Quantification of Risk Using Simulation
of the Chain of Mining—Case Study
at Escondida Copper, Chile
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Abstract Quantification of risk is important to the management team of any
rapidly expanding mining operation. Examples of areas of concern are the likeli-
hood of not achieving project targets, the impact of a planned drilling program on
uncertainty and the change in the risk profile due to a change in the mining
sequence. Recent advances in conditional simulation and the practical use of such
models have provided the opportunity to more fully characterise mineral deposits
and to develop empirical estimates of the recoverable resources and ore reserves.
This allows meaningful quantification of risk (and upside potential) associated with
various components of a mining project. This paper presents an approach referred to
herein as ‘simulation of the chain of mining’ to model the grade control and mining
process. Future grade control sampling, mining selectivity and other issues that
impact on the final recoverable tonnes and grades are incorporated. The application
of this approach to Escondida, a large-scale open pit copper mining operation in
Chile, provided a definitive way to assess the expected risk of a number of alter-
native development strategies on operational performance of the project. This
approach is gaining acceptance as one of the most important steps in developing
short-term mining models. The concepts developed here also have implications for
assessing the ore that will be recovered from ore reserves during mining.
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Introduction

The Escondida open pit copper mine is located 140 km south east of Antofagasta,
Chile. The mine started production in the late 1990s and by 2004 the annual
production reached 82.4 Mton of sulfide ore; generating 1,005,200 ton of copper
concentrate, 152,300 ton of cathode copper, 179,800 oz of gold and 4.5 Moz of
silver. The orebody is a porphyry copper formed by two major stages of sulfide and
one stage of oxide mineralisation. The supergene enrichment blanket of the deposit
is defined by chalcocite and minor covellite with remnant chalcopyrite and pyrite
that reaches a thickness of several hundred metres in places. The largest contributor
of mineralised tonnage in the deposit is an Oligocene porphyritic intrusive hosted
by andesites, combined with less significant hydrothermal and igneous breccias
occurring throughout the deposit.

This study was conducted to assess the risk associated with the use of the
Escondida resource model as a basis for developing mine schedules, forecasts and
budgets of mineable ore. In addition, it was used to define the impact of risk for the
first five years of the Phase IV Expansion and identify the alternative mine
schedules that present less risk. The study was based on the construction of a large
conditional simulation model, covering a significant part of the Escondida copper
mine and the analysis of this model through a ‘transfer function’ or mining process
termed the Chain of Mining (CoM).

More specifically, a geostatistical conditional simulation (CS) model was
developed for a large part of the Escondida sulfide resource that contained five
years of scheduled mining from the start of year one to the end of year five. The CS
model consisted of 50 realisations that independently defined the lithology (andesite
or non-andesite), the mineralisation zones (High Enrichment, Low Enrichment and
Primary) and the grade (per cent copper as total copper and soluble copper)
dependent on the previous two geological variables. A Chain of Mining approach
was then used to model the errors impacting upon the translation of the in situ
resource to a recoverable ore reserve. A number of CoM models were developed
and analysed to determine the parameters that would match actual mining perfor-
mance at Escondida. The impact of various contributing errors was modelled using
parameters for blasting movement, sampling and assaying precision, sampling and
assaying bias, and mining selectivity. The CoM models were examined in relation
to all available reconciliation results. From available production data it was evident
that the Escondida resource model available at that time significantly over-predicted
the tonnage that was realised during mining. A base case Chain of Mining model
was selected that appeared to best capture the real performance indicated by the
production data. This case was used to predict the performance of the current
mining practice within the volume defined by the planned next five years of mining.
The analysis was done on a quarterly basis and a pushback basis for two alternative
(north and east) mining options.

The approach presented herein is based on sequential conditional simulation
(e.g. Journel and Huijbregts 1978; Goovaerts 1997; Benndorf and Dimitrakopoulos



Quantification of Risk Using Simulation ... 59

2017, this volume; Nowak and Verly 2007, this volume) and the concept of ‘future’
grade control data for recoverable reserve estimation detailed in Journel and
Kyriakidis (2004). Related aspects are discussed in the next sections, which start
with the description of available data and conditional simulation modelling at
Escondida, followed by the CoM approach (Shaw and Khosrowshahi 2002), a
calibration of the resulting models and a comparison with production. Conclusions
and comments follow.

