improved parameterizations may be found [30] We ran GGA for 70 generations
with a population size of 100 individuals. The random replacement rate was set
to 5%, the mutation rate was set to 5% as well.

5.4 Results

Following the training of Hyper on two thirds of the instances (per problem
domain), we are left with 38 of the 115 TSP instances and 28 of the 86 MVC

instances. We use these to compare the performance of the following investigated
approaches:

Learning a Reactive Restart Strategy to Improve Stochastic Search 117

1. Single: the solver is run once with a random seed, allowing it to run for the
total time given;

2. Restarts: the solver is restarted from scratch whenever a preset time limit
is reached, and this loop is repeated until time is up;

3. Luby: restarts based on the fixed Luby sequence [3], where one Luby time
unit is based on five times the time the first run needs to produce the first
solution;

4. Bet-and-Run: the previously described bet-and-run strategy by Friedrich
et al. [13];

5. Hyper: our trained hyper-parameterized bet-and-run restart strategy, as
described above.

We will analyze the outcomes using several criteria. First, we compare the
performance gaps achieved with respect to the optimal solution possible within
the time budget.2 Second, we consider the number of times an approach is able
to find the best possible solution. Third, we compare the amount of time needed
in order to compute the final results.

To start off, Tables 1 and 2 show the results of the individual solvers across
the sets of 38 and 28 instances. Note that we are using the problem domain
names TSP and MVC instead of the respective solvers to facilitate reading.

We observe that the number of times the best possible solution is found
increases with increasing time budget. Note that this is not natural as the best
possible solution is the best possible solution for the respective time limit! The
fact that the relative gap decreases anyhow is therefore a reflection of the fact
that the best restart can actually find the best solution rather quickly. With
increasing time limits, the restarted approaches thus have more buffer to find
this best quality solution as well.

Next, we find that Single and Restarts are clearly outperformed by the
other three approaches across both problem domains and across all total time
budgets. On TSP, Hyper achieves less than half the performance gap of Bet-

and-Run when the total time budget is only 100 s. This advantage for Hyper

becomes more and pronounced as the budget increases to 5,000 s. For this time
limit, Hyper has a six-times lower average gap than Bet-and-Run, which
is marked improvement. At the same time, Bet-and-Run can find the best
solutions in only 67% of the runs, whereas Hyper’s success rate is 84%.

MVC can be seen as a little bit more challenging in our setting, as the com-
putation time budgets were rather short and FastVC encountered significant
initialization times on some of the large instances. As a consequence, the number
of times where no solution has been produced by the various approaches is higher
than for TSP, however, this number decreases with increasing time budget.

On MVC, Hyper and Bet-and-Run are really close in terms of average per-
formance gap, however, there is an advantage for Hyper in number of times the
best possible solutions are found. In practice this is still a substantial improve-
ment.
2 This best possible solution is the best solution provided within the given time limit

by any of the 10,000 runs we conducted.

118 S. Kadioglu et al.

Table 1. TSP results. Shown are time in seconds, and performance gap from the best
possible solution within the respective time limit. “solutions” and “no solutions” refer
to the number of times the approach has produced any solution at all. “best found” lists
the number of times the best possible solution was found given 380 runs (38 instances ∗
10 independent runs). Highlighted in dark blue and light blue are the best and second
best average approaches.

Single

time
budget

solutions no solutions best found
average

performance
average
time

100 380 0 234 0.1415 12
200 378 2 239 0.1368 21
500 380 0 266 0.0885 95

1000 380 0 266 0.0877 105
2000 380 0 266 0.0762 165
5000 380 0 266 0.0596 290

Restarts

time
budget

solutions no solutions best found
average

performance
average
time

100 380 0 252 0.0689 21
200 380 0 255 0.0618 35
500 380 0 259 0.0519 61

1000 380 0 261 0.0474 98
2000 380 0 261 0.0457 154
5000 380 0 258 0.0435 268

Luby

time
budget

solutions no solutions best found
average

performance
average
time

100 380 0 296 0.0274 19
200 380 0 299 0.0189 32
500 380 0 309 0.0135 75

1000 380 0 317 0.0108 127
2000 380 0 318 0.0090 229
5000 380 0 322 0.0070 476

Bet-and-Run

time
budget

solutions no solutions best found
average

performance
average
time

100 380 0 244 0.0487 5
200 380 0 245 0.0473 6
500 380 0 246 0.0444 8

1000 380 0 248 0.0436 13
2000 380 0 251 0.0429 22
5000 380 0 256 0.0419 49

Hyper

time
budget

solutions no solutions best found
average

performance
average
time

100 380 0 295 0.0216 15
200 380 0 302 0.0142 26
500 380 0 307 0.0132 57

1000 380 0 307 0.0090 87
2000 380 0 319 0.0077 178
5000 380 0 321 0.0066 322

Learning a Reactive Restart Strategy to Improve Stochastic Search 119

Hyper vs Single

TSP:
(gap)

16

22

15

22

12

25

12

25

12

25

12

25

Hyper vs Restarts

TSP:
(gap)

14

22
2

13

23
2

13

24

13

24

13

24

13

24

Hyper vs Luby

TSP:
(gap) 2

27

9

3
29

5

29

8

29

8

29

8

229

7

Hyper vs Bet-and-Run

TSP:
(gap)

13

22
3

14

22
2

13

22
3

13

23
2

14

23

13

23
2

time budget: 100s 200s 500s 1000s 2000s 5000s

Hyper vs Single

MVC:
(gap)

9

7

11

13

7 7

11

7
9

2

12

8 6

Hyper vs Restarts

MVC:
(gap)

68

13

11

7
9

11

8
8

3
11

9
5

Hyper vs Luby

MVC:
(gap)

48

15

7
7

13

8
8

11

3
7

10
8

Hyper vs Bet-and-Run

MVC:
(gap)

8

19

6

21

2

8

18

3
11

14

time budget: 50s 100s 200s 500s

Fig. 1. Statistical comparison of Hyper with the other approaches using the Wilcoxon
rank-sum test (significance level p = 0.05). The approaches are compared based on the
quality gap to the best possible solution (smaller is better).
The colors have the following meaning: Green indicates that Hyper is statistically
better, Red indicates that Hyper is statistically worse, Light gray indicates that both
performed identical, Dark gray indicates that the differences were statistically insignif-
icant. We have chosen pie charts on purpose because they allow for a quick qualitative
comparison of results. (Color figure online)

120 S. Kadioglu et al.

Table 2. MVC results. Shown are time in seconds, and performance gap from the best
possible solution within the respective time limit. “solutions” and “no solutions” refer
to the number of times the approach has produced any solution at all. “best found”
lists the number of times the respective best possible solution has been found given
280 runs (28 instances ∗ 10 independent runs). Highlighted in dark blue and light blue
are the best and second best average approaches.

Single

time
budget

solutions no solutions best found
average

performance
average
time

5 211 69 74 0.1097 3
10 223 57 76 0.4558 5
20 254 26 80 0.6181 9
50 264 16 98 0.2273 19

Restarts

time
budget

solutions no solutions best found
average

performance
average
time

5 228 52 76 0.1111 3
10 252 28 82 0.4140 6
20 268 12 88 0.6128 12
50 278 2 101 0.1802 25

Luby

time
budget

solutions no solutions best found
average

performance
average
time

5 228 52 80 0.1064 3
10 252 28 91 0.3907 6
20 268 12 91 0.5767 11
50 278 2 114 0.1032 23

Bet-and-Run

time
budget

solutions no solutions best found
average

performance
average
time

5 228 52 65 0.0800 3
10 252 28 79 0.3328 5
20 268 12 90 0.4721 9
50 278 2 105 0.0390 18

Hyper

time
budget

solutions no solutions best found
average

performance
average
time

5 228 52 75 0.0781 3
10 252 28 87 0.3309 5
20 268 12 104 0.4710 9
50 278 2 119 0.0385 19

Interestingly, our results differ from [13], where Luby-based restarts per-
formed not as well as Restarts, whereas in our study Bet-and-Run is out-
performed by LubyStat on TSP. This might be due to a different approach of
setting tinit and because we use a larger instance set for TSP. Independent of
this Hyper outperforms both.

Learning a Reactive Restart Strategy to Improve Stochastic Search 121

Figure 1 adds to the results by showing the results of performing single-sided
Wilcoxon rank-sum tests on the outcomes of 10 independent runs. For the two dif-
ferent problem domains, we observe the following. For TSP, Hyper dominates
the field and is beaten five times by Luby (as assessed by the statistical tests)
in terms of quality gap to the optimum. For MVC, Hyper typically outperforms
Single,Restarts, andLuby. In contrast to this,Hyper andBet-and-Runper-
form essentially comparably on MVC, and the differences are rarely significant.

Lastly, we summarize the investigations by testing whether the performance
differences between Hyper and and the other approaches across all instances and
time budgets are statistically significant. Again, we apply a single-sided Wilcoxon
test to test the null hypothesis that two given distributions are identical. We
compare the approaches based on the performance gap achieved, and across
all time budgets and instances. In particular, we take the median of the 10
independent runs per instance, and then collect for each restart approach the
medians across all instances and time limits. As a consequence, each approach
has 38 ∗ 6 = 228 medians for TSP and 28 ∗ 4 = 112 medians for MVC.

Table 3 shows the results of these two tests. In summary, we can deduce
from the outcome that Hyper performs no worse than existing approaches, and
typically better. A closer inspection of the raw results of Hyper and Bet-and-

Run on MVC reveals that their performance is near-identical, despite the fact
that the averages of Hyper are consistently lower than those of Bet-and-Run

(as seen in Table 2). In stark contrast to this, the performance comparisons on
TSP are mostly highly significant and in an favor of Hyper.

Table 3. One-sided Wilcoxon rank-sum test to test whether the quality gap distrib-
ution of Hyper is shifted to the left of that of the other approaches. Shown are the
p-values.

Single Restarts Luby Bet-and-Run

TSP 0.000003 0.000015 0.478300 0.000002

MVC 0.060172 0.248689 0.354935 0.236808

6 Conclusion

We introduced the idea of learning reactive restart strategies for combinato-
rial search algorithms. We compared this new approach (Hyper) with other
approaches, among them a very recent Bet-and-Run approach that had been
assessed comprehensively on TSP and MVC instances. Across both domains,
Hyper resulted in markedly better average solution qualities, and it exhibited
significantly increased rates of hitting the best possible solution.

As the investigated problem domains are structurally very different, we
expect our approach to generalize to other problem domains as well, such as
continuous and multi-objective optimization problems.

Future work will focus on the development of other runtime features as a
basis for making restart decisions.

122 S. Kadioglu et al.

References

1. Gomes, C.P., Selman, B., Crato, N., Kautz, H.A.: Heavy-tailed phenomena in
satisfiability and constraint satisfaction problems. J. Autom. Reason. 24(1), 67–
100 (2000)

2. Hoos, H.H.: Stochastic local search - methods, models, applications. Ph.D. thesis,
TU Darmstadt (1998)

3. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
Inf. Process. Lett. 47(4), 173–180 (1993)

4. Wu, H., van Beek, P.: On universal restart strategies for backtracking search. In:
Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 681–695. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-74970-7 48

5. Audemard, G., Simon, L.: Refining restarts strategies for SAT and UNSAT. In:
Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 118–126. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33558-7 11

6. Marti, R.: Multi-start methods. In: Glover, F., Kochenberger, G.A. (eds.) Hand-
book of Metaheuristics, pp. 355–368 (2003)

7. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and
applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics.
International Series in Operations Research & Management Science, vol. 146, pp.
363–397. Springer, Boston (2010). doi:10.1007/978-1-4419-1665-5 12

8. Schoenauer, M., Teytaud, F., Teytaud, O.: A rigorous runtime analysis for quasi-
random restarts and decreasing stepsize. In: Hao, J.-K., Legrand, P., Collet, P.,
Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp.
37–48. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35533-2 4

9. Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-79719-7 4

10. Huang, J.: The effect of restarts on the efficiency of clause learning. In: Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pp. 2318–2323 (2007)

11. Lalla-Ruiz, E., Voß, S.: Improving solver performance through redundancy. Syst.
Sci. Syst. Eng. 25(3), 303–325 (2016)

12. Fischetti, M., Monaci, M.: Exploiting erraticism in search. Oper. Res. 62(1), 114–
122 (2014)

13. Friedrich, T., Kötzing, T., Wagner, M.: A generic bet-and-run strategy for speeding
up stochastic local search. In: Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, pp. 801–807 (2017)

14. Lissovoi, A., Sudholt, D., Wagner, M., Zarges, C.: Theoretical results on bet-and-
run as an initialisation strategy. In: Genetic and Evolutionary Computation Con-
ference (GECCO) (2017, accepted for publication)

15. Stützle, T., López-Ibáñez, M.: Automatic (offline) configuration of algorithms. In:
Genetic and Evolutionary Computation Conference (GECCO), pp. 795–818 (2016)

16. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatic component-wise design
of multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 20(3), 403–
417 (2016)

17. Ansótegui, C., Pon, J., Tierney, K., Sellmann., M.: Reactive dialectic search port-
folios for MaxSAT. In: AAAI Conference on Artificial Intelligence (2017, accepted
for publication)

18. Kadioglu, S., Sellmann, M.: Dialectic search. In: Gent, I.P. (ed.) CP 2009.
LNCS, vol. 5732, pp. 486–500. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04244-7 39

http://dx.doi.org/10.1007/978-3-540-74970-7_48
http://dx.doi.org/10.1007/978-3-642-33558-7_11
http://dx.doi.org/10.1007/978-1-4419-1665-5_12
http://dx.doi.org/10.1007/978-3-642-35533-2_4
http://dx.doi.org/10.1007/978-3-540-79719-7_4
http://dx.doi.org/10.1007/978-3-642-04244-7_39
http://dx.doi.org/10.1007/978-3-642-04244-7_39

Learning a Reactive Restart Strategy to Improve Stochastic Search 123

19. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the
automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol.
5732, pp. 142–157. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04244-7 14

20. Hartigan, J.A.: Bounding the maximum of dependent random variables. Electron.
J. Stat. 8(2), 3126–3140 (2014)

21. Polacek, M., Doerner, K.F., Hartl, R.F., Kiechle, G., Reimann, M.: Scheduling
periodic customer visits for a traveling salesperson. Eur. J. Oper. Res. 179, 823–
837 (2007)

22. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton (2011)

23. Applegate, D.L., Cook, W.J., Rohe, A.: Chained Lin-Kernighan for large traveling
salesman problems. INFORMS J. Comput. 15(1), 82–92 (2003)

24. Cook, W.: The Traveling Salesperson Problem: Downloads (Website) (2003).
http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm.
Accessed 21 Dec 2016

25. Reinelt, G.: TSPLIB - A traveling salesman problem library. ORSA J. Comput.
3(4), 376–384 (1991). Instances: http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/tsp/. Accessed 21 Dec 2016

26. Gomes, F.C., Meneses, C.N., Pardalos, P.M., Viana, G.V.R.: Experimental analy-
sis of approximation algorithms for the vertex cover and set covering problems.
Comput. Oper. Res. 33(12), 3520–3534 (2006)

27. Abu-Khzam, F.N., Langston, M.A., Shanbhag, P., Symons, C.T.: Scalable parallel
algorithms for FPT problems. Algorithmica 45(3), 269–284 (2006)

28. Cai, S.: Balance between complexity and quality: local search for minimum vertex
cover in massive graphs. In: International Joint Conference on Artificial Intelli-
gence (IJCAI), pp. 747–753 (2015). Code: http://lcs.ios.ac.cn/caisw/MVC.html.
Accessed 21 Dec 2016

29. Cai, S., Su, K., Luo, C., Sattar, A.: NuMVC: an efficient local search algorithm for
minimum vertex cover. J. Artif. Intell. Res. 46(1), 687–716 (2013)

30. Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.: Model-
based genetic algorithms for algorithm configuration. In: International Joint Con-
ference on Artificial Intelligence (IJCAI), pp. 733–739 (2015)

http://dx.doi.org/10.1007/978-3-642-04244-7_14
http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://lcs.ios.ac.cn/caisw/MVC.html

Efficient Adaptive Implementation of the Serial
Schedule Generation Scheme Using
Preprocessing and Bloom Filters

Daniel Karapetyan1(B) and Alexei Vernitski2

1 Institute for Analytics and Data Science, University of Essex, Essex, UK
daniel.karapetyan@gmail.com

2 Department of Mathematical Sciences, University of Essex, Essex, UK
asvern@essex.ac.uk

Abstract. The majority of scheduling metaheuristics use indirect rep-
resentation of solutions as a way to efficiently explore the search space.
Thus, a crucial part of such metaheuristics is a “schedule generation
scheme” – procedure translating the indirect solution representation into
a schedule. Schedule generation scheme is used every time a new candi-
date solution needs to be evaluated. Being relatively slow, it eats up most
of the running time of the metaheuristic and, thus, its speed plays signif-
icant role in performance of the metaheuristic. Despite its importance,
little attention has been paid in the literature to efficient implementa-
tion of schedule generation schemes. We give detailed description of serial
schedule generation scheme, including new improvements, and propose
a new approach for speeding it up, by using Bloom filters. The results
are further strengthened by automated control of parameters. Finally, we
employ online algorithm selection to dynamically choose which of the two
implementations to use. This hybrid approach significantly outperforms
conventional implementation on a wide range of instances.

Keywords: Resource-constrained project scheduling problem · Serial
schedule generation scheme · Bloom filters · Online algorithm selection

1 Introduction

Resource Constrained Project Scheduling Problem (RCPSP) is to schedule a set
of jobs J subject to precedence relationships and resource constraints. RCPSP
is a powerful model generalising several classic scheduling problems such as job
shop scheduling, flow shop scheduling and parallel machine scheduling.

In RCPSP, we are given a set of resources R and their capacities cr, r ∈ R.
In each time slot, cr units of resource r are available and can be shared between
jobs. Each job j ∈ J has a prescribed consumption vj,r of each resource r ∈ R.
We are also given the duration dj of a job j ∈ J . A job consumes vj,r units
of resource r in every time slot that it occupies. Once started, a job cannot be

c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 124–138, 2017.
https://doi.org/10.1007/978-3-319-69404-7_9

Efficient Adaptive Implementation of the Serial Schedule Generation Scheme 125

interrupted (no preemption is allowed). Finally, each resource is assigned a set
pred j ⊂ J of jobs that need to be completed before j can start.

There exist multiple extensions of RCPSP. In the multi-mode extension, each
job can be executed in one of several modes, and then resource consumption and
duration depend on the selected mode. In some applications, resource availability
may vary with time. There could be set-up times associated with certain jobs. In
multi-project extension, several projects run in parallel sharing some but not all
resources. In this paper we focus on the basic version of RCPSP, however some
of our results can be easily generalised to many of its extensions and variations.

Most of the real-world scheduling problems, including RCPSP, are NP-hard,
and hence only problems of small size can be solved to optimality, whereas
for larger problems (meta)heuristics are commonly used. Metaheuristics usually
search in the space of feasible solutions; with a highly constrained problem such
as RCPSP, browsing the space of feasible solutions is hard. Indeed, if a schedule
is represented as a vector of job start times, then changing the start time of a
single job is likely to cause constraint violations. Usual approach is to use indirect
solution representation that could be conveniently handled by the metaheuristic
but could also be efficiently translated into the direct representation.

Two translation procedures widely used in scheduling are serial schedule
generation scheme (SSGS) and parallel schedule generation scheme [9]. Some
studies conclude that SSGS gives better performance [7], while others suggest
to employ both procedures within a metaheuristic [10]. Our research focuses on
SSGS.

With SSGS, the indirect solution representation is a permutation π of jobs.
The metaheuristic handles candidate solutions in indirect (permutation) form.
Every time a candidate solution needs to be evaluated, SSGS is executed to
translate the solution into a schedule (tj , j ∈ J), and only then the objective
value can be computed, see Fig. 1.

Metaheuristic

SSGS

Objective function

Candidate solution (permutation π)

Candidate schedule (job start times tj , j ∈ J)

Objective value

Fig. 1. Classic architecture of a scheduling metaheuristic. To obtain objective value of
a candidate solution, metaheuristic uses SSGS to translate the candidate solution into
a candidate schedule, which is then used by objective function.

SSGS is a simple procedure that iterates through J in the order given by
π, and schedules one job at a time, choosing the earliest feasible slot for each

126 D. Karapetyan and A. Vernitski

Algorithm 1. Serial Schedule Generation Scheme (SSGS). Here T is the
upper bound on the makespan.
input : Solution π in permutation form, respecting precedence relations
output : Schedule tj , j ∈ J

1 At,r ← cr for every t = 1, 2, . . . , T and r ∈ R;
2 for i = 1, 2, . . . , |J | do
3 j ← π(i);
4 t0 ← maxj′∈predj

tj′ + dj′ ;

5 tj ← find(j, t0, A) (see Algorithm 2);
6 update(j, tj , A) (see Algorithm 3);

7 return tj, j ∈ J ;

Algorithm 2. Conventional implementation of find(j, t0, A) – a function
to find the earliest feasible slot for job j.
input : Job j ∈ J to be scheduled
input : Earliest start time t0 as per precedence relations
input : Current availability A of resources
output : Earliest feasible start time for job j

1 tj ← t0;
2 t ← tj ;
3 while t < tj + dj do
4 if At,r ≥ vj,r for every r ∈ R then
5 t ← t + 1;
6 else
7 tj ← t + 1;
8 t ← tj ;

9 return tj ;

job. The only requirement for π is to respect the precedence relations; otherwise
SSGS produces a feasible schedule for any permutation of jobs. The pseudo-
code of SSGS is given in Algorithm1, and its two subroutines find and update
in Algorithms 2 and 3.

Commonly, the objective of RCPSP is to find a schedule that minimises
the makespan, i.e. the time required to complete all jobs; however other objec-
tive functions are also considered in the literature. We say that an objective
function of a scheduling problem is regular if advancing the start time of a
job cannot worsen the solution’s objective value. Typical objective functions of
RCPSP, including makespan, are regular. If the scheduling problem has a reg-
ular objective function, then SSGS guarantees to produce active solutions, i.e.
solutions that cannot be improved by changing tj for a single j ∈ J . Moreover,
it was shown [8] that for any active schedule S there exists a permutation π
for which SSGS will generate S. Since any optimal solution S is active, search-
ing in the space of feasible permutations π is sufficient to solve the problem.

Efficient Adaptive Implementation of the Serial Schedule Generation Scheme 127

Algorithm 3. Procedure update(j, tj , A) to update resource availability A
after scheduling job j at time tj .
input : Job j and its start time tj

input : Resource availability A
1 for t ← tj , tj + 1, . . . , tj + dj − 1 do
2 Aj,r ← Aj,r − vj,r for every r ∈ R;

This is an important property of SSGS; the parallel schedule generation scheme,
mentioned above, does not provide this guarantee [8] and, hence, may not in some
circumstances allow a metaheuristic finding optimal or near-optimal solutions.

The runtime of a metaheuristic is divided between its search control mecha-
nism that modifies solutions and makes decisions such as accepting or rejecting
new solutions, and SSGS. While SSGS is a polynomial algorithm, in practice it
eats up the majority of the metaheuristic runtime (over 98% as reported in [1]).
In other words, by improving the speed of SSGS twofold, one will (almost) double
the number of iterations a metaheuristic performs within the same time budget,
and this increase in the number of iterations is likely to have a major effect on
the quality of obtained solutions.

In our opinion, not enough attention was paid to SSGS – a crucial component
of many scheduling algorithms, and this study is to close this gap. In this paper
we discuss approaches to speed up the conventional implementation of SSGS.
Main contributions of our paper are:

– A detailed description of SSGS including old and new speed-ups (Sect. 2).
– New implementation of SSGS employing Bloom filters for quick testing of

resource availability (Sect. 3).
– A hybrid control mechanism that employs intelligent learning to dynamically

select the best performing SSGS implementation (Sect. 4).

Empirical evaluation in Sect. 5 confirms that both of our implementations of
SSGS perform significantly better than the conventional SSGS, and the hybrid
control mechanism is capable of correctly choosing the best implementation while
generating only negligible overheads.

2 SSGS Implementation Details

Before we proceed to introducing our main new contributions in Sects. 3 and 4,
we describe what state-of-the-art implementation of SSGS we use, including
some previously unpublished improvements.

2.1 Initialisation of A

The initialisation of A in line 1 of Algorithm1 iterates through T slots, where T is
the upper bound on the makespan. It was noted in [1] that instead of initialising

128 D. Karapetyan and A. Vernitski

Algorithm 4. Enhanced implementation of find(j, t0, A)
input : Job j ∈ J to be scheduled
input : Earliest start time t0 as per precedence relations
input : Current availability A of resources
output : Earliest feasible start time for job j

1 tj ← t0;
2 t ← tj + dj − 1;
3 ttest ← tj ;
4 while t ≥ ttest do
5 if At,r ≥ Vj,r for every r ∈ R then
6 t ← t − 1;
7 else
8 ttest ← tj + dj ;
9 tj ← t + 1;

10 t ← tj + dj − 1;

11 return tj ;

A at every execution of SSGS, one can reuse this data structure between the
executions. To correctly initialise A, at the end of SSGS we restore At,r for each
r ∈ R and each slot where some job was scheduled: At,r ← cr for r ∈ R and
t = 1, 2, . . . ,M , where M is the makespan of the solution. Since M ≤ T and
usually M � T , this notably improves the performance of SSGS [1].

2.2 Efficient Search of the Earliest Feasible Slot for a Job

The function find(j, t0, I, A) finds the earliest slot feasible for scheduling job
j. Its conventional implementation (Algorithm 2) takes O(T |R|) time, where T
is the upper bound of the time horizon. Our enhanced implementation of find
(Algorithm 4), first proposed in [1], has the same worst case complexity but is
more efficient in practice. It is inspired by the Knuth-Morris-Pratt substring
search algorithm. Let tj be the assumed starting time of job J . To verify if it is
feasible, we need to test sufficiency of resources in slots tj , tj +1, . . . , tj + dj − 1.
Unlike the conventional implementation, our enhanced version tests these slots
in the reversed order. The order makes no difference if the slot is feasible, but
otherwise testing in reversed order allows us to skip some slots; in particular, if
slot t is found to have insufficient resources then we know that feasible tj is at
least t + 1.

A further speed up, which was not discussed in the literature before, is to
avoid re-testing of slots with sufficient resources. Consider the point when we
find that the resources in slot t are insufficient. By that time we know that the
resources in t+1, t+2, . . . , tj +dj −1 are sufficient. Our heuristic is to remember
that the earliest slot ttest to be tested in future iterations is tj + dj .

Efficient Adaptive Implementation of the Serial Schedule Generation Scheme 129

2.3 Preprocessing and Automated Parameter Control

We observe that in many applications, jobs are likely to require only a subset
of resources. For example, in construction works, to dig a hole one does not
need cranes or electricians, hence the ‘dig a hole’ job will not consume those
resources. To exploit this observation, we pre-compute vector Rj of resources
used by job j, and then iterate only through resources in Rj when testing resource
sufficiency in find (Algorithm 4, line 5) and updating resource availability in
update (Algorithm 3, line 2). Despite the simplicity of this idea, we are not aware
of anyone using or mentioning it before.

We further observe that some jobs may consume only one resource. By cre-
ating specialised implementations of find and update, we can reduce the depth
of nested loops. While this makes no difference from the theoretical point of
view, in practice this leads to considerable improvement of performance. Cor-
rect implementations of find and update are identified during preprocessing and
do not cause overheads during executions of SSGS.

Having individual vectors Rj of consumed resources for each job, we can also
intelligently learn the order in which resource availability is tested (Algorithm4,
line 5). By doing this, we are aiming at minimising the expected number of iter-
ations within the resource availability test. For example, if resource r is scarce
and job j requires significant amount of r, then we are likely to place r at the
beginning of Rj . More formally, we sort Rj in descending order of probability
that the resource is found to be insufficient during the search. This probabil-
ity is obtained empirically by a special implementation of SSGS which we call
SSGSdata. SSGSdata is used once to count how many times each resource turned
out to be insufficient during scheduling of a job. (To avoid bias, SSGSdata tests
every resource in Rj even if the test could be terminated early.) After a single
execution of SSGSdata, vectors Rj are optimised, and in further executions default
implementation of SSGS is used.

One may notice that the data collected in the first execution of SSGS may
get outdated after some time; this problem in addressed in Sect. 4.

Ordering of Rj is likely to be particularly effective on instances with asym-
metric use of resources, i.e. on real instances. Nevertheless, we observed improve-
ment of runtime even on pseudo-random instances as reported in Sect. 5.

3 SSGS Implementation Using Bloom Filters

Performance bottleneck of an algorithm is usually its innermost loop. Observe
that the innermost loop of the find function is the test of resource sufficiency in
a slot, see Algorithm 4, line 5. In this section we try to reduce average runtime
of this test from O(|R|) to O(1) time. For this, we propose a novel way of using
a data structure known as Bloom filter.

Bloom filters were introduced in [2] as a way of optimising dictionary lookups,
and found many applications in computer science and electronic system engineer-
ing [3,13]. Bloom filters usually utilise pseudo-random hash functions to encode
data, but in some applications [6] non-hash-based approaches are used. In our

130 D. Karapetyan and A. Vernitski

paper, we also use a non-hash-based approach, and to our knowledge, our paper
is the first in which the structure of Bloom filters is chosen dynamically accord-
ing to the statistical properties of the data, with the purpose of improving the
speed of an optimisation algorithm.

In general, Bloom filters can be defined as a way of using data, and they
are characterised by two aspects: first, all data is represented by short binary
arrays of a fixed length (perhaps with a loss of accuracy); second, the process of
querying data involves only bitwise comparison of binary arrays (which makes
querying data very fast).

We represent both each job’s resource consumption and resource availability
at each time slot, by binary arrays of a fixed length; we call these binary arrays
Bloom filters. Our Bloom filters will consist of bits which we call resource level
bits. Each resource bit, denoted by ur,k, r ∈ R, k ∈ {1, 2, . . . , cr}, means “k units
of resource r” (see details below). Let U be the set of all possible resource bits.
A Bloom filter structure is an ordered subset L ⊆ U , see Fig. 2 for an example.
Suppose that a certain Bloom filter structure L is fixed. Then we can introduce
BL(j), the Bloom filter of job j, and BL(t), the Bloom filter of time slot t, for
each j and t. Each BL(j) and BL(t) consists of |L| bits defined as follows: if ur,k

is the ith element of L then

BL(j)i =

{
1 if vj,r ≥ k,

0 otherwise,
and BL(t)i =

{
1 if At,r ≥ k,

0 otherwise.

u1,2 u1,3 u1,4 u2,1 u2,3 u3,1 u3,3 u3,4

≥ 2 ≥ 3 ≥ 4 ≥ 1 ≥ 3 ≥ 1 ≥ 3 ≥ 4

Resource 1 Resource 2 Resource 3

Fig. 2. Example of a Bloom filter structure for a problem with 3 resources, each having
capacity 4.

To query if a job j can be scheduled in a time slot t, we compare Bloom
filters BL(j) and BL(t) bitwise; then one of three situations is possible, as the
following examples show. Consider a job j and three slots, t, t′ and t′′, with the
following resource consumption/availabilities, and Bloom filter structure as in
Fig. 2:

vj,1 = 3 vj,2 = 2 vj,3 = 0 BL(j) = (110 10 000)

At,1 = 2 At,2 = 3 At,3 = 4 BL(t) = (100 11 111)

At′,1 = 3 At′,2 = 1 At′,3 = 4 BL(t′) = (110 10 111)

At′′,1 = 3 At′′,2 = 2 At′′,3 = 2 BL(t′′) = (110 10 100)

For two bit arrays of the same length, let notation ‘≤’ mean bitwise less or
equal. By observing that BL(j) 	≤ BL(t), we conclude that resources in slot t

Efficient Adaptive Implementation of the Serial Schedule Generation Scheme 131

are insufficient for j; this conclusion is guaranteed to be correct. By observing
that BL(j) ≤ BL(t′), we conclude tentatively that resources in slot t′ may be
sufficient for j; however, further verification of the complete data related to j
and t′ (that is, vj,· and At′,·) is required to get a precise answer; one can see
that vj,2 ≥ At′,2, hence this is what is called a false positive. Finally, we observe
that BL(j) ≤ BL(t′′), and a further test (comparing vj,· and At′′,·) confirms that
resources in t′′ are indeed sufficient for j.

Values of BL(j), j ∈ J , are pre-computed when L is constructed, and BL(t),
t = 1, 2, . . . , T , are maintained by the algorithm.

3.1 Optimisation of Bloom Filter Structure

The length |L| of a Bloom filter is limited to reduce space requirements and,
more importantly for our application, speed up Bloom filter tests. Note that if
|L| is small (such as 32 or 64 bits) then we can exploit efficient bitwise operators
implemented by all modern CPUs; then each Bloom filter test takes only one
CPU operation. We set |L| = 32 in our implementation. While obeying this
constraint, we aim at minimising the number of false positives, because false
positives slow down the implementation.

u1,1 u1,2 u1,3 u1,4 u2,1 u2,2 u2,3 u2,4 u3,1 u3,2 u3,3 u3,4

≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 1 ≥ 2 ≥ 3 ≥ 4

Resource 1 Resource 2 Resource 3

Fig. 3. Example of a Bloom filter structure for a problem with 3 resources, each having
capacity 4, with L = U .

Our L building algorithm is as follows:

1. Start with L = U , such as in Fig. 3.
2. If |L| is within the prescribed limit, stop.
3. Otherwise select ur,k ∈ L that is least important and delete it. Go to step 2.

By ‘least important’ we mean that the deletion of it is expected to
have minimal impact of the expected number of false positives. Let L =
(. . . , ur,q, ur,k, ur,m, . . .). Consider a job j such that k ≤ vj,r < m and a slot
t such that q ≤ At,r < k. With L as defined above, Bloom filters correctly iden-
tify that resources in slot t are insufficient for job j: BL(j) 	≤ BL(t). However,
without the resource level bit ur,k we get a false positive: BL(j) ≤ BL(t). Thus,
the probability of false positives caused by deleting ur,k from L in is as follows:

(
m−1∑
k=i

Dr
k

)
·
⎛
⎝i−1∑

k=q

Er
k

⎞
⎠ ,

132 D. Karapetyan and A. Vernitski

where Dr
k is the probability that a randomly chosen job needs exactly k units

of resource r, and Er
k is the probability that a certain slot, when we examine

it for scheduling a job, has exactly k units of resource r available. The proba-
bility distribution Dr is produced from the RCPSP instance data during pre-
processing.1 The probability distribution Er is obtained empirically during the
run of SSGSdata (see Sect. 2.2); each time resource sufficiency is tested within
SSGSdata, its availability is recorded.

3.2 Additional Speed-ups

While positive result of a Bloom filter test generally requires further verification
using full data, in some circumstances its correctness can be guaranteed. In
particular, if for some r ∈ R and j ∈ J we have ur,k ∈ L and vj,r = k, then the
Bloom filter result, whether positive or negative, does not require verification.

Another observation is that updating BL(t) in update can be done in O(|Rj |)
operations instead of O(|R|) operations. Indeed, instead of computing BL(t)
from scratch, we can exploit our structure of Bloom filters. We update each bit
related to resources r ∈ Rj , but we keep intact other bits. With some trivial
pre-processing, this requires only O(|Rj |) CPU operations.

We also note that if |Rj | = 1, i.e. job j uses only one resource, then Bloom
filters will not speed up the find function for that job and, hence, in such cases
we use the standard find function specialised for one resource (see Sect. 2.2).

4 Hybrid Control Mechanism

So far we have proposed two improved implementations of SSGS: one using
Bloom filters (which we denote SSGSBF), and the other one not using Bloom
filters (which we denote SSGSNBF). While it may look like SSGSBF should always
be superior to SSGSNBF, in practice SSGSNBF is often faster. Indeed, Bloom filters
usually speed up the find function, but they also slow down update, as in SSGSBF

we need to update not only the values At,r but also the Bloom filters BL(t)
encoding resource availability. If, for example, the RCPSP instance has tight
precedence relations and loose resource constraints then find may take only a
few iterations, and then the gain in the speed of find may be less than the loss
of speed of update. In such cases SSGSBF is likely to be slower then SSGSNBF.

In short, either of the two SSGS implementations can be superior in certain
circumstances, and which one is faster mostly depends on the problem instance.
In this section we discuss how to adaptively select the best SSGS implementation.
Automated algorithm selection is commonly used in areas such as sorting, where
multiple algorithms exist. A typical approach is then to extract easy to compute
input data features and then apply off-line learning to develop a predictor of
which algorithm is likely to perform best, see e.g. [5]. With sorting, this seems

1 In multi-mode extension of RCPSP, this distribution depends on selected modes and
hence needs to be obtained empirically, similarly to how we obtain Er.

Efficient Adaptive Implementation of the Serial Schedule Generation Scheme 133

to be the most appropriate approach as the input data may vary significantly
between executions of the algorithm. Our case is different in that the most
crucial input data (the RCPSP instance) does not change between executions
of SSGS. Thus, during the first few executions of SSGS, we can test how each
implementation performs, and then select the faster one. This is a simple yet
effective control mechanism which we call Hybrid.

Hybrid is entirely transparent for the metaheuristic; the metaheuristic simply
calls SSGS whenever it needs to evaluate a candidate solution and/or generate
a schedule. The Hybrid control mechanism is then intelligently deciding each
time which implementation of SSGS to use based on information learnt during
previous runs.

An example of how Hybrid performs is illustrated in Fig. 4. In the first exe-
cution, it uses SSGSdata to collect data required for both SSGSBF and SSGSNBF. For
the next few executions, it alternates between SSGSBF and SSGSNBF, measuring
the time each of them takes. During this stage, Hybrid counts how many times
SSGSBF was faster than the next execution of SSGSNBF. Then we use the sign
test [4] to compare the implementations. If the difference is significant (we use
a 5% significance level for the sign test) then we stop alternating the implemen-
tations and in future use only the faster one. Otherwise we continue alternating
the implementations, but for at most 100 executions. (Without such a limitation,
there is a danger that the alternation will never stop – if the implementations
perform similarly; since there are overheads associated with the alternation and
time measurement, it is better to pick one of the implementations and use it in
future executions.)

data BF NBF BF NBF BF BF BF BF data BF NBF BF NBF

First 10,000 executions

Choosing SSGS impl. Running the faster impl.

Restart

Special execution to collect data to optimise Rj and Bloom filters

Next 10,000 executions

Fig. 4. Stages of the Hybrid control mechanism. Each square shows one execution of
SSGS, and the text inside describes which implementation of SSGS is used. SSGSdata

is always used in the first execution. Further few executions (at most 100) alternate
between SSGSBF and SSGSNBF, with each execution being timed. Once sign test shows
significant difference between the SSGSBF and SSGSNBF implementations, the faster one
is used for the rest of executions. After 10,000 executions, previously collected data is
erased and adaptation starts from scratch.

134 D. Karapetyan and A. Vernitski

Our decision to use the sign test is based on two considerations: first, it is very
fast, and second, it works for distributions which are not normal. This makes
our approach different from [12] where the distributions of runtimes are assumed
to be normal. (Note that in our experiments we observed that the distribution
of running times of an SSGS implementation resembles Poisson distribution.)

As pointed out in this and previous sections, optimal choices of parameters of
the SSGS implementations mostly depend on the RCPSP instance – which does
not change throughout the metaheuristic run; however solution π also affects the
performance. It should be noted though that metaheuristics usually apply only
small changes to the solution at each iteration, and hence solution properties tend
to change relatively slowly over time. Consequently, we assume that parameters
chosen in one execution of SSGS are likely to remain efficient for some further
executions. Thus, Hybrid ‘restarts’ every 10,000 executions, by which we mean
that all the internal data collected by SSGS is erased, and learning starts from
scratch, see Fig. 4. This periodicity of restarts is a compromise between accuracy
of choices and overheads, and it was shown to be practical in our experiments.

5 Empirical Evaluation

In this Section we evaluate the implementations of SSGS discussed above. To
replicate conditions within a metaheuristic, we designed a simplified version of
Simulated Annealing. In each iteration of our metaheuristic, current solution
is modified by moving a randomly selected job into a new randomly selected
position (within the feasible range). If the new solution is not worse than the
previous one, it is accepted. Otherwise the new solution is accepted with 50%
probability. Our metaheuristic performs 1,000,000 iterations before terminating.

We evaluate SSGSBF, SSGSNBF and Hybrid. These implementations are com-
pared to ‘conventional’ SSGS, denoted by SSGSconv, which does not employ any
preprocessing or Bloom filters and uses conventional implementation of find
(Algorithm 2).

We found that instances in the standard RCPSP benchmark set PSPLIB [11]
occupy a relatively small area of the feature space. For example, all the RCPSP
instances in PSPLIB have exactly four resources, and the maximum job duration
is always set to 10. Thus, we chose to use the PSPLIB instance generator, but
with a wider range of settings. Note that for this study, we modified the PSPLIB
instance generator by allowing jobs not to have any precedence relations. This
was necessary to extend the range of network complexity parameter (to include
instances with scarce precedence relations), and to speed up the generator, as the
original implementation would not allow us to generate large instances within
reasonable time.

All the experiments are conducted on a Windows Server 2012 machine based
on Intel Xeon E5-2690 v4 2.60 GHz CPU. No concurrency is employed in any of
the implementations or tests.

To see the effect of various instance features on SSGS performance, we select
one feature at a time and plot average SSGS performance against the values

Efficient Adaptive Implementation of the Serial Schedule Generation Scheme 135

of that feature. The rest of the features (or generator parameters) are then set
as follows: number of jobs 120, number of resources 4, maximum duration of
job 10, network complexity 1, resource factor 0.75, and resource strength 0.1.
These values correspond to some typical settings used in PSPLIB. For formal
definitions of the parameters we refer to [11].

For each combination of the instance generator settings, we produce 50
instances using different random generator seed values, and in each of our exper-
iments the metaheuristic solves each instance once. Then the runtime of SSGS is
said to be the overall time spent on solving those 50 instances, over 50,000,000
(which is the number of SSGS executions). The metaheuristic overheads are
relatively small and are ignored.

From the results reported in Fig. 5 one can see that our implementations of
SSGS are generally significantly faster than SSGSconv, but performance of each
implementation varies with the instance features. In some regions of the instance
space SSGSBF outperforms SSGSNBF, whereas in other regions SSGSNBF outperforms
SSGSBF. The difference in running times is significant, up to a factor of two in our
experiments. At the same time, Hybrid is always close to the best of SSGSBF and
SSGSNBF, which shows efficiency of our algorithm selection approach. In fact, when
SSGSBF and SSGSNBF perform similarly, Hybrid sometimes outperforms both; this
behaviour is discussed below.

Another observation is that SSGSNBF is always faster than SSGSconv (always
below the 100% mark) which is not surprising; indeed, SSGSNBF improves the per-
formance of both find and update. In contrast, SSGSBF is sometimes slower than
SSGSconv; on some instances, the speed-up of the find function is overweighed
by overheads in both find and update. Most important though is that Hybrid
outperforms SSGSconv in each of our experiments by 8 to 68%, averaging at 43%.
In other words, within a fixed time budget, an RCPSP metaheuristic employ-
ing Hybrid will be able to run around 1.8 times more iterations than if it used
SSGSconv.

To verify that Hybrid exhibits the adaptive behaviour and does not just stick
to whichever implementation has been chosen initially, we recorded the imple-
mentation it used in every execution for several problems, see Fig. 6. For this
experiment, we produced three instances: first instance has standard parameters
except Resource Strength is 0.2; second instance has standard parameters except
Resource Factor is 0.45; third instance has standard parameters except Maxi-
mum Job Duration is 20. These parameter values were selected such that the two
SSGS implementations would be competitive and, therefore, switching between
them would be a reasonable strategy. One can see that the switches occur several
times throughout the run of the metaheuristic, indicating that Hybrid adapts to
the changes of solution. For comparison, we disabled the adaptiveness and mea-
sured the performance if only implementation chosen initially is used throughout
all iterations; the results are shown on Fig. 6. We conclude that Hybrid benefits
from its adaptiveness.

136 D. Karapetyan and A. Vernitski

0 200 400 600 800 1,000

50

60

70

Number of jobs

R
u
n
ti

m
e,

%

2 4 6 8 10
50

55

60

65

Number of resources

0 0.2 0.4 0.6 0.8 1

50

100

150

Resource strength

R
u
n
ti

m
e,

%

0.2 0.4 0.6 0.8 1

40

50

60

70

Resource factor

0 0.5 1 1.5 2 2.5

50

60

70

Network complexity

R
u
n
ti

m
e,

%

0 10 20 30

60

80

100

Maximum job duration

SSGSBF SSGSNBF Hybrid

Fig. 5. These plots show how performance of the SSGS implementations depends on
various instance features. Vertical axis gives the runtime of each implementation rela-
tive to SSGSconv. (SSGSconv graph would be a horizontal line y = 100%.)

Efficient Adaptive Implementation of the Serial Schedule Generation Scheme 137

95%

96%

99%

executions

0 1 000 000

SSGSBF SSGSNBF

Fig. 6. This diagram shows how Hybrid switches between SSGS implementations while
solving three problem instances. The number on the right shows the time spent by
Hybrid compared with the time that would be needed if only the implementation
chosen at the start would be used for all iterations.

6 Conclusions and Future Work

In this paper we discussed the crucial component of many scheduling metaheuris-
tics, the serial schedule generation scheme (SSGS). SSGS eats up most of the
runtime in a typical scheduling metaheuristic, therefore performance of SSGS is
critical to the performance of the entire metaheuristic, and thus each speed-up
of SSGS has significant impact. We described existing and some new speed-ups
to SSGS, including preprocessing and automated parameter control. This imple-
mentation clearly outperformed the ‘conventional’ SSGS in our experiments.
We further proposed a new implementation that uses Bloom filters, particularly
efficient in certain regions of the instance space. To exploit strengths of both
implementations, we proposed a hybrid control mechanism that learns the per-
formance of each implementation and then adaptively chooses the SSGS version
that is best for a particular problem instance and phase of the search. Exper-
iments showed that this online algorithm selection mechanism is effective and
makes Hybrid our clear choice. Note that Hybrid is entirely transparent for the
metaheuristic which uses it as if it would be simple SSGS; all the learning and
adaptation is hidden inside the implementation.

The idea behind online algorithm selection used in this project can be further
developed by making the number of executions between restarts adaptable. To
determine the point when the established relation between the SSGS implemen-
tations may have got outdated, we could treat the dynamics of the implementa-
tions’ performance change as two random walks, and use the properties of these
two random walks to predict when they may intersect.

All the implementations discussed in the paper, in C++, are available
for downloading from http://csee.essex.ac.uk/staff/dkarap/rcpsp-ssgs.zip. The
implementations are transparent and straightforward to use.

http://csee.essex.ac.uk/staff/dkarap/rcpsp-ssgs.zip

138 D. Karapetyan and A. Vernitski

While we have only discussed SSGS for the simple RCPSP, our ideas can
easily be applied in RCPSP extensions. We expect some of these ideas to work
particularly well in multi-project RCPSP, where the overall number of resources
is typically large but only a few of them are used by each job.

Acknowledgements. We would like to thank Prof. Rainer Kolisch for providing
us with a C++ implementation of the PSPLIB generator. It should be noted that,
although the C++ implementation was developed to reproduce the original Pascal
implementation, the exact equivalence cannot be guaranteed; also, in our experiments
we used a modification of the provided C++ code.

References

1. Asta, S., Karapetyan, D., Kheiri, A., Özcan, E., Parkes, A.J.: Combining Monte-
Carlo and hyper-heuristic methods for the multi-mode resource-constrained multi-
project scheduling problem. Inf. Sci. 373, 476–498 (2016)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

3. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: a survey.
Internet Math. 1(4), 485–509 (2004)

4. Cohen, L., Holliday, M.: Practical Statistics for Students: An Introductory Text.
Paul Chapman Publishing Ltd., London (1996)

5. Guo, H.: Algorithm selection for sorting and probabilistic inference: a machine
learning-based approach. Ph.D. thesis, Kansas State University (2003)

6. Kayaturan, G.C., Vernitski, A.: A way of eliminating errors when using Bloom
filters for routing in computer networks. In: Fifteenth International Conference on
Networks, ICN 2016, pp. 52–57 (2016)

7. Kim, J.-L., Ellis Jr., R.D.: Comparing schedule generation schemes in resource-
constrained project scheduling using elitist genetic algorithm. J. Constr. Eng.
Manag. 136(2), 160–169 (2010)

8. Kolisch, R.: Serial and parallel resource-constrained project scheduling methods
revisited: theory and computation. Eur. J. Oper. Res. 90(2), 320–333 (1996)

9. Kolisch, R., Hartmann, S.: Heuristic algorithms for the resource-constrained
project scheduling problem: classification and computational analysis. In: W ↪eglarz,
J. (ed.) Project Scheduling, pp. 147–178. Springer, Boston (1999). doi:10.1007/
978-1-4615-5533-9 7

10. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-
constrained project scheduling: an update. Eur. J. Oper. Res. 174(1), 23–37 (2006)

11. Kolisch, R., Sprecher, A.: PSPLIB - a project scheduling problem library: OR
software - ORSEP operations research software exchange program. Eur. J. Oper.
Res. 96(1), 205–216 (1997)

12. Lau, J., Arnold, M., Hind, M., Calder, B.: Online performance auditing: using hot
optimizations without getting burned. SIGPLAN Not. 41(6), 239–251 (2006)

13. Tarkoma, S., Rothenberg, C.E., Lagerspetz, E.: Theory and practice of bloom filters
for distributed systems. IEEE Commun. Surv. Tutor. 14(1), 131–155 (2012)

http://dx.doi.org/10.1007/978-1-4615-5533-9_7
http://dx.doi.org/10.1007/978-1-4615-5533-9_7

Interior Point and Newton Methods in Solving
High Dimensional Flow Distribution Problems

for Pipe Networks

Oleg O. Khamisov1(B) and Valery A. Stennikov2

1 Skolkovo Institute of Science and Technology, Moscow, Russia
oleg.khamisov@skolkovotech.ru

2 Melentiev Energy Systems Institute SB RAS, Irkutsk, Russia
sva@isem.irk.ru

Abstract. In this paper optimal flow distribution problem in pipe
network is considered. The investigated problem is a convex sparse
optimization problem with linear equality and inequality constrains.
Newton method is used for problem with equality constrains only and
obtains an approximate solution, which may not satisfy inequality con-
straints. Then Dikin Interior Point Method starts from the approximate
solution and finds an optimal one. For problems of high dimension sparse
matrix methods, namely Conjugate Gradient and Cholesky method with
nested dissection, are applied. Since Dikin Interior Point Method works
much slower then Newton Method on the matrices of big size, such app-
roach allows us to obtain good starting point for this method by using
comparatively fast Newton Method. Results of numerical experiments
are presented.

Keywords: Pipe network · Convex optimization · Newton Method ·
Interior Point Method · Sparse matrix · Large-scale optimization

1 Introduction

In this paper optimal (steady-state) flow distribution problem in pipe network is
considered. From mathematical point of view this problem is sparse large-scale
convex optimization problem.

Several approaches to find steady-state solution exist. A comprehensive sur-
vey of methods is presented in [6]. Our paper uses approach similar to [2], but
also includes sparse matrices techniques in order to efficiently solve high dimen-
sional flow distribution problems.

The aim of this paper is application of new technology for solving the con-
sidered problem.

2 Problem Statement

Let us consider pipe network, which is given by its incidence matrix
A ∈ IR(n+1)×m, where m is the number of oriented edges and n+1 is the number
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 139–149, 2017.
https://doi.org/10.1007/978-3-319-69404-7_10

140 O.O. Khamisov and V.A. Stennikov

of nodes. Vector of nodal flow rates Q ∈ IRn+1,
∑n

i=1 Qi = 0, with components
Qi > 0 for sources, Qi < 0 for sinks and Qi = 0 for the nodes of connection.
The flow distribution problem has the following statement [5]:

F (x) → min, x ∈ IRm, (1)

Ax = Q, (2)

here x is the vector of unknown flows on the edges, that have to be found: xi > 0
if flow coincides with the direction of the edge i, otherwise xi < 0. Function F
is a twice differentiable convex function, which will be described below.

System (2) describes the first Kirchhoff’s law. Since A is an incidence matrix,
we have rank A = n, therefore it is possible to exclude one arbitrary row and
get equivalent system:

Ax = Q, (3)

here A ∈ IRn×m, and Q ∈ IRn are new matrix and right hand side vector,
obtained by such exclusion. This is done to avoid working with singular matrix.

The objective function is defined in the following way [2,5]:

F (x) =

(
m∑

i=1

Si|xi|βi

βi
− Hixi

)

, (4)

here Si are edge resistance coefficients, βi ≥ 3 are integer numbers, Hi are
pressure coefficients. Usually all βi are assumed to be equal each other, in [2]
all βi = β = 3. Further calculations are done under this assumption, therefore
objective function can be presented in the form

F (x) =

(
m∑

i=1

Si|xi|3
3

− Hixi

)

.

For the problem (1) with linear constraints (3) Newton Method can be
applied with certain conditions, which are considered below.

If line contains a pump, xi must be nonnegative. Let I1 ⊆ {1, . . . , m} be a
set of lines with pumps without flow limitations. Additionally, flow values on
some lines i ∈ I2 ⊆ {1, . . . , m}, which can also contain pumps, must be limited
from above by γi > 0. Note that I1 ∩ I2 = ∅. Therefore, the following inequality
constraints on the flows have to be taken into consideration

xi ≥ 0, i ∈ I1, γi ≥ xi ≥ αi, i ∈ I2, (5)

here, if pump is present on the edge i ∈ I2 then αi = 0, otherwise αi = −γi. When
(5) is present, the solution of problem (1) and (3) is found by Newton Method and
then Dikin Interior Point method is applied to take into consideration inequality
constraints (5).

Interior Point and Newton Methods in Solving High Dimensional Flow 141

3 Newton Method

Let us consider problem (1) and (3). The Lagrange function for this system has
the following form:

L(x, λ) = F (x) + λT (Ax − Q), λ ∈ IRn.

Due to the convexity of the objective function, equivalence of the Lagrange func-
tion gradient in x to zero is a sufficient minimum condition. Therefore Newton
Method is applied to solve the equation

∂L

∂x
= 0.

At (k + 1) step of the Newton method vector xk +1 is calculated according to
the following formula [8]

(
xk +1

λk +1

)

=
(

xk

λk

)

− (∇2L(xk, λk)
)−1 ∇L(xk, λk),

where

∇L(x, λ) =
(∇F (x) + AT λ

Ax − Q

)

,∇2L(x, λ) =
(∇2F (x) AT

A 0

)

.

Therefore, xk +1 is obtained from the following system of equations
(∇2F (xk) AT

A 0

) (
xk +1

λk +1

)

=
(∇2F (xk)xk − ∇F (xk)

Q

)

, (6)

where ∇2F (x) is objective function Hessian.

∇2F (x) = 2diag(S1|x1|, . . . , Sm|xm|).

During each iteration it is necessary to find a solution of system of linear
equations with symmetric indefinite matrix, therefore its solution can be found
by Conjugate Gradient method (Algorithm1) [9,10]. Denote by yk ∈ IRn+m

vector, consisting of xk and λk. The pair xk, λk obtained at the previous iteration
of the Newton Method is used as starting approximation, to reduce the number
of iterations in Conjugate Gradient method. Hessian ∇2L(xk, λk) is not a posi-
tive definite matrix, moreover it can be singular, therefore the algorithm can fail
if qi = 0 on the line 3 of Algorithm 1. In this case Conjugate Gradient Method
and Newton Methods stop without finding solution and, starting from the cur-
rent approximation, we switch to Interior Point Method which is described in
the next section. Otherwise Conjugate Gradient Method stops, when solution of
linear system is found and Newton Method continues working.

142 O.O. Khamisov and V.A. Stennikov

Algorithm 1. Conjugate Gradient
1: p0 = r0 = ∇L(xk, λk) − ∇2L(xk, λk)yk − 1

2: for i = 0, 1, . . . , until ‖ri +1‖ < ε do
3: qi = (pi)T ∇2L(xk, λk)pi

4: if qi = 0 then
5: exit � (Start interior point search)
6: end if
7: γi = (ri)T ri

qi

8: yk,i +1 = yk,i + γip
i

9: ri +1 = ri − γi∇2L(xk, λk)pi

10: ψi = (ri +1)T ri +1

(ri)T ri

11: pi +1 = ri +1 + ψip
i

12: end for

Algorithm 2. Interior point search
1: Take initial point x0 such that it strictly satisfies (5)
2: Take r0 such that ‖r0‖ ≥ ε
3: for k = 1, 2 . . . , until ‖rk‖ < ε do

4: σk
i =

⎧
⎨

⎩

(xk
i)2, i ∈ I1,

min{(xk − αi)
2, (xk − γi)

2}, i ∈ I2
1, i �∈ I1 ∪ I2

5: Dk = diag(σk
1 , . . . , σk

m)
6: Bk = ADkAT

7: rk = Axk − Q
8: Find uk as the solution of the system Bku = rk

9: δk = ukA
10: gk = Dkδk

11: λk = min{1, ρνk}
12: xk +1 = xk + λkgk

13: end for

4 Interior Point Method

Consider the problem (1), (3) and (5). In order to solve it by Dikin Interior
Point Method [1,3,4] it is necessary to find interior point of the set given by
constraints (3) and (5). Search for interior point is done by the Algorithm2. On
the line 11, νk is maximal feasible step length with respect to (5), ρ ∈ (0, 1) is a
coefficient insuring that xk+1 is an interior point. Based on [1] it is taken equal
to 0.8, ε is the given tolerance.

After interior point was found, Interior Point Method (Algorithm3) which
is similar to Algorithm 2, starts working. On the line 12, λ′

k is found as a result
of exact one-dimensional minimization of convex function φ(λ) = F (xk + λgk).
Derivative of φ has the following form:

φ′(λ) =
m∑

i=1

gk
i

(
Si|xk

i + λgk
i |2sign(xk

i + λgk
i) − Hi

)
.

Interior Point and Newton Methods in Solving High Dimensional Flow 143

Algorithm 3. Interior Point Method
1: Take initial point x0 so that it strictly satisfies constraints (3), (5)
2:
3: Take Φ0 such that

√
Φ0 ≥ ε

4: for k = 1, 2 . . . , until
√

Φk < ε do

5: σk
i =

⎧
⎨

⎩

(xk
i)2, i ∈ I1,

min{(xk − αi)
2, (xk − γi)

2}, i ∈ I2,
1, i �∈ I1 ∪ I2

6: Dk = diag(σk
1 , . . . , σk

m)
7: W k = ADk, Bk = W kAT

8: ck = ∇F (xk), dk = W kck

9: Find uk as the solution of the system Bku = dk

10: δk = ukA − ck

11: gk = Dkδk

12: λ′
k = arg min

λ∈[0,1]
{F (xk + λkgk)}

13: λk = min{λ′
k, ρνk}

14: xk +1 = xk + λkgk

15: Φk =
∑n

i =1 σk
i (δk

i)2

16: end for

Let us use the following notation: θk
i is a root of the equation

Si|xk
i + λgk

i |2sign(xk
i + λgk

i) − Hi = 0, i ∈ K = {i : gk
i 	= 0}.

As can be seen, θk
i have the following form:

θk
i =

⎧
⎪⎪⎨

⎪⎪⎩

[(
Hi

Si

) 1
2 − xk

i

]/

gk
i , Hi

Si
≥ 0,

[

−
(
−Hi

Si

) 1
2 − xk

i

]/

gk
i , Hi

Si
< 0.

Function φ′(λ) is monotonously increasing, therefore solution λ′
k of the equation

φ′(λ) = 0 belongs to the interval [mini∈K θk
i ,maxi∈K θk

i]. Search for λ′
k on this

interval is done by cubic interpolation method [7].
On the line 13, νk is defined in the same way as is in Algorithm 2.
As it can be seen, the most computationally intensive part in the both algo-

rithms is the solution of linear systems. Since Bk is always positive definite,
sparse Cholesky method is applicable here. As it is shown in [11–13] the sparse
Cholesky method consists of the following steps:

1. Fill-in reduction (permutation of the matrix B aimed to reduce amount of
nonzero elements in Cholesky matrix). In this paper nested dissection [10,11]
is used as the fill-in reduction technique.

2. Symbolic factorization (search for indexes of nonzero elements in Cholesky
matrix).

3. Numerical factorization (calculation of the Cholesky matrix nonzero ele-
ments).

144 O.O. Khamisov and V.A. Stennikov

In the both algorithms we have Bk = ADkAT , so at each iteration only matrix
Dk is changing. It does not affect the nonzero structure of Bk, which is the same
as the structure of AAT , therefore fill-in reduction and symbolic factorization can
be done before the cycle. Additionally numerical factorization can be done not at
every iteration, but only if change of xk becomes small or when change xk results
in constrains violation. Moreover, if fill-in reduction and symbolic factorization
are done during the interior point search, this information can be used in Interior
Point Method, as well as numerical factorization during several first iterations.
Optimized algorithm, that unifies interior point search and Interior Point method
is given by the Algorithm 4. Computational effect of such approach is described
in the section Numerical result.

Algorithm 4. Interior Point Method optimized
1: Take initial point x0 so that it strictly satisfies (5)
2: Obtain permutation, granted by fill-in reduction, based on the nonzero structure

of AAT

3: Do symbolic factorization.
4: � (Start interior point search)
5: Take Φ0 such that

√
Φ0 ≥ ε

6: Choose g0 such that ‖g0‖ > ε, λ0 = 1.
7: for k = 1, 2, . . . until

√
Φk < ε do

8: if λk−1‖gk − 1‖ ≤ ε then
9: Calculate Dk

10: Refresh Bk and do numerical factorization
11: end if
12: Calculate uk using already obtained Cholesky decomposition
13: Calculate xk +1 and rk +1

14: if xk +1 does not satisfy inequality constrains (5) then
15: Go to line 9
16: end if
17: Calculate Φk

18: end for
19: � (Start Interior Point method)
20: Set g0 = 0
21: Take Φ0 such that

√
Φ0 ≥ ε

22: for k = 1, 2, . . . until
√

Φk < ε do
23: if λk − 1‖gk − 1‖ ≤ ε then
24: Calculate Dk

25: Refresh Bk and do numerical factorization
26: end if
27: Calculate uk using already obtained Cholesky decomposition
28: Calculate xk +1

29: if xk +1 does not satisfy inequality constrains (5) then
30: Go to line 24
31: end if
32: Calculate Φk

33: end for

Interior Point and Newton Methods in Solving High Dimensional Flow 145

5 Matrices Multiplication in Interior Point Method

Approach used in Algorithm4 allows us to reduce the amount of matrix multi-
plications ADkAT , which is the most expensive operation after Cholesky decom-
position. Additionally, since matrices Dk are diagonal without zero entries, and
A is an incidence matrix, multiplication can be simplified in the following way.

Let us define B
k

= ADkA
T
, then if i 	= j and exists t such that Ati 	= 0 and

Atj 	= 0, then B
k

ij = −Dk
t . Otherwise, if i 	= j and such t does not exist, B

k

ij = 0.

B
k

ii = −∑n
j =1,j �= i B

k

ij .

Matrix Bk is obtained from B
k

by excluding column and row with the same
index as the index of the row excluded from A. Without loss of generality, we
can assume that the last row is excluded from A. Explicit computation of B

k
is

unnecessary.
If columns of A are sorted in lexicographic order depending on the row indexes

of nonzero elements, we can say that ji is column index, starting form which
columns cannot have nonzero elements with row indexes less then i. Then index
t corresponding to non-diagonal entry Bk

ij is ji plus amount of non-diagonal
nonzero entries of the i-th column of Bk before Bk

ij . Therefore diagonal entries
are calculated by the following formula

Bk
ii =

n∑

j = i,j �=i

Bk
ij +

⎧
⎨

⎩

Dji +1 − 1,ji +1 − 1, if column ji+1 − 1 has 1
nonzero element,

0, otherwise.

6 Acceleration by Constant Multiplication

Since constants Si, Hi and Qi are of order 10−4, 103 and 102 respectively [2],
in practice it can lead to computational difficulties. To improve performance,
scaled vector xs is used instead of x:

xs = νx, ν > 0. (7)

Then problem (1), (3) and (5) is reformulated in the following form:

F s(xs) =

(
m∑

i=1

Si|xs
i |3

3
− Hi

ν2
xs

i

)

→ min, xs ∈ IRm,

Axs =
1
ν

Q,

xs
i ≥ αi

ν
, i ∈ I1,

αi

ν
≥ xs

i ≥ γi

ν
, i ∈ I2,

here F s(xs) = F (xs)
ν3 . Numerical experiments show the following. When

ν = β
√

0.001 = 0.1,

all constants Si, Hi

ν2 and Qi

ν are approximately of the same order. In this case we
obtain essential acceleration in computations, that can be seen in the Table 1.

146 O.O. Khamisov and V.A. Stennikov

7 Combined Method for Constrained Problem

As it can be seen from Table 2, Newton Method works much faster, then Interior
Point Method, but it cannot work with inequality constraints (5) efficiently.
Therefore in the case, when inequality constraints are present, the following
scheme is used. Firstly Newton Method is used for solving (1) and (3). Its solution
is projected on the set

Ω = {x | xi ≥ δ1i , i ∈ I1, xi ∈ [αi + ξi, γi − ξi], ξi = δ2i (αi − γi), i ∈ I2}, (8)

here δ1i > 0, i ∈ I1, δ2i > 0, i ∈ I2. This set is chosen so that any its point
satisfies strictly (5). Obtained projection is taken as initial for interior point
search and Interior Point Method. Formalization of the algorithm has form 5.
Results of the algorithm work are presented in Table 3, its comparison with usage
of Interior Point Method is given in Table 4.

Algorithm 5. Combined method
1: Run Newton Method for the problem (1), (3)
2: Do fill-in reduction and symbolic factorization for the matrix AAT

3: Run Algorithm 4 without fill-in reduction and symbolic factorization starting form
the closest point to the one obtained by the Newton Method, that belongs to Ω
(8).

8 Numerical Results

The algorithms were coded in C++. Results of numerical experiments are given
in Tables 1, 2, 3 and 4. Computations were made in PC with Intel Core i7 /
2.4 GHz / 16 GB.

Here the following notations are used: n — amount of nodes in system (rows
in A), m amount of edges in system (columns in A), column Scaling describes
whether x is scaled according to (7) or not, Iter. — number of iterations, CG
iter. — average among all Newton Method steps number of iterations for Con-
jugate Gradient, IPS iter — number of iterations of interior (and feasible) point
search (Algorithm 2), Time — time in seconds, NZ (%) — number of nonzero
entries relative to all entries in the matrices A and Lk, Lk — Cholesky matrix,
obtained from Bk (nonzero structures of Lk and Bk is always same on any iter-
ation, since only diagonal matrix Dk changes), Bk

c — amount of calculations of
values Bk and numerical factorizations, Total time — full computational time.

In Table 1 problem without inequality constrains (5) is considered. Therefore
Newton Method by itself is sufficient to find optimal solution (theoretically it
can fail because of matrix being indefinite or possibly singular, but such cases
did not happen in numerical experiments). Additionally Cholesky factorization
can be done only once, due to the fact that matrices Dk and Bk are same for

Interior Point and Newton Methods in Solving High Dimensional Flow 147

Table 1. Problem without inequality constraints (5) with and without scaling

Matrix size Scaling Newton Method Interior Point Method

n m CG iter. Iter. Time IPS iter. Iter. Time

1000 1500 No 1327 5 0.16 11 17 0.1

Yes 338 5 0.1 10 6 0.1

5000 7500 No 1406 6 1.3 11 19 2

Yes 398 5 0.35 9 19 2

10000 15000 No 1594 6 2.9 11 22 10.5

Yes 574 7 1.2 9 19 10.1

Table 2. Problem without inequality constraints (5). Newton Method and Dikin Inte-
rior Point Method

Matrix size NZ(%) Newton Method Interior Point Method

N M A Lk CG iter. Iter. Time IPS iter. Iter. Time

1000 1500 0.2 7.6 338 5 0.1 10 6 0.1

5000 7500 0.04 7.3 398 5 0.4 10 6 1.4

10000 15000 0.02 7.3 396 6 0.8 10 7 10

20000 30000 0.01 7.2 419 6 1.7 10 8 73

30000 45000 0.0067 7.1 414 6 2.6 10 8 225

50000 75000 0.004 7.9 443 6 5.2 10 8 1254

100000 150000 0.002 5.6 479 6 14 10 10 6220

1000000 1500000 0.0002 — 837 6 327 — — >10000

all iterations. As can be seen, scaling (7) allows to reduce number of iterations
for both Newton Method and Interior Point Method.

In Table 2 Newton Method and Interior Point Method with scaling are com-
pared. As can be seen, Interior Point Method works much slower, because density
of Lk is higher, than density of A, therefore Cholesky decomposition together
with solution of triangular system with Lk require more computations, than
computations with A.

In Table 3 problem (1), (3) and (5) is considered, combined method 5 is
used. Firstly Newton Method is applied to find solution of problem (1) and (3).
Then obtained point is projected to the shrunk area, as described in Sect. 7
(here δ1i = 10, δ2i = 0.3). Since in interior point search and in Interior Point
Method matrix Bk changes every several iterations, amount of calculations of
Bk is presented in column Bk calc. for interior point search and for Interior
Point Method.

In Table 4 problem (1), (3) and (5) is considered. Combined method 5 is
compared with usage of Interior Point Method only. As can be seen, with growth
of the problem size, performance difference increases in favor of method 5.

148 O.O. Khamisov and V.A. Stennikov

Table 3. Problem with inequality constraints (5)

Matrix size Newton Method Interior Point Method Total time

IPS

n m CG iter. Iter. Time Iter. Bk
c Iter. Bk

c Time

1000 1500 478 10 0.3 10 1 30 2 0.2 0.5

5000 7500 1383 12 2.5 10 1 110 3 7.8 8.2

10000 15000 1476 12 5.4 10 1 737 6 85 95

20000 30000 2631 12 20 10 1 954 7 693 713

30000 45000 3776 12 46 10 1 8351 14 4667 4713

Table 4. Problem with inequality constraints (5). Solution with Newton method and
without it

Matrix size Newton Method Interior Point Method Total time

IPS

n m Iter. Bk calc. Iter. Bk calc.

1000 1500 Used 10 1 30 2 0.5

Not used 11 2 36 2 0.2

5000 7500 Used 10 1 110 3 8.2

Not used 20 3 61 3 7.9

10000 15000 Used 10 1 737 6 95

Not used 183 3 1199 6 111

20000 30000 Used 10 1 954 7 713

Not used 18 3 3608 6 1198

9 Conclusion

A method, aimed to solve high dimensional flow distribution problem is pre-
sented in this work. Combination of Newton Method and Dikin Interior Point
Method based on sparse matrices techniques is used, to provide solution for
such problems. Numerical experiments show, that it allows to obtain solution
for systems consisting of 10000 — 30000 nodes in reasonable time on a personal
computer. Additionally presented algorithm provides opportunity for parallel
computations.

Main advantage of the suggested combination of Newton Method and Interior
Point Method consists in the following. This combination grants more precise
solution, than Interior Point Method alone. Since Newton Method works fast, its
usage worsen computational time negligibly. Reduced running time is obtained
due to the good starting point for Interior Point Method provided by Newton
Method.

Interior Point and Newton Methods in Solving High Dimensional Flow 149

References

1. Dikin, I.I.: Interior Point Method in Linear and Nonlinear programming. Moscow,
Krasand (2010). (in Russian)

2. Novitskiy, N.N., Dikin, I.I.: Calculation of feasible pipeline network operating con-
ditions by the interior-point method. Bull. Russ. Acad. Sci. Energy. (5) (2003). (in
Russian)

3. Dikin, I.I.: Iterative solution of problems of linear and quadratic programming.
Sov. Math. Dokl. 8, 674–675 (1967)

4. Vanderbei, R.J.: Linear Programming Foundations and Extentions, 4th edn.
Springer, Heidelberg (2014)

5. Merenkov, A.P., Khasilev, V.Y.: Theory of Hydralic Networks. Moscow, Nauka
(1985). (in Russian)

6. Farhat, I.A., Al-Hawary, M.E.: Optimization methods applied for solving the short-
term hydrothermal coordination problem. Electr. Power Syst. Res. 79, 1308–1320
(2009)

7. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Heidelberg (2006)
8. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,

Cambridge (2004)
9. Van der Vorst, H.A.: Iterative Krylov Methods for Large Linear Systems. Cam-

bridge Monographs on Applied and Computational Mathematics, vol. 13, 2nd edn.
Cambridge University Press, Cambridge (2003). Ciarlet, P.G., Iserles, A., Kohn,
R.V., Wright M.H. (eds.)

10. Saad, Y.: Iterative Methods for Sparce Linear Systems, 2nd edn. SIAM, Philadel-
phia (2003)

11. Pissanetsky, S.: Sparce Matrix Technology. Academic Press, New York (1984)
12. Davis, T.A.: Direct Methods for Sparce Linear Systems. SIAM, Philadelphia

(2006)
13. Gilbert, J.R., Ng, E.G., Peyton B.W.: An Efficient Algorythm to Compute Row and

Column Counts for Sparce Cholesky Factorization. Oak Ridge National Laboratory
(1992)

Hierarchical Clustering and Multilevel
Refinement for the Bike-Sharing Station

Planning Problem

Christian Kloimüllner(B) and Günther R. Raidl

Institute of Computer Graphics and Algorithms, TU Wien,
Favoritenstraße 9–11/1861, 1040 Vienna, Austria

{kloimuellner,raidl}@ac.tuwien.ac.at

Abstract. We investigate the Bike-Sharing Station Planning Problem
(BSSPP). A bike-sharing system consists of a set of rental stations, each
with a certain number of parking slots, distributed over a geographical
region. Customers can rent available bikes at any station and return them
at any other station with free parking slots. The initial decision process
where to build stations of which size or how to extend an existing system
by new stations and/or changing existing station configurations is crucial
as it actually determines the satisfiable customer demand, costs, as well
as the rebalancing effort arising by the need to regularly move bikes from
some stations tending to run full to stations tending to run empty. We
consider as objective the maximization of the satisfied customer demand
under budget constraints for fixed and variable costs, including the costs
for rebalancing. As bike-sharing stations are usually implemented within
larger cities and the potential station locations are manifold, the size
of practical instances of the underlying optimization problem is rather
large, which makes a manual decision process a hardly comprehensible
and understandable task but also a computational optimization very
challenging. We therefore propose to state the BSSPP on the basis of
a hierarchical clustering of the considered underlying geographical cells
with potential customers and possible stations. In this way the estimated
existing demand can be more compactly expressed by a relatively sparse
weighted graph instead of a complete matrix with mostly small non-zero
entries. For this advanced problem formulation we describe an efficient
linear programming approach for evaluating candidate solutions, and for
solving the problem a first multilevel refinement heuristic based on mixed
integer linear programming. Our experiments show that it is possible
to approach instances with up to 2000 geographical cells in reasonable
computation times.

Keywords: Bike-Sharing Station Planning Problem · Hierarchical clus-
tering · Multilevel refinement · Facility location problem

1 Introduction

Many large cities around the world have already built bike sharing systems
(BSS), and many more are considering to introduce one or extend an existing
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 150–165, 2017.
https://doi.org/10.1007/978-3-319-69404-7_11

Hierarchical Clustering and Multilevel Refinement for the BSSPP 151

one. These systems consist of rental stations around the city or a certain part
of it where customers can rent and return bikes. A rental station has a specific
number of parking slots where a bike can be taken from or returned to. On the
contrary to bike-rental systems, BSSs encourage a short-term usage of bikes. As
bikes are typically returned at a different station than they have been taken
from, a need for active rebalancing arises as the demand for bikes to rent and
parking slots to return bikes is not equally distributed among the stations.

Finding a good combination of station locations and building these stations
in the right size is crucial when planning a BSS as these stations obviously
directly determine the satisfied customer demand in terms of bike trips, the aris-
ing rebalancing effort, and the resulting fixed and variable costs. Stations close
to public transport, business parks, or large housing developments will likely face
a high demand whereas stations in sparser inhabited areas will probably face a
lower demand. However, also the station density and connectedness of the actual
regions to be covered play crucial roles. Some solitary station that is far from
any other station will most likely not fulfill much demand. Moreover, a clever
choice of station locations might also exploit the natural demands and customer
flows in order to keep the rebalancing effort and associated costs reasonable.

As BSSs are usually implemented in rather large cities the problem of find-
ing optimal locations for rental stations and sizing these stations appropriately
is challenging and manually hardly comprehensible. Thus, there is the need for
computational techniques supporting this decision-making. Besides fixed costs
for building the system, an integrated approach should also estimate mainte-
nance and rebalancing costs over a certain time horizon such that overall costs
for the operator can be approximated more precisely. It is further important to
consider the customer demands in a time-dependent way because there usually
exists a morning peak and an afternoon peak which is due to commuters, people
going to work, and students. Between these peaks, the demand of the system is
usually a bit lower. We refer to this problem as Bike Sharing Station Planning
Problem (BSSPP). The objective we consider here is to determine for a specified
total-cost budget and a separate fixed-cost budget a selection of locations where
rental stations of an also to be determined size should be erected in order to
maximize the actually fulfilled customer demand.

