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1 Consideration for Multi-objective
2 Metaheuristic Optimisation of Large
3 Iron Ore and Coal Supply Chains,
4 from Resource to Market

5 J. Balzary and A. Mohais

6 Abstract Dynamic market and operating conditions coupled with an environment
7 in which multiple objectives and trade-offs are common, pose major challenges for
8 planners and schedulers working in any mining entity. Many mining companies
9 recognise the need to shift from a siloed mining-focused push model to an inte-

10 grated value chain, demand-driven approach but there are still fundamental barriers
11 in business process and the supporting technology preventing a consideration of
12 end-to-end optimality. This paper presents some elements of experiences working
13 with companies to adopt such advanced approaches. In addition to algorithmic
14 elements, an approach to phased and gradual deployment of progressively more
15 sophisticated optimisation models is described. From a practical software adoption
16 perspective, it is believed that this last concern is also of primary importance. Next
17 generation approaches to the optimisation of complex bulk commodity demand
18 chains; namely iron ore and coal are presented, with case studies in the world’s
19 largest integrated operations in Western Australia and Queensland from the raw
20 material mined through to market. Utilising accurate simulation models supported
21 by metaheuristic optimisation techniques, a range of ways to engineer a dynamic
22 decision support framework that can adapt and change with the inevitable changes
23 in commodity markets is explored. Objectives such as total revenue, margin, cost,
24 NPV, throughput, asset utilisation, contractual penalties and bonuses, and energy
25 consumption can be managed simultaneously across the mine, plant, logistics
26 network, port operation, shipping and sales domains.27
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28 Introduction

29 The Resource-to-Market mining supply or demand chain can be represented most
30 broadly from the pre-extracted, in situ resource through to the point at which an
31 organisation can invoice upon sale. Much effort is placed on systems facilitating
32 mathematical and computational improvements in decision making at various
33 points in this value chain. Technologies exist to assist in optimal mining operations
34 sequencing, and also in subsequent material handling and logistics processes down
35 the chain. According to current mathematical knowledge, for the class of problem
36 represented by the full Resource-to-Market supply chain and all of its complexities,
37 there is no known method of solution that would give an absolute and irrefutable
38 optimal planning or scheduling outcome. Whilst this is a mathematical reality that
39 businesses must come to terms with, from an opportunistic point-of-view, it pre-
40 sents stakeholders with the ever-present possibility that they can continually
41 improve decision support and modelling technologies and do better.
42 With this opportunity as a motivator and using of practical and real-world
43 learnings as atomic components, this paper presents a next-generation optimisation
44 framework that would deliver further benefit and profit to mining organisations
45 globally. Included is a brief overview of the nature of bulk mining supply chains,
46 conceptualised from a software point of view—from available raw material,
47 through beneficiation, transport, storage and onto vessels. Within this supply chain,
48 we will identify a number of important component segments that can be treated as
49 silos, or preferentially, should be treated as integrated parts of a larger global
50 operation. Standardised key performance indicators are described, with targets set
51 for each as reward-based fitness measures. Methodologies for the utilisation of
52 advanced science solutions involving modern heuristic optimisers and metaheuristic
53 algorithms are described guiding the search efforts of the lower-level searches.

54 Supply Chain Objectives

55 Companies seeking to optimise the planning and scheduling of their
56 Resource-to-Market supply chains express their view of an optimal solution in
57 terms of certain objectives that they would like to achieve. These objectives are
58 often either to maximise or minimise a particular measure of performance in the
59 supply chain, or sometimes to keep a measure confined to a targeted band of values.
60 Although we can identify typical objectives that are common across mining entities,
61 different companies often would attribute different degrees of importance to these
62 objectives, in effect weighting their contribution to the overall evaluation of a plan
63 or schedule. Typical objectives encountered in the mining industry are:
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64 1. Increase margin
65 2. Maximise cash inflow
66 3. Minimise cash outflow
67 4. Maximisation of asset utilisation, fixed and mobile plant
68 5. Maximisation of sequenced activities—e.g. vessels berthed per tide
69 6. Maximisation of efficiency—e.g. direct train to vessel loading
70 7. Minimisation of variability—e.g. quality through processing
71 8. Minimisation of penalty—e.g. demurrage
72 9. Achieve target tonnage value e.g. rail and shipped.

73 Conflicting Objectives

74 Typically in mining supply chains, and in fact every business, objectives conflict
75 with each other. These conflicts involve the interrelationships of complex business
76 rules, processes, constraints and performance measures. Take for example the desire
77 to maximise fixed asset utilisation in a port operation. Maximising asset utilisation
78 is in direct conflict with a common objective to maximise direct train to vessel
79 loading. A model of these activities seeking to keep car dumpers, stackers and
80 reclaimers in continual use would like come up with a sequence that schedules and
81 dumps trains as soon as there is an available time slot on any of these pieces of
82 equipment. The alternate view is to delay arrival of a train so that it coincides with
83 the berthing of a vessel therefore allowing for direct loading, but possibly at the cost
84 of keeping the aforementioned pieces of equipment idle.
85 There are many other such examples of conflicting objectives. It is inherent in
86 any company’s expression of their optimisation wishes.