Data and Data Analysis

Data sets used for analysis were based on 15 m bench composites for exploration
data and grade control data. Subsequent analysis was based on the High Enrichment
(HE), Low Enrichment (LE) and Primary (PR) zones. The lithology was considered
as two domains, Non-Andesite porphyry/breccia and Andesite. Thus, there were six
modelling domains for preliminary analysis, including univariate statistics of
exploration and grade control data for total copper (CuT) and soluble copper (CuS).

To assess continuity trends for the characterisation of anisotropies in the data
prior to variography, maps of grade and grade indicators were constructed. The
interpolated maps were not constrained by the lithology or mineralogical zones and,
therefore, reflect an isotropic interpolation of the data in 3D. The maps were used
for the preliminary identification of grade continuity trends in order to further the
definition of domains and for variographic analysis. The plan view maps indicated
different grade continuity trends on either side of the north—south line at 16,300 E.
On the eastern side, grade continuity has a NE orientation. This differs from the
western side, which shows a NW continuity. An indicator defining the samples
coded as andesite or non-andesite was also mapped in the same way.

Variography of the exploration and grade control data sets for total copper and
for the ratio of soluble copper to total copper (ratio) was carried out for each of the
HE, LE and PR mineralogical zones with subdivision by lithology (andesite and
non-andesite, i.e. porphyry) that was separated into east and west at 16,300 E.
Preliminary variograms of exploration data did not provide a good definition of
short-scale structures. This is mainly due to the exploration data density, which
does not allow accurate and detailed variogram definition over small distances. The
exploration variograms generally characterised large-scale structures, but these are
not as critical to risk assessment as the characterisation of short-scale continuity. It
was found that variograms of grade control data generally showed less continuous
behaviour, and a far clearer definition of short-scale variability. Accordingly, it was
decided to model variograms of grade control data for all domains containing
sufficient data to characterise this short-scale variability for simulation purposes.
Exploration variograms were also modelled to determine the sensitivity of the study
to this approach. For the Primary zone, grade control data was scarce and the
variograms were based on exploration data, although this generally produced
poorly defined variograms for the west domains.
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The enrichment surfaces were based on the HE, LE and PR codes in the
exploration and grade control data (Fig. 1). For this analysis, it was considered
necessary to use a combined grade control and exploration hole surface data set for
each of HE, LE and PR for variographic purposes to ensure that maximum coverage
was provided of the spatial data.

Generation of the Conditional Simulation Models

First, the enrichment surfaces were simulated using sequential Gaussian simulation,
followed by the simulation of the two lithologies, andesite and non-andesite, using
sequential indicator simulation. These models were merged resulting in simulated
models, each with its own lithology and enrichment surface. Next, these models
were populated with simulated CuT and CuS grades.

Simulation of the Enrichment Surfaces

An example of the final simulated enrichment surfaces are provided in Fig. 2. The
influence of the conditioning data is evident when comparing the simulated images
of the HE, LE and PR surfaces. The lower number of conditioning data points for
the PR surface leads to greater variability in the simulated surface. Variography was
carried out for the mineralogical contacts described by the geological interpretation
(enrichment surfaces). Variography of the surfaces was performed in 2D (Fig. 3)
with the variable analysed being the RL coordinate.

Fig. 1 Typical cross-section at escondida copper
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Fig. 3 Example of high enrichment elevation contour and associated variogram map

Simulation of Lithological Data

The dominant rock type for the Escondida deposit is porphyry. Grades in the
andesite west of the 16,300 coordinate line are generally recognised to be lower
than those in the porphyry lithologies and metallurgical recoveries are lower. The
data was examined and it was decided, for the purpose of this study, to define two
lithologies, namely andesite and non-andesite (or porphyry), which is used for
porphyry/breccia and all other non-andesite lithologies. The lithology variography
was based on indicators for andesite (and porphyry) for all data below the top of the
HE zone. The indicators were defined from the drill log codes in the grade control
and exploration data sets. As for the grade variography, the lithology variography
was carried out for separate populations east and west of 16,300 E.