In this work, we first concentrate on how to efficiently model the BSSPP such
that we can also deal with very large instances with thousands of considered
geographical cells for customers and potential station locations. To this end we
propose to utilize a hierarchical clustering to express the estimated potential
customer demand on it. We will then describe a linear programming (LP) based
method to evaluate candidate solutions, and finally present a first novel multilevel
refinement heuristic (MLR), based on mixed integer linear programming (MIP),
to approach the optimization problem.

In Sect. 2 we discuss related work. Section 3 defines the BSSPP formally, also
introducing the hierarchical clustering. Sections 3.3 and 3.4 describe LP models
for determining the actually fulfilled customer demands for a candidate solution
and estimating the required rebalancing effort, respectively. The MLR is then

152 C. Kloimüllner and G.R. Raidl

described in Sect. 4. First computational results on randomly generated instances
are shown in Sect. 5, and finally, conclusions are drawn in Sect. 6.

2 Related Work

There already exists some work which tries to find optimal station locations for
BSSs, although mostly considering different aspects. To the best of our knowl-
edge, Yang et al. [12] were the first who considered the problem in 2010. They
relate the problem to hub location problems, a special variant of the well-known
facility location problem, and propose a mathematical model for it. The con-
sidered objective is to minimize the walking distance by prospective customers,
fixed costs, and, a penalty for uncovered demands. The authors solve the problem
by a heuristic approach in which a first part of the algorithm tries to identify the
location of rental stations and a second, inner part tries to find shortest paths
between origin and destination pairs. The authors illustrate their approach by a
small example consisting of 11 candidate cells for bike stations.

Lin et al. [6] propose a mixed integer non-linear programming model and
solve a small example instance with 11 candidate stations by the commercial
solver LINGO, and furthermore provide a sensitivity analysis. Martinez et al. [8]
develop approaches for a case study within Lisbon having 565 prospective can-
didate stations. They propose a hybrid approach consisting of a heuristic part
utilizing a mixed integer linear programming (MIP) formulation. Locations as
well as the fleet dimension are optimized, e-bikes are also considered, and rebal-
ancing requirements are estimated.

Lin et al. [7] propose a heuristic algorithm for solving the hub location inven-
tory problem arising in BSSPP. They do not only optimize station locations
but their algorithm also identifies where to build bike lanes. As a subproblem
they have to determine the travel patterns of the customers, i.e., solve a flow
problem for a given configuration. They illustrate their approach on a small
example consisting of 11 candidate locations for stations. Saharidis et al. [9] pro-
pose a MIP formulation which minimizes unmet demands and walking distance
for prospective customers. They test their approach in a case study for the city
center of Athens having 50 candidate cells for stations. Chen et al. [1] provide a
mathematical non-linear programming model and solve the problem utilizing an
improved immune algorithm. They define three different types of rental stations
depending on their location (e.g., near a metro station, supermarkets). Their
aim is that stations in the residential area have enough bikes available such that
the morning peak can be managed and that stations near metro lines or impor-
tant places have enough free parking slots available to manage incoming bikes
during the morning peak. They provide a case study for a particular metro line
of Nianjing city including 10 district stations and 31 residential stations. In [2]
Chen and Sun aim at satisfying a given demand and minimizing travel times
of the users. The authors propose an integer programming model which they
solve with the LINGO solver. A computational analysis is provided on a small
example. Frade et al. [3] describe an approach for a case study of the city of

Hierarchical Clustering and Multilevel Refinement for the BSSPP 153

Coimbra, Portugal. They present a compact MIP model which they solve using
the XPRESS solver. Their objective is to maximize the demand covered by the
BSS under budget constraints. They also include the net revenue in their mathe-
matical model which reduces the costs incurred by building the BSS. Their single
test instance consists only of 29 cells or traffic zones, how they call it. Hu et al. [5]
also present a case study for a BSS along a metro line. They aim at minimizing
total costs incurred by building particular BSS stations. In their computational
study they consider three scenarios, each consisting of ten possible station can-
didates. They solve the proposed MIP model by the LINGO solver. Last but
not least, Gavalas et al. [4] summarized diverse algorithmic approaches for the
design and management of vehicle-sharing systems.

We conclude that all previous works on computational optimization
approaches for designing BSS only consider rather small scenarios. Most pre-
vious work accomplishes the optimization with compact mathematical models
that are directly solved by a MIP solver. Such methods, however, are clearly
unsuited for tackling large realistic scenarios of cities with up to 2000 cells or
more. In the following, we therefore propose a novel multilevel refinement heuris-
tic based on a hierarchical clustering of the demand data.

3 Problem Formalization

The considered geographical area is partitioned into cells. Let S be the set of
cells where a BSS station may potentially be located (station cells), and let V be
the set of cells where some positive travel demand (outgoing, ingoing, or both)
from prospective customers of the BSS exists (customer cells).

To handle such a large number of cells effectively, we consider a hierarchical
abstraction as crucial in order to represent and model the further data in a mean-
ingful and relatively compact form. To this end, we are expecting a hierarchical
clustering of all customer cells V as input.

This hierarchical clustering is given in the form of a rooted tree with the
inner nodes corresponding to clusters and the leafs corresponding to the cells.
All cells have the same depth which is equal to the height of the tree, denoted by
h. Let C = C0 ∪ . . . ∪ Ch be the set of all tree nodes, with Cd corresponding to
the subset of nodes at depth d = 0, . . . , h. C0 = {0} contains only the root node
0 representing the single cluster with all cells, while Ch = V . Let super(p) ∈ C
be the immediate predecessor (parent cluster) of some node p ∈ C \ C0 and
sub(p) ⊂ C be the set of immediate successors (children) of a cluster p ∈ C \Ch.

As the travel demand of potential users varies over time we are given a (small)
set of periods T = {1, . . . , τ} for a “typical” day for which the planning shall
be done. The estimated existing travel demand occurring in each period t ∈ T
from/to any cell v ∈ V is given by a weighted directed graph Gt = (Ct, At).
All relevant outgoing travel demand at a cell v is represented by outgoing arcs
(v, p) ∈ At with p ∈ C and corresponding values (weights) dt

v,p > 0, i.e., (v, p)
represents all expected trips from v to any cell represented by p in period t that
might ideally be satisfied, and dt

v,p indicates the expected number of these trips.

154 C. Kloimüllner and G.R. Raidl

Moreover, for each time period t ∈ T we are given its duration denoted by δperiodt

and we are given a global parameter δrent which defines the average duration of
a single trip performed by some user of the BSS.

The following conditions must hold to keep this graph as compact and mean-
ingful as possible: the target node p of an arc (v, p) must not be a predecessor
of v in the cluster tree. Self-loops (v, v), however, are allowed and important
to model demand where the destination corresponds to the origin, arcs repre-
senting a neglectable demand, i.e., below a certain threshold, shall be avoided.
Consequently, if there is an arc (v, p) no further arc (v, q) is allowed to any node
q being a successor or a predecessor of p.

All estimated ingoing travel demand for each cell v ∈ V is given corre-
spondingly by arcs (p, v) ∈ At with p ∈ C with demand values dt

p,v ≥ 0, and
corresponding conditions must hold.

Furthermore, it is an important property, that ingoing and outgoing demands
have to be consistent: Let us denote by V (p) the subset of all cells from V
contained in cluster p ∈ C, i.e., the leafs of the subtree rooted in p, and by
C(p) the subset of all the nodes q ∈ C that are part of the subtree rooted in p,
including p and V (p). For any p ∈ C \ V it must hold that

∑

(v,q)∈At|v∈V (p),q �∈C(p)

dt
v,q ≥

∑

(q,v)∈At|q∈C(p),v �∈V (p)

dt
q,v (1)

and ∑

(q,v)∈At|q �∈C(p),v∈V (p)

dt
q,v ≥

∑

(v,q)∈At|v �∈V (p),q∈C(p)

dt
v,q. (2)

Condition (1) ensures that the total demand originating at the leafs of the subtree
rooted at p and leading to a destination outside of the tree is never less than
the total ingoing demand at all the cells outside the tree originating from some
cluster inside the tree. Condition (2) provides a symmetric condition for the
total ingoing demand at all the leafs of the tree. Furthermore, for the root node
p = 0, inequalities (1) and (2) must hold with equality.

For each customer cell v ∈ V , we are given a (typically small) set S(v) ⊆ S
of station cells in the vicinity by which v’s demand may be (partly) fulfilled.
Furthermore, let av,s ∈ (0, 1], ∀v ∈ V, s ∈ S(v), be an attractiveness value
indicating the expected proportion of demand from v (ingoing as well as out-
going) that can at most be fulfilled with a sufficiently sized station at s. These
attractiveness values will be determined primarily based on the walking distances
among the stations (the value will typically roughly exponentially decrease with
the distance), but can be in general an arbitrary distance decay model. If there
is a one-to-one correspondence of cells in V and S, for each v ∈ V , v ∈ S(v),
av,v = 1 will typically hold.

For the costs of building a station we consider here only a (strongly) sim-
plified linear model, but we distinguish fixed costs for building the station and
initially buying the bikes, variable costs for maintaining the station and the

Hierarchical Clustering and Multilevel Refinement for the BSSPP 155

respective bikes, and costs for performing the rebalancing. Let bfix and bvar be
the average fixed and variable costs per bike slot, and let breb be the average
costs for rebalancing one bike per day over the whole planning horizon. The fixed
costs for a station in cell s ∈ S with xs slots are then fixcost(s) = bfix · xs and
the total costs are totalcost(s) = bfix · xs + bvar · xs + breb · Qx(s), where Qx(s)
denotes an estimation for the number of bikes that need to be redistributed from
station s to some other station. We assume here that the size of each station,
i.e., the number of its slots, can be freely chosen from 0 (i.e., no station is built)
up to some maximum cell-dependent capacity zs ∈ N. The determination of the
rebalancing effort for a given candidate solution will be described in Sect. 3.4.
We remark that this cost model only is a first very rough estimate. Considering
location dependent costs, costs for a station to be built that are independent of
the number of slots, and a more restricted selection of station sizes is left for
future research.

We assume that a total budget Btot
max is given as well as a budget for only the

sum of all fixed costs Bfix
max < Btot

max, and both must not be exceeded in a feasible
solution.

3.1 Solution Representation

A solution x = {xs ∈ N | s ∈ S} assigns each station cell s ∈ S an amount of
parking slots to be built, possibly also 0 which would mean that no station is
going to be built in cell s.

3.2 Objective

The goal is to maximize the expected total number of journeys in the system,
i.e., the total demand that actually can be fulfilled at each day over all time
periods, considering the available budgets Btot

max and Bfix
max.

Let D(x, t) be the total demand fulfilled by solution x in time period t ∈ T ,
and let Qx(s) be the required rebalancing effort arising at each station s ∈ S |
xs �= 0 in terms of the number of bikes to be moved to some other station. The
calculation of these values will be considered separately in Sects. 3.3 and 3.4.
The BSSPP can then be stated as the following MIP.

max
∑

t∈T

D(x, t) (3)

∑

s∈S

(bfix · xs + bvar · xs + breb · Qx(s)) ≤ Btot
max (4)

∑

s∈S

bfix · xs ≤ Bfix
max (5)

xs ∈ {0, . . . , zs} s ∈ S (6)

156 C. Kloimüllner and G.R. Raidl

Inequality (4) calculates the total costs over all stations and ensures that the
total budget is not exceeded, while inequality (5) restricts only the fixed costs
over all stations by the respective budget.

3.3 Calculation of Fulfilled Customer Demand

To determine the overall fulfilled demand for a specific, given solution x and
a certain time slot t ∈ T , we first make the following local definitions. Let
S′ = {s ∈ S | xs �= 0} correspond to the set of cells where a station actually
is located, V ′ = {v ∈ V | S(v) ∩ S′ �= ∅} be the set of customer cells whose
demand can possibly (partly) be fulfilled as at least one station exists in the
neighborhood. Moreover, let C ′ = {p ∈ C | V (p)∩V ′ �= ∅} be the set of all nodes
in the hierarchical clustering representing relevant customer cells, i.e., cells whose
demand can possibly be fulfilled. The set S′(v) = S(v) ∩ V ′, ∀v ∈ V ′ refers to
the existing stations that might fulfill part of v’s demand, and V ′(p) = V (p) ∩
V ′, ∀p ∈ C ′ denotes the existing customer cells contained in cluster p. C ′(p)
refers to the subset of all the nodes q ∈ C ′ that are part of the subtree rooted at
p, including p and V ′(p), and G′ = (C ′, A′) with A′ = {(p, q) ∈ At | p, q ∈ C ′} is
then the correspondingly reduced demand graph.

In the following we use variables u, v, w for referencing customer cells in V ′,
variables p, q for referencing cluster nodes in C ′ (which might possibly also be
customer cells), variable s for station cells in S′, and α, β for arbitrary nodes in
C ′ ∪ S.

We further define for each arc in A′ corresponding to a specific demand an
individual flow network depending on the kind of the arc:

– Arcs (u, v) ∈ A′ with u, v ∈ V ′, including the case u = v:
Gu,v

f = (V u,v
f , Au,v

f) with node set V u,v
f = {u} ∪ S′(u) ∪ S′(v) ∪ {v} and arc

set Au,v
f = ({u} × S′(u)) ∪ (S′(u) × S′(v)) ∪ (S′(v) × {v}).

– Arcs (v, p) ∈ A′ with v ∈ V ′, p ∈ C ′ \ V ′:
Gv,p

f = (V v,p
f , Av,p

f) with node set V v,p
f = {v} ∪ S′(v) ∪ {p} and arc set

Av,p
f = ({v} × S′(v)) ∪ (S′(v) × {p}).

– Arcs (p, v) ∈ A′ with p ∈ C ′ \ V ′, v ∈ V ′:
Gp,v

f = (V p,v
f , Ap,v

f) with node set V p,v
f = {p} ∪ S′(v) ∪ {v} and arc set

Ap,v
f = ({p} × S′(v)) ∪ (S′(v) × {v}).

All arcs (α, β) ∈ Ap,q
f of all flow networks have associated correspond-

ing flow variables 0 ≤ fp,q
α,β ≤ dt

p,q. The fulfilled demands can be modeled
within these networks as maximum flows. Furthermore, we utilize variables
H in

p , Hout
p ∀p ∈ C ′ \ V ′, for the total inflow/outflow at all customer cells V ′(p)

originating at/targeted to cluster nodes from outside cluster p, i.e., C ′\C ′(p)\V ′.
Variables F in

p , F out
p , ∀p ∈ C ′ \ V ′, represent the total ingoing/outgoing flows at

all cluster nodes q within cluster p originating at/targeted to customer cells out-
side cluster p, i.e., V ′ \ V ′(p), respectively. The flow variables, however, depend

Hierarchical Clustering and Multilevel Refinement for the BSSPP 157

on each other and the stations’ capacities. A weighting factor ω is used to adjust
the number of trips which can be performed in time period t by using only a
single bike. The following LP is used to compute the total satisfied demand

D(x, t) = max
∑

(v,p)∈A′|v∈V ′

∑

(v,s)∈A
v,p
f

f
v,p
v,s (7)

s.t.
∑

(v,s)∈A
v,p
f

f
v,p
v,s ≤ d

t
v,p (v, p) ∈ A

′ | v ∈ V
′ (8)

∑

(s,v)∈A
p,v
f

f
p,v
s,v ≤ d

t
p,v (p, v) ∈ A

′ | v ∈ V
′ (9)

f
u,v
u,s =

∑

s′∈S′(v)

f
u,v

s,s′ (u, v) ∈ A
′ | u, v ∈ V

′
,

s ∈ S
′
(u)

(10)

∑

s′∈S′(u)

f
u,v

s′,s
= f

u,v
s,v (u, v) ∈ A

′ | u, v ∈ V
′
,

s ∈ S
′
(v)

(11)

f
v,p
v,s = f

v,p
s,p (v, p) ∈ A

′ | v ∈ V
′
,

p ∈ C
′ \ V

′
, s ∈ S

′
(v)

(12)

f
p,v
p,s = f

p,v
s,v (p, v) ∈ A

′ | v ∈ V
′
,

p ∈ C
′ \ V

′
, s ∈ S

′
(v)

(13)

− xs ≤
∑

(p,q)∈A′

∑

(α,s)∈A
p,q
f

f
p,q
α,s

−
∑

(p,q)∈A′

∑

(s,α)∈A
p,q
f

f
p,q
s,α

− ω ·
δrent ·∑(p,q)∈A′

∑
(α,s)∈A

p,q
f

fp,q
α,s

δperiod
t

s ∈ S
′ (14)

xs ≥
∑

(p,q)∈A′

∑

(α,s)∈A
p,q
f

f
p,q
α,s

−
∑

(p,q)∈A′

∑

(s,α)∈A
p,q
f

f
p,q
s,α

+ ω ·
δrent ·∑(p,q)∈A′

∑
(s,α)∈A

p,q
f

fp,q
s,α

δperiod
t

s ∈ S
′ (15)

H
in
p =

∑

(q,v)∈A′|q �∈C′(p)∪V ′,v∈V ′(p)
∑

(s,q)∈A
q,v
f

f
q,v
s,q

p ∈ C
′ \ V

′ (16)

F
in
p =

∑

(v,q)∈A′|v �∈V ′(p),q∈C′(p)\V ′
∑

(s,q)∈A
v,q
f

f
v,p
s,q

p ∈ C
′ \ V

′ (17)

158 C. Kloimüllner and G.R. Raidl

H in
p ≥ F in

p p ∈ C ′ \ V ′ \ {0} (18)

H in
0 = F in

0 (19)

Hout
p =

∑

(v,q)∈A′|v∈V ′(p),q �∈C′(p)∪V ′
∑

(q,s)∈Aq,v
f

fq,v
q,s

p ∈ C ′ \ V ′ (20)

F out
p =

∑

(q,v)∈A′|q∈C′(p)\V ′,v �∈V ′(p)
∑

(p,s)∈Aq,v
f

fq,v
q,s

p ∈ C ′ \ V ′ (21)

Hout
p ≥ F out

p p ∈ C ′ \ V ′ \ {0} (22)

Hout
0 = F out

0 (23)

0 ≤ fv,p
v,s ≤ av,s · dt

v,p (v, p) ∈ A′ | v ∈ V ′,
(v, s) ∈ Av,p

f

(24)

0 ≤ fp,v
s,v ≤ as,v · dt

p,v (p, v) ∈ A′ | v ∈ V ′,
(s, v) ∈ Ap,v

f

(25)

0 ≤ fp,q
α,β ≤ dt

p,q (p, q) ∈ A′,
(α, β) ∈ Ap,q

f | α, β �∈ V ′
(26)

F in
p , F out

p ≥ 0 p ∈ C ′ \ V ′ (27)

H in
p ,Hout

p ≥ 0 p ∈ C ′ \ V ′ (28)

Objective function (7) maximizes the total outgoing flow over all v ∈ V ′, i.e.,
the fulfilled demand. Note that this also corresponds to the total ingoing flow
over all v. Inequalities (8) limit the total flow leaving v ∈ V ′, for each demand
(v, p) ∈ A′ | v ∈ V ′ to dt

v,p. Inequalities (9) do the same w.r.t. ingoing demands.
Equalities (10) and (11) provide the flow conservation at source and destination
stations s for (u, v) ∈ A′ with u, v ∈ V ′. Equalities (12) provide the flow conser-
vation at the source station in case of an arc (v, p) ∈ A′ towards a cluster node
p, while (13) provide the flow conservation at the destination station in case
of an arc (p, v) ∈ A′ originating at a cluster node p. Inequalities (14) and (15)
provide the capacity limitations at each station v ∈ V ′. It is the accumulated
demand occurring at the particular station including a “compensation term” for
large values of ingoing as well as outgoing demand. The fraction δperiodt /δrent

represents the number of trips which can ideally be performed in period t using
a single bike. The weighting factor ω is used to adjust this value such that it
better reflects reality as the bike trips are not likely to be performed “optimally”
with respect to the distribution over the whole time period in real world. Equal-
ities (16) compute the total outgoing flow for the leafs of the subtree rooted at
p to any cluster which is not part of the subtree rooted at p. Equalities (17)

Hierarchical Clustering and Multilevel Refinement for the BSSPP 159

compute the total ingoing flow for each cluster node p by considering the ingo-
ing flow from any v ∈ V for which p is not a predecessor to every cluster of
the subtree rooted at p. Inequalities (18) ensure that there must not be more
ingoing flow to clusters of the subtree rooted at p as there is outgoing flow from
the leafs contained in the subtree rooted at p. Equality (19) ensures that at the
top level, i.e., at the root node 0, the outgoing flow from leaf nodes to cluster
nodes and the ingoing flow from cluster nodes to leaf nodes is balanced, i.e., the
same amount. Inequalities (21)–(23) state the corresponding constraints for the
outgoing flow instead of the ingoing flow. Equations (24) and (25) provide the
domain definitions for the flow variables from/to a cell v to/from a neighboring
station s by considering the demand weighted by factor av,s. For all remaining
flow variables, (26) provide the domain definitions based on the demands. The
remaining variables are just restricted to be non-negative in (27) and (28).

3.4 Calculation of Rebalancing Costs

We state an LP for minimizing the total rebalancing effort over all time periods
T at each station s ∈ S′ by choosing an appropriate initial fill level for each
period, ensuring that the whole prospective customer demand is fulfilled. We
estimate the rebalancing effort by considering the necessary changes in the fill
levels inbetween the time periods. The LP uses the following decision variables.
By yt,s we refer to the initial fill level of station s ∈ S′ at the beginning of time
period t ∈ T , and by r+t,s and r−

t,s we denote the number of bikes which need to
be delivered to, respectively picked up from, station s ∈ S′ at the end of period
t ∈ T to achieve the fill levels yt+1,s (or y1,s in case of t = τ).

The accumulated demand Dacc
t,v can be calculated by utilizing the solution of

the previous model from Sect. 3.3, c.f. inequalities (14) and (15). The following
LP is solved for each station s ∈ S′ | xs �= 0 independently. For station cells
s ∈ S \ S′, i.e., where no station is actually built in solution x, Qx(s) = 0.

Qx(s) = min
∑

t∈T

r+t,s + r−
t,s (29)

s.t. yt,s + r+t,s ≥ Dacc
t,s t ∈ T (30)

xs − yt,s + r−
t,s ≥ −Dacc

t,s t ∈ T (31)

yt+1,s = yt,s − Dacc
t,s + r+t,s − r−

t,s t ∈ T \ {τ} (32)

y1,s = yτ,s − Dacc
τ,s + r+τ,s − r−

τ,s (33)

0 ≤ yt,s ≤ xs t ∈ T (34)

0 ≤ r+t,s ≤ Dacc
t,s t ∈ T (35)

0 ≤ r−
t,s ≤ −Dacc

t,s t ∈ T (36)

Objective function (29) minimizes the number of rebalanced bikes, i.e., number
of bikes that have to be delivered r+t,s and number of bikes that have to be
picked up r−

t,s. Inequalities (30) compute the number of bikes that have to

160 C. Kloimüllner and G.R. Raidl

be delivered to the corresponding station in order to meet the given demand.
Inequalities (31) compute the number of bikes that have to be picked up from
the corresponding station in order to meet the given demand. Inequalities (32)
state a recursion in order to compute the fill level for the next time period.
Inequalities (33) state that for each station the fill level for the next day has
to be again the initial fill level of the first period. Inequalities (34)–(36) are the
domain definitions for the number of bikes to be moved and the fill level for each
time period.

4 Multilevel Refinement Approach

Clearly, practical instances of the problem are far too large to be approached
by a direct exact MIP approach. However, also basic constructive techniques
or metaheuristics with simple, classical neighborhoods are unlikely to yield rea-
sonable results when making decisions on a low level without considering crucial
relationships on higher abstraction levels, i.e., a more global view. Classical local
search techniques on the natural variable domains concerning decisions for indi-
vidual stations may only fine-tune a solution but are hardly able to overcome
bad solutions in which larger regions need to be either supplied with new sta-
tions or where many stations need to be removed. We therefore have the strong
need of some technique that exploits also a higher-level view, deciding for larger
areas about the supply of stations in principle. Multilevel refinement strategies
can provide this point-of-view.

In multilevel refinement strategies [11] the whole problem is iteratively coars-
ened (aggregated) until a certain problem size is reached that can be reasonably
handled by some exact or heuristic optimization technique. After obtaining a
solution at this highest abstraction level, the solution is iteratively extended to
the previous lower level problem instance and possibly refined by some local
search, until a solution to the original problem at the lowest level, i.e., the orig-
inal problem instance, is obtained. For a general discussion and the generic
framework we refer to the work of Walshaw [10].

To apply multilevel refinement to BSSPP we essentially have to decide how
to realize the procedures for coarsening an instance for the next higher level,
solving a reasonably small instance, and extending a solution to a solution at
the next lower level. In the following, we denote all problem instance data at
level l by an additional superscript l. By Pl we generally refer to the problem at
level l of the MLR algorithm described here.

4.1 Coarsening

We have to derive the more abstract problem instance Pl+1 from a given instance
Pl. Naturally, we can exploit the already existing customer cell cluster hierar-
chy for the coarsening. Remember that all customer cells appear in the cluster
hierarchy always at the same level. We coarsen the problem by considering the
customer cells and the station cells separately.

Hierarchical Clustering and Multilevel Refinement for the BSSPP 161

Coarsening of Customer Cells. The main strategy for coarsening the customer
cells is to merge cells having the same parent cluster together with their parent.
This means V l+1 = Cl

hl−1 or simply V l+1 = Ch−l−1, i.e., each cluster node at
depth h − l − 1 corresponds to a customer cell at level l + 1 representing the
merged set of customer nodes contained in Ch−l−1. The hierarchical clustering
of Pl becomes Cl+1 = C0 ∪ . . . ∪ Ch−l. Remember that we already defined
the function super(p) to return the parent cluster of some node p, and therefore
super(pl) : Cl → Cl+1 also returns the cluster from Cl+1 in which cluster pl ∈ Cl

is merged into. The new demand graph Gt,l+1 = (Ct,l+1, At,l+1) consists of the
arc set At,l+1 =

⋃
(pl,ql)∈At,l(super(pl), super(ql)). This demand graph may again

contain self-loops, but it is still simple, i.e., multiple arcs from At,l may map to
the same single arc in At,l+1 and the respective demand values are merged.
Considering an arc (pl+1, ql+1) ∈ At,l+1, its associated demand is thus

dt,l+1
pl+1,ql+1 =

∑

(pl,ql)∈At,l|pl+1=super(pl),ql+1=super(ql)

dt,l
pl,ql . (37)

Note that the conditions for a valid demand graph and valid demand values
stated in inequalities (1) and (2) will still hold when aggregating in this way,
since the total ingoing and outgoing demand at each cluster p ∈ Cl+1 (including
the demands from and to all existing subnodes) stays the same.

Coarsening of Station Cells. To coarsen the station cells we need to define a
hierarchical clustering for them as well. For simplicity we assume from now on
that S = V holds, i.e., there is a one-to-one correspondence of considered station
cells and customer cells. This also appears reasonable in a practical setting. We
can then apply the hierarchical clustering defined for the customer cells also to
the station cells. Maximum station capacities for aggregated stations sl+1 ∈ Sl+1

are naturally calculated by the sum of the respective maximum capacities of the
underlying station cells, i.e., zl+1

sl+1 =
∑

sl∈sub(sl+1) zl
sl .

Coarsening of Neighborhoods. A coarsened neighborhood mapping Sl+1(vl+1)
for each customer cell vl+1 ∈ V l+1 and respective attractiveness values avl+1,sl+1

for station cells sl+1 ∈ Sl+1(vl+1) are determined as follows. The neighborhood
mapping is retained as long as the attractiveness value in the coarsened problem
instance does not fall below a certain threshold λ ∈ (0, 1):

Sl+1(vl+1) =

⎧
⎨

⎩sl+1 ∈
⋃

vl∈sub(vl+1)

super(Sl(vl)) | avl+1,sl+1 ≥ λ

⎫
⎬

⎭ (38)

with the aggregated attractiveness values being

avl+1,sl+1 =

⎧
⎨

⎩
1 if vl+1 = sl+1

∑
vl∈sub(vl+1)

∑
sl∈sub(sl+1)∩Sl(vl)(a

vl,sl)
|sub(vl+1)|·|sub(sl+1)| if vl+1 �= sl+1.

(39)

162 C. Kloimüllner and G.R. Raidl

4.2 Initialization

The initial problem becomes coarsened until we reach some level l where it can
be reasonably solved as it is then small enough. In our experiments with binary
clustering trees here we are stopping the coarsening when the clustering tree
has no more than 25 = 32 leaf nodes, or in other words, at a height of five.
For initializing the solution at the coarsest level we utilize a MIP model. In
this model, the objective stated in Sect. 3.2, the demand calculation for every
time period stated in Sect. 3.3, and the rebalancing LP model stated in Sect. 3.4
are put together. By solving this model we obtain an optimal solution for the
coarsest level, which forms the basis for proceeding with the next step of the
algorithm, the extension to derive step-by-step a more detailed solutions.

4.3 Extension

In the extension step we derive from a solution xl+1 at level l + 1 a solution xl

at level l, i.e., we have to decide for each aggregated station sl+1 ∈ Sl+1 with
xl+1

sl+1 > 0 slots how they should be realized by the respective underlying station
cells sub(sl+1) at level l. We do this in a way so that the globally fulfilled demand
is again maximized by solving the following MIP.

max
∑

t∈T

D(xl, t) (40)

s.t.
∑

sl∈Sl

(
bfix · xl

sl + bvar · xl
sl + breb · Qxl(sl)

) ≤ Btot
max (41)

∑

sl∈Sl

bfix · xsl ≤ Bfix
max (42)

∑

sl∈sub(sl+1)

xl
sl ≤ xl+1

sl+1 sl+1 ∈ Sl+1 (43)

xl
sl ∈ {0, . . . , zl

s} sl ∈ Sl (44)

The objective (40) maximizes the total satisfiable demand. Inequalities (41)
restrict the maximum total budget whereas inequalities (42) restrict the maxi-
mum fixed budget. Inequalities (43) are the bounds on the total number of slots
for the station nodes sl ∈ sub(sl+1). The number of parking slots in each cell xl

sl

is restricted by the maximum number of parking slots allowed in this cell (44).

5 Computational Results

For our experiments we created seven different benchmark sets1, each one con-
taining 20 different, random instances. We consider instances with 200, 300, 500,
800, 1000, 1500, and 2000 customer cells, where each customer cell is also a pos-
sible location for a station to be built. Customer cells are aligned on a grid in
1 https://www.ac.tuwien.ac.at/files/resources/instances/bsspp/lion17.bz2.

https://www.ac.tuwien.ac.at/files/resources/instances/bsspp/lion17.bz2

Hierarchical Clustering and Multilevel Refinement for the BSSPP 163

the plane and euclidean distances have been calculated based on which a hier-
archical clustering with the complete-linkage method was computed. Demands
among the leaf nodes were chosen randomly, considering the pairwise distance
between customer cells, and demands below a certain threshold have been aggre-
gated upwards in the clustering tree such that the demand graphs get sparser.
Only cells within 200 m walking distance are considered to be in the vicinity of
a customer cell and respective attractiveness values are chosen randomly but in
correlation with the distances. We set the maximum station size to zs = 40 for
all cells in all test cases. For slot costs we set bfix = 1750 e, and bvar = 1000 e,
which are reasonable estimates in the Vienna area gathered from real BSSs. The
costs for rebalancing a single bike for one day have been estimated with 3 e per
bike and per day. When projecting this cost to the optimization horizon, e.g.,
1 year, we get breb = 365 · 3 = 1095 e. For coarsening of attractiveness values,
we set the corresponding parameter λ = 0 and for adjusting the number of trips
which can be performed in a particular time period t ∈ T by using only a single
bike we set ω = 1.2. Each instance contains four time periods which we selected
as follows: 4:30 am to 8:00 am, 8:00 am to 12:00 Noon, 12:00 Noon to 6:15 pm,
and 6:15 pm to 4:30 am. The duration for each time period t ∈ T has been set
accordingly and the average trip duration has been set to trent = 10 min.

All algorithms are implemented in C++ and have been compiled with gcc 4.8.
For solving the LPs and MIPs we used Gurobi 7.0. All experiments were executed
as single threads on an Intel Xeon E5540 2.53 GHz Quad Core processor.

Table 1 summarizes obtained results. For every instance set we state the
name containing the number of nodes, the number of different instances we
have tested on (#runs), the maximum total budget (Btot

max), and the maximum
fixed budget (Bfix

max). For the proposed MLR, we list the average objective value
(obj), i.e., the expected fulfilled demand in terms of the number of journeys, the
average number of coarsening levels (#coarsen), the median time (t̃ime), and
the average total costs (totcost) as well as the average fixed costs (fixcost) for
building the number of slots in the solution. Most importantly, it can be seen
that the proposed MLR scales very well to large instances up to 2000 customer
cells.

Table 1. Results for the multilevel refinement heuristic (MLR).

Instance MLR

Name #runs Btot
max [e] Bfix

max [e] obj #coarsen t̃ime [s] totcost [e] fixcost [e]

BSSPP 200 20 200,000.00 130,000.00 9,651.98 3 46.2 198,000.00 126,000.00

BSSPP 300 20 350,000.00 250,000.00 10,951.79 5 60.8 349,250.00 222,250.00

BSSPP 500 20 500,000.00 350,000.00 16,057.78 6 121.6 497,750.00 316,750.00

BSSPP 800 20 850,000.00 550,000.00 28,862.21 6 263.9 849,750.00 540,750.00

BSSPP 1000 20 1,000,000.00 700,000.00 28,967.58 8 346.7 998,250.00 635,250.00

BSSPP 1500 20 1,500,000.00 1,000,000.00 41,208.19 8 574.5 1,498,475.00 953,575.00

BSSPP 2000 20 2,000,000.00 1,300,000.00 55,892.06 8 803.4 1,999,250.00 1,272,250.00

Average 27,370.22 6.3 912,960.71 580,975.00

164 C. Kloimüllner and G.R. Raidl

6 Conclusion and Future Work

We presented an innovative approach to the BSSPP. Previous work only consid-
ers very small instances and case studies to small parts of a city whereas we aim
at solving more realistic large-scale scenarios arising in large cities. As we have
to cope with thousands of customer cells and potential station cells it is most
fundamental to model the potential demands efficiently. To this end, we pro-
posed to use a hierarchical clustering and defining the demand graph on it. This
approach can drastically reduce the data in comparison to a complete demand
matrix with only a very reasonable information loss. Moreover, we provided MIP
formulations to compute the satisfiable demand by given configurations and to
compute the prospective rebalancing costs. Putting them together under the
objective of maximizing the expected satisfied total demand and adding further
constraints for complying with given monetary budget constraints, we obtained
a MIP model that solves our definition of the BSSPP exactly. Because this MIP
model can in practice still only be solved for rather small instances, we further
suggested a multilevel refinement heuristic utilizing the same hierarchical clus-
tering we are given as input. Using this approach we have shown to be able to
solve instances with up to 2000 nodes in reasonable computation times.

In future work it is important to make the cost model more realistic and to
test on more realistic benchmark instances. In particular, we aim at considering
also fixed costs for building a station which are independent of the number of
slots. Furthermore, in practice also only a small, restricted set of different station
configurations is possible per station cell. These extensions introduce interesting
research questions especially in relation to the multilevel refinement procedure.

Acknowledgements. We thank the LOGISTIKUM Steyr, the Austrian Institute of
Technology, and Rosinak & Partner for the collaboration on this topic. This work is
supported by the Austrian Research Promotion Agency (FFG) under contract 849028.

References

1. Chen, J., Chen, X., Jiang, H., Zhu, S., Li, X., Li, Z.: Determining the optimal
layout design for public bicycle system within the attractive scope of a metro
station. Math. Probl. Eng. Article ID 456013, 8 p. (2015)

2. Chen, Q., Sun, T.: A model for the layout of bike stations in public bike-sharing
systems. J. Adv. Transport. 49(8), 884–900 (2015)

3. Frade, I., Ribeiro, A.: Bike-sharing stations: a maximal covering location approach.
Transport. Res. A-Pol. 82, 216–227 (2015)

4. Gavalas, D., Konstantopoulos, C., Pantziou, G.: Design & management of
vehicle sharing systems: a survey of algorithmic approaches. In: Obaidat, M.S.,
Nicopolitidis, P. (eds.) Smart Cities and Homes: Key Enabling Technologies, pp.
261–289. Elsevier Science, Amsterdam (2016). Chap. 13

5. Hu, S.R., Liu, C.T.: An optimal location model for a bicycle sharing program
with truck dispatching consideration. In: IEEE 17th International Conference on
Intelligent Transportation Systems (ITSC), pp. 1775–1780. IEEE (2014)

Hierarchical Clustering and Multilevel Refinement for the BSSPP 165

6. Lin, J.R., Yang, T.H.: Strategic design of public bicycle sharing systems with ser-
vice level constraints. Transport. Res. E-Log. 47(2), 284–294 (2011)

7. Lin, J.R., Yang, T.H., Chang, Y.C.: A hub location inventory model for bicycle
sharing system design: formulation and solution. Comput. Ind. Eng. 65(1), 77–86
(2013)

8. Martinez, L.M., Caetano, L., Eiró, T., Cruz, F.: An optimisation algorithm to
establish the location of stations of a mixed fleet biking system: an application to
the city of Lisbon. Procedia Soc. Behav. Sci. 54, 513–524 (2012)

9. Saharidis, G., Fragkogios, A., Zygouri, E.: A multi-periodic optimization modeling
approach for the establishment of a bike sharing network: a case study of the city
of Athens. In: Proceedings of the International Multi Conference of Engineers and
Computer Scientists 2014. LNECS, vol. II, No. 2210, pp. 1226–1231. Newswood
Limited (2014)

10. Walshaw, C.: A multilevel approach to the travelling salesman problem. Oper. Res.
50(5), 862–877 (2002)

11. Walshaw, C.: Multilevel refinement for combinatorial optimisation problems. Ann.
Oper. Res. 131(1), 325–372 (2004)

12. Yang, T.H., Lin, J.R., Chang, Y.C.: Strategic design of public bicycle sharing
systems incorporating with bicycle stocks considerations. In: 40th International
Conference on Computers and Industrial Engineering (CIE), pp. 1–6. IEEE (2010)

Decomposition Descent Method for Limit
Optimization Problems

Igor Konnov(B)

Institute of Computational Mathematics and Information Technologies,
Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia

konn-igor@ya.ru

http://kpfu.ru

Abstract. We consider a general limit optimization problem whose
goal function need not be smooth in general and only approximation
sequences are known instead of exact values of this function. We suggest
to apply a two-level approach where approximate solutions of a sequence
of mixed variational inequality problems are inserted in the iterative
scheme of a selective decomposition descent method. Its convergence is
attained under coercivity type conditions.

Keywords: Optimization problems · Limit problems · Non-smooth
functions · Mixed variational inequality · Decomposition descent
method · Coercivity conditions

1 Introduction

We first consider the general optimization problem, which consists in finding
the minimal value of some function p over the corresponding feasible set X. For
brevity, we write this problem as

min
x∈X

→ p(x). (1)

Its solution set will be denoted by X∗ and the optimal value of the function by
p∗, i.e.

p∗ = inf
x∈X

p(x).

In order to develop efficient solution methods for this problem we should exploit
certain additional information about its properties, which are related to some
classes of applications.

In what follows, we denote by R
s the real s-dimensional Euclidean space, all

elements of such spaces being column vectors represented by a lower case Roman
alphabet in boldface, e.g. x. For any vectors x and y of R

s, we denote by 〈x,y〉
their scalar product, i.e.,

〈x,y〉 = x�y =
s∑

i=1

xiyi,

c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 166–179, 2017.
https://doi.org/10.1007/978-3-319-69404-7_12

Decomposition Descent Method 167

and by ‖x‖ the Euclidean norm of x, i.e., ‖x‖ =
√〈x,x〉. Next, we define for

brevity M = {1, . . . , n}, |A| will denote the cardinality of a finite set A. As
usual, R will denote the set of real numbers, R̄ = R

⋃{+∞}.
Let us consider a partition of the N -dimensional space

R
N = R

N1 × . . . × R
Nn , (2)

i.e.

N =
n⋃

i=1

Ni,

where N = {1, . . . , N}, N = |N |, Ni = |Ni|, and Ni

⋂ Nj = ∅ if i �= j.
This means that any point x = (x1, . . . , xN)� ∈ R

N is represented by x =
(x1, . . . ,xn)� where xi = (xj)j∈Ni

∈ R
Ni for i ∈ M . The simplest case where

ni = 1 for all i ∈ M and n = N corresponds to the scalar coordinate partition.
Rather recently, partially decomposable optimization problems were paid sig-

nificant attention due to their various big data applications; see e.g. [1–3] and
the references therein. In these problems, the cost function and feasible set are
specialized as follows:

p(x) = f(x) + h(x), (3)

h(x) =
n∑

i=1

hi(xi), (4)

X = X1 × . . . × Xn =
n∏

i=1

Xi, (5)

where f : R
N → R̄ is a function, which is continuous on X, hi : R

Ni → R̄

is a convex function, and Xi is a convex set in R
Ni for i = 1, . . . , n. Note

that the function f : R
N → R̄ is not supposed to be convex in general. That

is, we have to solve a non-convex and non-differentiable optimization problem,
which appears too difficult for solution with usual subgradient type methods.
Nevertheless, one can develop efficient coordinate-wise decomposition methods
for finding stationary points of problem (1), (3)–(5) for a smooth f ; see e.g.
[3–6] and the references therein. Then the stationary points can be defined as
solutions of the following mixed variational inequality (MVI for short): Find a
point x∗ ∈ X such that

〈f ′(x∗),y − x∗〉 +
n∑

i=1

[hi(yi) − hi(x∗
i)] ≥ 0

∀yi ∈ Xi, for i = 1, . . . , n.

(6)

Here also y = (y1, . . . ,yn)� as above.
We observe that all these solution methods also require exact values of the

cost function and parameters of the feasible set. However, this is often impossible
for big data problems due to the calculation errors and incompleteness of the

168 I. Konnov

necessary information. In addition, the same situation arises if we find it useful to
replace the initial problem by a sequence of auxiliary ones with better properties.
For instance, we can suppose that f in (3) is a general non-smooth function and
also replace it with a sequence of its smooth approximations. In other words, we
have to develop methods for limit (or non-stationary) problems.

There exist a number of methods for such limit optimization and variational
inequality problems, but they are based essentially upon convexity assump-
tions and restrictive concordance rules for accuracy, approximation, and iter-
ation parameters, which creates serious difficulties for their implementation; see
e.g. [7–9] and the references therein. For instance, if iteration parameters are
dependent of attained accuracy or approximation, they can not be evaluated
properly. Besides, the mutual dependence of these parameters usually leads to
very restrictive control rules and slow convergence.

In this paper, we intend to suggest a descent coordinate-wise decomposition
method for the following problem: Find a point x∗ ∈ X such that

∃g∗ ∈ G(x∗), 〈g∗,y − x∗〉 +
n∑

i=1

[hi(yi) − hi(x∗
i)] ≥ 0

∀yi ∈ Xi, for i = 1, . . . , n;
(7)

where G : X → Π(RN) is a point-to-set mapping whose values are considered
as generalized gradient sets of the function f ; cf. (6). Here Π(A) denotes the
family of all nonempty subsets of a set A. For instance, if f is a locally Lipschitz
function, we can set G to be its Clarke subdifferential mapping. If f is a convex
function, we simply set G(x) to be the usual subdifferential ∂f(x) of f at x,
then each solution of (7) clearly solves (1), (3)–(5). Next, we suppose that only
sequences of approximations are known instead of the exact values of G and h.

In creating the desired solution method for the limit (or non-stationary) prob-
lem (7), we combine the selective descent splitting method from [6] with chang-
ing the tolerance parameters corresponding to a sequence of mixed variational
inequality problems, which does not require evaluation of accuracy of approxi-
mate solutions, and utilization of some coercivity conditions; see e.g. [10]. This
approach allows us to prove convergence without special concordance rules for all
the parameters and tolerances.

2 Auxiliary Problem Properties

Let us consider a partially partitionable optimization problem of the form

min
x∈X

→ ϕ(x) = {μ(x) + η(x)} , (8)

where the function μ : R
N → R̄ is smooth on X, but not necessary convex. This

problem will serve as approximation of the basic problem (1), (3)–(5). We will use
the same partition (2) of the space R

N and fix the assumption on the feasible set.

Decomposition Descent Method 169

(A1) It holds that (5) where Xi are non-empty, convex, and closed sets in R
Ni

for i = 1, . . . , n.

Also, we suppose that

η(x) =
n∑

i=1

ηi(xi), (9)

where ηi : R
Ni → R̄ is convex and has the non-empty subdifferential ∂ηi(xi) at

each point xi ∈ Xi, for i ∈ M . Then each function ηi is lower semi-continuous,
the function η is lower semi-continuous, and

∂η(x) = ∂η1(x1) × . . . × ∂ηn(xn).

So, our problem (8) and (9) is rewritten as

min
x∈X1×...×Xn

→ ϕ(x) =

{
μ(x) +

n∑

i=1

ηi(xi)

}
. (10)

Set g(x) = μ′(x), then

g(x) = (g1(x), . . . ,gn(x))�, where gi(x) =
(

∂μ(x)
∂xj

)

j∈Ni

∈ R
Ni , i = 1, . . . , n.

Given a point x ∈ X, we say that a vector d is feasible for x if x + αd ∈ X
for some α > 0. From the assumptions above it follows that the function ϕ is
directionally differentiable at each point x ∈ X, that is, its directional derivative
with respect to any feasible vector d is defined by the formula:

ϕ′(x;d) = 〈g(x),d〉 + η′(x;d), with η′(x;d) =
n∑

i=1

max
bi∈∂ηi(xi)

〈bi,di〉;

see e.g. [11].
We recall that a function f : R

s → R̄ is said to be coercive on a set D ⊂ R
s

if {f(uk)} → +∞ for any sequence {uk} ⊂ D, ‖uk‖ → ∞. We will in addition
suppose that the function ϕ : R

N → R̄ is coercive on X, then problem (8) and
(9) (or (10)) has a solution.

Problem (10) was considered in particular in [6]. We will utilize some prop-
erties obtained there and the descent splitting method from [6] will serve as a
basic element of the two-level method for the general limit optimization problem.
For this reason, we give some properties from [6] without proofs. We start our
considerations from the optimality condition.

Lemma 1 [6, Proposition 2.1].

(a) Each solution of problem (10) is a solution of the following MVI: Find a
point x∗ ∈ X = X1 × · · · × Xn such that

n∑

i=1

〈gi(x∗),yi − x∗
i 〉 +

n∑

i=1

[ηi(yi) − ηi(x∗
i)] ≥ 0

∀yi ∈ Xi, for i = 1, . . . , n.

(11)

170 I. Konnov

(b) If μ is convex, then each solution of MVI (11) solves problem (10).

In what follows, we denote by X̃0 the solution set of MVI (11) and call it the
set of stationary points of problem (10); cf. (6).

Fixα > 0.For eachpointx ∈ X wecandefiney(x) = (y1(x), . . . ,yn(x))� ∈ X
such that

n∑

i=1

〈gi(x) + α(yi(x) − xi),yi − yi(x)〉 +
n∑

i=1

[ηi(yi) − ηi(yi(x))] ≥ 0

∀yi ∈ Xi, for i = 1, . . . , n.

(12)

This MVI gives a necessary and sufficient optimality condition for the optimiza-
tion problem:

min
y∈X1×...×Xn

→
n∑

i=1

Φi(x,yi), (13)

where
Φi(x,yi) = 〈gi(x),yi〉 + 0.5α‖xi − yi‖2 + ηi(yi) (14)

for i = 1, . . . , n. Under the above assumptions each Φi(x, ·) is strongly convex,
hence problem (13) and (14) (or (12)) has the unique solution y(x), thus defining
the single-valued mapping x → y(x). Observe that all the components of y(x)
can be found independently, i.e. (13) and (14) is equivalent to n independent
optimization problems of the form

min
yi∈Xi

→ Φi(x,yi), (15)

for i = 1, . . . , n and yi(x) just solves (15).

Lemma 2 [6, Proposition 2.2].

(a) x = y(x) ⇐⇒ x ∈ X̃0;
(b) The mapping x → y(x) is continuous on X.

Set Δ(x) = ‖x−y(x)‖, then Δ2(x) =
n∑

i=1

Δ2
i (x) where Δi(x) = ‖xi −yi(x)‖.

From Lemma 2 we conclude that the value Δ(x) can serve as accuracy measure
for MVI (11).

We need also a descent property from [6, Lemma 2.1].

Lemma 3. Take any point x ∈ X and an index i ∈ M . If

ds =
{
yi(x) − xi if s = i,
0 if s �= i;

then
ϕ′(x;d) ≤ −α‖yi(x) − xi‖2.

Decomposition Descent Method 171

Denote by Z+ the set of non-negative integers. Following [6] we describe the
basic algorithm for MVI (11) as follows.

Algorithm (DDS). Input: A point x0 ∈ X. Output: A point z. Parameters:
Numbers α > 0, δ > 0, β ∈ (0, α), θ ∈ (0, 1).

At the k-th iteration, k = 0, 1, . . ., we have a point xk ∈ X.
Step 1: Choose an index i ∈ M such that Δi(xk) ≥ δ, set ik = i,

dk
s =

{
ys(xk) − xk

s if s = ik,
0 if s �= ik;

and go to Step 3. Otherwise (i.e. when Δs(xk) < δ for all s ∈ M) go to Step 2.
Step 2: Set z = xk and stop.
Step 3: Determine m as the smallest number in Z+ such that

ϕ(xk + θmdk) ≤ ϕ(xk) − βθmΔ2
i (x

k), (16)

set λk = θm, xk+1 = xk + λkdk, and k = k + 1. The iteration is complete.

Although its properties are similar to those in [6], we give their proofs here
for more clarity of exposition.

Lemma 4. The line-search procedure in Step 3 is always finite.

Proof. If we suppose that the line-search procedure is infinite, then

θ−m(ϕ(xk + θmdk) − ϕ(xk)) > −βΔ2
i (x

k),

for m → ∞, hence, by taking the limit we have ϕ′(xk;dk) ≥ −βΔ2
i (x

k), but
Lemma 3 gives ϕ′(xk;dk) ≤ −αΔ2

i (x
k), hence α ≤ β, a contradiction. ��

We obtain the main property of the basic cycle.

Proposition 1. The number of iterations in Algorithm (DDS) is finite.

Proof. By construction, we have −∞ < ϕ∗ ≤ ϕ(xk) and ϕ(xk+1) ≤ ϕ(xk) −
βδ2λk, hence the sequence {xk} is bounded and has limit points, besides,

lim
k→∞

λk = 0.

Suppose that the sequence {xk} is infinite. Since the set M is finite, there is an
index ik = i, which is repeated infinitely. Take the corresponding subsequence
{ks}, then, without loss of generality, we can suppose that the subsequence {xks}
converges to a point x̄, besides, Δiks

(xks) = ‖dks
i ‖, and we have

(λks
/θ)−1(ϕ(xks + (λks

/θ)dks) − ϕ(xks)) > −β‖dks
i ‖2.

Using the mean value theorem (see e.g. [11, Theorem 2.3.7]), we obtain

〈gks
i + tks

i ,dks
i 〉 = 〈gks + tks ,dks〉 > −β‖dks

i ‖2,

172 I. Konnov

for some gks = μ′(xks + (λks
/θ)ξks

dks), tks ∈ ∂η(xks + (λks
/θ)ξks

dks), ξks
∈

(0, 1). By taking the limit s → ∞ we have

〈μ′(x̄) + t̄, d̄〉 = 〈gi(x̄) + t̄i, d̄i〉 ≥ −β‖d̄i‖2,

for some t̄ ∈ ∂η(x̄), where

d̄s =
{
yi(x̄) − x̄i if s = i,
0 if s �= i;

due to Lemma 2. On the other hand, using Lemma 3 gives

〈μ′(x̄) + t̄, d̄〉 ≤ ϕ′(x̄; d̄) ≤ −α‖d̄i‖2,

besides, by construction, we have ‖dks
i ‖ ≥ δ, hence ‖d̄i‖ ≥ δ > 0 and α ≤ β,

which is a contradiction. ��

3 Limit Decomposition Method and its Convergence

We now intend to describe a general iterative method for the limit MVI (7).
First we introduce the approximation assumptions.

(A2) There exists a sequence of continuous mappings Gl : X → R
N , which

are the gradients of functions fl : R
N → R̄, l = 1, 2, . . . , such that the

relations {yl} → ȳ and yl ∈ X imply {Gl(yl)} → ḡ ∈ G(ȳ).
(A3) For each i = 1, . . . , n there exists a sequence of convex functions hl,i :

R
Ni → R̄, such that each of them is subdifferentiable on Xi and that the

relations {ul} → ū and ul ∈ Xi imply {hl,i(ul)} → hi(ū).

Condition (A2) means that the limit set-valued mapping G at any point
is approximated by a sequence of gradients {Gl}. In fact, if G is the Clarke
subdifferential of a locally Lipschitz function f , it can be always approximated
by a sequence of gradients within condition (A2); see [12,13]. Observe also
that if there is a subsequence yls ∈ X with {yls} → ȳ, then (A2) implies
{Gls(y

ls)} → ḡ ∈ G(ȳ) and the same is true for (A3). At the same time, the
non-differentiability of the functions f or h is not obligatory, the main property
is the existence of the approximation sequences indicated in (A2) and (A3).

So, we replace MVI (7) with a sequence of MVIs: Find a point z̄l ∈ X =
X1 × . . . × Xn such that

n∑

i=1

〈Gl,i(z̄l),yi − z̄l
i〉 +

n∑

i=1

[
hl,i(yi) − hl,i(z̄l

i)
] ≥ 0

∀yi ∈ Xi, for i = 1, . . . , n;
(17)

where we use the partition of Gl which corresponds to that of the space R
N , i.e.

Gl(x) = (Gl,1(x), . . . ,Gl,n(x))�, where Gl,i(x) ∈ R
Ni , i = 1, . . . , n.

Decomposition Descent Method 173

Similarly, we set

hl(x) =
n∑

i=1

hl,i(xi).

Since the feasible set X may be unbounded, we introduce also coercivity
conditions.

(C1) For each fixed l = 1, 2, . . . , the function fl(x) + hl(x) is coercive on the
set X, that is, {fl(wk) + hl(wk)} → +∞ if {wk} ⊂ X, ‖wk‖ → ∞ as
k → ∞.

(C2) There exist a number σ > 0 and a point v̄ ∈ X such that for any sequences
{ul} and {dl} satisfying the conditions:

ul ∈ X, {‖ul‖} → +∞, {dl} → 0;

it holds that

lim inf
l→∞

{〈Gl(ul) + τdl, v̄ − ul − dl〉 + [hl(v̄) − hl(ul − dl)]
} ≤ −σ if τ > 0.

Clearly, (C1) gives a custom coercivity condition for each function fl(x) +
hl(x), which provides existence of solutions of each particular problem (17).
Obviously, (C1) holds if X is bounded. At the same time, (C2) gives a similar
coercivity condition for the whole sequence of these problems approximating the
limit MVI (7). It also holds if X is bounded. In the unbounded case (C2) is
weaker than the following coercivity condition:

‖v̄−ul−dl‖−1
{

〈Gl(u
l) + τdl, v̄ − ul − dl〉 + [hl(v̄) − hl(u

l − dl)]
}

→ −∞ as l → ∞.

Similar conditions are also usual for penalty type methods; see e.g. [14,15]. We
therefore conclude that conditions (C1) and (C2) are not restrictive.

The whole decomposition method for the non-stationary MVI (7) has a two-
level iteration scheme where each stage of the upper level invokes Algorithm
(DDS) with different parameters.

Method (DNS). Choose a point z0 ∈ X and a sequence {δl} → +0.
At the l-th stage, l = 1, 2, . . ., we have a point zl−1 ∈ X and a number δl.

Set
μ(x) = fl(x), η(x) = hl(x),

apply Algorithm (DDS) with x0 = zl−1, δ = δl and obtain a point zl = z as its
output.

We now establish the main convergence result.

Theorem 1. Suppose that assumptions (A1)–(A3) and (C1)–(C2) are ful-
filled, besides, {δl} → +0. Then:

(i) problem (17) has a solution;
(ii) the number of iterations at each stage of Method (DNS) is finite;

174 I. Konnov

(iii) the sequence {zl} generated by Method (DNS) has limit points and all these
limit points are solutions of MVI (7);

(iv) if f is convex, then all the limit points of {zl} belong to X∗.

Proof. We first observe that (C1) implies that each problem (17) has a solution
since the cost function

μ(x) = fl(x) + hl(x)

is coercive, hence the set

Xl(x0) =
{
y ∈ X | μ(y) ≤ μ(x0)

}

is bounded. It follows that the optimization problem

min
x∈X

→ μ(x)

has a solution and so is MVI (17) due to Lemma 1. Hence, assertion (i) is true.
Next, from Proposition 1 we now have that assertion (ii) is also true.

By (ii), the sequence {zl} is well-defined and (12) implies

〈Gl(zl) + α(yl(zl) − zl),y − yl(zl)〉 + [hl(y) − hl(yl(zl))] ≥ 0 ∀y ∈ X. (18)

Besides, the stopping rule in Algorithm (DDS) gives

αδl

√
n ≥ α‖zl − yl(zl)‖. (19)

We now proceed to show that {zl} is bounded. Conversely, suppose that
{‖zl‖} → +∞. Applying (18) with y = v̄, we have

0 ≤ 〈gl + dl, v̄ − z̃l〉 + [hl(v̄) − hl(z̃l)].

Here and below, for brevity we set gl = Gl(zl), z̃l = yl(zl), anddl = α(y(zl)−zl).
Take a subsequence {ls} such that

lim
s→∞

{〈gls + dls , v̄ − z̃ls〉 + [hls(v̄) − hls(z̃
ls)]

}

= lim inf
l→∞

{〈gl + dl, v̄ − z̃l〉 + [hl(v̄) − hl(z̃l)]
}

,

then, by (C2), we have

0 ≤ lim
s→∞

{〈gls + dls , v̄ − z̃ls〉 + [hls(v̄) − hls(z̃
ls)]

} ≤ −σ < 0,

a contradiction. Therefore, the sequence {zl} is bounded and has limit points.
Let z̄ be an arbitrary limit point for {zl}, i.e.

z̄ = lim
s→∞ zls .

Since zl ∈ X, we have z̄ ∈ X. It now follows from (A2) that lims→∞ gls = ḡ ∈
G(z̄).

Decomposition Descent Method 175

Fix an arbitrary point y ∈ X, then, using (18) and (19) and (A3), we have

〈ḡ,y − z̄〉 + [h(y) − h(z̄)] = lim
s→∞

{〈gls ,y − zls〉 + [hls(y) − hls(z
ls)]

}

= lim
s→∞

{〈gls + dls ,y − z̃ls〉 + [hls(y) − hls(z̃
ls)]

} ≥ 0,

therefore z̄ solves MVI (7) and assertion (iii) holds true.
Next, if f is convex, then so is p and each limit point of {zl} belongs to X∗,

which gives assertion (iv). ��
We observe that the above proof implies that MVI (7) has a solution.

4 Modifications and Applications

Method (DNS) admits various modifications. In particular, we can take the exact
one-dimensional minimization rule instead of the current Armijo line-search (16)
in Algorithm (DDS), then the assertions of Theorem 1 remain true. Next, if the
function μ (i.e. each function fl) is convex, we can replace (16) with the following:

〈gi(xk + θmdk),dk
i 〉 + θ−m

{
ηi(xk

i + θmdk
i) − ηi(xk

i)
} ≤ −βα−1Δ2

i (x
k).

Moreover, if the gradient of the function μ is Lipschitz continuous, we have an
explicit lower bound for the step-size and utilize the fixed step-size version of
Algorithm (DDS), which leads to further reduction of computational expenses.
It can be applied if the partial gradients of μ is Lipschitz continuous; see [6] for
more details.

We give now only two instances in order to illustrate possible applications.
The first instance is the linear inverse problem that arises very often in signal

and image processing; see e.g. [16] for more examples. The problem consists in
solving a linear system of equations

Ax = b,

where A is a m × n matrix, b is a vector in R
m, whose exact values may be

unknown or admit some noise perturbations. If A�A is ill-conditioned, the cus-
tom approach based on the least squares minimization problem

min
x

→ ‖Ax − b‖2

may give very inexact approximations. In order to enhance its properties, one
can utilize a family of regularized problems of the form

min
x

→ ‖Ax − b‖2 + εh(x), (20)

where h(x) = ‖x‖2 or h(x) = ‖x‖1 �
n∑

i=1

|xi|, ε > 0 is a parameter. Note that the

non-smooth regularization term yields additionally sparse solutions with rather
small number of non-zero components; see e.g. [2,17].

176 I. Konnov

The second instance is the basic machine learning problem, which is called
the linear support vector machine. It consists in finding the optimal partition
of the feature space R

n by using some given training sequence xi, i = 1, . . . , l
where each point xi has a binary label yi ∈ {−1,+1} indicating the class. We
have to find a separating hyperplane. Usually, its parameters are found from the
solution of the optimization problem

min
w∈Rn

→ (1/p)‖w‖p
p + C

l∑

i=1

L(〈w,xi〉; yi), (21)

where L is a loss function and C > 0 is a penalty parameter. The usual choice
is L(z; y) = max{0; 1 − yz} and p is either 1 or 2; see e.g. [1,5] for more details.
Observe that the data of the observation points xi can be again inexact or even
non-stationary.

Next, taking p = 2, we can rewrite this problem as

min
w,ξ

→ 0.5‖w‖2 + C

l∑

i=1

ξi,

subject to
1 − yi〈w,xi〉 ≤ ξi, ξi ≥ 0, i = 1, . . . , l.

Its dual has the quadratic programming format:

max
0≤αi≤C,i=1,...,l

→
l∑

i=1

αi − 0.5
l∑

s=1

l∑

t=1

(αsys)(αtyt)〈xs,xt〉. (22)

Observe that all these problems fall into format (1), (3)–(5) and that they can
be treated as limit problems.

5 Computational Experiments

In order to evaluate the computational properties of the proposed method we
carried out preliminary series of test experiments. For simplicity, we took only
unconstrained test problems of form (1), (3)–(5) where X = R

N with the single-
dimensional (coordinate) partition of the space, i.e., set N = n and Ni = 1 for
i = 1, . . . , n. In all the experiments, we took the limit function f to be convex
and quadratic, namely,

f(x) = 0.5‖Ax − b‖2 + 0.5‖x‖2,
where A was an n × n matrix, b a fixed vector whose elements were defined by
trigonometric functions, whereas the limit function h was defined either as zero or
a non-smooth and convex one. In view of examples (20)–(22) from Sect. 4, these
limit problems were approximated by the perturbed sequence of the following
optimization problems

min
x∈X

→ {fl(x) + h(x)} , (23)

Decomposition Descent Method 177

i.e. we utilized only the perturbation for f , where

fl(x) = 0.5‖A(εl)x − b(εl)‖2 + 0.5‖x‖2,
aij(ε) = aij + 0.1ε sin(ij) and bi(ε) = bi + 0.2ε sin(i), for i, j = 1, . . . , n.

The main goal was to compare (DNS) with the usual (splitting) gradient descent
method (GNS for short); see [18]. It calculates all the components for the direc-
tion finding procedure. Both the methods used the same line-search strategy and
were applied sequentially to each non-stationary problem (23) with the following
rule εl+1 = νεl for changing the perturbation. In (GNS), this change occurs after
satisfying the inequality

Δl(x) = ‖x − yl(x)‖ ≤ δl,

where yl(x) is a unique solution of the problem

min
y

→ {〈f ′
l (x),y〉 + 0.5α‖x − y‖2 + h(y)

}
.

In both the methods, we chose the rule δl+1 = νδl with ν = 0.5. Similarly, for
the limit problem, we set

Δ(x) = ‖x − y(x)‖,

where y(x) is a unique solution of the problem

min
y

→ {〈f ′(x),y〉 + 0.5α‖x − y‖2 + h(y)
}

.

We took Δ(xk) as accuracy measure for solving the limit problem, chose the
accuracy 0.1, took the same starting point z0j = j| sin(j)| for j = 1, . . . , n, and
set α = 1 for both the methods. The methods were implemented in Delphi with
double precision arithmetic.

In the first two series, we set h ≡ 0 and took versions with exact line-search. In
the first series, we took the elements aij = sin(i/j) cos(ij) and bi = (1/i) sin(i).
The results are given in Table 1. In the second series, we took the elements aij =
1/(i+ j)+2 sin(i/j) cos(ij)/j and bi = n sin(i). The results are given in Table 2.
In the third series, we took the elements aij = 1/(i + j) + 2 sin(i/j) cos(ij)/j
and bi = n sin(i) as above, but also chose

h(x) =
N∑

i=1

|xi|.

So, the cost function is non-smooth. Here we took versions with the Armijo
line-search. The results are given in Table 3, where (cl) now denotes the total
number of calculations of partial derivatives of fl. Therefore, (DNS) showed
rather stable and rapid convergence, and the explicit preference over (GNS) if
the dimensionality was greater than 20.

178 I. Konnov

Table 1. The numbers of iterations (it) and partial derivatives calculations (cl)

(GNS) (DNS)

it cl it cl

N = 2 2 4 2 7

N = 5 10 50 19 64

N = 10 17 170 67 235

N = 20 36 720 194 688

N = 40 105 4200 734 2935

N = 80 228 18240 3500 11241

N = 100 201 20100 4641 16473

Table 2. The numbers of iterations (it) and partial derivatives calculations (cl)

(GNS) (DNS)

it cl it cl

N = 2 6 12 2 7

N = 5 10 50 12 49

N = 10 19 190 25 139

N = 20 38 760 55 349

N = 40 72 2880 119 871

N = 80 164 13120 309 2461

N = 100 252 25200 414 3279

Table 3. The numbers of iterations (it) and partial derivatives calculations (cl)

(GNS) (DNS)

it cl it cl

N = 2 13 26 7 23

N = 5 16 80 32 84

N = 10 16 160 76 245

N = 20 40 800 257 982

N = 40 72 2880 485 1923

N = 80 135 10800 1127 4286

N = 100 188 18800 1374 6075

6 Conclusions

We described a new class of coordinate-wise descent splitting methods for limit
decomposable composite optimization problems involving set-valued mappings
and non-smooth functions. The method is based on selective coordinate variations

Decomposition Descent Method 179

together with changing the tolerance parameters corresponding to a sequence of
mixed variational inequality problems without explicit evaluation of accuracy of
approximate solutions. We proved convergence without special concordance rules
for all the parameters and tolerances. Series of computational tests confirmed
rather satisfactory convergence.

Acknowledgement. The results of this work were obtained within the state assign-
ment of the Ministry of Science and Education of Russia, project No. 1.460.2016/1.4.
In this work, the author was also supported by Russian Foundation for Basic Research,
project No. 16-01-00109 and by grant No. 297689 from Academy of Finland.

References

1. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition.
Data Mining Know. Disc. 2, 121–167 (1998)

2. Cevher, V., Becker, S., Schmidt, M.: Convex optimization for big data. Signal
Process. Magaz. 31, 32–43 (2014)

3. Facchinei, F., Scutari, G., Sagratella, S.: Parallel selective algorithms for nonconvex
big data optimization. IEEE Trans. Sig. Process. 63, 1874–1889 (2015)

4. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable
minimization. Math. Progr. 117, 387–423 (2010)

5. Richtárik, P., Takáč, M.: Parallel coordinate descent methods for big data opti-
mization. Math. Program. 156, 433–484 (2016)

6. Konnov, I.V.: Sequential threshold control in descent splitting methods for decom-
posable optimization problems. Optim. Meth. Softw. 30, 1238–1254 (2015)

7. Alart, P., Lemaire, B.: Penalization in non-classical convex programming via vari-
ational convergence. Math. Program. 51, 307–331 (1991)

8. Cominetti, R.: Coupling the proximal point algorithm with approximation meth-
ods. J. Optim. Theor. Appl. 95, 581–600 (1997)

9. Salmon, G., Nguyen, V.H., Strodiot, J.J.: Coupling the auxiliary problem principle
and epiconvergence theory for solving general variational inequalities. J. Optim.
Theor. Appl. 104, 629–657 (2000)

10. Konnov, I.V.: An inexact penalty method for non stationary generalized variational
inequalities. Set-Valued Variat. Anal. 23, 239–248 (2015)

11. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
12. Ermoliev, Y.M., Norkin, V.I., Wets, R.J.B.: The minimization of semicontinuous

functions: mollifier subgradient. SIAM J. Contr. Optim. 33, 149–167 (1995)
13. Czarnecki, M.-O., Rifford, L.: Approximation and regularization of lipschitz func-

tions: convergence of the gradients. Trans. Amer. Math. Soc. 358, 4467–4520 (2006)
14. Gwinner, J.: On the penalty method for constrained variational inequalities. In:

Hiriart-Urruty, J.-B., Oettli, W., Stoer, J. (eds.) Optimization: Theory and Algo-
rithms, pp. 197–211. Marcel Dekker, New York (1981)

15. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium
problems. The Math. Stud. 63, 127–149 (1994)

16. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer
Academic Publishers, Dordrecht (1996)

17. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Stat. Soc.
Ser. B. 58, 267–288 (1996)

18. Fukushima, M., Mine, H.: A generalized proximal point algorithm for certain non-
convex minimization problems. Int. J. Syst. Sci. 12, 989–1000 (1981)

RAMBO: Resource-Aware Model-Based
Optimization with Scheduling for Heterogeneous
Runtimes and a Comparison with Asynchronous

Model-Based Optimization

Helena Kotthaus1(B), Jakob Richter2, Andreas Lang1, Janek Thomas3,
Bernd Bischl3, Peter Marwedel1, Jörg Rahnenführer2, and Michel Lang2

1 Department of Computer Science 12, TU Dortmund University,
Dortmund, Germany

helena.kotthaus@tu-dortmund.de
2 Department of Statistics, TU Dortmund University, Dortmund, Germany

3 Department of Statistics, LMU München, Munich, Germany

Abstract. Sequential model-based optimization is a popular technique
for global optimization of expensive black-box functions. It uses a regres-
sion model to approximate the objective function and iteratively pro-
poses new interesting points. Deviating from the original formulation, it
is often indispensable to apply parallelization to speed up the computa-
tion. This is usually achieved by evaluating as many points per iteration
as there are workers available. However, if runtimes of the objective func-
tion are heterogeneous, resources might be wasted by idle workers. Our
new knapsack-based scheduling approach aims at increasing the effec-
tiveness of parallel optimization by efficient resource utilization. Derived
from an extra regression model we use runtime predictions of point eval-
uations to efficiently map evaluations to workers and reduce idling. We
compare our approach to five established parallelization strategies on
a set of continuous functions with heterogeneous runtimes. Our bench-
mark covers comparisons of synchronous and asynchronous model-based
approaches and investigates the scalability.

Keywords: Black-box optimization · Model-based optimization ·
Global optimization · Resource-aware scheduling · Performance man-
agement · Parallelization

1 Introduction

Efficient global optimization of expensive black-box functions is of interest to
many fields of research. In the engineering industry, computationally expensive
models have to be optimized; for machine learning hyperparameters have to
be tuned; and for computer experiments in general, expensive algorithms have
parameters that have to be optimized to obtain a well-performing algorithm
configuration. The problems of global optimization can usually be modeled by a
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 180–195, 2017.
https://doi.org/10.1007/978-3-319-69404-7_13

RAMBO: Resource-Aware Model-Based Optimization 181

real-valued objective function f with a d-dimensional domain space. The chal-
lenge is to find the best point possible within a very limited time budget.

Together with [1,22,23], Model-based optimization (MBO) [15] is a state-of-
the-art algorithm for expensive black-box functions. Starting on an initial design
of already evaluated configurations, a regression model guides the search to new
configurations by predicting the outcome of the black-box on yet unseen con-
figurations. Based on this prediction an infill criterion (also called acquisition
function) proposes a new promising configuration for evaluation. In each iter-
ation the regression model is updated on the evaluated configurations of the
previous iteration until the budget is exhausted. Jones et al. [15] proposed this
now popular Efficient Global Optimization (EGO) algorithm. EGO sequentially
adds points to the design using Kriging as a surrogate and the Expected Improve-
ment (EI) as an infill criterion. Following, other infill criteria [14], specializations
e.g. for categorical search spaces like in SMAC [10] and noisy optimization [20]
have been introduced.

For computer experiments, parallelization has become of increasing interest
to reduce the overall computation time. Originally, the EGO algorithm iter-
atively proposes one point to be evaluated after another. To allow for paral-
lelization, infill criteria and techniques (constant liar, Kriging believer, qEI [9],
qLCB [11], MOI-MBO [4]) have been suggested that propose multiple points
in each iteration. Usually, the number of proposed points equals the number of
available CPUs. However, these methods still do use the available resources inef-
ficiently if the runtime of the black-box is heterogeneous. Before new proposals
can be generated, the results of all evaluations within one iteration are gathered
to update the model. Consequently all CPUs have to wait for the slowest func-
tion evaluation before receiving a new point proposal. This can lead to idling
CPUs that are not contributing to the optimization. The goal in general is to
use all available CPU time to solve the optimization problem.

One approach to avoid idling is to desynchronize the model update. Here,
the model is updated each time an evaluation has finished, letting each parallel
worker propose the next point for evaluation itself. Such asynchronous techniques
have been suggested and discussed by [8,12]. The main challenge is to modify the
infill criterion to deal with points that are currently under evaluation to avoid
evaluations of very similar configurations. The Expected Expected Improvement
(EEI) [13] is one possibility for such a modification.

Another strategy is to keep the synchronous model update and schedule the
evaluations of the proposed points in such a way that idling is reduced. Such an
approach was presented in [19]. Here, a second regression model is used to predict
runtimes for the proposed points which are used as an input for scheduling.

Our article contains the following contributions: First, we extended the par-
allel, resource-aware synchronous model-based optimization strategy proposed
in [19] with an improved resource-aware scheduling algorithm. This algorithm,
which replaces the original simple first fit heuristic, is based on a knapsack solver
to better handle heterogeneous runtimes. Furthermore we use a clustering-based
refinement strategy to ensure improved spatial diversity of the evaluated points.

182 H. Kotthaus et al.

Second, we compare our algorithm to three asynchronous MBO strategies
that also aim at using all available CPU time to solve the optimization problem
in parallel. Two of them [8,12] use Kriging as a surrogate and the third is included
in SMAC [10] which uses a random forest surrogate.

Third, we benchmark the MBO algorithms on a set of established continuous
test functions combined with simulated runtimes. For each function we use a
2- and a 5-dimensional version each of which is optimized using 4 and 16 CPUs
in parallel to investigate scalability.

Compared to the considered asynchronous approaches, our new approach
converges faster to the optima if the runtime estimates used as input for schedul-
ing are reliable.

2 Model-Based Global Optimization

The aim of global optimization is to find the global minimum of a given function
f : X → R, f(x) = y,x = (x1, . . . , xd)T . Here, we assume X ⊂ R

d, usually
expressed by simple box constraints. The optimization is guided by a surrogate
model which estimates the response surface of the black-box function f (see
also [22,23]). The surrogate is comparably inexpensive to evaluate and is utilized
to propose new promising points x∗ in an iterative fashion. A promising point
x∗ is determined by optimizing some infill criterion. After, f(x∗) is evaluated to
obtain the corresponding objective value y, the surrogate model is refitted and a
new point is proposed. The infill criterion quantifies the potential improvement
based, on an exploitation-exploration trade-off where a low (good) expected
value of the solution μ̂(x) is rewarded, and low estimated uncertainty ŝ(x) is
penalized. A popular infill criterion, especially for Kriging surrogate models, is
the expected improvement

EI(x) = E(max(ymin − μ̂(x), 0))

= (ymin − μ̂(x)) Φ

(
ymin − μ̂(x))

ŝ(x)

)
+ ŝ(x)φ

(
ymin − μ̂(x)

ŝ(x)

)
,

where Φ is the distribution and φ is the density function of the standard normal
distribution and ymin is the best observed function value so far. Alternatively,
the comparably simpler lower confidence bound criterion

LCB(x, λ) = μ̂(x) − λŝ(x), λ ∈ R

is used, where μ̂(x) denotes the posterior mean and ŝ(x) the posterior standard
deviation of the regression model at point x. Before entering the iterative process,
initially some points have to be pre-evaluated. These points are generally chosen
in a space-filling manner to uniformly cover the input space. The optimization
usually stops after a target objective value is reached or a predefined budget is
exhausted [22,23].