87 Handling Multiple Objectives

88 In the literature a common theoretical construct that is proffered for managing
89 situations with multiple conflicting objectives is to use the notion of Pareto fronts
90 (citation), but limited application of this exists in decision support in production
91 environments (citation). Under this approach, instead of seeking a single optimised
92 solution, a collection of solutions is retained, forming a so-called Pareto front of
93 non-dominated solutions. Any solution in this set has the characteristic of being
94 better than all the others on at least one of the objectives.
95 The philosophy behind this approach is that the value of the work done by the
96 optimisation software should be retained in the form of the Pareto front, and then
97 this set of high-quality solutions should then be passed to a human expert for final
98 analysis and evaluation, and the human expert would make the final decision on
99 which should be selected. In some situations, this approach is feasible. However,
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100 we believe that in the Resource-to-Market context, the number of possible conflicts
101 is reasonably high, and the presentation of a Pareto front to a human expert by the
102 software would be of limited value because of the number of potential solutions that
103 would be expected in such a set, and the work required to make a final decision
104 would not at all be straightforward.
105 Another factor that currently weighs against purely multi-objective algorithms in
106 the Resource-to-Market space is that when the magnitude of the supply chain,
107 coupled with the number of data elements and the time horizon are taken into
108 consideration, the potential running time of such an algorithm is infeasible for the
109 decision making timeframe. A more appropriate methodology given these consid-
110 erations is the relative weighting of each objective, and their combination into a
111 single unified evaluation measure. A downside to this approach is the fact that the
112 scales on which different objectives are measured could vary dramatically Therefore
113 trying to combine them using appropriate weights would often require re-tuning to
114 get the right values. A possible approach to eliminate this variability is to allow an
115 authorised end-user to state their weighting preferences using a unit-free normalised
116 scale, and to let the science and software experts to devise and tune appropriate
117 multiplicative factors to compensate for the inherent scale differences of the dif-
118 ferent objectives.

119 Objective Function

120 Although each mining operation would have idiosyncrasies necessitating modifi-
121 cations to the objective function used by an optimisation algorithm, it is still pos-
122 sible to provide in closed mathematical form, an expression of that function, using
123 typical and common terms. This is illustrated below for the case of a scheduling
124 problem:
125 Let X be an element of the unconstrained solution space. Then X can be
126 expressed as a collection of scheduled activities, across train loading, railing, car
127 dumping, stacking, reclaiming, conveyance, ship loading and berthing. Hence X
128 can be expressed as the union of disjoint subsets of activities in each of these areas
129 as follows:
130

X ¼ XTLO [XR [XCD [XS [XRE [XC [XSL [XB
132132

133 where XTLO is a set of train loading activities, XR is a set of railing activities, XCD is
134 a set of car dumping activities, XS is a set of stacking activities, XRE is a set of
135 reclaiming activities, XC is a set of conveyance activities, XSL is a set of ship loading
136 activities, and XB is a set of berthing activities. These discrete activities are the
137 required steps move excavated material from the pit onto a ship at berth at the port.
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138 The elements contributing to the objective function would be:
140141

142 Revenue $R ¼ P

x2XSL

saleprice xð Þ

143 Costs $C ¼ P

x2X
cost xð Þ

144 Resource utilisation
145 (fraction)

RU ¼ P

Y2 XTLO ;XR ;XCD ;XS ;XRE ;XC ;XSL;XBf g

constrained capacity �
P

x2Y duration xð Þ
constrained capacity

146 Demurrage costs $D ¼ P

x2XB

demurrage penalty xð Þ

147 Silo constraint
148 violations

CV ¼ P

Y2 XTLO ;XR ;XCD ;XS ;XRE ;XC ;XSL ;XBf g

P

x2Y
constraint violation severity xð Þ

149 Target shipped
150 tonnes penalty

TSTP ¼ shipped tonnage target � P

x2XSL

tonnage xð Þ

151 Target railed tonnes
152 penalty

TRTP ¼ railed tonnage target � P

x2XR

tonnage xð Þ
153

154

155 Using these contributing elements as representative, the objective function can
156 then be expressed as:
157

f Xð Þ ¼ w1$R� ðw2$Cþw3$DÞ � w4RUþw5CV þw6TSTPþw7TRTPð Þ
159159

160 The coefficients w1; . . .;w7 are weights that are configurable by users with the
161 right access privileges. The first three terms of the function are intuitive dollar
162 values which are readily justified. The last four terms are penalties due to violations
163 of constrains and operating rules, or for un-achieved targets. To justify the a simply
164 numeric difference with the dollar values requires human input into the weightings
165 so that their relative importance is correctly judged in relation to the hard dollar
166 values.