The lithological data was simulated as a categorical variable (Fig. 4). The
presence of andesite was defined in the drill hole data using an indicator value of 1
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Fig. 4 Various simulated lithological data with associated probability map

with the absence of andesite (i.e. the presence of porphyry) assigned an indicator
value of 0. The conditioning data set used for simulation of this categorical variable
was the 15 m composited exploration data combined with the grade control 15 m
blasthole data. The coded lithology data and the indicator variogram parameters
were used to generate a sequential indicator simulation 3D model of the lithology as
defined by the distribution of the andesite indicator.

Generation of the Geological Conditional Simulation Model

The 50 two-dimensional simulated realisations of each of the three enrichment
surfaces and the 50 three-dimensional simulated realisations of andesites in two
separate domains (east and west) were then merged into a single geology condi-
tional simulation model comprising all simulated outcomes. Thus, there were 50
simulations each with a different lithology and Minzone outcome (Fig. 5).

Simulation of Grades for CuT and CuS

Twelve separate domains were considered for simulation of the percentage of
copper as CuT and CuS grades. The conditioning data for each domain was the
15 m exploration composite data set. For each domain, appropriate data belonging
to that domain was extracted. The sequential Gaussian simulation approach was
used to simulate grades (Fig. 6) and simulated realisations for each domain were
validated by checking the reproducibility of the weighted histogram of the explo-
ration data, and the normal score variogram model from the grade control data.

It is impossible to produce a perfect representation of any deposit as a resource
model since the geological knowledge, the sampled data, and the assumptions made
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Fig. 6 Typical simulated image for CuT and associated probability map

during estimation are all imperfect. If a model was perfect it could be used as the
basis for mining without any requirement for further mapping or sampling.
Collectively, these imperfections are termed the information effect and can never be
overcome completely. During mining, decisions are made based on similar
imperfect data. Geological mapping, sampling and assaying are used to provide a
basis on which the ore boundaries are defined and mined. Estimates of grades
within the ore blocks must be made from the best available data. The impact of such
estimates causes dilution (material below the cut-off grade being sent to the mill)
and ore loss (ore incorrectly being sent to low grade stockpiles or waste dumps).
Imperfect knowledge of the deposit again plays a part, but to this is now added
imperfect mining practices. Even if the cut-off grade boundary could be defined
perfectly it could not be mined perfectly every time at a practical mining scale.
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To differentiate between the impact on resource modelling and the impact on
mining, these imperfections are collectively termed the grade control effect and,
again, can never be overcome completely.

The Chain of Mining Approach

For any measurable value, the term error can be used to indicate the difference
between an estimate and the true value. During the process of defining an ore block
for mining, a number of measured values are used, such as the location of the ore in
3D space, the representativity of the sample, the quality of the sample, the grade of
the sample, and the cut-off boundary of the ore block boundary to be mined. For
each of these attributes a ‘true’ value and an ‘estimated’ value can be defined.

Mining decisions are in all cases based on the estimated value. However, the
results of mining are in all cases determined by the true value. For example, the
placement of an ore block boundary and the predicted grade of that ore block might
be defined solely by the sampled grades in and around that block. Errors in the
sampling process (which leads to imperfect delineation of boundaries) and during
mining (which leads to imperfect mining of the planned boundaries) both result in
dilution and ore loss such that the grade of the ore delivered to the mill is invariably
lower than that predicted by the estimated values. This is because the application of
a cut-off grade alters the impact of the distribution of errors. Waste incorrectly sent
to ore is by definition always of lower grade than ore incorrectly sent to waste.

There are various approaches that can be taken to solving this nexus between
‘predicted’ and ‘actual’ mining performance. For the present study, a series of
parameters that model the differences between the predicted and actual mining
performance were measured. To define these parameters, the various stages where
errors can occur in measured values were considered. The mining process as a
whole was considered to be a chain of events with the consequences of each event
impacting on the next measurement in sequence. The term Chain of Mining is used
to underscore the dependence of the eventual mining result on each link in the
process (Shaw and Khosrowshahi 2002; Shaw et al. 2002; Khosrowshahi and Shaw
1997). Figure 7 provides a schematic of the process to characterise the generation
of recoverable resource estimates.