RAMBO: Resource-Aware Model-Based Optimization 183

2.1 Parallel MBO

Ordinary MBO is sequential by design. However, applications like hyperparame-
ter optimization for machine learning or computer simulations have driven the
rapid development of extensions for parallel execution of multiple point eval-
uations. The parallel extensions either focus on a synchronous model update
using infill criteria with multi-point proposals or implement an asynchronous
evaluation where each worker generates one new point proposal individually.

Multi-Point proposals derive not only one single point x∗ from a surrogate model,
but q points x∗

1, . . . ,x
∗
q simultaneously. The q proposed points must be suffi-

ciently different from each other to avoid multiple evaluations with the same
configuration. For this reason Hutter et al. [11] introduced the criterion

qLCB(x, λj) = μ̂(x) − λj ŝ(x) with λj ∼ Exp(λ) (1)

as an intuitive extension of the LCB criterion using an exponentially distributed
random variable. Since λ guides the trade-off between exploration and exploita-
tion, sampling multiple different λj might result in different “best” points by
varying the impact of the standard deviation. The qLCB criterion was imple-
mented in a distributed version of SMAC [11]. An extension of the EI criterion
is the qEI criterion [9] which directly optimizes the expected improvement over
q points. A closed form solution to calculate qEI exists for q = 2 and useful
approximations can be applied for q ≤ 10 [7]. However, as the computation is
using Monte Carlo sampling, it is quite expensive. A less expensive and popu-
lar alternative is Kriging believer approach [9]. Here, the first point is proposed
using the single-point EI criterion. Its posterior mean value is treated as a real
value of f to refit the surrogate, effectively penalizing the surrounding region
with a lower standard deviation for the next point proposal using EI again. This
is repeated until q proposals are generated.

In combination with parallel synchronous execution the above described
multi-point infill approaches can lead to underutilized systems because a new
batch of points can only be proposed as soon as the slowest function evaluation
is terminated. Snoek et al. [21] introduce the EI per second to address hetero-
geneous runtimes. The runtime of a configuration is estimated using a second
surrogate model and a combined infill criterion can be constructed which favors
less expensive configurations.

We also use surrogate models to estimate resource requirements but instead of
adapting the infill criterion, we use them for the scheduling of parallel function
evaluations. Our goal is to guide MBO to interesting regions in a faster and
resource-aware way without directly favoring less expensive configurations.

Asynchronous Execution approaches the problem of parallelizing MBO from a
different angle. Instead of evaluating multiple points in batches to synchronously
refit the model, the model is refitted after each function evaluation to increase
CPU utilization workers. Here, each worker propose the next point for evaluation
itself, even when configurations xbusy are currently under evaluation on other

184 H. Kotthaus et al.

processing units. The busy evaluations have to be taken into account by the
surrogate model to avoid that new point proposals are identical or very similar
to pending evaluations. Here, the Kriging believer approach [9] can be applied to
block these regions. Another theoretically well-founded way to impute pending
values is the expected EI (EEI) [8,13,21]. The unknown value of f(xbusy) is inte-
grated out by calculating the expected value of ybusy via Monte Carlo sampling,
which is, similar to qEI, computationally demanding. For each Monte Carlo iter-
ation values y1,busy, . . . , yµ,busy are drawn from the posterior distribution of the
surrogate regression model at x1,busy, . . . ,xµ,busy, with μ denoting the number
of pending evaluations. These values are combined with the set of already known
evaluations and used to fit the surrogate model. The EEI can then simply be
calculated by averaging the individual expected improvement values that are
formed by each Monte Carlo sample:

ÊEI(x) =
1

nsim

nsim∑
i=1

EIi(x) (2)

whereas nsim denotes the number of Monte Carlo iterations.
Besides the advantage of an increased CPU utilization, asynchronous execu-

tion can also potentially cause additional runtime overhead due to the higher
number of model refits, especially when the number of workers increases. There-
fore our experiments include a comparison with most of the above described
approaches to investigate the advantages and disadvantages.

Instead of using asynchronous execution to efficiently utilize parallel com-
puter architectures, our new approach uses the synchronous execution combined
with resource-aware scheduling and is presented in the following section.

3 Resource-Aware Scheduling with Synchronous Model
Update

The goal of our new scheduling strategy is to guide MBO to interesting regions
in a faster and resource-aware way. To efficiently map jobs (proposed points)
to available resources our strategy needs to know the resource demands of jobs
before execution. Therefore, we estimate the runtime of each job using a regres-
sion model. Additionally, we calculate an execution priority for each job based
on the multi-point infill criterion. In the following, we will describe these inputs.

3.1 Infill Criterion - Priority

The priorities of the proposed points should reflect their usefulness for optimiza-
tion. In our setup we opt for the qLCB (1) to generate a set of job proposals
by optimizing the LCB for q randomly drawn values of λj ∼ Exp(12), as in
Richter et al. [19]. qLCB is suitable because the proposals are independent of
each other. There is no direct order of the set of obtained candidates x∗

j in
terms of how promising or important one candidate is in comparison to each

RAMBO: Resource-Aware Model-Based Optimization 185

other. Therefore, we introduce an order that steers the search more towards
promising areas. We give the highest priority to the point xj that was proposed
using the smallest value of λj . We define the priority for each point as pj := −λj .

3.2 Resource Estimation

To estimate the resource demands of proposed candidates, we use a separate
regression model. To adapt to the domain space of the objective function, we
choose the same regression method used for the surrogate. In the same fashion
as for the MBO algorithm, runtimes are predicted in each MBO iteration based
on all previously evaluated jobs and measured runtimes.

3.3 Resource-Aware Knapsack Scheduling

The goal of our scheduling strategy is to reduce the CPU idle time on the workers
while acquiring the feedback of the workers in the shortest possible time to avoid
model update delay. The set of points proposed by the multi-point infill criterion
forms the set of jobs J = {1, . . . , q} that we want to execute on the available
CPUs K = {1, . . . , m}. For each job the estimated runtime is given by t̂j and the
corresponding priority is given by pj . To reduce idle times caused by evaluations
of jobs with a low priority, the maximal runtime for each MBO iteration is defined
by the runtime of the job with the highest priority. Lower prioritized jobs have
to subordinate. At the same time we want to maximize the profit, given by the
priorities, of parallel job executions for each model update. To solve this problem,
we apply the 0 − 1 multiple knapsack algorithm by interfacing the R-package
adagio for global optimization routines [5]. Here the knapsacks are the available
CPUs and their capacity is the maximally allowed computing time, defined by
the runtime of the job with the highest priority. The items are the jobs J , their
weights are the estimated runtimes t̂j and their values are the priorities pj . The
capacity for each CPU is accordingly t̂j∗ , with j∗ := arg maxjpj . To select the
best subset of jobs the algorithm maximizes the profit Q:

Q =
∑
j∈J

∑
k∈K

pjckj ,

which is the sum of priorities of the selected jobs, under the restriction of the
capacity

t̂j∗ ≥
∑
j∈J

t̂jckj ∀k ∈ K

per CPU. The restriction with the decision variable ckj ∈ {0, 1}

1 ≥
∑
k∈K

ckj ∀j ∈ J, ckj ∈ {0, 1}.

ensures that a job j is at most mapped to one CPU.

186 H. Kotthaus et al.

As the job with the highest priority defines the time bound t̂j∗ it is mapped to
the first CPU k = 1 exclusively and single jobs with higher runtimes are directly
discarded. Then the knapsack algorithm is applied to assign the remaining can-
didates in J to the remaining m−1 CPUs. This leads to the best subset of J that
can be run in parallel minimizing the delay of the model update. If a CPU is left
without a job we query the surrogate model for a job with an estimated runtime
smaller or equal to t̂j∗ to fill the gaps. For a useful scheduling the set of can-
didates should have considerably more candidates q than available CPUs. This
knapsack scheduling is a direct enhancement of the first fit scheduling strategy
presented in [19].

3.4 Refinement of Job Priorities via Clustering

The refinement of job priorities has the goal to avoid parallel evaluations of
very similar configurations. Approaches to specifically propose points that are
promising but yet diverse are described in [4]. qLCB performed well and was
chosen here because it is comparably inexpensive to create many independent
candidates. However, qLCB does not include a penalty for the proximity of
selected points which gets problematic if the number of parallel points is high.
Therefore, we use a distance measure to reprioritize pj to p̃j , encouraging the
selection sets of candidates more scattered in the domain space.

First, we oversample a set of q > m candidate points from the qLCB criterion
and partition them into q̃ < q clusters using the Euclidean distance. Next, we
take the candidate with maximum priority pj from each cluster and sort them
according to their priority before pushing them to the list J̃ of selected jobs.
Selected jobs are removed from the clusters and empty clusters are eliminated.
We repeat this procedure until we have moved all q jobs into the list J̃ . Finally,
we assign new priorities p̃j based on the order of J̃ , i.e. the first job in J̃ gets
the highest priority q and the last job gets the lowest priority 1.

As a result, the set of candidates contains batches of jobs with similar pri-
ority that are spread in the domain space. The new priorities serve as input for
scheduling which groups the q jobs to m CPUs using the runtime estimates t̂.

4 Numerical Experiments

In our experiments, we consider two categories of synthetic functions to ensure
a fair comparison in a disturbance-free environment. They are implemented in
the R package smoof [6]:

1. Functions with a smooth surface: rosenbrock(d) and bohachevsky(d) with
dimension d = 2, 5. They are likely to be fitted well by the surrogate.

2. Highly multimodal functions: ackley(d) and rastrigin(d) (d = 2, 5). We
expect that surrogate models can have problems to achieve a good fit here.

As these are illustrative test functions, they have no significant runtime. As
a resort, we also use these functions to simulate runtime behavior. First, we

RAMBO: Resource-Aware Model-Based Optimization 187

combine two functions: One determines the number of seconds it would take
to calculate the objective value of the other function. E.g., for the combina-
tion rastrigin(2).rosenbrock(2) it would require rosenbrock(2)(x) seconds
to retrieve the objective value rastrigin(2)(x) for an arbitrary proposed point
x. Technically, we just sleep rosenbrock(2)(x) seconds before returning the
objective. We simulate the runtime with either rosenbrock(d) or rastrigin(d)
and analyze all combinations of our four objective functions, except where the
objective and the time function are identical.

A prerequisite for this approach is the unification of the input space. Thus,
we simply mapped values from the input space of the objective function to the
input space of the time function. The output of the time functions is scaled to
return values between 5 min to 60 min.

We examine the capability of the considered optimization strategies to mini-
mize functions with highly heterogeneous runtimes within a limited time budget.
To do this, we measure the distance between the best found point at time t and
a predefined target value. We call this measure accuracy. In order to make this
measure comparable across different objective functions, we scale the function
values to [0, 1] with zero being the target value. It is defined as the best y reached
by any optimization method after the complete time budget. The upper bound
1 is the best y found in the initial design (excluding the initial runs of smac)
which is identical for all algorithms per given problem. Both values are averaged
over the 10 replications.

If an algorithm needs 2 h to reach an accuracy of 0.5, this means that within
2 h half of the way to 0 has been accomplished, after starting at 1. We compare
the differences between optimizers at the three accuracy levels 0.5, 0.1 and 0.01.

The optimizations are repeated 10 times and conducted on m = 4 and m = 16
CPUs. We allow each optimization to run for 4 h on 4 CPUs and for 2 h on
16 CPUs in total which includes all computational overhead and idling. All
computations were performed on a Docker Swarm cluster using the R package
batchtools [18]. The initial design is generated by Latin hypercube sampling
with n = 4 · d points and all of the following optimizers start with the same
design in the respective repetition:

rs: Random search, serving as base-line.
qLCB: Synchronous approach using qLCB where in each iteration q = m

points are proposed.
ei.bel: Synchronous approach using Kriging believer where in each iter-

ation m points are proposed.
asyn.eei: Asynchronous approach using EEI (100 Monte Carlo iterations)

asyn.ei.bel: Asynchronous Kriging believer approach.
rambo: Synchronous approach using qLCB with our new scheduling app-

roach where in each iteration q = 8 · m candidates are proposed.

qLCB and ei.bel are implemented in the R package mlrMBO [3], which builds
upon the machine learning framework mlr [2]. asyn.eei, asyn.ei.bel and
rambo are also based on mlrMBO. We use a Kriging model from the package
DiceKriging [20] with a Matern5

2 -kernel for all approaches above and add a

188 H. Kotthaus et al.

nugget effect of 10−8 · Var(y), where y denotes the vector of all observed func-
tion outcomes. Additionally we compare our implementations to:

smac: Asynchronous approach that turns m independent SMAC runs into m
dependent runs by sharing surrogate model data (also called shared-
model-mode1).

SMAC was allowed the same initial budget as the other optimizers and was
started with the defaults and the shared-model-mode activated. SMAC uses a
random forest as surrogate and the EI criterion.

4.1 Quality of Resource Estimation

The quality of resource-aware scheduling naturally depends on the accuracy
of the resource estimation. Without reliable runtime predictions, the sched-
uler is unable to optimize for efficient utilization. As Fig. 1 exemplary shows,
the runtime prediction for the rosenbrock(5) time function works well as the
residual values are getting smaller over time, while the runtime prediction for
rastrigin(5) is comparably imprecise. For the 2-dimensional versions the results
are similar. This encourages to consider scenarios separately where runtime pre-
diction is possible (rosenbrock(·), Subsect. 4.2) and settings where runtime pre-
diction is error-prone (rastrigin(·), Subsect. 4.3) for further analysis.

bohachevsky.rastrigin_5d bohachevsky.rosenbrock_5d

0 1 2 3 4 0 1 2 3 4

−1000

−500

0

500

1000

1500

hours

pr
ed

ic
tio

n
−

ru
nt

im
e

(s
ec

on
ds

)

Fig. 1. Residuals of the runtime prediction in the course of time for the rosenbrock(5)
and rastrigin(5) time functions on 4 CPUs and bohachevsky(5) as objective function.
Positive values indicate an overestimated runtime and negative values an underestima-
tion.

4.2 High Runtime Estimation Quality: rosenbrock

Figure 2 shows boxplots for the time required to reach the three different accuracy
levels in 10 repetitions within a budget of 4 h real time on 4 CPUs (upper part) and

1 Hutter, F., Ramage, S.: Manual for SMAC version v2.10.03-master. Department
of Computer Science, UBC. (2015), www.cs.ubc.ca/labs/beta/Projects/SMAC/
v2.10.03/manual.pdf.

http://www.cs.ubc.ca/labs/beta/Projects/SMAC/v2.10.03/manual.pdf
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/v2.10.03/manual.pdf

RAMBO: Resource-Aware Model-Based Optimization 189

Table 1. Ranking for accuracy levels 0.5, 0.1, 0.01 averaged over all problems with
rosenbrock(·) time function on 4 and 16 CPUs with a time budget of 4 h and 2 h,
respectively.

Algorithm 4 CPUs 16 CPUs

0.5 0.1 0.01 0.5 0.1 0.01

asyn.eei 3.32 (2) 3.52 (1) 4.97 (2) 3.75 (3) 4.30 (3) 5.45 (3)

asyn.ei.bel 3.55 (3) 4.10 (3) 4.97 (2) 3.48 (2) 4.08 (2) 4.53 (2)

RAMBO 3.17 (1) 3.85 (2) 4.57 (1) 3.13 (1) 3.93 (1) 4.47 (1)

ei.bel 4.38 (4) 4.98 (4) 5.90 (5) 5.00 (5) 5.48 (6) 6.28 (6)

qLCB 4.52 (5) 5.03 (5) 5.63 (4) 4.72 (4) 5.17 (4) 6.10 (4)

rs 6.02 (6) 6.67 (6) 6.83 (7) 5.50 (7) 6.48 (7) 6.87 (7)

smac 6.22 (7) 6.70 (7) 6.82 (6) 5.32 (6) 5.47 (5) 6.17 (5)

2 h on 16 CPUs (lower part). The faster an optimizer reaches the desired accuracy
level, the lower the displayed box and the better the approach. If an algorithm did
not reach an accuracy level within the time budget, we impute with the respective
time budget (4 h or 2 h) plus a penalty of 1000 s.

Table 1 lists the aggregated ranks over all objective functions, grouped by
algorithm, accuracy level, and number of CPUs. For this computation, the algo-
rithms are ranked w.r.t. their performance for each replication and problem
before they are aggregated with the mean. If there are ties (e.g. if an accuracy
level was not reached), all values obtain the worst possible rank.

The benchmarks indicate an overall advantage of our proposed resource-
aware MBO algorithm (rambo): On average, rambo reaches the accuracy level
first in 2 of 3 setups on 4 CPUs and is always fastest on 16 CPUs. rambo is
closely followed by the asynchronous variant asyn.eei on 4 CPUs but the lead
becomes more clear on 16 CPUs. In comparison to the conventional synchronous
algorithms (ei.bel, qLCB), rambo as well as asyn.eei and asyn.ei.bel reach
the given accuracy levels in shorter time. This is especially true for objective
functions that are hard to model (ackley(·), rastrigin(·)) by the surrogate
as seen in Fig. 2. The simpler asyn.ei.bel performs better than asyn.eei on
16 CPUs. Except for smac, all presented MBO methods outperform base-line rs
on almost all problems and accuracy levels. The bad average results for smac
are partly due to its low performance on the 5d problems and probably because
of the disadvantage of using a random forest as a surrogate on purely numerical
problems. A recent benchmark in [3] was able to demonstrate the competitive
performance of the Kriging based EGO approach. On 16 CPUs smac performs
better than rs and comparable to ei.bel.

For a thorough analysis of the optimization, Fig. 3 exemplary visualizes the
mapping of the parallel point evaluations (jobs) for all MBO algorithms on
16 CPUs for the 5d versions of the problems. Each gray box represents com-
putation of a job on the respective CPU. For the synchronous MBO algorithms

190 H. Kotthaus et al.

ackley.rosenbrock bohachevsky.rosenbrock rastrigin.rosenbrock

2d (4 C
P

U
s)

5d (4 C
P

U
s)

0.5 0.1 0.01 0.5 0.1 0.01 0.5 0.1 0.01

0

1

2

3

4

0

1

2

3

4ho
ur

s

Algorithm asyn.eei asyn.ei.bel RAMBO ei.bel qLCB rs smac

ackley.rosenbrock bohachevsky.rosenbrock rastrigin.rosenbrock

2d (16 C
P

U
s)

5d (16 C
P

U
s)

0.5 0.1 0.01 0.5 0.1 0.01 0.5 0.1 0.01

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

accuracy level

ho
ur

s

Fig. 2. Accuracy level vs. execution time for different objective functions using time
function rosenbrock(·) (lower is better).

(rambo, qLCB, ei.bel) the vertical lines indicate the end of an MBO iteration.
For asyn.eei red boxes indicate that the CPU is occupied with the point pro-
posal. The necessity of a resource estimation for jobs with heterogeneous run-
times becomes obvious, as qLCB and ei.bel can cause long idle times by queuing
jobs together with large runtime differences. The knapsack scheduling in rambo
manages to clearly reduce this idle time. This effect of efficient resource utiliza-
tion increases with the number of CPUs. rambo reaches nearly the same effective
resource-utilization as the asynchronous asyn.ei.bel algorithm and smac (see
Fig. 3) and at the same time reaches the accuracy level fastest on 16 CPUs.

The Monte Carlo approach asyn.eei generates a high computational over-
head as indicated by the red boxes, which reduces the effective number of evalu-
ations. Idling occurs because the calculation of the EEI is encouraged to wait for
ongoing EEI calculations to include their proposals. This overhead additionally
increases with the number of already evaluated points. asyn.ei.bel and smac
have a comparably low overhead and thus basically no idle time. This seems
to be an advantage for asyn.ei.bel on 16 CPUs where it performs better on
average than its complex counterpart asyn.eei.

RAMBO: Resource-Aware Model-Based Optimization 191

ackley.rosenbrock_5d bohachevsky.rosenbrock_5d rastrigin.rosenbrock_5d

asyn.eei
asyn.ei.bel

R
A

M
B

O
ei.bel

qLC
B

sm
ac

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

hours

C
P

U

Fig. 3. Scheduling of MBO algorithms. Time on x-axis and mapping of candidates to
m = 16 CPUs on y-axis. Each gray box represents a job. Each red box represents
overhead for the asynchronous approaches. The gaps represent CPU idle time. (Color
figure online)

Summed up, if the resource estimation that is used in rambo has a high
quality, rambo clearly outperforms the considered synchronous MBO algorithms
qLCB, ei.bel, and smac. This indicates, that the resource utilization obtained
by the scheduling in rambo leads to faster and better results, especially, when
the number of available CPUs increases. On average rambo performs better than
all considered asynchronous approaches.

4.3 Low Runtime Estimation Quality: rastrigin

The time function rastrigin used in the following scenario is difficult to fit by
surrogate models, as visualized by the residual plot in Fig. 1. For this reason, the
benefit of our resource-aware knapsack strategy is expected to be minimal. For
example in a possible worst case multiple supposedly short jobs are assigned to
one CPU but their real runtime is considerably longer.

Similar to Subsect. 4.2, Fig. 4 shows boxplots for the benchmark results, but
with rastrigin(·) as the time function. Table 2 provides the mean ranks for
Fig. 4, calculated in the same way as in previous Subsect. 4.2.

Despite possible wrong scheduling decisions, rambo still manages to outper-
form qLCB and performs better than ei.bel on the highest accuracy level on
average. asyn.eei reaches the accuracy levels fastest on 4 CPUs. Similar to the
previous benchmarks on Subsect. 4.2, the simplified asyn.ei.bel seems to ben-
efit from its reduced overhead and places first on 16 CPUs. This difference w.r.t.
the scalability becomes especially visible on rosenbrock(·).

192 H. Kotthaus et al.

Table 2. Ranking for accuracy levels 0.5, 0.1, 0.01 averaged over all problems with
rastrigin(·) time function on 4 and 16 CPUs with a time budget of 4 h and 2 h,
respectively.

Algorithm 4 CPUs 16 CPUs

0.5 0.1 0.01 0.5 0.1 0.01

asyn.eei 3.65 (1) 3.25 (1) 4.47 (1) 4.42 (3) 4.38 (2) 5.20 (3)

asyn.ei.bel 3.88 (2) 3.50 (2) 4.52 (2) 3.90 (1) 3.75 (1) 4.33 (1)

RAMBO 4.50 (4) 4.70 (4) 4.72 (3) 4.43 (4) 4.60 (4) 5.17 (2)

ei.bel 4.22 (3) 4.42 (3) 4.87 (4) 4.33 (2) 4.55 (3) 5.27 (4)

qLCB 4.95 (5) 4.80 (5) 5.38 (5) 5.10 (5) 5.00 (5) 5.82 (5)

rs 6.30 (7) 6.42 (6) 6.63 (6) 5.78 (7) 6.23 (7) 6.43 (6)

smac 5.90 (6) 6.98 (7) 7.00 (7) 5.30 (6) 5.77 (6) 6.72 (7)

ackley.rastrigin bohachevsky.rastrigin rosenbrock.rastrigin

2d (4 C
P

U
s)

5d (4 C
P

U
s)

0.5 0.1 0.01 0.5 0.1 0.01 0.5 0.1 0.01

0

1

2

3

4

0

1

2

3

4ho
ur

s

Algorithm asyn.eei asyn.ei.bel RAMBO ei.bel qLCB rs smac

ackley.rastrigin bohachevsky.rastrigin rosenbrock.rastrigin

2d (16 C
P

U
s)

5d (16 C
P

U
s)

0.5 0.1 0.01 0.5 0.1 0.01 0.5 0.1 0.01

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

accuracy level

ho
ur

s

Fig. 4. Accuracy level vs. execution time for different objective functions using time
function rastrigin(·) (lower is better).

smac can not compete with the Kriging based optimizers. Overall, rambo
appears not to be able to outperform the asynchronous MBO methods on 4 CPUs
as unreliable runtime estimates likely lead to suboptimal scheduling decisions.

RAMBO: Resource-Aware Model-Based Optimization 193

However, rambo reaches comparable results to asyn.eei on 16 CPUs and com-
pared to the default synchronous approaches it is a viable choice.

5 Conclusion

We benchmarked our knapsack based resource-aware parallel MBO algorithm
rambo against popular synchronous and asynchronous MBO approaches on a set
of illustrative test functions for global optimization methods. Our new approach
was able to outperform SMAC and the default synchronous MBO approach qLCB
on the continuous benchmark functions. On setups with high runtime estimation
quality it converged faster to the optima than the competing MBO algorithms on
average. This indicates, that the resource utilization obtained by our new app-
roach improves MBO, especially, when the number of available CPUs increases.
On setups with low runtime estimation quality the asynchronous Kriging based
approaches performed best on 4 CPUs and only the simplified asynchronous
Kriging believer kept its lead on 16 CPUs. Unreliable estimates likely lead to sub-
optimal scheduling decisions for rambo. While the asynchronous Kriging believer
approach, SMAC and rambo benefited from increasing the number of CPUs, the
overhead of the asynchronous approach based on EEI increased.

If the runtime of point proposals is predictable we suggest our new rambo
approach for parallel MBO with high numbers of available CPUs. Even if the
runtime estimation quality is obviously hard to determine in advance, for real
applications like hyperparameter optimization for machine learning methods pre-
dictable runtimes can be assumed. Our results also suggest that on some setups
the choice of the infill criterion determines which parallelization strategy can
reach a better performance. For future work a criterion that assigns an infill
value to a set of candidates that can be scheduled without causing long idle
times appears promising. Furthermore we want to include the memory con-
sumption measured by the traceR [16,17] tool into our scheduling decisions for
experiments with high memory demands.

Acknowledgments. J. Richter and H. Kotthaus — These authors contributed
equally. This work was partly supported by Deutsche Forschungsgemeinschaft (DFG)
within the Collaborative Research Center SFB 876, A3 and by Competence Network
for Technical, Scientific High Performance Computing in Bavaria (KONWIHR) in the
project “Implementierung und Evaluation eines Verfahrens zur automatischen, massiv-
parallelen Modellselektion im Maschinellen Lernen”.

References

1. Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.: Model-
based genetic algorithms for algorithm configuration. In: International Joint Con-
ference on Artificial Intelligence, pp. 733–739 (2015)

2. Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E.,
Casalicchio, G., Jones, Z.M.: mlr: Machine learning in R. J. Mach. Learn. Res.
17(170), 1–5 (2016)

194 H. Kotthaus et al.

3. Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., Lang, M.: mlrMBO: A
modular framework for model-based optimization of expensive black-box functions.
arXiv pre-print (2017). http://arxiv.org/abs/1703.03373

4. Bischl, B., Wessing, S., Bauer, N., Friedrichs, K., Weihs, C.: MOI-MBO: multi-
objective infill for parallel model-based optimization. In: Pardalos, P.M., Resende,
M.G.C., Vogiatzis, C., Walteros, J.L. (eds.) LION 2014. LNCS, vol. 8426, pp. 173–
186. Springer, Cham (2014). doi:10.1007/978-3-319-09584-4 17

5. Borchers, H.: adagio: Discrete and Global Optimization Routines (2016). R package
version 0.6.5. https://CRAN.R-project.org/package=adagio

6. Bossek, J.: smoof: Single and Multi-Objective Optimization Test Functions (2016).
R package version 1.4. https://CRAN.R-project.org/package=smoof

7. Chevalier, C., Ginsbourger, D.: Fast computation of the multi-points expected
improvement with applications in batch selection. In: Nicosia, G., Pardalos, P.
(eds.) LION 2013. LNCS, vol. 7997, pp. 59–69. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-44973-4 7

8. Ginsbourger, D., Janusevskis, J., Le Riche, R.: Dealing with asynchronicity in par-
allel Gaussian process based global optimization. In: 4th International Conference
of the ERCIM WG on Computing & Statistics (ERCIM 2011), pp. 1–27 (2011)

9. Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize opti-
mization. In: Tenne, Y., Goh, C.K. (eds.) Computational Intelligence in Expensive
Optimization Problems, pp. 131–162. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-10701-6 6

10. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol.
6683, pp. 507–523. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3 40

11. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Parallel algorithm configuration. In:
Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 55–70. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34413-8 5

12. Janusevskis, J., Le Riche, R., Ginsbourger, D.: Parallel expected improvements
for global optimization: summary, bounds and speed-up. Technical report (2011).
https://hal.archives-ouvertes.fr/hal-00613971

13. Janusevskis, J., Le Riche, R., Ginsbourger, D., Girdziusas, R.: Expected
improvements for the asynchronous parallel global optimization of expensive
functions: potentials and challenges. In: Hamadi, Y., Schoenauer, M. (eds.)
LION 2012. LNCS, pp. 413–418. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34413-8 37

14. Jones, D.R.: A taxonomy of global optimization methods based on response sur-
faces. J. Global Optim. 21(4), 345–383 (2001)

15. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Global Optim. 13(4), 455–492 (1998)

16. Kotthaus, H., Korb, I., Lang, M., Bischl, B., Rahnenführer, J., Marwedel, P.: Run-
time and memory consumption analyses for machine learning R programs. J. Stat.
Comput. Simul. 85(1), 14–29 (2015)

17. Kotthaus, H., Korb, I., Marwedel, P.: Performance analysis for parallel R pro-
grams: towards efficient resource utilization. Technical report 01/2015, Department
of Computer Science 12, TU Dortmund University (2015)

18. Lang, M., Bischl, B., Surmann, D.: batchtools: Tools for R to work on batch sys-
tems. J. Open Source Softw. 2(10) (2017)

http://arxiv.org/abs/1703.03373
http://dx.doi.org/10.1007/978-3-319-09584-4_17
https://CRAN.R-project.org/package=adagio
https://CRAN.R-project.org/package=smoof
http://dx.doi.org/10.1007/978-3-642-44973-4_7
http://dx.doi.org/10.1007/978-3-642-44973-4_7
http://dx.doi.org/10.1007/978-3-642-10701-6_6
http://dx.doi.org/10.1007/978-3-642-10701-6_6
http://dx.doi.org/10.1007/978-3-642-25566-3_40
http://dx.doi.org/10.1007/978-3-642-34413-8_5
https://hal.archives-ouvertes.fr/hal-00613971
http://dx.doi.org/10.1007/978-3-642-34413-8_37
http://dx.doi.org/10.1007/978-3-642-34413-8_37

RAMBO: Resource-Aware Model-Based Optimization 195

19. Richter, J., Kotthaus, H., Bischl, B., Marwedel, P., Rahnenführer, J., Lang, M.:
Faster model-based optimization through resource-aware scheduling strategies. In:
Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp.
267–273. Springer, Cham (2016). doi:10.1007/978-3-319-50349-3 22

20. Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: two R pack-
ages for the analysis of computer experiments by Kriging-based metamodeling and
optimization. J. Stat. Softw. 51(1), 1–55 (2012)

21. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. In: Advances in Neural Information Processing Systems, vol.
25. pp. 2951–2959. Curran Associates, Inc. (2012)

22. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Con-
straints. Kluwer Academic Publishers, Dordrecht (2000)

23. Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer, New York
(2008). doi:10.1007/978-0-387-74740-8

http://dx.doi.org/10.1007/978-3-319-50349-3_22
http://dx.doi.org/10.1007/978-0-387-74740-8

A New Constructive Heuristic for the No-Wait
Flowshop Scheduling Problem

Lucien Mousin(B), Marie-Eléonore Kessaci, and Clarisse Dhaenens

Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en
Informatique Signal et Automatique de Lille, 59000 Lille, France

lucien.mousin@ed.univ-lille1.fr,

{me.kessaci,clarisse.dhaenens}@univ-lille1.fr

Abstract. Constructive heuristics have a great interest as they manage
to find in a very short time, solutions of relatively good quality. Such
solutions may be used as initial solutions for metaheuristics for example.
In this work, we propose a new efficient constructive heuristic for the No-
Wait Flowshop Scheduling Problem. This proposed heuristic is based on
observations on the structure of best solutions of small instances as well
as on analyzes of efficient constructive heuristics principles of the liter-
ature. Experiments have been conducted and results show the efficiency
of the proposed heuristic compared to ones from the literature.

1 Introduction

Scheduling problems is an important class of combinatorial optimization prob-
lems, most of them being NP − hard. They consist in the allocation of different
operations on a set of machines over the time. The aim of scheduling problems is
to optimize different criteria such as the makespan or the flowtime. Among these
scheduling problems, some of them, for example the jobshop or the flowshop,
have been widely studied in the literature, as they represent many industrial
situations.

In this paper, we are specifically interested in the No-Wait Flowshop Schedul-
ing Problem (NWFSP). This extension of the classical permutation Flowshop
Scheduling Problem (FSP) imposes that operations have to be processed without
any interruption between consecutive machines. This additional constraint aims
at describing real process constraints that may be found in the chemical indus-
try for example. Regarding the solving of the problem, this additional constraint
also introduces interesting characteristics that we propose to exploit within the
design of an efficient constructive heuristic.

Indeed, while solving NP −hard problems, the use of exact methods, mostly
based on enumerations, is not practicable. Therefore heuristics and metaheuris-
tics are developed. Heuristics designed for a specific problem can use, for exam-
ple, priority rules to construct the schedule. Their advantages are their speed –
most of them are greedy heuristics – and their specificity – characteristics of the
problem to be solved can be exploited. Metaheuristics, on their side, are generic

c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 196–209, 2017.
https://doi.org/10.1007/978-3-319-69404-7_14

A New Constructive Heuristic for the NWFSP 197

methods that can be applied to many optimization problems. Their efficiency
is linked to their high ability of exploring the search space and the way the
metaheuristic has been adapted to the problem under study. The initial solu-
tion, when one is required, may also influence the quality of the final solution
provided.

Hence, as explained, the quality of solutions provided by heuristics and meta-
heuristics depends on the way these methods can integrate specificities of the
problem under study. Several approaches exist to integrate such specificities.
For example, it is possible to analyze off line characteristics of instances and
to identify the best heuristic (or parameters of metaheuristic) for each kind of
instances. Then, during the search, the method can identify the type of instance
to solve and adapt the heuristic to use. This has been successfully used, for
example, for a set partitioning problem [8]. Another approach deals with the
integration of knowledge about interesting structures of solutions within the
optimization method. In this context, the aim of the present work is to develop
such a heuristic method for the No-Wait Flowshop Scheduling Problem. Thus,
the contributions are the following: 1. analysis of interesting structure of optimal
solutions, 2. integration of these observations in the design of a new constructive
heuristic, 3. study the interest of the proposed approach when used alone or as
the initialization of a metaheuristic.

The remainder of this paper is organized as follows. Section 2 introduces the
problem formulation and provides a literature review on constructive heuristics
for the NWFSP. Section 3 presents in details the proposed constructive heuristic.
In Sect. 4 experiments are conducted and a comparison with efficient heuristics
of the literature is provided. Some conclusions and perspectives for future works
are given in Sect. 5.

2 The No-Wait Flowshop Scheduling Problem

2.1 Description of the Problem

The No-Wait Flowshop Scheduling Problem (NWFSP) is a variant of the well-
known Permutation Flowshop Scheduling Problem (FSP), where no waiting time
is allowed between the executions of a job on the successive machines. It may be
defined as follows: Let J be a set of n jobs that have to be processed on a set of
M ordered machines; pi,j is defined as the processing time of job i on machine j.
A solution of the NWFSP is a sequence of jobs and so, is commonly represented
by a permutation π = {π1, . . . , πn} where π1 is the first job scheduled and πn

the last one. In this paper, the goal is to find a sequence that minimizes the
makespan criterion (recorded as Cmax) defined as the total completion time of
the schedule.

Regarding the complexity of the problem, it has been proved by Wismer
that the NWFSP can be viewed as an Asymmetric Traveling Salesman Problem
(ATSP) [17]. In addition, Röck [13] proved that for m-machines (m ≥ 3), the
NWFSP is NP-hard while, the 2-machines case can be solved in O(n∗ log n) [4].

198 L. Mousin et al.

However, the NWFSP possesses a characteristic not present in the classical
FSP. Indeed, the start-up interval between two defined consecutive jobs of the
sequence on the first machine is constant and does not depend on their position
within the sequence. This interval, called the delay between two jobs, has been
defined by Bertolissi [2]. Let di,i′ be the delay of two jobs i and i′, it is computed
as follows:

di,i′ = pi,1 + max
1≤r≤m

⎛
⎝

r∑
j=2

pi,j −
r−1∑
j=1

pi′,j , 0

⎞
⎠

This allows to compute the completion time Ci(π) of the job πi of sequence
π directly from the delays of the preceding jobs as follows:

Ci(π) =
i∑

k=2

dπk−1,πk
+

m∑
j=1

pπi,j (1)

where i ∈ {2, ..., n}. Note that C1(π) is the sum of the processing times on
the m machines of the first scheduled job and then, is not concerned by the
delay. Therefore, the makespan (Cmax(π)) of a sequence π can be computed
from Eq. (1) with a complexity of O(n).

Experiments we will present, involve local search methods at different steps.
These methods need a neighborhood operator to move from a solution to another.
Such neighborhood operators are specific to the problem and more precisely to
the representation of a solution. In this work, we use a permutation representa-
tion and a neighborhood structure based on the insertion operator [14]. For a
sequence π, it consists in inserting a job πi at position k (i �= k). Hence, jobs
between positions i and k are shifted. The size of this neighborhood, i.e., the
number of neighboring solutions, is (n−1)2. Two sequences π and π′ are said to
be neighbors when they differ from exactly one insertion move. It is very inter-
esting to note that exploiting the characteristics of the NWFSP, the makespan
of π′ can be directly computed from the makespan of π with a complexity of
O(1) [11].

2.2 State-of-the-Art

Many heuristics and metaheuristics have been proposed to solve scheduling prob-
lems and in particular the No-Wait Flowshop variant. The literature review pro-
posed here, focuses on constructive heuristics as it is the scope of the article.

First, let us note that the well-known NEH (Nawaz, Enscore, Ham) heuristic,
proposed for the classical permutation FSP [10], has been successfully applied on
the No-Wait variant. Moreover, constructive heuristics have been designed specif-
ically for the NWFSP. We may cite BIH (Bianco et al. [3]), BH (Bertolissi [2])
and RAJ (Rajendran [12]) among others. These heuristics define the order in
which jobs are considered, regarding one criterion (e.g. decreasing order of sum
of processing time of each job i − ∑

m pi,m), but this may be improved with

A New Constructive Heuristic for the NWFSP 199

other jobs orders, even random. Indeed, in some contexts, it has been shown
that repeating a random construction of solutions, may be more efficient than
applying a constructive heuristic [1].

All these heuristics construct good quality solutions that can be further
improved by a neighborhood-based metaheuristic, for example. In this paper,
we focus on NEH and BIH as they provide high quality solutions and are con-
sidered as references for this problem. These two heuristics will be used later in
the article for comparison.

The principle of NEH heuristic is to iteratively build a sequence π of jobs J .
First, the n jobs of J are sorted by decreasing sums of processing times. Then,
at each iteration, the first remaining unscheduled job is inserted in the partial
sequence π in order to minimize the partial makespan. Algorithm1 presents NEH.

Algorithm 1. NEH
Data: Set J of n jobs, π the sequence of jobs scheduled
π = ∅;
Sort the set J in decreasing sums of processing times;
for k = 1 to n do

Insert job Jk in π at the position, which minimizes the partial makespan.

This is a greedy heuristic; only n iterations are needed to build a sequence. At
each iteration, a job Jk is inserted. The makespan of the new partial sequence,
may be computed with a complexity of O(n) thanks to the delay, when job Jk

is inserted at the first position (see Sect. 2.1). Partial sequences, in which Jk is
inserted at another position in the sequence, are neighbors of the previous one
so, their makespan may be computed with a complexity of O(1), according to the
property exposed at the end of Sect. 2.1. Thus the complexity of one iteration of
NEH is O(n). Therefore, the complexity of the whole execution of NEH is O(n2).

BIH heuristic is another constructive heuristic based on the best insertion
of a job in the partial sequence. The main difference with NEH is that all the
unscheduled jobs are tested to find the best partial makespan. Indeed, while
unscheduled jobs are remaining, for each one, all the possible positions to insert
it into the partial sequence are evaluated; the job and the position that minimize
the partial makespan are chosen. Algorithm2 presents BIH.

If we consider the schedule of a job as one iteration, BIH builds a sequence
with n iterations only. However, at each iteration, each job is a candidate to be
inserted at one of all the possible positions to find the one thatminimizes the partial
makespan. For each job, finding the position that minimizes the partial makespan
has a maximal complexity of O(n) so, the complexity of one iteration of BIH is
O(n2). Therefore, the complexity of the whole execution of BIH is O(n3).

BIH has been proposed in the literature after NEH in order to construct
better quality solutions. However, the complexity of BIH is O(n3) whereas the
one of NEH is O(n2). Thus, NEH is much faster than BIH, and for large size
problems a compromise between computational time and quality is required.

200 L. Mousin et al.

Algorithm 2. BIH
Data: Set J of n jobs, π the sequence of jobs scheduled
π = ∅;
while J �= ∅ do

Find job k ∈ J , which can be inserted in the sequence π, such that the
partial makespan is minimized. Let h be the best insertion position of job k
in the sequence π;
Insert job k at position h in the sequence π;
Remove k from set J ;

3 IBI: Iterated Best Insertion Heuristic

Following the construction’s principles of previously exposed heuristics and after
analyzing the structure of optimal solutions, we propose the Iterated Best Inser-
tion (IBI) heuristic.

3.1 Analysis of Optimal Solutions Structure

Most of constructive heuristics are based on the best insertion principle. Indeed,
the principle of the heuristic is to increase to increase, at each iteration, the
problem size by one. It starts with a sub-problem of size one (only one job to
schedule), then increases the size of the problem to solve (two jobs to schedule,
three jobs. . .) until the size of the initial problem is reached.

In order to understand the dynamic of such a construction, we analyzed the
structure of consecutive constructed sub-sequences and compare them to optimal
sequences. Obviously this can be done only for first steps, as it is impossible to
enumerate all the sequences, and find the optimal one, when the problem size
is too large. Our proposition is to extend observations realized on sub-problems
to the whole problem, in order to provide better solution. This approach can be
compared to the Streamlined Constraint Reasoning, where the solution space
is partitioned into sub-spaces whose structures are analyzed to better solve the
whole problem [5].

Figure 1 gives an example starting from a sub-problem of size 8, P8, where 8
jobs are scheduled in the optimal order to minimize the makespan. Then, follow-
ing the constructive principle, job 9 is inserted at the position that minimizes the
makespan leading to the sub-problem P9 of size 9. This sequence corresponds
to the one given by NEH strategy. When comparing the obtained sequence with
the optimal solution of P9, we can observe that they are very close. Indeed, only
two improving re-insertions (re-insertions of jobs 7 and 2) are needed to obtain
this optimal solution from the NEH solution.

A New Constructive Heuristic for the NWFSP 201

Fig. 1. Example of the evolution of the structure of the optimal solution from a sub-
problem P8 of size 8 to a sub-problem P9 of size 9.

Experimental analysis on different instances have confirmed the following
observations:

– at each step the structure of the obtained solution is not far from the structure
of the optimal solution for the sub-problem,

– a few improving neighborhood applications may often lead to this optimal
solution.

3.2 Design of IBI

Following these observations, we propose a new constructive heuristic called Iter-
ated Best Insertion (IBI). At each iteration, two phases are successively achieved:
(i) the first remaining unscheduled job is inserted in the partial sequence in order
to minimize the partial makespan (same strategy than NEH) and (ii), an iter-
ative improvement is performed on this partial solution to re-order jobs and to
expect to be closer to the optimal solution of the sub-problem (see Algorithm 3).
An iterative improvement is a method that moves, using a neighborhood oper-
ator, from a solution to one of its improving neighbors, which optimizes the
quality. It naturally stops when a local optimum (a solution with no improving
neighbors) is reached. Here, the neighborhood operator is based on the insertion
and then possible move are applied while a better makespan is found.

Algorithm 3. IBI
Data: Set J of n jobs, π the sequence of jobs scheduled, σ criterion to sort J ,

cycle number of iterations without iterative improvement.
π = ∅;
Sort set J according to σ ;
for k = 1 to n do

Insert job Jk in π at the position which minimizes the partial makespan.;
if k ≡ 0 [cycle] then

Perform an iterative improvement from π.

Two parameters have been introduced in the proposed method. First, σ a
criterion to initially sort the set of jobs J . It will indicate in which order jobs
will be considered during the construction. Second, cycle the number of itera-
tions without applying the iterative improvement procedure. Indeed, even if the

202 L. Mousin et al.

experimental analysis shows that the sequence built in phase (i) is not far from
the optimum of the sub-problem, it is known that the exploration of the neigh-
borhood is more and more time-consuming and the optimum more and more
difficult to reach with the increase of the problem size. In order to control the
time-performance of IBI, the cycle parameter allows the iterative improvement
to be executed at a regular number of iterations only.

3.3 Experimental Analysis of Parameters

As the initial sort of IBI σ, may impact its performance as well as the cycle
parameter, the performance of IBI is evaluated under these two parameters. This
part, first presents the experimental protocol used, and then compare several
versions of the IBI algorithm, using several initial sorts and finally analyses the
impact of the cycle parameter.

Experimental Protocol. The benchmark used to evaluate the performance
of the different variants of IBI is the Taillard’s instances [15], initially provided
for the flowshop problem but also widely used in the literature for the NWFSP.
This benchmark proposes 120 instances, organized by 10 instances of 12 different
sizes. Our experiments are conducted on the 10 available instances of size N M
where the number of jobs N is ranging from 20 to 200 and the number of machines
M from 5 to 20 (total of 110 instances).

To compare the algorithms, the Relative Percentage Deviation (RPD) with
the best known solution is computed. For a quality Q to minimize, the RPD is
computed as follows:

RPD =
Q(Solution) − Q(Best known solution)

Q(Best known solution)
∗ 100 (2)

Because of its Iterative Improvement phase, IBI is a stochastic method. Thus,
30 runs are required to allow making conclusions about results obtained. To
follow this recommendation, all variants of the algorithm are executed 30 times
per instance and the statistical Friedman test is performed on the RPD of all
executions to compare algorithms.

Each algorithm is implemented using C++ and the experiments were exe-
cuted on an Intel(R) Xeon(R) 3.5 GHz processor.

IBI: Initial Sort. Greedy heuristics, such as IBI, consider jobs in a given order.
For example, in NEH, jobs are ordered by the decreasing sum of processing times.
The specificity of the NWFSP gives other useful information as the GAP between
two jobs on each machine that represents the idle time of the machine between
the two jobs [9]. This measure does not depend on the schedule. Hence, for each
machine, the GAP between each pair of jobs can be computed independently
from the solving. The sum of GAPs for a pair of jobs represents the sum of
their GAP on all the machines. To obtain a single value per job, we propose to

A New Constructive Heuristic for the NWFSP 203

define the total GAP of one job as the sum of the sum of GAPs. Hence, a high
value of total GAP for a job indicates that the job has no good matching in the
schedule. On the other hand, a low total GAP indicates that the job fits well
with the others. In order to evaluate the impact of the initial sort and to define
the most efficient one for the IBI heuristic, we experiment several initial sorts σ,
based on (i) the total GAP or on (ii) the sum of processing times in decreasing
or increasing order for both.

Table 1. Average RPD obtained on each size of Taillard’s instances for different sorts:
No Sort, Decreasing Mean GAP (DecrMeanGAP), Increasing Mean GAP (IncrMean-
GAP), Decreasing sum of processing times (DecrPI) and the increasing sum of process-
ing times (IncrPI). RPD values in bold stand for algorithms outperforming the other
ones according to the statistical Friedman test.

Instance NoSort DecrMeanGAP IncrMeanGAP DecrPI IncrPI

20 5 1.79 2.32 2.57 2.13 1.38

20 10 2.04 1.72 1.67 1.30 1.77

20 20 1.44 1.26 1.04 1.12 1.15

50 5 3.74 3.65 4.01 3.23 3.04

50 10 2.78 3.17 3.25 2.74 2.57

50 20 2.53 2.41 2.47 2.80 2.50

100 5 4.68 4.52 4.67 4.13 4.12

100 10 3.45 3.36 3.53 3.24 3.27

100 20 3.05 2.82 2.81 2.79 2.89

200 10 4.32 4.19 4.22 3.81 3.87

200 20 3.24 3.26 3.23 3.03 2.99

Table 1 provides a detailed comparison of the different initial sorts on the 110
Taillard’s instances. This table shows that when a significant difference is observed
the best initial sort is to consider the sum of processing times. Ordering jobs by
increasing or decreasing order has no significant influence. Thus for the following,
we choose the increasing sum of processing times as the initial sort of IBI.

IBI: Cycle. The use of an iterative improvement at each iteration can be time
expensive. In order to minimize the execution time, we introduce a cycle. A cycle
is a sequence of x iterations without any iterative improvement.

In Table 2, we study the impact of the size of the cycle on both the quality
of solutions and the execution time.

These results show that the quality decreases with a large cycle size, but
is obviously faster. As the objective of such a constructive heuristic is to pro-
vide in a very reasonable time a solution as good as possible, and as the time
required here even for large instances stays reasonable, we propose not to use

204 L. Mousin et al.

Table 2. Average RPD and time (milliseconds) obtained on Taillard’s instances for
different sizes of cycle. RPD values in bold stand for algorithms outperforming the
other ones according to the Friedman test. A cycle of size x, indicates the iterative
improvement is executed every x iterations. Thus, a cycle of size n indicates the iterative
improvement is executed only once, at the end of the construction.

Instance 1 2 5 10 n

RPD Time RPD Time RPD Time RPD Time RPD Time

20 5 1.38 0.77 1.24 0.55 1.43 0.27 1.78 0.20 1.62 0.18

20 10 1.77 0.83 1.82 0.52 1.85 0.26 1.49 0.20 1.69 0.19

20 20 1.15 0.77 1.35 0.47 1.71 0.25 1.74 0.19 1.68 0.16

50 5 3.04 12.16 3.25 6.76 3.46 3.52 3.62 2.49 3.94 1.74

50 10 2.57 11.55 2.49 6.69 2.75 3.62 3.07 2.39 3.26 1.48

50 20 2.50 11.73 2.37 6.67 2.58 3.58 2.65 2.42 3.14 1.59

100 5 4.12 95.74 4.22 55.96 4.42 30.22 4.65 19.40 5.29 9.62

100 10 3.27 93.43 3.27 54.56 3.30 29.19 3.45 18.78 4.17 9.71

100 20 2.89 92.90 2.93 53.60 3.07 28.35 3.16 18.28 3.56 9.88

200 10 3.87 755.09 3.91 435.40 4.07 225.52 4.09 146.26 4.74 55.04

200 20 2.99 746.62 3.10 431.33 3.11 222.80 3.18 146.26 3.93 57.83

any cycle, that is to say to execute the iterative improvement at each step of the
construction.

In conclusion of these experiments we propose to fix for the remainder of this
work as IBI parameters: an initial sort based on the increasing sum of processing
times and no cycle (i.e. cycle of size 1).

4 Experiments

The aim of this section is to analyze the efficiency of the proposed IBI method in
two situations. First, IBI alone will be compared to other constructive heuristics
of the literature, and in a second time these different heuristics will be used as
initialization of a classical local search. Along this section, the same experimental
protocol as before is used, and parameters used for IBI are those resulting from
experiments of Sect. 3.3.

4.1 Efficiency of IBI

We choose to compare IBI with two other heuristics of the literature: NEH and
BIH. Indeed, as exposed in Sect. 2.2 NEH and BIH are both interesting and
efficient constructive heuristics for the NWFSP:

1. NEH is a classical heuristic for flow-shop problems and it has the advantage
to be very fast. Moreover, the proposed method IBI can be viewed as an
improvement of NEH, as an iterative improvement is added at each step.

A New Constructive Heuristic for the NWFSP 205

2. BIH is a classical heuristic for the NWFSP and very efficient as, according to
some preliminary experiments, it offers the best performance among several
tested heuristics.

Table 3 shows the comparative study between IBI and the two other construc-
tive heuristics. Both RPD and computation time are given to exhibit the gain in
quality with regards to the time. NEH and BIH are deterministic and so, both val-
ues of an instance size are average ones computed fromthe tenRPDvalues obtained
for the 10 instances respectively. On the other hand, IBI values correspond to the
average ones over the 30 runs and the 10 instances of each instance size.

Table 3. RPD and time (milliseconds) obtained on Taillard’s instances for NEH, BIH
and IBI (average values). RPD values in bold stand for algorithms statistically outper-
forming the other ones according to the Friedman test.

Instance NEH BIH IBI

RPD Time RPD Time RPD Time

20 5 3.95 0.03 3.03 0.10 1.38 0.77

20 10 4.18 0.02 3.60 0.09 1.77 0.82

20 20 2.92 0.02 1.74 0.08 1.15 0.76

50 5 6.84 0.10 5.98 1.10 3.04 12.16

50 10 4.59 0.09 4.10 1.13 2.57 11.54

50 20 4.84 0.10 4.01 1.18 2.50 11.72

100 5 8.14 0.32 6.85 9.07 4.12 95.74

100 10 6.10 0.33 5.66 9.29 3.27 93.43

100 20 5.17 0.33 4.65 9.30 2.89 92.90

200 10 6.72 1.21 5.85 72.44 3.87 755.09

200 20 5.74 1.21 4.51 71.95 2.99 746.62

Solutions built by IBI have a better quality (lower RPD) than those built by
NEH or BIH. It has statistically been verified with the Friedman Test. Beside,
IBI was able to better perform than NEH or BIH for 106 instances over the 110
available instances. The counterpart of this performance is the computational
time required to execute IBI regarding to the two other heuristics. However,
this time remains reasonable as, less than one second is required even for larger
instances. IBI is an efficient alternative to the classical heuristics used to build
good quality solutions.

4.2 IBI as Initialization of a Local Search

A general use of constructive heuristics is to execute them as an initialization
phase of meta-heuristics. In order to evaluate the pertinence of using IBI in such

206 L. Mousin et al.

an initialization phase, it has been combined with a Tabu Search (TS). This
local search is widely used to solve flowshop problems [6,7,16] and so is a good
candidate to show the pertinence to build solutions with IBI rather than NEH
or BIH. The three heuristics are combined with TS. In order to be fair, every
combined approaches have the same running time fixed to 1000 ∗ n ms (with n
the number of jobs). These experiments aim at checking if the quality reached
is enough to justify the use of IBI as initialization or if its higher execution time
penalizes its use.

Table 4 presents results about the average RPD values among the 30 runs
for each combined approach for each instance size. Results exposed in this table
compared to those of Table 3 first indicate that the Tabu Search manages to
improve solutions produced by the different heuristics. It also indicates that IBI
used as an initialization phase, gets better results than the others, even if the
difference is not always statistically proved. In particular for instances with a
high number of jobs to schedule, IBI shows a very good performance.

Table 4. Average RPD on Taillard’s instances for NEH+TS, BIH+TS and IBI+TS.
RPD values in bold stand for algorithms statistically outperforming the other ones
according to the Friedman test.

Instance NEH+TS BIH+TS IBI+TS

20 5 1.12 1.30 0.83

20 10 1.30 1.35 1.39

20 20 1.15 0.71 0.73

50 5 3.17 3.49 2.63

50 10 2.68 2.53 2.15

50 20 2.53 2.41 2.03

100 5 4.66 4.55 3.78

100 10 3.70 3.48 2.94

100 20 2.97 2.93 2.62

200 10 4.25 4.20 3.67

200 20 3.56 2.99 2.77

As an illustration, Fig. 2 shows the evolution of the average makespan for
a particular instance with 200 jobs and 20 machines (mean of the 30 runs).
Regarding only the quality after the initialization, IBI is better than the two
other heuristics, as shown in Table 3 previously. After the improvement of the
Tabu Search for the two other heuristics, the final quality seems to be equivalent
to the one obtained by IBI without applying the local search. That shows the
efficiency of this approach. Finally, the Tabu Search does not help a lot IBI.
Indeed, thanks to the successive local improvement in the second phase of IBI,
the solution provided by IBI is already a local optimum. Therefore, it is difficult
for the Tabu Search to improve the solution obtained with IBI.

A New Constructive Heuristic for the NWFSP 207

Fig. 2. Evolution of the average makespan on 30 runs for the 7th instance of Taillard
(200 jobs, 20 machines) for the three combined approaches. IBI+TS is represented by
squares, NEH+TS by crosses and BIH+TS by circles.

In conclusion, these experiments show the good performance of IBI for both
aspects: as a constructive heuristics and as initialization of a meta-heuristic. In
particular, they show the contribution of the local improvement to build the
solution.

5 Conclusion and Perspectives

This work presents IBI, a new heuristic to minimize the makespan for the No-
Wait Flowshop Scheduling Problem. IBI has been designed from the analysis of
existing heuristics of the literature as well as of the structure of optimal solutions.
Indeed, IBI is an improvement of the widely used heuristic (NEH), where an
iterative improvement procedure has been added after each insertion of a job.
Even if this additional procedure increases the computational time compared to
other constructive heuristics of the literature (NEH and BIH), the improvement
of the quality of the final solution built is noticeable and has statistically been
validated with the Friedman test.

Then, we analyzed if this extra computational time is justified in term of
quality obtained by evaluating the capacity of IBI to provide a good solution.
IBI and the others heuristics have been used as initialization for a metaheuristic
i.e., the initial solution of the approach is a solution built by a heuristic. The
experiments, on the Taillard instances, show that IBI helps the metaheuristic to
be more efficient and the extra time needed to build an initial solution is not a
drawback.

208 L. Mousin et al.

What is interesting in this work is that the addition of a simple modifica-
tion of an existing constructive heuristic improves the results. This modification
has been proposed from properties observed which make the application of an
iterative improvement procedure at each step 1. useful – only a few steps are
required to reach the optimal solutions for the small sub-problems – and 2. no
time consuming–the makespan of a neighborhood solution can be computed in
O(1). We can now wonder whether such a modification can be performed to other
constructive heuristics for other variants of the flowshop or more generally, for
other problems (if they also present equivalent properties).

References

1. Balas, E., Carrera, M.C.: A dynamic subgradient-based branch-and-bound proce-
dure for set covering. Oper. Res. 44(6), 875–890 (1996)

2. Bertolissi, E.: Heuristic algorithm for scheduling in the no-wait flow-shop. J. Mater.
Process. Technol. 107(1–3), 459–465 (2000)

3. Bianco, L., Dell’Olmo, P., Giordani, S.: Flow shop no-wait scheduling with sequence
dependent setup times and release dates. INFOR Inf. Syst. Oper. Res. 37(1), 3–19
(1999)

4. Gilmore, P.C., Gomory, R.E.: Sequencing a one state-variable machine: a solvable
case of the traveling salesman problem. Oper. Res. 12(5), 655–679 (1964)

5. Gomes, C., Sellmann, M.: Streamlined constraint reasoning. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 274–289. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30201-8 22

6. Grabowski, J., Pempera, J.: The permutation flow shop problem with blocking. A
Tabu Search approach. Omega 35(3), 302–311 (2007)

7. Grabowski, J., Wodecki, M.: A very fast Tabu Search algorithm for the permutation
flow shop problem with makespan criterion. Comput. Oper. Res. 31(11), 1891–1909
(2004)

8. Kadioglu, S., Malitsky, Y., Sellmann, M.: Non-model-based search guidance for
set partitioning problems. In: Hoffmann, J., Selman, B. (eds.) Proceedings of
the Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, Ontario,
Canada, 22–26 July 2012. AAAI Press (2012)

9. Nagano, M.S., Araújo, D.C.: New heuristics for the no-wait flowshop with sequence-
dependent setup times problem. J. Braz. Soc. Mech. Sci. Eng. 36(1), 139–151
(2013)

10. Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega 11(1), 91–95 (1983)

11. Pan, Q.-K., Wang, L., Tasgetiren, M.F., Zhao, B.-H.: A hybrid discrete particle
swarm optimization algorithm for the no-wait flow shop scheduling problem with
makespan criterion. Int. J. Adv. Manuf. Technol. 38(3–4), 337–347 (2007)

12. Rajendran, C.: A no-wait flowshop scheduling heuristic to minimize makespan. J.
Oper. Res. Soc. 45(4), 472–478 (1994)

13. Röck, H.: The three-machine no-wait flow shop is NP-complete. J. ACM 31(2),
336–345 (1984)

14. Schiavinotto, T., Stützle, T.: A review of metrics on permutations for search land-
scape analysis. Comput. Oper. Res. 34, 3143–3153 (2007)

15. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2),
278–285 (1993)

http://dx.doi.org/10.1007/978-3-540-30201-8_22
http://dx.doi.org/10.1007/978-3-540-30201-8_22

A New Constructive Heuristic for the NWFSP 209

16. Wang, C., Li, X., Wang, Q.: Accelerated tabu search for no-wait flowshop schedul-
ing problem with maximum lateness criterion. Eur. J. Oper. Res. 206(1), 64–72
(2010)

17. Wismer, D.A.: Solution of the flowshop-scheduling problem with no intermediate
queues. Oper. Res. 20(3), 689–697 (1972)

Sharp Penalty Mappings for Variational
Inequality Problems

Evgeni Nurminski(B)

School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
nurminski.ea@dvfu.ru

Abstract. First, this paper introduces a notion of a sharp penalty map-
ping which can replace more common exact penalty function for convex
feasibility problems. Second, it uses it for solution of variational inequal-
ities with monotone operators or pseudo-varitional inequalities with ori-
ented operators. Appropriately scaled the sharp penalty mapping can be
used as an exact penalty in variational inequalities to turn them into
fixed point problems. Then they can be approximately solved by simple
iteration method.

Keywords: Monotone variational inequalities · Oriented mappings ·
Sharp penalty mappings · Exact penalty mappings · Approximate solu-
tion

1 Introduction

Variational inequalities (VI) became one of the common tools for represent-
ing many problems in physics, engineering, economics, computational biology,
computerized medicine, to name but a few, which extend beyond optimization,
see [1] for the extensive review of the subject. Apart from the mathematical
problems connected with the characterization of solutions and development of
the appropriate algorithmic tools to find them, modern problems offer signif-
icant implementation challenges due to their non-linearity and large scale. It
leaves just a few options for the algorithms development as it occurs in the oth-
ers related fields like convex feasibility (CF) problems [2] as well. One of these
options is to use fixed point iteration methods with various attraction properties
toward the solutions, which have low memory requirements and simple and easily
parallelized iterations. These schemes are quite popular for convex optimization
and CF problems but they need certain modifications to be applied to VI prob-
lems. The idea of modification can be related to some approaches put forward
for convex optimization and CF problems in [3–5] and which is becoming known
as superiorization technique (see also [6] for the general description).

From the point of view of this approach the optimization problem

min f(x), x ∈ X (1)

c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 210–221, 2017.
https://doi.org/10.1007/978-3-319-69404-7_15

Sharp Penalty Mappings 211

or VI problem to find x� ∈ X such that

F (x�)(x − x�) ≥ 0, x ∈ X (2)

are conceptually divided into the feasibility problem x ∈ X and the second-
stage optimization or VI problems next. Then these tasks can be considered to a
certain extent separately which makes it possible to use their specifics to apply
the most suitable algorithms for feasibility and optimization/VI parts.

The problem is to combine these algorithms in a way which provides the
solution of the original problems (1) or (2). As it turns out these two tasks can
be merged together under rather reasonable conditions which basically require
a feasibility algorithm to be resilient with respect to diminishing perturbations
and the second-stage algorithm to be something like globally convergent over
the feasible set or its small expansions.

Needless to say that this general idea meets many technical difficulties one of
them is to balance in intelligent way the feasibility and optimization/VI steps.
If optimization steps are essentially “smaller” than feasibility steps then it is
possible to prove general convergence results [3,4] under rather mild conditions.
However it looks like that this requirements for optimization steps to be smaller
(in fact even vanishing compared to feasibility) slows down the overall optimiza-
tion in (1) considerably.

This can be seen in the text-book penalty function method for (1) which
consists in the solution of the auxiliary problem of the kind

min
x

{ΦX(x) + εf(x) } = ΦX(xε) + εf(xε) (3)

where ΦX(x) = 0 for x ∈ X and ΦX(x) > 0 otherwise. The term εf(x) can
be considered as the perturbation of the feasibility problem minx Φ(x) and for
classical smooth penalty functions the penalty parameter ε > 0 must tend to
zero to guarantee convergence of xε to the solution of (1). Definitely it makes
the objective function f(x) less influential in solution process of (1) and hinders
the optimization.

To overcome this problem the exact penalty functions ΨX(·) can be used
which provide the exact solution of (1)

min
x

{ΨX(x) + εf(x) } = εf(x�) (4)

for small enough ε > 0 under rather mild conditions. The price for the conceptual
simplification of the solution of (2) is the inevitable non-differentiability of the
penalty function ΨX(x) and the corresponding worsening of convergence rates
for instance for gradient-like methods (see [8,9] for comparison). Nevertheless
the idea has a certain appeal, keeping in mind successes of nondiffereniable
optimization, and the similar approaches with necessary modifications were used
for VI problems starting from [10] and followed by [11–14] among others. In these
works the penalty functions were introduced and their gradient fields direct the
iterations to feasibility.

212 E. Nurminski

Here we suggest a more general definition of a sharp penalty mapping P :
E → C(E), not necessarily potential, which is oriented toward a feasible set (for
details of notations see the Sect. 2). It also admits a certain problem-dependent
penalty constant λ > 0 such that the sum F + λP of variational operator F
of (2) and P scaled by λ possesses a desirable properties to make the iteration
algorithm converge at least to a given neighborhood of solution of (2). In the
preliminary form this idea was suggested in [15] using a different definition of a
sharp penalty mapping which resulted in rather weak convergence result. Here
we show that it is possible to reach stronger convergence result with all limit
points of the iteration method being an ε-solutions of VI problem (2).

2 Notations and Preliminaries

Let E denotes a finite-dimensional space with the inner product xy for x, y ∈
E, and the standard Euclidean norm ‖x‖ =

√
xx. The one-dimensional E is

denoted as R and R∞ = R ∪ {∞}. The unit ball in E is denoted as B = {x :
‖x‖ ≤ 1}. The space of bounded closed convex subsets of E is denoted as C(E).
The distance function ρ(x,X) between point x and set X ⊂ E is defined as
ρ(x,X) = infy∈X ‖x− y‖. The norm of a set X is defined as ‖X‖ = supx∈X ‖x‖.

For any X ⊂ E its interior is denoted as int(X), the closure of X is denoted
as cl(X) and the boundary of X is denoted as ∂X = X \ int(X).

The sum of two subsets A and B of E is denoted as A + B and understood
as A + B = {a + b, a ∈ A, b ∈ B}. If A is a singleton {a} we write just a + B.

Any open subset of E containing zero vector is called a neighborhood of zero
in E. We use the standard definition of upper semi-continuity and monotonicity
of set-valued mappings:

Definition 1. A set-valued mapping F : E → C(E) is called upper semi-
continuous if at any point x̄ for any neighborhood of zero U there exists a neigh-
borhood of zero V such that F (x) ⊂ F (x̄) + U for all x ∈ x̄ + V .

Definition 2. A set-valued mapping F : E → C(E) is called a monotone if
(fx − fy)(x − y) ≥ 0 for any x, y ∈ E and fx ∈ F (x), fy ∈ F (y).

We use standard notations of convex analysis: if h : E → R∞ is a convex
function, then dom(h) = {x : h(x) < ∞}, epi h = {(μ, x) : μ ≥ h(x), x ∈
dom(h)} ⊂ R × E, the sub-differential of h is defined as follows:

Definition 3. For a convex function h : E → R∞ a sub-differential of h at
point x̄ ∈ dom(h) is the set ∂h(x̄) of vectors g such that h(x) − h(x̄) ≥ g(x − x̄)
for any x ∈ dom(h).

This defines a convex-valued upper semi-continuous maximal monotone set-
valued mapping ∂h : int(dom(h)) → C(E). At the boundaries of dom(h) the
sub-differential of h may or may not exist. For differentiable h(x) the classical
gradient of h is denoted as h′(x).

We define the convex envelope of X ⊂ E as follows.

Sharp Penalty Mappings 213

Definition 4. An inclusion-minimal set Y ∈ C(E) such that X ⊂ Y is called a
convex envelope of X and denoted as co(X).

Our main interest consists in finding a solution x� of a following finite-
dimensional VI problem with a single-valued operator F (x):

Find x� ∈ X ⊂ C(E) such that F (x�)(x − x�) ≥ 0 for all x ∈ X. (5)

This problem has its roots in convex optimization and for F (x) = f ′(x) VI (5)
is the geometrical formalization of the optimality conditions for (1).

If F is monotone, then the pseudo-variational inequality (PVI) problem

Find x� ∈ X such that F (x)(x − x�) ≥ 0 for all x ∈ X. (6)

has a solution x� which is a solution of (5) as well. However it is not necessary
for F to be monotone to have a solution of (6) which coincides with a solution
of (5) as Fig. 1 demonstrates.

F
(x
)
=

x
+

0
.3
x
2
si
n
(2
5
x
)

X = [−1, 1]

Oriented but non-monotone operator F (x)

F (x�) = 0

Fig. 1. Non-monotone operator F (x) oriented toward x� = 0.

For simplicity we assume that both problems (5) and (6) has unique and
hence coinciding solutions.

To have more freedom to develop iteration methods for the problem (6) we
introduce the notions of oriented and strongly oriented mappings according to
the following definitions.

214 E. Nurminski

Definition 5. A set-valued mapping G : E → C(E) is called oriented toward x̄
at point x if

gx(x − x̄) ≥ 0 (7)

for any gx ∈ G(x).

Definition 6. A set-valued mapping G : E → C(E) is called strongly oriented
toward x̄ on a set X if for any ε > 0 there is γε > 0 such that

gx(x − x̄) ≥ γε (8)

for any gx ∈ G(x) and all x ∈ X \ {x̄ + εB}.
If G is oriented (strongly oriented) toward x̄ at all points x ∈ X then we will
call it oriented (strongly oriented) toward x̄ on X.

Of course if x̄ = x�, a solution of PVI problem (6), then G is oriented toward
x� on X by definition and the other way around.

The notion of oriented mappings is somewhat related to attractive mappings
introduced in [2], which can be defined for our purposes as follows.

Definition 7. A mapping F : E → E is called attractive with respect to x̄ at
point x if

‖F (x) − x̄‖ ≤ ‖x − x̄‖ (9)

It is easy to show that if F is an attractive mapping, then G(x) = F (x) − x is
an oriented mapping, however G(x) = −10x is the oriented mapping toward {0}
on [−1, 1] but neither G(x) nor G(x) + x are attractive.

Despite the fact that the problem (5) depends upon the behavior of F on X
only, we need to make an additional assumption about global properties of F
to avoid certain problems with possible divergence of iteration method due to
“run-away” effect. Such assumption is the long-range orientation of F which is
frequently used to ensure the desirable global behavior of iteration methods.

Definition 8. A mapping F : E → E is called long-range oriented toward a set
X if there exists ρF ≥ 0 such that for any x̄ ∈ X

F (x)(x − x̄) > 0 for all x such that ‖x‖ ≥ ρF . (10)

We will call ρF the radius of long-range orientation of F toward X.

3 Sharp Penalty Mappings

In this section we present the key construction which makes possible to reduce
an approximate solution of VI problem into calculation of the limit points of
iterative process, governed by strongly oriented operators.

For this purpose we modify slightly the classical definition of a polar cone of
a set X.

Definition 9. The set KX(x) = {p : p(x − y) ≥ 0 for all y ∈ X} we will call
the polar cone of X at a point x.

Sharp Penalty Mappings 215

Of course KX(x) = {0} if x ∈ int X.
For our purposes we need also a stronger definition which defines a certain

sub-cone of KX(x) with stronger pointing toward X.

Definition 10. Let ε ≥ 0 and x /∈ X + εB. The set

Kε
X(x) = {p : p(x − y) ≥ 0 for all y ∈ X + εB} (11)

will be called ε-strong polar cone of X at x.

As it is easy to see that the alternative definition of Kε
X(x) is Kε

X(x) = {p :
p(x − y) ≥ ε‖p‖ for all y ∈ X.}

To define a sharp penalty mapping for the whole space E we introduce a
composite mapping

K̃ε
X(x) =

⎧
⎨

⎩

{0} if x ∈ X
KX(x) if x ∈ cl{{X + εB} \ X}
Kε

X(x) if x ∈ ρF B \ {X + εB}
(12)

Notice that K̃ε
X(x) is upper semi-continuous by construction.

Now we define a sharp penalty mapping for X as

P ε
X(x) = {p ∈ K̃ε

X(x), ‖p‖ = 1}. (13)

Clear that P ε
X(x) is not defined for x ∈ int{X} but we can defined it to be equal

to zero on int{X} and take a convex envelope of P ε
X(x) and {0} at the boundary

of X to preserve upper semi-continuity.
For some positive λ define Fλ(x) = F (x)+λP ε

X(x). Of course by construction
Fλ(x) is upper semi-continuous for x /∈ X.

For the further development we establish the following result on construction
of an approximate globally oriented mapping related to the VI problem (5).

Lemma 1. Let X ⊂ E is closed and bounded, F is monotone and long-range
oriented toward X with the radius of orientability ρF and strongly oriented
toward solution x� of (5) on X with the constants γε > 0 for ε > 0, satisfy-
ing (8) and P ε

X(·) is a sharp penalty (13). Then for any sufficiently small ε > 0
there exists λε > 0 and δε > 0 such that for all λ ≥ λε a penalized mapping
Fλ(x) = F (x) + λP ε

X(x) satisfies the inequality

fx(x − x�) ≥ δε (14)

for all x ∈ ρF B \ {x� + εB} and any fx ∈ Fλ(x).

Proof. For monotone F we can equivalently consider a pseudo-variational
inequality (6) with the same solution x�. Define the following subsets of E:

X
(1)
ε = X \ {x� + εB},

X
(2)
ε = {{X + εB} \ X} \ {x� + εB},

X
(3)
ε = ρF B \ {{X + εB} \ {x� + εB}}.

(15)

216 E. Nurminski

Correspondingly we consider 3 cases.
Case A. x ∈ X

(1)
ε . In this case fλ(x) = F (x) and therefore

fλ(x)(x − x�) = F (x)(x − x�) ≥ γε > 0. (16)

Case B. x ∈ X
(2)
ε . In this case fλ(x) = F (x) + λpX(x) where pX(x) ∈

KX(x), ‖pX(x)‖ = 1 and therefore

fλ(x)(x − x�) = F (x)(x − x�) + λpX(x)(x − x�) ≥ γε/2 > 0. (17)

as λpX(x)(x − x�) > 0 by construction.

Case C. x ∈ X
(3)
ε . In this case fλ(x) = F (x) + λpX(x) where pX(x) ∈

Kε
X(x), ‖pX(x)‖ = 1. By continuity of F the norm of F is bounded on ρF B by

some M and as P ε
X(·) is ε-strong penalty mapping

fλ(x)(x − x�) = F (x)(x − x�) + λpX(x)(x − x�) ≥
−M‖x − x�‖ + λε ≤ −2ρF M + λε ≥ ρF M > 0 (18)

for λ ≥ ρF M/ε.
By combining all three bounds we obtain

fλ(x)(x − x�) ≥ min{γε/2, ρF M} = δε > 0 (19)

for λ ≥ Λε = ρF M/ε which completes the proof. �
The elements of a polar cone for a given set X can be obtained by different

means. The most common are either by projection onto set X:

x − ΠX(x) ∈ KX(x) (20)

where ΠX(x) ∈ X is the orthogonal projection of x on X, or by subdifferential
calculus when X is described by a convex inequality X = {x : h(x) ≤ 0}. If
there is a point x̄ such that h(x̄) < 0 (Slater condition) then h(y) < 0 for all
y ∈ int{X}. Therefore 0 < h(x) − h(y) ≤ gh(x)(x − y) for any y ∈ int{X}.
By continuity 0 < h(x) − h(y) ≤ gh(x)(x − y) for all y ∈ X which means that
gh ∈ KX(x).

One more way to obtain gh ∈ KX(x) relies on the ability to find some
xc ∈ int{X} and use it to compute Minkowski function

μX(x, xc) = inf
θ≥0

{θ : xc + (x − xc)θ−1 ∈ X} > 1 for x /∈ X. (21)

Then by construction x̄ = xc + (x − xc)μX(x, xc)−1 ∈ ∂X, i.e. h(x̄) = 0 and for
any gh ∈ ∂h(x̄) the inequality ghx̄ ≥ ghy holds for any y ∈ X.

By taking y = xc obtain ghx̄ ≥ ghxc and therefore

ghx̄ = ghx
c + gh(x − xc)µX(x, xc)−1 = µX(x, xc)−1ghx+ (1 − µX(x, xc)−1)ghx

c ≤
µX(x, xc)−1ghx+ (1 − µX(x, xc)−1)ghx̄.