167 Literature Survey

168 Although Supply Chain Modelling and Supply Chain Management are heavily
169 researched areas, the published literature addressing resource-to-market optimisa-
170 tion in the mining context is relatively small. Bodon et al. (2017, in this volume),
171 describe the challenges of using a discrete event simulation language to model the
172 complexities of a pit to port coal supply chain, and propose a de-coupling of the
173 simulation aspect of the model from optimisation aspects. They used a general
174 linear program as an optimiser, and couple this with discrete event simulation, and
175 presented their results on scenarios from a real-world coal mining operation in
176 Indonesia. Further related work is available in Bodon et al. (2011). Peng et al.
177 (2009) provide an analysis of an integrated coal supply chain, and apply the model
178 to the Xuzhou coal mine in China. They present results showing that not only
179 optimal profit is obtained, but that a level of customer satisfaction is achieved. Their
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180 results enabled recommendations to be made for the mine operations, and assisted
181 in decision making.
182 Montiel and Dimitrakopoulos (2013) look at a coper mining supply chain, with
183 emphasis on global optimisation from the point of view of taking into account the
184 output of multiples mines and products in a given mining complex. Their work also
185 focuses on the variability of orebody models, and deals with their stochastic nature
186 by producing stochastic mine production schedules. Montiel and Dimitrakopoulos’
187 work was based on using Simulated Annealing, a metaheuristic approach, for
188 producing mine schedules. Their results showed that a stochastic schedule produced
189 expected deviations from mill and waste production targets smaller than 5%, versus
190 that of conventionally generated schedules which was 20%. Although their work
191 did not focus on the Resource-to-Market supply chain as it has been outlined in this
192 paper, their model nevertheless considers a large subset of the mining supply chain,
193 particularly around the details of excavation, waste haulage, milling, and further
194 value-adding preparation and handling of the product.
195 Singh et al. (2012) provide a detailed elaboration of a mathematical model
196 constructed to represent the operations of the Hunter Valley coal chain in eastern
197 Australia. Their goal was to create a model that could find a supply chain schedule/
198 plan that would meet a given demand profile, whilst concurrently suggesting any
199 capacity increases or new equipment that would be required to support that solu-
200 tion. Singh et al’s model was not built into an end-user enterprise application, and
201 their results potentially could take up to several hours to compute, which would
202 make it challenging for the kind of software implementations that Schneider
203 Electric’s SDO is interested in. However, their work is remarkable to us because of
204 the level of detail that was built into the model in certain places, and because of the
205 hybrid nature and multi-phase approach to their solution.
206 Their model was developed around assumptions for a demand-driven,
207 cargo-assembly type operation. Historical demand profiles were used to drive the
208 model and optimisation process. The main goal of the optimisation model was to
209 minimise the cost of running the terminal for that demand profile. The
210 cargo-assembly approach required that all products required for loading a vessel be
211 delivered and already stacked at the port before loading begins. Hence, direct
212 loading was not considered in their model. Rail was modelled around the key
213 factors of a limited number of consists (potential trains) per day, and a limited
214 number of paths through rail junctions at the mine and at the port.
215 They explored using Genetic Algorithms, and Squeaky Wheel heuristics to
216 generate individuals with representation components involving job sequences, and
217 capacity/equipment increments. The solutions produced by these algorithms are
218 then passed to a CPLEX algorithm to generate a final solution. Singh et al. con-
219 cluded that it was a challenging problem that could not be easily solved by
220 then-currently available MILP (mixed integer linear programming) commercial
221 software or straight application of general metaheuristics like genetic algorithms.
222 Some of their other approaches (squeaky wheel and another called large neigh-
223 bourhood search) produced somewhat better results, but they acknowledged room
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224 for improvement, possibly by exploring alternative or more closely coupled
225 hybridisations between the MILP approach and heuristic search methods.

226 Live Software Implementation Experience with Mining
227 Companies

228 Enterprise level software solutions in the Resource-to-Market domain for iron ore
229 and coal mining have been deployed into live use for major Australian mining
230 companies over the last three years. Some experiences, modelling and algorithmic
231 details from these implementations are provided utilising two scenario sections of
232 the paper. In each case, a future extension of the approach is described, which seeks
233 to apply meta-level optimisation in an effort to further improve on the results that
234 have been previously achieved in practice.
235 Two scenarios are presented to illustrate different time horizons, one of which
236 necessitates a finer-grained “scheduling” approach, and the other a more
237 coarse-grained “planning” approach. There are substantive differences between the
238 approaches, and the algorithms used must be tailored accordingly. As an added
239 benefit, the cases described were chosen so as to reflect both iron ore mining and
240 coal mining.

