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1 Mining Schedule Optimisation
2 for Conditionally Simulated Orebodies

3 M. Menabde, G. Froyland, P. Stone and G.A. Yeates

4 Abstract Traditionally the process of mine development, pit design and long-term
5 scheduling is based on a single deterministic orebody model built by the interpo-
6 lation of drill hole data using some form of spatial interpolation procedure, e.g.
7 kriging. Typical steps in mine design would include the determination of the ulti-
8 mate pit, the development of a number of mining phases (pushbacks) and then the
9 development of a life-of-mine schedule. All of these steps would have the aim of

10 maximising the mine’s net present value (NPV), along with meeting numerous
11 other business and physical constraints. There are a number of software packages
12 commercially available and widely used in the mining industry that deal with some
13 or all of these issues. The methods employed by all of these packages treat the
14 process described above in a strictly deterministic way. In reality, given the sparse
15 drill hole data, there is usually significant and variable uncertainty associated with a
16 single or unique deterministic block model. This uncertainty is not captured or used
17 in the planning process. This paper describes work undertaken by the Exploration
18 and Mining Technology Group within BHP Billiton to develop a new mathematical
19 algorithm for mine optimisation under orebody uncertainty. This uncertainty is
20 expressed as a number of conditionally simulated orebody models. This optimi-
21 sation algorithm is implemented in a new software package. The software uses a
22 number of proprietary algorithms along with the commercially available mixed
23 integer-programming package ILOG CPLEX. The development targets all phases
24 of mine optimisation, including the NPV optimal block extraction sequence,
25 pushback design, and simultaneous cut-off grade and mining schedule optimisation.26
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27 Introduction

28 This paper describes the development and implementation of a new software
29 package for open pit mine development and scheduling optimisation under con-
30 ditions of orebody uncertainty and is based on the mixed integer programming
31 method. The approach uses multiple conditionally simulated realisations of the
32 orebody as input to characterise the orebody along with the uncertainty in the
33 estimate.
34 Traditionally open pit mine planning, pit design and long-term scheduling is
35 based on a block model of the orebody built by interpolation techniques such as
36 kriging from the drill hole sample data. This single model is assumed to be a fair
37 representation of reality and is used for mine design and optimisation. The design
38 process consists of four main steps:

39 1. Determining the ultimate pit shell to define the scheduling universe.
40 2. Finding the block extraction sequence which produces the best net present value
41 (NPV) whilst satisfying the geotechnical slope constraints.
42 3. Designing the practically minable mine phases (pushbacks) which are roughly
43 based on the optimal block sequence.
44 4. Optimising the mining schedule and cut-off grades (COG) within a set of
45 business and operational constraints. The NPV of this ‘optimal’ schedule is
46 considered as a main criterion of the economical viability of the project.
47

48 In reality, there are many uncertainties in the models and parameters used in
49 optimisation. Thus, the adoption of a single economic criterion for a project can be
50 very questionable. One of the most important sources of uncertainty is the block
51 model itself. The drill hole data for a mining project is typically sparse, particularly
52 at the scale of the selective mining unit and could support a range of possible
53 outcomes for the orebody. A unique deterministic block model will often be a good
54 representation of the global resource, but will not be representative of the potential
55 local variability or the uncertainty in the estimate. An approach that quantifies both
56 the local variability and the potential uncertainty is to use multiple conditional
57 simulation realisation to represent the orebody (see Dimitrakopoulos 1998). This
58 approach allows the generation of a number of equally probable realisations of the
59 block model, at the selective mining unit (SMU) scale, with all of them honouring
60 the drill hole data along with the first and second order statistics of the orebody
61 represented, respectively, by the probability distribution and variogram (e.g. Isaaks
62 and Srivastava 1989).
63 The simplest and most straightforward use of this set of orebody realisations is to
64 estimate the variability in the project NPV associated with the orebody uncertainty
65 by valuing the ‘optimal’ schedule obtained from the kriged deterministic model
66 through each of the conditionally simulated realisations.
67 The more interesting question is whether it is possible to use the set of condi-
68 tionally simulated realisations to produce a better mine design and production
69 schedule. By ‘better’ we mean here a higher expected NPV (which becomes a
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70 random variable in case of multiple realisations of the orebody model) and/or less
71 variability from one realisation to other (i.e. lower variance of NPV). A new
72 promising approach to this problem is presented in Ramazan and Dimitrakopoulos
73 (2007, this volume); Jewbali (2006).
74 In this paper we address one particular aspect of the optimisation under uncer-
75 tainty, namely the simultaneous optimisation of the extraction sequence and COG.
76 The use and importance of optimal (variable) COG to mining projects has been
77 known for a long time (e.g. Lane 1988). It will be demonstrated here that the use of
78 variable COG optimised under uncertainty, using the set of equi-probable realisa-
79 tions of the orebody can provide a substantial improvement in terms of expected
80 NPV. The approach based on mixed integer programming techniques can provide a
81 truly optimal schedule, as opposed to various heuristic methods used in most of the
82 commercially available mining optimisation software packages.