Sources of Error During Mining

It was apparent that there were four possible sources of error that contributed to the
grade control effect and which could be modelled, namely, sampling and assaying
errors of precision, sampling and assaying errors of bias, movement due to blasting
as lateral displacement or heave, and mining selectivity. It was recognised that it
would be impractical to attempt to define parameters in detail for every possible
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Fig. 7 Using the chain of mining process on a simulation model to characterise recoverable
reserve estimates

source of error at Escondida. In addition, due to the large and very complex nature
of such a mining operation, there is always the possibility that one or more practices
will change in time. Instead, an empirical approach was taken. Error models were
developed where observation on site indicated that this would be appropriate and
these various error models were tested to determine their impact.

Error Due to Sampling and Assaying Precision

The grade control sampling at Escondida is done using vertical blastholes. The ore is
blasted and dug on 15 m high benches. The blastholes are drilled with large rotary
air blast equipment, drilled to a depth of 15 m (one mining bench) plus subdrill of
approximately 2.5 m. Sampling errors that will lead to a difference between the
actual grade of the material in the cone of blasthole cuttings and the true grade of the
ore in the ore block are not quantifiable (since they are frequently not repeatable).
Nevertheless, these errors exist and include both the sample delimitation error due to
subdrill material remaining in the cuttings cone, and sample extraction error due to
contamination and loss during the open hole rotary drilling, and due to dust loss.
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The subsampling of the spoil cone is done manually after drilling using a tube
sampler and eight increments are collected. The sample is then further crushed and
subsampled in the MEL site laboratory. The errors that impact on the predicted
grade include:

1. the grouping and segregation error that is due to splitting of the spoil cone (in
this case due to the tube splitter); and

2. error due to the relationship between particle size and grade, known as the
Fundamental Sampling Error (Gy 1979) that results from the process of split-
ting, crushing and pulverising to reduce the 2 t sample spoil cone to a 200 g
pulped sample submitted for assay.

The first type of error is not quantifiable, and every subsampling system incurs
the second type of error. The total impact of all these errors was modelled in two
scenarios:

Low Sampling Error

A relative sampling precision of £20% was assumed as the base case. This
incorporates the measured precision of =10% demonstrated by repeat sampling and
assaying of blasthole cones (Fig. 8). An allowance for additional error was made
due to the drill sampling method. This scenario assumes high quality grade control
sampling is available.

Fig. 8 Field duplicates of Escondida: Blasthole field repeats
escondida blasthole cone 5
sampling from which a . .
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was obtained 4t e
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High Sampling Error

A relative sampling precision of £60% was assumed as the high error case to
indicate the typical level of sampling repeatability that occurs in twinned blasthole
drill sampling. No data for this estimate was available. The nearest such data was
paired blasthole and resource hole estimates where a precision of +40% was
obtained. The high error case was adopted to allow for the impact of the blasthole
subdrill and accounts for the local variability typically seen in blasthole sampling.

Error Due to Blasting

Ore movement can result in the predicted ore being displaced so that the material
eventually mined is different from that which was planned. The degree of dilution
and ore loss that this causes is dependent on the lateral displacement of the ore
block boundaries, and the vertical heave resulting in mixing across horizontal
mining levels. Heave is not an issue at Escondida since the ore is blasted and mined
on a single mining bench. It was decided to model two scenarios, one where the
lateral blast movement was negligible and one where the movement was 3 m in
both the east-west and north-south directions, this being the movements observed
on site for a number of blasts.

Mining Selectivity

Perfect mining of any orebody is always impossible due to two factors; the
availability (and quality) of data to define boundaries, and the ability of the
equipment to dig a defined boundary, which decreases with the production scale of
the operation. The effective minimum mineable block size can be expected to relate
in some way to these factors and, consequently, in a resource model the point
estimates of grade, interpolated from drill hole (quasi-point) data, may be aggre-
gated to a mineable block size.

The degree of mining selectivity represented by a resource block model is
defined as the selective mining unit (SMU). This SMU block size may be regarded
as the minimum viable size of a mining block, although of course, the average size
of the mined blocks may be much bigger. The degree of misclassification that
generally occurs along any block boundary during mining is directly related to the
production rate and size of the mining equipment. The concept of the SMU block
size can assist in understanding the impact of the mining method on the orebody
and how well this can be represented by the resource model.
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Calibration of the Chain of Mining Models and Comparison
with Production

The conditional simulation model developed for the Escondida deposit was used to
test the impact of various mining selection parameters and the impact of the various
expected errors. A series of ten cases was developed using the parameters defined in
Table 1 to address misclassification errors likely to arise during mining. These CoM
models were then tested against production records and compared to the Escondida
resource model.