241 Scenario #1—Scheduling System for Iron Ore

242 Fortescue Metals Group (FMG) is Australia’s third largest iron ore producer
243 operating 3 mines, a dedicated rail line and port in Western Australia. In this
244 scenario the model manages several silos from post-beneficiation to vessel. Focus is
245 placed on important elemental aspects of the algorithms used in the software with
246 an outline of a future-state meta-level algorithm proposed. This progression in
247 algorithmic complexity follows a prescribed staged approach where initial
248 deployment of optimisation technology is managed in a step by step fashion,
249 beginning with simplified acceptable techniques and migrating to more advanced,
250 automated decision support paradigms.
251 The deployed decision support model focuses on the modelling of trains and the
252 rail network between the various train load-out (TLOs) and the port. The system is
253 configured with a fixed number of rakes or consists (a collection of wagons
254 assembled to carry an iron ore product) that need to be scheduled in order to meet
255 demand at the port. Queuing of rakes at the TLOs is an important factor in the local
256 scheduling decisions considered when looking at the rail silo. For the iron ore
257 scheduling problem, two elements of the deployed algorithm that are particularly
258 important include (i) the demand-driven nature of the algorithm, and (ii) the
259 technique of disruption propagation. These are both used as baseline elements of
260 the current and future version of the algorithm.

Consideration for Multi-objective Metaheuristic Optimisation … 7
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261 Components of a Scheduling Solution

262 In the scheduling (versus planning) domain, the emphasis is on very detailed and
263 comprehensively-specified activities scheduled with a start and an end time. Many
264 details of each activity in question, such as the equipment utilised and inventory
265 produced must be modelled and calculated. The computational effort is often
266 prohibitive and the respective granularity and accuracy of data diminishes over a
267 long time horizon, making long term decisions on highly detailed models infeasible.
268 The need to manage the level of detail and the importance of these finite elements in
269 the scheduling horizon naturally focuses attention in the short-term (hours, shift,
270 days).
271 In a typical mining Resource-to-Market requirement for a scheduling purpose,
272 the following activities are specified (as examples):
274275

276 Train (rake/consist) service
277 • Rake/Consist ID
278 • Train destination (mine)
279 • Port depot departure time
280 • Selected loader at mine (TLO)
281 • Product to be loaded (type, tonnage,
282 quality)

• Queuing time at mine
• Loading duration
• Journey time
• Queuing time at port
• Selected unloader at port
• Optional periodic maintenance at port

283 Train loading activity
284 • TLO ID
285 • Product type
286 • Product tonnage

• Product quality
• Loading start time
• Loading end time

287 Car dumping activity
288 • Car Dumper ID
289 • Rake ID
290 • Product type
291 • Product tonnage
292 • Product quality
293 • Conveyor route ID

• Stockpile destination ID (if applicable for
stacking)

• Shiploader ID (if applicable for direct loading)
• Dumping start time
• Dumping end time

294 Stacking activity
295 • Car Dumper ID
296 • Stacker ID
297 • Stockpile ID
298 • Conveyor route ID
299 • Product ID

• Product tonnage
• Product quality
• Stacking start time
• Stacking end time

300 Reclaiming activity
301 • Reclaimer ID
302 • Stockpile ID
303 • Shiploader ID
304 • Conveyor route ID
305 • Product ID

• Product tonnage
• Product quality
• Reclaiming start time
• Reclaiming end time

306 (continued)307
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308

309 (continued)
310311

312 Ship berthing/de-berthing activity
313 • Vessel ID
314 • Berth ID
315 • “Pilot on board” (POB) time
316 • “First line” time

• “All fast” time
• “Ready to load” time
• Depart berth time

317 Ship loading activity
318 • Shiploader ID
319 • Berth ID
320 • Conveyor route ID
321 • Product ID

• Product tonnage
• Product quality
• Loading start time
• Loading end time322

323

324 Demand-Driven Solution Generation

325 This iron ore case study uses a demand-centric perspective to drive the optimised
326 solution generation with primary demand based on vessel nominations and the
327 associated attributes for contractual fulfilment.
328 The market factor is very important in this model, as it is the primary deter-
329 minant in the schedule produced. The client organisation provides data on future
330 sales for the time horizon under consideration. This consists of firm orders, which
331 are ones which have already been confirmed by the end buyers, as well as tentative
332 orders, which are indications of intention to buy. This data is provided to the
333 scheduling software by means of direct data integration. The scheduling software
334 has a data exchange interface with other software systems used by the client
335 organisation, and the latest variations are always available for use in generating new
336 and updated schedules. The data is provided in the form of Vessel Nominations,
337 which are contracts for the sale of iron ore commodities to be loaded at a designated
338 port by a particular vessel. The data contains the Estimated Time of Arrival
339 (ETA) of the vessel at the anchor point associated with a port. This date and time is
340 used by the scheduling algorithm to determine possible choices for a time of
341 berthing for that vessel.
342 During simulation, when a particular instant in time is being considered, a vessel
343 that has been tentatively selected for berthing at that time is examined to see what
344 its nomination is, i.e. which products, their respective volume and quality are
345 required for loading once it is berthed at the port. This demand triggers a
346 backward-looking analysis agent that retraces the steps along the supply chain that
347 are needed for the required amount of the right products to be available at the port at
348 the time of the vessel’s arrival. This then creates precursor demands within
349 upstream silos in the supply chain, which must be optimised concurrently with
350 other scheduled activities in those silos.
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351 Disruption Propagation