83 Mining Schedule Optimisation as a Mixed Integer
84 Programming Model

85 Typically, the orebody block model contains between 50,000 and 5,000,000 blocks,
86 which must be scheduled over a period of say 5–25 years. The objective of any
87 scheduling procedure is to find the block extraction sequence, which produces the
88 maximum possible net present value (NPV) and obeys a number of constraints. The
89 latter include:

90 1. geotechnical slope constraints, which are modelled by a set of precedence arcs
91 between individual blocks;
92 2. mining constraints, i.e. total maximum amount of rock which can be mined in
93 one time period (usually one year);
94 3. processing constraints, i.e. maximum amount of ore which can be processed
95 through a given processing plant in one time period; and
96 4. the market constraints, i.e. the maximum amount of metal that can be sold in one
97 time period.
98

99 The mathematical formulation of the scheduling procedure in terms of binary
100 decision variables describing in which period the particular block is extracted and
101 what its destination is (either processing plant, stockpile or waste dump), is quite
102 straightforward. The size of the problem is, however, prohibitively large. Apart
103 from the computational difficulties, the hypothetical optimal block extraction
104 sequence may be completely impractical due to the requirements for the mining
105 equipment access and relocation.
106 Because of these problems the mine scheduling is done using much bigger
107 elementary units that are typically aggregations of hundreds or even thousands of
108 blocks. The aggregation of blocks is a nontrivial problem. For example, simply
109 combining rectangular blocks into a larger rectangular block with dimensions
110 multiples of that of individual blocks can effectively reduce the size of the problem
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111 but will provide a very poor approximation for the geotechnical slopes. An inter-
112 esting approach to block aggregation based on the concept of ‘fundamental trees’
113 has been recently developed by Ramazan (2007, this volume). In this method the
114 aggregations of blocks—fundamental trees—obey the slope constraints and can
115 substantially reduce the number of integer variables required for the scheduling
116 model. However, the number of these aggregations is not user controllable and in
117 many cases the problem can be still too big to be solved by a direct application of
118 the mixed integer programming techniques.
119 We have recently developed a new algorithm for block aggregation, which
120 preserves the slope constraints, and is very flexible allowing the user to fully control
121 the size and shape of these aggregations. The details of this algorithm will not be
122 discussed here. The optimisation procedure, however, can be applied to any
123 aggregation of blocks with a set of precedence arcs, prescribing which blocks
124 should be extracted before the given one. As an example we consider here the
125 scheduling of mining phases.
126 In practice, the open pit mine is divided into a number of mining phases, which
127 are mined bench by bench, each bench represented by a horizontal layer of blocks
128 within the given mining phase and having the same elevation. A bench within a
129 mining phase is sometimes referred to as a “panel”. The mining phases can be
130 mined one by one from top to bottom, however this kind of schedule is usually
131 suboptimal. Mining several phases simultaneously and applying variable COG can
132 produce much better results in terms of NPV. There are several commercially
133 available packages, which use proprietary (and undisclosed) heuristics to optimise
134 the schedule and COG. It is difficult to estimate their effectiveness, as the upper
135 theoretical limit on NPV remains unknown. Moreover, these methods can only be
136 used on a single orebody representation and cannot be directly used on a set of
137 conditionally simulated orebody realisations.
138 The standard optimsation technique widely used in many industrial applications
139 is the leanear and integer programming (e.g. industrial applications is the linear and
140 integer programming (e.g. Padberg 1995). The main difficulty in its application to
141 mining scheduling is that the optimsation with variable COG in its direct formu-
142 lation leads to a non-linear problem, which is much harder to solve. Our approach
143 provides an effective linearsation of this problem, making it possible to use a mixed
144 integer programming (MIP) formulation for a simultaneous optimization of the
145 extraction sequence and COG for a number of conditionally simulated orebody
146 models. The MIP formulation we use here is similar to the one used by Caccetta and
147 Hill (2003) but is generalised to include the multiple realisations of conditional
148 simulations and variable cut-off grades. This approach also allows one to estimate
149 the gap between the obtained solution and the upper theoretical limit.
150 We consider the simplest case when we have one rock type containing one metal
151 type, which can be processed through one processing plant. Generalisation to the
152 case of multiple rock types, metals and processing streams is cumbersome but
153 straightforward. For simplicity we consider here only the case of a discrete set of
154 COGs, though it is possible to generalise the results to the continuous COG case.
155 We use the following notations:
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156 T is the number of scheduling periods
157 N is the number of simulations
158 P is the total number of panels
159 G is the number of all possible cut-off grades
160 Rn