(22)

Hence ghx ≥ ghx̄ ≥ ghy for any y ∈ X, which means that gh ∈ KX(x).
As for ε-expansion of X it can be approximated from above (included into)

by the relaxed inequality X + εB ⊂ {x : h(x) ≤ Lε} where L is a Lipschitz
constant in an appropriate neighborhood of X.

Sharp Penalty Mappings 217

4 Iteration Algorithm

After construction of the mapping Fλ, oriented toward solution x� of (6) at the
whole space E except ε-neighborhood of x� we can use it in an iterative manner
like

xk+1 = xk − θkfk, fk ∈ Fλ(xk), k = 0, 1, . . . , (23)

where {θk} is a certain prescribed sequence of step-size multipliers, to get the
sequence of {xk}, k = 0, 1, . . . which hopefully converges under some conditions
to to at least the set Xε = x� + εB of approximate solutions of (5).

For technical reasons, however, it would be convenient to guarantee from the
very beginning the boundedness of {xk}, k = 0, 1, Possibly the simplest way
to do so is to insert into the simple scheme (23) a safety device, which enforces
restart if a current iteration xk goes too far. This prevents the algorithm from
divergence due to the “run away” effect and it can be easily shown that it keeps
a sequence of iterations {xk} bounded.

Thus the final form of the algorithm is shown as the figure Algorithm1,
assuming that the set X, the operator F and the sharp penalty mapping P ε

X

satisfy conditions of the Lemma 1. We prove convergence of the Algorithm 1
under common assumptions on step sizes: θk → +0 when k → ∞ and

∑K
k=1 θk →

∞ when K → ∞. This is not the most efficient way to control the algorithm,
but at the moment we are interested mostly in the very fact of convergence.

Data: The variational inequality operator F , sharp penalty mapping PX ,
positive constant ε, penalty constant λ which satisfy conditions of the
Lemma 1, long-range orientation radius ρF , a sequence of step-size
multipliers {0 < θk, k = 0, 1, 2, . . . }. and an initial point x0 ∈ ρF B.

Result: The sequence of approximate solutions {xk} where every converging
sub-sequence has a limit point which belongs to a set Xε of ε-solution
of variational inequality (5).

Initialization;
Define penalized mapping

Fλ(x) = F (x) + λPX(x), (24)

and set the iteration counter k to 0;
while The limit is not reached do

Generate a next approximate solution xk+1:

xk+1 =

{
xk − θkfk, fk ∈ Fλ(x

k), if ‖xk‖ ≤ 2ρF

x0 otherwise.
(25)

Increment iteration counter k −→ k + 1;

end

Complete: accept {xk}, k = 0, 1, . . . as an approximate solution of (5).a
aThe exact meaning of this will be clarified in the convergence Theorem 1.

Algorithm 1. The generic structure of a conceptual version of the iteration
algorithm with exact penalty.

218 E. Nurminski

Theorem 1. Let ε > 0, Λε, F, PX satisfy the assumptions of the Lemma 1, λ >
Λε, and θk → +0 when k → ∞ and

∑K
k=1 θk → ∞ when K → ∞. Then all

limit points of the sequence {xk} generated by the Algorithm 1 belong to the set
of ε-solutions Xε = x� + εB of the problem (5).

Proof. We show first the boundedness of the sequence {xk}. To do so it is
sufficient to demonstrate that the sequence {‖xk‖, k = 1, 2, . . . } crosses the
interval [ρF , 2ρF] a finite number of times only (any way, from below or from
above). Show first that the sequence {xk} leaves the set 3

2ρF B a finite number
of times only. Define (a finite or not) set T of indices T = {tk, k = 1, 2, . . . }
such that

‖xτ‖ <
3
2
ρF and ‖xτ+1‖ ≥ 3

2
ρF . (26)

If τ ∈ T then

‖xτ+1‖2 = ‖xτ − θkFΛ(xτ)‖2 = ‖xτ‖2 − 2θτfτxτ + θ2τ‖fτ‖2 ≤
‖xτ‖2 − 2θτfτxτ + θ2τC2 ≤ ‖xτ‖2 − 2θτγδ + θ2τC2,

(27)

where C is an upper bound for ‖Fλ(x)‖ with x ∈ 2ρF B and γ > 0 is a lower
bound for fτx for x ∈ 2ρF B and fτ ∈ Fλ(x). For τ large enough θτ < γC−2

and hence
‖xτ+1‖2 ≤ ‖xτ‖2 − θτδ < ‖xτ‖2 (28)

which contradicts the definition of the set T . Therefore T is a finite set and the
sequence {xk} leaves the set 3

2ρF B a finite number of times only which proves
the boundedness of {xk}.

Define now W (x) = ‖x−x�‖2 and notice that due to the boundedness of {xk}
and semi-continuity of Fλ(x) and etc., W (xk+1) − W (xk) → 0 when k → ∞. It
implies that the limit set

W� = {w� : the sub-sequence {xks} exists such that lim
s→∞ W (xks) = w�} (29)

is a certain interval [wl
�, w

u
�] ⊂ R+ and the statement of the theorem means that

wu
� ≤ ε2.

To prove this we assume contrary, that is wu
� > ε2 and hence there exists a

sub-sequence {xks , s = 1, 2, . . . } such that lims→∞ W (xks) = w′ > ε2. Without
loss of generality we may assume that lims→∞ xks = x′ and of course x′ /∈ Xε.
Therefore f ′(x′ −x�) > 0 for any f ′ ∈ Fλ(x′) and by upper semi-continuity of Fλ

there exists an υ > 0 such that Fλ(x)(x−x�) ≥ δ for all x ∈ x′ +4υB and some
δ > 0. Again without loss of generally we may assume that υ < (

√
w′ − ε)/4 so

(x′ + 4υB) ∩ (x� + εB) = ∅.
For for s large enough xks ∈ x′ + υB and let us assume that for all t > ks

the sequence {xt, t > ks} ⊂ xks + υB ⊂ x′ + 2υB.
Then

W (xt+1) = ‖xt − θtFλ(x
t) − x�‖2 = W (xt) − 2θtFλ(x

t)(xt − x�) + θ2
t ‖Fλ(x

t)‖2 ≤
W (xt) − 2θtFλ(x

t)(xt − x�) + θ2
t C2 ≤ W (xt) − 2θtδ + θ2

t C2 < W (xt) − θtδ,

(30)

Sharp Penalty Mappings 219

for all t > ks and s large enough that supt>ks
θt < δ/C2. Summing up last

inequalities from t = ks to t = T − 1 obtain

W (xT) ≤ W (xks) − δ
T−1∑

t=ks

θt → −∞ (31)

when T → ∞ which is of course impossible.
Hence for each ks there exists rs > ks such that ‖xks −xrs‖ > υ > 0 Assume

that rs is in fact a minimal such index, i.e. ‖xks − xt‖ ≤ υ for all t such that
ks < t < rs or xt ∈ xtk + υB ⊂ x′ + 2υB for all such t. Without any loss of
generality we may assume that xrs → x′′ where by construction ‖x′−x′′‖ ≥ υ > 0
and therefore x′ = x′′.

As all conditions which led to (31) hold for T = rs then by letting T = rs we
obtain

W (xrs) ≤ W (xks) − δ

rs−1∑

t=ks

θt. (32)

On the other hand

υ < ‖xks − xrs‖ ≤
rs∑

t=ks

‖xt+1 − xt‖ ≤
rs−1∑

t=ks

θt‖Fλ(xt)‖ ≤ K

rs∑

t=ks

θt (33)

where K is the upper estimate of the norm of Fλ(x) on 2ρF B.
Therefore

∑rs−1
t=ks

θt > υ/K > 0 and finally

W (xrs) ≤ W (xks) − δυ/K. (34)

Passing to the limit when s → ∞ obtain W (x′′) ≤ W (x′) − δυ/K < W (x′) Also
W (x′′) > ε2 as x′′ ∈ x′ +4υB which does not intersect with x� + εB. To save on
notations denote W (x′) = w′ and W (x′′) = w′′.

In other words, assuming that w′ > ε2 we constructed another limit point
w′′ of the sequence {W (xk)} such that ε2 < w′′ < w′. It follows from this that
the sequence {W (xk)} infinitely many times crosses any sub-interval [w̃′′, w̃′] ⊂
(w′′, w′) both in “up” and “down” directions and hence there exist sub-sequences
{ps, s = 1, 2, . . . } and {qs, s = 1, 2, . . . } such that ps < qs and

W (xps) ≤ w̃′′,W (xqs) ≥ w̃′,W (xt) ∈ (w′′, w′) for ps < t < qs (35)

Then

0 < W (xqs) − W (xps) =
qs−1∑

t=ps

(W (xt+1) − W (xt)) (36)

and hence for any s there is an index ts : ps < ts < qs such that

0 < W (xts+1) − W (xts). (37)

220 E. Nurminski

However as W (xts) > w′′, xts /∈ x� + εB and therefore

W (xts+1) − W (xts) = ‖xts+1 − x�‖2 − ‖xts − x�‖2 =
‖xts − x� + θtsf

ts‖2 − ‖xts − x�‖2 =
2θtsf

ts(xts − x�) + θ2ts‖f ts‖2 = θts(2f ts(xts − x�) + θts‖f ts‖2),
(38)

where f ts ∈ Fλ(xts). Notice that f ts(xts − x�) < −δ > 0 and ‖f ts‖2 ≤ C. Using
these estimates we obtain

W (xts+1) − W (xts) ≤ θts(−2δ − θtsC) ≤ −θtsδ < 0 (39)

for all s large enough. This contradicts (37) and therefore proves the
theorem. �

5 Conclusions

In this paper we define and use a sharp penalty mapping to construct the itera-
tion algorithm converging to an approximate solutions of monotone variational
inequalities. Sharp penalty mappings are analogues of gradient fields of exact
penalty functions but do not need to be potential mappings. Three examples of
sharp penalty mappings are given with one of them seems to be a new one. The
algorithm consists in recursive application of a penalized variational inequal-
ity operator, but scaled by step-size multipliers which satisfy classical diverging
series condition. As for practical value of these result it is generally believed
that the conditions for the step-size multipliers used in this theorem result in
rather slow convergence of the order O(k−1). However the convergence rate can
be improved by different means following the example of non-differentiable opti-
mization. The promising direction is for instance the least-norm adaptive reg-
ulation, suggested probably first by A. Fiacco and McCormick [16] as early as
1968 and studied in more details in [17] for convex optimization problems. With
some modification in can be easily used for VI problems as well. Experiments
show that under favorable conditions it produces step multipliers decreasing as
geometrical progression which gives a linear convergence for the algorithm. This
may explain the success of [7] where geometrical progression for step multipliers
was independently suggested and tested in practice.

Acknowledgements. This work is supported by the Ministry of Science and Educa-
tion of Russian Federation, project 1.7658.2017/6.7

References

1. Facchinei, F., Pang, J.-S.: Finite-dimensional Variational Inequalities and Comple-
mentarity Problems. Springer, Berlin (2003)

2. Bauschke, H., Borwein, J.: On projection algorithms for solving convex feasibility
problems. SIAM Rev. 38, 367–426 (1996)

Sharp Penalty Mappings 221

3. Nurminski, E.A.: Féjer processes with diminishing disturbances. Doklady Math.
78(2), 755–758 (2008)

4. Nurminski, E.A.: Use of additional diminishing disturbances in Féjer models of
iterative algorithms. Comput. Math. Math. Phys. 48(12), 2154–2161 (2008)

5. Censor, Y., Davidi, R., Herman, G.T.: Perturbation resilience and superioriza-
tion of iterative algorithms. Inverse Probl. 26 (2010). doi:10.1088/0266-5611/26/
6/065008

6. Censor, Y., Davidi, R., Herman, G.T., Schulte, R.W., Tetruashvili, L.: Projected
subgradient minimization versus superiorization. J. Optim. Theory Appl. 160,
730–747 (2014)

7. Butnariu, D., Davidi, R., Herman, G.T., Kazantsev, I.G.: Stable convergence
behavior under summable perturbations of a class of projection methods for convex
feasibility and optimization problems. IEEE J. Sel. Top. Sig. Process. 1, 540–547
(2007). doi:10.1109/JSTSP.2007.910263

8. Nesterov, Y.E.: A method for solving the convex programming problem with con-
vergence rate O(1/k2). Sov. Math. Dokl. 27, 372–376 (1983)

9. Nesterov, Y.E.: Introductory Lectures on Convex Optimization. Kluwer, Boston
(2004)

10. Browder, F.E.: On the unification of the calculus of variations and the theory of
monotone nonlinear operators in banach spaces. Proc. Nat. Acad. Sci. U.S.A. 56,
419–425 (1966)

11. Konnov, I.V., Pinyagina, O.V.: D-gap functions and descent methods for a class
of monotone equilibrium problems. Lobachevskii J. Math. 13, 57–65 (2003)

12. de André, T., Silva, P.S.: Exact penalties for variational inequalities with applica-
tions to nonlinear complementarity problems. Comput. Optim. Appl. 47(3), 401–
429 (2010). doi:10.1007/s10589-008-9232-3

13. Kokurin, M.Y.: An exact penalty method for monotone variational inequalities
and order optimal algorithms for finding saddle points. Izv. Vyssh. Uchebn. Zaved.
Mat. 8, 23–33 (2011)

14. Patriksson, M.: Nonlinear Programming and Variational Inequality Problems: A
Unified Approach. Springer Science & Business Media, New York (2013)

15. Nurminski, E.A.: arXiv:1611.09697 [math.OC]
16. Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Uncon-

strained Minimization Techniques. Wiley, New York (1968)
17. Nurminski, E.A.: Envelope step-size control for iterative algorithms based on Féjer

processes with attractants. Optim. Methods Softw. 25(1), 97–108 (2010)

http://dx.doi.org/10.1088/0266-5611/26/6/065008
http://dx.doi.org/10.1088/0266-5611/26/6/065008
http://dx.doi.org/10.1109/JSTSP.2007.910263
http://dx.doi.org/10.1007/s10589-008-9232-3
http://arxiv.org/abs/1611.09697

A Nonconvex Optimization Approach
to Quadratic Bilevel Problems

Andrei Orlov(B)

Matrosov Institute for System Dynamics and Control Theory of Siberian
Branch of RAS, Irkutsk, Russia

anor@icc.ru

http://nonconvex.isc.irk.ru

Abstract. This paper addresses one of the classes of bilevel optimiza-
tion problems in their optimistic statement. The reduction of the bilevel
problem to a series of nonconvex mathematical optimization problems,
together with the specialized Global Search Theory, is used for devel-
oping methods of local and global searches to find optimistic solutions.
Illustrative examples show that the approach proposed is prospective
and performs well.

Keywords: Bilevel optimization · Quadratic bilevel problems · Opti-
mistic solution · KKT-approach · Global Search Theory · Computational
simulation

1 Introduction

As well-known, problems with hierarchical structure arise in investigations of com-
plex control systems [9] with the bilevel optimization being the most popular
modeling tool [7]. According to Pang [17], a distinguished expert in optimization,
development of methods for solving various problems with hierarchical structure
is one the three challenges faced by optimization theory and methods in the 21st
century. This paper investigates one of the classes of bilevel problems with a con-
vex quadratic upper level goal function and a quadratic lower level goal function if
the constraints are linear. The lower level goal function has a bilinear component.
The task is to find an optimistic solution in the situation when the actions of the
lower level might coordinate with the interests of the upper level [7].

During more than three decades of intensive investigation of bilevel optimiza-
tion problems, many methods for finding the optimistic solutions were proposed
by different authors (see the surveys [6,8]). Nevertheless, as far as we can con-
clude on the basis of the available literature, a few results published so far deal
with numerical solutions of merely test bilevel high-dimension problems (for
example, up to 100 variables at each level for linear bilevel problems [19]). Most
frequently authors consider just illustrative examples with the dimension up to
10 (see [14,18]) and only the works [1,5,10,12] present some results on solving
nonlinear bilevel problems of dimension up to 30 at each level.
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 222–234, 2017.
https://doi.org/10.1007/978-3-319-69404-7_16

A Nonconvex Optimization Approach to Quadratic Bilevel Problems 223

At the same time, in our group we have an experience of solving linear bilevel
problems with up to 500 variables at each level [11] and quadratic-linear bilevel
problems of dimension up to (150 × 150) [23]. Here we generalize our methods
for problems with quadratic goal functions at each level.

For this purpose, we use the most common approach to address a bilevel prob-
lem via its reduction to a single-level one by replacing the lower level problem
with optimality conditions (the so called KKT-approach) [7,23]. Then, using the
penalty method, the resulting problem with a nonconvex feasible set is reduced
to a series of problems with a nonconvex function under linear constraints [7,23].
The latter ones turn out to be the d.c. optimization problems (with goal func-
tions that can be represented as the difference of two convex functions) [20,21],
which can be addressed by means of the Global Search Theory developed by
Strekalovsky [20,21]. In contrast to the generally accepted global optimization
methods such as branch-and-bound based techniques, approximation methods
and the like, this theory employs reduction of the nonconvex problem to a family
of simpler problems with a possibility of application of classic convex optimiza-
tion methods.

In accordance with the Global Search Theory, this paper aims at constructing
specialized local and global search methods for finding optimistic solutions to the
problems under study. Illustrative examples taken from the literature were used
to demonstrate that the approach proposed for numerical solution of quadratic
bilevel problems performs rather well.

2 Statement of the Problem and Its Reduction

Consider the following quadratic-quadratic problem of bilevel optimization in its
optimistic statement. In this case, according to the theory [7], at the upper level
we perform the minimization with respect to the variables of both levels which
are in cooperation:

F (x, y) :=
1
2
〈x,Cx〉 + 〈c, x〉 +

1
2
〈y,Dy〉 + 〈d, y〉 ↓ min

x,y
,

x ∈ X := {x ∈ IRm|Ax ≤ b},

y ∈ Y∗(x) := Arg min
y

{1
2
〈y,D1y〉 + 〈d1, y〉 + 〈x,Qy〉| y ∈ Y (x)},

Y (x)
�
={y ∈ IRn|A1x + B1y ≤ b1},

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(QBP)

where A ∈ IRp×m, A1 ∈ IRq×m, B1 ∈ IRq×n, C ∈ IRm×m, D,D1 ∈ IRn×n,
Q ∈ IRm×n, c ∈ IRm, d, d1 ∈ IRn, b ∈ IRp, b1 ∈ IRq. Additionally, C = CT ≥ 0,

D = DT ≥ 0, D1 = DT
1 ≥ 0. The quadratic terms of the form

1
2
〈x,C1x〉+〈c1, x〉,

where C1 = CT
1 ≥ 0, are not included into the lower level goal function, because

for a fixed upper level variable x they are constant and do not affect the structure
of the set Y∗(x).

224 A. Orlov

Note that despite the bilinear component in the goal function, for a fixed
x ∈ X the lower level problem

1
2
〈y,D1y〉 + 〈xQ + d1, y〉 ↓ min

y
, A1x + B1y ≤ b1 (FP(x))

is convex with automatically fulfilled Abadie regularity conditions [2] due to
affine constraints. Therefore, the Karush-Kuhn-Tacker conditions [2] are nec-
essary and sufficient for Problem (FP(x)). According to these conditions, the
point y is a solution to (FP(x)) (y ∈ Sol(FP(x))) if and only if there exists a
vector v ∈ IRq such that

D1y + d1 + xQ + vB1 = 0, v ≥ 0, A1x + B1y ≤ b1,
〈v,A1x + B1y − b1〉 = 0.

}

(KKT)

By replacing the lower level problem in (QBP) with its optimality conditions
(KKT) we obtain the following mathematical optimization problem:

F (x, y) ↓ min
x,y,v

, Ax ≤ b,

D1y + d1 + xQ + vB1 = 0, v ≥ 0, A1x + B1y ≤ b1,
〈v,A1x + B1y − b1〉 = 0.

⎫
⎪⎬

⎪⎭
(DCC)

It is clear that (DCC) is a problem with a nonconvex feasible set because the
nonconvexity is generated by the last equality constraint (complementary con-
straint). The following theorem on the equivalence between (QBP) and (DCC)
is valid.

Theorem 1 [7]. For the pair (x∗, y∗) to be a global solution to (QBP) it is
necessary and sufficient that there exists a vector v ∈ IRq such that the triple
(x∗, y∗, v∗) is a global solution to (DCC).

This theorem reduces the search for an optimistic solution to the bilevel
problem (QBP) to solving Problem (DCC). Note that direct handling of the
nonconvex set in this problem is quite challenging, which is why we use the
penalty method to boil it down to a series of nonconvex problems with a convex
feasible set.

It is easy to see that the complementary constraint can be written in the
equivalent form 〈v, b1 − A1x − B1y〉 = 0. Then ∀(x, y, v) ∈ D, where

D := {(x, y, v) |Ax ≤ b, D1y +d1 +xQ+vB1 = 0, v ≥ 0, A1x+B1y ≤ b1}

is the convex set in IRn+m+q, the following inequality holds 〈v, b1−
A1x − B1y〉 ≥ 0. Now the penalized problem can be written as

Φ(x, y, v) :=
1
2
〈x,Cx〉 + 〈c, x〉 +

1
2
〈y,Dy〉 + 〈d, y〉+

+μ 〈v, b1 − A1x − B1y〉 ↓ min
x,y,v

, (x, y, v) ∈ D,

⎫
⎬

⎭
(DC(μ))

where μ > 0 is a penalty parameter. For a fixed μ this problem belongs to the
class of d.c. minimization problems [20,21] with a convex feasible set. In what

A Nonconvex Optimization Approach to Quadratic Bilevel Problems 225

follows we show that the goal function of (DC(μ)) can be represented as a dif-
ference of two convex functions. Let (x(μ), y(μ), v(μ)) be a solution to (DC(μ))
for some μ. Denote r[μ] := 〈v(μ), b1 − A1x(μ) − B1y(μ)〉 and formulate the fol-
lowing result on the connection between the solutions to (DCC) and (DC(μ)).

Proposition 1 [2,7]

(i) Let for some μ̂ > 0 the equality r[μ̂] = 0 holds for a solution (x(μ̂), y(μ̂),
v(μ̂)) to Problem (DC(μ)). Then, the triple (x(μ̂), y(μ̂), v(μ̂)) is a solution
to Problem (DCC).

(ii) For all values of the parameters μ > μ̂ the function r[μ] vanishes, so that
the triple (x(μ), y(μ), v(μ)) is a solution to Problem (DCC).

Therefore, the established connection between Problems (DC(μ)) and (DCC)
enables us to search for a solution to Problem (DC(μ)) instead of a solution to
Problem (DCC), when the parameter μ grows. It can be shown that there exists a
finite value of μ with r[μ̂] = 0 [3]. For a fixed μ, we will address Problem (DC(μ))
by means of the Global Search Theory developed by Strekalovsky [20,21]. Within
that theory, it is first required to construct a local search procedure that takes
into consideration special features of the problem under study.

3 The Local Search

It is noteworthy that nonconvexity in Problem (DC(μ)) is generated by only a
bilinear component 〈v, b1 − A1x − B1y〉. On the basis of this fact, we suggest
to perform the local search in Problem (DC(μ)) using the idea of the succes-
sive solution by different groups of variables. Earlier this idea was successfully
applied in solving bimatrix games [16,22], problems of bilinear programming
[15,22], and quadratic-linear bilevel problems [23]. Even though, contrarily to
the problems mentioned above, the feasible set D is not split up into different
groups of variables, Problem (DC(μ)) turns into a convex quadratic optimiza-
tion problem for a fixed v; meanwhile we obtain the linear programming (LP)
problem with respect to the variable v for a fixed pair (x, y).

Therefore, a specialized local search method appears. Let there be given a
starting point (x0, y0, v0).

V -procedure

Step 0. Set s := 1, vs := v0.
Step 1. Using a suitable quadratic programming method, find the

ρs

2
-

solution (xs+1, ys+1) to the problem

1

2
〈x,Cx〉 + 〈c, x〉 + 1

2
〈y,Dy〉 + 〈d, y〉 − µ 〈vsA1, x〉 − µ 〈vsB1, y〉 ↓ min

x,y
,

Ax ≤ b, A1x+B1y ≤ b1, D1y + d1 + xQ+ vsB1 = 0.

⎫
⎬

⎭
(QP(vs))

226 A. Orlov

Step 2. Find the
ρs

2
-solution vs+1 to the following LP-problem:

〈
b1 − A1x

s+1 − B1y
s+1, v

〉
↓ min

v
,

D1y
s+1 + d1 + xs+1Q + vB1 = 0, v ≥ 0.

}

(LP(xs+1, ys+1))

Step 3. Set s := s + 1 and move to Step 1.
Note that the name of the V-procedure was not chosen randomly. To

launch the algorithm, we do not need all the components of the starting point
(x0, y0, v0), knowing only v0 is sufficient. Herein, it is necessary to choose the
components (x0, y0, v0) so that the auxiliary problems of linear and quadratic
programming were solvable at steps of the algorithm. The solvability can be guar-
anteed, for example, by an appropriate choice of the feasible point (x0, y0, v0) ∈
D. It also should be noted that here, contrarily to the problems with disjoint
constrains, local subproblems are each time solved on new sets that depend on
the components of the current point. Nonetheless, it happened to be possible to
prove the following convergence theorem for the V -procedure.

Theorem 2

(i) Let a sequence {ρs} be such that ρs > 0, s = 1, 2, ..., and
∑∞

s=1 ρs <
+∞. Then the number sequence {Φs := Φ(xs, ys, vs)} generated by the V -
procedure converges.

(ii) If (xs, ys, vs) → (x̂, ŷ, v̂), then the accumulation point (x̂, ŷ, v̂) satisfies the
inequalities

Φ(x̂, ŷ, v̂) ≤ Φ(x, y, v̂) ∀(x, y) ∈ D(v̂), (1)

Φ(x̂, ŷ, v̂) ≤ Φ(x̂, ŷ, v) ∀v ∈ D(x̂, ŷ), (2)

where D(v) := {(x, y)| (x, y, v) ∈ D}, D(x, y) := {v| (x, y, v) ∈ D}.

Definition 1. The triple (x̂, ŷ, v̂) satisfying (1) and (2) is said to be the critical
point in Problem (DC(μ)). If the inequalities (1) and (2) are satisfied with a
certain accuracy then we refer to this point as approximately critical.

It can be shown (see, e.g., [23]), that if we use, for example, the following
inequality as a stopping criterion for the V -procedure

Φs − Φs+1 ≤ τ, (3)

where τ is a given accuracy, then after the finite number of iterations of the local
search method we arrive at the approximately critical point. Recall that such
a definition of critical points is quite advantageous when we perform a global
search in problems with a bilinear structure [22,23]. The next section describes
basic elements of the global search for Problem (DC(μ)).

A Nonconvex Optimization Approach to Quadratic Bilevel Problems 227

4 Global Optimality Conditions and the Global Search
Procedure

As well-known, the local search does not provide, in general, a global solution in
nonconvex problems of even moderate dimension [20–22]. Therefore, in what fol-
lows we discuss the procedure of escaping critical points obtained during the local
search. The procedure is based on the Global Optimality Conditions (GOCs)
developed by Strekalovsky for the d.c. minimization problems [20,21]. To build
the global search procedure, first of all we need an explicit d.c. representation of
the goal function of (DC(μ)). We will employ the following representation based
on the known property of scalar product:

Φ(x, y, v) = g(x, y, v) − h(x, y, v), (4)

where g(x, y, v) =
1
2
〈x,Cx〉+〈c, x〉+ 1

2
〈y,Dy〉+〈d, y〉+μ〈b1, v〉+ μ

4
‖A1x − v‖2+

μ

4
‖B1y − v‖2, h(x, y, v) =

μ

4
‖A1x + v‖2+μ

4
‖B1y + v‖2. Note that the so-called

basic nonconvexity in Problem (DC(μ)) is provided by the function h (for more
detail, refer to [20]).

The necessary Global Optimality Conditions that constitute the basis of the
global search procedure have the following form in terms of Problem (DC(μ)).

Theorem 3 [20,21,23]. If the feasible point (x∗, y∗, v∗) is a (global) solution to
Problem (DC(μ)), then ∀(z, u, w, γ) ∈ Rm+n+q+1 :

h(z, u, w) = γ − ζ, ζ := Φ(x∗, y∗, v∗), (5)

g(x, y, v) ≤ γ ≤ sup
x,y,v

(g,D), (6)

g(x, y, v) − γ ≥ 〈∇h(z, u, w), (x, y, v) − (z, u, w)〉 ∀(x, y, v) ∈ D. (7)

The conditions (5)–(7) possess the so-called algorithmic (constructive) prop-
erty: if the GOCs are violated, we can construct a feasible point that will be
better than the point in question [20,21]. Indeed, if for some (z̃, ũ, w̃, γ̃) from
(5) on some level ζ := ζk := Φ(xk, yk, vk) for the feasible point (x̃, ỹ, ṽ) ∈ D the
inequality (7) is violated:

g(x̃, ỹ, ṽ) < γ̃ + 〈∇h(z̃, ũ, w̃), (x̃, ỹ, ṽ) − (z̃, ũ, w̃)〉 ,

then it follows from the convexity of h(·) that

Φ(x̃, ỹ, ṽ) = g(x̃, ỹ, ṽ) − h(x̃, ỹ, ṽ) < h(z̃, ũ, w̃) + ζ − h(z̃, ũ, w̃) = Φ(xk, yk, vk),

or, Φ(x̃, ỹ, ṽ) < Φ(xk, yk, vk). Therefore, the point (x̃, ỹ, ṽ) ∈ D happens to be
better with respect to the goal function value than the point (xk, yk, vk). Con-
sequently, by varying parameters (z, u, w, γ) in (5) for a fixed ζ = ζk and finding

228 A. Orlov

approximate solutions (x(z, u, w, γ), y(z, u, w, γ), v(z, u, w, γ)) of the linearized
problems (see (7))

g(x, y, v) − 〈∇h(z, u, w), (x, y, v)〉 ↓ min
x,y,v

(x, y, v) ∈ D, (PL(z, u, w))

we obtain a family of starting points to launch the local search procedure.
Additionally, we do not need to sort through all (z, u, w, γ) at each level ζ,
because it is sufficient to prove that the inequality (7) is violated at the single
4-tuple (z̃, ũ, w̃, γ̃). After that we move to the new level (xk+1, yk+1, vk+1) :=
(x̃, ỹ, ṽ), ζk+1 := Φ(xk+1, yk+1, vk+1) and vary parameters again.

Hence, according to the Global Search Theory developing by Strekalovsky
[20,21], Problem (DC(μ)) can be split into several simpler problems (linearized
problems and problems with respect to other parameters from the global opti-
mality conditions), which can be represented in the form of the following Global
Search Strategy.

Suppose we know some approximately critical point (xk, yk, zk) in Problem
(DC(μ)) with the goal function value ζk := Φ(xk, yk, vk). The point has been
constructed with the help of a specialized local search method (for example, we
could use the V -procedure). Then we perform the following chain of operations.

(1) Choose a number γ ∈ [γ−, γ+], where γ− := inf(g,D), γ+ := sup(g,D). We
can take, for example, g(xk, yk, zk) as a starting value of the parameter γ
[20,21].

(2) Furtherfore, construct some finite approximation

Ak = {(zi, ui, wi) | h(zi, ui, wi) = γ − ζk, i = 1, ..., Nk}

for the level surface U(ζk) = {(x, y, v) | h(x, y, v) = γ − ζk} of the convex
function h(·).

(3) For all approximation points Ak verify the inequality

g(zi, ui, wi) ≤ γ, i = 1, 2, ..., Nk, (8)

that follows from the global optimality conditions for Problem (DC(μ)) (see
(5)). If the inequality (8) is satisfied, then the approximation point will be
used in process. Otherwise, the point (zi, ui, wi) is useless, because it is not
able to improve the current point [20–23].

(4) For each point (zi, ui, wi), i ∈ {1, 2, ..., Nk} chosen at Stage (3) find approx-
imate solutions (z̄i, ūi, w̄i) of the linearized (with respect to the basic non-
convexity) Problems (PL(zi, ui, wi)).

(5) Using the points (z̄i, ūi, w̄i), perform the local search that delivers approxi-
mately critical points (x̂i, ŷi, v̂i), i ∈ {1, ..., N} in Problem (DC(μ)).

(6) For the chosen i ∈ {1, . . . , Nk}, solve the level problem:

〈∇xh(z, u, w), x̂i − z〉 + 〈∇yh(z, u, w), ŷi − u〉
+ 〈∇vh(z, u, w), v̂i − w〉 ↑ max

(z,u,w)
, h(z, u, w) = γ − ζk.

}

(Ui)

Note that definition for h(·) (see (4)) makes it possible to solve Problem (Ui)
analytically. Let (zi

0, u
i
0, w

i
0) be the approximate solution to this problem.

A Nonconvex Optimization Approach to Quadratic Bilevel Problems 229

(7) If for some j ∈ {1, . . . , Nk} the following inequality holds

g(x̂j , ŷj , v̂j) − γ < 〈∇xh(zj
0, u

j
0, w

j
0), x̂

j − zj
0〉

+ 〈∇yh(zj
0, u

j
0, w

j
0), ŷ

j − uj
0〉 + 〈∇vh(zj

0, u
j
0, w

j
0), v̂

j − wj
0〉,

then, due to convexity of h(·), we obtain

γ − h(zj
0, u

j
0, w

j
0) = ζk = Φ(xk, yk, vk) > Φ(x̂j , ŷj , v̂j).

Thus, we constructed the point (x̂j , ŷj , v̂j) ∈ D, which is better than (xk, yk, vk).
If we failed to improve the value of ζk using all approximation points Ak, then
we have to continue the one-dimensional search with respect to γ on the segment
[γ−, γ+].

Observe that the key moment of the global search strategy described above
is that on Stage (2), when we construct an approximation for the level surface of
the convex function h(·) that defines the basic nonconvexity in Problem (DC(μ)).
Very important to note that the approximation should be representative enough
to find out whether the current critical point (xk, yk, zk) is a global solution
or not [20,21]. To construct this approximation, we can employ, for example,
special direction sets that include, in particular, the Euclidean basis vectors and
the components of the current critical point (for more detail, see [20–23]).

5 Computational Simulation

To illustrate the operability of the newly constructed local and global search
algorithms for finding optimistic solutions to quadratic bilevel problems, a few
examples of moderate dimension were taken from the available literature. Note
that here they have the form (QBP), with constant components excluded from
the goal functions on the upper and lower levels.

Example 1 ([18])

F (x, y) = x2 − 10x + 4y2 + 4y ↓ min
x,y

,

x ∈ X = {x ∈ IR1 | x ≥ 0},
y ∈ Y∗(x) = Arg min

y
{y2 − 2y | y ∈ Y (x)},

Y (x) = {y ∈ IR1 | − 3x + y ≤ −3, x − 0.5y ≤ 4, x + y ≤ 7, y ≥ 0}.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

It is well-known that the global optimistic solution to this problem with the
goal function optimal value F∗ = −9 is achieved at the point (x∗, y∗) = (1, 0).

Example 2 ([1])

F (x, y) = x2 − 10x + 4y2 + 4y ↓ min
x,y

,

x ∈ X = {x ∈ IR1 | x ≥ 0},
y ∈ Y∗(x) = Arg min

y
{y2 − 2y − 1.5xy | y ∈ Y (x)},

Y (x) = {y ∈ IR1 | − 3x + y ≤ −3, x − 0.5y ≤ 4, x + y ≤ 7, y ≥ 0}.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

230 A. Orlov

Interestingly, this problem differs from the previous one only by having a
bilinear component in the lower level goal function. Obviously, it does not result
in noncovexity of the problem at the lower level, because for a fixed x the bilin-
ear component becomes linear. Moreover, the global optimistic solution to this
problem with the goal function optimal value F∗ = −9 is achieved at the same
point (x∗, y∗) = (1, 0) as above.

Example 3 ([4])

F (x, y) =
1
2
x2 − x +

1
2
y2 ↓ min

x,y
,

x ∈ X = {x ∈ IR1 | x ≥ 0},

y ∈ Y∗(x) = Arg min
y

{1
2
y2 − xy | y ∈ Y (x)},

Y (x) = {y ∈ IR1 | x − y ≤ 1, x + y ≤ ρ, − x − y ≤ −1.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

This problem has a form of the kernel problems used for generating quadratic
bilevel problems by means of the method constructed in [4]. Depending on the
value of the parameter ρ, the kernel problems are divided into following classes:

Class 1 (ρ = 1): the global optimistic solution F∗ = −0.5 is achieved at the
point (x∗, y∗) = (1, 0).
Class 2 (ρ = 1.5): the global solution F∗ = −0.4375, (x∗, y∗) = (1.25, 0.25).
Class 3 (ρ = 2): F∗ = −0.25, (x∗, y∗) = (0.5, 0.5) or (x∗, y∗) = (1.5, 0.5).
Class 4 (ρ = 3): F∗ = −0.25, (x∗, y∗) = (0.5, 0.5).

Even though the problems discussed above differ from each other only by
a single parameter, they all have different properties and a different number of
local and global solutions (for more detail, refer to [4]).

Example 4 ([14])

F (x, y) = −7x1 + 4x2 + y2
1 + y2

3 − y1y3 − 4y2 ↓ min
x,y

,

x ∈ X = {x ∈ IR2 | x1 + x2 ≤ 1, x1,2 ≥ 0, },

y ∈ Y∗(x) = Arg min
y

{y1 − 3x1y1 + y2 + x2y2 + y2
1 +

1
2
y2
2 +

1
2
y2
3 + y1y2|

y ∈ Y (x)}, Y (x) = {y ∈ IR3|x1 − 2x2 + 2y1 + y2 − y3 + 2 ≤ 0, y1,2,3 ≥ 0}.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Apparently, this problem is more complex than the previous ones, because
the dimension of the upper level variable is 2, whereas the dimension of the
lower level variable is 3. The global optimistic solution approximately equals
F∗ = 0.6426 and is achieved at the point (x∗, y∗) = (0.609, 0.391, 0, 0, 1.828).

First, for each of the problems we write down its single-level equivalent. Note
that the dimension of the single-level problems is bigger than that one of the
original problems by exactly the number of constraints in the lower level of
the bilevel problem. Further, we penalize the complementary constraint in each
problem and afterwards apply the local and global search methods described
above.

A Nonconvex Optimization Approach to Quadratic Bilevel Problems 231

The software that implements the methods developed was coded in MATLAB
7.11.0.584 R2010b [13]. The auxiliary problems of linear and convex quadratic
programming were solved by the standard MATLAB subroutines “linprog” and
“quadprog” with the default settings [13]. To run the software, we used the
computer with Intel Core i5-2400 processor (3.1 GHz) and 4 Gb RAM.

To construct feasible starting points for the local search method, we used the
projection of the chosen infeasible point (x0, y0, v0) = (0, 0, 0) onto the feasible
set D by solving the following problem:

1
2
‖(x, y, v) − (x0, y0, v0)‖2 ↓ min

x,y,v
,

(x, y, v) ∈ D.

⎫
⎬

⎭
(PR(x0, y0, v0))

The solution to Problem (PR(x0, y0, v0)) was taken as a starting point
(x0, y0, v0). The inequality (3) with τ = 10−5 was the stopping criterion for
the local search method.

The value of the penalty parameter was set as μ = 10. Besides, similar
to solving quadratic-linear bilevel problem [23], we need two extra parameters
to launch the global search algorithm. The first parameter will be required at
Stage (3) of the global search, when, using the inequality (8), we verify whether
the point is suitable for future use. During numerical implementation we need
the parameter ξ, which can be varied to change the accuracy with which the
inequality is satisfied (to reduce the impact of the round-off errors, see also
[15,16,22]). Thus, the global search algorithm will not utilize the points that fail
to satisfy the inequality

g(zi, ui, wi) ≤ γ + ξγ, (9)

If we set, for example, ξ = 0.0 then the algorithm works fast but is not always
efficient. When we increase ξ, the algorithm’s quality improves. However, the
run time increases too, because the condition (9) gets relaxed and the number
of level surface approximation points to be investigated, grows.

Various values of the second parameter M are responsible for splitting the
segment [γ−, γ+] into a corresponding number of subsegments to perform the
passive one-dimensional search with respect to γ. The segment lower bound
γ− was set to equal 0, meanwhile the upper bound was estimated by γ+ =
(m+n+q)μ. When we increase the value of M , the algorithm’s accuracy grows,
of course, but it happens at the expense of the proportional increase of the run
time. At the initial stage the values of these parameters were chosen as ξ = 0.0,
M = 2.

To approximate the level surface at Stage (2) of the global search procedure,
we used the following three sets which represent direction set variations from [23]:

Dir1 = {((x, y) − el, v − ej), l = 1, ...,m + n, j = 1, ..., q};

Dir2 = {(−el,−ej), l = 1, ...,m + n, j = 1, ..., q};

Dir3 = {(el,−ej), l = 1, ...,m + n, j = 1, ..., q}.

232 A. Orlov

Here el ∈ IRm+n, ej ∈ IRq are the Euclidean basis vectors of the corresponding
dimension, (x, y, v) is a current critical point. These sets proved to be most
efficient when solving test problems. Computational results are given in Table 1
with the following denotations:

No is a number of example;
Dir is the most efficient direction set which delivered its global optimistic
solution for the given problem;
Loc stands for the number of start-ups of the local search procedure required
to find the approximate global solution to the problem;
LP is the number of the LP problems solved during the operation of the
program;
QP stands for the number of auxiliary convex quadratic problems solved;
GIt is the number of iterations of the global search method (the number of
improved critical points obtained during the operation of the program);
(x∗, y∗) is an optimal solution to the bilevel problem;
v∗ is an optimal value of the auxiliary variables;
F∗ = Φ∗ is the optimal value of the goal functions of Problems (QBP) and
(DC(μ));
T is the operating time of the program (in seconds).

Table 1. Testing of the global search method

No Dir Loc LP QP GIt (x∗, y∗) v∗ F∗ = Φ∗ T

1 Dir3 10 11 21 2 (1; 0) (2; 0; 0; 0) −9.0 0.21

2 Dir3 10 11 21 2 (1; 0) (3.5; 0; 0; 0) −9.0 0.22

3.1 Dir1 11 13 24 3 (1; 0) (0; 1; 0) −0.5 0.23

3.2 Dir2 16 21 37 3 (1.25; 0.25) (0; 1; 0) −0.4375 0.29

3.3 Dir1 8 11 19 1 (0.5; 0.5) (0; 0; 0) −0.25 0.22

3.4 Dir1 8 10 18 1 (0.5; 0.5) (0; 0; 0) −0.25 0.21

4 Dir3 60 120 180 6 (0.602; 0.398; 0; 0; 1.807) (1.81; 2.81; 3.2; 0) 0.6396 0.94

First of all note that the values of the parameters μ, ξ, and M specified above
happened to be insufficient to solve Problem 4. To find the global optimistic
solution in it, we needed the values μ = 15, ξ = 0.1, M = 3. On the other hand,
we managed to somewhat improve the approximate solution against the results
from [14]. This involved 6 global search iterations and about 1 s of operating
time.

Analysis of the rest of results in the table shows that in all one-dimensional
problems the known global optimistic solutions at each level were found in less
than 0.3 s, which required between 1 and 3 iterations of the global search method
(for GIt = 1, the solution was obtained already at the local search stage).

As expected, Problem 4 happened to be more complex than the others, pri-
marily due to its dimension. This is attested by the values in columns Loc, LP ,

A Nonconvex Optimization Approach to Quadratic Bilevel Problems 233

QP , and GIt, which can be considered as some complexity measure for the
problem under study.

Therefore, computational experiments demonstrated that the global search
theory performs well when applied to bilevel problems of quadratic optimization,
whereby varying of the parameters in the algorithm opens up great prospects
for solving simple as well as more complex problems.

6 Conclusion

This paper proposes an innovative approach to solving quadratic bilevel problems
based on their reduction to parametric problems of d.c. minimization with a
subsequent application of the Global Search Theory [20,21]. The specialized local
and global search methods have been constructed to find optimistic solutions to
bilevel problems. The methods have proved to be efficient in solving test problems
of moderate dimension.

Further research suggests extension of the range and dimension of problems.
For this purpose, it is planned to implement a special method of generating test
problems of bilevel optimization from [4].

The results of numerical testing as well as our previous computational expe-
rience [11,15,16,22,23] allow us to expect that the approach proposed will prove
effective in solving quadratic bilevel problems of high dimension (probably, up to
100×100) with a supplementary possibility of exploiting modern software pack-
ages for solving auxiliary LP and convex quadratic problems (IBM CPLEX,
FICO Xpress etc.).

Acknowledgments. This work has been supported by the Russian Science Founda-
tion (Project no. 15-11-20015).

References

1. Bard, J.F.: Convex two-level optimization. Math. Prog. 40, 15–27 (1988)
2. Bazara, M.S., Shetty, C.M.: Nonlinear Programming. Theory and Algorithms.

Wiley, New York (1979)
3. Bonnans, J.-F., Gilbert, J.C., Lemarechal, C., Sagastizabal, C.A.: Numerical Opti-

mization: Theoretical and Practical Aspects. Springer, Heidelberg (2006)
4. Calamai, P., Vicente, L.: Generating quadratic bilevel programming test problems.

ACM Trans. Math. Softw. 20, 103–119 (1994)
5. Colson, B., Marcotte, P., Savard, G.: A trust-region method for nonlinear bilevel

programming: algorithm and computational experience. Comput. Optim. Appl.
30, 211–227 (2005)

6. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann.
Oper. Res. 153, 235–256 (2007)

7. Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic Publishers,
Dordrecht (2002)

8. Dempe, S.: Bilevel programming. In: Audet, C., Hansen, P., Savard, G. (eds.)
Essays and Surveys in Global Optimization, pp. 165–193. Springer, Boston (2005)

234 A. Orlov

9. Dempe, S., Kalashnikov, V.V., Perez-Valdes, G.A., Kalashnykova, N.: Bilevel Pro-
gramming Problems: Theory, Algorithms and Applications to Energy Networks.
Springer, Heidelberg (2015)

10. Etoa, J.B.E.: Solving quadratic convex bilevel programming problems using a
smoothing method. Appl. Math. Comput. 217, 6680–6690 (2011)

11. Gruzdeva, T.V., Petrova, E.G.: Numerical solution of a linear bilevel problem.
Comp. Math. Math. Phys. 50, 1631–1641 (2010)

12. Gumus, Z.H., Floudas, C.A.: Global optimization of nonlinear bilevel programming
problems. J. Glob. Optim. 20, 1–31 (2001)

13. MATLAB—The language of technical computing. http://www.mathworks.com/
products/matlab/

14. Muu, L.D., Quy, N.V.: A global optimization method for solving convex quadratic
bilevel programming problems. J. Glob. Optim. 26, 199–219 (2003)

15. Orlov, A.V.: Numerical solution of bilinear programming problems. Comput. Math.
Math. Phys. 48, 225–241 (2008)

16. Orlov, A.V., Strekalovsky, A.S.: Numerical search for equilibria in bimatrix games.
Comput. Math. Math. Phys. 45, 947–960 (2005)

17. Pang, J.-S.: Three modeling paradigms in mathematical programming. Math. Prog.
Ser. B. 125, 297–323 (2010)

18. Pistikopoulos, E.N., Dua, V., Ryu, J.-H.: Global optimization of bilevel program-
ming problems via parametric programming. In: Floudas, C.A., Pardalos, P.M.
(eds.) Frontiers in Global Optimization, pp. 457–476. Kluwer Academic Publish-
ers, Dordrecht (2004)

19. Saboia, C.H., Campelo, M., Scheimberg, S.: A computational study of global algo-
rithms for linear bilevel programming. Numer. Algorithms 35, 155–173 (2004)

20. Strekalovsky, A.S.: Elements of Nonconvex Optimization. Nauka, Novosibirsk
(2003). [in Russian]

21. Strekalovsky, A.S.: On solving optimization problems with hidden nonconvex
structures. In: Rassias, T.M., Floudas, C.A., Butenko, S. (eds.) Optimization in
Science and Engineering, pp. 465–502. Springer, New York (2014). doi:10.1007/
978-1-4939-0808-0 23

22. Strekalovsky, A.S., Orlov, A.V.: Bimatrix Games and Bilinear Programming. Fiz-
MatLit, Moscow (2007). [in Russian]

23. Strekalovsky, A.S., Orlov, A.V., Malyshev, A.V.: On computational search for opti-
mistic solution in bilevel problems. J. Glob. Optim. 48, 159–172 (2010)

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://dx.doi.org/10.1007/978-1-4939-0808-0_23
http://dx.doi.org/10.1007/978-1-4939-0808-0_23

An Experimental Study of Adaptive Capping
in irace

Leslie Pérez Cáceres1(B), Manuel López-Ibáñez2, Holger Hoos3,
and Thomas Stützle1

1 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{leslie.perez.caceres,stuetzle}@ulb.ac.be

2 Alliance Manchester Business School, University of Manchester, Manchester, UK
manuel.lopez-ibanez@manchester.ac.uk

3 Computer Science Department, University of British Columbia, Vancouver, Canada
hoos@cs.ubc.cs

Abstract. The irace package is a widely used for automatic algorithm
configuration and implements various iterated racing procedures. The
original irace was designed for the optimisation of the solution quality
reached within a given running time, a situation frequently arising when
configuring algorithms such as stochastic local search procedures. How-
ever, when applied to configuration scenarios that involve minimising the
running time of a given target algorithm, irace falls short of reaching the
performance of other general-purpose configuration approaches, since it
tends to spend too much time evaluating poor configurations. In this
article, we improve the efficacy of irace in running time minimisation by
integrating an adaptive capping mechanism into irace, inspired by the one
used by ParamILS. We demonstrate that the resulting iracecap reaches
performance levels competitive with those of state-of-the-art algorithm
configurators that have been designed to perform well on running time
minimisation scenarios. We also investigate the behaviour of iracecap in
detail and contrast different ways of integrating adaptive capping.

1 Introduction

Algorithm configuration is the task of finding parameter settings (a configura-
tion) of a target algorithm that achieve high performance for a given class of
problem instances [6,8]. The appropriate choice of parameter settings is often
crucial for obtaining good performance, particularly when dealing with compu-
tationally challenging (e.g., NP-hard) problems. This choice usually depends
on the set or distribution of problem instances to be solved as well as on the
execution environment. Therefore, using appropriately chosen parameter values
is not only essential for reaching peak performance, but also for conducting fair
performance comparisons between different algorithms for the same problem.

Traditionally, algorithm configuration has been performed manually, relying
on experience and intuition about the behaviour of a given algorithm. However,
typical manual configuration processes are time-consuming and tedious; further-
more, they often leave the performance potential of a given target algorithm
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 235–250, 2017.
https://doi.org/10.1007/978-3-319-69404-7_17

236 L.P. Cáceres et al.

unrealised. In light of this, several automated algorithm configuration approaches
have been developed and are now used increasingly widely.Prominent examples
of general-purpose algorithm configuration procedures include ParamILS [13],
SMAC [12], GGA++ [1] and irace [4,17,18]. The key idea behind these and
other configuration procedures is to view algorithm configuration as a stochas-
tic optimisation problem that can be solved by effectively searching the space
of configurations of a given target algorithm A. The performance metrics most
commonly optimised in this context are the solution quality reached by A within
a certain time budget and the running time of A for finding a solution (of a cer-
tain quality) to a given problem instance.

The irace software is an automatic configurator based on the iterated F-race
procedure [4,7] and recent improvements [17,18]. It was initially developed for
configuring metaheuristic algorithms that optimise solution quality. In contrast,
minimisation of the running time of a given target algorithm was a major focus in
the development of ParamILS and SMAC, and both of them include an adaptive
capping [13] mechanism that is specifically designed to improve efficiency when
dealing with this performance objective. The key idea behind adaptive capping is
to reduce the time wasted in the evaluation of poorly performing configurations
by bounding the maximum running time permitted for each such evaluation. This
bound is calculated based on the best-performing configuration found so far. The
use of adaptive capping allows the configurator to prune poorly performing target
algorithm configurations early and to quickly focus the configuration budget on
promising areas of the space of configurations being searched.

In this work, we improve the efficacy of irace on algorithm configuration sce-
narios involving running time minimisation. We adapt the ideas of the adaptive
capping mechanism into the underlying iterated racing procedure and define
an additional dominance criterion based on the performance of the elite con-
figurations obtained by irace. As a first step, we show that by extending irace
with adaptive capping, resulting in our new iracecap method, we can significantly
increase its performance on well-known and difficult configuration scenarios. An
additional analysis of various parameters of iracecap gives further insights into
the importance of the statistical testing procedures and other aspects of irace.
A final comparison with other state-of-the-art configuration procedures for run-
ning time minimisation, namely ParamILS and SMAC, shows that iracecap
reaches highly competitive performance and, thus, broadens the range of config-
uration scenarios for which irace can be considered a possible method of choice.

The remainder of this article is structured as follows. First, we describe irace
and the adaptive capping mechanism used by ParamILS (Sects. 2 and 3). Next,
in Sect. 4, we describe how we integrated adaptive capping into irace, and we
experimentally analyse the resulting iracecap in Sect. 5. In Sect. 6, we compare
iracecap to state-of-the-art configurators for minimising running time, and we
conclude in Sect. 7.

An Experimental Study of Adaptive Capping in irace 237

2 Elitist Iterated Racing in irace

irace is an iterated racing procedure [7] for automatic algorithm configuration.
It explores the parameter space of a target algorithm by iteratively sampling
parameter configurations and applying a racing procedure to select the best-
performing configurations. The racing procedure considers a sequence of problem
instances on which the candidate configurations are evaluated. At each stage of
the race, all candidate configurations are run on a specific problem instance; at
the end of the stage, configurations that perform statistically worse than others
are eliminated from the race, while all others proceed to the next stage. Once a
race is terminated, the best configurations, called elite, are used to update the
sampling model from which new configurations are generated. The elite configu-
rations are carried over to the next iteration to continue their evaluation within a
new race together with the newly generated configurations. One iteration of irace
comprises the process of (i) generation of candidate configurations, (ii) execution
of the racing procedure, and (iii) update of the probabilistic model.

The irace package [17,18] is an implementation of irace that is publicly avail-
able as an R package. Recently, version 2.0 of the software was released, which
implements an elitist racing procedure [17]. Differently from the non-elitist rac-
ing procedure on which the first version of irace is based, elitist irace evaluates
configurations on a set of problem instances that increases in size in every iter-
ation of irace. In particular, in elitist irace, an elite configuration carried over
from the previous iteration cannot be eliminated until a better configuration is
evaluated on the same instances as the elite one, including all instances on which
the elite configuration was previously evaluated and at least one new instance.

In more detail, elitist irace works as follows (see Fig. 1). In the first iteration,
configurations are sampled uniformly at random from the given configuration
space. These configurations are evaluated on T first instances, after which the

Fig. 1. Illustration of the 1st and 2nd iteration of a run of irace using T first = 3,
T each = 1 and T new = 1.

238 L.P. Cáceres et al.

first statistical test is applied, and the configurations that are significantly worse
performing than the best ones are eliminated. This elimination test is performed
every T each instances until the termination criterion of the iteration is met. The
surviving configurations at the end of the iteration (elite configurations) are used
to update a probabilistic model from which new configurations are sampled.
The set of configurations evaluated in the next iteration is composed of the elite
configurations and newly sampled configurations (non-elite ones). Algorithm 1
shows the pseudo-code of the race performed at each iteration of irace. Instances
are evaluated following an execution order that is built interleaving new and old
instances (procedure generateInstancesList in line 1).

More precisely, the instance list includes T new previously unseen instances,
followed by the list of previously evaluated instances (Iold), and finally, enough
new instances to complete the race. Iold is randomly shuffled to avoid a bias
that could result from always using the same instance order. A race may termi-
nate even before evaluating all instances in Iold (e.g. when a minimum number
of configurations is reached), and, as a result, each elite configuration may be
evaluated on some instances in Iold. When the race finishes, irace therefore mem-
orises which configuration has been evaluated on which instance. (Line 7 updates
the elite status, and line 10 tests this condition.) In line 6, the configurations
are evaluated on instance I[i] with a maximum execution time of bmax. If an
elite configuration was already previously evaluated on I[i] (i.e., I[i] ∈ Iold), its
result on that instance is read from memory. When the statistical elimination
test is applied, only non-elite configurations (Θnew) may be eliminated and elite
ones are kept until they become non-elite. A configuration becomes non-elite if
all instances in Iold on which it has previously been evaluated have been seen in
a race. Finally, the race returns the best configurations found, which will become
elite in the next iteration. For more details about irace, see [17].

3 ParamILS and Adaptive Capping

ParamILS [13] is an iterated local search [19] procedure that searches in a para-
meter space defined by categorical parameters only; for configuring numerical
parameters with ParamILS, these need to be discretised. ParamILS uses a first-
improvement local search algorithm that explores, in random order, the one-
exchange neighbourhood of the current configuration.

There are two versions of ParamILS, BasicILS and FocusedILS, which differ
in the number of instances evaluated when comparing two configurations [13].
BasicILS compares configurations by evaluating them on a fixed number N of
instances, while FocusedILS varies the number of instances according to the
quality of the configurations to be tested. The number of instances used in
the comparison is adjusted based on the dominance criterion, by which a
configuration θj is dominated by a configuration θi if (1) θi has been evaluated
in at least as many instances as θj and (2) the aggregated performance of θi is
better or equal than the one of θj on the Nj instances on which θj has been
evaluated. When no dominance can be established between two configurations,

An Experimental Study of Adaptive Capping in irace 239

Algorithm 1. Racing procedure in elitist irace
Inputs are a set of newly generated configurations (Θnew), a user-provided maximum execution
time (bmax), the number of new initial instances (Tnew), the list of unseen instances (Inew),

a set of elite configurations (Θelite), the list of instances on which Θelite were previously

evaluated (Iold), and a Boolean predicate isElite(θ, I) that returns true if configuration θ ∈
Θelite was previously evaluated on instance I ∈ Iold.In the first iteration of irace, Θelite and
Iold are empty and all entries of isElite(·, ·) are set to false.

Input: Θelite, Θnew, bmax, Tnew, Iold, Inew, isElite(·, ·)
Output: Best configurations found in the race.
begin

1 I ← generateInstancesList (Tnew, Iold, Inew)
2 i ← 1

3 Θi ← Θnew ∪ Θelite

4 while ¬ termination() do
execute elites only when needed; I[i] is the ith entry of instance list I

5 Θexe ← Θi \ {θ ∈ Θelite | isElite(θ, I[i])}
6 execute (Θexe, bmax, I[i])

7 isElite(θ, I[i]) ← false ∀θ ∈ Θelite

8 if mustTest(i) then
9 Θi+1 ← eliminationTest(Θi, {I[1], . . . , I[i]})

keep configurations that are still elite

10 Θi+1 ← Θi+1 ∪ {θ ∈ Θelite | ∨
I∈Iold isElite(θ, I)}

11 else
12 Θi+1 ← Θi

13 i ← i + 1

14 return Θi

the number of instances seen by the configuration with less instances evaluated
is increased until both configurations have seen the same number of evaluations.
The execution of a configuration on each instance is always bounded by a defined
maximum execution time (cut-off time).

The adaptive capping technique further bounds the execution of a config-
uration by using the running time of good configurations as a bound in running
time that is often less than the user-specified cut-off time. Using this technique
can significantly reduce the time wasted in the evaluation of poor performing
configurations. Adaptive capping adjusts the bound on running time according
to the number of instances to be used in the comparison, and for this reason, it
can be sensitive to the ordering of the given instances. There are two types of
adaptive capping: trajectory preserving and aggressive capping [13]. The first of
these bounds the running time of new configurations using the performance of
the currently best configuration of each ParamILS iteration as reference, while
the second additionally uses the performance of the overall best configuration
multiplied by a factor, set to two by default, for bounding. This factor controls
the aggressiveness of the capping strategy. Further details on adaptive capping
can be found in [13].

240 L.P. Cáceres et al.

Algorithm 2. Racing procedure in iracecap
For the description of the inputs, see Algorithm 1.

Input: Θelite, Θnew, bmax, Tnew, Iold, Inew, isElite(·, ·)
Output: Best configuration set found in the race.
begin

1 I ←generateInstancesList (Tnew, Iold, Inew)

2 execute (Θelite, bmax, {I[1], . . . , I[Tnew]})
3 i ← 1

4 Θi ← Θnew ∪ Θelite

5 while ¬ termination() do

6 bi ← calculateEliteBound (Θelite, {I[1], . . . , I[i]})
7 Θexe ← Θi \ {θ ∈ Θelite | isElite(θ, I[i])}
8 execute (Θexe, bi, I[i])

9 isElite(θ, I[i]) ← false ∀θ ∈ Θelite

dominancecriterion elimination

10 Θi+1 ← eliminationDominance (Θi, {I1, . . . , I[i]})
statistical test elimination

11 if mustTest (i) then
12 Θi+1 ← eliminationTest (Θi+1, {I1, . . . , I[i]})

keep configurations that are still elite

13 Θi+1 ← Θi+1 ∪ {θ ∈ Θelite | ∨
I∈Iold isElite(θ, I)}

14 i ← i + 1

15 return Θi

4 Adaptive Capping in irace

In this section, we describe a new version of irace that adopts the ideas underlying
adaptive capping in the racing procedure. This new version, iracecap, introduces
two new components to the algorithm: (1) the adaptive running time bound,
used to limit the running time of new configurations on previously seen and
initial instances, and (2) dominance elimination, a procedure that discards
poorly performing configurations. Algorithm 2 shows the outline of the racing
procedure implemented in iracecap; it follows the same structure as elitist irace,
described in Sect. 2. The elite configurations are first run on the set of initial
instances before the start of the race (Line 2). Line 6 calculates an initial running
time bound based on the running times of the elite configurations. Let pj

i be
the average computation time of a configuration θj up to instance I[i] in the
current iteration. Then, the bound bi for running new configurations on instance
I[i] is equal to medianθj∈Θelite{pj

i}. (Median is chosen to be consistent with the
elimination based on dominance described next.) The bound bi can be computed
only for previously evaluated instances (including the initial instances); for any
other instance, we set the bound to the cut-off time, bmax. This running time
bound provides a reference of the minimum performance new configurations
should obtain in order to compete with the current elite configurations.

The maximum running time kj
i for each configuration θj on instance I[i] is

computed by procedure execute in line 8 using the value of bi as follows:

k
′j
i = bi · i + bmin − pj

i−1 · (i − 1) (1)

An Experimental Study of Adaptive Capping in irace 241

kj
i =

⎧
⎪⎨

⎪⎩

bmax if k
′j
i > bmax,

min{bi, b
max} if k

′j
i ≤ 0,

k
′j
i otherwise;

(2)

where bmin is a constant that represents a minimally measurable running time
different from zero (set to a default value of 0.01). Intuitively, kj

i is the time
remaining for a configuration θj to improve over the median elite configuration.

We implemented a dominance-based elimination procedure inspired by the
domination criterion described in Sect. 3. We compare the median performance
of the elite configurations set (Θelite) on the list of instances {I[1], . . . , I[i]}
considered so far with the performance of the new configurations as follows:

Medianθs∈Θelite{ps
i } + bmin < pj

i (3)

where ps
i is the mean running time of configuration θs on instances

{I[1], . . . , I[i]}, and bmin is the constant defined in Eq. (2). Other choices than
the median are possible and may be considered in future work. We eliminate
configurations as soon as they become dominated, that is, the dominance-based
elimination is applied after every instance seen within an iteration of irace.

5 Experiments

In this section, we study the impact of introducing the previously described cap-
ping procedure into irace. We compare the performance of the final configurations
obtained by elitist irace and iracecap using different settings.

5.1 Experimental Setup

In our performance assessments of iracecap, we use five configuration scenarios
taken from previous experimental studies of other automatic algorithm con-
figuration methods, in particular, ParamILS and SMAC. These scenarios use
CPLEX [16], Lingeling [5] and Spear [3] as target algorithms, and involve para-
meter spaces with 74, 137 and 26 parameters, respectively. Their principal char-
acteristics are as follows:

CPLEX - Regions100 [12,13]. 5 s cut-off time, 18 000 s total configuration
budget, and a training and testing set of 1000 mixed integer programming
(MIP) instances each. The instances encode a combinatorial auction winner
determination problem with 100 goods and 500 bids.

CPLEX - Regions200 [11,13]. 300 s cut-off time, 172 800 s total configuration
budget, and a training and testing set of 1000 MIP instances each.These
instances are encodings of a combinatorial auction winner determination
problem with 200 goods and 1000 bids.

CPLEX - Corlat [11]. 300 s cut-off time, 172 800 s total configuration budget,
and a training and testing set of 1000 MIP instances each.

242 L.P. Cáceres et al.

Lingeling [14]. 300 s cut-off time, 172 800 s total configuration budget, and a
training and testing set of 299 and 302 SAT instances, respectively. These
instances were obtained from the 2014 Configurable SAT Solver Competition
(CSSC) [14].

Spear [13]. 300 s cut-off time, 172 800 s total configuration budget, and a train-
ing and testing set of 302 SAT-encoded software verification instances each.

The instance files for these scenarios are also available from the Algorithm
Configuration Library (AClib) [15]. AClib specifies a cut-off time of 10 000 s for
the CPLEX scenarios, which stems from their initial use in conjunction with the
CPLEX auto-tuning tool. Following the experiments in [11, Sect. 5]), we use a
cut-off time of 300 s.1 Another minor difference is that we usedversion 12.4 of
CPLEX, which was installed on our system, while AClib proposes to use version
12.6. However, there is no obvious reason to suspect that the particular version
of CPLEX should affect our conclusions on the effect of capping inside irace, and
we do not directly compare to results for the original AClib scenarios. Moreover,
although both irace and SMAC are able to handle non-discrete parameter spaces,
for ParamILS, all parameters have to be discretised, with all possible values
specified explicitly in the scenario definition. There is some evidence that the use
of non-discrete parameter spaces, where possible, leads to improved results [12],
thus giving an advantage to both irace and SMAC over ParamILS, unrelated
to the capping mechanism, which is the focus of our comparison presented in
Sect. 6. To avoid this bias, we only consider the variants of the scenarios where
all parameters are discretised and explicitly specified.

In all our experiments, we used the t-test to eliminate configurations within
irace, as previously recommended for running time minimisation [21]. The com-
parisons presented in the following are based on 20 independent runs of all
configuration procedures; multiple independent configurator runs are performed
due to the inherent randomness of the configuration procedures and the con-
figuration scenarios. The experiments were run on one core of a dual-processor
2.1 GHz AMD Opteron system with 16 cores per CPU, 16 MB cache and 64 GB
RAM, running Cluster Rocks 6.2, which is based on CentOS 6.2.

In our empirical analysis of iracecap, we use mean running time as the per-
formance criterion to be optimised by irace. Runs that time out due to reaching
the cut-off time are then counted at this maximum cut-off time. In the litera-
ture, unsuccessful runs are often more strongly penalised, computing effectively
the number of timed out runs multiplied by a penalty factor pf plus the mean
computation time of the successfully terminated runs. In fact, the penalty fac-
tor pf converts the bi-objective problem of minimising the number of timed-out
runs and mean time of successful runs into a single-objective problem. In this

1 A higher cut-off time, as used in AClib, would be detrimental for configuration pro-
cedures such as iracecap, as time-outs would very strongly impact the number of con-
figurations that can be evaluated. On the other hand, there are various techniques,
such as early termination of ongoing runs or the initial use of smaller maximum
cut-off times, to address this problem. In the literature, the use of smaller cut-off
times has been suggested as a possible remedy [12, footnote 9].

An Experimental Study of Adaptive Capping in irace 243

section, runs of irace attempt to minimise mean running time (with pf = 1),
and we therefore assessed the performance of the resulting target algorithm
configurations using this performance metric. In the supplementary material,
we additionally present results for evaluating configurations using pf = 10 and
pf = 100. In the literature, pf = 10 is commonly used and referred to as PAR10;
consequently, in Sect. 6, all configurator runs and target algorithm evaluations
are performed using PAR10 scores.

5.2 Experimental Results

We first compare the results obtained by elitist irace and iracecap, using their
respective default settings. Table 1 presents performance statistics over the 20
runs of both irace versions. The implementation of the proposed capping proce-
dure proves to be beneficial for the scenarios used in these experiments. For the
Regions 100, Regions 200, Corlat, and Spear scenarios, the results obtained by
iracecap are significantly better than those of elitist irace, while for the Lingeling
scenario, the results are not significantly different (however, iracecap still achieves
a better mean than irace).

Table 1. Summary statistics of the distribution of observed mean running time and
percentage of timed out evaluations of 20 runs of iracecap and elitist irace (irace) on
test sets for the various configuration scenarios. We show the first and second quartile
(q25 and q75, respectively), the median, the mean, the standard deviation (sd) and the
variation coefficient (sd/mean). Wilcoxon test p-values are reported in the last line.
Statistically significantly better results (at α = 0.05) are indicated in bold-face and
lowest mean running times in italics.

Regions 100 Regions 200 Corlat Lingeling Spear

iracecap irace iracecap irace iracecap irace iracecap irace iracecap irace

%timeout 0.08 0.085 0.01 0.015 0.695 1.205 8.377 8.659 0.397 3.328

q25 0.327 0.374 9.487 10.983 8.616 13.526 42.379 44.274 3.028 4.776

mean 0.338 0.395 10.498 13.231 11.899 15.935 45.501 46.923 4.116 13.068

median 0.332 0.401 10.469 12.871 9.688 14.911 44.453 47.034 3.765 14.617

q75 0.34 0.413 10.75 14.256 13.941 18.436 48.996 49.738 4.242 19.993

sd 0.018 0.033 1.335 2.908 5.645 4.325 3.799 3.658 1.848 8.092

sd/mean 0.054 0.082 0.127 0.22 0.474 0.271 0.083 0.078 0.449 0.619

p-value 5.7e-06 0.0001049 0.0055809 0.2942524 0.0002613

The elimination criterion of the capping procedure in iracecap only considers
aggregated running time rather than its statistical distribution, and it is not
obvious whether this renders the criterion always stricter than the statistical
test at the core of irace, which could, in principle, render the latter superfluous.
Figure 2 shows the mean percentage of live configurations selected to be elim-
inated by the capping procedure and the statistical test (lines), and the mean
percentage of initial configurations that become elite configurations at the end

244 L.P. Cáceres et al.

of the iteration (bars). (For results on all other scenarios, see Figure A.2.) The
capping procedure selects more configurations for elimination than the statistical
test in all stages of the search, while the statistical test is mainly able to eliminate
configurations in the initial phases of the search. As the race progresses, capping
elimination quickly becomes mainly responsible for eliminating configurations,
illustrating the importance of introducing it into irace.

Fig. 2. Mean percentage of configurations selected for elimination by the capping proce-
dure and the statistical test (solid and dashed lines respectively), and mean percentage
of initial configurations that become elite configurations at the end of the iteration
(bars). Means obtained across 20 independent runs of iracecap on the Regions 200 and
Spear scenarios.

The capping mechanism of iracecap and the increased elimination of configu-
rations induce a highly intensified search. On average, iracecap performs in part
many more iterations than irace and shows a lower average number of elite con-
figurations per iteration. This results in an increased number of configurations
sampled overall and instances used for evaluation (Table 2).

Table 2. Statistics over 20 independent runs of iracecap and irace: mean number of
iterations performed (iterations), mean number of instances used in the evaluation
(instances), mean overall sampled configurations (candidates), mean elite configura-
tions per iteration (elites) and mean total executions (executions).

mean Regions 100 Regions 200 Corlat Lingeling Spear

iracecap irace iracecap irace iracecap irace iracecap irace iracecap irace

iterations 253.5 28.3 85.8 17.1 68.7 13 27.4 10.5 67.0 7.6

instances 258.6 47.6 91.1 36.7 75.1 29.4 35.5 26.3 83.2 16.3

candidates 27914 1136 5191 285 5318 242 2595 214 11193 718

elites 1.09 6.88 1.25 7.12 1.82 7.80 3.28 8.90 2.26 5.99

executions 30604 8362 6779 2770 8873 3147 5218 2878 28039 6109

An Experimental Study of Adaptive Capping in irace 245

5.3 Additional Analysis of iracecap

In what follows, we examine in more detail the impact of some specific parameter
settings of iracecap on its performance. For the sake of conciseness, we will only
discuss overall trends;detailed results are found in supplementary material [20].

Instance order. The order of the instances may introduce a bias in irace when
the configuration scenario involves a heterogeneous instance set. By default, irace
shuffles the order of the training instances. Without this shuffling, irace evalu-
ates the instances in the order provided by the user. Since the set of previously
used instances is evaluated in every iteration, elitist irace randomly permutes the
order of previously seen instances (Iold) before each iteration to further avoid
any bias that the previous order may introduce. Table A.2 compares the results
obtained by iracecap with and without this instance reshuffling. For most bench-
mark scenarios, disabling instance reshuffling produces better mean results and
fewer timed-out runs; for Regions 200 and Lingeling, these differences are sta-
tistically significant. The main exception is the Spear scenario, where reshuffling
leads to much improved results; this is probably due to the fact that this scenario
contains a very heterogeneous instances set.

These results suggest that the impact of reshuffling depends on the given
configuration scenario; we conjecture that for more heterogeneous instance sets,
reshuffling the instance set becomes increasingly important. Investigating this
conjecture in detail is an interesting direction for future work.

Confidence level of statistical test. The dominance criterion eliminates more
configurations than the statistical test. Lowering the confidence level of the sta-
tistical test should lead to an even higher elimination rate of the latter and
possibly improve the efficacy of the overall configuration process. We explored
this possibility by lowering the confidence level in iracecap from its default value
of 0.95 to 0.75. Table A.3 in the supplementary material shows the impact of
this change. The effects on the elimination of configurations can be observed
in Figure A.5 in the supplementary material. As expected, the statistical test
eliminates more configurations when setting the confidence level to 0.75. This
also results in a small increase in the overall number of configurations evaluated
and a reduction of the mean number of elite configurations (see Table A.4 in the
supplementary material). The more aggressive test slightly improved the perfor-
mance for three scenarios, yielding significantly better results for Regions 200. In
contrast, a confidence level of 0.75 results in slightly worse performance on the
Spear scenario, indicating that the eliminations performed with lower confidence
can be premature.

If we completely disable statistical testing (confidence level 1.0), the perfor-
mance of iracecap improves on Regions 100 and Regions 200, as seen in Table A.5
in the supplementary material. This suggests that the statistical test can prema-
turely eliminate configurations based on an incorrect criterion. Despite this, we
still recommend keeping the default confidence level of 0.95, as a safe-guard that
may be useful for configuration scenarios with possibly very different properties
from the ones we are testing here.

246 L.P. Cáceres et al.

Log-transformation of running times. When used for running time min-
imisation, irace makes use of the t-test for elimination. However, the potentially
very large variability of target algorithm running times [10] often renders the
distribution of running times far from normal, a situation that may be allevi-
ated by using a transformation of running times – in particular, a logarithmic
transformation. Applying this transformation has, however, only a significant
effect on the Regions 200 scenario. Increasing the difference between the per-
formance of configurations makes the elimination more aggressive and, as seen
in other experiments, the Regions 200 scenario benefits greatly of this increased
intensification. For the other scenarios, the impact on performance is negligible,
as seen in Table A.6 in the supplementary material, probably due to the minor
impact of the statistical test on the elimination of configurations.

Number of initial new instances. Finally, we performed experiments to eval-
uate the impact of adding new instances at the beginning of each race. If no new
instances are added at the start, then new configurations can only become elite
by performing better on exactly the same instances on which the current elites
performed well in previous races. Even though the new configurations may be
better on instances not seen yet, they may be eliminated before seeing them,
unless those new instances are evaluated at the start. On the other hand, there
are no running times available for new instances; this issue is addressed by first
running the elite configurations on the new instances to avoid wasting too much
computation time on possibly poor newly sampled candidate configurations.
Table A.7 in the supplementary material shows the results for setting the num-
ber of new initial instances (T new) to 0 (new instances are never added at the
start of each race), 1 (the default setting) and 5. As previously observed for
elitist irace [17], a larger value of T new improves the performance of iracecap for
the Spear scenario. While for the other scenarios, the differences are minor, there
appears to be a tendency for the default value of 1 (or perhaps even a slightly
larger value, such as 2 or 3) to result in the most robust behaviour.2

6 Comparison to Other Configurators

We compare the results obtained by iracecap with two other automatic configu-
rators available in the literature, ParamILS and SMAC. Both have been widely
used in the literature for running time minimisation. SMAC and ParamILS, as
well as irace, were run using default settings. We chose not to include instance
features in the configuration process and use only fully discretised configuration
spaces; this was done to isolate as much as possible the impact of the new cap-
ping mechanism in irace, and to examine whether it would become competitive

2 Setting T new to 0 may be beneficial for scenarios with a very large cut-off time,
as used by default in AClib for the CPLEX scenarios. This should help to aggres-
sively bound the running time at the start of each race, by using the running times
of the elite configurations, thus avoiding the high cost of evaluating possibly poor
configurations with a very large cut-off time.