352 When a certain magnitude of change occurs to a scheduled activity, for example the
353 berthing of a vessel an hour earlier than planned, it is possible to locally propagate
354 the effect of those changes and quickly get the overall schedule back into a correct
355 feasible state without having to undergo a computationally expensive re-building of
356 the entire schedule. An understanding of the implications of this propagation
357 without optimisation is managed via constraint handling which references the
358 available capacity and buffer between each related activity and determines if vio-
359 lations have occurred that are infeasible.
360 Assuming stockpiles that were intended to be used to load the vessel were
361 already at their required inventory levels several hours before, the fact that the
362 vessel is early does not cause any problem with loading. Alternatively, it may be
363 that a sequence of trains that were scheduled to arrive throughout the duration of the
364 vessel being at berth are now out of sync with this shift in time, and the problem
365 could be fixed by shifting the train schedules all by one hour earlier. We would
366 have to check how this triggers knock-on effect higher up the supply chain, and also
367 potentially look at effects like congestion or conflict on the rail network, if the
368 supply chain is being modelled to that extent.
369 The key thing to note is that it is possible for small disruptions in one silo to be
370 relatively easily absorbed by adjacent silos in the supply chain, and it is a wise
371 tactic to attempt to use this propagation opportunity to quickly absorb these changes
372 as opposed to attempting brute force re-optimisation.

373 Realities of Global Optimisation

374 It is important to note that within the confines of the decision making timeframe, it
375 would be impractical to create a problem representation that encompasses the entire
376 supply chain, and then use a population-based algorithm that simply treats the
377 individuals as candidate solutions to this massive problem. In practice the com-
378 putational power required to process that magnitude of scope and complexity would
379 be infeasible, and so would the required computing time under current hardware
380 constraints. Furthermore it would be naïve to expect that simple operators (such as
381 intra-silo mutations, or crossovers across silos, or even across the global repre-
382 sentation) working on a massive representation would be able to effectively or
383 efficiently find the truly high-quality solutions that human experts are seeking.
384 It is important to recognise that although the global context must be considered,
385 and the desired solution would have less-than-optimal sub-solutions within silos,
386 we should nevertheless respect the local logic and intelligence that exists within the
387 silos (human or modelled). It is through judicious use of this intelligence that we
388 can arrive at a solution that can be considered globally optimised.

10 J. Balzary and A. Mohais
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389 Hybrid Global Optimisation

390 We propose that a hybrid approach is needed, which acknowledges the fact that a
391 truly optimised solution must take into account the global, multi-silo nature of the
392 problem, but which also intelligently operates on the representation so that infea-
393 sible solutions are avoided, and also that natural heuristic corrections to adjacent
394 silos are carried out in response to an evolutionary disruption in a target silo.
395 Consider for example a change in the vessel-loading activities at the port,
396 wherein a particular ship loader requires more material than is currently scheduled,
397 and thus draws upon a stockpile to an extent surpassing its current stock. (This is
398 not possible in physical reality, but can certainly be considered as part of an
399 individual representation). This shortfall in inventory at that stockpile is a natural
400 impetus for the adjacent rail module to undergo an amount of re-optimisation,
401 whether it be a small or a large change remains to be determined). This principle
402 gives rise to a multi-silo algorithm which can be called “Disruption Dampening and
403 Transmission”. Changes in one silo may cause nudging on an adjacent silo, which
404 may be accommodated by slight movement, i.e. a dampening of the disruption, or it
405 may be necessary to completely re-adjust the neighbour to try to align its endpoints
406 with the disruption, i.e. a full transmission of the disruption.
407 Figure 1 illustrates the concept of disruption dampening and transmission, using
408 the analogy of sitting on a bench. To get a better understanding of how this
409 proposed algorithm would be implemented, Fig. 2 provides a pseudo-code outline.
410 The key idea of this algorithm is to choose a most influential silo (or weight them in
411 importance and choose probabilistically), and run a full optimisation routine on it,
412 but after each iteration, as individuals are modified, the effect of their modifications
413 either get dampened by virtue of adjacent silos being able to absorb the impact of
414 the change with small-scale modifications, or get transmitted with a more disruptive
415 effect into the adjacent silo, triggering a full re-optimisation of the current state
416 within that neighbouring silo.
417 If this approach is contrasted with a more straightforward approach to global
418 optimisation, one could imagine that a change in a silo would be followed
419 immediately by an evaluation of the overall individual. The resulting individual is
420 likely to contain multiple constraint violations and task misalignments. These could
421 be handled by penalty components in the fitness evaluation of the individual, but
422 the likelihood of this being able to successfully guide the algorithm is very low.
423 The above proposed approach could be likened somewhat to repair algorithms
424 from evolutionary computation. What is substantially different however, is the