i is the total rock in the panel i in simulations n
161 Qn

ij is the total ore in the panel i, simulation n, when mined with the COG j

162 Vn
ij is the value of the panel i, simulation n, when mined and processed with the

COG j
163 R0

t is the maximum mining capacity in period t

164 Q0
t is the maximum processing rate in period t

165 Si is the set of panels that must be removed before starting the panel i
166 dt is the time discount factor
167 Xijt is the fraction of the panel i is extracted with the COG j in period t
168 Yit is a binary variable equal to 1 if the extraction of the panel I has started in

periods 1 to t, and equal to 0 otherwise;
169 djt is a binary variable controlling the selection of the COG applied in period t
170
171 The MIP formulation is:
172

Maximise
1
N

XN

n¼1

XP

i¼1

XG

j¼1

XT

t¼1

Vn
ij xijtd

t

 !
ð1Þ

174174

175 Subject to the following constraints:
176

1
N

XN

n¼1

XP

i¼1

XG

j�1

Rn
i xijt �R0

t; for all t ð2Þ

178178 1
N

XN

n¼1

XP

i¼1

XG

j¼1

Qn
ijxijt �Q0

t; for all t ð3Þ

180180 yi; t�1� yit; for all i and t ð4Þ

182182 Xt

s¼1

XG

j¼1

xijs � yit; for all ð5Þ

184184

yit�
XG

j¼1

XT

s¼1

xkjs; for all i; t and k� Si ð6Þ

186186 XG

j¼1

djt¼1; for all t ð7Þ
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188188 xijt � djt; for all i; j and t ð8Þ
190190

191 The objective function (1) represents the discounted cash flow. Constraints (2)
192 and (3) enforce the mining and processing limits on average. Constraints (4)–(6)
193 enforce the panel extraction precedence constraints, and constraints (7) and (8)
194 ensure that the same COG is applied to all panels extracted in any given time
195 period.
196 This MIP formulation is solved by the commercially available software package
197 CPLEX version 9.0, by ILOG Inc.