An Experimental Study of Adaptive Capping in irace 247

with other configurators that already used this technique. Considering features
or non-discrete parameter spaces would introduce additional factors that are
likely to affect performance beyond the impact of capping. Nevertheless, SMAC
can also use instance features in the configuration process, which may improve
its results; therefore, the results obtained here should be considered with caution
for those scenarios in cases where these features are available. Yet, identifying
how much of the improvement is due to instance features or due to differences
in the capping methods between SMAC and other configurators would require
a more extensive analysis that is left for future research. Additionally, SMAC
and irace can handle real-valued parameters and, as already shown for SMAC in
[12], doing so may further improve performance.

As mentioned previously, we ran iracecap, SMAC and ParamILS using the
PAR10 evaluation on the scenarios described in Sect. 5. Table 3 shows the mean
PAR10 execution times obtained from 20 runs of the configurators. In the on-
line supplementary material, we present results with other penalty factors from
{1, 10, 100}. The table shows the p-values obtained from the Wilcoxon signed-
rank test comparing the performance of the two configurators with the lowest
mean PAR10 score. iracecap obtains the statistically significantly lowest mean
on the Regions 200, Corlat, and Lingeling scenarios, while SMAC obtains the
statistically significantly lowest mean on the Spear scenario. On the Regions
100 scenario, iracecap obtains the lowest mean performance value, though its
performance is not statistically different from that of ParamILS.

It is known that trajectory-based local search methods, such as ParamILS,
can exhibit high performance variability over multiple independent runs due
to search stagnation. A common practice for dealing with this situation, and
for reducing the overall wall-clock time of the configuration process by means

Table 3. Statistics over the mean PAR10 performance and percentage of timed-out
instances from 20 runs of iracecap, SMAC and ParamILS. Wilcoxon test p-values (sig-
nificance 0.05). Significantly better results in bold and best mean in cursive.

q25 mean median q75 sd sd/mean %timeout

Regions 100 p-value:

0.5958195

ParamILS 0.318 0.38 0.37 0.416 0.066 0.173 0.130

SMAC 0.45 0.478 0.473 0.499 0.055 0.116 0.045

iracecap 0.32 0.372 0.365 0.395 0.057 0.154 0.095

Regions 200 p-value:

0.03276825

ParamILS 9.412 11.656 10.359 13.606 3.348 0.287 0.005

SMAC 14.205 17.917 16.452 21.925 5.419 0.302 0.045

iracecap 8.854 9.926 9.349 10.533 1.459 0.147 0.005

Corlat p-value:

0.0083084

ParamILS 30.924 193.303 48.772 74.309 360.42 1.865 5.945

SMAC 30.866 45.847 39.855 63.805 20.903 0.456 1.005

iracecap 12.24 27.974 26.763 33.902 19.426 0.694 0.62

Lingeling p-value:

0.0362339

ParamILS 250.115 292.529 298.942 327.679 51.497 0.176 9.023

SMAC 266.792 283.907 289.153 298.64 25.121 0.088 8.758

iracecap 244.313 263.651 259.768 271.119 31.736 0.12 8.113

Spear p-value: 9.5e-06 ParamILS 3.037 88.083 12.094 40.877 188.929 2.145 2.815

SMAC 1.6 3.416 1.746 2.511 3.733 1.093 0.05

iracecap 5.666 23.741 22.3 25.872 21.512 0.906 0.662

248 L.P. Cáceres et al.

Table 4. Statistics over the mean PAR10 performance for the best-out-of-ten runs
sampled from the 20 original runs of iracecap, SMAC and ParamILS. Wilcoxon test
p-values (α = 0.05). Significantly better results are shown in bold-face and best mean
values in italics.

q25 mean median q75 sd sd/mean

Regions 100 p-value: 8.83e-05 ParamILS 0.303 0.305 0.303 0.307 0.003 0.011

SMAC 0.386 0.392 0.386 0.391 0.012 0.031

iracecap 0.312 0.314 0.314 0.314 0.002 0.007

Regions 200p-value: 0.0001417 ParamILS 8.589 8.871 8.999 9.139 0.266 0.03

SMAC 9.82 11.2 10.106 12.989 1.784 0.159

iracecap 8.456 8.523 8.518 8.581 0.069 0.008

Corlatp-value: 0.0010241 ParamILS 8.284 10.58 9.58 9.58 4.163 0.393

SMAC 17.801 19.898 19.832 19.832 3.016 0.152

iracecap 7.959 8.194 7.959 8.256 0.627 0.076

Lingelingp-value: 0.6341078 ParamILS 210.753 218.874 210.753 223.379 13.256 0.061

SMAC 230.175 241.659 236.26 257.77 12.85 0.053

iracecap 220.093 220.212 220.093 220.212 0.212 0.001

Spearp-value: 9e-05 ParamILS 1.911 2.075 2.012 2.073 0.27 0.13

SMAC 1.454 1.462 1.454 1.463 0.018 0.013

iracecap 2.154 2.497 2.184 2.497 0.581 0.233

of parallelisation, is to perform multiple independent configurator runs concur-
rently and to return the best configuration found in any of these. This may not
always be feasible when the average running times of configurations on instances
are high, e.g., in the range of hours, in which case the parallelisation features of
irace would be very useful. Nevertheless, we mimic this commonly applied app-
roach and compare the performance of ParamILS, SMAC and iracecap based on
the following resampling approach: From the 20 values of mean PAR10 perfor-
mance previously obtained for each configurator on the test set of each scenario,
we sample 10 values (uniformly at random and without repetition) and take the
best of these samples. This is equivalent to running the configurator 10 times
and determining the best of the configurations thus obtained. We repeat this
process 20 times to obtain 20 replicates of the experiment. Table 4 shows the
results thus obtained. ParamILS benefits most from multiple independent runs,
achieving the statistically significantly best performance on the Regions 100
scenario and the best mean performance (though not statistically significantly
different from that of iracecap) on Lingeling. iracecap produces the statistically
significantly best results on Regions 200 and Corlat, while SMAC shows the
best mean performance for the Spear scenario.

7 Conclusions

In this work, we have extended irace, an automatic algorithm configuration
procedure primarily designed for solution quality optimisation, with an adap-
tive capping mechanism. We have demonstrated that this results in substantial

An Experimental Study of Adaptive Capping in irace 249

improvements in the efficacy of irace for running time minimisation, and our new
iracecap configurator reaches state-of-the-art performance on prominent configu-
ration scenarios. This considerably broadens the range of configuration scenarios
on which irace should be seen as one of the methods of choice.

In future work, it would be interesting to explore which characteristics of
a configuration scenario makes it particularly amenable to different variants of
adaptive capping. Furthermore, we would like to investigate under which cir-
cumstances iracecap performs better (or worse) than other state-of-the-art con-
figurators, notably SMAC [12], ParamILS [13] and GGA++ [1]. We see this as
an important step towards automatic selection of the configurator expected to
perform best on a given scenario. This could improve the state of the art in auto-
matic algorithm configuration and further boost the appeal of the programming
by optimisation (PbO) software design paradigm [9], which crucially depends on
maximally effective configurators.

Acknowledgments. This research was supported through funding through COMEX
project (P7/36) within the Interuniversity Attraction Poles Programme of the Bel-
gian Science Policy Office. Thomas Stützle acknowledges support from the Belgian
F.R.S.-FNRS, of which he is a Senior Research Associate. Holger Hoos acknowledges
support through an NSERC Discovery Grant.

References

1. Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.: Model-
based genetic algorithms for algorithm configuration. In: IJCAI 2015, pp. 733–739.
IJCAI/AAAI Press, Menlo Park (2015)

2. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the
automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol.
5732, pp. 142–157. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04244-7 14

3. Babić, D., Hutter, F.: Spear theorem prover. In: SAT 2008: Proceedings of the SAT
2008 Race (2008)

4. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-Race
algorithm: sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa
Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.)
HM 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75514-2 9

5. Biere, A.: Yet another local search solver and lingeling and friends entering the SAT
competition 2014. In: Belov, A., et al. (ed.) Proceedings of SAT Competition 2014.
Science Series of Publications B, vol. B-2014-2, pp. 39–40. University of Helsinki
(2014)

6. Birattari, M.: The Problem of Tuning Metaheuristics as Seen from a Machine
Learning Perspective. Ph.D. thesis, Université Libre de Bruxelles, Belgium (2004)

7. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race: an
overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.)
Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-02538-9 13

8. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In:
Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 37–71.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-21434-9 3

http://dx.doi.org/10.1007/978-3-642-04244-7_14
http://dx.doi.org/10.1007/978-3-540-75514-2_9
http://dx.doi.org/10.1007/978-3-540-75514-2_9
http://dx.doi.org/10.1007/978-3-642-02538-9_13
http://dx.doi.org/10.1007/978-3-642-21434-9_3

250 L.P. Cáceres et al.

9. Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)
10. Hoos, H.H., Stützle, T.: Stochastic Local Search-Foundations and Applications.

Morgan Kaufmann Publishers, San Francisco (2005)
11. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed

integer programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR
2010. LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13520-0 23

12. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol.
6683, pp. 507–523. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3 40

13. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

14. Hutter, F., Lindauer, M.T., Balint, A., Bayless, S., Hoos, H.H., Leyton-Brown, K.:
The configurable SAT solver challenge (CSSC). Artif. Intell. 243, 1–25 (2017)

15. Hutter, F., López-Ibáñez, M., Fawcett, C., Lindauer, M., Hoos, H.H., Leyton-
Brown, K., Stützle, T.: AClib: a benchmark library for algorithm configura-
tion. In: Pardalos, P.M., Resende, M.G.C., Vogiatzis, C., Walteros, J.L. (eds.)
LION 2014. LNCS, vol. 8426, pp. 36–40. Springer, Cham (2014). doi:10.1007/
978-3-319-09584-4 4

16. IBM: ILOG CPLEX optimizer. http://www.ibm.com/software/integration/
optimization/cplex-optimizer/

17. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

18. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace
package, iterated race for automatic algorithm configuration. Technical report
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

19. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search: framework and appli-
cations. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. Interna-
tional Series in Operations Research & Management Science, vol. 146, pp. 363–397.
Springer, Boston (2010). doi:10.1007/978-1-4419-1665-5 12

20. Pérez Cáceres, L., López-Ibáñez, M., Hoos, H.H., Stützle, T.: An experimental
study of adaptive capping in irace: Supplementary material (2017). http://iridia.
ulb.ac.be/supp/IridiaSupp.2016-007/

21. Pérez Cáceres, L., López-Ibáñez, M., Stützle, T.: An analysis of parameters of
irace. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol. 8600, pp. 37–48.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44320-0 4

http://dx.doi.org/10.1007/978-3-642-13520-0_23
http://dx.doi.org/10.1007/978-3-642-13520-0_23
http://dx.doi.org/10.1007/978-3-642-25566-3_40
http://dx.doi.org/10.1007/978-3-319-09584-4_4
http://dx.doi.org/10.1007/978-3-319-09584-4_4
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://dx.doi.org/10.1007/978-1-4419-1665-5_12
http://iridia.ulb.ac.be/supp/IridiaSupp.2016-007/
http://iridia.ulb.ac.be/supp/IridiaSupp.2016-007/
http://dx.doi.org/10.1007/978-3-662-44320-0_4

Duality Gap Analysis of Weak Relaxed
Greedy Algorithms

Sergei P. Sidorov1(B) and Sergei V. Mironov2

1 Mechanics and Mathematics Department, Saratov State University,
Saratov, Russian Federation
SidorovSP@info.sgu.ru

2 Computer Science and Information Technologies Department,
Saratov State University, Saratov, Russian Federation

MironovSV@info.sgu.ru

Abstract. Many problems in machine learning can be presented in the
form of convex optimization problems with objective function as a loss
function. The paper examines two weak relaxed greedy algorithms for
finding the solutions of convex optimization problems over convex hulls
of atomic sets. Such problems arise as the natural convex relaxations
of cardinality-type constrained problems, many of which are well-known
to be NP-hard. Both algorithms utilize one atom from a dictionary per
iteration, and therefore, guarantee designed sparsity of the approximate
solutions. Algorithms employ the so called ‘gradient greedy step’ that
maximizes a linear functional which uses gradient information of the ele-
ment obtained in the previous iteration. Both algorithms are ‘weak’ in
the sense that they solve the linear subproblems at the gradient greedy
step only approximately. Moreover, the second algorithm employs an
approximate solution at the line-search step. Following ideas of [5] we
put up the notion of the duality gap, the values of which are computed
at the gradient greedy step of the algorithms on each iteration, and
therefore, they are inherent upper bounds for primal errors, i.e. differ-
ences between values of objective function at current and optimal points
on each step. We obtain dual convergence estimates for the weak relaxed
greedy algorithms.

Keywords: Greedy algorithms · Convex optimization · Sparsity ·
Duality gap

1 Introduction

Let X be a Banach space with norm ‖ · ‖. Let E be a convex function defined
on X. The problem of convex optimization is to find an approximate solution to
the problem

E(x) → min
x∈X

. (1)

Many problems in machine learning can be reduced to the problem (1) with
E as a loss function [1]. In many real applications it is required that the optimal
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 251–262, 2017.
https://doi.org/10.1007/978-3-319-69404-7_18

252 S.P. Sidorov and S.V. Mironov

solution x∗ of (1) should have a simple structure, e.g. be a finite linear combi-
nation of elements from a dictionary D in X. In another words, x∗ should be a
sparse element with respect to the dictionary D in X. Of course, one can sub-
stitute the requirement of sparsity by a constraint on cardinality (i.e. the limit
on the number of elements used in linear combinations of elements from the
dictionary D to construct a solution of the problem (1)). However, it many cases
the optimization problems with cardinality-type constraint are NP-complete.
By this reason, practitioners and researchers in real applications choose to use
greedy methods. By its design, greedy algorithms is capable of producing sparse
solutions.

A set of elements D from the space X is called a dictionary (see, e.g. [15]) if
each element g ∈ D has norm bounded by one, ‖g‖ ≤ 1, and the closure of span
D is X, i.e. spanD = X. A dictionary D is called symmetric if −g ∈ D for every
g ∈ D. In this paper we assume that the dictionary D is symmetric.

As it was pointed out, practitioners and researchers would like to find the
solutions of the optimization problem (1), which are sparse with respect to the
dictionary D, i.e. they are looking for solving the following problem:

E(x) → inf
x∈Σm(D)

, (2)

where Σm(D) is the set of all m-term polynomials with respect to D:

Σm(D) =
{

x ∈ X : x =
m∑

i=1

cigi, gi ∈ D
}

. (3)

One of the apparent choices among constructive methods for finding the best
m-term approximations are greedy algorithms. The design of greedy algorithms
allows us to obtain sparse solutions with respect to D. Perhaps, the Frank-Wolfe
method [2], which is also known as the “conditional gradient” method [3], is one
of the most prominent algorithms for finding optimal solutions of constrained
convex optimization problems. Important contributions to the development of
Frank-Wolfe type algorithms can be found in [4–6]. The paper [5] provides general
primal-dual convergence results for Frank-Wolfe-type algorithms by extending
the duality concept presented in the work [4]. Recent convergence results for
greedy algorithms one can find in the works [7–14,16–18,20].

This paper examines two weak relaxed greedy algorithms

– Weak Relaxed Greedy Algorithm (WRGA(co)),
– Weak Relaxed Greedy Algorithm with Error δ (WRGA(δ))

for finding solutions of convex optimization problem, which are sparse with
respect to some dictionary, in Banach spaces. Primal convergence results for
the weak relaxed greedy algorithms were obtained in [15,18]. In this paper,
extending the ideas of [4,5] we force into application the notion of the duality
gap for weak relaxed greedy algorithms to obtain dual convergence estimates
for sparse-constrained convex optimization problems of type (2). In contrast to

Duality Gap Analysis of Weak Relaxed Greedy Algorithms 253

papers [15,18,19], in this paper we focus on obtaining dual convergence results
based on duality gap analysis.

It should be noted, that the paper of Temlyakov [15] shows that the greedy
algorithms (WRGA(co) and WRGA(δ)) for finding the solutions of (2) with
respect to the dictionary D solve the problem (1) as well. In many real applica-
tions the dimension of the search space while is finite, but is too large. Therefore,
our interest lies in obtaining estimates on the rate of convergence not depending
on the dimension of X. Obviously, results for the infinite Banach spaces provide
such estimates on the convergence rate. Following [15], we examine the problem
in an infinite dimensional Banach space setting.

Note that duality for global convex minimization problems has been well-
examined. The recent paper [21] shows that not all nonconvex global minimiza-
tion problems are NP-hard and that the complexity of a problem depends essen-
tially on modeling and intrinsic symmetry of the problem.

2 Weak Relaxed Greedy Algorithms

We will suppose that function E is Fréchet differentiable. We note that it follows
from convexity of E that for any x, y

E(y) ≥ E(x) + 〈E′(x), y − x〉,
where E′(x) denotes Fréchet differential of E at x.

To solve the optimization problem (2), the paper [15] uses iterative search
optimizer described in Algorithm 1. The algorithm for each m ≥ 1 finds the next
element Gm by means of induction with use of

– the current element Gm−1

– element φm obtained in the gradient greedy step.

In the gradient greedy step we maximize a functional which uses gradient
information at element Gm−1 of X obtained in the previous iteration of the
algorithm. Algorithm 1 belongs to the class of Frank-Wolfe type methods, since
at each current element Gm−1 of X it drifts to a minimizer of the linearization
of the objective function E taken over the feasible set, which in this case is the
dictionary D.

We would like to note that the gradient greedy step of WRGA(co) is looking
for supremum over the dictionary D (not its convex hull A1(D)), since points
from A1(D) are mostly linear combinations of infinite number of the dictionary
elements. Thus, the optimal solution obtained by this way is not obliged to be
sparse with respect to D.

Let τ := {tm}∞
m=1, tm ∈ [0, 1], be a weakness sequence. To solve the sub-

problem sups∈D〈−E′(Gm−1), s − Gm−1〉 exactly may be too expensive in many
real cases. Algorithm 1 uses the weakness sequence τ in the gradient greedy
step to find approximate minimizer φm instead, which has approximation (mul-
tiplicative) quality at least tm in step m. That is why the algorithm is called
“weak”.

254 S.P. Sidorov and S.V. Mironov

Algorithm 1. Weak Relaxed Greedy Algorithm (WRGA(co))

begin
· Let G0 = 0;
for each m = 1, 2, . . . , M do

· (Gradient greedy step) Find the element φm ∈ D such that
〈−E′(Gm−1), φm − Gm−1〉 ≥ tm sup

s∈D
〈−E′(Gm−1), s − Gm−1〉;

· (Line-search step) Find the real number 0 ≤ λm ≤ 1, such that
E ((1 − λm)Gm−1 + λmφm) = inf

0≤λ≤1
E ((1 − λ)Gm−1 + λφm) ;

· (Update step) Gm = (1 − λm)Gm−1 + λmφm;

end

The line-search step of Algorithm 1 finds the best point lying on the line
segment between the current point Gm−1 and φm.

Let Ω := {x ∈ X : E(x) ≤ E(0)} and suppose that Ω is bounded. As it
turns out, the convergence analysis of greedy algorithms essentially depends on
a measure of “non-linearity” of the objective function E over set Ω, which can
be depicted via the modulus of smoothness of function E.

Let us remind that the modulus of smoothness of function E on the bounded
set Ω can be defined as

ρ(E, u) =
1
2

sup
x∈Ω,‖y‖=1

|E(x + uy) + E(x − uy) − 2E(x)|, u > 0. (4)

E is called uniformly smooth function on Ω if limu→0 ρ(E, u)/u = 0.
Let A1(D) denote the closure (in X) of the convex hull of D.
Exploiting the geometric properties of the objective function E, the paper [15]

proves the following estimate of the convergence rate of the WRGA(co).

Theorem 1. Let E be a uniformly smooth convex function with modulus of
smoothness ρ(E, u) ≤ γuq, 1 < q ≤ 2, γ > 0. Then, for a weakness sequence
τ = {tk}∞

k=1, 0 < tk ≤ 1, k = 1, 2, . . ., we have for any f ∈ A1(D) that

E(Gm) − E(f) ≤
(

1 + C1(q, γ)
m∑

k=1

tpk

)1−q

, p :=
q

q − 1
, m ≥ 2, (5)

where C1(q, γ) is positive constants not depending on k.

The paper [18] notes that values of E may not be calculated exactly for many
real application problems. Moreover, very often the exact optimal value of λ in
the problem

inf
0≤λ≤1

E ((1 − λ)Gm−1 + λφ) (6)

in Step 2 of WRGA(co) can not be found. Therefore, the paper [18] examines
the weak relaxed greedy algorithm with error δ (Algorithm 2), which is a slightly

Duality Gap Analysis of Weak Relaxed Greedy Algorithms 255

modified version of WRGA(co) with changing in the second step. In comparison
with the WRGA(co), WGAFR(δ) uses the error δ in the line-search step with
the aim of getting the optimization problem of a different kind. It may have
better complexity than the original optimization problem (6).

Algorithm 2. Weak Relaxed Greedy Algorithm with Error δ
(WRGA(δ))

begin
· Let δ > 0 and G0 = 0;
for each m = 1, 2, . . . , M do

· (Gradient greedy step) Find the element φm ∈ D such that
〈−E′(Gm−1), φm − Gm−1〉 ≥ tm sup

s∈D
〈−E′(Gm−1), s − Gm−1〉;

· (Line-search step) Find the real number 0 ≤ λm ≤ 1, such that
E ((1 − λm)Gm−1 + λmφm) ≤ inf

0≤λ≤1
E ((1 − λ)Gm−1 + λφm) + δ ;

· (Update step) Gm = (1 − λm)Gm−1 + λmφm;

end

The following estimate of the convergence rate of the WRGA(δ) is proved in
the paper [18].

Theorem 2. Let E be uniformly smooth on A1(D) whose modulus of smooth-
ness ρ(E, u) satisfies ρ(E, u) ≤ γuq, 1 < q ≤ 2, γ > 0. If tk = θ, k = 1, 2, . . .,
then WRGA(δ) satisfies

E(Gm) − E∗ ≤ C(q, γ, θ, E)m1−q, m ≤ δ−1/q,

where E∗ := inf
f∈A1(D)

E(x).

3 Dual Convergence Results

3.1 Duality Gap

Following ideas of [5], let us introduce the notion of the duality gap for opti-
mization problem as follows.

Definition 1. Let G ∈ A1(D). Let us define the (surrogate) duality gap g(G) at
element G by

g(G) := sup
s∈D

〈E′(G), G − s〉. (7)

The decisive property of the duality gap is the following one.

Proposition 1. Let E be a uniformly smooth convex function defined on
Banach space X. Let x∗ = arg minx∈A1(D) E(x). For any G ∈ A1(D)

E(G) − E(x∗) ≤ g(G).

256 S.P. Sidorov and S.V. Mironov

Proof. Since E is convex on X we have for any y ∈ A1(D)

E(y) ≥ E(x) + 〈E′(x), y − x〉 ≥ E(x) − sup
s∈A1(D)

〈E′(x), x − s〉. (8)

Lemma 2.2 in [15] states that

sup
s∈A1(D)

〈E′(x), x − s〉 = sup
s∈D

〈E′(x), x − s〉. (9)

Then Proposition follows from (8) and (9) with y = x∗.

Proposition 1 shows that the duality gap g(G) is a bound for the current
approximation E(G) to the optimal solution E(x∗).

The duality gap g is calculated as a derivative product on every iteration of
both Algorithms 1 and 2. If the linearized problem at the gradient greedy step
for element Gm−1 has optimal solution φm, then the element φm is a reference
for the current duality gap

g(Gm−1) = 〈E′(Gm−1), Gm−1 − φm〉.

Such references for the approximation quality of current iteration can be used
as a stopping criterion, or to verify the numerical stability of an optimizer.

Theorems 1 and 2 give upper estimates for primal errors for WRGA(co) and
WRGA(δ), respectively. In the next subsections we will obtain dual estimates
for the algorithms in terms of duality gap g.

3.2 Dual Convergence Result for WRGA(co)

We need some preliminary results.

Lemma 1. Let E be a uniformly smooth convex function defined on Banach
space X. Let ρ(E, u) denote the modulus of smoothness of E. Then the following
inequality holds:

E(Gm) ≤ E(Gm−1) + inf
0≤λ≤1

(−λtmg(Gm−1) + 2ρ(E, 2λ)), m = 1, 2,

Proof. The definition of Gm in Step 3 of WRGA(co) implies that

Gm = (1 − λm)Gm−1 + λmφm = Gm−1 + λm(φm − Gm−1),

and
E(Gm) = inf

0≤λ≤1
E(Gm−1 + λ(φm − Gm−1)). (10)

It follows from Lemma 2.3 of [15] that

E(Gm−1 + λ(φm − Gm−1))

≤ E(Gm−1) − λ〈−E′(Gm−1), φm − Gm−1〉 + 2ρ(E, 2λ). (11)

Duality Gap Analysis of Weak Relaxed Greedy Algorithms 257

The step 1 of WRGA(co) gives

〈−E′(Gm−1), φm − Gm−1〉
≥ tm sup

s∈D
〈−E′(Gm−1), s − Gm−1〉 = tmg(Gm−1). (12)

Then the lemma follows from (10), (11) and (12).

Lemma 2. Let τ = {tk}∞
k=1, θ < tk ≤ 1, k = 1, 2, . . ., for a fixed real θ > 0.

Denote

sm := sm(m, τ) :=
m∑

k=1

tpk, p =
q

q − 1
, 1 < q ≤ 2. (13)

Let 0 < μ < 1 be a real and M be an integer. Then

s1−q
[μM]+1 ≤ (μθp)1−qs1−q

M ,

where square brackets denote the integer part.

Proof. Denote m0 := [μM] + 1. We have m0
M ≥ μ and

∑m0
k=1 tpk∑M
k=1 tpk

≥
∑m0

k=1 θp∑M
k=1 1

=
m0θ

p

M
≥ μθp, or

s[μM]+1

sM
≥ μθp.

Theorem 3. Let E be a uniformly smooth convex function defined on Banach
space X. Let ρ(E, u) be the modulus of smoothness of E and suppose that
ρ(E, u) ≤ γuq, 1 < q ≤ 2. Let τ = {tk}∞

k=1, θ < tk ≤ 1, k = 1, 2, . . ., be a
weakness sequence, θ > 0. Assume that WRGA(co) is run for M > 2 iterations.
Then there is an iterate 1 ≤ m̃ ≤ M such that

g(Gm̃) ≤ βC2

(
M∑

k=1

tpk

)1−q

, p :=
q

q − 1
(14)

where C2 := C2(q, γ) := (min{1, C1(q, γ)})1−q and β depends only on M, q, γ, θ.

Proof. It follows from Theorem 1 that for any f ∈ A1(D)

E(Gm) − E(f) ≤ C2

(
m∑

k=1

tpk

)1−q

, p :=
q

q − 1
, m ≥ 2. (15)

Let us assume (by contradiction) that

g(Gm) ≥ βC2s
1−q
M , (16)

for all [μM] + 1 ≤ m ≤ M (0 < μ < 1 is fixed and will be chosen later), sM is
defined in (13).

258 S.P. Sidorov and S.V. Mironov

It easy to check that tq1s
1−q
m ≤ 1 for all m = 1, 2, Then Lemma 1 with

λ = tq1s
1−q
m implies that

E(Gm+1) − E(f) ≤ E(Gm) − E(f) − tq1s
1−q
m tmg(Gm) + 2γ(2tq1s

1−q
m)q. (17)

Applying our assumption (16) to the inequality (17), we obtain

E(Gm+1) − E(f) ≤ E(Gm) − E(f) − βC2t
q
1tms1−q

m s1−q
M + γ2q+1tq

2

1 sq(1−q)
m . (18)

We will need the following inequalities:

1. θ ≤ tk ≤ 1, k = 1, 2, . . .;
2. s1−q

[μM]+1 ≤ (μθp)1−qs1−q
M (Lemma 2);

3. since [μM] + 1 ≤ m ≤ M , we have s[μM]+1 ≤ sm ≤ sM , and consequently,

s1−q
[μM]+1 ≥ s1−q

m ≥ s1−q
M .

It follows from (18) that

E(Gm+1) − E∗

≤ E(Gm) − E∗ − βC2θ
q+1s

2(1−q)
M + γ2q+1(μθp)q(1−q)s

q(1−q)
M ,(19)

where E∗ := inf
f∈A1(D)

E(x). Let us write the chain of inequalities for all m0 from

[μM] + 1 to M , then

E(GM) − E∗ ≤ E(Gm0) − E∗ − (M − m0)s
1−q
M Θ1

≤ C2s
1−q
M − (M(1 − μ) − 1)s1−q

M Θ1 = s1−q
M [C2 − (M(1 − μ) − 1)Θ1] , (20)

where
Θ1 := βC2θ

q+1s1−q
M − γ2q+1μq(1−q)θ−q2

s
−(q−1)2

M .

Let us take any β satisfying

β >

C2
M(1−μ)−1 + γ2q+1μq(1−q)θ−q2

s
−(q−1)2

M

C2θq+1s1−q
M

then we obtain
E(GM) − E∗ < 0

that can not be impossible. The smallest value of β leads to a better estimate
in (14). To be sure that β is smallest we can choose the parameter μ as follows:

μ := arg min
0≤μ≤1

(
C2

M(1 − μ) − 1
+ γ2q+1μq(1−q)θ−q2

s
−(q−1)2

M

)
.

Duality Gap Analysis of Weak Relaxed Greedy Algorithms 259

3.3 Dual Convergence Result for WRGA(δ)

We need some lemmas to prove the main result.

Lemma 3. Let E be a uniformly smooth convex function defined on Banach
space X. Let ρ(E, u) denote the modulus of smoothness of E. Then the following
inequality holds for the WRGA(δ):

E(Gm) ≤ E(Gm−1) + inf
λ≥0

(−λtmg(Gm−1) + 2ρ(E,C0λ)) + δ, m = 1, 2, . . . ,

where C0 does not depend on m.

Proof. From the definition of Gm in the update step of WRGA(δ) we have

Gm = (1 − λm)Gm−1 + λmφm.

The line-search step of WRGA(δ) implies

E(Gm) ≤ inf
0≤λ≤1

E(Gm−1 − λGm−1 + λφm) + δ. (21)

It follows from Lemma 1.1 of [15] that

E(Gm−1 − λGm−1 + λφm)) ≤ E(Gm−1)
−λ〈−E′(Gm−1), φm − Gm−1〉 + 2ρ(E, λ‖φm − Gm−1‖). (22)

Using the gradient greedy step of WRGA(δ) and the definition of duality gap
(7), we have

〈−E′(Gm−1), φm − Gm−1〉
≥ tm sup

s∈D
〈−E′(Gm−1), s − Gm−1〉 = tmg(Gm−1). (23)

It follows from (21), (22) and (23) that

E(Gm) ≤ E(Gm−1) + inf
λ≥0

(−λtmg(Gm−1) + 2ρ(E, λ‖φm − Gm−1‖)) .

It follows from E(Gm−1) ≤ E(0) that Gm−1 ∈ Ω. Our assumption on bound-
ness of Ω implies that there exists a constant C1 such that ‖Gm−1‖ ≤ C1. Since
φm ∈ D, we have ‖φm‖ ≤ 1. Thus,

‖Gm−1 − φm‖ ≤ C1 + 1 =: C0.

This completes the proof of Lemma.

Theorem 4. Let E be a uniformly smooth convex function defined on Banach
space X. Let ρ(E, u) be the modulus of smoothness of E and suppose that
ρ(E, u) ≤ γuq, 1 < q ≤ 2. Let τ = {tm}∞

m=1, tk = θ, k = 1, 2, . . ., be a
weakness sequence. Assume that WRGA(δ) is run for 0 < M ≤ δ− 1

q iterations.
Then there is an iterate 1 ≤ m̃ ≤ M such that

g(Gm̃) ≤ βC(E, q, γ)M1−q. (24)

260 S.P. Sidorov and S.V. Mironov

Proof. It follows from Theorem 2 that

E(Gm) − E∗ ≤ C(E, q, γ)m1−q, m ≤ δ− 1
q , (25)

where E∗ := inf
f∈A1(D)

E(x). Let us suppose that

g(Gm) > βC(E, q, γ)M1−q (26)

for all [μM] + 1 ≤ m ≤ M , 0 < μ < 1 (μ is fixed and will be chosen later).
It follows from Lemma 3 with λ = m1−q,

E(Gm+1) − E∗ ≤ E(Gm) − E∗ − m1−qtmg(Gm) + 2γ(C0m
1−q)q + δ. (27)

Using our assumption (26), the inequality (27) can be rewritten in the form

E(Gm+1) − E∗

≤ E(Gm) − E∗ − m1−qtmβC(E, q, γ)M1−q + 2γ(C0m
1−q)q + δ. (28)

Since m0 ≤ m ≤ M , where m0 := [μM] + 1, the following inequalities hold:

1. m1−q
0 ≤ μ1−qM1−q;

2. m1−q
0 ≥ m1−q ≥ M1−q.

Then (28) gives

E(Gm+1) − E∗

≤ E(Gm) − E∗ − βθC(E, q, γ)M2(1−q) + 2γ(C0)
qμq(1−q)Mq(1−q) + δ. (29)

If we write the chain of inequalities for all m = m0, . . . ,M , we get

E(Gm+1) − E∗ ≤ E(Gm0) − E∗ − (M − m0)M1−qΘ2

≤ C(E, q, γ)m1−q
0 − (M(1 − μ) − 1)M1−qΘ2

≤ C(E, q, γ)μ1−qM1−q − (M(1 − μ) − 1)M1−qΘ2

= M1−q

(
C(E, q, γ)μ1−q − (M(1 − μ) − 1)Θ2

)
,

where

Θ2 := βM1−qθC(E, q, γ) − 2γ(C0)qμq(1−q)M (1−q)(q−1) +
δ

M1−q
.

If we take

β >

C(E,q,γ)μ1−q

M(1−μ)−1 + 2γ(C0)qμq(1−q)M (1−q)(q−1) − δ
M1−q

M1−qθC(E, q, γ)

then we get E(Gm)−E∗ < 0 which is impossible. We are interested in obtaining
a better value of the constant β in (24). The smallest β can be attained if we
choose μ as follows:

μ := arg min
0≤μ≤1

(
C(E, q, γ)μ1−q

M(1 − μ) − 1
+ 2γ(C0)qμq(1−q)M (1−q)(q−1) − δ

M1−q

)
.

Duality Gap Analysis of Weak Relaxed Greedy Algorithms 261

4 Conclusion

Theorems 1 and 2 cited in Sect. 2 show that primal errors for the weak relaxed
greedy algorithms are small and heavily depend on geometric properties of the
objective function E. On the other hand, the paper [5] remarks that very often
both the optimal value E∗ and the constant γ in the modulus of smoothness of E
are unknown, and therefore, estimates for the quality of current approximation
to optimal solution are considerably in demand. Following ideas of [5], we defined
the notion of the duality gap by the equality (7). The values of duality gap are
calculated on each iteration of both WRGA(co) and WRGA(δ) at the gradient
greedy step, and therefore, they are inherent upper bounds for primal errors, i.e.
differences between values of objective function at current and optimal points
on each step. We obtain dual convergence estimates for the weak relaxed greedy
algorithms in Theorems 3 and 4.

Acknowledgments. This work was supported by the Russian Fund for Basic
Research under Grant 16-01-00507. We would like to thank the reviewers profoundly
for very helpful suggestions and commentaries.

References

1. Bubeck, S.: Convex optimization: algorithms and complexity. Found. Trends Mach.
Learn. 8(3–4), 231–358 (2015)

2. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Res. Logis.
Quart. 3, 95–110 (1956)

3. Levitin, E.S., Polyak, B.T.: Constrained minimization methods. USSR Comp.
Math. & M. Phys. 6(5), 1–50 (1966)

4. Clarkson, K.L.: Coresets, sparse greedy approximation, and the Frank-Wolfe algo-
rithm. ACM Trans. Algorithms 6(4), 1–30 (2010)

5. Jaggi, M., Frank-Wolfe, R.: Projection-free sparse convex optimization. In: Pro-
ceedings of the 30th International Conference on Machine Learning (ICML 2013),
pp. 427–435 (2013)

6. Freund, R.M., Grigas, P.: New analysis and results for the Frank-Wolfe method.
Math. Program. 155(1), 199–230 (2016)

7. Friedman, J.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29(5), 1189–1232 (2001)

8. Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximation. Constr.
Approx. 13, 57–98 (1997)

9. Zhang, Z., Shwartz, S., Wagner, L., Miller, W.: A greedy algorithm for aligning
DNA sequences. J. Comput. Biol. (1–2), 203–214 (2000)

10. Huber, P.J.: Projection pursuit. Ann. Statist. 13, 435–525 (1985)
11. Jones, L.: On a conjecture of Huber concerning the convergence of projection pur-

suit regression. Ann. Statist. 15, 880–882 (1987)
12. Barron, A.R., Cohen, A., Dahmen, W., DeVore, R.A.: Approximation and learning

by Greedy algorithms. Ann. Stat. 36(1), 64–94 (2008)
13. DeVore, R.A., Temlyakov, V.N.: Some remarks on greedy algorithms. Adv. Com-

put. Math. 5, 173–187 (1996)

262 S.P. Sidorov and S.V. Mironov

14. Konyagin, S.V., Temlyakov, V.N.: A remark on greedy approximation in Banach
spaces. East J. Approx. 5(3), 365–379 (1999)

15. Temlyakov, V.N.: Greedy approximation in convex optimization. Constr. Approx.
41(2), 269–296 (2015)

16. Nguyen, H., Petrova, G.: Greedy strategies for convex optimization. Calcolo 41(2),
1–18 (2016)

17. Temlyakov, V.N.: Dictionary descent in optimization. Anal. Math. 42(1), 69–89
(2016)

18. DeVore, R.A., Temlyakov, V.N.: Convex optimization on Banach spaces. Found.
Comput. Math. 16(2), 369–394 (2016)

19. Temlyakov, V.N.: Convergence and rate of convergence of some greedy algorithms
in convex optimization. Proc. Steklov Inst. Math. 293(1), 325–337 (2016)

20. Sidorov, S., Mironov, S., Pleshakov, M.: Dual greedy algorithm for conic optimiza-
tion problem. CEUR Workshop Proc. 1623, 276–283 (2016)

21. Gao, D.Y.: On unified modeling, theory, and method for solving multi-scale global
optimization problems. AIP Conference Proc. 1776(1), 0200051–0200058 (2016)

Controlling Some Statistical Properties
of Business Rules Programs

Olivier Wang1,2(B) and Leo Liberti2

1 IBM France, 9 Rue de Verdun, 94250 Gentilly, France
2 CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France

{olivier.wang,leo.liberti}@polytechnique.edu

Abstract. Business Rules programs encode decision-making processes
using “if-then” constructs in a way that is easy for non-programmers to
manipulate. A common example is the process of automatic validation of
a loan request for a bank. The decision process is defined by bank man-
agers relying on the bank strategy and their own experience. Bank-side,
such processes are often required to meet goals of a statistical nature,
such as having at most some given percentage of rejected loans, or having
the distribution of requests that are accepted, rejected, and flagged for
examination by a bank manager be as uniform as possible. We propose
a mathematical programming-based formulation for the cases where the
goals involve constraining or comparing values from the quantized out-
put distribution. We then examine a simulation for the specific goals of
(1) a max percentage for a given output interval and (2) an almost uni-
form distribution of the quantized output. The proposed methodology
rests on solving mathematical programs encoding a statistically super-
vised machine learning process where known labels are an encoding of
the required distribution.

Keywords: Distribution learning · Mixed-integer programming · Sta-
tistical goals · Business Rules

1 Introduction

Business Rules (BR) are a “programming for non programmers” paradigm that
is often used by large corporations to store industrial process knowledge formally.
BR replaces the two most abstract concepts of programming, namely loops and
function calls, by means of an implicit outer loop and meta-variables used within
a set of easy-to-manage “if-then” type instructions. BR interpreters are imple-
mented by all BR management systems, e.g. [14]. BR programs are often used
by corporations to encode their policies and empirical knowledge: given some
technical input, they produce a decision, often in the form of a YES/NO output.
Corporations often require their internal processes to perform according to a
prescribed statistical behavior, which could be imposed because of strategy or
by law. This required behavior is typically independent of the BR input data.
The problem is then to parametrize the BR program so it will behave as pre-
scribed on average, while still providing meaningful YES/NO answers on given
inputs.
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 263–276, 2017.
https://doi.org/10.1007/978-3-319-69404-7_19

264 O. Wang and L. Liberti

In [30] we studied a simplified version of the problem where the statistical
behavior was limited to a given mean. In this paper we provide a solution method-
ology for a more general (and difficult) case, where the statistical behavior is
described by a given discrete distribution. We achieve this goal by encoding a
Machine Learning (ML) procedure by means of a Mathematical Program (MP) of
the Mixed-Integer Linear Programming (MILP) type. The ML procedure relies on
non-input specific labels that encode the given knowledge about the distribution.
Controlling the statistical behavior of a complex process such as a BR program is
a very hard task, and to the best of our knowledge this work is the first of its kind
in this respect. Methodologically speaking, we think our MILP formulation is also
innovative in that it encodes an ML training process having labels which, instead
of applying to individual inputs, apply to the entire input distribution at once.
Such an ML process bypasses the usual difficulties of trying to label the training
set data, thereby being more practical for industrial applications.

The motivation for this study is a real industrial need expressed by IBM
(which co-funds this work) with respect to their BR package ODM. Our previ-
ous paper [30] laid some of the groundwork, limited to the most basic statistical
indicator (the mean of a distribution). Though that was a necessary step to the
current work, the methodology described herein is the first to actually address
the need expressed by industry: we feel this is one of the main feature that sets
this work apart from our previous work. We still rely on MILP-based methodol-
ogy, but now the input is a whole discrete distribution, the cardinality of which
largely determines the size of the new MILP formulations presented below. Our
tests show that this has an acceptable impact on empirical solution complexity.

As an experimental illustration, we consider the two cases of the statistical
behavior being (1) a maximum percentage of a certain output value and (2) the
output values being distributed in a fashion close to the uniform distribution,
for integer outputs. We provide an optimization based approach to solving the
learning problem for each of those cases, then examine some test results.

1.1 Preliminaries

We formally represent a BR program as an ordered list of sentences of the form:

if cond(p, x) then
x ← act(p, x)

end if

where p is a control parameter vector (with c components) which encodes a
possible “tuning” of the program (e.g. thresholds which can be adjusted by the
user), x ∈ X ⊆ R

d is a variable vector representing intermediate and final stages
of computation, cond is a boolean function, and act a function with values in X.
We call rule such a sentence, condition an expression cond(p, x) and action an
instruction x ← act(p, x), which indicates a modification of the value of x. We
write the final value of the variable x as xf = P (p, q), where P represents the
BR program and q is an input parameter vector representing a problem instance
and equal to the initial value of x. Although in general BR programs may have

Controlling Some Statistical Properties of Business Rules Programs 265

any type of output, we consider only integer outputs, since BR programs are
mostly used to take discrete decisions. We remark that p, x are symbolic vectors
(rather than numeric vectors) since their components are decision variables.

BR programs are executed in an external loop construct which is transparent
to the user. Without getting into the details of BR semantics, the loop executes
a single action from a BR whose condition is True at each iteration. Which BR is
executed depends on a conflict resolution strategy with varying complexity. De
Sainte-Marie et al. [23] describe typical operational semantics, including conflict
resolution strategy, for industrial BR management systems. In this paper, the
list of rules is ordered and the loop executes the first BR of the list with a
condition evaluating to True at each iteration. The loop only terminates once
every condition of the BRs is False. We proved in [29] that there is a universal
BR program which can simulate any Turing Machine (TM), which makes the
BR language Turing-complete.

We consider the problem where the q ∈ Q are the past, known instances
of the BR program, and the outputs P (p, q) of those instances are divided into
N evenly sized intervals [H0,H1], . . . , [HN−1,HN], forming a quantized output
distribution. Denoting ν1(p), . . . , νN (p) the number of outputs in these categories,
we can formalize the problem as:

min
p,x

‖p − p0‖1
C (ν1(p), . . . , νN (p))

}
(1)

where ‖ ·‖1 is the L1 norm and C is a constraint or set of constraints. While this
formulation uses the number of outputs rather than the probabilities themselves,
the relation between the two is simply a ratio of 1/m, where m = card(Q) is
the number of training data points.

In this paper, we suppose that P1 and P2 are BR programs with a rule set
{Rr | r ≤ ρ} containing rules of the form:

if Lr ≤ x ≤ Gr then
x ← Arx + Br

end if

with Lr, Gr, Br ∈ R and Ar ∈ {0, 1}d×d. We note R = {1, . . . , ρ} and D =
{1, . . . , d}.

We discuss the concrete example of banks using a BR program in order to
decide whether to grant a loan to a customer or not. The BR program depends
on a variable vector x and initializes its parameter vector (a component of which
is an income level threshold) to p0. A BR program P1 is used to decide whether
a first bank will investigate the loan request further or simply accept the auto-
mated decision taken by an expert system, and therefore has a binary output
value. This bank’s high-level strategy requires that no more than 50% of loans
are treated automatically, but P1 currently treats 60%. Another bank instead
uses a BR program P2 to accept, reject, or assign a bank manager to the loan
request, and therefore has a ternary return value, represented by an integer in
{0, 1, 2}. That bank’s strategy requires that the proportion of each output is

266 O. Wang and L. Liberti

{1/3, 1/3, 1/3}, but it is currently {1/4, 1/4, 1/2}. Our aim is in each case to
adjust p, e.g. modifying the income level, so that the BR program satisfies the
bank’s goal regarding automatic loan treatment. This adjustment of parameters
could be required after a change of internal or external conditions, for example.

The first scenario can be formulated as:

min
p,x

‖p − p0‖1
Eq∈Q

[
P1(p, q)

] ≤ g

}
(2)

where P1 has an output in {0, 1}, g ∈ [0, 1] is the desired max percentage of 1
outputs, the q ∈ Q are the past known instances of the BR program, ‖ · ‖1 is
the L1 norm, p, q must satisfy the semantics of the BR program P (p, q) when
executed within the loop of a BR interpreter and E is the usual notation for the
expected value.

Similarly, the second scenario where P2 has an output in {1, . . . , N} and
the desired output is as close to a uniform distribution as possible can be for-
malized as:

min
p,x

‖p − p0‖1
∀s, t ∈ {1, . . . , N},

∣∣νs − νt
∣∣ ≤ 1

}
(3)

Note that the solution to this problem is not always a truly uniform distribu-
tion, simply because there is no guarantee that m is divisible by N . However,
it will always be as close as possible to a uniform distribution, since the con-
straint imposes that all the outputs will be reached by either floor(m/N) or
ceil(m/N) data points. Again, we use whole numbers (of outputs in a given
interval) instead of frequencies to be able to employ integer decision variables.

Such problems could be solved heuristically by treating P1 or P2 as a black-
box, or by replacing it by means of a simplified model, such as e.g. a low-degree
polynomial. We approach this problem as in [30]: we model the algorithmic
dynamics of the BR by means of MIP constraints, in view to solving those
equations with an off-the-shelf solver. That this should be possible at all in full
generality stems from the fact that Mathematical Programming (MP) is itself
Turing-complete [16].

We make a number of simplifying assumptions in order to obtain a practi-
cally useful methodology, based on solving a Mixed-Integer Linear Programming
(MILP) reformulation of these equations using a solver such as CPLEX [13]:

1. We suppose Q is small enough that solving the MILP is (relatively) compu-
tationally cheap.

2. We assume finite BR programs with a known bound (n − 1) on the number
of iterations of the loop for any input q (industrial BR programs often have
a low value of n relative to the number of rules). This in turn implies that
the values taken by x during the execution of the BR program are bounded.
We assume that M � 1 is an upper bound of all absolute values of all p, q,
and x, as well as any other values appearing in the BR program. It serves as
a “big M” for the MP described in the rest of the paper.

Controlling Some Statistical Properties of Business Rules Programs 267

3. We assume that the conditions and actions of the BR program give rise to
constraints for which an exact MILP reformulation is possible. In order to
have a linear model, each BR must thus be “linear”, i.e. have the form:

if L ≤ x ≤ G then
x ← Ax + B

end if

with L,G,B ∈ R
d and A ∈ {0, 1}d×d. In general, Ah,k may have values in R

if it is not a parameter and xh has only integer values.

1.2 Related Works

We follow the formalism used in [30] pertaining to Business Rules (BR) programs
and their statistical behavior.

Business Rules (also known as Production Rules) are well studied as a knowl-
edge representation system [8,10,18], originating as a psychological model of
human behavior [20,21]. They have further been used to encode expert systems,
such as MYCIN [6,27], EMYCIN [6,25], OPS5 [5,11], or more recently ODM [14]
or OpenRules [22]. On business side of things, they have been defined broadly
and narrowly in many different ways [12,15,24]. We consider Business Rules as
a computational tool, which to the best of our knowledge has not been explored
in depth before.

Supervised Learning is also a well studied field of Machine Learning, with
many different formulations [3,17,26,28]. A popular family of algorithms for the
classification problem uses Association Rules [1,19]. Such Rule Learning is not
to be confused with the problem treated in this article, which is more a regres-
sion problem than a classification problem. There exist many other algorithms
for Machine Learning, from simple linear regression to neural networks [2] and
support vector machines [9]. When the learner does not have as many known
output values as it has items in the training set, the problem is known as Semi-
Supervised Learning [7]. Similarly, there has been research into machine learning
when the matching of the known outputs values to the inputs is not certain [4].
A previous paper has started to explore the Learning problem when the known
information does not match to a single input [30].

2 Learning Goals with Histograms

In the rest of this paper, we concatenate indices so that (Lr)k = Lrk, (Gr)k =
Grk, (Ar)h,k = Arhk and (Br)k = Brk. We assume that rules are feasible,
i.e. ∀r, k ∈ R × D,Lk ≤ Gk. In the rest of this section, we suppose that the
dimension of p is c = 1, making p a scalar, and that p takes the place of A111.
Similar sets of constraints exists for when the parameter p takes the place of
a scalar in Br, Lr or Gr. Additional parameters correspond to additional con-
straints that mirror the ones used for the first parameter.

268 O. Wang and L. Liberti

This formalization is taken from [30], in which we have also proved that the
set of constraints described in Fig. 1 models the execution of such a BR program.
The iterations of the execution loop are indexed by i ∈ I = {1, . . . , n} where n−1
is the upper bound on the number of iterations, the final value of x corresponds
to iteration n. We use an auxiliary binary variable yir with the property: yir = 1
iff the rule Rr is executed at iteration i. The other auxiliary binary variables yU

ir

and yL
ir are used to enforce this property.

We note (C1), (C2), etc. the constraints related to the evolution of the exe-
cution and (IC1), (IC2), etc. the constraints related to the initial conditions of
the BR program:

– (C1): represents the evolution of the value of the variable x
– (C2): represents the property that at most one rule is executed per iteration
– (C3): represents the fact that a rule whose condition is False cannot be exe-

cuted
– (C4)–(C6) represent the fact that only the first rule whose condition is True

can be executed
– (IC1) through (IC3) represent the initial value of a
– (IC4) represents the initial value of x.

Fig. 1. Set of constraints modeling the execution of a BR program (e ∈ R
d is the

all-one vector).

Controlling Some Statistical Properties of Business Rules Programs 269

2.1 A MIP for Learning Quantized Distributions

The Mixed-Integer Program from Fig. 2 models the problem from Eq. 1. We
index the instances in Q with j ∈ J = {1, . . . , m}. We also limit ourselves to
solutions which result in computations that terminate in less than n − 1 rule
executions. As modifying the parameter means modifying the BR program, the
assumptions made regarding the finiteness of the program might not be verified
otherwise.

We note O = {1, . . . , N}, such that ∀t ∈ O, νt = card{j ∈ J | x1
n,j ∈

[Ht−1,Ht]}. We enforce this definition of νt by using an auxiliary binary variable
stj with the property: stj = 1 iff x1

n,j ∈ [Bt−1, Bt]. The other auxiliary binary
variables sUtj and sLtj are used to enforce this property.

The constraints are mostly similar to the ones in Fig. 1. We simply add the
goal of minimizing the variation of the parameter value and the constraints
C (ν1(p), . . . , νN (p)) from Eq. 1. The new constraints are:

– (C7) represents the need for the computation to have terminated after n − 1
executions

– (C8)–(C12) represents the definition of ν1, . . . , νN
– (IC4’) represents (IC4) with an additional index j.

Fig. 2. Mixed-Integer Program solving Eq. 1.

270 O. Wang and L. Liberti

That solving the MIP in Fig. 2 also solves the original Eq. 1 is a direct con-
sequence of the fact that the constraints in Fig. 1 simulate P (p, q). The proof is
simple since (C8) through (C12) trivially represent the definition of ν1, . . . , νN .
A similar MIP can be obtained when p has values in different part of the BRs,
from which a more complex MILP is obtained for when p is non-scalar. However,
this formulation is still quite abstract, as it depends heavily on the form of C .
In fact, it can almost always be simplified given a particular constraint over the
quantized distribution, as we see in the rest of this section.

2.2 A MILP for the Max Percentage Problem

A constraint programming formulation of Eq. 2 is the Mixed-Integer Linear Pro-
gram (MILP) described in Fig. 3. In the case of the Max Percentage problem,
we can linearize the MIP in Fig. 2 as well as remove some superfluous variables,
since only one of the νt is relevant.

We now note e = (1, . . . , 1) ∈ R
d the vector of all ones. We use the auxiliary

variables w ∈ R
I×J×R and z ∈ R

I×J×R×D2
such that wijr = (Arx

ij + Br −
xi,j)yijr (i.e. wijr = Arx

i,j + Br − xi,j , the difference between the new and the
old values of xj) and zijrhk = arhkx

i,j
k .

Any constraints numbered as before fulfills the same role. The additional
constraints are:

– (C1’1), (C1’2), (C1’3), (C1’4) and (C1’5) represent the linearization of (C1)
from Fig. 1

– (C8’) represents the goal from Eq. 2, that is a constraint over the average of
the final values of x. It replaces C (ν1, . . . , νN) and all the constraints used to
define νt from the MIP in Fig. 2.

The MILP from Fig. 3 finds a value of p that satisfies Eq. 2. This is again
derived from the fact that Fig. 1 simulates a BR program, and from the trivial
proof that (C1’1), (C1’2), (C1’3), (C1’4) and (C1’5) represent the linearization
of (C1).

2.3 A MILP for the Almost Uniform Distribution Problem

As before, we exhibit in Fig. 4 a MILP that solves Eq. 3. Any constraints num-
bered as before fulfills the same role. The additional constraints are:

– (C8”) through (C10”) represent the adaptation of (C8) through (C10) to the
relevant case of integer outputs

– (C13) represents the equivalent to C from Eq. 3.

This MILP is obviously equivalent to solving Eq. 3, since it is for the most part
a straight linearization of the MIP in Fig. 2.

Controlling Some Statistical Properties of Business Rules Programs 271

Fig. 3. MILP formulation for solving Eq. 2.

Fig. 4. MILP formulation for solving Eq. 3.

272 O. Wang and L. Liberti

3 Implementation and Experiments

We use a Python script to randomly generate samples of 100 instances of P1

and P2 for different numbers of control parameters c, each instance having a
corresponding set of inputs with d = 3, n = 10 and m = 100. The number
of control parameters serves as an approximation of the complexity of the BR
program to optimize: a more complex program will have more buttons to adjust,
thus increasing the complexity, yet be more likely to have the goal be reachable
at all, i.e. have the MILP be feasible. We define the space X as X ⊆ R×R×Z.
The BR programs are sets of ρ = 10 rules, where Lr, Gr, Br are vectors of
scalars in an interval range and Ar are d×d matrices of binary variables. In P1,
we use range = [0, 1] and in P2, we use range = [0, 3]. All input values q are
generated using a uniform distribution in range.

We use these BR programs to study the computational properties of the
MILP. The value of M used is customized according to each constraint, and is
ultimately bounded by 6 and 16 in P1 and P2 respectively (strictly greater than
five times the range of possible values for x). We write the MILP as an AMPL
model, and solve it using the CPLEX solver on a Dell PowerEdge 860 running
CentOS Linux.

3.1 The Max Percentage Problem

We observe the proportion of solvable instances of P1 for c between 5 and 10
and c = 15 in Table 1. We use the MILP in Fig. 3 to solve Eq. 2 with the goal
set to g = 0.5.

An instance is considered solvable if CPLEX reports an integer optimal solu-
tion or a (non-)integer optimal solution. We separate the instances where the
optimal value is 0 from the others, as those indicate that the randomly generated
BR program already fulfill the goal condition. We expect around fifty of those
for any value of c.

In Fig. 5, we observe both the success rate and the average solving time when
considering only the non-trivial, non-timed out instances of P1. The success rate
increases steadily, as expected. The solving time seems to indicate a non-linear
increase for c greater than 6, even with its values being somewhat unreliable due
to the small sample. Knowing that average industrial BRs are more complex
than our toy examples, regularly having thousands of rules, this approach to the
Maximum Percentage problem does not seem applicable to industrial cases.

Table 1. Experimental values for the maximum percentage problem.

Number of control parameters c 5 6 7 8 9 10 15

Trivial solvable instances (objective = 0) 52 53 49 49 58 48 46

Non-trivial solvable instances (objective �= 0) 5 6 5 13 6 6 8

Infeasible instances 43 43 40 36 31 35 14

Timed out instances 0 0 7 2 5 11 32

Controlling Some Statistical Properties of Business Rules Programs 273

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5 7 9 11 13 15

so
lv

in
g

 ti
m

e
(s

)

number of control parameters c

Fig. 5. Average solution time over P1 for varying values of c in seconds.

3.2 The Almost Uniform Distribution Problem

We observe the proportion of solvable instances of P2 for c between 5 and 10 and
c = 15 in Table 2. We use the MILP in Fig. 4 to solve Eq. 3 with N = 2. Again,
we separate instances where the goal is already achieved before optimization,
identifiable by being solved quickly with a value of p = p0, i.e. an optimal value
of zero.

In Fig. 6, we display the success rate and average solving time over the non-
timed out, non-presolved instances for all three values of c. We observe a sharply
non-linear progression, with the average problem taking about nine minutes with
15 control parameters. Knowing that average industrial BRs are much more
complex than our toy examples, regularly having thousands of rules, we conclude
that this method can only be used infrequently, if at all.

Table 2. Experimental values for the almost uniform distribution problem.

Number of control parameters c 5 6 7 8 9 10 15

Trivial solvable instances (objective = 0) 8 2 1 1 4 7 4

Non-trivial solvable instances (objective �= 0) 9 2 8 5 4 15 32

Infeasible instances 83 96 91 93 92 77 63

Timed out instances 0 0 0 1 0 1 1

274 O. Wang and L. Liberti

0

100

200

300

400

500

600

5 7 9 11 13 15

so
lv

in
g

 ti
m

e
(s

)

number of control parameters c

Fig. 6. Average solution time over non-trivial solvable P2 for varying values of c.

4 Conclusion, Discussion and Future Work

We have presented a learning problem of unusual type, that of supervised learn-
ing with statistical labels. We have further explored a particular subset of those
problems, those where the labels apply to a quantized output distribution. This
new approach is easily applied to practical applications in industry where control
parameters must be learned to satisfy a given goal. We have given a mathemat-
ical programming algorithm that solves such a learning problem given a linear
BR program. Depending on the specific learning problem, the mathematical
program might be easy or difficult to solve. We examined two example learn-
ing problems with practical applications for which the learning is equivalent to
solving a MILP.

We observe that, though one could detect a visual similarity in the plots
presented in Figs. 5 and 6, we believe that this similarity is only apparent. In
fact, the error bars (which measure the standard deviation of the solution time
over the instance subclass corresponding to a given size of parameters) point
out that the “hard cases” (with high values of solution times) are also the cases
where the error bars are longest. In other words, this “similarity” is simply a
result of outliers in the corresponding peaks.

The experimental results indicate the general feasibility of this type of app-
roach. It is clear that, due to the exponential nature of Branch-and-Bound (BB,
the algorithm solving the MILPs), the performance will scale up poorly with

Controlling Some Statistical Properties of Business Rules Programs 275

the size of the BR program: but this can currently be said of most MILPs. This
issue, which certainly requires more work, can possibly be tackled by pursu-
ing some of the following ideas: more effective BB-based or formulation-based
heuristics (also called mat-heuristics in the literature), cut generation based on
problem structure, and decomposition. The latter, specifically, looks promising
as the structure of the BR program is, up to the extent provided by automatic
translation based on parsing trees, carried over to the resulting MILP.

Other avenues of research are in extending this statistical learning approach
in other directions, e.g. learning other moments, or given quantiles in continuous
distributions. Statistical goal learning problems are an apparently unexplored
area of ML that has eminently practical applications.

Acknowledgments. The first author (OW) is supported by an IBM France/ANRT
CIFRE Ph.D. thesis award.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data, pp. 207–
216. ACM, New York (1993)

2. Atiya, A.: Learning Algorithms for Neural Networks. Ph.D. thesis, California Insti-
tute of Technology, Pasadena, CA (1991)

3. Bakir, G., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., Vishwanathan,
S.: Predicting Structured Data (Neural Information Processing). The MIT Press,
Cambridge (2007)

4. Brodley, C., Friedl, M.: Identifying mislabeled training data. J. Artif. Intell. Res.
11, 131–167 (1999)

5. Brownston, L., Farrell, R., Kant, E., Martin, N.: Programming Expert Systems
in OPS5: An Introduction to Rule-Based Programming. Addison-Wesley, Boston
(1985)

6. Buchanan, B., Shortliffe, E. (eds.): Rule Based Expert Systems: The Mycin Experi-
ments of the Stanford Heuristic Programming Project (The Addison-Wesley Series
in Artificial Intelligence). Addison-Wesley, Boston (1984)

7. Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning. The MIT Press,
Cambridge (2010)

8. Clancey, W.: The epistemology of a rule-based expert system: a framework for
explanation. Artif. Intell. 20(3), 215–251 (1983)

9. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

10. Davis, R., Buchanan, B., Shortliffe, E.: Production rules as a representation for a
knowledge-based consultation program. Artif. Intell. 8(1), 15–45 (1977)

11. Forgy, C.: OPS5 User’s Manual. Department of Computer Science, Carnegie-Mellon
University, Pittsburgh (1981)

12. Knolmayer, G., Herbst, H.: Business rules. Wirtschaftsinformatik 35(4), 386–390
(1993)

13. IBM: ILOG CPLEX 12.2 User’s Manual. IBM (2010)
14. IBM: Operational Decision Manager 8.8 (2015)

276 O. Wang and L. Liberti

15. Kolber, A., et al.: Defining business rules - what are they really? Project Report
3, The Business Rules Group (2000)

16. Liberti, L., Marinelli, F.: Mathematical programming: turing completeness and
applications to software analysis. J. Comb. Optim. 28(1), 82–104 (2014)

17. Liu, T.Y.: Learning to rank for information retrieval. Found. Trends Inf. Retriev.
3(3), 225–331 (2009)

18. Lucas, P., Gaag, L.V.D.: Principles of Expert Systems. Addison-Wesley, Boston
(1991)

19. Malioutov, D.M., Varshney, K.R.: Exact rule learning via boolean compressed sens-
ing. In: Dasgupta, S., McAllester, D. (eds.) Proceedings of the 30th International
Conference on Machine Learning (ICML 2013). JMLR: Workshop and Conference
Proceedings, vol. 28, pp. 765–773. JMLR, Brookline (2013)

20. Newell, A.: Production systems: models of control structures. In: Chase, W. (ed.)
Visual Information Processing. Proceedings of the Eighth Annual Carnegie Sym-
posium on Cognition, pp. 463–526. Academic Press, New York (1973)

21. Newell, A., Simon, H.: Human Problem Solving. Prentice-Hall, Upper Saddle River
(1972)

22. OpenRules Inc.: OpenRules User Manual, Monroe (2015)
23. Paschke, A., Hallmark, G., De Sainte Marie, C.: RIF production rule dialect,

2nd edn. W3C recommendation, W3C (2013). http://www.w3.org/TR/2013/
REC-rif-prd-20130205/

24. Ross, R.: Principles of the Business Rule Approach. Addison-Wesley, Boston (2003)
25. Scott, A., Bennett, J., Peairs, M.: The EMYCIN Manual. Department of Computer

Science, Stanford University, Stanford (1981)
26. Settles, B.: Active learning literature survey. Computer Sciences Technical Report

1648, University of Wisconsin-Madison (2009)
27. Shortcliffe, E.: Computer-Based Medical Consultations: MYCIN. Elsevier,

New York (1976)
28. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
29. Wang, O., Ke, C., Liberti, L., de Sainte Marie, C.: The learnability of business

rules. In: International Workshop on Machine Learning, Optimization, and Big
Data (MOD 2016) (2016)

30. Wang, O., Liberti, L., D’Ambrosio, C., de Sainte Marie, C., Ke, C.: Controlling
the average behavior of business rules programs. In: Alferes, J.J.J., Bertossi, L.,
Governatori, G., Fodor, P., Roman, D. (eds.) RuleML 2016. LNCS, vol. 9718, pp.
83–96. Springer, Cham (2016). doi:10.1007/978-3-319-42019-6 6

http://www.w3.org/TR/2013/REC-rif-prd-20130205/
http://www.w3.org/TR/2013/REC-rif-prd-20130205/
http://dx.doi.org/10.1007/978-3-319-42019-6_6

GENOPT Paper

Hybridization and Discretization Techniques
to Speed Up Genetic Algorithm and Solve

GENOPT Problems

Francesco Romito(&)

ACT Operations Research, DIAG, “La Sapienza” University of Rome,
Rome, Italy

francesco.romito@act-OperationsResearch.com

Abstract. One of the challenges in global optimization is to use heuristic
techniques to improve the behaviour of the algorithms on a wide spectrum of
problems. With the aim of reducing the probabilistic component and performing
a broader and orderly search in the feasible domain, this paper presents how
discretization techniques can enhance significantly the behaviour of a genetic
algorithm (GA). Moreover, hybridizing GA with local searches has shown how
the convergence toward better values of the objective function can be improved.
The resulting algorithm performance has been evaluated during the
Generalization-based Contest in Global Optimization (GENOPT 2017), on a test
suite of 1800 multidimensional problems.

Keywords: Global optimization � Discretization techniques � Mixed global
local search � Genetic algorithm � GENOPT

1 Introduction

One of the fundamental principles in our world is the search for an optimal state.
Technological progress and the expansion of knowledge constantly bring to light the
real issues that need to be explained in quantitative terms, solving global optimization
problems as in [1–3]. Very often the analytical expressions of the model are missed or
are not easily represented. These problems are known in the literature as black box.

The GENOPT [4] challenge allows contestants to evaluate the algorithms on ran-
domized functions, created through suitable generators [5], provided as a binary library,
in order to be treated just as black box problems. In accord with No Free Lunch
Theorems for Optimization [6], an algorithm could reveal a positive result for a specific
benchmark function, whereas the use of randomized functions provides a major and
faithful overview of its robustness.

In literature there are now countless derivative free approaches for global opti-
mization. For instance, recently in [7] has been proposed a Deterministic Particle
Swarm Optimization, in order to better explore the search space. Another example is
given in [8] where a DIRECT-type algorithm is hybridized with a derivative-free local
minimization to globally solving optimization problems. Other well-known meta-
heuristics like Simulated Annealing [9], Tabu Search [10], Random Optimization [11],

© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 279–292, 2017.
https://doi.org/10.1007/978-3-319-69404-7_20

Ant Colony Optimization [12] are widely available in literature, and used successfully
on many real-world applications. Moreover, thorough overviews of global optimiza-
tion, with topics such as stochastic global optimization, partitioning methods, bounding
procedures, convergence studies and complexity can be found in [13–16].

This paper focuses on one of the most popular classes of algorithms belonging to
evolutionary computation, namely Genetic Algorithms (GAs). Moving away from the
classical scheme [17, 18], the GA has been used as an internal procedure of a larger
scheme of global search and has been also successfully modified to reduce the prob-
abilistic component that typically characterizes it.

In particular, after the preliminary Sect. 2 about useful concepts and a look on the
complexity of the problem involved, in Sect. 3 a novel algorithmic scheme for global
optimization is presented. Ad hoc discretization techniques have been successfully
interlaced with the GA classical search operations, performing a better and wider
search on a feasible domain. Moreover, a high efficient scheme of a hybridized GA
with local searches is described. Section 4 details the tuning process and the results
obtained during the GENOPT contest, a special session of the Learning and Intelligent
Optimization Conference (LION 11: June 19–21, 2017, Nizhny Novgorod, Russia).
Finally, in Sect. 5 a conclusive overview of the work is drawn, providing several lines
for further research.

2 Preliminary Concepts

The focus is on the global minimization of an N-dimensional function f xð Þ within a
hyperinterval D. The problem can be stated as follows:

f x�ð Þ ¼ minff xð Þ : x 2 Dg;
D ¼ fx 2 R

N : lbi � x � ubi; 1 � i � Ng: ð1Þ

No information is available on the exact analytical expression of f xð Þ, although the
belonging class is known, i.e. continuously differentiable, two time continuously dif-
ferentiable, non-differentiable or high-level features such as separable function, uni-
modal, multimodal and so on.

In reference to GENOPT rules a problem is considered solved if the solution is
identified by the algorithm within 1 million of function evaluations and so that the best
found function value is within 10�5 from the global minimum value:

f ðxÞ � f ðx�Þþ e; x 2 D; e ¼ 10�5: ð2Þ

The complexity to solve the problem (1) with an e-approximated solution is at least
exponential for any algorithm that works in the black-box model with a generic
non-convex function. On this subject, a useful result due to Vavasis [19] as a special
case of a theorem established by Nemirovsky and Yudin [20] is explanatory:

Theorem 1. Let F k; pð Þ be the class of k-times differentiable functions on D whose kth

derivative is bounded by p as follows: at any point x 2 D and for any unit vector u,

280 F. Romito

dk

dtk
f xþ tuð Þ

����

���� � p: ð3Þ

Let A be any minimization algorithm that works in the black-box model (evaluating
f and its derivatives). Assume that for any function 2 F k; pð Þ, A is guaranteed to output
a point that satisfies inequality (2). Then, there exists a function f 2 F k; pð Þ such that
algorithm A will run on f for at least a number of steps given

c � p
e

� �n=k
; ð4Þ

with c being a suitable positive constant.
As mentioned before, what emerges is that, even assuming bounds on the

derivatives, the complexity of solving a global minimization problem increases
exponentially with the problems dimension.

Usually the problem (1) cannot be solved by an exhaustive search algorithm in an
efficient time. Next section will introduce an approach based on the idea of space
search reduction to lead the search towards the most promising area.

3 The GABRLS Algorithm

Subsection 3.1 is aimed to the description of the modified Genetic Algorithm (GA),
while in Subsect. 3.2 a novel Bounding Restart (BR) technique is described. Addi-
tionally, addressing the need to improve the convergence speed, an overall scheme with
derivative free Local Searches (LS) is presented in Subsect. 3.3.

3.1 The Modified GA

Starting from a classical pattern of GA (see Algorithm 1), to take advantage of the
effective geometry and to prevent premature convergence, two major changes were
introduced:

Algorithm 1. Classical GA scheme

1. Initial Population (random points uniformly distributed in D)
2. for k = 1 generations (max iterations)
3. Evaluate Population
4. Selection Criterion (Tournament, Elitism, Roulette wheel, etc.)
5. Genetic Operators (Crossover – Mutation)
6. New Population
7. end for

Hybridization and Discretization Techniques 281

– Discrete initial population
• Diagonal Initial Population (DiagPI).
• Axial Initial Population (AxialPI).

– Premature convergence preserving procedure
• Diversify.

The first change concerns the implementations of two discretization and positioning
techniques to place the initial points (initial population) in the feasible domain,
allowing the sampling of the objective function in such a way to get more useful
information than a classical random sampling.

DiagPI routine allows the discrete positioning of points along a main diagonal of
the feasible hyperrectangle (Fig. 1 provides an example in a 3D box with a vertex in
the origin of the coordinate axes). Denoting with Spacej the amplitude of the interval
along the jth dimension, with Increasej the step along the jth dimension between two
consecutive points and with Pop the number of initial points where the objective
function f is evaluated, the result is the Algorithm 2.

Algorithm 2. DiagPI

1. for j = 1 N
2.
3.
4. end for
5. for i = 1 Pop
6. for j = 1 N
7.
8. end for
9. end for

Fig. 1. Graphic view of the points (blue squared) generated with DiagPI in a 3D box. (Color
figure online)

282 F. Romito

Fig. 2. Graphic view of the points (red squared) generated with AxialPI in a 3D box. (Color
figure online)

Hybridization and Discretization Techniques 283

DiagPI and AxialPI routines allow to create, through the crossover operator during
the iterations of GA (main generations loop), a multi-dimensional mesh with the points
generated as nodes (Fig. 3 provides an example in a 3D box with a vertex in the origin
of the coordinate axes).

AxialPI routine distributes the points of population along the coordinate axes of the
feasible hyperinterval (Fig. 2), the result is the Algorithm 3.

This mesh will become more dense according to the most promising areas of the
feasible domain D. In particular, after every selection phase in a GA iteration, a
single-point crossover operator has been adopted, without recombination of blocks to
generate and place new points PSoni jð Þ : i ¼ 1 ! Pop; j ¼ 1 ! N

� �
in the mesh.

Equations (5) and (6) and Fig. 4 show how it works.

PSon1 ¼ PFather1 1ð Þ; . . .; PFather1 k � 1ð Þ; PFather2 kð Þ; . . .; PFather2 Nð Þ� �
; ð5Þ

PSon2 ¼ PFather2 1ð Þ; . . .; PFather2 k � 1ð Þ; PFather1 kð Þ; . . .; PFather1 Nð Þ� �
: ð6Þ

Fig. 3. Mesh of all possible points generated by the crossover (grey) through the recombination
of the initial ones (AxialPI in red, DiagPI in blue). (Color figure online)

Fig. 4. Single-point crossover operator without recombination of blocks (exact exchange).

284 F. Romito

With respect to a random sampling, the discrete positioning techniques described
above, together with the single-point crossover operator without recombination of
blocks, allow the exploration of the search space D in a more orderly manner, and also
controlled, the feasible region. In fact, all possible positions in which the crossover will
be able to move the points are known a priori and are all nodes of a multi-dimensional
mesh.

The second change of GA classical scheme concerns the implementation of a
simple technique that allows one to avoid a premature convergence.

Inside the main loop of Algorithm 1 a check on homogeneity of current population
has been inserted (Algorithm 4). With the aim of pursuing an aggressive search, a
routine (hereinafter called Diversify) makes a more extensive search by replacing all
the duplicate points of the current population with new points PNew jð Þ; j ¼ 1 ! N

� �
.

Uniformly distributed random numbers in the range lb; ub½ � have been used to mutate
all components j ¼ 1 ! Nð Þ of the duplicate points, so that new random points are
placed in the feasible domain. As drawback, the worst case computational cost of this
routine is generally high, i.e. a simple implementation can take Pop� 1ð Þ2 � 2 � Nð Þ
steps, so it is reasonable to carry out a check on homogeneity of population after at least
half of the iterations of the GA main loop.

3.2 Bounding Restart (BR) Technique

Generally, increasing the dimension of problems and the search space, GA takes more
function evaluations to locate a good solution. To avoid this slowness an iterative space
reduction technique has been implemented.

BR technique is a two-step scheme in which GA can be successfully integrated.
The first step is the bounding one. If it is assumed that the genetic algorithm has the
ability to quickly identify a promising area, however large, it’s reasonable to focus the
search in the given area temporarily. On that basis, by means of hyperintervals that are
dynamically sized, according to the need to lead the search towards the most promising

Hybridization and Discretization Techniques 285

area, the bounding step at the generic iteration k is carried out through the following
equations:

LBk ¼ ubþ lb
2

� ub� lb
2 �CFexpCF

; CF 2 R : CF ¼ const [1; expCF 2 N: ð7Þ

UBk ¼ ubþ lb
2

þ ub� lb
2 �CFexpCF

; CF 2 R : CF ¼ const [1; expCF 2 N: ð8Þ

CF is a convergence factor that has a high impact on reducing the bounds. The
reduction is managed by increasing expCF, the exponent of CF, of a unit per iteration.
After updating lower and upper bounds, the reduced set is centred in the best point xk

currently known. Let Ctraslk be the difference between xk and the centre of the kth

reduced hyperinterval, then, the set can be put centrally as follows:

Ctraslk ¼ xk � UBk þ LBk

2
; ð9Þ

LBkþ 1 ¼ max lb; LBk þCtraslk
� �

; ð10Þ

UBkþ 1 ¼ minfub;UBk þCtraslkg: ð11Þ

At the kth BR reduction cycle, assuming expCF ¼ k the feasible space reduced is:

Spacek ¼ ub� lb
CFk

[d; d � machine precision: ð12Þ

In Fig. 5 the result of a bounding and positioning operation in a 3D box is drawn.