 

Silo 
1

Silo
2

Silo
n

Silo
3

. . 
Fig. 1 Disruption
dampening and transmission
between silos
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425 possibility of complete local re-optimisation of certain silos, and also phased
426 propagation of the disruption of a change throughout the supply chain.

427 Case Study #2—Planning System for Coal

428 Glencore (previously Xstrata) Coal is a major global energy materials producer.
429 This example includes a multi-mine operation centred on raw coal management,
430 coal handling and preparation through the plant, rail logistics to vessel loading
431 using two berths at the Abbott Point Coal Terminal in Queensland, Australia.
432 In this model, attention was paid to the maximisation of the potential total
433 revenue by not only relying on the supplied data on contracts for Month 1–3 years,
434 but also considering the more detailed addition of place-holder vessels in order to
435 make enable recommendations to the Sales department, highlighting where addi-
436 tional product is available to be sold. The importance of shipping data for capacity
437 assessment is elaborated by Boland et al. (2011).
438 The fact that the Australian coal industry often fails to meet demand due to
439 inadequate planning, infrastructure deficiencies and other reasons is outlined by
440 Bayer et al. (2009) and represents a primary driver for organisations to look at
441 exploiting latent value associated through improved planning and optimisation. As
442 before with the iron ore case study, the coal case study is described from an abstract
443 point of view, all the way to a vision of future algorithmic approach. For the coal
444 planning problem, a few elements of the current production-implemented model and
445 associated optimisation algorithm that are particularly important include (i) a stock
446 accumulation-based representation for vessel loading, (ii) quality up-building and

Fig. 2 Disruption dampening and transmission algorithm outline
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447 down-building heuristics, and (iii) upstream heuristic plan completion based on the
448 vessel-loading driver. These elements form the baseline optimisation improvements
449 upon which enhanced future state optimisation is considered. The main realisations
450 that are used when proposing the future-state algorithm is that heuristic construction
451 of seed individuals is important for a modern heuristic algorithm, therefore a sim-
452 plified heuristic approach as a foundation element to optimised plan generation is a
453 feasible. There is a careful balance that is needed between those kinds of individuals
454 and more randomly generated ones in order to find an appropriate balance between
455 biased and free range exploration of the search space. A meta-level algorithm is part
456 of the proposal to find this appropriate balance.

457 Solution Representation for a Planning Context

458 In contrast to the level of model complexity in scheduling (minutes, hours, shifts,
459 days), planning systems (days, weeks, months) are orientated towards a higher-level
460 summary view of what can be achieved, and safely planned for, in a long-term time
461 horizon—for example 1 month to several years. Similar to heavily constrained
462 activity scheduling relationships, the planning requirement must take into consid-
463 eration numerous parameters and hard and soft constraints, in order to ensure that
464 the results are valid. Whereas a schedule would consist of a number of discrete
465 activities assigned to different resources, planning models are generally defined
466 around summarised aggregated activities or capacities within a fairly large time
467 bucket, in this case monthly. Plans are created starting at month 3 (from the current
468 time), out to 3.5 years. The initial period of 3 months is not covered because this is
469 considered to be within the scheduling period, not planning. For each month of the
470 planning horizon, the following information must be generated:

472 Haulage Plan:

473 • Aggregated tonne-hours for movement between ROM and stockyards,
474 inter-stockyard, and stockyard to CHPP. Individual journeys are not
475 modelled.
476

477

479 Field Stockyards Plan:

480 • The total tonnes of each product type on field stockpiles for that month.
481

482

483
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485 ROM Stockyard Plan:

486 • The total tonnes of each product type on a ROM stockpiles for that month.
487

488

490 CHPP Operation Plan:

491 • Tonnes of each coal type sent to each CHPP module, and bypass.
492 • Output tonnes for each coal type for each CHPP module, as well as new
493 ash %, and reject tonnes.
494

495

497 CHPP Clean Coal Plan:

498 • Tonnes of each clean coal product added to each stockpile.
499 • Stockpile tonnes and % capacity.
500 • Quality attributes of each blended stockpile.
501

502

504 Rail Plan:

505 • Train-hours—Tonnes of each coal type transported by train from each
506 mine
507

508

510 Port Stockyard Plan:

511 • Tonnes of each Brand
512 • Quality attributes for coal assigned to a Brand
513

514

516 Shipping Plan:

517 a. The number of satisfied ‘TBC’ (to be confirmed) shipments, including
518 tonnage and product quality attributes. TBC shipments are derived using a
519 typical vessel size and accounting for customer contracts (i.e. tonnage and
520 quality requirements)
521 b. Number of non-contracted proposed shipments of coal brands, including
522 tonnage and product quality attributes. This is coal that is not linked to a
523 contract. This provides a view of how much additional coal product is
524 produced by the mines and needs to be sold by Marketing.