198 Case Study

199 To test the algorithm we have chosen ten conditional simulations of a block model
200 containing one type of metal and using one processing plant. Because of confi-
201 dentiality requirements, all the economic parameters were rescaled and do not
202 represent reality. All of the relative characteristics which demonstrate the potential
203 of this new method are not affected by this rescaling. The ultimate pit for the design
204 is chosen by applying the Lersch-Grossmann algorithm (Lersch and Grossmann
205 1965) in a procedure similar to that used in Whittle Four-X software. The ultimate
206 pit contains 191 million tonnes of rock and 62.9 ± 2.7 million tonne of ore (above
207 the marginal COG = 0.6%). The undiscounted value in the ultimate pit (if pro-
208 cessed with the marginal COG) is $(1316 ± 99) million. It was divided into six
209 mining phases and scheduled over 12 years. The mining rate was set to 30 Mtpa
210 and the processing rate to 5 Mtpa. The initial capital investment was assumed to be
211 $300 million, and the discount rate 10%. The base case optimisation was done
212 using the marginal COG applied individually to all conditional simulation.
213 The NPV for this case was $(404 ± 31) million. The mining schedule is shown in
214 Fig. 1. The second optimisation was done using the variable COG, but was based
215 on the mean grade block model, i.e. it was similar to an optimisation generated by
216 using a single deterministic model. This schedule was evaluated against all ten
217 realisations of orebody model and produced the NPV = $(485 ± 40) million, an
218 increase of 20% over the base case. This mining schedule is shown in Fig. 2. The
219 third optimisation was done using the algorithm described in earlier, using all
220 orebody realisations as input to the optimisation and produced the
221 NPV = $(505 ± 43) million, a further increase of 4.1% over the case of mean
222 grade based optimisation. This mining schedule is shown in Fig. 3. The relative
223 variability of NPV in all cases was roughly the same, about 8%. The cumulative
224 NPV graphs for the three different schedules are shown in Fig. 4, and the com-
225 parison between expected NPVs and their variability is shown in Fig. 5. Another
226 important result of the variable COG policy is that the pay-back period (defined
227 here as the time when the cumulative NPV becomes equal to zero) is decreased
228 from five to three years (see Fig. 4).

6 M. Menabde et al.
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229 The increase of 4.1% in NPV may be not seen as a very substantial, but it should
230 be mentioned that the block model considered does not have a high variability. The
231 relative variance in the undiscounted value of the ultimate pit is only 7.6%. There
232 are many deposits that have variability of the order of 20–30%. For these kind of
233 deposits the potential improvement in the expected NPV may be substantially
234 higher.

Fig. 1 Mining schedule optimised with the marginal COG

Fig. 2 Mining schedule optimised with the mean grade model
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Fig. 3 Mining schedule optimised with the set of conditional simulations

Fig. 4 Cumulative NPV for different missing schedules (solid line-variable COG on conditional
simulations; dashed line-variable-COG on the mean grade model; dotted line-marginal COG)
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235 Conclusions

236 A new method for simultaneous optimisation of the extraction sequence and cut-off
237 grade policy for a set of conditionally simulated orebody realisations has been
238 developed and demonstrated. This method is based on the mixed integer pro-
239 gramming model and uses the commercially available software package CPLEX by
240 ILOG Inc. The goal of the optimisation is to find the extraction sequence and cut-off
241 grade policy, which, when evaluated through the whole set of conditionally sim-
242 ulated orebodies (representing the range of possible outcomes), will produce the
243 best possible expected NPV. The degree of accuracy of this optimised schedule can
244 be estimated precisely, in contrast to a number of heuristic routines used in current
245 commercially available mining optimisation software packages. A fully functional
246 software prototype that uses the new optimisation method has been developed.
247 In this study, we were using the expected NPV as the objective function and the
248 mining and processing constraints were applied to the mean rock and ore tonnages.
249 Some of the possible extensions of this method may include some kind of penalty
250 functions in the objective function in order to find a schedule with a reduced
251 variability in NPV, defining hard constraints bounding the NPV from below, or
252 defining a lower bound on the annual cash flows. Another very interesting gener-
253 alisation may include a stochastic price model for metals and adjustable cut-off
254 grade policy.

Fig. 5 Comparison of expected NPVs and their variability for different mining schedules
(circle-variable COG on the conditional simulations; square-variable COG on the mean grade
model; traingle-marginal COG)
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