Fig. 5. Overview of a bounding step of BR. In red P�i , the best solution currently known. (Color
figure online)

286 F. Romito

The second step of BR concerns the restart of GA inside the reduced space.
Denoting with Dk the kth reduced hyperinterval, the overall algorithmic scheme is the
following:

3.3 Hybridizing GABR with Local Searches

The global search represented by Algorithm 5 can be expensive in terms of function
evaluations if the goal is to identify an optimal solution with a high precision. The
reason is that the higher is the precision required, the more BR iterations must be
performed. The refining of the solution can be delegated to a local search algorithm.

In order to make the whole algorithm more efficient, derivative free local searches
(DFLS) have been introduced. In literature there are many ideas on the hybridization of
the global search. Examples of automatic balancing techniques can be found in [21]
where the estimates of local Lipschitz constants allow to accelerate significantly the
global search. A suitable strategy has been implemented in the GABR algorithm,
similar to that one described in [22].

Since the number of LSs performed affects the efficiency, it is necessary to locate
when a LS should be started. A reasonable choice is to perform LS at every BR
iteration, only after the end of GA main loop and only if an improved solution is found
with respect to previous BR iteration.

Let us consider as stopping criterion the GENOPT condition of 106 max function
evaluations. The final algorithmic scheme is the following:

Hybridization and Discretization Techniques 287

4 Tuning and Results of GABRLS on GENOPT Challenge

GENOPT organizers provide 1800 problems, distinguishable in 18 classes by their
dimension and other high-level characteristics.

This section will report the most important settings of GABRLS algorithm that
have impacted on the progressive improvement in results during the challenge.

Let us consider that DiagPI, AxialPI and Diversify routines are always active
hereinafter in the GABRLS algorithm.

4.1 High Level Setting

The first strategy was the selection of a suitable local search to evaluate the
improvement on convergence toward a better approximation of the global optimum
with respect to the GABR scheme without LSs. In the preliminary phase of challenge, a
non-monotone local search has been employed. In particular, a version of the globally
convergent coordinate search algorithm called SDBOX [23] has been used, freely
available in different programming languages in the software library for derivative free
optimization at http://www.diag.uniroma1.it/*lucidi/DFL.

Table 1 details the results of the comparison, reports the number of global optima
found over the hundred problems of each class of function. Clearly, it came out as
expected that using local searches the behaviour of the algorithm is improved.

Subsequently another local search, integrated into Matlab toolbox (FMINCON
[24]), has been tested. In the latest configuration of the GABRLS only FMINCON was

Table 1. Number of the problems solved by the algorithms with and without LS

Id Type Type-details Dim GABRLS GABR
Tasks solved Tasks solved

0 GKLS Non-differentiable 10 92 92
1 30 59 40
2 Differentiable 10 73 74
3 30 45 27
4 Twice differentiable 10 67 72
5 30 43 34
6 High condition Rosenbrock 10 100 3
7 30 71 0
8 Rastrigin 10 100 99
9 30 100 0
10 Zakharov 10 100 100
11 30 2 0
12 Composite 10 100 7
13 30 100 0
14 10 100 3
15 30 100 0
16 10 100 69
17 30 100 0
Total 1452 620

288 F. Romito

http://www.diag.uniroma1.it/~lucidi/DFL

integrated as LS with default parameters because of the slightly better result on several
classes of function. In particular, FMINCON and NM-SDBOX showed equal perfor-
mance to identify a local optimum on GKLS (classes 0, …, 5), whereas FMINCON
outperformed NM-SDBOX on all remaining classes.

The second high level strategy was to tune the amount of population and genera-
tions of GA. These parameters give an impact on the search performance and are
crucial to balance efficiency (CPU time and convergence speed) and effectiveness (fast
identification of the global optimum neighbourhood). Smaller values lead quickly to
less quality solutions, while larger values allow to identify a more promising areas but
slowing down the search.

The main aim was to find out the smallest value that allows to improve efficiency
and solve the maximum number of tasks. The setting of these parameters on GKLS
classes appeared more sensitive than other classes, so a mixed strategy has been
implemented. In particular, two settings have been adopted as starting point of tuning,
to solve GKLS functions and all other classes of functions, respectively.

Table 2 reports the selection phase of the two starting settings of population and
generations indexed by scenarios.

The final amount of Population and Generations are refined for each class of
GENOPT problems, so small changes have been made from the two guideline of
scenarios selected.

The other high level parameters of GABRLS algorithm are self tuned or constants.
After every selection phase of GA, carried out through the efficient well known
Tournament Selection [25], a Random Mutation [26] with fixed rate has been inte-
grated, as usual, inside the crossover operator to insure that the probability of reaching
any point in the search space is never equal to zero. Table 3 reports the starting value
and the updating rule of the most important parameters.

Table 2. Selection of the starting setting of GA. The best ones are highlighted.

Table 3. Setting of other high level GA and BR parameters.

Parameter Starting Updating formula Frequency

CF 1.2 CF ¼ CFþ 0:01 BR iterations
expCF 1 expCF ¼ iBR; iBR ¼ ith BR cycle BR iterations

Crossover Rate 0.8 Constant GA iterations
Mutation Rate 0.01 Constant GA iterations
Tournament 3 Constant GA iterations

Hybridization and Discretization Techniques 289

4.2 Results and Prizes

In the final phase of the GENOPT competition, GABRLS algorithm was able to reach
the 1st prize in both partial categories. Figure 6 shows the score on the speed of
convergence (High Jump), the task solved (Target Shooting) and the overall ranking
(Biathlon Score).

The total number of solved problem was 1605 over 1800, almost 90%. Table 4
presents the number of solved problem for each class of function.

Fig. 6. Final leaderboard.

Table 4. Number of the solved tasks for each class.

Id Type Type-details Dim GABRLS
Tasks solved

0 GKLS Non-differentiable 10 86
1 30 74
2 Differentiable 10 77
3 30 56
4 Twice differentiable 10 66
5 30 47
6 High condition Rosenbrock 10 100
7 30 100
8 Rastrigin 10 99
9 30 100
10 Zakharov 10 100
11 30 100
12 Composite 10 100
13 30 100
14 10 100
15 30 100
16 10 100
17 30 100
Total 1605

290 F. Romito

5 Conclusion

In this work, a novel algorithmic scheme for global optimization is presented. Several
discretization techniques to place initial points and to bound the search space are
described. The numerical results show that the overall scheme with local searches step
up the effectiveness on locating optimal solutions within a high precision range.

Further research will involve on improving the exploratory geometry through the
use of different bounding procedure. Moreover, algorithmic schemes for
multi-objective optimization and constrained optimization will be investigated.

References

1. Serani, A., Fasano, G., Liuzzi, G., Lucidi, S., Iemma, U., Campana, E.F., Stern, F., Diez, M.:
Ship hydrodynamic optimization by local hybridization of deterministic derivative-free
global algorithms. Appl. Ocean Res. 59, 115–128 (2016)

2. Liuzzi, G., Lucidi, S., Piccialli, V., Sotgiu, A.: A magnetic resonance device designed via
global optimization techniques. Math. Program. 101(2), 339–364 (2004)

3. Kvasov, D.E., Sergeyev, Y.D.: Deterministic approaches for solving practical black-box
global optimization problems. Adv. Eng. Softw. 80, 58–66 (2015)

4. Battiti, R., Sergeyev, Y.D., Brunato, M., Kvasov, D.E.: GENOPT 2016: design of a
generalization-based challenge in global optimization. In: Sergeyev, Y.D., Kvasov, D.E.,
Dell’Accio, F., Mukhametzhanov, M.S. (eds.) AIP Conference Proceedings, vol. 1776, no.
060005. AIP Publishing (2016)

5. Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Algorithm 829: software for
generation of classes of test functions with known local and global minima for global
optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003)

6. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans.
Evol. Comput. 1(1), 67–82 (1997)

7. Diez, M., Serani, A., Leotardi, C., Campana, E.F., Fasano, G., Gusso, R.: Dense orthogonal
initialization for deterministic PSO: ORTHOinit+. In: Tan, Y., Shi, Y., Niu, B. (eds.) ICSI
2016. LNCS, vol. 9712, pp. 322–330. Springer, Cham (2016). doi:10.1007/978-3-319-
41000-5_32

8. Di Pillo, G., Liuzzi, G., Lucidi, S., Piccialli, V., Rinaldi, F.: A DIRECT-type approach for
derivative-free constrained global optimization. Comput. Optim. Appl. 65(2), 361–397
(2016)

9. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science
220(4598), 671–680 (1983)

10. Pierre, S., Houéto, F.: A tabu search approach for assigning cells to switches in cellular
mobile networks. Comput. Commun. 25(5), 464–477 (2002)

11. Baba, N.: Convergence of a random optimization method for constrained optimization
problems. J. Optim. Theor. Appl. 33(4), 451–461 (1981)

12. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theoret. Comput. Sci. 344
(2–3), 243–278 (2005)

13. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints:
Sequential and Parallel Algorithms. Nonconvex Optimization and Its Applications, vol. 45.
Springer, New York (2000). doi:10.1007/978-1-4615-4677-1

Hybridization and Discretization Techniques 291

http://dx.doi.org/10.1007/978-3-319-41000-5_32
http://dx.doi.org/10.1007/978-3-319-41000-5_32
http://dx.doi.org/10.1007/978-1-4615-4677-1

14. Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer Optimization and
Its Applications. Springer, New York (2008). doi:10.1007/978-0-387-74740-8

15. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. SpringerBriefs in Optimiza-
tion. Springer, New York (2014). doi:10.1007/978-1-4614-9093-7

16. Locatelli, M., Schoen, F.: Global Optimization: Theory, Algorithms, and Applications.
Society for Industrial and Applied Mathematics, Philadelphia (2013)

17. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)
18. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley Publishing Company, Reading (1989)
19. Vavasis, S.A.: Complexity issues in global optimization: a survey. In: Horst, R., Pardalos, P.

M. (eds.) Handbook of Global Optimization. Springer, Boston (1995). doi:10.1007/978-1-
4615-2025-2_2

20. Nemirovskii, A., Yudin, D.B.: Problem Complexity and Method Efficiency in Optimization.
A Wiley-Interscience. Wiley, New York (1983). Translated from the Russian and with a
preface by Dawson E.R., Wiley-Interscience Series in Discrete Mathematics. Chichester:
John Wiley and Sons (1983)

21. Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set
of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

22. Liuzzi, G., Lucidi, S., Piccialli, V.: A DIRECT-based approach exploiting local minimiza-
tions for the solution of large-scale global optimization problems. Comput. Optim. Appl. 45
(2), 353–375 (2010)

23. Lucidi, S., Sciandrone, M.: A derivative-free algorithm for bound constrained optimization.
Comput. Optim. Appl. 21(2), 119–142 (2002)

24. https://it.mathworks.com/help/optim/ug/fminunc.html#References
25. Goldberg, D.E., Kalyanmoy, D.: A comparative analysis of selection schemes used in

genetic algorithms. Found. Genetic Algorithms 1, 69–93 (1991)
26. Herrera, F., Lozano, M., Verdegay, J.L.: Tackling real-coded genetic algorithms: operators

and tools for behavioural analysis. Artif. Intell. Rev. 12(4), 265–319 (1998)

292 F. Romito

http://dx.doi.org/10.1007/978-0-387-74740-8
http://dx.doi.org/10.1007/978-1-4614-9093-7
http://dx.doi.org/10.1007/978-1-4615-2025-2_2
http://dx.doi.org/10.1007/978-1-4615-2025-2_2
https://it.mathworks.com/help/optim/ug/fminunc.html#References

Short Papers

Identification of Discontinuous Thermal
Conductivity Coefficient Using Fast

Automatic Differentiation

Alla F. Albu1,2, Yury G. Evtushenko1,2, and Vladimir I. Zubov1,2(&)

1 Dorodnicyn Computing Centre, Federal Research Center
“Computer Science, and Control” of Russian Academy of Sciences,

Moscow, Russia
alla.albu@yandex.ru, evt@ccas.ru,

vladimir.zubov@mail.ru
2 Moscow Institute of Physics and Technology,

Dolgoprudny, Moscow Region, Russia

Abstract. The problem of determining the thermal conductivity coefficient that
depends on the temperature is studied. The consideration is based on the
Dirichlet boundary value problem for the one-dimensional unsteady-state heat
equation. The mean-root-square deviation of the temperature distribution field
and the heat flux from the empirical data on the left boundary of the domain is
used as the objective functional. An algorithm for the numerical solution of the
problem based on the modern approach of Fast Automatic Differentiation is
proposed. The case of discontinuous thermal conductivity coefficient is con-
sidered. Examples of solving the problem are discussed.

Keywords: Inverse coefficient problems � Variation problem � Fast Automatic
Differentiation � Discontinuous thermal conductivity coefficient � Heat equation

1 Introduction

The classical heat equation is often used in the description and mathematical modeling
of many thermal processes. The density of the substance, its specific thermal capacity,
and the thermal conductivity coefficient appearing in this equation are assumed to be
known functions of the coordinates and temperature. Additional boundary value con-
ditions makes it possible to determine the dynamics of the temperature field in the
substance under examination.

However, the substance properties are not always known. It often happens that the
thermal conductivity coefficient depends only on the temperature, and this dependence
is not known. In this case, the problem of determining the dependence of the thermal
conductivity coefficient on the temperature based on experimental measurements of the
temperature field arises. This problem also arises when a complex thermal process
should be described by a simplified mathematical model. For example, in studying and
modeling of heat propagation in complex porous composite materials, where the
radiation heat transfer plays a considerable role, both the convective and radiative heat

© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 295–300, 2017.
https://doi.org/10.1007/978-3-319-69404-7_21

transfer must be taken into account. The thermal conductivity coefficients in this case
typically depend on the temperature. To estimate these coefficients, various models of
the medium are used. As a result, one has to deal with a complex nonlinear model that
describes the heat propagation in the composite material (see [1]). However, another
approach is possible: a simplified model is constructed in which the radiative heat
transfer is not taken into account, but its effect is modeled by an effective thermal
conductivity coefficient that is determined based on empirical data.

Determining the thermal conductivity of a substance is an important problem, and it
has been studied for a long time. This is confirmed by a large number of publications
(e.g., see [2–5]).

In [6] the inverse coefficient problems are considered in new formulation. They are
studied theoretically, and new numerical methods for their solution are developed. In
that work the case of continuous thermal conductivity coefficient is considered.

In this paper we consider the problem studied in [6] for the case of a discontinuous
thermal conductivity coefficient. The consideration is based on the Dirichlet problem
for the one-dimensional unsteady-state heat equation. The inverse coefficient problem
is reduced to a variation problem. A linear combination of the mean-root-square
deviations of the temperature distribution field and the heat flux from the empirical data
on the left boundary of the domain is used as the objective functional. An algorithm for
the numerical solution of the inverse coefficient problem is proposed. It is based on the
modern approach of Fast Automatic Differentiation, which made it possible to solve a
number of difficult optimal control problems for dynamic systems.

2 Formulation of the Problem

A layer of material of width L is considered. The temperature of this layer at the initial
time is given. It is also known how the temperature on the boundary of this layer
changes with time. The distribution of the temperature field at each moment of time is
described by the following initial boundary value (mixed) problem:

qC
@Tðx; tÞ

@ t
� @

@ x
KðTÞ @Tðx; tÞ

@ x

� �
¼ 0; ðx; tÞ 2 Q ð1Þ

Tðx; 0Þ ¼ w0ðxÞ; ð0� x� LÞ; ð2Þ

Tð0; tÞ ¼ w1ðtÞ; TðL; tÞ ¼ w2ðtÞ; ð0� t�HÞ: ð3Þ

Here x is the Cartesian coordinate of the point in the layer; t is time,
Q ¼ ð0\ x\ LÞ � ð0\ t � HÞf g; Tðx; tÞ is the temperature of the material at the
point with the coordinate x and time t; q and C are the density and the heat capacity of
the material, respectively; KðTÞ is the coefficient of the convective thermal conduc-
tivity; w0ðxÞ is the given temperature of the layer at the initial time; w1ðtÞ is the given
temperature on the left boundary of the layer; and w2ðtÞ is the given temperature on the
right boundary of the layer.

296 A.F. Albu et al.

The density of the material q and its heat capacity C are known functions of
coordinate and/or temperature.

If the dependence of the coefficient of the convective thermal conductivity KðTÞ on
the temperature T is known, then we can solve the mixed problem (1)–(3) to find the
distribution of the temperature Tðx; tÞ in �Q. Problem (1)–(3) will be further called the
direct problem.

If the dependence of the coefficient of the convective thermal conductivity of the
material on the temperature is not known, it is of interest to determine this dependence.
A possible statement of this problem (it is classified as an identification problem of the
model parameters) is as follows: find the dependence KðTÞ on T under which the
temperature field Tðx; tÞ obtained by solving problem (1)–(3) is close to the field
Yðx; tÞ, which itself is obtained empirically. The quantity

U KðTÞð Þ ¼
ZH
0

ZL

0

Tðx; tÞ � Yðx; tÞ½ � 2� lðx; tÞ dxdt

þ b �
ZH
0

K Tð0; tÞð Þ � @T
@ x

ð0; tÞ � PðtÞ
� �2

dt;

ð4Þ

can be used as the measure of difference between these functions. Here b� 0 is a given
number, lðx; tÞ� 0 is a given weighting function, and PðtÞ is the known heat flux on
the left boundary of the domain. Thus, the optimal control problem is to find the
optimal control KðTÞ and the corresponding optimal solution Tðx; tÞ of problem (1)–(3)
that minimizes functional (4).

3 Numerical Solution of the Problem

The optimal control problems similar to this one are typically solved numerically using
a descent method, which requires the gradient of functional (4) to be known. The
unknown function KðTÞ was approximated by a continuous piecewise linear function.

If the input data of the problem is such that the desired coefficient of thermal
conductivity represents a fairly smooth function, then the problem of identification
could be solved by a method proposed in [6].

This work presents the algorithm for solving the problem of identifying a dis-
continuous thermal conductivity coefficient and some numerical results. The proposed
algorithm, as well as in [6], is based on the numerical solution of the problem of
minimizing the cost functional (4). The gradient descent method was used. It is well
known that it is very important for the gradient methods to determine accurate values of
the gradients. For this reason, we used the efficient approach of Fast Automatic Dif-
ferentiation that enables us to determine with machine precision the gradient of cost
function, subject to equality constraints (see [7]).

To numerically solve the mixed problem (1)–(3) the domain Q ¼ ð0\x\LÞ�f
ð0\t�HÞg is decomposed by the grid lines ~xif gIi¼0 and ~t jf gJj¼0 into rectangles.

Identification of Discontinuous Thermal Conductivity Coefficient 297

At each node ð~xi;~t jÞ of Q characterized by the pair of indices ð i; jÞ, all the functions are
determined by their values at the point ð~xi;~t jÞ (e.g., Tð~xi;~t jÞ ¼ T j

i). In each rectangle,
the thermal balance must be preserved.

The temperature interval ½a; b� (the interval of interest) is partitioned by the points,
T0 ¼ a, T1; T2; . . .; TN ¼ b into N ¼ 2mþ 1 parts (they can be of equal or of different
lengths). Each point Tn n ¼ 0; . . .;Nð Þ is assigned a number kn ¼ KðTnÞ. The function
KðTÞ ¼ T , which needs to be found, is approximated by a continuous piecewise linear

functions with the nodes at the points ð~Tn; knÞ
� �N

n¼0 so that

KðTÞ ¼ kn�1 þ kn � kn�1

Tn � Tn�1
ðT � Tn�1Þ for Tn�1 � T � Tn; ðn ¼ 1; . . .;NÞ:

The objective functional (4) was approximated by a function Fðk0; k1; . . .; kNÞ of
the finite number of variables as

U KðTÞð Þ � F ¼
XJ
j¼1

XI�1

i¼1

ðT j
i � Y j

i Þ2 � l j
i his

j
� 	

þ b �
XJ
j¼1

r
2h0

KðT j
0ÞþKðT j

1Þ

 � � T j

1 � T j
0

 ���

þ 1� r
2h0

KðTj�1
0 ÞþKðTj�1

1 Þ
� 	

� Tj�1
1 � Tj�1

0

� 	
� q0C0h0

2s j
T j
0 � Tj�1

0

� 	
� P j

�2
�s j

!
:

To illustrate the efficiency of the proposed algorithm the variation problem (1)–(4)
was considered with the following parameters:

L ¼ 1; H ¼ 1; qðxÞ 	 CðxÞ 	 1;
w0ðxÞ ¼ 2x; w1 ¼ 0; w2 ¼ 2;
lðx; tÞ 	 1; b ¼ 0; a ¼ 0; b ¼ 2:

The empirical temperature field was determined as a solution of the “direct”

problem (1)–(3) with KðTÞ ¼ 1; T\1;
3; T � 1:

�
.

On the first m subintervals KðTÞ ¼ 1, on the ðmþ 2Þ; ðmþ 3Þ; . . .;N subintervals
KðTÞ ¼ 3, and on the ðmþ 1Þ subintervalKðTÞ is a linear function varying in from 1 to 3.

For the solution of the direct and inverse problems, we used the uniform grid with
the parameters I ¼ 300 (the number of intervals along the axis x) and J ¼ 6000 (the
number of intervals along the axis t), which ensures the sufficient accuracy of com-
putation of the temperature field.

Figure 1 shows the results (the initial approximation and optimal solution) of
calculations made for N ¼ 19. As an initial approximation to the thermal conductivity
coefficient the function KðTÞ ¼ T was selected.

The value of the cost function (4) for initial approximation was equal to
Uini ¼ 4:241570 � 100. The value of the cost function (4) for optimal control was equal

298 A.F. Albu et al.

to Uopt ¼ 1:013323 � 10�21. In this example, we managed to identify the thermal
conductivity coefficient with precision 10�9 in norm C.

Figure 2 presents the same results of calculations as above but made for N ¼ 79 (the
initial approximation and optimal solution). The value of the cost function (4) for initial
approximation was equal to Uini ¼ 9:532799 � 10�3. The value of the cost function (4)
for optimal control was equal to Uopt ¼ 2:288689 � 10�22. In this case, we managed to
identify the thermal conductivity coefficient with precision 10�10 in norm C.

It should be noted that in this example, the thermal conductivity coefficient being
identified was a continuous function, although contained narrow domain of “smooth-
ing” jump (its width is � 2=N).

The numerous numerical results showed that the proposed algorithm is efficient and
stable and allows us to restore thermal conductivity with high accuracy.

Acknowledgments. This work was supported by the Russian Foundation for Basic Research
(project no. 17-07-00493a).

Fig. 1. Initial and optimal control N ¼ 19ð Þ

Fig. 2. Initial and optimal control (N ¼ 79)

Identification of Discontinuous Thermal Conductivity Coefficient 299

References

1. Alifanov, O.M., Cherepanov, V.V.: Mathematical simulation of high-porosity fibrous
materials and determination of their physical properties. High Temp. 47, 438–447 (2009)

2. Kozdoba, L.A., Krukovskii, P.G.: Methods for Solving Inverse Thermal Transfer Problems.
Naukova Dumka, Kiev (1982). [in Russian]

3. Alifanov, O.M.: Inverse Problems of Heat Transfer. Mashinostroenie, Moscow (1988).
[in Russian]

4. Marchuk, G.I.: Adjoint Equation and the Analysis of Complex Systems. Nauka, Moscow
(1992). [in Russian]

5. Samarskii, A.A., Vabishchevich, P.N.: Computational Heat Transfer. Editorial URSS,
Moscow (2003). [in Russian]

6. Zubov, V.I.: Application of fast automatic differentiation for solving the inverse coefficient
problem for the heat equation. Comput. Math. Math. Phys. 56(10), 1743–1757 (2016)

7. Evtushenko, Y.G.: Computation of exact gradients in distributed dynamic systems. Optim.
Methods Softw. 9, 45–75 (1998)

300 A.F. Albu et al.

Comparing Two Approaches for Solving
Constrained Global Optimization Problems

Konstantin Barkalov(B) and Ilya Lebedev

Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
{konstantin.barkalov,ilya.lebedev}@itmm.unn.ru

Abstract. In the present study, a method for solving the multiextremal
problems with non-convex constrains without the use of the penalty or
barrier functions is considered. This index method is featured by a sep-
arate accounting for each constraint. The check of the constraint fulfill-
ment sequentially performed in every iteration point is terminated upon
the first constraint violation occurs. The results of numerical comparing
of the index method with the penalty function one are presented. The
comparing has been carried out by means of the numerical solving of sev-
eral hundred multidimensional multiextremal problems with non-convex
constrains generated randomly.

Keywords: Global optimization · Multiextremal functions · Non-
convex constraints

1 Introduction

In the present paper, the methods for solving the global optimization problems
with non-convex constraints

ϕ(y∗) = min {ϕ(y) : y ∈ D, gi(y) ≤ 0, 1 ≤ i ≤ m}, (1)
D =

{
y ∈ RN : aj ≤ yj ≤ bj , 1 ≤ j ≤ N

}
. (2)

are considered. The objective function as well as the constraint ones are supposed
to satisfy Lipschitz condition with Lipschitz constants unknown a priori. The
analytical formulae of the problem functions may be unknown, i.e. these ones
may be defined by an algorithm for computing the function values in the search
domain (so called “black-box”-functions). Moreover, it is suggested that even a
single computing of a problem function value may be a time-consuming operation
since in the applied problems it is related to the necessity of numerical modeling
(see, for example, [1–4]).

The method of penalty functions is one of the most popular numerical meth-
ods for solving the problems of this kind. The idea of the method is simple and
very universal; therefore, the method has found wide application to solving var-
ious practical problems. A detailed description of the method can be found, for

c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 301–306, 2017.
https://doi.org/10.1007/978-3-319-69404-7_22

302 K. Barkalov and I. Lebedev

example, in [5]. Nevertheless, the method of penalty functions has a number of
disadvantages.

First, when using this method, a number of unconstrained problems with
different penalty coefficients should be solved. The issue of choosing the penalty
coefficients should be addressed for each problem separately.

Second, the use of large values of the penalty coefficients results in the min-
imization of the functions with a ravine-type minimum that essentially compli-
cates the computations.

Third, this method is not applicable in the problems with the partially com-
putable functions, for example, in the case when the objective function is unde-
fined if the constraints are violated.

In the present work, the use of the penalty function method is compared to
the application of the index method of accounting for the constraints developed
in Nizhny Novgorod State University. The method features are (i) accounting
for the information on each constraint separately and (ii) solving the problems,
in which the function values may be undefined out of the feasible domain.

2 Index Method

A novel approach to the minimization of the multiextremal functions with non-
convex constraints (called the index method of accounting for the constraints)
has been developed in [6–9]. The approach is based on a separate accounting
for each constraint of the problem and is not related to the use of the penalty
functions. At that, employing the continuous single-valued Peano curve y(x)
(evolvent) mapping the unit interval [0, 1] on the x-axis onto the N -dimensional
domain (2) it is possible to find the minimum in (1) by solving a one-dimensional
problem

ϕ(y(x∗)) = min {ϕ(y(x)) : x ∈ [0, 1], gi(y(x)) ≤ 0, 1 ≤ i ≤ m} .

The considered dimensionality reduction scheme juxtaposes to a multidimen-
sional problem with Lipschitzian functions a one-dimensional problem, where
the corresponding functions satisfy uniform Hölder condition (see [6]).

According to the rules of index method, every iteration called trial at corre-
sponding point of the search domain includes a sequential checking of fulfillment
of the problem constraints at this point. The first occurrence of violation of any
constraint terminates the trial and initiates the transition to the next iteration
point, the values of the rest problem functions are not computed in this point.
This allows: (i) accounting for the information on each constraint separately and
(ii) solving the problems, in which the function values may be undefined out of
the feasible domain.

The index algorithm can be applied to solving the unconstrained problems as
well, i.e. in the case when m = 0 in the problem statement (1). In this case, the
algorithm works analogously to its prototype – global search algorithm (GSA) –
developed for solving the unconstrained optimization problems. Various modifi-
cations of the index algorithm and the corresponding theory of convergence are

Comparing Two Approaches for Solving Constrained Global Optimization 303

presented in [6]. The algorithm is very flexible and allows an efficient paralleliza-
tion as for shared memory, as for distributed memory, as for accelerators [10–14].

3 Results of Experiments

Let us compare the solving of the constrained global optimization problems using
penalty functions method (PM) and index method (IM). The penalty function
was taken in the form

G(y) = σ
m∑

j=1

max {0, gj(y)}2 ,

where σ is the penalty coefficient. Thus, a constrained problem is reduced to an
unconstrained problem

F (y) = ϕ(y) + G(y)

which was solved using global search algorithm.
The experiments was carried out with the use of GKLS generator. This

generator for the functions of arbitrary dimensionality with known properties
(the number of local minima, the size of their domains of attraction, the global
minimizer, etc.) has been proposed in [16]. Eight GKLS classes of differentiable
test functions of the dimensions N = 2, 3, 4, and 5, have been used. For each
dimension, both Hard and Simple classes have been considered. The difficulty
of a class was increased either by decreasing the radius of the attraction region
of the global minimizer, or by decreasing the distance from the global minimizer
y∗ to the domain boundaries. Application of this generator for studying some
unconstrained optimization algorithms has been described in [15,17–19].

According to the scheme described in [20], eight series of 100 problems each
based on the functions of Simple and Hard classes with the dimensions N =
2, 3, 4, 5 have been generated. There were two constraints and objective functions
in each problem. The volume fraction of the feasible domain was varied from 0.2
to 0.8. The penalty parameter σ was selected to be equal to 100.

The global minimum was considered to be found if the algorithm generates a
trial point yk in the δ-vicinity of the global minimizer, i.e.

∥
∥yk − y∗∥∥

∞ ≤ δ. The
size of the vicinity was selected as δ = 0.01 ‖b − a‖. When using IM for Simple
class, parameter r = 4.5 was selected, for Hard class r = 5.6 was taken. The
maximum allowed number of iterations was Kmax = 106.

The average number of iterations kav performed by PM for solving a series
of problems from both classes is shown in Table 1. The same values for the
index method are presented in Table 2. The number of unsolved problems is
specified in brackets. It reflects a situation when not all problems of the class
have been solved by the method. This means that the algorithm was stopped as
the maximum allowed number of iterations Kmax was achieved. In this case, the
value Kmax = 106 was used for calculating the average value of the number of
iterations kav that corresponds to the lower estimate of the average value.

304 K. Barkalov and I. Lebedev

Table 1. The values of kav when solving the GKLS problems by PM

Δ N = 2 N = 3 N = 4 N = 5

Simple Hard Simple Hard Simple Hard Simple Hard

0.2 1639 1507 56149 60651 160198(5) 119764(2) 305957(1) 488587(14)

0.4 1534 1967 67145 74860 158547 127832 396480(4) 434328(2)

0.6 1201 1514 92854 101240 138550 143818 373617(8) 561447(9)

0.8 1277 1287 108121 148479 130372 145592 488791(12) 646538(24)

Table 2. The values of kav when solving the GKLS problems by IM

Δ N = 2 N = 3 N = 4 N = 5

Simple Hard Simple Hard Simple Hard Simple Hard

0.2 447 911 14719 20120 59680 66551(1) 391325(2) 188797(12)

0.4 465 1800 11951 17427 71248 86899 339327(1) 151998(3)

0.6 403 1988 7366 12853 58451 92007 316648 179013(4)

0.8 371 4292 4646 8702 33621 54405 309844 124952

Table 3. Solving of GKLS problems by the index method, N = 4

Δ Simple Hard

k1 k3 k3 k1 k2 k3

0.2 59680 20445 4401 66551 24210 6316

0.4 71248 28527 6784 86899 39682 12615

0.6 58451 31508 9505 92007 52560 19853

0.8 33621 21411 10446 54405 36838 22202

The average values presented demonstrate that the solving of the specified
problems using the index method requires less number of iterations than with
the use of the penalty function one. At the same time, separate accounting for
the constraints in the index method provides less number of computations of
the values of the problem functions as well. The numbers of computations of
the values of the constraint functions g1(y), g2(y) and those for the objective
function ϕ(y) (k1, k2, and k3, respectively) are presented in Table 3 for four-
dimensional problems.

4 Conclusion

Concluding, let us note that the index method for solving constrained global
optimization problems considered in the present work:

– is based on the global search algorithm, which is not inferior in the speed of
work than other well-known algorithms;

Comparing Two Approaches for Solving Constrained Global Optimization 305

– allows solving the initial problem directly, without the use of the penalty
functions (thus, the issues of selection the penalty coefficient and of solv-
ing a series of unconstrained problems with different penalty coefficients are
eliminated);

– allows solving the problems, which the values of the problem function are not
defined everywhere (for example, the objective function values are undefined
out of the problem feasible domain);

– speeds up the process of solving the constrained optimization problems (due
to an essential reduction of the total number of computations of the problem
function values).

The last statement has been supported by the numerical solving several hundred
test problems.

Acknowledgments. This study was supported by the Russian Science Foundation,
project No 16-11-10150.

References

1. Famularo, D., Pugliese, P., Sergeyev, Y.D.: A global optimization technique for
checking parametric robustness. Automatica 35, 1605–1611 (1999)

2. Kvasov, D.E., Menniti, D., Pinnarelli, A., Sergeyev, Y.D., Sorrentino, N.: Tuning
fuzzy power-system stabilizers in multi-machine systems by global optimization
algorithms based on efficient domain partitions. Electr. Power Syst. Res. 78(7),
1217–1229 (2008)

3. Kvasov, D.E., Sergeyev, Y.D.: Deterministic approaches for solving practical black-
box global optimization problems. Adv. Eng. Softw. 80, 58–66 (2015)

4. Modorskii, V.Y., Gaynutdinova, D.F., Gergel, V.P., Barkalov, K.A.: Optimization
in design of scientific products for purposes of cavitation problems. In: Simos, T.E.
(ed.) ICNAAM 2015. AIP Conference Proceedings, vol. 1738 (2016). Article No.
400013

5. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and
Algorithms, 2nd edn. Wiley, New York (1993)

6. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints:
Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

7. Sergeyev, Y.D., Famularo, D., Pugliese, P.: Index branch-and-bound algorithm for
Lipschitz univariate global optimization with multiextremal constraints. J. Glob.
Optim. 21(3), 317–341 (2001)

8. Barkalov, K.A., Strongin, R.G.: A global optimization technique with an adaptive
order of checking for constraints. Comput. Math. Math. Phys. 42(9), 1289–1300
(2002)

9. Strongin, R.G., Sergeyev, Y.D.: Global optimization: fractal approach and non-
redundant parallelism. J. Glob. Optim. 27(1), 25–50 (2003)

10. Barkalov, K., Ryabov, V., Sidorov, S.: Parallel scalable algorithms with mixed
local-global strategy for global optimization problems. In: Hsu, C.-H., Malyshkin,
V. (eds.) MTPP 2010. LNCS, vol. 6083, pp. 232–240. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-14822-4 26

http://dx.doi.org/10.1007/978-3-642-14822-4_26

306 K. Barkalov and I. Lebedev

11. Barkalov, K.A., Gergel, V.P.: Multilevel scheme of dimensionality reduction for par-
allel global search algorithms. In: Proceedings of the 1st International Conference
on Engineering and Applied Sciences Optimization - OPT-i 2014, pp. 2111–2124
(2014)

12. Barkalov, K., Gergel, V., Lebedev, I.: Use of Xeon Phi coprocessor for solving global
optimization problems. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp.
307–318. Springer, Cham (2015). doi:10.1007/978-3-319-21909-7 31

13. Barkalov, K., Gergel, V.: Parallel global optimization on GPU. J. Glob. Optim.
66(1), 3–20 (2016)

14. Barkalov, K., Gergel, V., Lebedev, I.: Solving global optimization problems on
GPU cluster. In: Simos, T.E. (ed.) ICNAAM 2015. AIP Conference Proceedings,
vol. 1738 (2016). Article No. 400006

15. Gergel, V., Grishagin, V., Gergel, A.: Adaptive nested optimization scheme for
multidimensional global search. J. Glob. Optim. 66(1), 35–51 (2016)

16. Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Software for generation of
classes of test functions with known local and global minima for global optimiza-
tion. ACM Trans. Math. Softw. 29(4), 469–480 (2003)

17. Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions
and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

18. Paulavicius, R., Sergeyev, Y., Kvasov, D., Zilinskas, J.: Globally-biased DISIMPL
algorithm for expensive global optimization. J. Glob. Optim. 59(2–3), 545–567
(2014)

19. Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth
diagonal auxiliary functions. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 99–
111 (2015)

20. Gergel, V.: An approach for generating test problems of constrained global opti-
mization. In: Battiti, R., Kvasov, D., Sergeyev, Y. (eds.) LION 2017. LNCS, vol.
10556, pp. 314–319. Springer, Cham (2017). doi:10.1007/978-3-319-69404-7 24

http://dx.doi.org/10.1007/978-3-319-21909-7_31
http://dx.doi.org/10.1007/978-3-319-69404-7_24

Towards a Universal Modeller
of Chaotic Systems

Erik Berglund(B)

Jeppesen, Gothenburg, Sweden
erik.berglund@jeppesen.com

Abstract. This paper proposes a Machine Learning (ML) algorithm
and examines its dynamic properties when trained on chaotic time series.
It will be demonstrated that the output of the ML system is itself more
chaotic if it is trained on a chaotic input than if it is trained on non-
chaotic input. The proposed ML system builds on to the Parameter-Less
Self-Organising Map 2 (PLSOM2) and introduces new developments.

Keywords: Machine learning · Self-organization · Chaotic · Recur-
rence · Recursion · Universal model

1 Introduction

The class of dynamical systems that are non-linear and highly sensitive to initial
conditions - commonly called chaotic - appear in many places in nature, and it
has even been suggested that chaos plays a part in biological intelligence [6] and
perception [7]. Since deterministic systems can be chaotic (indeed, this is where
the phenomenon was first discovered), chaos is of interest to computer scientists.

Chaotic systems have been subject of study in the Machine Learning com-
munity. Much, if not most, of this effort has been aimed at predicting the time
evolution of chaotic systems based on starting conditions and a manually con-
structed model of the chaotic system. This prediction is, by the very nature of
chaotic systems, extremely difficult and the predictive value of the model quickly
diminishes as the prediction time period increases.

Instead this paper presents a machine learning system that, by being trained
on the output of a dynamical system, can replicate some of the fundamental
properties of the dynamical system without necessarily attempting to predict
the evolution of the dynamical system itself, thus creating a tool that can model
chaotic behaviour without knowing the underlying rules of the chaotic system.

The algorithm is trained on four different deterministic dynamical processes,
of which one is chaotic and the others are not, and the chaotic properties of the
system are measured.

The rest of this document is laid out as follows: Sect. 2 discusses previous
works and gives background information, Sect. 3 gives details for the machine
learning system, Sect. 4 describes the experimental setup and Sect. 5 lists the
results. Section 6 contains concluding remarks and discussion.
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 307–313, 2017.
https://doi.org/10.1007/978-3-319-69404-7_23

308 E. Berglund

2 Previous Work

Chaotic time-series and chaos in neural networks has been studied by several
researchers. One prominent example is CSA [4], which has been shown to be
able to solve combinatorial tasks like the Travelling Salesperson Problem (TSP)
efficiently. Unlike the present work the chaos is inherent in the network model,
not learned. CSA has inspired other approaches, for example [13], which also
contains a good review of similar methods.

Time-series processing with SOM-type algorithms have been studied before,
with the aim of predicting time series [3,8].

Another avenue of research is the role of chaotic neural networks in memory
formation and retrieval [5].

The nomenclature of SOM algorithms with recurrent connections is confus-
ing. In other ML algorithms recurrence usually means that the output of the
algorithm is fed back as part of the input. The Recurrent SOM [11], on the
other hand, is in essence a SOM with leaky integrators on the inputs. When
recurrent connections in SOM algorithms were first investigated [12], the term
“recursive” was used instead.

Self-Organising Maps are a form of unsupervised learning, where a set of
nodes indexed by i ∈ [1, n] are each associated with a weight vector wi. Train-
ing is iterative, and proceeds as a discrete set of steps where training data is
presented to the network, then the weight vectors are updated until some pre-
determined condition is met.

In the standard SOM the magnitude of the weight update is dependent on
the iteration number or time. For the PLSOM [2] and PLSOM2 [1] algorithms,
on the other hand, the weight update is a function of what can be inferred about
the state of the network.

3 Learning Algorithm

Recursion in SOM type neural networks works the same way as recurrence in
other Neural Network algorithms: The output at time t − 1 forms part of the
input at time t. The particular method used here is adopted from [12].

The output is defined as a vector of length n, where n is the number of nodes,
that corresponds to the excitation of a given node.

ki = e−[α||x(t−1)−wx|| + (1−α)||y(t−1)−wy||] (1)

In (1), α is a tuning parameter that determines how much influence the new
input has relative to the recurrent connections, k is a vector of length n, e is
Euler’s constant and y is the output vector, wy is the part of the weight vector
that corresponds to the output (that is, the recurrent weights) and wx is the part
of the weight vector that corresponds to the input. Following the calculation of
k, the updated value of y is found by scaling and translating k so that each
element lies in the range [0, 1] according to (2).

yi(t) =
ki − min(k)

max(k) − min(k)
(2)

Towards a Universal Modeller of Chaotic Systems 309

In other words, y is a vector where each entry yi corresponds to the excitation
of a node i. The entry that corresponds to the winning node, yc, is equal to 1,
all other entries are in the interval [0, 1〉. The vector y is the excitation vector.

To get the Recursive PLSOM2 algorithm (RPLSOM2), ε is changed to (3).

ε =
α||x − wx,c|| + (1 − α)||y − wy,c||

αSx + (1 − α)Sy
(3)

The part of the weight vector of the winning node that relates to the input
is wx,c, and the part that relates to the recurrent connections is wy,c. The scalar
Sy is the diameter of the set of all recurrent inputs, and Sx is the diameter of
the set of all direct inputs. The parameter α is in the range [0, 1]. For α = 1 the
RPLSOM2 is equal to the PLSOM2, since all recurrent connections are ignored.

3.1 Idle Mode

As is clear from the above algorithm the input is only partially responsible for
selecting the winning node, a large part is also due to the excitation vector given
by (2). The map can thus be iterated without taking the input into account by
calculating the winning node and the next value of the excitation vector based on
the current excitation vector. This will henceforth be referred to as “idle mode”.

4 Experimental Setup

As training input for time series are used:

1. A sine wave with wavelength 200.
2. The sum of two sine waves, with wavelengths 200 and 61.5.
3. A simulated Mackey-Glass [9] sequence, consisting of 511 sine waves with

different wavelength and amplitude added together to resemble the frequency
response of the real Mackey-Glass sequence.

4. A chaotic Mackey-Glass series.

All time series were scaled and translated to span the interval [0, 1]. The Fourier
coefficients of of the simulated Mackey-Glass series is indistinguishable from the
Fourier coefficients of the real Mackey-Glass series, as the simulated series was
created through inverse Fourier transform of the real series.

The Mackey-Glass time series is given by (4).

dx

dt
= a

xτ

1 + xn
τ

− bx (4)

here xτ represents the value of the variable at time index (t − τ). In the present
work the following values are used: τ = 17, a = 0.2, b = 0.1, and n = 10.

Before each test the RPLSOM2 weights were initialised to a random state
and trained with 50000 samples from one of the time series. The map has 100
nodes arranged in a 10 × 10 grid. The generalisation factor was set to 17, and α
set to 0.6. Each experiment was repeated 1000 times for each time series.

310 E. Berglund

4.1 Repetition

One characteristic of chaotic systems is that they have very long repetition peri-
ods. Therefore the repetition period for the input sequences was measured. The
repetition period is defined as the number of samples one must draw from the
series before the last 100 samples are repeated anywhere in any of the previous
samples.

After training the map was put into idle mode for 200000 iterations. The
weight vector of the winning node will describe a one-dimensional time series,
which was checked for repetition.

4.2 Fractal Dimension

To calculate the fractal dimension of the series attractor, it was embedded in 3
dimensions, using (5),

XT
t = {x(t), x(t − 1), x(t − 2)} (5)

where x(t) is the sample drawn from the time series at time t. This results in a
trajectory of vectors in 3-space.

The fractal dimension was estimated using the information dimension based
on 15000 samples drawn from the trained RPLSOM2 in idle mode. Any output
sequence with fewer than 100 unique points were discarded, since this gives the
information dimension computation too little to work with to give a meaningful
result. Few unique points indicate a stable orbit or stable point, which would
indicate a non-fractal dimension. The number of discarded output sequences for
each input time series are given by Table 1.

Table 1. Number of output sequences discarded because of too few unique points.

Sequence Number discarded

Sine 920

Double sine 764

Simulated Mackey-Glass 718

Mackey-Glass 160

4.3 Lyapunov Exponent

The Lyapunov exponent was calculated using the excitation vector p from (2) of
the RPLSOM2 and the numerical algorithm described in [10]. The perturbation
value used was d0 = 10−12, and the algorithm was in idle mode for 300 iterations
before 15000 iterations were sampled and averaged to compute the Lyapunov
exponent estimate.

Towards a Universal Modeller of Chaotic Systems 311

5 Results

As can be seen from Table 2, the mean Lyapunov exponent for the map trained
with a chaotic time series is clearly less negative. This becomes even clearer from
Table 3, which shows the percentage of maps with positive Lyapunov exponents.

Table 2. Estimated Lyapunov exponent.

Sequence Mean Lyapunov exponent std err

Sine −0.2451 0.0054

Double sine −0.2326 0.0066

Simulated Mackey-Glass −0.1641 0.0035

Mackey-Glass −0.0636 0.0041

Table 3. Percentage of trained maps with a positive Lyapunov exponent

Sequence % positive exponents std err

Sine 2.3 0.5

Double sine 4.1 0.6

Simulated Mackey-Glass 2.1 0.5

Mackey-Glass 20.4 1.3

The connection between the chaos of the input sequence and the behaviour
of the map is also evident in the number of iterations before repeat, see Table 4.

Table 4. Mean number of iterations before map starts repeating

Sequence iterations std err

Sine 446 35

Double sine 997 57

Simulated Mackey-Glass 832 37

Mackey-Glass 2809 81

As shown Table 5 there is a clear difference in the dimension of the different
maps, and the Mackey-Glass, as expected, has the largest dimension value. The
sine-trained sequence has a surprisingly high dimension, even though it is the
simplest sequence. It is possibly an artefact of the high number of tests that had
to be discarded due to too few unique points, see Table 1.

312 E. Berglund

Table 5. Mean information dimension of map output

Sequence dimension std err

Sine 1.0181 0.0024

Double sine 1.0145 0.0010

Simulated Mackey-Glass 1.0115 0.0007

Mackey-Glass 1.0206 0.0006

6 Conclusion

It was observed that RPLSOM2 networks trained with a chaotic time series to
a significant degree exhibit the following characteristics:

– Longer repetition periods.
– Higher Lyapunov exponent.
– Higher probability of having a positive Lyapunov exponent.
– Higher fractal dimension.

when compared to networks that have been trained on non-chaotic but otherwise
similar time sequences. This is consistent with chaotic behaviour.

This is the first instance of the chaotic behaviour of a network output after
training depends on its training input.

References

1. Berglund, E.: Improved PLSOM algorithm. Appl. Intell. 32(1), 122–130 (2010)
2. Berglund, E., Sitte, J.: The parameterless self-organizing map algorithm. IEEE

Trans. Neural Netw. 17(2), 305–316 (2006)
3. Chappell, G.J., Taylor, J.G.: The temporal kohonen map. Neural Netw. 6(3), 441–

445 (1993)
4. Chen, L., Aihara, K.: Chaotic simulated annealing by a neural-network model with

transient chaos. Neural Netw. 8(6), 915–930 (1995)
5. Crook, N., Scheper, T.O.:. A novel chaotic neural network architecture. In: ESANN

2001 Proceedings, pp. 295–300, April 2001
6. Freeman, W.J.: Chaos in the brain: possible roles in biological intelligence. Int. J.

Intell. Syst. 10(1), 71–88 (1995)
7. Freeman, W.J., Barrie, J.M.: Chaotic oscillations and the genesis of meaning in

cerebral cortex. In: Buzsáki, G., Llinás, R., Singer, W., Berthoz, A., Christen,
Y. (eds.) Temporal Coding in the Brain. NEUROSCIENCE. Springer, Heidelberg
(1994). doi:10.1007/978-3-642-85148-3 2

8. Koskela, T., Varsta, M., Heikkonen, J., Kaski, K.:. Recurrent SOM with local linear
models in time series prediction. In: 6th European Symposium on Artificial Neural
Networks, pp. 167–172. D-facto Publications (1998)

9. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems.
Science 197, 287 (1977)

10. Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press, Oxford
(2003)

http://dx.doi.org/10.1007/978-3-642-85148-3_2

Towards a Universal Modeller of Chaotic Systems 313

11. Varstal, M., Millán, J.R., Heikkonen, J.: A recurrent self-organizing map for tempo-
ral sequence processing. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D.
(eds.) ICANN 1997. LNCS, vol. 1327, pp. 421–426. Springer, Heidelberg (1997).
doi:10.1007/BFb0020191

12. Voegtlin, T.: Recursive self-organizing maps. Neural Netw. 15(8–9), 979–991 (2002)
13. Wang, L., Li, S., Tian, F., Fu, X.: A noisy chaotic neural network for solving

combinatorial optimization problems: stochastic chaotic simulated annealing. IEEE
Trans. Syst. Man Cybern. Part B 34(5), 2119–2125 (2004)

http://dx.doi.org/10.1007/BFb0020191

An Approach for Generating Test Problems
of Constrained Global Optimization

Victor Gergel(B)

Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
gergel@unn.ru

Abstract. In the present paper, a novel approach to the constructing
of the test global optimization problems with non-convex constraints is
considered. The proposed approach is featured by a capability to con-
struct the sets of such problems for carrying out multiple computational
experiments in order to obtain a reliable evaluation of the efficiency of the
optimization algorithms. When generating the test problems, the neces-
sary number of constraints and desired fraction of the feasible domain
relative to the whole global search domain can be specified. The loca-
tions of the global minimizers in the generated problems are known a
priori that simplifies the evaluation of the results of the computational
experiments essentially. A demonstration of the developed approach in
the application to well-known index method for solving complex multiex-
tremal optimization problems with non-convex constraints is presented.

Keywords: Global optimization · Multiextremal functions · Non-
convex constraints · Test optimization problems · Numerical experiments

1 Introduction

In the present paper, the methods for generating the global optimization test
problems with non-convex constraints

ϕ(y∗) = min {ϕ(y) : y ∈ D, gi(y) ≤ 0, 1 ≤ i ≤ m}, (1)
D =

{
y ∈ RN : ai ≤ yi ≤ bi, 1 ≤ i ≤ N

}
(2)

are considered. The objective function ϕ(y) (henceforth denoted by gm+1(y))
and the left-hand sides gi(y), 1 ≤ i ≤ m, of the constraints are supposed to
satisfy the Lipschitz condition

|gi(y′) − gi(y′′)| ≤ Li ‖y′ − y′′‖ , y′, y′′ ∈ D, 1 ≤ i ≤ m + 1.

with the Lipschitz constants unknown a priori. The analytical formulae of the
problem functions may be unknown, i.e. these ones may be defined by an
algorithm for computing the function values in the search domain (so called
“black-box”-functions). It is supposed that even a single computing of a prob-
lem function value may be a time-consuming operation since it is related to the
necessity of numerical modeling in the applied problems (see, for example, [1–4]).
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 314–319, 2017.
https://doi.org/10.1007/978-3-319-69404-7_24

An Approach for Generating Test Problems 315

The evaluation of efficiency of the developed methods is one of the key prob-
lems in the optimization theory and applications. Unfortunately, it is difficult
to obtain any theoretical estimates in many cases. As a result, the comparison
of the methods is performed by carrying out the computational experiments on
solving some test optimization problems in most cases. In order to obtain a reli-
able evaluation of the efficiency of the methods, the sets of test problems should
be diverse and representative enough. The problem of choice of the test problems
has been considered in a lot of works (see, for example, [5–8]). Unfortunately, in
many cases, the proposed sets contain a small number of test problems, and it
is difficult to obtain the problems with desired properties. The most important
drawback consists of the fact that the constraints are absent in the proposed
test problems as a rule (or the constraints are relatively simple: linear, convex,
etc.).

A novel approach to the generation of any number of the global optimiza-
tion problems with non-convex constraints for performing multiple computa-
tional experiments in order to obtain a reliable evaluation of the efficiency of the
developed optimization algorithms has been proposed. When generating the test
problems, the necessary number of constraints and desired fraction of the feasi-
ble domain relative to the whole search domain can be specified. In addition, the
locations of the global minimizers in the generated problems are known a priori
that simplifies the evaluation of the results of the computational experiments
essentially.

2 Test Problem Classes

A well-known approach to investigating and comparing the multiextremal opti-
mization algorithms is based on testing these methods by solving a set of prob-
lems, chosen randomly from some specially designed class.

One generator for random samples of two-dimensional test functions has been
described in [9,10]. This generator produces two-dimensional functions according
to the formula

ϕ(y) = −
{(∑

7
i=1

∑
7
j =1Aijgij(y) + Bijhij(y)

)2 +

(∑
7
i=1

∑
7
j =1Cijgij(y) + Dijhij(y)

)2}1/2

, (3)

where gij(y) = sin(iπy1) sin(jπy2), hij(y) = cos(iπy1) cos(jπy2), y = (y1, y2) ∈
R2, 0 ≤ y1, y2 ≤ 1, and coefficients Aij , Bij , Cij ,Dij are taken uniformly in the
interval [−1, 1].

Let us consider a scheme for constructing the generator GCGen (Global
Constrained optimization problem Generator) which allows to generate the test
global optimization problems with m constraints. Obviously, one can generate
m + 1 functions, the first m of these ones can be considered as the constraints
and the (m + 1)-th function – as the objective one. However, in this case, the
conditional global minimizer of the objective function is unknown, and the pre-
liminary estimate of this one (for example, by scanning over a uniform grid)

316 V. Gergel

will be time-consuming. At the same time, one could not control the size of the
feasible domain. In particular, the constraints might be incompatible, and the
feasible domain might be empty.

Below, the rules, which allow formulating the constrained global optimization
problems so that:

– one could control the size of feasible domain with respect to the whole domain
of the parameters’ variation;

– the global minimizer of the objective function would be known a priori taking
into account the constraints;

– the global minimizer of the objective function without accounting for the
constraints would be out of the feasible domain (with the purpose of simulat-
ing the behavior of the constraints and the objective function in the applied
constrained optimization problems)

are proposed.
The rules defining the operation of the generator of the constrained global

optimization with the properties listed above consist in the following.

1. Let us generate m + 1 functions fj(y), y ∈ D, 1 ≤ j ≤ m + 1, by some
generating scheme (for instance, by using the formula (3)). The constraints
will be constructed on the base of the first m functions, the (m+1)-th function
will serve for the construction of the objective function.

2. In order to know the global minimizer in the constrained problem a priori,
let us make it to be the same to the global minimizer in the unconstrained
problem. To do so, let us perform a linear transformation of coordinates
so that the global minimizers of the constraint functions y∗

j , 1 ≤ j ≤ m,
would transit into the minimizer of the objective function y∗

m+1. This way,
the functions fj(y), 1 ≤ j ≤ m, with the same point of extremum will be
constructed.

3. In order to control the size of the feasible domain, let us construct an auxiliary
function (a combined constraint)

H(y) = max
1≤j≤m

fj(y)

and compute its values in the nodes of a uniform grid in the domain D;
the number of the grid nodes in the conducted experiments should be big
enough (in our experiments it was min

{
107, 102N

}
). Then, let us find the

maximum and minimum values of the function H(y) in the grid nodes, Hmax

and Hmin, respectively, and construct a characteristic s(i) – the number of
points, in which the values of H(y) fall into the range

[
Hmin,Hmin + i

Hmax − Hmin

100

]
, 1 ≤ i ≤ 100.

Then, the functions

fj(y) ≤ q = Hmin + i
Hmax − Hmin

100
, 1 ≤ j ≤ m,

An Approach for Generating Test Problems 317

where i is selected to be the minimal one satisfying the inequality

Δ ≤ s(i)
s(100)

will construct a problem with the feasible domain occupying the fraction
Δ, 0 < Δ < 1, of the whole search domain.

4. The test problem of global constrained optimization can be stated as follows

min
{
ϕ(y) : y ∈ D, gj(y) = fj(y) − q ≤ 0, 1 ≤ j ≤ m

}

where

ϕ(y) = fm+1(y) − β

m∑

j =1

max
{
0, fj(y) − q

}α
,

where α is a positive integer number and β > 0 is selected in such a way as
to provide the global minimum location of the function ϕ(y) in the infeasible
part of the search domain D. For instance, to guarantee this property the
value of β can be set as follows

β > (hmax − hmin)/(Hmax − q)α,

where hmax and hmin are the maximum and minimum values of the function
fm+1(y) respectively.

3 Some Numerical Results

As an illustration, the level lines of the objective functions and the zero-level
lines of the constraints for problems constructed on the base of functions (3)
with α = 3, β = 1 and the volume fractions of the feasible domains Δ = 0.4, 0.6
are shown in Fig. 1. The feasible domains are highlighted by green. The change
of volume and, at the same time, the increase of complexity of the feasible
domains are seen clearly. Figure 1(a,b) also shows the points of 628 and 764
trials, correspondingly, performed by the index method for solving constrained
global optimization problems until the required accuracy ε = 10−2 was achieved.
The conditional optimizer is shown as a red point and the best estimation of the
optimizer is shown as a blue point.

The index method has been proposed and developed in [11–13]. The approach
is based on a separate accounting for each constraint of the problem and is
not related to the use of the penalty functions. According to the rules of the
index method, every iteration includes a sequential checking of fulfillment of
the problem constraints at this point. The first occurrence of violation of any
constraint terminates the trial and initiates the transition to the next iteration.
This allows: (i) accounting for the information on each constraint separately and
(ii) solving the problems, in which the function values may be undefined out of
the feasible domain. It should be noted, that the index method can be efficiently
parallelized for accelerators [14,15].

318 V. Gergel

(a) (b)

Fig. 1. The problems based on functions (3)

4 Conclusion

This paper considers a method for generating global optimization test problems
with non-convex constraints that allows:

– to control the size of feasible domain with respect to the whole domain of the
parameters’ variation;

– to know a priori the conditional global minimizer of the objective function;
– to generate the unconditional global minimizer of the objective function out

of the feasible domain (to simulate the constraints and objective function in
the applied optimization problems).

The demonstration of the developed approach in application to well-known
index method for solving complex multiextremal optimization problems with
non-convex constraints is considered.

The developed approach allows generating any number of test global opti-
mization problems with non-convex constraints for performing multiple compu-
tational experiments in order to obtain a reliable evaluation of the efficiency
of the developed optimization algorithms. To develop the proposed approach
further, the development of new test classes for the optimization problems of
various dimensionalities is planned.

Acknowledgments. This study was supported by the Russian Science Foundation,
project No 16-11-10150.

An Approach for Generating Test Problems 319

References

1. Famularo, D., Pugliese, P., Sergeyev, Y.D.: A global optimization technique for
checking parametric robustness. Automatica 35, 1605–1611 (1999)

2. Kvasov, D.E., Menniti, D., Pinnarelli, A., Sergeyev, Y.D., Sorrentino, N.: Tuning
fuzzy power-system stabilizers in multi-machine systems by global optimization
algorithms based on efficient domain partitions. Electr. Power Syst. Res. 78(7),
1217–1229 (2008)

3. Kvasov, D.E., Sergeyev, Y.D.: Deterministic approaches for solving practical black-
box global optimization problems. Adv. Eng. Softw. 80, 58–66 (2015)

4. Modorskii, V.Y., Gaynutdinova, D.F., Gergel, V.P., Barkalov, K.A.: Optimization
in design of scientific products for purposes of cavitation problems. Solving global
optimization problems on GPU cluster. In: Simos, T.E. (ed.) ICNAAM 2015, AIP
Conference Proceedings, 1738, art. no. 400013 (2016)

5. Floudas, C.A., et al.: Handbook of Test Problems in Local and Global Optimiza-
tion. Kluwer Academic Publishers, Dordrecht (1999)

6. Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Software for generation of
classes of test functions with known local and global minima for global optimiza-
tion. ACM TOMS 29(4), 469–480 (2003)

7. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several
stochastic algorithms on selected continuous global optimization test problems. J.
Glob. Optim. 31(4), 635–672 (2005)

8. Addis, B., Locatelli, M.: A new class of test functions for global optimization. J.
Glob. Optim. 38(3), 479–501 (2007)

9. Grishagin, V.A.: Operating characteristics of some global search algorithms. Probl.
Stat. Optim. 7, 198–206 (1978). [in Russian]

10. Gergel, V., Grishagin, V., Gergel, A.: Adaptive nested optimization scheme for
multidimensional global search. J. Glob. Optim. 66(1), 35–51 (2016)

11. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Con-
straints. Sequential and Parallel Algorithms. Kluwer Academic Publishers,
Dordrecht (2000)

12. Sergeyev, Y.D., Famularo, D., Pugliese, P.: Index branch-and-bound algorithm for
Lipschitz univariate global optimization with multiextremal constraints. J. Glob.
Optim. 21(3), 317–341 (2001)

13. Barkalov, K.A., Strongin, R.G.: A global optimization technique with an adaptive
order of checking for constraints. Comput. Math. Math. Phys. 42(9), 1289–1300
(2002)

14. Barkalov, K., Gergel, V., Lebedev, I.: Use of Xeon Phi coprocessor for solving global
optimization problems. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp.
307–318. Springer, Cham (2015). doi:10.1007/978-3-319-21909-7 31

15. Barkalov, K., Gergel, V.: Parallel global optimization on GPU. J. Glob. Optim.
66(1), 3–20 (2016)

http://dx.doi.org/10.1007/978-3-319-21909-7_31

Global Optimization Using Numerical
Approximations of Derivatives

Victor Gergel and Alexey Goryachih(B)

Lobachevsky State University of Nizhni Novgorod,
Gagarin Prospect, 23, Nizhni Novgorod 603600, Russian Federation

gergel@unn.ru, a goryachih@mail.ru

http://www.unn.ru

Abstract. This paper presents an efficient method for solving global
optimization problems. The new method unlike previous methods, was
developed, based on numerical estimations of derivative values. The
effect of using numerical estimations of derivative values was studied
and the results of computational experiments prove the potential of such
approach.

Keywords: Multiextremal optimization · Global search algorithm ·
Lipschitz condition · Numerical derivatives · Computational experiments

1 Introduction

The global optimization problem is a problem of finding the minimum value of
a function ϕ(x)

ϕ(x∗) = min{ϕ(x) : x ∈ [a, b]}. (1)

For numerical solving of the problem (1) optimization methods usually gen-
erate a sequence of points yk which converges to the global optimum x∗.

Suppose that the optimized function ϕ(x) is multiextremal. Also assume that
the optimized function ϕ(x) satisfies the Lipschitz condition

|ϕ(x2) − ϕ(x1)| ≤ L |x2 − x1| , x1, x2 ∈ [a, b], (2)

where L > 0 is the Lipschitz constant. In addition to (2) also assume that the
first derivative of the optimized function ϕ

′
(x) satisfies the Lipschitz condition

∣
∣
∣ϕ

′
(x2) − ϕ

′
(x1)

∣
∣
∣ ≤ L1 ||x2 − x1 || , x1, x2 ∈ [a, b]. (3)

2 One-Dimensional Global Optimization Algorithm
Using Numerical Estimations of Derivatives

Conditions (2) and (3) allow estimating possible values of the optimized func-
tion ϕ(x) more accurately, improving efficiency of global optimization methods.
This paper presents an improvement of global optimization algorithms that uses
derivatives of the optimized function ϕ(x).
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 320–325, 2017.
https://doi.org/10.1007/978-3-319-69404-7_25

Global Optimization Using Numerical Approximations of Derivatives 321

2.1 Core One-Dimensional Global Search Algorithm
Using Derivatives

The new method that is proposed in this paper based on the Adaptive Global
Method with Derivatives (AGMD). This method was developed in the frame-
work of information-statistical theory of multiextremal optimization [4,5]. This
method was proposed in [1] and a similar approach was described in [3].

The computational scheme of the AGMD can be given as follows.
The first two iterations are executed at the boundary points of the interval

[a, b]. Assume that k (k > 1) iterations of global search have been performed,
each iteration includes a calculation of a value of the optimized function ϕ(x)
and its derivative ϕ

′
(x), this calculation will be further referred to as trial.

Next point of trial of (k+1) iteration is calculated according to the following
rules:

Rule 1. Renumber the points of previous trials by subscripts in increasing order

a = x0 < x1 < · · · < xi < · · · < xk = b.

Rule 2. Compute the estimation of the Lipschitz constant from (3) for the first
derivative of the optimized function

Mi = max

⎧

⎪⎪⎨

⎪⎪⎩

|ϕ′
(xi) − ϕ

′
(xi−1)|/|xi − xi−1|,

−2
[

ϕ(xi) − ϕ(xi−1) − ϕ
′
(xi−1)(xi − xi−1)

]

/(xi − xi−1)2,

2
[

ϕ(xi) − ϕ(xi−1) − ϕ
′
(xi)(xi − xi−1)

]

/(xi − xi−1)2,
(4)

M = max(Mi), 1 ≤ i ≤ k,

m =

{

rM, M > 0,

1, M = 0,

where r > 1 is the reliability parameter of the algorithm.
Rule 3. Construct a minorant for the optimized function on each interval

(xi, xi+1), 0 ≤ i ≤ k − 1:

ϕmin(x) =

⎧
⎪⎨

⎪⎩

ϕ(xi) + ϕ
′
(xi)(x − xi) − 0.5 m(x − xi)

2, x ∈ (xi, x
′
i),

Ai(x − x
′
i) + 0.5 m(x − x′

i)
2 + Bi, x ∈ [x

′
i, x

′′
i],

ϕ(xi+1) + ϕ
′
(xi+1)(x − xi+1) − 0.5 m(x − xi+1)

2, x ∈ (x
′′
i , xi+1),

(5)
in order to make the minorant and its first derivative continuous the intervals
(x

′
i, x

′′
i) and the values Ai and Bi are defined by the relation

x
′
i =

[ϕ(xi) − ϕ(xi+1)xi+1] + m(x2
i+1 − x2

i)/2 − md2x
m(xi+1 − xi) + (ϕ′(xi+1) − ϕ′(xi))

,

x
′′
i =

[ϕ(xi) − ϕ(xi+1)xi+1] + m(x2
i+1 − x2

i)/2 + md2x
m(xi+1 − xi) + (ϕ′(xi+1) − ϕ′(xi))

,

where the intervals (x
′
i, x

′′
i) and the values Ai and Bi are defined in order to

make the minorant and its first derivative continuous (see [1]).

322 V. Gergel and A. Goryachih

Rule 4. For each interval (xi, xi+1) (0 ≤ i ≤ k − 1) the characteristic

R(i) =

{

ϕmin(xmin
i), xmin

i ∈ [x
′
i, x

′′
i],

min(ϕmin(x′
i), ϕmin(x

′′
i)), xmin

i /∈ [x
′
i, x

′′
i],

where

xmin
i =

−ϕ
′
(xi−1) + m(x

′
i − xi−1) + mxi

m
.

Rule 5. Find the interval (xt−1, xt) with the minimal characteristic R(t)

R(t) = min {R(i) : 1 ≤ i ≤ k} . (6)

In the case when there exist several intervals satisfying (6) the interval with
the minimal number t is taken for certainty.

Rule 6. Compute the next point of the next trial xk+1 accordingly

xk+1 =

⎧

⎪⎨

⎪⎩

xmin
t , xmin

t ∈ [x
′
t, x

′′
t],

x
′
t, ϕmin(x′

t) ≤ ϕmin(x
′′
t),

x
′′
t , ϕmin(x′

t) > ϕmin(x
′′
t).

The stopping condition is defined by the following relation

|xt − xt−1| ≤ ε, (7)

where ε is the accuracy, ε > 0.

Convergence conditions of the algorithm are described in [1].

2.2 One-Dimensional Global Search Algorithm Using Numerical
Derivatives

As it was mentioned above, the derivative may be unknown or its values are
time-consuming to compute. In this paper the modification of the AGMD based
on numerical differentiation is proposed.

The following relations are used for numerical estimations of values of the
first derivative:

– left-hand and right-hand approximation of values of the first derivatives by
two values of the function

ϕ
′
i =

ϕ(xi+1) − ϕ(xi)
xi+1 − xi

, 0 ≤ i ≤ k − 1,

ϕ
′
i =

ϕ(xk) − ϕ(xk−1)
xk − xk−1

,

Global Optimization Using Numerical Approximations of Derivatives 323

– approximation of values of the first derivatives at left, right and center points
by three values of the function

ϕ
′
0 =

1
H2

1

(

−(2 + δ2)ϕ(x0) +
(1 + δ2)2

δ2
ϕ(x1) − 1

δ2
ϕ(x2)

)

,

ϕ
′
k =

1
Hk

k−1

(

δkϕ(xk−2) − (1 + δk)2

δk
ϕ(xk−1) +

(2 + δk)
δk

ϕ(xk)
)

,

for 1 ≤ i ≤ k − 1

ϕ
′
i =

1
Hi+1

i

(

−δi+1ϕ(xi−1) − (δ2i+1 − 1)
δi+1

ϕ(xi) +
1

δi+1
ϕ(xi+1)

)

,

where Hi+1
i = hi + hi+1, δi+1 = hi+1

hi
and hi = xi − xi−1. Additional details can

be found in [11].
The algorithm of AGMD with numerical estimations of values of the first

derivative will be further referred to as the Adaptive Global Method with Numer-
ical Derivatives (AGMND). In the scheme of AGMND we just replace ϕ

′
(xi) by

ϕ
′
i (0 ≤ i ≤ k), it forms two modifications of AGMND: AGMND-2 and AGMND-

3 with approximation of derivative values by 2 or 3 values of the optimized
functions correspondingly.

3 Results of Computational Experiments

For the first series of experiments five well known methods of global optimization
were compared: Galperin’s algorithm (GA), Piyavskii’s algorithm (PA), Global
Search Algorithm (GSA) proposed by Strongin, AGMD and AGMND with three
different scheme of approximation of derivative values by 2 and 3 values of the
function AGMND-2, AGMND-3 correspondingly.

Within the executed experiments a set of multiextremal functions from [1]
(it is also used in [2]) was chosen.

The accuracy of global search is equal to ε = 10−4(b−a). Galperin’s algorithm
and Piyavskii’s algorithm use the exact Lipschitz constant. For GSA parameter
of methods r is equal to 2. For AGMD and AGMND (AGMND-2, AGMND-3)
parameter of methods r is equal to 1.1. All results (except AGMND) were taken
from [1].

Table 1 contains the results of methods in term of the numbers of trials that
had to be performed before the stopping condition (7) (empty cells mean that
exact solutions were not found). The last row in the table contains the average
number of trials from nonempty cells.

As shown in the results of AGMND-3 and AGMD are quite close. It is impor-
tant to note that the method with numerical derivatives looks even more effective
since each trial in AGMD includes calculation of the function and its derivative
in the relations (4) and (5) from the scheme. But in some cases AGMND-3 did
not find the global minimum before the stopping condition (7) was satisfied.

324 V. Gergel and A. Goryachih

Table 1. The results of comparison of one-dimensional methods of global optimization

GA PA GSA AGMD AGMND-2 AGMND-3

1 377 149 127 16 25 17

2 308 155 135 13 30 14

3 581 195 224 50 136 67

4 923 413 379 15 27 12

5 326 151 126 14 40 18

6 263 129 112 22 51 28

7 383 153 115 13 32 14

8 530 185 188 47 147 42

9 314 119 125 12 33 16

10 416 203 157 12 30 -

11 779 373 405 29 58 29

12 746 327 271 23 48 16

13 1829 993 472 59 26 20

14 290 145 108 15 48 16

15 1613 629 471 41 71 63

16 992 497 557 49 27 25

17 1412 549 470 44 90 42

18 620 303 243 10 32 11

19 302 131 117 12 32 15

20 1412 493 81 24 51 24

Average 720.8 314.6 244.15 26 51.7 24.83

In the next experiment different values of the reliability parameter r were
compared with the following dynamic schemes for setting r: r = r∞ + d/k,
where k was a number of trials, r∞ = 1.1, d = 10.

Results of the experiment with the constant parameters r = 1.1, 1.5, 2.0 and
with variable parameters for AGMND-3 are presented in Table 2. These results
show that the proposed dynamic scheme are the most efficient.

Table 2. The results of comparison of different schemes for setting the reliability
parameter

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Average

1.0 17 14 67 12 18 28 14 43 16 - 29 16 20 16 63 25 - 11 15 24 24.89

1.5 21 15 66 16 22 27 16 64 20 - 28 25 2 17 38 32 - 14 17 28 27.17

2.0 23 18 77 20 24 28 20 72 22 21 30 30 29 28 35 38 47 16 18 28 31.2

r∞ + d/k 18 14 49 16 18 24 17 47 16 16 30 21 25 17 34 30 32 15 15 25 23.95

Global Optimization Using Numerical Approximations of Derivatives 325

4 Conclusion

In the framework of the proposed approach to solving global optimization prob-
lems, the algorithm of AGMND-3 showed results close to results of AGMD. The
method with numerical derivatives looks even more effective since each trial in
AGMD includes calculation of the function and its derivative.

For further research it is necessary to continue computational experiments on
higher-dimensional optimization problems, as well as to provide some theoretical
basis for AGMND.

Acknowledgments. This research was supported by the Russian Science Foundation,
project No 16-11-10150” Novel efficient methods and software tools for time-consuming
decision making problems using supercomputers of superior performance.”

References

1. Gergel, V.P.: A method of using derivatives in the minimization of multiextremum
functions. Comput. Math. Math. Phys. 36(6), 729–742 (1996)

2. Sergeyev, Y.D., Mukhametzhanov, M.S., Kvasov, D.E., Lera, D.: Derivative-free
local tuning and local improvement techniques embedded in the univariate global
optimization. J. Optim. Theor. Appl. 171(1), 186–208 (2016)

3. Sergeyev, Y.D.: Global one-dimensional optimization using smooth auxiliary func-
tions. Math. Program. 81(1), 127–146 (1998)

4. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Con-
straints: Sequential and Parallel Algorithms. Kluwer Academic Publishers,
Dordrecht (2000)

5. Strongin, R.G.: Numerical methods in multiextremal problems: information-
statistical algorithms. Nauka, Moscow (1978). (in Russian)

6. Barkalov, K., Gergel, V.P.: Parallel global optimization on GPU. J. Global Optim.
66(1), 3–20 (2016)

7. Gergel, V.P., Kuzmin, M.I., Solovyov, N.A., Grishagin, V.A.: Recognition of surface
defects of cold-rolling sheets based on method of localities. Int. Rev. Automat.
Control 8(1), 51–55 (2015)

8. Barkalov, K., Gergel, V., Lebedev, I.: Use of xeon phi coprocessor for solving global
optimization problems. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp.
307–318. Springer, Cham (2015). doi:10.1007/978-3-319-21909-7 31

9. Paulavicius, R., Zilinskas, J.: Advantages of simplicial partitioning for Lipschitz
optimization problems with linear constraints. Optim. Lett. 10(2), 237–246 (2016)

10. Paulavicius, R., Sergeyev, Y.D., Kvasov, D.E., Zilinskas, J.: Globally-biased DIS-
IMPL algorithm for expensive global optimization. J. Global Optim. 59(2–3), 545–
567 (2014)

11. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation, 2nd edn. Society for Industrial and Applied Mathe-
matics, Philadelphia (2008)

http://dx.doi.org/10.1007/978-3-319-21909-7_31

Global Optimization Challenges in Structured
Low Rank Approximation

Jonathan Gillard1(B) and Anatoly Zhigljavsky1,2

1 School of Mathematics, Cardiff University, Cardiff CF24 4AG, UK
{gillardjw,zhigljavskyaa}@cardiff.ac.uk

2 Lobachevsky Nizhny Novgorod State University,
23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia

Abstract. In this paper, we investigate the complexity of the numerical
construction of the so-called Hankel structured low-rank approximation
(HSLRA). Briefly, HSLRA is the problem of finding a rank r approxi-
mation of a given Hankel matrix, which is also of Hankel structure.