525

14 J. Balzary and A. Mohais

Layout: T1_Standard Book ID: 457301_3_En Book ISBN: 978-3-319-69319-4

Chapter No.: 20 Date: 14-10-2017 Time: 4:45 pm Page: 14/20



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

526 Optimisation Algorithm

527 Part of the local optimisation heuristic for a vessel stock accumulation plan is the
528 tuning of the selected components for blending to achieve a shippable product type,
529 i.e., one which is within the target quality specification bandwidths. The repre-
530 sentation of an individual in this algorithm consists of a set of ordered pairs, where
531 each pair consists of a viable stockpile id, and a desired tonnage to be reclaimed
532 from that stockpile (Fig. 3).

533 Low-Grade Up-Build Blending Sub-algorithm

534 The approach of the Low-Grade Up-Build blending algorithm is to initialise an
535 individual in a deficient sub-space of the coal blending selection space. Such
536 individuals would be of a low grade, and a search algorithm would need to be
537 structured so that overarching directional vectors of the search tend towards
538 sub-spaces that are richer in terms of coal quality. It is important to control the
539 velocity of movement so that there is an increased likelihood of discovering suitable
540 blends within the required quality tolerances at an early stage within the search
541 process, without exploring too deeply within the high quality areas of the search
542 space.

543 High-Grade Down-Build Blending Sub-algorithm

544 The High-Grade Down-Build blending algorithm uses a converse approach, which
545 is to initialise an individual in an adequate or rich sub-space of the coal blending
546 space. Such individuals would be of a high grade, and a search algorithm would
547 need to be structured so that the direction of the search moves at low velocity
548 towards lower quality regions. The objective being to have a high likelihood of
549 settling in a region that maximises the use of lower grades, whilst still remaining
550 within the required quality tolerances.

(Stockpile-ID, tonnes)

(Stockpile-ID, tonnes)

(Stockpile-ID, tonnes)

. .
 .

Fig. 3 Individual
representation for stock
accumulation
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551 For both blending algorithms, evolutionary operators are used to gradually bring
552 an individual to within tolerance, the main operator being a swap of a small tonnage
553 of ore, exchanging low with high grade, or vice versa.

554 Upstream Scheduling Building Based on Ship Loading
555 Profile

556 Once a candidate vessel berthing sequence has been determined, a
557 heuristically-built individual representing a schedule for the entire supply chain can
558 be constructed by working backwards, upstream in the supply chain, to create
559 nominal activities to match the requirements of the vessel at berth within a given
560 period of time. This gives rise to a so-called heuristically built individual that
561 contains elements of a good-quality solution, but has not yet been optimised.

562 The Evolution to Metaheuristic Optimisation

563 Evolutionary algorithms often can be made to produce excellent results on prob-
564 lems in a particular domain, but one of the issues that arises is that there are often
565 several algorithmic parameters involved, and these parameters need to be correctly
566 tuned in order to achieve positive results. In certain situations, it is the case that a
567 meta-algorithm, or metaheuristic, can be engineered to run at a higher level and
568 perform the tuning of the lower-level evolutionary algorithm. Thus, any human
569 manual intervention in the finding of high-quality solutions is minimised, and the
570 work can be relegated mostly to the computational machinery and software.
571 Since we are considering primarily Population-Based Modern Heuristic (PBMH)
572 optimisation algorithms as the key tools for optimising the supply chain, we will
573 describe the concept of a metaheuristic optimiser in this context. For the Coal
574 Planning problem under consideration, in order for the PBMH to operate effec-
575 tively, it is critical that it be seeded with candidate solutions that have already been
576 placed into reasonably feasible sub-spaces of the search space (Fig. 4). This is
577 accomplished by using a percentage of the seeded individuals that are passed
578 through a local optimisation routine to achieve some moderate level of fitness
579 before entering into the PBMH algorithm. Furthermore, there is another percentage
580 (typically quite small) of individuals that are heuristically built, but which have not
581 been subjected to the local optimisation. There are also introduced into the seed
582 population for the purpose of maintaining genetic diversity.
583 Details of how the Initial Seeding component of the algorithm would work are
584 illustrated in Fig. 5. The V1 and V2 local searches referenced in that diagram refer
585 to the Low-Grade Up-Build and High-Grade Down-Build heuristics defined earlier.
586 The initial population of the main population-based modern heuristic (PBMH)
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587 optimisation algorithm is divided into 3 parts: (i) individuals that have gone through
588 V1 local optimisation, (ii) individuals that have gone through V2 local optimisation
589 and (iii) individuals that have not gone through any local optimisation. Each part
590 can be thought of as being of a particular percentage.
591 For the PBMH operating at a meta-level, the goal is to find an optimised
592 combination of these percentages (two would suffice), such that when used to seed
593 the lower-level PBMH, the best possible planning solution results (Fig. 6). To get a
594 better understanding of how this proposed algorithm would be implemented, Fig. 7
595 provides a pseudo-code outline.