Analysis of the results for the different scenarios indicated that Case 6 (presented
in bold in Table 1) was the closest to the Production data total of 100,294 Mt at
2.11% CuT. The selected case used no blasting movement, a high sampling error
consistent with blasthole samples, and an 8 x 8 m SMU block area. The smaller
SMU size provided better selectivity at the cut-off grade, producing a lower tonnage
and higher grade than that predicted by the resource model. Case 6 was regarded as
the base case. Various models were intersected with each wire-frame defining the
mine plan, and the results were aggregated by both quarterly period and major
pushback increment. For the Chain of Mining cases, each of the 50 simulations was
separately intersected with each wire-frame to provide a risk profile of the chance of
not achieving the scheduled tonnes and grade for the period that the wire-frames
represented. The tonnages and grades within each simulation realisation were
determined for the quarterly and pushback increments for the base case (§ X 8 m
SMU with high sampling error). The results are presented in graphical form in
Figs. 8, 9, 10, 11 and 12. In assessing the relative risk using this graphical data,
occurrences below the horizontal line indicate where the expectation of tonnes or
grade was not reached, i.e. periods when the resource model is at risk under the
assumed mining scenario.

Table 1 Parameters used in the chain of mining (CoM) analysis for the various CoM models
examined, with results for the reconciliation period

Case | Blasting Sampling |SMU (15 m | Mt Grade % | Comment
movement error high) CuT
1 0 Low 16 x 16 109.4 | 1.875
2 0 Low 8 x 16 107.5 |1.893
3 0 Low 8 x 8 103.3 | 1.929
4 0 High 16 x 16 108.0 | 1.885
5 0 High 8 x 16 105.3 | 1.907

6 0 High 8 x 8 99.0 | 1.953 closest to mine
production data

7 3 Low 16 x 16 109.4 | 1.861
8 3 Low 8 x 16 107.5 | 1.873
9 3 High 8 x 16 105.3 | 1.887
10 3 High 8 x 8 99.0 |1.921
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Analysis of risk for Tonnes by quarter for 5 year plan
Chain of mining case: 8 x 8 m high sampling error
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Fig. 9 Risk associated with tonnes in the five year plan by quarters
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Analysis of risk for CuT Grade by quarter for 5 year plan
Chain of mining case: 8 x 8 m high sampling error
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Fig. 10 Risk associated with grade in the five year plan by quarters
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Analysis of risk for Tonnes by pushback for S year plan
Chain of mining case: 8 x 8 m high sampling error
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Analysis of risk for CuT Grade by pushback for 5 year plan
Chain of mining case: 8 x 8 m high sampling error
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Conclusions

The five-year schedule options adequately fit with the in situ resource. However, the
Chain of Mining case (8 x 8 m SMU, high error) selected to best emulate the
production data indicates a significant expected shortfall in tonnes. What had not
been evident until this study, and could only be demonstrated using the exhaustive
data set provided by a conditional simulation study, is that there was considerable
risk of a shortfall in tonnes. This was because the selectivity evident in the actual
mining strategy differed significantly from that inherently assumed in the resource
model. High quality grade control practices on site were effectively providing
higher selectivity than that assumed in the resource model. This lead to a scenario
of ‘vanishing tonnes’ (David 1977), a concept demonstrated in this study that is
familiar to many large mines. This problem can be related to attempts to improve
the head-grade to unrealistic targets applied on a short-term (sometimes daily) basis.
Visual grade control and other decisions to remove small parcels of contaminating
material in order to maintain a high mill head grade may lead to an artificially small
effective mining selectivity that is not related to the SMU block size assumed in the
resource modelling.

The quantification of risk using simulation of the Chain of Mining is a technique
that can be used to identify a potential shortfall in tonnes or grade for a given
mining scenario. Alternative plans can then be developed and tested before the
shortfall impacts production. An approach such as the one demonstrated here for
Escondida can determine if a plan is realistic and the predicted results will be
obtained. Hence, the risk inherent in a given plan can be quantified. Testing
alternate mining scenarios, operating practices and policies to determine if they will
indeed deliver as intended, therefore, provides considerable advantages to both
mine planners and operators.
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