Keywords: Structured low rank approximation · Hankel matrices ·
Time series analysis

1 Statement of the Problem

The aim of low-rank approximation methods is to approximate a matrix con-
taining observed data, by a matrix of pre-specified lower rank r. The rank of
the matrix containing the original data can be viewed as the order of complex-
ity required to fit to the data exactly, and a matrix of lower complexity (lower
rank) ‘close’ to the original matrix is often required. A further requirement is
that if the original matrix of the observed data is of a particular structure, then
the approximation should also have this structure. Let L, K and r be given
positive integers such that 1 ≤ r < L ≤ K. Denote the set of all real-valued
L × K matrices by R

L×K . Let Mr = ML×K
r ⊂ R

L×K be the subset of RL×K

containing all matrices with rank ≤ r, and H = HL×K ⊂ R
L×K be the subset of

R
L×K containing matrices of some known structure. The set of structured L×K

matrices of rank ≤ r is A = Mr ∩ H. Assume we are given a matrix X∗ ∈ H.
The problem of structured low rank approximation (SLRA) is:

f(X) → min
X∈A

(1)

where f(X) = d(X,X∗) is a squared distance on R
L×K × R

L×K . In this paper
we only consider the case where H is the set of Hankel matrices and thus refer
to (1) as HSLRA.

One distance to define f in (1) is given by

||X||2Q,R = TraceQXRXT , (2)

where Q and R are positive definite matrices. We will call this norm the (Q,R)-
norm. Note that if Q and R are identity matrices then (2) defines the Frobenius
norm (which is the most popular choice).
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 326–330, 2017.
https://doi.org/10.1007/978-3-319-69404-7_26

Optimization Challenges in SLRA 327

2 Optimization Challenges

2.1 Challenge 1: Selecting f

The selection of the distance f represents one of the challenges in HSLRA. To
motivate this challenge, consider a problem of modelling a time series. Assume
we are given a vector Y = (y1, . . . , yN)T ∈ R

N . A common problem of time
series analysis is

ρ(S, Y) → min
S∈L≤r

(3)

where ρ(·, ·) is a distance on R
N × R

N and L≤r ⊂ R
N is the set of vectors in

R
N which satisfy a linear recurrence relation (LRR) of order ≤ r; we say that a

vector S = (s1, . . . , sN)T satisfies an LRR of order ≤ r if

sn = a1sn−1 + . . . + arsn−r, for all n = r + 1, . . . , N, (4)

where a1, . . . , ar are some real numbers with ar �= 0. The model (4) includes, as
a special case, the model of a sum of exponentially damped sinusoids:

sn =
q∑

�=1

a� exp (d�n) sin (2πω�n + φ�), n = 1, . . . , N, (5)

where typically q = r/2.
The optimization problem (3) can be equivalently formulated as a matrix

optimization problem, where vectors in (3) are represented by L × K Hankel
matrices. With a vector Z = (z1, . . . , zN)T of size N and given L < N we
associate an L × K Hankel matrix

XZ =

⎛

⎜⎜⎜⎝

z1 z2 · · · zK

z2 z3 · · · zK+1

...
...

...
...

zL zL+1 · · · zN

⎞

⎟⎟⎟⎠ ∈ H ,

where K = N − L + 1. We also write this matrix as XZ = H(Z) and note that
H makes a one-to-one correspondence between the spaces R

N+1 and H so that
for any matrix X ∈ H we may uniquely define Z = H

−1(X) with X = H(Z).
The matrix version of the optimization problem (3) can now be written as

d(X,XY) → min
X∈A

(6)

where d(·, ·) is a distance on R
L×K ×R

L×K and A is the set of all L×K Hankel
matrices of rank ≤ r. This is the optimization problem (1).

The optimization problems (3) and (1) are equivalent if the distance functions
ρ(·, ·) in (3) and d(·, ·) in (1) are such that

ρ(Z,Z ′) = c · d(H(Z),H(Z ′)) (7)

328 J. Gillard and A. Zhigljavsky

for Z,Z ′ ∈ R
N , where c > 0 is arbitrary. It can be assumed that c = 1 with-

out loss of generality. The standard choice of the distance d(·, ·) in the HSLRA
problem (1) is d(X,X′) = ‖X − X′‖F , where ‖ · ‖F is the Frobenius norm. The
primary reason for this choice is the availability of the singular value decomposi-
tion (SVD) which constitutes the essential part of many algorithms attempting
to solve the HSLRA problem (1).

However, if the distance d(X,X′) in (1) is d(X,X′) = ‖X − X′‖F then the
distance ρ in (3) takes a particular form. One would prefer to define the distance
function ρ(·, ·) in (3) and acquire the distance d(·, ·) for (1) from (7), rather
than vice-versa, which is a common practice. Different distances ρ(·, ·) can be
used and may be desired. There is one serious problem, however, related to
the complexity of the resulting HSLRA problem (1). If d(·, ·) is defined by the
Frobenius norm then the HSLRA problem (1), despite being difficult, is still
considered as solvable since there is a very special tool available at intermediate
stages, the SVD. If d(·, ·) does not allow the use of SVD or similar tools then
the HSLRA problem (1) becomes practically unsolvable (except, of course, for
some very simple cases).

Work in the paper [6] extends the choice of the norms that define distances
in (1) and (3) preserving the availability of the SVD. These norms allow the
construction of exactly the same algorithms that can be constructed for the
Frobenius norm and, since the family of the norms considered is rather wide,
we are able to exactly or approximately match any given distance in (3). More
precisely, in [6] we consider the class of distances in (3) of the form ρ(Z, Z ′) =
‖Z − Z ′‖W with

‖Z‖2W = ZTWZ =
N∑

n=1

wnz2n . (8)

Further challenges arise when observations of the time series Y are classified
as ‘exact’ or ‘missing’. In the former case the observation would require infinite
weight, whilst in the latter the observation would require zero weight. Both
cases give rise to difficulties computing with infinite and infinitesimals, and there
is need for methodology that allows one to represent infinite and infinitesimal
numbers by a finite number of symbols to execute arithmetical operations. There
is great potential for the use of grossone and the infinity computer (see [11] for
more details on these topics).

2.2 Challenge 2: Complexity of the Optimization Problem

Natural approaches for solving the initial optimization problem (1) would use
global optimization techniques for optimizing parameters in either representa-
tion (4) or (5). In the case of (4), the parameters are the coefficients of the
LRR: a1, . . . , ar, and the initial values s1, . . . , sr−1. If we were to use (5) then
the set of parameters is {(a�, d�, ω�, φ�), � = 1, . . . , q}. In both cases, the para-
metric optimization problem is extremely difficult with multi-extremality and
large Lipschitz constants of the objective functions [4]. The number of local
minima is known to increase linearly with the number of observations. Many of

Optimization Challenges in SLRA 329

the existing algorithms depend on local optimization based algorithms and do
not move significantly from a starting point, see [2,3], and [5]. The difficulty of
solving parametric versions of (3) is well understood and that is the reason why
HSLRA described by (1), the equivalent matrix formulation of (3), is almost
always considered instead of (3). As already stated, there is little work in the
literature describing how to use weights in HSLRA. However, some recent work
has commented that even unstructured weighted low-rank approximation is dif-
ficult, see [7]. Increasing N leads to more erratic cost function; as N increases,
the number of local minima also increases. In many examples the number of
local minimizers increases linearly in N .

2.3 Challenge 3: Construction of Numerical Methods

One of the earliest known approaches to obtain a solution of (1) is the so-called
Cadzow iterations which are the alternating projections of the matrices, starting
at a given structured matrix, to the set of matrices of rank ≤ r (by performing
a singular value decomposition) and to the set of Hankel matrices (by diagonal
averaging). Despite the fact that Cadzow iterations guarantee convergence to
the set A, they can easily be shown to be sub-optimal (see [1]). They remain
popular due to their simplicity. One Cadzow iteration corresponds to the tech-
nique known as singular spectrum analysis, which has been an area of research
developed by the PI (see for example [1]). The main recent contributions to
finding a solution of (1) are described below.

1. Structured total least norm. Proposed by Park et al. [9], this class of methods
is aimed at rank reduction of a given Hankel matrix by 1 (that is, r = L−1).

2. Fitting a sum of damped sinusoids [10]. Methods in this category parameterize
the vector of observations as a sum of damped sinusoids and use the set of
unknown parameters as a feasible domain. This has been discussed earlier.

3. Local optimization methods starting at an existing approximation. Markovsky
and co-authors [8] have developed methodology and software to locally
improve an existing solution (or approximate solution) of (1).

In summary all of these methods suffer from a number of flaws [3] (i) the
rank of the matrix can only be reduced by one, (ii) they are based on local
optimizations and may not move significantly from this initial approximation
and (iii) none have guaranteed convergence to the global optimum. Additionally
(and importantly) the focus in the literature has been on the case when the
distance f in (1) is taken to be the Frobenius norm (that is Q and R being the
identity matrices).

Acknowledgements. This work was supported by the project No. 15-11-30022
“Global optimization, supercomputing computations, and applications” of the Russian
Science Foundation.

330 J. Gillard and A. Zhigljavsky

References

1. Gillard, J.: Cadzow’s basic algorithm, alternating projections and singular spec-
trum analysis. Stat. Interface 3(3), 335–343 (2010)

2. Gillard, J., Zhigljavsky, A.: Analysis of structured low rank approximation as an
optimization problem. Informatica 22(4), 489–505 (2011)

3. Gillard, J., Zhigljavsky, A.: Optimization challenges in the structured low rank
approximation problem. J. Global Optim. 57(3), 733–751 (2013)

4. Gillard, J.W., Kvasov, D.: Lipschitz optimization methods for fitting a sum of
damped sinusoids to a series of observations. Stat. Interface 10(1), 59–70 (2017)

5. Gillard, J., Zhigljavsky, A.: Stochastic algorithms for solving structured low-rank
matrix approximation problems. Commun. Nonlinear Sci. Numer. Simul. 21(1),
70–88 (2015)

6. Gillard, J., Zhigljavsky, A.: Weighted norms in subspace-based methods for time
series analysis. Numer. Linear Algebra Appl. 23(5), 947–967 (2016)

7. Gillis, N., Glineur, F.: Low-rank matrix approximation with weights or missing
data is NP-hard. SIAM J. Matrix Anal. Appl. 32(4), 1149–1165 (2011)

8. Markovsky, I.: Low Rank Approximation: Algorithms, Implementation, Applica-
tions. Springer, London (2012)

9. Park, H., Zhang, L., Rosen, J.B.: Low rank approximation of a Hankel matrix by
structured total least norm. BIT Numer. Math. 39(4), 757–779 (1999)

10. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On the least-squares fit-
ting of data by sinusoids. In: Pardalos, P.M., Zhigljavsky, A., Žilinskas, J. (eds.)
Advances in Stochastic and Deterministic Global Optimization, Chap. 11. SOIA,
vol. 107, pp. 209–226. Springer, Cham (2016). doi:10.1007/978-3-319-29975-4 11

11. Sergeyev, Y.D.: Numerical computations and mathematical modelling with infinite
and infinitesimal numbers. J. Appl. Math. Comput. 29(1–2), 177–195 (2009)

http://dx.doi.org/10.1007/978-3-319-29975-4_11

A D.C. Programming Approach
to Fractional Problems

Tatiana Gruzdeva(B) and Alexander Strekalovsky

Matrosov Institute for System Dynamics and Control Theory of SB RAS,
Lermontov Str., 134, 664033 Irkutsk, Russia

{gruzdeva,strekal}@icc.ru

Abstract. This paper addresses a rather general fractional optimization
problem. There are two ways to reduce the original problem. The first
one is a solution of an equation with the optimal value of an auxiliary
d.c. optimization problem with a vector parameter. The second one is to
solve the second auxiliary problem with nonlinear inequality constraints.
Both auxiliary problems turn out to be d.c. optimization problems, which
allows to apply Global Optimization Theory [11,12] and develop two cor-
responding global search algorithms that have been tested on a number
of test problems from the recent publications.

Keywords: Fractional optimization · Nonconvex problem · Difference
of two convex functions · Equation with vector parameter · Global search
algorithm

1 Introduction

We consider the following problem of the fractional optimization [1,10]

(Pf) f(x) :=
m∑

i=1

ψi(x)
ϕi(x)

↓ min
x

, x ∈ S,

where S ⊂ IRn is a convex set and ψi : IRn → IR, ϕi : IRn → IR,

(H0) ψi(x) > 0, ϕi(x) > 0 ∀x ∈ S, i = 1, . . . , m.

The fractional programming problems arise in various economic applications
and real-life problems [10]. However, it is well-known that the sum-of-ratios
program is NP-complete [4]. Surveys on methods for solving this problem can
be found in [1,10], but the development of new efficient methods for a frac-
tional program still remains an important field of research in mathematical
optimization.

In the recent two decades, we have succeeded in developing the Global Search
Theory, which perfectly fits optimization theory and proved to be rather efficient
in terms of computations [11,12]. Now we are going to apply this theory to
solving fractional programming problems.
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 331–337, 2017.
https://doi.org/10.1007/978-3-319-69404-7_27

332 T. Gruzdeva and A. Strekalovsky

Generalizing the Dinkelbach’s idea [3], we propose to attack such problems
with the help of reduction of the fractional program (Pf) to solving an equation
with the optimal value function of a d.c. minimization problem and the vector
parameter that satisfies the nonnegativity assumption. To this end, we have to
use the solution to the following d.c. minimization problem, treated here as an
auxiliary one:

(DC) f(x) = g(x) − h(x) ↓ min, x ∈ D,

where g(·), h(·) are convex functions, and D is a convex set, D ⊂ IRn.
Next, we also propose reduction of the sum-of-ratios problem to the prob-

lem of minimizing a linear function on the nonconvex feasible set given by d.c.
functions. In this case, we need to solve the following nonconvex problems

(DCC) f0(x) ↓ min
x

, x ∈ S, fi(x) = gi(x) − hi(x) ≤ 0, i = 1, . . . n,

where gi(·), hi(·) i = 1, . . . n, are convex functions, S ⊂ IRn, f0(·) is a continuous
function.

Thus, based on the solution of these two classes of d.c. optimization problems
we developed two new methods for solving a general fractional program.

The outline of the paper is as follows. In Sect. 2, instead of considering a
fractional program directly, we propose to combine solving of the corresponding
d.c. minimization problem (DC) with a search with respect to the vector para-
meter. In Sect. 3, we substantiate the reduction of the sum-of-ratios fractional
problem to the optimization problem with nonconvex constraints (DCC). Finally,
in Sect. 4, we show some comparative computational testing of two approaches
on instances with a small number of variables and terms in the sum.

2 Reduction to the D.C. Minimization Problem

Let us consider the following parametric optimization problem

(Pα) Φ(x, α) :=
m∑

i=1

[ψi(x) − αiϕi(x)] ↓ min
x

, x ∈ S,

where α = (α1, . . . , αm)� ∈ IRm is the vector parameter.
Further, let us introduce the function V(α) of the optimal value to Prob-

lem(Pα): V(α) := inf
x

{Φ(x, α) | x ∈ S} = inf
x

{
m∑

i=1

[ψi(x) − αiϕi(x)] : x ∈ S

}
.

In addition, suppose that the following assumptions are fulfilled:

(H1)
(a) V(α) > −∞ ∀α ∈ K,where K is a convex set from IRm;
(b) ∀α ∈ K ⊂ IRm there exists a solution z = z(α) to Problem (Pα)

In what follows, we say that the data of Problem (Pf) satisfy “the nonnega-
tivity condition”, if the following inequalities hold

(H(α)) ψi(x) − αiϕi(x) ≥ 0 ∀x ∈ S, i = 1, . . . , m.

A D.C. Programming Approach to Fractional Problems 333

Theorem 1. [5] Suppose that in Problem (Pf) ψi(x) > 0, ϕi(x) > 0
and the assumption (H1) is satisfied. In addition, let there exist a vector
α0 = (α01, . . . , α0m)� ∈ K ⊂ IRm at which “the nonnegativity condition”
(H(α0)) holds. Besides, suppose that in Problem (Pα0) the following equality
takes place:

V(α0) : = inf
x

{
m∑

i=1

[ψi(x) − α0iϕi(x)] : x ∈ S

}
= 0. (1)

Then, any solution z = z(α0) to Problem (Pα0) is a solution to Problem (Pf),
so that z ∈ Sol(Pα0) ⊂ Sol(Pf).

According to Theorem 1, in order to verify the equality (1), we should be able
to find a global solution to Problem (Pα) for every α ∈ IRm

+ . Since ψi(·), ϕi(·),
i = 1, . . . , m, are d.c. functions it can be readily seen that Problem (Pα) belongs
to the class of d.c. minimization. As a consequence, in order to solve Prob-
lem (Pα), we can apply the Global Search Theory [11,12].

Hence, instead of solving Problem (Pf), we propose to combine solving of
Problem (Pα) with a search with respect to the parameter α ∈ IRm

+ in order to
find the vector α0 ∈ IRm

+ such that V(α0) = 0.
Denote Φi(x) := ψi(x) − αk

i ϕi(x), i = 1, . . . , m. Let [0, α+] be a segment for
varying α. To choose α+ we should take into account that due to (H(α)) and

(H0), we have ∀i = 1, . . . , m : αi ≤ fi(x) � ψi(x)
φi(x)

≤
m∑

i=1

ψi(x)
φi(x)

= f(x) ∀x ∈ S,

so, for example, α+ can be chosen as α+
i = fi(x0), i = 1, . . . , m.

Method for solving the equation V(α) = 0

Step 0. (Initialization) k = 0, vk = 0, uk = α+, αk = α+

2 ∈ [vk, uk].
Step 1. Find a solution z(αk) to Problem (Pαk) using the global search strategy

for d.c. minimization [11,12].
Step 2. (Stopping criterion) If Vk := V(αk) = 0 and min

i
Φi(z(αk)) ≥ 0, then

STOP: z(αk) ∈ Sol(Pf) (in virtue of Theorem 1).
Step 3. If Vk >0, then set vk+1 = αk, αk+1 = 1

2 (uk + αk), k = k + 1 and go to
Step 1.

Step 4. If Vk <0, then set uk+1 = αk, αk+1 = 1
2 (vk + αk), k = k + 1 and go to

Step 1.
Step 5. If min

i
Φi(z(αk)) < 0, then set αk+1

i = ψi(z(α
k))

ϕi(z(αk))
∀i : Φi(z(αk)) < 0,

αk+1
i = αk

i ∀i : Φi(z(αk)) ≥ 0. In addition, set vk+1 = 0, uk+1 = tk+1α
k+1,

where tk+1 =
α+

max
i

αi
, k = k + 1, and return to Step 1.

Let us emphasize the fact that the algorithm for solving Problem (Pf) of
fractional optimization consists of 3 basic stages: the (a) local and (b) global
searches in Problem (Pα) with a fixed vector parameter α and (c) the method
for finding the vector parameter α at which the optimal value of Problem (Pα)
is zero.

334 T. Gruzdeva and A. Strekalovsky

3 Reduction to the Problem with D.C. Constraints

In this section we reduce the fractional program to the optimization problem
with a nonconvex feasible set.

Proposition 1. [6] Let the pair (x∗, α∗) ∈ IRn × IRm be a solution to the fol-
lowing problem:

m∑

i=1

αi ↓ min
(x,α)

, x ∈ S,
ψi(x)
ϕi(x)

≤ αi, i = 1, . . . , m. (2)

Then
ψi(x∗)
ϕi(x∗)

= α∗i, i = 1, . . . , m.

Corollary 1. For any solution (x∗, α∗) ∈ IRn × IRm to the problem (2), the
point x∗ will be a solution to Problem (Pf).

The inequality constraints in the problem (2) can be replaced by the equiv-
alent constraints ψi(x) − αiϕi(x) ≤ 0, i = 1, . . . , m, since ϕi(x) > 0 ∀x ∈ S.
This yields the following problem with m nonconvex constraints:

(P) f0 :=
m∑

i=1

αi ↓ min
(x,α)

, x ∈ S, fi := ψi(x) − αiϕi(x) ≤ 0, i = 1, . . . , m.

We intend to solve this problem using the exact penalization approach for d.c.
optimization developed in [13]. Therefore, we introduce the penalized problem

(Pσ) θσ(x) = f0(x) + σ max{0, fi(x), i ∈ I} ↓ min, x ∈ S.

It can be readily seen that the penalized function θσ(·) is a d.c. function. The the-
ory enables us to construct an algorithm which consists of two principal stages:
(a) local search, which provides an approximately critical point; (b) procedures
of escaping from critical points.

Actually, since σ > 0, θσ(x) = Gσ(x)−Hσ(x), Hσ(x) := h0(x)+σ
∑
i∈I

hi(x),

Gσ(x) := θσ(x)+Hσ(x) = g0(x)+σ max

{
m∑

i=1

hi(x);max
i∈I

[gi(x) +
∑

j∈I, j �=i

hj(x)]

}
,

it is clear that Gσ(·) and Hσ(·) are convex functions.
Let the Lagrange multipliers, associated with the constraints and correspond-

ing to the point zk, k ∈ {1, 2, ...}, be denoted by λ := (λ1, . . . , λm) ∈ IRm.

Global search scheme

Step 1. Using the local search method from [14], find a critical point zk in (P).

Step 2. Set σk :=
m∑

i=1

λi. Choose a number β : inf(Gσ, S) ≤ β ≤ sup(Gσ, S).

Choose an initial β0 = Gσ(zk), ζk = θσ(zk).
Step 3. Construct a finite approximation

Rk(β) = {v1, . . . , vNk | Hσ(vi) = β + ζk, i = 1, . . . , Nk, Nk = Nk(β)}
Step 4. Find a δk-solution ūi of the following Linearized Problem:

(PσLi) Gσ(x) − 〈∇Hσ(vi), x〉 ↓ min
x

, x ∈ S.

A D.C. Programming Approach to Fractional Problems 335

Step 5. Starting from the point ūi, find a KKT-point ui by the local search
method from [14].

Step 6. Choose the point uj : f(uj) ≤ min{f0(ui), i = 1, ..., N}.
Step 7. If f0(uj) < f0(zk), then set zk+1 = uj , k = k + 1 and go to Step 2.
Step 8. Otherwise, choose a new value of β and go to Step 3.

According to Corollary 1, the point z∗ resulting from the global search strat-
egy will be a solution to the original fraction program. It should be noted that,
in contrast to the approach from Sect. 2, αi will be found simultaneously with
the solution vector x.

4 Computational Simulations

Two approaches from above for solving the fractional programs (Pf) via d.c. opti-
mization problems were successfully tested. The algorithm based on the method
for solving the equation V(α) = 0 from Sect. 2 (F1-algorithm) and the algorithm
based on the global search scheme from Sect. 3 (F2-algorithm) were applied to an
extended set of test examples for the various starting points. Several instances
of fractional problems from [2,7–9] with a small number of variables and a small
number of terms in the sum were used for computational experiments. Addition-
ally, randomly generated fractional problems with linear or quadratic functions
in the numerators and the denominators of ratios with up to 200 variables and
200 terms in the sum were successfully solved. All computational experiments
were performed on the Intel Core i7-4790K CPU 4.0 GHz. All convex auxiliary
problems (linearized problems) on the steps of F1-, F2-algorithms were solved
by the software package IBM ILOG CPLEX 12.6.2.

Table 1 presents results of some comparative computational testing of two
approaches (F1-, F2-algorithms) and employs the following designations: name
is the test example name; n is the number of variables (problem’s dimension);
m is the number of terms in the sum; f(x0) is the value of the goal function
to Problem (Pf) at the starting point; f(z) is the value of the function at the
solution provided by the algorithms; it is the number of iterations of F1- or F2-
algorithms; Time stands for the CPU time of computing (seconds).

Observe that one iteration of F1-algorithm and one iteration of F2-algorithm
differ in processing time and, therefore, cannot be compared. In the F1-algorithm
it denotes the number of times that we varied the parameter α, while in the F2-
algorithm it stands for the number of iterations of the global search in solving
the nonconvex Problem (Pσ).

Computational experiments showed that solving of the fraction program
should combine the two approaches. For example, we can use the solution to
Problem (Pσ) to search for the parameter α that reduces the optimal value
function of Problem (Pα) to zero.

336 T. Gruzdeva and A. Strekalovsky

Table 1. Performance of two algorithms on test fractional program.

name n m f(x0) f(z) F1-algorithm F2-algorithm

it Time it Time

Problem [9] 2 1 0.333333 0.333333 19 0.02 1 0.01

0.750000 0.333333 18 0.02 2 0.01

Problem [8] 3 1 0.943038 0.931298 22 0.03 4 0.03

1.054217 0.931298 23 0.04 5 0.03

Problem [2] 2 2 4.293433 1.428571 213 0.16 2 9.82

1.627273 1.428571 108 0.08 3 0.07

Problem 1 [7] 2 2 3.524024 2.829684 191 0.26 3 0.02

2.829684 2.829684 19 0.05 1 0.02

Problem 2 [7] 3 3 3.000000 3.000000 18 0.04 1 0.04

3.136952 3.000000 321 0.24 7 0.11

Problem 3 [7] 3 3 3.000000 2.889069 333 0.34 2 0.05

2.904068 2.889069 259 0.26 2 0.05

5 Conclusions

In this paper, we showed how fractional programs can be solved by applying the
Global Search Theory of d.c. optimization. The methods developed were justified
and tested on an extended set of problems with linear or quadratic functions in
the numerators and denominators of the ratios.

Acknowledgments. This work has been supported by the Russian Science Founda-
tion, Project No. 15-11-20015.

References

1. Bugarin, F., Henrion, D., Lasserre, J.-B.: Minimizing the sum of many rational
functions. Math. Prog. Comput. 8, 83–111 (2016)

2. Chun-feng, W., San-yang, L.: New method for solving nonlinear sum of ratios
problem based on simplicial bisection. Syst. Eng. Theory Pract. 33(3), 742–747
(2013)

3. Dinkelbach, W.: On nonlinear fractional programming. Manage. Sci. 13, 492–498
(1967)

4. Freund, R.W., Jarre, F.: Solving the sum-of-ratios problem by an interior-point
method. J. Global Optim. 19(1), 83–102 (2001)

5. Gruzdeva, T.V., Strekalovsky, A.S.: An approach to fractional programming via
d.c. optimization. AIP Conf. Proc. 1776, 090010 (2016)

6. Gruzdeva, T.V., Strekalovsky, A.S.: An approach to fractional programming via
d.c. constraints problem: local search. In: Kochetov, Y., Khachay, M., Beresnev,
V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 404–417.
Springer, Cham (2016). doi:10.1007/978-3-319-44914-2 32

http://dx.doi.org/10.1007/978-3-319-44914-2_32

A D.C. Programming Approach to Fractional Problems 337

7. Ma, B., Geng, L., Yin, J., Fan, L.: An effective algorithm for globally solving a
class of linear fractional programming problem. J. Softw. 8(1), 118–125 (2013)

8. Pandey, P., Punnen, A.P.: A simplex algorithm for piecewise-linear fractional pro-
gramming problems. European J. of Oper. Res. 178, 343–358 (2007)

9. Raouf, O.A., Hezam, I.M.: Solving fractional programming problems based on
swarm intelligence. J. Ind. Eng. Int. 10, 56–66 (2014)

10. Schaible, S., Shi, J.: Fractional programming: the sum-of-ratios case. Optim. Meth-
ods Softw. 18, 219–229 (2003)

11. Strekalovsky, A.S.: On solving optimization problems with hidden nonconvex
structures. In: Rassias, T.M., Floudas, C.A., Butenko, S. (eds.) Optimization in
Science and Engineering, pp. 465–502. Springer, New York (2014). doi:10.1007/
978-1-4939-0808-0 23

12. Strekalovsky, A.S.: Elements of nonconvex optimization. Nauka, Novosibirsk
(2003). [in Russian]

13. Strekalovsky, A.S.: On the merit and penalty functions for the d.c. optimization.
In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.)
DOOR 2016. LNCS, vol. 9869, pp. 452–466. Springer, Cham (2016). doi:10.1007/
978-3-319-44914-2 36

14. Strekalovsky, A.S.: On local search in d.c. optimization problems. Appl. Math.
Comput. 255, 73–83 (2015)

http://dx.doi.org/10.1007/978-1-4939-0808-0_23
http://dx.doi.org/10.1007/978-1-4939-0808-0_23
http://dx.doi.org/10.1007/978-3-319-44914-2_36
http://dx.doi.org/10.1007/978-3-319-44914-2_36

Objective Function Decomposition
in Global Optimization

Oleg V. Khamisov(B)

Melentiev Energy Systems Institute SB RAS, Lermontov, Russia
khamisov@isem.irk.ru

Abstract. In this paper we consider global optimization problems in
which objective functions are explicitly given and can be represented as
compositions of some other functions. We discuss an approach of reducing
the complexity of the objective by introducing new variables and adding
new constraints.

Keywords: Global optimization · Decomposition · Induced constraint ·
d.c. function

1 Introduction

In this paper we consider global optimization problems in which objective func-
tions are explicitly given and can be represented as compositions of some other
functions. Many practical problems can be formulated in a such form [8,9,11].
An approach similar to the described below was suggested earlier in [4,7,13]. In
[5] an equivalent approach was suggested for utility function, i.e. for the case
when objective composite function has some monotonicity properties.

2 Objective Function Decomposition and the Induced
Constraint

Consider the following mathematical programming problem

min g(x), x ∈ X, (1)

where g is a continuous composite function g(x) = F (f1(x), . . . , fp(x)), F : Rp →
R, fi : X → R are continuous functions, X ⊂ Rn is a compact set.

Introducing new variables yi = fi(x), i = 1, . . . , p we formulate the following
equivalent problem

min F (y), (2)

yi = fi(x), i = 1, . . . , p, x ∈ X. (3)

Assume that p < n or function F is “less complicated” than f . In such case we
can obtain a reduction in difficulty of the initial problem providing that Eq. (3)
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 338–344, 2017.
https://doi.org/10.1007/978-3-319-69404-7_28

Objective Function Decomposition in Global Optimization 339

are practically tractable. The latter means, for example, a possibility to solve
Eq. (3) in x for given y subject to inclusion x ∈ X by an efficient algorithm.
Solving problem (1) corresponds to finding optimal and feasible point simulta-
neously. In problem (2)–(3) optimality (i.e. minimization in (2)) and feasibility
(i.e. determining x for a given y in (3)) stages are separated: they are performed
in different spaces. What is exactly done in the reduction of problem (1) to
problem (2)–(3) and what is understood under objective function decomposi-
tion in this paper is deleting some complexity from the objective function to the
constraints, i.e. moving a part of difficulty from the optimality stage the fea-
sibility stage. The motivation of a such decomposition is a desire to distribute
difficulty of the initial problem between objective and constraints more or less
uniformly. It is necessary to mention that structure of the objective function is
given, we just use it. In this case we perform explicit decomposition. There are
many cases when we need to discover good (or efficient) decomposition. In the
latter case the decomposition is implicit.

In practical minimization of F in (2) it is quite often necessary to localize a
global minimum in some compact subset of Rp. Define values

f
i
= min

x∈X
fi(x), f i = max

x∈X
fi(x), i = 1, . . . , p. (4)

Instead of exact calculation of f
i
and f i we quite often have to use approximate

values y
i

≤ f
i
, yi ≥ f i, i = 1, . . . , p. Let us define the set Y ⊂ Rp as the

image of X under nonlinear continuous mapping (or transformation) f : X →
Y, f(x) = (f1(x), . . . , fp(x)),

Y = {y ∈ Rp : y = f(x) for some x ∈ X}. (5)

Then the initial problem can be rewritten in the following way

min F (y), (6)

y
i
≤ yi ≤ yi, i = 1, . . . , p, (7)

y ∈ Y. (8)

Since (8) is a reformulation of the feasibility stage constraint (3) the inclusion
y ∈ Y will be referred to as induced constraint.

3 Agreed Decomposition

We will say that the composite objective function g has agreed variable decom-
position

g(x) = F (f1(x1), . . . , fp(xp)), (9)

where xi ∈ Xi ⊂ Rni , i = 1, . . . , p, X1 × . . . × Xp = X and n1 + . . . + np = n.
Conversely, we will say that the function g has disagreed variable decomposition
if g is still representable in the form (9) and xi ∈ Rni , ni < n, i = 1. . . . , p, but
n1 + . . . + np > n.

340 O.V. Khamisov

In the case of agreed variable decomposition we rewrite the problem (6)–(8)
in the following way

min F (y), (10)

f
i
≤ yi ≤ f i, i = 1, . . . , p, (11)

yi = fi(xi), xi ∈ Xi, i = 1, . . . , p. (12)

Note, that in (11) we use exact lower and upper bounds on yi since otherwise
the inclusion xi ∈ Xi can be violated.

Due to variable decomposition property (12) we can use the following three-
stage approach.

I. Variable bounding stage. Determine values f
i

and f i through (4).
II. Optimal solution stage. Solve the problem (10)–(11) and find optimal
point y∗.
III. Feasibility stage. Solve the feasibility problem (12) for y = y∗ and obtain
optimal point x∗ for the initial problem. It easy to see that if F (y) =

∑
yi we

have the well-known separable problem.

Example 1. Consider the following three dimensional problem from [2]

g(x) = −(x1 − 1)(x1 + 2)(x2 + 1)(x2 − 2)x2
3,

X = [−2, 2] × [−2, 2] × [−2, 2].

Let F (y1, y2, y3) = −y1y2y3, f1(x1) = (x1−1)(x1+2), f2(x2) = (x2+1)(x2−2),
f3(x3) = x2

3, Xi = [−2, 2], i = 1, 2, 3.

I. Variable bounding stage. Each function fi is convex, so it easy to determine

f
1

= f
2

= −2.25, f
3

= 0, f1 = f2 = f3 = 4.

II. Optimal solution stage. Since y0 = 0 is feasible and F (y0) = 0 then the
global minimum of F must be nonpositive. Lower bound f

3
= 0, hence in order

to minimize F variables y1 and y2 should be positive or negative simultaneously.
In the first case the minimal value is attained at point y1 = (−2.25,−2.25, 4)
with F (y1) = −25. In the second case the minimal value is attained at point y2 =
(4, 4, 4) with F (y2) = −36. Therefore, y∗ = y2 is the unique global minimum of
the optimal value stage.
III. Feasibility stage. Solving the feasibility problem for y = y∗ = (4, 4, 4) we
obtain two solutions x∗1 = (2,−2, 2) and x∗2 = (2,−2,−2).
This example shows us that in some cases the problem can be solved analytically.

Example 2. Consider now the well-known Shubert function [10]

g(x1, x2) = f1(x1) · f2(x2) =

(
5∑

i=1

i cos [(i + 1)x1 + i]

)
·
(

5∑
i=1

i cos [(i + 1)x2 + i]

)
,

X = X1 × X2, X1 = X2 = [−10, 10].

It is obvious to set F (y1, y2) = y1y2.

Objective Function Decomposition in Global Optimization 341

I. Variable bounding stage. It is not difficult to find out that

f
1

= f
2

= −12.87088549, f1 = f2 = 14.50800793.

To find f
i
and f i, i = 1, 2 it is necessary to solve global univariate optimization

problems. At present time there exist efficient approaches for global univari-
ate optimization (see, for example, [12]), so we assume that such problems are
computationally tractable.
II. Optimal solution stage. Global minimum value of bilinear function F is
attained at two points y∗,1 = (y∗,1

1 , y∗,1
2) = (−12.87088549, 14.50800793) and

y∗,2 = (y∗,1
2 , y∗,1

1) with F (y∗,1) = F (y∗,2) = −186.7309088.
III. Feasibility stage. For every i = 1, 2 each equation y∗,i

j = fj(xj), j = 1, 2
has three solutions in the corresponding xj . Hence, for every i = 1, 2 we have 9
solutions that gives 18 global minimum points in total.

It is worthwhile to note that in the Example 2 we first found global minimum
value and then found all global minimum points, i.e. these two problems are
separated and their separate solution turned out to be easier than solution of
the initial global optimization problem.

4 Reducing the Induced Constraint to a d.c. Inequality

Recall [16] that a function h is called d.c. function if it can be represented as
h(x) = r(x) − q(x), where functions r and q are convex. Let us introduced the
function

Φ(y) = min
x∈X

{
p∑

i=1

(yi − fi(x))2
}

. (13)

It is well known that function Φ is a d.c. function:

Φ(y) =
p∑

i=1

y2
i − max

x∈X

{
p∑

i=1

(
2fi(x)yi − f2

i (x)
)
}

= Φ1(y) − Φ2(y)

with convex functions Φ1 and (implicit) Φ2. Therefore, the induced constraint
can be rewritten as the d.c. inequality Φ(y) ≤ 0. The final reduced form of the
initial problem is the following

min F (y), (14)

Φ(y) ≤ 0, (15)

y
i
≤ yi ≤ yi, i = 1, . . . , p. (16)

Such reduction is effective when p < n (or even p � n) and inner optimization
problem for calculating values of Φ1 can be effectively solved. The most appro-
priate example here is given by linear functions fi and small p, say, p ≤ 10.
Then the complexity is formed by nonconvex problem in p variables and it can

342 O.V. Khamisov

be solved by different kinds of branch and bounds methods. If F is a d.c. func-
tion then problem (14)–(16) is a d.c. optimization problem and different d.c.
optimization methods (see [6,14,16]) can be used.

Comment. Assume that functions fi are Lipschitz continuous with constants Li,
i = 1, . . . , p. For given y define ψi(x) = yi−fi(x), i = 1, . . . , p. Let a point x̂ ∈ X
be given then

|ψ2
i (x) − ψ2

i (x̂)| = |(ψi(x) − ψi(x̂))(ψi(x) + ψi(x̂))|

≤ |(fi(x) − fi(x̂))| · |2ψi(x̂)| ≤ 2|ψi(x̂)|Li‖x − x̂‖ ∀x : ψi(x) ≤ ψi(x̂).

Hence, the less value |ψi(x̂)| the less is Lipschitz constant of ψ2
i at point x̂, which

in this case can be taken as 2|ψi(x̂)|Li. This property can essentially improve
efficiency of Lipschitz optimization methods [11,15] for solving problem (13).

Example 3. Let us consider Goldstein-Price function [2,10]

g(x1, x2) =
(
1 + (x1 + x2 + 1)2

(
19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

))

×
(
30 + (2x1 − 3x2)

2 (
18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

))
,

X = [−2, 2] × [−2, 2]. By linear transformation of variables g can be rewritten:

g(x1, x2) =
(
1 + (x1 + x2 + 1)2

(
3(x1 + x2 + 1)2 − 20(x1 + x2 + 1) + 36

))

×
(
30 + (2x1 − 3x2)

2 (3(2x1 − 3x2) − 16(2x1 + 3x2) + 18)
)

.

Then, the introduction of new variables is obvious:

y1 = x1 + x2 + 1, y2 = 2x1 − 3x2. (17)

For fixed (y1, y2) system (17) always has a unique solution in (x1, x2). Then

F (y1, y2) =
(
1 + y2

1

(
3y2

1 − 20y1 + 36
)) × (

30 + y2
2

(
3y2

2 − 16y2 + 18
))

.

Bounds y
1

= −3, y
2

= −10, y1 = 5, y2 = 10 are easily calculated.
Function F is the product of two univariate positive functions F1(y1) =
1 + y2

1

(
3y2

1 − 20y1 + 36
)

and F2(y2) = 30 + (2x1 − 3x2)
2 (3(2x1 − 3x2) − 16

(2x1 + 3x2) + 18). This is the main advantage of the linear transformation. We
minimize each function separately (as we mentioned above univariate global opti-
mization assumed computationally tractable) and obtain global minimum point
y∗
1 = 0, y∗

2 = 3. Substituting y∗
1 = 0, y∗

2 = 3 in system (17) instead of y1, y2 we
obtain globally optimal solution x∗

1 = 0, x∗
2 = −1 for the initial problem.

Objective Function Decomposition in Global Optimization 343

5 Conclusion

An objective function decomposition in global optimization was discussed. Due
to decomposition we can obtain reduction in solution difficulty. The suggested
approach can be considered as a starting decomposition scheme depending on
properties of F . Types of decomposition are generated by different classes of
functions F . Among well-known classes we mention multiplicative functions,
sum of ratios functions and so on. Other types of function F can be used.

Acknowledgments. This work is supported by the RFBR grant number 15-07-08986.

References

1. Bromberg, M., Chang, T.C.: A function embedding technique for a class of global
optimization problems one-dimensional global optimization. In: Proceedings of the
28th IEEE Conference on Decision and Control, vol. 1–3, pp. 2451–2556 (1989)

2. Hansen, P., Jaumard, B.: Lipschitz optimization. In: Pardalos, P.M., Horst,
R. (eds.) Handbook of Global Optimization, pp. 407–494. Kluwer Academic
Publishers, Dordrecht (1995)

3. Hansen, P., Jaumard, B., Lu, S.H.: An analytical approach to global optimization.
Math. Program. 52(1), 227–254 (1991)

4. Hamed, A.S.E.-D., McCormick, G.P.: Calculations of bounds on variables satisfying
nonlinear equality constraints. J. Glob. Optim. 3, 25–48 (1993)

5. Horst, R., Thoai, N.V.: Utility functions programs and optimization over efficient
set in multiple-objective decision making. JOTA 92(3), 605–631 (1997)

6. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer,
Heidelberg (1996). doi:10.1007/978-3-662-03199-5

7. McCormick, G.P.: Attempts to calculate global solution of problems that may have
local minima. In: Lootsma, F. (ed.) Numerical Methods for Nonlinear Optimiza-
tion, pp. 209–221. Academic Press, London, New York (1972)

8. Pardalos, P.M.: An open global optimization problem on the unit sphere. J. Glob.
Optim. 6, 213 (1995)

9. Pardalos, P.M., Shalloway, D., Xue, G.: Optimization methods for computing
global minima of nonconvex potential energy functions. J. Glob. Optim. 4, 117–133
(1994)

10. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer Briefs in
Optimization. Springer, New York (2014). doi:10.1007/978-1-4614-9093-7

11. Pinter, J.: Global Optimization in Action. Kluwer Academic Publishers, Dordrecht
(1996)

12. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimiza-
tion Exploiting Space-Filling Curves. Springer Briefs in Optimization. Springer,
New York (2013). doi:10.1007/978-1-4614-8042-6

13. Sniedovich, M., Macalalag, E., Findlay, S.: The simplex method as a global opti-
mizer: a C-programming perspectuve. J. Glob. Optim. 4, 89–109 (1994)

14. Strekalovsky, A.S.: On solving optimization problems with hidden nonconvex
structures. In: Rassias, T.M., Floudas, C.A., Butenko, S. (eds.) Optimization in
Science and Engineering, pp. 465–502. Springer, New York (2014). doi:10.1007/
978-1-4939-0808-0 23

http://dx.doi.org/10.1007/978-3-662-03199-5
http://dx.doi.org/10.1007/978-1-4614-9093-7
http://dx.doi.org/10.1007/978-1-4614-8042-6
http://dx.doi.org/10.1007/978-1-4939-0808-0_23
http://dx.doi.org/10.1007/978-1-4939-0808-0_23

344 O.V. Khamisov

15. Strongin, R.G., Sergeev, Y.D.: Global Optimization with Non-convex Constraints:
Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

16. Tuy, H.: D.C. optimization: theory, methods and algorithms. In: Pardalos, P.M.,
Horst, R. (eds.) Handbook of Global Optimization, pp. 149–216. Kluwer Academic
Publishers, Dordrecht (1995)

Projection Approach Versus Gradient Descent
for Network’s Flows Assignment Problem

Alexander Yu. Krylatov(B) and Anastasiya P. Shirokolobova

Saint Petersburg State University, Saint Petersburg, Russia
a.krylatov@spbu.ru

Abstract. The paper is devoted to comparison of two methodologi-
cally different types of mathematical techniques for coping with net-
work’s flows assignment problem. Gradient descent and projection
approach are implemented to the simple network of parallel routes (there
are no common arcs for any pair of routes). Gradient descent demon-
strates zig-zagging behavior in some cases, while projection algorithm
converge quadratically in the same conditions. Methodological interpre-
tation of such phenomena is given.

Keywords: Network’s flows assignment problem · Projection operator ·
Gradient descent

1 Introduction

Huge amount of different practical problems are solved due to models of net-
work’s flows assignment. The most remarkable among them are road networks,
power grids and pipe networks [6,7]. The task it to estimate network’s flows
assignment profile according to demands between all source-sink pairs. Gener-
ally, there are many source-sink pairs in a network (multicommodity networks).
In a multicommodity network flows from different commodities load common
arcs simultaneously and influence on volume delays of each others.

In this paper we show that projection approach is more appropriate tech-
nique for coping with network’s flows assignment problem than gradient descent.
Moreover, zig-zagging bahavior of gradient descent in the neighborhood of the
equilibrium solution is clarified.

2 Network’s Flows Assignment Problem

Consider a network presented by connected directed graph G = (N,A). Intro-
duce notation: N – the set of sequentially numbered nodes of the graph G; A
– the set of sequentially numbered arcs of the graph G; W – the set of nodes’
pairs (source and sink) of the graph G, w ∈ W ; Kw – the set of routes con-
necting source-sink pair w ∈ W ; xa – the flow on arc a ∈ A, x = (. . . , xa, . . .);
ca – capacity of arc a ∈ A, c = (. . . , ca, . . .); fw

k – the flow on route k ∈ Kw;
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 345–350, 2017.
https://doi.org/10.1007/978-3-319-69404-7_29

346 A.Y. Krylatov and A.P. Shirokolobova

Fw – the flow demand between source-sink pair w ∈ W ; ta(xa) – the link per-
formance function (volume delay function) of arc a ∈ A; δw

a,k – indicator:

δw
a,k =

{
1, if the arc a ∈ A lies along to route k ∈ Kw;
0, otherwise.

Networks’s flow assignment problem in a link-route formulation was first
offered by Dafermos and Sparrow [1,2]. This formulation could be expressed in
a form of the optimization program [6,8]:

min
x

∑
a∈A

∫ xa

0

ta(u)du,

subject to
∑

k∈Kw fw
k = Fw, fw

k ≥ 0 for any k ∈ Kw, w ∈ W with definitional
constraints xa =

∑
w∈W

∑
k∈Kw fw

k δw
a,k for any a ∈ A.

3 Simple Network of Parallel Routes

Network of parallel routes consists of two nodes (sources and sink) and n alterna-
tive arcs (routes). The demand between source and sink is F . The demand F is
to be assigned among n routes: F =

∑n
i=1 fi, fi ≥ 0, i = 1, n. Link performance

function is smooth non-decreasing function: ti ∈ C1(R+), ti(x)− ti(y) ≥ 0 when
x − y ≥ 0, x, y ∈ R+, i = 1, n, where R+ — non-negative orthant. Moreover, it
is believed that ti(x) ≥ 0, x ≥ 0 and ∂ti(x)/∂x > 0, x > 0, i = 1, n.

From mathematical perspective, link-route and link-node formulations are
equivalent for the network of parallel routes. In such a case, network’s flows
assignment problem could be expressed as follows:

f∗ = arg min
f

n∑
i=1

∫ fi

0

ti(u)du, (1)

subject to
n∑

i=1

fi = F, (2)

fi ≥ 0 ∀i = 1, n. (3)

According to results obtained in [4], there exists an explicit projection operator
to cope with the problem (1)–(3). For the sake of convenience let us introduce
additional notations:

ai(fi)
def= ti(fi) − t′i(fi)fi, bi(fi)

def= t′i(fi), i = 1, n.

Then, the projection operator Φ such as

f∗ = Φ(f∗)

Projection Approach for Network’s Flows Assignment Problem 347

could be expressed explicitly via ai(fi) and bi(fi), i = 1, n:

Φi(f) =

⎧⎨
⎩

1
bi(fi)

F+
∑m

s=1
as(fs)
bs(fs)∑m

s=1
1

bs(fs)
− ai(fi)

bi(fi)
for i ≤ m,

0 for i > m,
(4)

when components f and t(f) are indexed so that

a1(f1) ≤ a2(f2) ≤ . . . ≤ am(fm) (5)

and m is defined from the condition
m∑

i=1

am(fm) − ai(fi)
bi(fi)

≤ F <
m∑

i=1

am+1(fm+1) − ai(fi)
bi(fi)

. (6)

Due to projection operator Φ defined explicitly via (4)–(6) the corresponding
projection algorithm was developed. At each iteration, the algorithm performed
the following three steps.
(k + 1) iteration:

1. To index mk components fk and t(fk) so that

a1(fk
1) ≤ a2(fk

2) ≤ . . . ≤ amk
(fk

mk
).

2. To find mk+1 ≤ mk (amount of non-zero components fk+1) from the condi-
tion

mk+1∑
i=1

amk+1(f
k
mk+1

) − ai(fk
i)

bi(fk
i)

≤ F <

mk+1∑
i=1

amk+1+1(fk
mk+1+1) − ai(fk

i)

bi(fk
i)

.

3. To compute fk+1:

fk+1
i =

1
bi(fk

i)

F +
∑mk+1

s=1
as(f

k
s)

bs(fk
s)∑mk+1

s=1
1

bs(fk
s)

− ai(fk
i)

bi(fk
i)

, i = 1,mk+1,

fk+1
i = 0, i = mk+1, n.

4. Termination criterion

mk+1−1∑
i=1

∣∣ti(fk+1
i) − ti+1(fk+1

i+1)
∣∣ < ε.

Note that quadratic convergence of this algorithm is proved [4].

348 A.Y. Krylatov and A.P. Shirokolobova

4 Simulation Results

Zig-zagging behavior of such widely used gradient descent as Frank-Wolfe algo-
rithm became apparent in the 1970s [3,5]. That discussions were intuitive. Here
we investigate it in detail on the example of simple network of parallel routes.
Assume that volume delay functions for this network are defined as follows:

ti(fi) = ci + di · fβ
i , i = 1, n.

Changing parameters ci and di, i = 1, n we could obtain different networks
of paralle routes. Let’s define five different patterns of such a network according
to Table 1 with fixed demand F = 20.

Table 1. Five different patterns of the network topology

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

n = 2 β = 2 n = 2 β = 3 n = 4 β = 3 n = 4 β = 3 n = 6 β = 2

i ci di i ci di i ci di i ci di i ci di

1 2 1 1 2 1 1 2 1 1 2 1 1 2 1

2 1 2 2 1 2 2 1 2 2 1 2 2 1 2

3 1.25 2.5 3 200 200 3 200 200

4 1 3 4 1 3 4 1 3

5 300 300

6 1.25 2.5

Network’s flows assignment problem could be formulated for each pattern.
Then corresponding problems could be solved. We test projection algorithm from
[4] and Frank-Wolfe algorithm on the network of parallel routes.
(k + 1) iteration of Frank-Wolfe algorithm:

1. Solve the linear programming subproblem

min
f

n∑
i=1

ti
(
fk

i

)
fi,

subject to (2) and (3). Let yk be its solution, and pk = yk − fk the resulting
search direction.

2. Find a step length lk, which solves the problem min
{
T (fk + lpk) | 0 ≤ l ≤ 1

}
,

where T is the objective function (1).
3. Let fk+1 = fk + lkpk and Rk+1 = {fk+1

i | fk+1
i > 0.1, i = 1, n} is the set of

used routes.
4. If ∑

i,j∈Rk+1

∣∣ti(fk+1
i) − tj(fk+1

j)
∣∣ < ε,

Projection Approach for Network’s Flows Assignment Problem 349

then terminate, with fk+1 as the approximate solution. Otherwise, let k :=
k + 1, and go to Step 1.

Amount of iterations required by these two algorithms are available in
Table 2. Infinite amount of iterations (∞) means zig-zagging behavior of algo-
rithm.

Table 2. Projection algorithm versus Frank-Wolfe algorithm: amount of iterations

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

FW-algorithm 2 2 3 ∞ ∞
Projection algorithm 2 2 3 7 3

Highly remarkable that simple topology of the network allows us to draw
revealing insights. Indeed, solutions of network’s flows assignment problem cor-
responding to pattern 1, 2 and 3 have no zero components, i.e. there are no
unused routes. However, solutions of network’s flows assignment problem corre-
sponding to pattern 4 and 5 have zero components, i.e. there are unused routes.
Really, route 3 in pattern 4, and routes 3 and 5 in pattern 5 are obviously too
“expensive” to use. Thus, it is quite clear in advance that f∗

i = 0 for i = 3 in
pattern 4 and f∗

i = 0 for i ∈ {3, 5} in pattern 5.
According to Table 2, Frank-Wolfe algorithm demonstrates zig-zagging

behavior when there are zero components in equilibrium solution of network’s
flows assignment problem. Nevertheless, projection algorithm does not pay much
attention to such a “trouble” (zero components in equilibrium solution) and
demonstrates high convergence rate. Projection algorithm demonstrates such a
performance primarily due to the third step of each iteration. Indeed, each iter-
ation clarifies zero components in equilibrium solution and excludes them from
consideration (7)-II. Eventually, projection algorithm seek solution in the space
of non-zero components (red routes on Fig. 1b corresponds to zero components).

⎛
⎜⎜⎜⎜⎜⎝

fk
1

fk
2

fk
3
...

fk
n

⎞
⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎝

fk+1
1

fk+1
2

fk+1
3
...

fk+1
n

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

fk
1

fk
2
...

fk
mk

⎞
⎟⎟⎟⎠ →

⎛
⎜⎝

fk+1
1
...

fk+1
mk+1

⎞
⎟⎠

I II

(7)

In turn, Frank-Wolfe algorithm operate in the space of all components (7)-
I (Fig. 1a). Then it experienced zig-zagging behavior in neighborhood of zero
components. The larger the difference between alternative routes, the higher
probability to experience zig-zagging behavior.

350 A.Y. Krylatov and A.P. Shirokolobova

a) FW-algorithm b) Projection algorithm

Fig. 1. Network of parallel routes

5 Conclusion and Future Work

Obtained results show obvious advantage of projection approach for network’s
flows assignment problem. The efficiency of the developed projection algorithm,
first of all, caused by excluding of zero components during solving. Therefore, it
is highly promising to develop projection algorithms. Generally, it is quite com-
plicated task to find projection operator. Nevertheless, as it was shown in [4], for
network’s flows assignment problem projection operator could be obtained in an
explicit form. Certainly, projection operator was obtained for the case of simple
network topology. However, there is a good chance to apply methodology, imple-
mented in paper [4], to a network of general topology via parallel decomposition
algorithms [6].

Acknowledgement. The first author was jointly supported by a grant from the
Russian Science Foundation (Project No. 17-71-10069).

References

1. Dafermos, S.C., Sparrow, F.T.: The traffic assignment problem for a general net-
work. J. Res. Nat. Bur. Stan. 73B, 91–118 (1969)

2. Dafermos, S.-S.C.: Traffic assignment and resource allocation in transportation net-
works. PhD thesis. Johns Hopkins University, Baltimore, MD (1968)

3. Holloway, C.A.: An extension of the Frank and Wolfe method of feasible directions.
Math. Program. 6, 14–27 (1973)

4. Krylatov, A.Y.: Network flow assignment as a fixed point problem. J. Appl. Ind.
Math. 10(2), 243–256 (2016)

5. Meyer, G.G.L.: Accelerated Frank-Wolfe algorithms. SIAM J. Control 12, 655–663
(1974)

6. Patriksson, M.: The Traffic Assignment Problem: Models and Methods. Dover Pub-
lications, Inc., Mineola (2015)

7. Popov, I., Krylatov, A., Zakharov, V., Ivanov, D.: Competitive energy consumption
under transmission constraints in a multi-supplier power grid system. Int. J. Syst.
Sci. 48(5), 994–1001 (2017)

8. Sheffi, Y.: Urban Transportation Networks: Equilibrium Analysis with Mathemati-
cal Programming Methods. Prentice-Hall, Inc., Englewood Cliffs (1985)

An Approximation Algorithm for Preemptive
Speed Scaling Scheduling of Parallel Jobs

with Migration

Alexander Kononov and Yulia Kovalenko(B)

Sobolev Institute of Mathematics,
4, Akad. Koptyug Avenue, 630090 Novosibirsk, Russia
alvenko@math.nsc.ru, julia.kovalenko.ya@yandex.ru

Abstract. In this paper we consider a problem of preemptive schedul-
ing rigid parallel jobs on speed scalable processors. Each job is specified
by its release date, its deadline, its processing volume and the number
of processors, which are required for execution of the job. We propose a
new strongly polynomial approximation algorithm for the energy mini-
mization problem with migration of jobs.

Keywords: Parallel jobs · Speed scaling · Scheduling · Migration ·
Approximation algorithm

1 Introduction

Energy consumption of computing devices is an important issue in our days [9].
A popular technology to reduce energy usage is dynamic speed scaling, where
a processor may vary its speed dynamically. Running a job at a slower speed
is more energy efficient, however it takes longer time and may affect the per-
formance. One of the algorithmic and complexity study of this area is devoted
to revising classical scheduling problems with dynamic speed scaling (see e.g.
[1,4,6,7,9,13,14] and others).

In our paper we consider a basic speed scaling scheduling of parallel jobs.
Given a set J = {1, . . . , n} of parallel jobs to be executed on m parallel speed-
scalable processors. Each job j ∈ J is associated with a release date rj , a deadline
dj and a processing volume (work) Wj . Moreover, job j ∈ J simultaneously
requires exactly sizej processors at each time point when it is in process. Such
jobs are called rigid jobs [8].

We distinguish two variants of the problem. The first variant (non-migratory
variant) allows the preemption of the jobs but not their migration. This means
that a job may be interrupted and resumed later on the same subset of sizej

processors, but it is not allowed to continue its execution on a different subset of
sizej processors. In the second variant (migratory variant) both the preemption
and the migration of jobs are allowed.

The standard homogeneous model in speed-scaling is considered. When a
processor runs at a speed s, then the rate with which the energy is consumed
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 351–357, 2017.
https://doi.org/10.1007/978-3-319-69404-7_30

352 A. Kononov and Y. Kovalenko

(the power) is sα, where α > 1 is a constant (usually, α ≈ 3 [9]). Each of m
processors may operate at variable speed. However, we assume that if processors
execute the same job simultaneously then all these processors run at the same
speed. It is supposed that a continuous spectrum of processor speeds is available.
The purpose is to find a feasible schedule, minimizing the total energy consumed
on all the processors.

The idea of multiprocessor jobs receives growing attention in the scheduling
theory [8]. Many computer systems offer some kinds of parallelism. The energy
efficient scheduling of parallel jobs arises in testing and reliable computing, par-
allel applications on graphics cards, computer control systems and others.

2 Related Research

For the preemptive single-processor setting, Yao et al. [14] developed a polyno-
mial time algorithm, that outputs a minimum energy schedule. The preemptive
multiprocessor scheduling of single-processor jobs has been widely studied, see
e.g. [1,4,6,13]. The authors proposed exact polynomial algorithms for this prob-
lem with migration. The works [1,4,13] are based on different reductions of the
problem to maximum flow problems. As far as we know, the algorithm presented
in [13] has the best running time among the above-mentioned algorithms.

Albers et al. [3] studied the preemptive problem on parallel processors where
the migration of jobs among processors is disallowed. They showed that if all jobs
have unit work and deadlines are agreeable, an optimal schedule can be com-
puted in polynomial time. At the same time, the general speed scaling scheduling
problem with unit-work jobs was proved to be NP-hard, even on two proces-
sors. A common rule to design algorithms for problems without migration is to
first define some strategy that assigns jobs to processors, and then schedule the
assigned jobs separately on each processor. Albers et al. [3] presented using this
rule an

(
αα24α

)
-approximation algorithm for instances with agreeable deadlines,

and an 2
(
2 − 1

m

)α-approximation algorithm for instances with common release
dates, or common deadlines. Greiner et al. [10] showed that any ρ-approximation
algorithm for parallel processors with migration can be transformed into a ρB�α�-
approximation algorithm for parallel processors without migration, where B�α�
is the �α�-th Bell number. The result holds when α ≤ m.

Bampis et al. [5] considered the problem on heterogeneous processors with
preemption. They assume that each processor i has its own power function,
sα(i), and job’s characteristics are processor dependent. For the case where job
migrations are allowed, an algorithm has been proposed, that returns a solution
within an additive error ε in time polynomial in the problem size and in 1

ε . They
also developed an approximation algorithm of ratio (1 + ε)αB̃α for the problem
without migration, where B̃α is the generalized Bell number [5]. Recently, Albers
et al. [2] proposed a faster combinatorial algorithm based on flows for preemptive
scheduling of jobs whose density is lower bounded by a small constant, and the
migration is allowed.

An Approximation Algorithm for Preemptive Speed Scaling Scheduling 353

We extend the study of speed scaling scheduling to the case of parallel
jobs. Recently, it has been proved that the speed scaling scheduling problem
of rigid jobs is NP-hard even both the preemption and the migration of jobs are
allowed [12]. An approximation algorithm has been proposed in [12] that returns
a solution within an additive error ε > 0 and runs in time polynomial in m, 1/ε
and the input size. Note that the algorithm is pseudopolynomial and it is based
on solving a configuration linear program using the Ellipsoid method which is
rather complicated and not efficient in practice. In the current paper we propose
strongly polynomial

(
2 − 1

m

)α−1-approximation algorithm for scheduling of rigid
jobs when the preemption and the job migrations are allowed.

3 Our Result

Here we consider the speed scaling scheduling problem of rigid jobs with migra-
tion and present

(
2 − 1

m

)α−1-approximation algorithm for this problem.
Our algorithm consists of two stages. At the first stage we solve an auxiliary

min-cost max-flow problem in order to obtain a lower bound on the minimal
energy consumption and an assignment of the jobs to time intervals. At this
stage we follow the approach proposed in [13]. Then, at the second stage, we
determine speeds of jobs and schedule them separately for each time interval.

The first stage. Due to the convexity of the speed-to-power function, the energy
consumption is minimized if each job j is processed with a fixed speed sj , which
does not change during the processing of the job. Therefore, we can formulate
the problem with the variables pj = Wj/sj , where pj is treated as an actual
processing time of job j ∈ J . The objective function is written as follows:

F =
n∑

j=1

pjsizej

(
Wj

pj

)α

.

Let us divide the interval [minj rj ,maxj dj] into subintervals Ik = [tk−1, tk] by
using the release dates rj and the deadlines dj for j ∈ J as break-points. Denote
the length of interval Ik by Δk, k = 1, . . . , γ, where γ � 2n−1. For a job j, denote
the set of the available intervals by Γ (j), where Γ (j) = {Ik : Ik ⊆ [rj , dj]}.

Let us construct a bipartite network G = (V,A). The set of nodes is given by
V = {s, t} ∪ J ∪ I, where J is the set of job nodes and I = {I1, . . . , Iγ} is the
set of interval nodes. The set of arcs A is given as A = As ∪A0 ∪At, where As =
{(s, j) : j ∈ J }, A0 = {(j, Ik) : j ∈ J , Ik ∈ Γ (j)}, At = {(Ik, t) : Ik ∈ I}, so
that the source s is connected to each job node, each interval node is connected
to the sink t, and each job node j is connected to the nodes Ik associated with
the available intervals Γ (j). We define the arc capacities as follows:

μ(s, j) = +∞, (s, j) ∈ As,

μ(j, Ik) = sizej
k, (j, Ik) ∈ A0, (1)

μ(Ik, t) = m
k, (Ik, t) ∈ At. (2)

354 A. Kononov and Y. Kovalenko

We denote by x(u, v) the amount of flow on an arc (u, v). Note that pj = x(s,j)
sizej

defines a total duration of job j and pj,Ik = x(j,Ik)
sizej

specifies a processing time of

job j in the interval Ik. Let the cost of flow x(s, j) is x(s, j)
(

Wjsizej

x(s,j)

)α

, which
is a convex function with respect to x(s, j). The cost of flow on all other arcs is
set to be zero. Then the considered problem reduces to finding a maximum s− t
flow in G = (V,A), that minimizes the total cost

n∑

j=1

x(s, j)
(

Wjsizej

x(s, j)

)α

.

As shown in [13] the obtained min-cost max-flow problem can be solved in
O(n3) time. It is not difficult to prove that any feasible schedule specifies a feasi-
ble flow with the same cost in the network G. The converse is not true, as we shall
see in Example 1, below. At the second stage we use the “preemptive sizej-list-
scheduling” algorithm [11] to construct a feasible schedule in each interval I ∈ I.

The second stage. Let I be an arbitrary time interval and its length is equal
to Δ. We denote by J ′ the subset of jobs, which are assigned to time interval I
at the first stage, i.e. J ′ = {j ∈ J : x(j, I) > 0}. The capacity constraints (1)
and (2) imply that pj,I = x(j, I)/sizej � Δ and

∑
j∈J ′ pj,Isizej � mΔ.

The “preemptive sizej-list-scheduling” algorithm for an interval I works as
follows. At every decision point (i.e., the start time of the interval or completion
time of a job) all currently running jobs are interrupted. Then not yet completed
jobs are considered in order of nonincreasing sizej-values, and as many of them
are greedily assigned to the processors as feasibly possible. The time complexity
of the algorithm is O(n2).

We claim that the length of the constructed schedule is at most
(
2 − 1

m

)
Δ

(see Lemma 1 below). By increasing the speed of each job in
(
2 − 1

m

)
times

we obtain a schedule of the length at most Δ. The total energy consumption
for interval I is increased by a factor

(
2 − 1

m

)α−1
. The final schedule is con-

structed by combining the schedules found for each individual interval, so we
get

(
2 − 1

m

)α−1-approximate solution of the original speed scaling problem with
rigid jobs. We note that the number of intervals does not exceed 2n − 1 and,
hence, the running time of the second stage is O(n3). As a result, we have

Theorem 1. A
(
2 − 1

m

)α−1-approximate schedule can be found in O(n3) time
for the preemptive speed scaling problem of rigid jobs with migration.

Now we prove Lemma 1.

Lemma 1. Given m processors, an interval I of duration Δ, and a set of jobs
J ′ with processing times pj,I � Δ and sizes sizej, where

∑
j∈J ′ pj,Isizej � mΔ.

The length of the schedule constructed by the “preemptive sizej-list-scheduling”
algorithm is at most

(
2 − 1

m

)
Δ.

An Approximation Algorithm for Preemptive Speed Scaling Scheduling 355

Proof. Let l be the last job in the preemptive list-schedule (if there are several
such jobs, we choose a job with the smallest value sizej), and let Cl be its com-
pletion time (the length of the schedule). We consider two cases: (I) sizel > m

2
and (II) sizel � m

2 .
Case (I): sizel > m

2 . According to the “preemptive sizej-list-scheduling”
algorithm we obtain that exactly one job is executed at each time moment and
sizej � sizel � m+1

2 = (m+0.5)(m−0.5)
2(m−0.5) + 1

4 � (m+0.5)(m−0.5)+0.25
2(m−0.5) = m2

2m−1 for
all j ∈ J ′. It follows that

∑
j∈J ′ pj,Isizej � m

2−1/m

∑
j∈J ′ pj,I . From (2) we get

m
2−1/m

∑
j∈J ′ pj,I � mΔ and

∑
j∈J ′ pj,I � Δ

(
2 − 1

m

)
.

Case (II): sizel � m
2 . We claim that, at every point in time during the sched-

ule, either job l is undergoing processing on some sizel processors or job l is not
executed and at least (m−sizel+1) processors are busy. Therefore, the total load
of all processors

∑
j∈J ′ pj,Isizej is at least pl,Isizel + (Cl − pl,I)(m − sizel + 1).

Suppose that Cl >
(
2 − 1

m

)
Δ, then we get the inequality

∑

j∈J ′
pj,Isizej > pl,Isizel +

((
2 − 1

m

)
Δ − pl,I

)
(m − sizel + 1)

= Δm + (Δ − pl,I) (m − 2sizel + 1) +
Δ

m
(sizel − 1) � Δm,

which leads to a contradiction. ��
As shown in [11], the approximation ratio of

(
2 − 1

m

)
for the “preemptive

sizej-list-scheduling” algorithm is tight even if sizej = 1 for all jobs. As a result,
the energy consumption is increased in

(
2 − 1

m

)α−1 times when we put the result-
ing schedule inside the interval I. Now we show that the approximation ratio of
our algorithm can not be improved even if we will use an exact algorithm for
minimization of makespan at the second stage.

Example 1. Given m big jobs j = 1, . . . , m of work Wj = m− 1 and size sizej =
m and m small jobs j = m + 1, . . . , 2m with work Wj = m and size sizej = 1.
The release dates of all jobs are equal to 0. All small jobs have the common
deadline m2 and the deadline of big job j is dj = mj, j = 1, . . . ,m.

Optimal solution has energy consumption m3 and length m2, by scheduling
the big jobs from time 0 to time m(m − 1) and using the last interval [m(m −
1),m2) for the small jobs. The speed of each processor is equal to 1.

Consider the following optimal solution of the min-cost max-flow problem.
Let exactly one big job j and one small job m+ j be assigned to interval [m(j −
1);mj), j = 1, . . . , m. Though the total load of each pair jobs j and m+ j is m2,
it is required 2m − 1 time units to execute these jobs with speed 1. Thus, after
increasing the speed of each processor at each time point in

(
2 − 1

m

)
times, the

total energy consumption is increased by a factor
(
2 − 1

m

)α−1
.

356 A. Kononov and Y. Kovalenko

4 Conclusion

We study the energy minimization problem of scheduling rigid jobs on m speed
scalable processors. For migratory case of the problem we propose a strongly
polynomial time approximation algorithm based on a reduction to the min-cost
max-flow problem. The algorithm has approximation ratio

(
2 − 1

m

)α−1 and this
bound is tight. Our result can be generalized to the case of job-dependent energy
consumption when each job j has its own constant αj > 1. For this case our
algorithm obtains the

(
2 − 1

m

)α−1-approximate solution where α = max
j∈J

αj .

Acknowledgements. This research is supported by the Russian Science Foundation
grant 15-11-10009.

References

1. Albers, S., Antoniadis, A., Greiner, G.: On multi-processor speed scaling with
migration. J. Comput. Syst. Sci. 81, 1194–1209 (2015)

2. Albers, S., Bampis, E., Letsios, D., Lucarelli, G., Stotz, R.: Scheduling on power-
heterogeneous processors. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN
2016. LNCS, vol. 9644, pp. 41–54. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49529-2 4

3. Albers, S., Müller, F., Schmelzer, S.: Speed scaling on parallel processors. In: 19th
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2007, pp.
289–298. ACM (2007)

4. Angel, E., Bampis, E., Kacem, F., Letsios, D.: Speed scaling on parallel processors
with migration. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-
Par 2012. LNCS, vol. 7484, pp. 128–140. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32820-6 15

5. Bampis, E., Kononov, A., Letsios, D., Lucarelli, G., Sviridenko, M.: Energy efficient
scheduling and routing via randomized rounding. In: FSTTCS, pp. 449–460 (2013)

6. Bingham, B.D., Greenstreet, M.R.: Energy optimal scheduling on multiprocessors
with migration. In: International Symposium on Parallel and Distributed Process-
ing with Applications, ISPA 2008, pp. 153–161. IEEE, (2008)

7. Cohen-Addad, V., Li, Z., Mathieu, C., Milis, I.: Energy-efficient algorithms for non-
preemptive speed-scaling. In: Bampis, E., Svensson, O. (eds.) WAOA 2014. LNCS,
vol. 8952, pp. 107–118. Springer, Cham (2015). doi:10.1007/978-3-319-18263-6 10

8. Drozdowski, M.: Scheduling for Parallel Processing. Springer-Verlag, London
(2009)

9. Gerards, M.E.T., Hurink, J.L., Hölzenspies, P.K.F.: A survey of offline algorithms
for energy minimization under deadline constraints. Journ. Sched. 19, 3–19 (2016)

10. Greiner, G., Nonner, T., Souza, A.: The bell is ringing in speed-scaled multiproces-
sor scheduling. In: 21st ACM Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA 2009, pp. 11–18. ACM, (2009)

11. Johannes, B.: Scheduling parallel jobs to minimize the makespan. J. Sched. 9,
433–452 (2006)

12. Kononov, A., Kovalenko, Y.: On speed scaling scheduling of parallel jobs with
preemption. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos,
P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 309–321. Springer, Cham (2016).
doi:10.1007/978-3-319-44914-2 25

http://dx.doi.org/10.1007/978-3-662-49529-2_4
http://dx.doi.org/10.1007/978-3-662-49529-2_4
http://dx.doi.org/10.1007/978-3-642-32820-6_15
http://dx.doi.org/10.1007/978-3-642-32820-6_15
http://dx.doi.org/10.1007/978-3-319-18263-6_10
http://dx.doi.org/10.1007/978-3-319-44914-2_25

An Approximation Algorithm for Preemptive Speed Scaling Scheduling 357

13. Shioura, A., Shakhlevich, N., Strusevich, V.: Energy saving computational
models with speed scaling via submodular optimization. In: Proceedings of
Third International Conference on Green Computing, Technology and Innovation
(ICGCTI2015), pp. 7–18 (2015)

14. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy.
In: 36th Annual Symposium on Foundation of Computer Science, FOCS 1995, pp.
374–382 (1995)

Learning and Intelligent Optimization
for Material Design Innovation

Amir Mosavi1,2(&) and Timon Rabczuk1(&)

1 Institute of Structural Mechanics, Bauhaus-Universitat Weimar,
Marienstr.15, 99423 Weimar, Germany

{amir.mosavi,timon.rabczuk}@uni-weimar.de
2 Department of Computer and Information Science,
Norwegian University of Science and Technology,
Sem Saelandsvei 9, 7491 Trondheim, Norway

Abstract. Learning and intelligent optimization (LION) techniques enable
problem-specific solvers with vast potential applications in industry and busi-
ness. This paper explores such potentials for material design innovation and
presents a review of the state of the art and a proposal of a method to use LION
in this context. The research on material design innovation is crucial for the
long-lasting success of any technological sector and industry and it is a rapidly
evolving field of challenges and opportunities aiming at development and
application of multi-scale methods to simulate, predict and select innovative
materials with high accuracy. The LION way is proposed as an adaptive solver
toolbox for the virtual optimal design and simulation of innovative materials to
model the fundamental properties and behavior of a wide range of multi-scale
materials design problems.

Keywords: Machine learning � Optimization � Material design

1 Introduction

Materials design is crucial for the long-lasting success of any technological sector, and
yet every technology is founded upon a particular materials design set. This is why the
pressure on development of new high-performance materials for use as high-tech
structural and functional components has become greater than ever. Although the
demand for materials is endlessly growing, experimental materials design is attached to
high costs and time-consuming procedures of synthesis. Consequently simulation
technologies have become completely essential for material design innovation [1].
Naturally the research community highly supports the advancement of simulation
technologies as it represents a massive platform for further development of scientific
methods and techniques. Yet computational material design innovation is a new
paradigm in which the usual route of materials selection is enhanced by concurrent
materials design simulations and computational applications [19].

Designing new materials is a multi-dimensional problem where multiple criteria of
design need to be satisfied. Consequently material design innovation would require
advanced multiobjective optimization (MOO) [13] and decision-support tools [12].
In addition the performance and behavior of new materials must be predicted in

© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 358–363, 2017.
https://doi.org/10.1007/978-3-319-69404-7_31

different design scenarios and conditions [2]. In fact predictive analytics and MOO
algorithms are the essential computation tools to tailor the atomic-scale structures,
chemical compositions and microstructures of materials for desired mechanical prop-
erties such as high-strength, high-toughness, high thermal and ionic conductivity, high
irradiation and corrosion resistance [7]. Via manipulating the atomic-scale dislocation,
phase transformation, diffusion, and soft vibrational modes the material behavior on
plasticity, fracture, thermal, and mass transport at the macroscopic level can be pre-
dicted and optimized accurately [17]. Therefore the framework of a predictive
simulation-based optimization of advanced materials, which yet to be realized, repre-
sents a central challenge within material simulation technology [9]. Consequently
material design innovation is facing the ever-growing need to provide a computational
toolbox that allows the development of tailor-made molecules and materials through
the optimization of materials behavior [10]. The goal of such toolbox is to provide
insight over the property of materials associated with their design, synthesis, pro-
cessing, characterization, and utilization [19].

2 Computational Materials Design Innovation

Computational materials design innovation aims at development and application of
multiscale methods to simulate advanced materials with high accuracy [17]. A key to
meet the ever-ongoing demand on increasing performance, quality, specialization, and
price reduction of materials is the availability of simulation tools which are accurate
enough to predict and optimize novel materials on a low computation cost [6]. A major
challenge however would be the hierarchical nature inherent to all materials.
Accordingly to understand a material property on a given length and time scale it is
crucial to optimize and predict the mechanisms on shorter length and time scales all the
way down to the most fundamental mechanisms describing the chemical bond. Con-
sequently the materials systems are to be simultaneously studied under consideration of
underlying nano-structures and Mesomanufacturing Scales. Such design process is
highly nonlinear and requires an interactive MOO toolset [12].