Population-
Based Modern 

Heuristic
(PBMH) 

Optimisation 
Algorithm

Initial 
Seeding

Final 
Local 
tuning

Optimised
Solution

Fig. 4 Pre and post processing needed for a population-based modern heuristic optimisation
algorithm

Heuristically - Built Individuals

Population-
Based 

Modern
Heuristic 

Optimisation 
Algorithm 

Heuristically 
- Built 

Individuals

Local
SearchV1

Local
SearchV2

Final
Local 
tuning

Fig. 5 Use of local search algorithm for coal blending, pre PBMH
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596 Conclusions

597 Any mining value chain scheduling problem involves the assignment of a high
598 number of variable activities to a set of resources. From a computational complexity
599 perspective, this problem is known to be NP-Complete, effectively indicating the
600 Resource-to-Market scheduling problem is currently amongst the most challenging
601 problems known. Furthermore, many of the constraints that exist within that
602 domain are non-linear in nature. Due to these complexity characteristics it is
603 expected that population-based modern heuristic methods are highly appropriate for
604 finding high-quality solutions, as opposed to methods premised on linear con-
605 straints and linear models as they can inherently manage more complex business
606 rules and non-linear constraints.

Meta-Level PBMH Algorithm

Optimised
Solution

Proportion
parameters for 
Sub PBMH 
instance

Optimised 
proportion 
parameters

Fig. 6 Each individual of the meta-level algorithm is a set of parameters for a base-level PBMH

Fig. 7 Meta-level PBMH algorithm for parameter tuning
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607 The planning problem appears to be less complex in nature than detailed
608 scheduling since jobs are not being assigned to resources, but rather aggregated
609 capacity is being consumed against those resources in less-granular time buckets.
610 Nevertheless, this apparent reduction in complexity is usually offset by the practice
611 of considering much longer time horizons—many months or years into the future.
612 The Resource-to-Market problem is currently managed in the real world pro-
613 duction environment by predominantly talented human experts who, together with
614 various rudimentary tools, for example spreadsheet models, and very limited-scope
615 and narrowly-focused software applications such as discreet event simulators, are
616 coping with the task of keeping businesses running by finding suitable, though
617 arguably sub-optimal solutions to the problem. The mining business community has
618 a strong appetite for advanced software solutions using novel and innovative
619 mathematics, science and technology to improve in this area.
620 Considerable care must be taken when embarking upon the journey of making
621 major changes to how scheduling and planning tasks are carried out by all mining
622 organisations. The deployment of software that instantaneously and dramatically
623 shifts the scheduling/planning paradigm in place, even if this does hold the potential
624 for much higher-quality results, more often than not is a sure recipe for immediate
625 reticence, incomprehension, doubt, overall inertia, and eventual rejection of the new
626 system. Despite the potential of advanced scientific software solutions, it is
627 important to recognise and respect that the process of adoption of such systems is in
628 no small part a human activity. It is important to carry out such an endeavour as a
629 staged process, using a roadmap of checkpoints that guides the organisation and its
630 experts in an incremental fashion. At each step, clearly-understood solutions must
631 be produced by the software in a manner that the human expert would feel com-
632 fortable signing-off on. Especially in the early stages of the roadmap, it is critical
633 that the actions of the software be explainable and comprehendible.
634 Modern heuristic algorithms have been discussed and applied at length in the
635 research community for more than 30 years. In the last ten years however, there has
636 been a noticeable emergence of commercial-grade enterprise level software that
637 incorporates these kinds of algorithms though arguably their uptake has been
638 limited in production environments.
639 Currently implemented elements in existing clients for Schneider Electric are
640 presented as components of a framework for meta-level optimisation. These
641 baseline elements are designed to be expanded, scaled and enhanced as the
642 understanding and acceptance of their output is trusted. The benefit that would be
643 achieved from any optimisation technique needs to be carefully weighed against the
644 increase in runtime that would ensue. The continual increase in power and capa-
645 bility of computer hardware, including the ability to leverage parallel computation
646 diminishes the impact of this downside.
647 It is expected that these approaches will yield higher quality solutions than the
648 perceived state-of-the-art production models in use today, whilst remaining
649 amenable to implementation in enterprise software designed for mining supply
650 chain experts who are not necessarily mathematical modelling and optimisation
651 specialists.
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