2.1 Interdisciplinary Research and Research Gap

Structure calculations of materials [20], systematic storage of the information in
database repositories [8], materials characterization and selection [18], and gaining new
physical and environmental insights [9] account for big data technologies. In addition
making decision for the optimal materials design needs MOO tools as well as an
efficient decision-support system for post-processing [21]. This is considered as a
design optimization process of the microstructure of materials with respect to desired
properties and Mesoscale functionalities. Such process requires a smart agent which
learns from dataset and makes optimal decisions. The solution of this inverse problem
with the support of the virtual test laboratories and knowledge-based design would be
the foundation of tailor-made molecules and materials toolbox. With such an integrated
toolbox at hand the virtual testing concept and application is realized. This challenging
task can only be accomplished through a variety of scale bridging methods which

Learning and Intelligent Optimization for Material Design Innovation 359

requires machine learning and optimization combined [4]. Furthermore a great deal of
understanding on big data and prediction technologies for microstructure behavior of
existing materials, as well as the ability to test the behavior of new materials at the
atomic, microscopic and mesoscale is desired to confidently modifying the materials
properties [7]. Numerical analysis further allows efficient experiments with entirely
new materials and molecules [20]. Basic machine learning technologies such as arti-
ficial neural networks [21], and genetic algorithms [9], Bayesian probabilities and
machine learning [8], data mining of spectral decompositions [7], refinement and
optimization by cluster expansion [20], structure map analysis and neural networks [1],
and support vector machines [19], have been recently used for this purpose.

Computational materials design innovation to perfect needs to dramatically improve
and put crucial components in place. To be precise, data mining, efficient codes, Big data
technologies, advanced machine learning techniques, intelligent and interactive MOO,
open and distributed networks of repositories, fast and effective descriptors, and
strategies to transfer knowledge to practical implementations are the research gaps to be
addressed [6]. In fact the current solvers rely only on a single algorithm and address
limited scales of the design problems [17]. In addition there is a lack of reliable visu-
alization tools to better involve engineers into the design loop [11]. The absence of
robust design, lack of the post-processing tools for multicriteria decision-making, lack
of Big data tools for an effective consideration of huge materials database are further
research gaps reported in literature [8]. To conclude, the process of computational
material design innovation requires a set of up-to-date solvers to cover a wide range of
problems. Further problem with the current open-source software toolboxes, reported in
[6], is that they require a concrete specification on the mathematical model, and also the
modeling solution is not flexible and adaptive. This has been a reason why the traditional
computation tools for materials design have not been realistic and as effective. Conse-
quently the vision of this work is to propose an interactive toolbox, where the solver
determines the optimal choices via visualization tools as demonstrated in [5]. Ultimately
the purpose is to construct a knowledge-based virtual test laboratory to simultaneously
optimize the hybrid materials microstructure systems, e.g. textile composites. Whether
building atomistic, continuum mechanics or multiscale models, the toolbox can provide
a platform to rearrange the appropriate solver according to the problem at hand. Such
platform contributes in advancement of innovative materials database leading to inno-
vative materials design with the optimal functionality.

3 LION as a Solver

The complex body of information of computational materials design requires the most
recent advancements in machine learning and MOO to scale to the complex and
multiobjective nature of the optimal materials design problems [10]. From this per-
spective the materials design can be seen as a high potential research area and a
continuous source of challenging problems for LION. In the LION way [3] every
individual design task, according to the problem at hand, can be modeled on the basis
of the solvers within the toolbox. To obtain a design model the methodology does not
ask to specify a model, but it experiments with the current system. The appropriate

360 A. Mosavi and T. Rabczuk

model is created in the toolbox and further is used to identify a better solution in a
learning cycle. The methodology is based on transferring data to knowledge to optimal
decisions through LION way i.e. a workflow that is referred to as prescriptive analytics
[4]. In addition an efficient Big data application [18] can be integrated to build models
and extract knowledge. Consequently a large database containing the properties of the
existing and hypothetical materials is interrogated in the search of materials with the
desired properties. Knowledge exploits to automate the discovery of improving solu-
tions i.e. connecting insight to decisions and actions [17]. As the result a massively
parallelized multiscale materials modeling tools that expand atomistic-simulation-based
predictive capability is established which leads to rational design of a variety of
innovative materials and applications.

A variety of solvers integrated within the LION include several algorithms for data
mining, machine learning, and predictive analytics which are tuned by cross-validation.
These solvers provide the ability of learning from data, and are empowered by reactive
search optimization (RSO) [4] i.e. the intelligent optimization tool that is integrated into
the solver. The LION way fosters research and development for intelligent optimization
and Reactive Search. Reactive Search stands for the integration of sub-symbolic
machine learning techniques into local search heuristics for solving complex opti-
mization problems via an internal online feedback loop for the self-tuning of critical
parameters [3, 12]. In fact RSO is the effective building block for solving complex
discrete and continuous optimization problems which can cure local minima traps.
Further, cooperating RSO coordinates a collection of interacting solvers which is
adapted in an online manner to the characteristics of the problem. LIONsolver [4],
LIONoso (a non-profit version of LIONsolver), and Grapheur [5], are the software
implementations of the LION way which can be customized for different usage con-
texts in materials design. These implementations have been used for solving a number
of real-life problems including materials selection [18], engineering design [14, 15],
computational mechanics [13], and Robotics [16].

4 Textile Composites Optimal Design

To evaluate the effectiveness of the LION way the case study of textile composites
design with MOO, presented by Milani (2011), is reconsidered using Grapheur. This
case study describes a novel application of LION way dealing with decision conflicts
often seen among design criteria in composites materials design [18]. In this case study
it is necessary to explore optimal design options by simultaneously analyzing materials
properties in a multitude of disciplines, design objectives, and scales. The complexity
increases with considering the fact that the design objective functions are not mathe-
matically available and designer must be in the loop of optimization to evaluate the
Mesomanufacturing Scales of the draping behavior of textile composites. The case
study has a relatively large-scale decision space of electrical, mechanical, weight, cost,
and environmental attributes.

To solve the problem an interactive MOO model is created with Grapheur. With
the aid of the 7D visualization graph the designer in the loop formulates and sys-
tematically compares different alternatives against the large sets of design criteria to

Learning and Intelligent Optimization for Material Design Innovation 361

tackle complex decision-making task of exploring trade-offs and also designing
break-even points. With the designer in the loop, interactive schemes are developed
where Grapheur provides a versatile tool for stochastic local search optimization. Once
the optimal candidates over the five design objectives preselected, screening the
Mesomanufacturing Scales of draping figures takes place to identify the most suitable
candidate. In this case study the interactive MOO toolset of Grapheur provides a strong
user interface for visualizing the results, facilitating the solution analysis, and
post-processing (Fig. 1).

5 Conclusions

Computational material design innovation as an emerging area of materials science
requires an adaptive solver to rule a wide range of materials design problems.
The LION way provides a suitable platform for developing a computational toolbox for
the virtual optimal design and simulation-based optimization of advanced materials to
model, simulate, and predict the fundamental properties and behavior of multiscale
materials. The proposed solver is a simple yet powerful concept presenting an inte-
gration of advanced machine learning and intelligent optimization techniques. With a
strong interdisciplinary background the novel application of LION way connects
computer science and engineering, and further strengthens the research direction of
digital engineering.

Fig. 1. 7D visualization graph for MOO and post-processing: Interactive MOO toolset of
Grapheur on exploring trade-offs and simultaneous screening the Mesomanufacturing Scales: the
multi-disciplinary property values of candidate materials are supplied from [12].

362 A. Mosavi and T. Rabczuk

References

1. Artrith, N.H., Alexander, U.: An implementation of artificial neural-network potentials for
atomistic materials simulations. Comput. Mater. Sci. 114, 135–150 (2016)

2. Bayer, F.A.: Robust economic Model Predictive Control using stochastic information.
Automatica 74, 151–161 (2016)

3. Battiti, R., Brunato, M.: The LION Way: Machine Learning plus Intelligent Optimization.
Lionlab, University of Trento, Italy (2015)

4. Brunato, M., Battiti, R.: Learning and intelligent optimization: one ring to rule them all.
Proc. VLDB Endow. 6, 1176–1177 (2013)

5. Brunato, M., Battiti, R.: Grapheur: a software architecture for reactive and interactive
optimization. In: Blum, C., Battiti, R. (eds.) LION 2010. LNCS, vol. 6073, pp. 232–246.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13800-3_26

6. Ceder, G.: Opportunities and challenges for first-principles materials design and applications
to Li battery materials. Mater. Res. Soc. Bull. 35, 693–701 (2010)

7. Fischer, C.: Predicting crystal structure by merging data mining with quantum mechanics.
Nat. Mater. 5, 641–646 (2006)

8. Jain, A.: A high-throughput infrastructure for density functional theory calculations.
Comput. Mater. Sci. 50, 2295–2310 (2011)

9. Johannesson, G.H.: Combined electronic structure and evolutionary search approach to
materials design. Phys. Rev. Lett. 88, 255–268 (2002)

10. Lencer, D.: A map for phase-change materials. Nat. Mater. 7, 972–977 (2008)
11. Mosavi, A.: Decision-making software architecture; the visualization and data mining

assisted approach. Int. J. Inf. Comput. Sci 3, 12–26 (2014)
12. Milani, A.: Multiple criteria decision making with life cycle assessment for material selection

of composites. Express Polym. Lett. 5, 1062–1074 (2011)
13. Mosavi, A., Vaezipour, A.: Reactive search optimization; application to multiobjective

optimization problems. Appl. Math. 3, 1572–1582 (2012)
14. Mosavi, A.: A multicriteria decision making environment for engineering design and

production decision-making. Int. J. Comput. Appl. 69, 26–38 (2013)
15. Mosavi, A.: Decision-making in complicated geometrical problems. Int. Comput. Appl. 87,

22–25 (2014)
16. Mosavi, A., Varkonyi, A.: Learning in Robotics. Int. J. Comput. Appl. 157, 8–11 (2017)
17. Mosavi, A., Rabczuk, T., Varkonyi-Koczy, A.R.: Reviewing the novel machine learning

tools for materials design. In: Luca, D., Sirghi, L., Costin, C. (eds.) INTER-ACADEMIA
2017: Recent Advances in Technology Research and Education. Advances in Intelligent
Systems and Computing, vol. 660, pp. 50–58. Springer, Cham (2018). doi:10.1007/978-3-
319-67459-9_7

18. Mosavi, A., et al.: Multiple criteria decision making integrated with mechanical modeling of
draping for material selection of textile composites. In Proceedings of 15th European
Conference on Composite Materials, Venice, Italy (2012)

19. Saito, T.: Computational Materials Design, vol. 34. Springer Science & Business Media,
Heidelberg (2013)

20. Stucke, D.P., Crespi, V.H.: Predictions of new crystalline states for assemblies of
nanoparticles. Nano Lett. 3, 1183–1186 (2003)

21. Sumpter, B.G., Noid, D.W.: On the design, analysis, and characterization of materials using
computational neural networks. Annu. Rev. Mater. Sci. 26, 223–277 (1996)

Learning and Intelligent Optimization for Material Design Innovation 363

http://dx.doi.org/10.1007/978-3-642-13800-3_26
http://dx.doi.org/10.1007/978-3-319-67459-9_7
http://dx.doi.org/10.1007/978-3-319-67459-9_7

Statistical Estimation in Global Random Search
Algorithms in Case of Large Dimensions

Andrey Pepelyshev1,2(B), Vladimir Kornikov2, and Anatoly Zhigljavsky1,3

1 School of Mathematics, Cardiff University, Cardiff CF24 4AG, UK
{pepelyshevan,zhigljavskyaa}@cardiff.ac.uk

2 Faculty of Applied Mathematics, St.Petersburg State University,
Saint Petersburg, Russia

vkornikov@mail.ru
3 Lobachevsky Nizhny Novgorod State University,

23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia

Abstract. We study asymptotic properties of optimal statistical esti-
mators in global random search algorithms when the dimension of the
feasible domain is large. The results obtained can be helpful in deciding
what sample size is required for achieving a given accuracy of estimation.

Keywords: Global optimization · Extreme value · Random search ·
Estimation of end-point

1 Introduction

We consider the problem of global minimization f(x) → minx∈X, where f(·) is
the objective function and X ⊂ R

d is a feasible domain. The set X is a compact
set with non-empty interior and the objective function f(·) is assumed to satisfy
some smoothness conditions which will be discussed below. Let f∗ = minx∈Xf(x)
be the minimal value of f(·) and x∗ be a global minimizer; that is, x∗ is any
point in X such that f(x∗) = f∗.

If the objective function is given as a ‘black box’ computer code and there
is no information about this function available of Lipschitz type, then good sto-
chastic approaches often perform better than deterministic algorithms, especially
in large dimensions; see for example [3,4]. Moreover, stochastic algorithms are
usually simpler than deterministic algorithms.

A general Global Random Search (GRS) algorithm constructs a sequence of
random points x1, x2, . . . such that the point xj has some probability distribution
Pj , j = 1, 2, . . .; we write this as xj ∼ Pj . For each j � 2, the distribution Pj

may depend on the previous points x1, . . . , xj−1 and on f(x1), . . . , f(xj−1).
In the present paper, we will mostly concentrate on the so-called Pure Ran-

dom Search (PRS) algorithm, where the points x1, x2, . . . are independent and
have the same distribution P = Pj for all j. Simplicity of PRS enables detailed
examination of this algorithm.

c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 364–369, 2017.
https://doi.org/10.1007/978-3-319-69404-7_32

Estimation in Random Search in Large Dimensions 365

2 Statistical Inference About f∗ in Pure Random Search

Consider a PRS with xj ∼ P . Statistical inference about f∗ can serve for the
following purposes: (i) devising specific GRS algorithms like the branch and
probability bounds methods, see [2,6] and [4, Sect. 4.3], (ii) constructing stopping
rules, see [5], and (iii) increasing efficiency of population-based GRS methods,
see discussion in [3, Sect. 2.6.1]. Moreover, the use of statistical inferences in GRS
algorithms can be very helpful in solving multi-objective optimization problems
with non-convex objectives, see [6].

Since the points xj in PRS are independent identically distributed (i.i.d.)
with distribution P , the elements of the sample Y = {y1, . . . , yn} with yj =
f(xj) are i.i.d. with cumulative distribution function (c.d.f.) F (t) = Pr{x ∈
X : f(x) � t} =

∫
f(x)�t

P (dx) = P (W (t − f∗)) , where t � f∗ and W (δ) =
{x ∈ X : f(x) � f∗ + δ}, δ � 0. Since the analytic form of F (t) is either unknown
or intractable (unless f is very simple), for making statistical inferences about f∗
we need to use the asymptotic approach based the record values of the sample
Y . It is known that (i) the asymptotic distribution of the order statistics is
unambiguous, (ii) the conditions on F (t) and f(·) when this asymptotic law
works are very mild and typically hold in real-life problems, (iii) for a broad
class of functions f(·) and distributions P , the c.d.f. F (t) has the representation

F (t) = c0(t − f∗)α + o((t − f∗)α), t ↓ f∗, (1)

where c0 and α are some positive constants. The value of c0 is not important but
the value of α is essential. The coefficient α is called ‘tail index’ and its value is
usually known, as discussed below.

Let η be a random variable which has c.d.f. F (t) and y1,n � . . . � yn,n be
the order statistics for the sample Y . By construction, f∗ is the lower endpoint
of the random variable η.

One of the most important result in the theory of extreme order statis-
tics states (see e.g. [3, Sect. 2.3]) that if (1) holds then the c.d.f. F (t) belongs
to the domain of attraction of the Weibull distribution with density ψα(t) =
α tα−1 exp {−tα} , t > 0 . This distribution has only one parameter, the tail
index α.

In PRS we can usually have enough knowledge about f(·) to get the exact
value of the tail index α. Particularly, the following statement holds: if the global
minimizer x∗ of f(·) is unique and f(·) is locally quadratic around x∗ then the
representation (1) holds with α = d/2. However, if the global minimizer x∗ of
f(·) is unique and f(·) is not locally quadratic around x∗ then the representation
(1) may hold with α = d. See [4] for a comprehensive description of the related
theory.

The result that α has the same order as d when d is large implies the phe-
nomena called ‘the curse of dimensionality’. Let us first illustrate this curse of
dimensionality on a simple numerical example.

366 A. Pepelyshev et al.

3 Numerical Examples

We investigate the minimization problem with the objective function f(x) =
eT
1 x, where e1 = (1, 0, . . . , 0)T , and the set X is the unit ball: X = {x ∈
R

d : ||x|| ≤ 1}. The minimal value is f∗ = −1 and the global minimizer
z∗ = (−1, 0, . . . , 0)T is located at the boundary of X. Consider the PRS algo-
rithm with points xj generated from the uniform distribution PU on X.

Let us give some numerical values. In a simulation with n = 103 and d =
20, we have received y1,n = −0.6435, y2,n = −0.6107, y3,n = −0.6048 and
y4,n = −0.6021. In a simulation with n = 105 and d = 20, we have obtained
y1,n = −0.7437, y2,n = −0.7389, y3,n = −0.7323 and y4,n = −0.726. In Fig. 1 we
depict the differences yk,n − f∗ for k = 1, 4, 10 and n = 103, . . . , 1013, where the
horizontal axis has logarithmic scale. We can see that the difference yk,n −y1,n is
much smaller than the difference y1,n − f∗; that demonstrates that the problem
of estimating the minimal value of f∗ is very hard.

Fig. 1. Differences y1,n − f∗ (solid), y4,n − f∗ (dashed) and y10,n − f∗ (dotted), where
yk,n, k = 1, 4, 10, are records of evaluations of the function f(x) = eT

1 x at points
x1, . . . , xn with uniform distribution in the unit hyperball in the dimension d = 20
(left) and d = 50 (right).

Fig. 2. The difference y1,n − f∗ (left) and y10,n − y1,n (right) for n = 106 (solid)
and n = 1010 (dashed), where yj,n is the j-th record of evaluations of the function
f(x) = eT

1 x at points x1, . . . , xn with uniform distribution in the unit hyperball in the
dimension d; d varies in [5, 250].

Estimation in Random Search in Large Dimensions 367

In Fig. 2 we observe that the difference y1,n − f∗ increases as the dimension
d grows, for fixed n. Thus, the minimization problem becomes more difficult in
larger dimensions. Also, Fig. 2 shows that difference y10,n − y1,n is much smaller
than the difference y1,n − f∗.

Consider now the optimal linear estimator based on the use of k order sta-
tistics; this estimator, as shown in [1,4], has the form

f̂n,k =
1

Ck,α

k∑

i=1

ui

Γ (i + 2/α)
yi,n, (2)

where Γ (·) is the Gamma-function,

ui =

⎧
⎨

⎩

α + 1 , i = 1,
(α − 1)Γ (i), i = 2, . . . , k − 1,
(α − αk − 1)Γ (k), i = k,

Ck,α =
{∑k

i=1 1/i, α = 2,
1

α−2 (αΓ (k + 1)/Γ (k + 2/α) − 2/Γ (1 + 2/α)) , α �= 2.

If the representation (1) holds, then for given k and α and as n → ∞, the
estimator f̂n,k is a consistent and asymptotically unbiased estimator of f∗ and
its asymptotic mean squared error E(f̂n,k − f∗)2 has maximum possible rate
of convergence in the class of all consistent estimators including the maximum
likelihood estimator of f∗, as shown in [4, Chap. 7]. This mean squared error has
the following asymptotic form:

E(f̂n,k − f∗)2 = Ck,α(c0n)−2/α (1 + o(1)) , n → ∞. (3)

Using the Taylor series Γ (k + 2/α) = Γ (k) + 2
αΓ ′(k) + O(1/α2) for large

values of α, we obtain

Ck,α
 1
k

+
2(ψ(k) − 1 + 1/k)

αk
, (4)

for large α, where ψ(·) = Γ ′(·)/Γ (·) is the psi-function. Quality of this approxi-
mation is illustrated on Figs. 3 and 4.

In practice of global optimization, the standard estimator of f∗ is the current
record y1,n = mini=1,...,n f(xi). Its asymptotic mean squared error is

E(f̂n,k(e1) − f∗)2 = Γ (1 + 2/α)(c0n)−2/α (1 + o(1)) , n → ∞.

Asymptotic efficiency of y1,n is therefore eff(y1,n) = Ck,α/Γ (1 + 2/α). This
efficiency is illustrated on Fig. 5.

GRS algorithms have a very attractive feature in comparison with determin-
istic optimisation procedures. Specifically, in GRS algorithms we can use statis-
tical procedures for increasing efficiency of the algorithms and devising stopping

368 A. Pepelyshev et al.

Fig. 3. The exact expression of Ck,α (solid) and the approximation (4) (dashed) for
k = 2 (left) and k = 10 (right); α varies in [5, 50].

Fig. 4. The exact expression of Ck,α (solid) and the approximation (4) (dashed) for
α = 4 (left) and α = 7 (right); as k varies in [2, 25].

Fig. 5. Asymptotic efficiency eff(y1,n) of y1,n. Left: k = 2 (solid) and k = 10 (dashed);
as α varies in [5, 40]. Right: α = 5 (solid) and α = 25 (dashed); as k varies in [2, 20].

rules. But do we lose much by choosing the points at random? We claim that if
the dimension d is large then the use of quasi-random points instead of purely
random does not bring any advantage. Let us try to illustrate this using some
simulation experiments.

Using simulation studies we now investigate the performance of the PRS
algorithm with P = PU and quasi-random points generated from the Sobol low-
dispersion sequence. We examine the minimization problem with the objective
function f(x) =

∑d
s=1(xs − | cos(s)|)2 and the set X = [0, 1]d in the dimension

d = 15. In this problem, the global minimum f∗ = 0 is attained at the internal
point x∗ = (| cos(1)|, . . . , | cos(d)|). For each run of the PRS algorithm, we gen-
erate n points and compute the records y1,n and y2,n, for n = 103, 104, 105, 106.

Estimation in Random Search in Large Dimensions 369

Fig. 6. Boxplot of records y1,n for 500 runs of the PRS algorithm with points generated
from the Sobol low-dispersion sequence (left) and the uniform distribution (right),
d = 15.

We repeat this procedure 500 times and show the obtained records as boxplots
in Fig. 6.

We can see that the performance of the PRS algorithm with points gener-
ated from the Sobol low-dispersion sequence and the uniform distribution is very
similar. We also note that the variability of y1,n is larger than variability of y4,n

and the difference y10,n − y4,n has a small variability.

Acknowledgements. The work of the first author was partially supported by the
SPbSU project No. 6.38.435.2015 and the RFFI project No. 17-01-00161. The work
of the third author was supported by the Russian Science Foundation, project No.
15-11-30022 ‘Global optimization, supercomputing computations, and applications’.

References

1. Zhigljavsky, A.: Mathematical Theory of Global Random Search. Leningrad Uni-
versity Press (1985). in Russian

2. Zhigljavsky, A.: Branch and probability bound methods for global optimization.
Informatica 1(1), 125–140 (1990)

3. Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer, New York
(2008)

4. Zhigljavsky, A.: Theory of Global Random Search. Kluwer Academic Publishers,
Boston (1991)

5. Zhigljavsky, A., Hamilton, E.: Stopping rules in k-adaptive global random search
algorithms. J. Global Optim. 48(1), 87–97 (2010)

6. Zilinskas, A., Zhigljavsky, A.: Branch and probability bound methods in
multi-objective optimization. Optim. Lett. 10(2), 341–353 (2016). doi:10.1007/
s11590-014-0777-z

http://dx.doi.org/10.1007/s11590-014-0777-z
http://dx.doi.org/10.1007/s11590-014-0777-z

A Model of FPGA Massively Parallel
Calculations for Hard Problem of Scheduling

in Transportation Systems

Mikhail Reznikov(&) and Yuri Fedosenko(&)

Volga State University of Water Transport, Nizhny Novgorod, Russia
mirekez@gmail.com, fds@vgavt-nn.ru

Abstract. The FPGA calculation hardware was estimated in terms of perfor-
mance of solving a hard nonlinear discrete optimization problem of scheduling
in transportation systems. The dynamic programming algorithm for a large-scale
problem is considered and a model of its decomposition into a set of smaller
problems is investigated.

Keywords: Discrete optimization � Dynamic programming � Job-shop
scheduling � FPGA calculations � Parallel computing

1 Introduction

A discrete nonlinear optimization problem that arises in real-life transportation systems
of river multisectional trains while they pass servicing (loading, unloading or fueling)
terminal (see, e.g., [1]) is considered. This problem is NP-hard and is characterized by an
exponential time complexity depending on the schedule size n (see, e.g., [2, 3]). An
executive planning requires the preparation of a servicing schedule that defines an order
of the vessel processing. Such a schedule can be synthesized by an operator in a strongly
limited time period before a servicing stage begins. From practical considerations, since
one service cycle takes a full day, a one-hour limit was taken for a schedule creating time
in this work. This time period should include dozens of runs of a computational algo-
rithm with slightly different inputs. Since the resources consumption estimation for such
an algorithm is Oðn2nTÞ, where T is the number of discrete time intervals, for even not
high values of n and T as, for example, n = 25 and T = 16, the algorithm would require
more than 13 billion of calculation operations and would take several minutes on a
modern CPU. Thus, it is necessary to search for the best hardware approach and to
investigate computational models providing a significant performance improvement.

The dynamic programming (DP) approach (see, e.g., [4]) which can be used for
problem solving is memory-limited and its parallelization requires the development of
special algorithms and architectures (see, e.g., [5, 6]). Some of perspective research
directions in the field of specialized computational systems use multi-core graphical

The reported study was funded by RFBR according to the research project № 18-07-01078a.

© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 370–375, 2017.
https://doi.org/10.1007/978-3-319-69404-7_33

processing units (GPU), digital signal processors (DSP), neuro-computers, alternative
physical imitation systems (see, e.g., [7]).

A separate direction of the investigation of massively parallel computing engines is
based on the field programmable gate array (FPGA). The state-of-the-art in the field of
FPGA-based discrete optimization is presented, for example, in [8, 9] and shows
hardware approach benefits for suboptimal solution finding. In comparison with these
works, in the present short paper the way to efficiently search for an optimal solution by
using a hardware accelerator is suggested.

2 Service Scheduling Problem

The considered service scheduling problem consists of searching for an optimal
schedule of jobs z1; z2; . . .; znf g from a set Z to be processed by a single machine
P. The jobs are characterized by the following parameters i ¼ 1; 2; . . .; nð Þ:

ti – the moment of readiness for processing of the job zi,
si – duration of processing of the job zi,
ai(t′ − ti) – the linear penalty function (negative weight) for processing started at

time t′.
The schedule of processing matches permutation p ¼ ðpð1Þ; pð2Þ; . . .; pðnÞÞ of

the set of job’s indexes. Let machine P be ready for processing from the time moment
t = 0, processing of each job go without interruptions and simultaneous processing of
several jobs be impossible. Let t′k be a moment of processing start for the job with the
index p kð Þ ðk ¼ 1; 2; . . .; nÞ. Then the correct schedule will be compact, i.e. t01 ¼ tp 1ð Þ
and t0k ¼ max t0k�1 þ sp k�1ð Þ; tp kð Þ

� �
for k = 2, 3, …, n.

The problem is to find the schedule p with the minimal overall penalty over the
whole set Z processed, i.e.

WðpÞ ¼
Xn

k¼1
apðkÞðt0k � tpðkÞÞ ! min: ð1Þ

As shown, e.g., in [1], problem (1) is strongly NP-hard.

2.1 Dynamic Programming Method

For an efficient problem solution the dynamic programming method is often used
according to the Bellman’s principle of optimality (see, e.g., [4]). Let Wmin

k t; Sð Þ be the
minimal overall penalty value for processing a set of jobs S by machine P, which
becomes ready at the moment of discrete time t after the previously processed job p(k).
Let S be a subset of Z with jobs that have been already processed. Then, we can form
the following recurrent expression (counting Wmin

n t; Zð Þ ¼ 0Þ:

Wmin
k ðt; SÞ ¼ min

i ¼ 1::n
zi 62 S

ðWmin
kþ 1ðt0 þ si; S[ziÞþ aiðt0 � tiÞÞ; ð2Þ

A Model of FPGA Massively Parallel Calculations for Hard Problem 371

where t0 ¼ max t; tif g, and the minimal overall penalty is W� ¼ Wmin
0 0; ;ð Þ. Thus, the

optimization task can be represented by a recurrent hierarchy of subtasks. The solution
to each task is based on all the solutions to all its subtasks.

The expression (t, S) is called the system state and each expression Wmin
k t; Sð Þ can

be calculated only once to be saved for a later usage.
The algorithm time costs are estimated by counting the overall number of unique

states (t, S). The t value can be limited by some maximum moment T (some dis-
cretization can be chosen for the required accuracy), and the overall number of unique
states will be 2nT . The requirements for the RAM usage will be exponential, too.

3 Parallel Implementation for FPGA

A heterogeneous approach which is considered in this work uses the classical von
Neumann system connected to a special accelerator. Generally, it can be one of several
types like GPU, FPGA or a specialized processor. In this work, we consider the
possibility of using FPGA as a coprocessor to accelerate the optimization task solving.
We suggest a model of massively parallel calculations for a part of the original
problem.

For example, let us consider the original problem with n = 22 and T = 32. The
process of the DP algorithm consists of a continuous calculation of Wmin

k t; Sð Þ values
for all possible system states (t, S) for the stage k from n to 0. Each Wmin

k is calculated
on the base of the previously calculated values. The structure of system states realizes
the recurrent hierarchy. As shown on Fig. 1(a), the number of states for processing
depends on its depth in hierarchy ðSkh marks the set of processed jobs with the serial
number h for the stage k). The CPU calculation time h for each stage is shown on Fig. 1
(b). The most of time is spent for calculation of stages with the number k close to n/2.
Hence, for a parallel realization we can calculate each stage separately and use all the
resources.

Fig. 1. (a) DP states hierarchy by stages; (b) time in seconds needed for each stage solving.

372 M. Reznikov and Y. Fedosenko

3.1 Decomposition of the Original Problem

Each system state (t, S) corresponds to some subtask with a lower size. The size of the
subtask is equal to n� kð Þ where k is the size of a set S. Each such subtask can be
solved separately and without any connection with the original task. A local problem
consists of a scheduling of the remaining n� kð Þ jobs starting from the selected state.

This method is used to allow a larger problem to be solved by using solutions to
smaller problems.

In general, a separate subtask calculation is harder because there is no secondary
usage of the already calculated Wmin

k values that can be stored in memory. So, this
method will be efficient only in the case of ability to process much more states per
second than a CPU does. For such a special computing, an FPGA implementation has
been chosen.

The goal of the FPGA architecture is to continuously provide solutions to the small
problem with schedule size m at a frequency of Integrated Circuit (IC), one solution per
each clock cycle. Therefore, the calculation should use sufficient FPGA resources to
process all calculations in parallel. The example of an IC for m = 4 and T = 16 is
shown on Fig. 2(a) for demonstrative purposes. One ALU module is shown in Fig. 2
(b). The IC was built using hardware description language (HDL) by the following
rules:

1. The first part generates ALU for all possible states (t, S) for t from 0 to T and
S 2 Z.

2. The second part generates busses Wmin
k t; Sð Þ for each ALU and connects the result

registers to all inputs of the other ALUs that require it.

Fig. 2. (a) ALU DP hierarchy example for m = 4, exact schedules are shown; (b) one ALU.

A Model of FPGA Massively Parallel Calculations for Hard Problem 373

This model for the size up to m = 11 has been synthesized for FPGA Virtex-7 565T
(see [10]) with clock 300 MHz, providing one solution to task per clock cycle with
pipelining.

The heterogeneous calculation process works in the following two cycles.

1. In the beginning of the solving process the FPGA calculates all Wmin
n�m values for the

stage (n-m). Each value is provided as the solution to the subtask of size m.
2. The CPU gets these values from the FPGA, stores in memory tables and then starts

the software-based dynamic programming calculation process from stage (n-m).

As a result of this approach, the CPU skips the first m stages of the common DP
algorithm calculations. In the case of ability of the FPGA coprocessor to solve a
problem with the size equal to half of the original problem size n, the whole calculation
time can be reduced almost by factor two. Increasing m will lead to the less calculation
time. The problem solution time for a heterogeneous system containing FPGA-based
solver for schedule size m is presented on Fig. 3. The time required for the problem
solution using a 4-core modern CPU is shown as a reference. In particular, the time for
m = 11 was taken from the performance estimation of the heterogeneous system
prototype. The time for m > 11 is the result of mathematical modelling using a sim-
ulator. The original problem size is n = 22 and T = 32.

The considered approach allows a linear scaling of DP algorithm for the original
problem solving. However, the maximum size m of the problem which can be solved is
significantly limited by the available FPGA resources. Taking into account the fact that
the last generation of FPGA contains more resources than devices used in this work, we
can conclude that coprocessors can provide a significant solving time reduction. By
using several FPGA devices it is possible to provide a linear scalability of the solving
algorithm.

Fig. 3. Processing time h of the original problem in seconds for different FPGA-based solver
schedule size m compared with a 4-core CPU implementation.

374 M. Reznikov and Y. Fedosenko

From the other hand, this model demonstrates the way how FPGAs or, generally,
application-specific integrated circuits (ASICs) can be used for a fast solving of
NP-hard discrete optimization problems.

4 Conclusions

As the main result of this work, a special model of a heterogeneous architecture with
the FPGA massively parallel calculations was suggested. The model is based on
decomposition of the original problem using dynamic programming method and pro-
vides the following benefits:

– a 2–4 times synthesis time reduction with one FPGA architecture in comparison to
the CPU-based realization,

– the linear scalability is possible if more FPGA devices are used.

References

1. Kogan, D.I., Fedosenko, Yu.S.: Optimal servicing strategy design problems for stationary
objects in a one-dimensional working zone of a processor. Autom. Remote Control 71(10),
2058–2069 (2010)

2. Kogan, D.I., Fedosenko, Yu.S.: The discretization problem: analysis of computational
complexity, and polynomially solvable subclasses. Discrete Math. Appl. 6(5), 435–447
(1996)

3. Sammarra, M., Cordeau, J.-F., Laporte, G., Monaco, M.F.: A tabu search heuristic for the
quay crane scheduling problem. J. Sched. 10(4), 327–336 (2007)

4. Bellman, R.E., Dreyfus, S.E.: Applied Dynamic Programming. Princeton Univ. Press,
Princeton (1962)

5. Cuencaa, J., Gimnezb, D., Martnez, J.: Heuristics for work distribution of a homogeneous
parallel dynamic programming scheme on heterogeneous systems. Parallel Comput. 31(7),
711–735 (2005)

6. Gergel, V.P.: High-Performance Computing for Multi-Processor Multi-Core Systems. MGU
Press, Moscow (2010). (In Russian)

7. Brodtkorb, A.R., Dyken, C., Hagen, T.R., Hjelmervik, J.M., Storaasli, O.O.: State-of-the-art
in Heterogeneous Computing. Scientific Programming 18(1), 1–33 (2010)

8. Madhavan, A., Sherwood, T., Strukov, D.: Race logic: a hardware acceleration for dynamic
programming algorithms. In: ISCA 2014, Minnesota, USA, pp. 517–528 (2014)

9. Tao, F., Zhang, L., Laili, Y.: Job shop scheduling with FPGA-based F4SA. In: Tao, F.,
Zhang, L., Laili, Y. (eds.) Configurable Intelligent Optimization Algorithm. SSAM, pp. 333–
347. Springer, Cham (2015). doi:10.1007/978-3-319-08840-2_11

10. 7 Series FPGAs Data Sheet: Overview, March 2017. https://www.xilinx.com/support/
documenta-tion/data_sheets/ds180_7Series_Overview.pdf

A Model of FPGA Massively Parallel Calculations for Hard Problem 375

http://dx.doi.org/10.1007/978-3-319-08840-2_11
https://www.xilinx.com/support/documenta-tion/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documenta-tion/data_sheets/ds180_7Series_Overview.pdf

Accelerating Gradient Descent with Projective
Response Surface Methodology

Alexander Senov(B)

Faculty of Mathematics and Mechanics, Saint Petersburg State University,
198504 Universitetsky Prospekt, 28, Peterhof, St. Petersburg, Russia

alexander.senov@gmail.com

http://math.spbu.ru/eng

Abstract. We present a new modification of gradient descent algorithm
based on surrogate optimization with projection into low-dimensional
space. It consequently builds an approximation of the target function
in low-dimensional space and takes the approximation optimum point
mapped back to original parameter space as the next parameter estimate.
An additional projection step is used to fight the curse of dimensional-
ity. Major advantage of the proposed modification is that it does not
change gradient descent iterations, thus it may be used with almost any
zero- or first-order iterative method. We give a theoretical motivation
for the proposed algorithm and experimentally illustrate its properties
on modelled data.

Keywords: Least-squares · Steepest descent · Quadratic program-
ming · Projective methods

1 Introduction

Mathematical optimization is a very popular and widely used tool in today’s
control, machine learning and other applications since almost any process or
procedure is essentially about maximising or minimising some quantity (see, for
example [5]). In the case of high function computation complexity, unknown
Hessian or high dimensional parameter space, one can choose among many zero-
or first-order iterative optimization algorithms (see [2,6–8]), although some of
them share one but yet important drawback: at each iteration they explicitly
consider only the current point and function value estimates ignoring preceding
history and, thus, loosing potentially highly important information.

In contrast, surrogate optimization methods use history of the past points
for approximating the objective function by another function called surrogate
and takes the next estimate based on it (see, e.g., [4]). For example, quadratic
response surface methodology constructs surrogate as a second order polynomial
constructed via polynomial regression and take its minimum as the next esti-
mate (see, e.g., [1]). Despite many advantages, many surrogate models share

c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 376–382, 2017.
https://doi.org/10.1007/978-3-319-69404-7_34

Accelerating Gradient Descent with Projective Approximation 377

two drawbacks: they are memory and time consuming and their performance
depends on the chosen surrogate adequacy.

Additionally, the so-called multi-step optimization methods do use history
too (see, e.g., [8]). Many of them do use only fixed amount of history, e.g. two-
step Heavy-ball method use only two past steps. Others do use parametrized
amount of history, like multi-step quasi-Newton method [3], but in slightly dif-
ferent way (e.g., not using the projection trick, or without explicit quadratic
approximation).

In this paper we propose a new method which is essentially an incorporation
of quadratic response surface methodology into the gradient descent algorithm.
To neutralize memory footprint of quadratic polynomial we use a projection
trick. The general idea of the proposed algorithm is to use a sequence of points
obtained from the gradient descent iterations as follows:

1. K1 consecutive points used to train incremental principal component analysis
algorithm which produces orthogonal projection matrix P.

2. K2 consecutive points used to collect training set in low-dimensional space
obtained with P.

3. Quadratic polynomial fitted to collected training set and the argument of the
polynomial minimum returned back to the original space used as the next
point estimate.

These steps are executed iteratively producing an additional point every K1 +
K2 gradient descent iterations. We consider gradient descent algorithm as an
example, but it may be easily replaced with some other zero-order or first-order
iterative optimization method.

The paper is organized as follows. In Sect. 2 we describe the proposed
algorithm which improves gradient descent by using the projective quadratic
response surface methodology. In Sect. 3 we provide theoretical motivation
behind it. Further, in Sect. 4 we report a case study on modelled data and discuss
its results. Finally, Sect. 5 concludes the paper.

2 Algorithm Description

A pseudo-code of the proposed algorithm (Algorithm 1) is given in Fig. 1. It has
the following parameters: f : Rd → R — function to be optimized; ∇xf : Rd → R

— function gradient or its approximation (in case of zero-order method); λ ∈ R

— step size; d ∈ N+ — original space dimensionality; q ∈ N+ — projective space
dimensionality; T ∈ N+ — number of iterations; IncrPCA — incremental PCA
algorithm; K1 ∈ N+ — number of points for incremental PCA fitting; K2 ∈ N+

— number of points for surrogate construction.
We use x to denote sample mean vector. One might be confused by “back-

ward projection” step of transforming ẑ in low-dimensional space to x̂ in high-
dimensional space (line 18 in Algorithm 1). This transformation is motivated by
Proposition 1 (Sect. 3). As for the choice of principal component analysis as a
tool for the orthogonal projection construction it is rather motivated by practice

378 A. Senov

Fig. 1. Proposed gradient descent modification

and intuition: the first q principal components have the largest possible variance.
The more information (in terms of variance) we keep from the original points
the more accurate our approximation will be.

As one can see, the proposed modification utilizes: O (K1qd) operations and
O (qd) memory at step (1), O (K2qd) operations and O (K2q) memory at step (2)
and O (

K2q
2 + q3

)

operations and O (

K2q + q2
)

memory at step (3). Hence,
this modification adds at most O (

qd + q3
)

in the number of operations and
O (

q2 + qd + K2q
)

in the memory consumption per single gradient descent iter-
ation.

3 Theoretical Background

In this section we provide theoretical motivation behind the proposed algorithm.
Proofs sketches are given in Appendix A.

Proposition 1. Consider P ∈ R
q×d, PP� = Iq and {x1, . . . ,xK} ⊂ R

d. Then

x̂ = argmin
{x∈Rd :Px=ẑ}

K
∑

t=1

‖xt − x‖22 =
(

I − P�P
) 1

K

K
∑

1

xt + P�ẑ.

This proposition motivates the “backward projection” step in the proposed
algorithm: from set {x ∈ R

d : Px = ẑ} we pick the point closest to K previous
gradient descent estimates. Further, the following propositions quantify the effect
of the projection on the function optimum point.

Accelerating Gradient Descent with Projective Approximation 379

Proposition 2. Consider function f(x) = x�Ax + b�x + c, where A ∈ R
d×d,

A � 0, b ∈ R
d, c ∈ R, P ∈ R

q×d, PP� = Iq, z = Px, v = (I − P�P)x. Then

argmin
z

f(P�z + v) = −1
2
PA−1b.

Proposition 3. Consider function f(x) = x�Ax + b�x + c, where A ∈ R
d×d,

b ∈ R
d, c ∈ R and A � 0, orthogonal projection matrix P ∈ R

q×d, q < d,
sequence of gradient descent estimates {xt}K1 ⊂ R

d, their projections {zt}K1 ⊂
R

q, zt = Pxt and corresponding function values {yt}K1 , yt = f(xt).
Let x̂ = − 1

2P
�PA−1b + (I − P�P)x. Then

‖ argmin f − x̂‖22 =
∥

∥

∥

∥

(I − P�P)
(

1
2
A−1b − x

)∥

∥

∥

∥

2

2

.

This proposition provides an estimate of the difference between the true
function optimum point and its estimate obtained after each iteration of the
proposed algorithm (lines 3–19) and implies the following two important facts.

1 The difference between the optimum point and obtained estimate lies in the
kernel of orthogonal projection P. Hence, estimate P x̂ is the best estimate in
terms of this projection.

2 The closer the averaged gradient descent estimates to the optimum points,
the smaller is the error. Hence, x̂ benefits from precision of gradient descent
estimates.

4 A Case Study

First, we describe the modelling strategy. For modelling purposes we use the
following default values: f(x) = x�Idx − 1T

d x, where d is a variable parameter;
d ← 10, T ← 50, x0 ∼ U [0, 1]d, λ = 10−5; q ← 1, K1 ← 10, K2 ← 5. We vary
parameters T , d, K1 and K2 independently (with other parameters fixed) in the
following ranges: T ∈ [25, 30, 50, 100]; d ∈ [5, 10, 20, 50, 100]; K1 ∈ [2, 5, 10, 20];
K2 ∈ [2, 5, 10, 20]. For each parameters values combination we execute the gradi-
ent descent algorithm and the proposed algorithm with the same initial estimate
x0 for 103 times and calculate their errors as Euclidean distance from the real
optimum point to the algorithm estimate. Then we calculate ξ — a ratio of times
when the proposed algorithm error was less than the gradient descent error.

Table 1 contains the results of the experiment described above. ξ monoton-
ically decreases with T increased since the proposed algorithm works well at
the start but fails to build a surrogate when the gradient descent oscillates near
the optimum point. Further, there are no evident dependency on q since for the
particular function the gradient descent estimates lie on the straight line. Thus,
they are perfectly described by a single dimension. Situation with parameter K1

380 A. Senov

Table 1. Results of the performed numerical experiments. ξ is the ratio of times when
the proposed algorithm error was less than the gradient descent error

Parameter Parameter value ξ

T 25 0.91

T 30 0.90

T 50 0.80

T 100 0.51

d 5 0.81

d 10 0.78

d 20 0.80

d 50 0.81

d 100 0.79

K1 2 0.79

K1 5 0.78

K1 10 0.78

K1 20 0.83

K2 2 0.10

K2 3 0.80

K2 5 0.82

K2 10 0.79

is similar to the parameter q and may be explained by the same reason. Finally,
a huge difference in quality between K2 = 2 and K2 = 3 is explained by the fact
that one needs at least three points in one-dimensional space to construct the
second order polynomial.

5 Conclusion

We propose a modification to the gradient descent based on the quadratic
response surface methodology with the projection trick. We show that the pro-
posed modification can provide the best optimum approximation with respect
to the considered projection. The synthetic case study shows that the modified
gradient descent can be superior with respect to the original one in terms of the
optimum point estimation error. This modification may be used with other zero-
or first-order iterative optimization method thus improving their performance.

Acknowledgments. This work was supported by Russian Science Foundation
(project 16-19-00057).

Accelerating Gradient Descent with Projective Approximation 381

A Proofs

Proof. (of Proposition 1)

∂x argmin
{x∈Rd :Px=ẑ}

K
∑

t=1

‖xt − x‖22

= ∂x

K
∑

t=1

|| P�Pxt +
(

I − P�P
)

xt − (

P�ẑ +
(

I − P�P
)

x
) ||22

= 2(I − P�P)
K

∑

t=1

xt − 2K
(

I − P�P
)

x = 0.

Since (I − P�P) is not invertible, the above equation has an infinite number of
solutions. Hence, we are free to choose any one of them, e.g. x = 1

K

∑K
1 xt.

Proof. (of Proposition 2)

f(x) =
(

P�z + v
)�

A
(

P�z + v
)

+ b� (

P�z + v
)

+ c

= z�PAP�z +
(

b� + v�A
)

P�z +
(

v�Av − b�v + c
)

.

Substituting v back and taking derivative with respect to z, we obtain:

0 = 2PAP�ẑ +
(

b� + x� (

I − P�P
)�

A
)

P�

� ẑ = −1
2

(

PAP�)−1
((

b� + x� (

I − P�P
)�

A
)

P�
)�

= −1
2
P

(

A−1b +
(

I − P�P
)

x
)

= −1
2
PA−1b.

Proof. (of Proposition 3) From Propositions 1 and 2: x̂ =
(

I − P�P
)

x −
1
2P

�PA−1b. Hence

‖ argmin f − x̂‖22 =
∥

∥

∥

∥

− 1
2
A−1b − x̂

∥

∥

∥

∥

2

2

=
∥

∥

∥

∥

− (

I − P�P
)

x +
1
2
P�PA−1b − 1

2
A−1b

∥

∥

∥

∥

2

2

=
∥

∥

∥

∥

(I − P�P)
(

1
2
A−1b − x

)∥

∥

∥

∥

2

2

.

References

1. Box, G.E., Draper, N.R., et al.: Empirical Model-Building and Response Surfaces.
John Wiley & Sons, New York (1987)

2. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
New York (2004)

382 A. Senov

3. Ford, J., Moghrabi, I.: Multi-step quasi-Newton methods for optimization. J. Com-
put. Appl. Math. 50(1–3), 305–323 (1994)

4. Forrester, A., Keane, A.: Recent advances in surrogate-based optimization. Prog.
Aerosp. Sci. 45(1), 50–79 (2009)

5. Granichin, O., Volkovich, V., Toledano-Kitai, D.: Randomized Algorithms in Auto-
matic Control and Data Mining. Springer, Heidelberg (2015)

6. Granichin, O.N.: Stochastic approximation search algorithms with randomization
at the input. Autom. Remote Control 76(5), 762–775 (2015)

7. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course.
Springer, New York (2004)

8. Polyak, B.T.: Introduction to Optimization. Translations Series in Mathematics and
Engineering. Optimization Software (1987)

Emmental-Type GKLS-Based Multiextremal
Smooth Test Problems

with Non-linear Constraints

Ya.D. Sergeyev1,2, D.E. Kvasov1,2, and M.S. Mukhametzhanov1,2(B)

1 University of Calabria, Rende (CS), Italy
{yaro,kvadim,m.mukhametzhanov}@dimes.unical.it

2 Lobachevsky State University, Nizhni Novgorod, Russia

Abstract. In this paper, multidimensional test problems for methods
solving constrained Lipschitz global optimization problems are proposed.
A new class of GKLS-based multidimensional test problems with con-
tinuously differentiable multiextremal objective functions and non-linear
constraints is described. In these constrained problems, the global min-
imizer does not coincide with the global minimizer of the respective
unconstrained test problem, and is always located on the boundaries
of the admissible region. Two types of constraints are introduced. The
possibility to choose the difficulty of the admissible region is available.

Keywords: GKLS classes of test problems · Constrained optimization ·
Lipschitz global optimization · Nonlinear constraints

1 Introduction

Global optimization problems with and without constraints attract a great atten-
tion of researchers from both theoretical and practical viewpoints (see, e.g.,
[3,17,20], for the derivative-free global optimization, [5,9,13,18], for the real-life
engineering problems, [2,17], for the parallel global optimization, etc.).

Let us consider the following constrained problem

f∗ = f(x∗) = min
x∈D

f(x), D = {(x1, ..., xN) : ai ≤ xi ≤ bi, i = 1, ..., N} ⊂ R
N ,

(1)
with p constraints

gj(x) ≤ 0, j = 1, ..., p, (2)

where the functions f(x) and gj(x), j = 1, ..., p, satisfy the Lipschitz condition
over the hyperinterval D

|f(x′) − f(x′′)| ≤ L||x′ − x′′||,
|gj(x′) − gj(x′′)| ≤ Lj ||x′ − x′′||, j = 1, ..., p, x′, x′′ ∈ D,

(3)

where L and Lj , 0 < L < ∞ and 0 < Lj < ∞, j = 1, ..., p, are the Lipschitz
constants for the functions f(x) and gj(x) over the hyperinterval D, respectively
(hereafter || · || denotes the Euclidean norm).
c© Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 383–388, 2017.
https://doi.org/10.1007/978-3-319-69404-7_35

384 Y.D. Sergeyev et al.

There exists a huge number of methods for solving (1)–(3) (see, e.g.,
[11,16,21,22]). These methods often have a completely different nature and their
numerical comparison can be very difficult (see, e.g., [14,15] for a numerical com-
parison of metaheuristic and deterministic unconstrained global optimization
algorithms). In [19], a new tool called “Operational zones” for an efficient numeri-
cal comparison of constrained and unconstrained global optimization algorithms
of different nature has been proposed. To use it, classes of test problems are
required. On the one hand, there exist many generators of test problems for
global and local optimization (see, e.g., [23] for the landscape generators, [12] for
the multidimensional assignment problem generator, [4,7] for the wide analysis
of different test classes and generators, [1,10,16] for different classes and gen-
erators of unconstrained test problems). On the other hand, collections of test
problems are used usually in the framework of continuous constrained global
optimization (see, e.g., [6]) due to absence of test classes and generators for such
a type of problems. This paper introduces a new class of test problems with
non-linear constraints, known minimizers, and parameterizable difficulty, where
both the objective function and constraints are continuously differentiable.

2 GKLS Classes of Unconstrained Test Problems

Let us consider the unconstrained GKLS class of test problems with continuously
differentiable objective function proposed in [8]. Test functions in this class are
generated by defining a convex quadratic function systematically distorted by
cubic polynomials in order to introduce local minima. The objective function
f(x) of the GKLS class is constructed by modifying a paraboloid Z

Z : z(x) = ||x − T ||2 + t, x ∈ D, (4)

with the minimum value t at the point T ∈ int(D), where int(D) denotes the
interior of D, in such a way that the resulting function f(x) has m, m ≥ 2,
local minimizers: point T from (4) and points Mi ∈ int(D), Mi �= T, Mi �=
Mj , i, j = 2, ...,m, i �= j. The paraboloid Z is modified by cubic polynomials
Ci(x) within balls Si ⊂ D (not necessarily entirely contained in D) around each
point Mi, i = 2, ...,m (with M1 = T being the vertex of the paraboloid and M2

being the global minimizer of the problem), where

Si = {x ∈ R
N : ||x − Mi|| ≤ ρi, ρi > 0}. (5)

Each class contains 100 test problems and is defined by the following parame-
ters: problem dimension, number of local minima, value of the global minimum,
radius of the attraction region of the global minimizer, and distance from the
global minimizer to the vertex of the paraboloid. An example of the test problem
with 30 local minima is presented in Fig. 1a.

Emmental-Type GKLS-Based Multiextremal Smooth Test Problems 385

(a) (b)

Fig. 1. Original GKLS test function (a) and Emmental-type GKLS-based test function
(b) do not coincide even without constraints.

3 Constrained Emmental-Type Test Problems

In order to have a powerful tool for testing algorithms for constrained global
optimization it is desirable to get test problems satisfying the following condi-
tions:

– The global minimizer of the constrained problem is known, randomly gener-
ated, and is placed on the boundary of the feasible region;

– The global minimizer of the constrained problem differs from the global min-
imizer of the unconstrained problem.

– The constraints are non-linear and satisfy the Lipschitz condition over the
hyperinterval D.

– The difficulty of the admissible region can be changed.

In order to satisfy the requirements given above, the Emmental-type GKLS-
based class of test problems with smooth objective function is constructed by
the following modifications of the GKLS class of unconstrained test problems.

Two types of constraints are proposed, where each constraint gi(x) is the
exterior of a ball with a center Gi and a radius ri, i.e.,

gi(x) = ri − ||x − Gi|| ≤ 0, i = 1, ..., p. (6)

The first-type constraints are constructed as follows. First, the local mini-
mizer (not the global one) Mimin nearest to the vertex of the paraboloid is taken
as follows

imin = arg min
i=3,...,m

{||Mi − M1|| − ρi}, (7)

where ρi is the radius of the ball Si (the index i starts from i = 3 since in original
GKLS classes M2 is the global minimizer). Then, the polynomial Cimin around
Mimin is modified in a way, that its minimum value has been set to −2 · |f∗|,
where f∗ is the optimum value of the original unconstrained GKLS problem. The
global minimizer of the Emmental-type unconstrained test problem differs from

386 Y.D. Sergeyev et al.

the global minimizer of the original GKLS test problem due to this modification
(see Fig. 1b). The ball with the radius r1 = ||M1−Mimin||−ρimin, and the center
at the vertex of the paraboloid, i.e., G1 = M1, is taken as the first constraint.

Second, in order to guarantee that the global minimizer of the constrained
test problem does not coincide with the global minimizer of the unconstrained
modified problem, the ball with the radius r2 = ρimin and the center G2 = Mimin

is taken as the second constraint.
Then, in order to guarantee that the global minimizer M2 of the constrained

test problem is placed on the boundary, the ball with the radius r3 = 1
2ρ2 and

the center at the point G3 = r
2·||M1−M2||M1 + (1 − r

2·||M1−M2||)M2 is taken as
the third constraint (see Fig. 2a).

If p1 > 3, where p1 is the number of the first-type constraints, p1 ≤ p, then
the fourth constraint is constructed symmetrically to the third one with respect
to the global minimizer M2, i.e., r4 = r3 and G4 = M2+(M2−G3) (see Fig. 2b).

The last p1 − 4 first-type constraints are taken as p1 − 4 different random
balls Sj , j ∈ {3, ...,m}, j �= imin, i.e., ri = ρj(i) and Gi = Mj(i), i = 5, ..., p1.

The p2 = p− p1 constraints of the second type, where 0 ≤ p2 ≤ 2N , are built
as follows. Random vertices cj = (cj1, ..., c

j
N), cji ∈ {ai, bi}, j = 1, ..., p2, of D are

taken. Then, for each taken vertex cj , the nearest local or global minimum Mi(j)

is found. The (p1 + j)-th constraint is built as a ball with the center Gp1+j = cj
and the radius rp1+j = ||cj − Mi(j)||, j = 1, ..., p2 (see Fig. 2c).

The presented Emmental-GKLS class of test problems consists of 100 smooth
objective functions with the same characteristics as the original GKLS-based
test functions, with the global minimum located in a random point with a ran-
dom radius of its region of attraction. Moreover, it is built using p constraints,
including p1 constraints of the first type, i.e., the constraints related to the local
minima, with 3 ≤ p1 ≤ m, and p2 = p − p1 constraints of the second type, i.e.,
the constraints related to the vertices of D, with 0 ≤ p2 ≤ 2N . The admissible
regions for (p1, p2) = (3, 0), (4, 0), (4, 2), and (20, 2) are presented in Fig. 2.

We can conclude that in the obtained test class:

– The global minimizer x∗ of the constrained problem is known, is placed on the
boundaries of the admissible region in a point different w.r.t. global minimizer
of the unconstrained Emmental-type GKLS problem.

– The global minimizer of the unconstrained Emmental-type GKLS problem
is known. It coincides with the nearest local minimizer to the vertex of the
paraboloid of the original unconstrained GKLS test problem, and differs from
the global minimizer of the constrained test problem.

– The difficulty of the constrained problem can be easily changed. The simplest
domain has p1 = 3 and p2 = 0 constraints and the hardest one has p1 =
m + 1 and p2 = 2N constraints (notice that the search domain can be simply
connected, biconnected or multiconnected). It should be noticed, that the
global minimizer cannot be an isolated point and is always accessible from a
feasible region having a positive volume.

– The constraints are non-linear and satisfy the Lipschitz condition over the
hyperinterval D.

Emmental-Type GKLS-Based Multiextremal Smooth Test Problems 387

Fig. 2. The admissible region and the level curves of the objective function of the
Emmental-type GKLS-based test problem with (a) p1 = 3, p2 = 0; (b) p1 = 4, p2 = 0;
(c) p1 = 4, p2 = 2; (d) p1 = 20, p2 = 2. The admissible region in (d) contains 3 disjoint
subregions. The vertex of the paraboloid is indicated by × and the global minimizer of
the constrained problem is indicated by +.

Acknowledgements. This work was supported by the project No. 15-11-30022
“Global optimization, supercomputing computations, and applications” of the Russian
Science Foundation.

References

1. Addis, B., Locatelli, M.: A new class of test functions for global optimization. J.
Global Optim. 38, 479–501 (2007)

2. Barkalov, K., Gergel, V., Lebedev, I.: Solving global optimization problems on
GPU cluster. In: Simos, T.E. (ed.) ICNAAM 2015: 13th International Conference
of Numerical Analysis and Applied Mathematics, vol. 1738, p. 400006. AIP Con-
ference Proceedings (2016)

3. Barkalov, K.A., Strongin, R.G.: A global optimization technique with an adaptive
order of checking for constraints. Comput. Math. Math. Phys. 42(9), 1289–1300
(2002)

4. Beasley, J.E.: Obtaining test problems via internet. J. Global Optim. 8(4), 429–433
(1996)

5. Famularo, D., Pugliese, P., Sergeyev, Y.D.: A global optimization technique for
checking parametric robustness. Automatica 35, 1605–1611 (1999)

388 Y.D. Sergeyev et al.

6. Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained
Global Optimization Algorithms. Springer-Verlag, Heidelberg (1990)

7. Floudas, C.A., et al.: Handbook of Test Problems in Local and Global Optimiza-
tion, vol. 33. Springer, New York (1999)

8. Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Algorithm 829: Software
for generation of classes of test functions with known local and global minima for
global optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003)

9. Gergel, V.P., Kuzmin, M.I., Solovyov, N.A., Grishagin, V.A.: Recognition of sur-
face defects of cold-rolling sheets based on method of localities. Int. Rev. Autom.
Control 8, 51–55 (2015)

10. Grishagin, V.A.: Operating characteristics of some global search algorithms. Probl.
Stoch. Search 7, 198–206 (1978). in Russian

11. Grishagin, V.A., Israfilov, R.: Multidimensional constrained global optimization
in domains with computable boundaries. In: CEUR Workshop Proceedings, vol.
1513, pp. 75–84 (2015)

12. Grundel, D.A., Pardalos, P.M.: Test problem generator for the multidimensional
assignment problem. Comput. Optim. Appl. 30(2), 133–146 (2005)

13. Kvasov, D.E., Menniti, D., Pinnarelli, A., Sergeyev, Y.D., Sorrentino, N.: Tuning
fuzzy power-system stabilizers in multi-machine systems by global optimization
algorithms based on efficient domain partitions. Electr. Power Syst. Res. 78, 1217–
1229 (2008)

14. Kvasov, D.E., Mukhametzhanov, M.S.: One-dimensional global search: Nature-
inspired vs. Lipschitz methods. In: Simos, T.E. (ed.) ICNAAM 2015: 13th Inter-
national Conference of Numerical Analysis and Applied Mathematics, vol. 1738,
p. 400012. AIP Conference Proceedings (2016)

15. Kvasov, D.E., Mukhametzhanov, M.S., Sergeyev, Y.D.: A numerical comparison of
some deterministic and nature-inspired algorithms for black-box global optimiza-
tion. In: Topping, B.H.V., Iványi, P. (eds.) Proceedings of the Twelfth Interna-
tional Conference on Computational Structures Technology, p. 169. Civil-Comp
Press, UK (2014)

16. Pintér, J.D.: Global optimization: software, test problems, and applications. In:
Pardalos, P.M., Romeijn, H.E. (eds.) Handbook of Global Optimization, vol. 2,
pp. 515–569. Kluwer Academic Publishers, Dordrecht (2002)

17. Sergeyev, Y.D., Grishagin, V.A.: A parallel algorithm for finding the global mini-
mum of univariate functions. J. Optim. Theory Appl. 80, 513–536 (1994)

18. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On the least-squares fit-
ting of data by sinusoids. In: Pardalos, P.M., Zhigljavsky, A., Žilinskas, J. (eds.)
Advances in Stochastic and Deterministic Global Optimization, Chap. 11. SOIA,
vol. 107, pp. 209–226. Springer, Cham (2016). doi:10.1007/978-3-319-29975-4 11

19. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: Operational zones for com-
paring metaheuristic and deterministic one-dimensional global optimization algo-
rithms. Math. Comput. Simul. 141, 96–109 (2017)

20. Sergeyev, Y.D., Mukhametzhanov, M.S., Kvasov, D.E., Lera, D.: Derivative-free
local tuning and local improvement techniques embedded in the univariate global
optimization. J. Optim. Theory Appl. 171, 186–208 (2016)

21. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization
Exploiting Space-Filling Curves. Springer, New York (2013)

22. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints:
Sequential and parallel algorithms. Kluwer Academic Publishers, Dordrecht (2000)

23. Yuan, B., Gallagher, M.: On building a principled framework for evaluating and
testing evolutionary algorithms: A continuous landscape generator. In: The 2003
Congress on Evolutionary Computation, pp. 451–458 (2003)

http://dx.doi.org/10.1007/978-3-319-29975-4_11

Author Index

Adriaensen, Steven 3
Albu, Alla F. 295
Archetti, Francesco 34

Barkalov, Konstantin 18, 301
Berglund, Erik 307
Bischl, Bernd 180
Burke, Edmund K. 93

Cáceres, Leslie Pérez 235
Candelieri, Antonio 34

Dhaenens, Clarisse 196

Erzin, Adil 50
Evtushenko, Yury G. 295

Fedosenko, Yuri 370
Felici, Giovanni 64
Ferone, Daniele 64, 79
Festa, Paola 64, 79

Gergel, Victor 314, 320
Gillard, Jonathan 326
Giordani, Ilaria 34
Goryachih, Alexey 320
Gretsista, Angeliki 93
Gruzdeva, Tatiana 331

Hoos, Holger 235

Kadioglu, Serdar 109
Karapetyan, Daniel 124
Kessaci, Marie-Eléonore 196
Khamisov, Oleg O. 139
Khamisov, Oleg V. 338
Kloimüllner, Christian 150
Konnov, Igor 166
Kononov, Alexander 351

Kornikov, Vladimir 364
Kotthaus, Helena 180
Kovalenko, Yulia 351
Krylatov, Alexander Yu. 345
Kvasov, D.E. 383

Lang, Andreas 180
Lang, Michel 180
Lebedev, Ilya 301
Liberti, Leo 263
López-Ibáñez, Manuel 235

Marwedel, Peter 180
Mironov, Sergei V. 251
Moons, Filip 3
Mosavi, Amir 358
Mousin, Lucien 196
Mukhametzhanov, M.S. 383

Napoletano, Antonio 64, 79
Nowé, Ann 3
Nurminski, Evgeni 210

Orlov, Andrei 222

Pastore, Tommaso 64
Pepelyshev, Andrey 364

Rabczuk, Timon 358
Rahnenführer, Jörg 180
Raidl, Günther R. 150
Resende, Mauricio G.C. 79
Reznikov, Mikhail 370
Richter, Jakob 180
Romito, Francesco 279

Sellmann, Meinolf 109
Senov, Alexander 376
Sergeyev, Ya.D. 383

Shirokolobova, Anastasiya P. 345
Sidorov, Sergei P. 251
Stennikov, Valery A. 139
Strekalovsky, Alexander 331
Strongin, Roman 18
Stützle, Thomas 235

Thomas, Janek 180

Vernitski, Alexei 124

Wagner, Markus 109
Wang, Olivier 263

Zhigljavsky, Anatoly 326, 364
Zubov, Vladimir I. 295

390 Author Index

	Preface
	Organization
	Contents
	Long Papers
	An Importance Sampling Approach to the Estimation of Algorithm Performance in Automated Algorithm Design
	1 Introduction
	2 The Algorithm Design Problem (ADP)
	3 Performance Estimation in PbO
	3.1 Prior Art
	3.2 An Importance Sampling Approach

	4 Envisioned Benefits
	5 Theoretical Feasibility
	6 The Proof of Concept
	6.1 Practical Challenges
	6.2 High-Level Search Strategy

	7 Experiments
	7.1 Experimental Setup
	7.2 Results and Discussion

	8 Conclusion
	References

	Test Problems for Parallel Algorithms of Constrained Global Optimization
	1 Introduction
	2 Problem Statement
	3 Generating a Series of Problems
	4 Parallel Global Optimization Index Algorithm
	5 Results of Numerical Experiments
	6 Conclusion
	References

	Automatic Configuration of Kernel-Based Clustering: An Optimization Approach
	Abstract
	1 Introduction
	2 Material and Methods
	2.1 Notation
	2.2 The Case Study and the Data Generation Process
	2.3 Kernel K-means

	3 Hyperparameter Optimization of the Unsupervised Learning Phase of the Machine Learning Pipeline
	3.1 Hyperparameters in the Pipeline: The Design Variables
	3.2 Clustering Performance: The Objective Function
	3.3 Sequential Model Based Optimization
	3.3.1 Building the Surrogate of the Objective Function: Gaussian Processes and Random Forest
	3.3.2 Acquisition Function: Confidence Bound
	3.3.3 Termination Criterion
	3.3.4 Software Environment

	4 Results and Discussion
	5 Conclusions
	References

	Solution of the Convergecast Scheduling Problem on a Square Unit Grid When the Transmission Range is 2
	1 Introduction
	2 General Problem Formulation
	3 CSP in the Unit Square Grid When the Transmission Distance is 2
	3.1 The Exact Lower Bound for the Schedule Length
	3.2 Algorithm A

	4 Conclusion
	References

	A GRASP for the Minimum Cost SAT Problem
	1 Introduction
	2 Mathematical Formulation of the Problem
	3 A GRASP for MinCostSAT
	4 Probabilistic Stopping Rule
	4.1 Fitting Data Procedure
	4.2 Improve Probability Procedure

	5 Results
	6 Conclusions
	References

	A New Local Search for the p-Center Problem Based on the Critical Vertex Concept
	1 Introduction
	2 GRASP Construction Phase
	3 Plateau Surfer: A New Local Search Based on the Critical Vertex Concept
	4 Experimental Results
	5 Concluding Remarks
	References

	An Iterated Local Search Framework with Adaptive Operator Selection for Nurse Rostering
	1 Introduction
	2 The Nurse Rostering Problem
	3 The Proposed Approach
	3.1 Credit Assignment Module
	3.2 Action Selection Methodology

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Experimental Results and Analysis

	5 Conclusions
	References

	Learning a Reactive Restart Strategy to Improve Stochastic Search
	1 Introduction
	2 Restart Strategies
	3 Learning Dynamic Parameter Updates
	4 A Hyper-Parameterized Restart Strategy
	4.1 Features
	4.2 Turning Features into Scores
	4.3 The Reactive Restart Framework

	5 Experimental Analysis
	5.1 Problems and Benchmarks
	5.2 Data Collection
	5.3 Training of Hyper
	5.4 Results

	6 Conclusion
	References

	Efficient Adaptive Implementation of the Serial Schedule Generation Scheme Using Preprocessing and Bloom Filters
	1 Introduction
	2 SSGS Implementation Details
	2.1 Initialisation of A
	2.2 Efficient Search of the Earliest Feasible Slot for a Job
	2.3 Preprocessing and Automated Parameter Control

	3 SSGS Implementation Using Bloom Filters
	3.1 Optimisation of Bloom Filter Structure
	3.2 Additional Speed-ups

	4 Hybrid Control Mechanism
	5 Empirical Evaluation
	6 Conclusions and Future Work
	References

	Interior Point and Newton Methods in Solving High Dimensional Flow Distribution Problems for Pipe Networks
	1 Introduction
	2 Problem Statement
	3 Newton Method
	4 Interior Point Method
	5 Matrices Multiplication in Interior Point Method
	6 Acceleration by Constant Multiplication
	7 Combined Method for Constrained Problem
	8 Numerical Results
	9 Conclusion
	References

	Hierarchical Clustering and Multilevel Refinement for the Bike-Sharing Station Planning Problem
	1 Introduction
	2 Related Work
	3 Problem Formalization
	3.1 Solution Representation
	3.2 Objective
	3.3 Calculation of Fulfilled Customer Demand
	3.4 Calculation of Rebalancing Costs

	4 Multilevel Refinement Approach
	4.1 Coarsening
	4.2 Initialization
	4.3 Extension

	5 Computational Results
	6 Conclusion and Future Work
	References

	Decomposition Descent Method for Limit Optimization Problems
	1 Introduction
	2 Auxiliary Problem Properties
	3 Limit Decomposition Method and its Convergence
	4 Modifications and Applications
	5 Computational Experiments
	6 Conclusions
	References

	RAMBO: Resource-Aware Model-Based Optimization with Scheduling for Heterogeneous Runtimes and a Comparison with Asynchronous Model-Based Optimization
	1 Introduction
	2 Model-Based Global Optimization
	2.1 Parallel MBO

	3 Resource-Aware Scheduling with Synchronous Model Update
	3.1 Infill Criterion - Priority
	3.2 Resource Estimation
	3.3 Resource-Aware Knapsack Scheduling
	3.4 Refinement of Job Priorities via Clustering

	4 Numerical Experiments
	4.1 Quality of Resource Estimation
	4.2 High Runtime Estimation Quality: rosenbrock
	4.3 Low Runtime Estimation Quality: rastrigin

	5 Conclusion
	References

	A New Constructive Heuristic for the No-Wait Flowshop Scheduling Problem
	1 Introduction
	2 The No-Wait Flowshop Scheduling Problem
	2.1 Description of the Problem
	2.2 State-of-the-Art

	3 IBI: Iterated Best Insertion Heuristic
	3.1 Analysis of Optimal Solutions Structure
	3.2 Design of IBI
	3.3 Experimental Analysis of Parameters

	4 Experiments
	4.1 Efficiency of IBI
	4.2 IBI as Initialization of a Local Search

	5 Conclusion and Perspectives
	References

	Sharp Penalty Mappings for Variational Inequality Problems
	1 Introduction
	2 Notations and Preliminaries
	3 Sharp Penalty Mappings
	4 Iteration Algorithm
	5 Conclusions
	References

	A Nonconvex Optimization Approach to Quadratic Bilevel Problems
	1 Introduction
	2 Statement of the Problem and Its Reduction
	3 The Local Search
	4 Global Optimality Conditions and the Global Search Procedure
	5 Computational Simulation
	6 Conclusion
	References

	An Experimental Study of Adaptive Capping in irace
	1 Introduction
	2 Elitist Iterated Racing in irace
	3 ParamILS and Adaptive Capping
	4 Adaptive Capping in irace
	5 Experiments
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Additional Analysis of iracecap

	6 Comparison to Other Configurators
	7 Conclusions
	References

	Duality Gap Analysis of Weak Relaxed Greedy Algorithms
	1 Introduction
	2 Weak Relaxed Greedy Algorithms
	3 Dual Convergence Results
	3.1 Duality Gap
	3.2 Dual Convergence Result for WRGA(co)
	3.3 Dual Convergence Result for WRGA()

	4 Conclusion
	References

	Controlling Some Statistical Properties of Business Rules Programs
	1 Introduction
	1.1 Preliminaries
	1.2 Related Works

	2 Learning Goals with Histograms
	2.1 A MIP for Learning Quantized Distributions
	2.2 A MILP for the Max Percentage Problem
	2.3 A MILP for the Almost Uniform Distribution Problem

	3 Implementation and Experiments
	3.1 The Max Percentage Problem
	3.2 The Almost Uniform Distribution Problem

	4 Conclusion, Discussion and Future Work
	References

	GENOPT Paper
	Hybridization and Discretization Techniques to Speed Up Genetic Algorithm and Solve GENOPT Problems
	Abstract
	1 Introduction
	2 Preliminary Concepts
	3 The GABRLS Algorithm
	3.1 The Modified GA
	3.2 Bounding Restart (BR) Technique
	3.3 Hybridizing GABR with Local Searches

	4 Tuning and Results of GABRLS on GENOPT Challenge
	4.1 High Level Setting
	4.2 Results and Prizes

	5 Conclusion
	References

	Short Papers
	Identification of Discontinuous Thermal Conductivity Coefficient Using Fast Automatic Differentiation
	Abstract
	1 Introduction
	2 Formulation of the Problem
	3 Numerical Solution of the Problem
	Acknowledgments
	References

	Comparing Two Approaches for Solving Constrained Global Optimization Problems
	1 Introduction
	2 Index Method
	3 Results of Experiments
	4 Conclusion
	References

	Towards a Universal Modeller of Chaotic Systems
	1 Introduction
	2 Previous Work
	3 Learning Algorithm
	3.1 Idle Mode

	4 Experimental Setup
	4.1 Repetition
	4.2 Fractal Dimension
	4.3 Lyapunov Exponent

	5 Results
	6 Conclusion
	References

	An Approach for Generating Test Problems of Constrained Global Optimization
	1 Introduction
	2 Test Problem Classes
	3 Some Numerical Results
	4 Conclusion
	References

	Global Optimization Using Numerical Approximations of Derivatives
	1 Introduction
	2 One-Dimensional Global Optimization Algorithm Using Numerical Estimations of Derivatives
	2.1 Core One-Dimensional Global Search Algorithm Using Derivatives
	2.2 One-Dimensional Global Search Algorithm Using Numerical Derivatives

	3 Results of Computational Experiments
	4 Conclusion
	References

	Global Optimization Challenges in Structured Low Rank Approximation
	1 Statement of the Problem
	2 Optimization Challenges
	2.1 Challenge 1: Selecting f
	2.2 Challenge 2: Complexity of the Optimization Problem
	2.3 Challenge 3: Construction of Numerical Methods

	References

	A D.C. Programming Approach to Fractional Problems
	1 Introduction
	2 Reduction to the D.C. Minimization Problem
	3 Reduction to the Problem with D.C. Constraints
	4 Computational Simulations
	5 Conclusions
	References

	Objective Function Decomposition in Global Optimization
	1 Introduction
	2 Objective Function Decomposition and the Induced Constraint
	3 Agreed Decomposition
	4 Reducing the Induced Constraint to a d.c. Inequality
	5 Conclusion
	References

	Projection Approach Versus Gradient Descent for Network's Flows Assignment Problem
	1 Introduction
	2 Network's Flows Assignment Problem
	3 Simple Network of Parallel Routes
	4 Simulation Results
	5 Conclusion and Future Work
	References

	An Approximation Algorithm for Preemptive Speed Scaling Scheduling of Parallel Jobs with Migration
	1 Introduction
	2 Related Research
	3 Our Result
	4 Conclusion
	References

	Learning and Intelligent Optimization for Material Design Innovation
	Abstract
	1 Introduction
	2 Computational Materials Design Innovation
	2.1 Interdisciplinary Research and Research Gap

	3 LION as a Solver
	4 Textile Composites Optimal Design
	5 Conclusions
	References

	Statistical Estimation in Global Random Search Algorithms in Case of Large Dimensions
	1 Introduction
	2 Statistical Inference About f* in Pure Random Search
	3 Numerical Examples
	References

	A Model of FPGA Massively Parallel Calculations for Hard Problem of Scheduling in Transportation Systems
	Abstract
	1 Introduction
	2 Service Scheduling Problem
	2.1 Dynamic Programming Method

	3 Parallel Implementation for FPGA
	3.1 Decomposition of the Original Problem

	4 Conclusions
	References

	Accelerating Gradient Descent with Projective Response Surface Methodology
	1 Introduction
	2 Algorithm Description
	3 Theoretical Background
	4 A Case Study
	5 Conclusion
	A Proofs
	References

	Emmental-Type GKLS-Based Multiextremal Smooth Test Problems with Non-linear Constraints
	1 Introduction
	2 GKLS Classes of Unconstrained Test Problems
	3 Constrained Emmental-Type Test Problems
	References

	Author Index

