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1 Direct Net Present Value Open Pit
2 Optimisation with Probabilistic Models

3 A. Richmond

4 Abstract Traditional implementations of open pit optimisation algorithms are
5 designed simply to find a set of nested open pit limits that maximise the undis-
6 counted financial pay-off for a series of commodity prices using a single ‘estimated’
7 orebody model. Then, the maximum Net Present Value (NPV) open pit limit is
8 derived by considering alternate (usually only best and worst-case) mining
9 schedules for each open pit limit. Divorcing the open pit limit delineation from the

10 NPV calculation in this two-step approach does not guarantee that an optimal NPV
11 open pit solution will be found. A new open pit optimisation algorithm that con-
12 siders the mining schedule is proposed. As a consequence, it can also account
13 explicitly for commodity price cycles and uncertainty that can be modelled by
14 stochastic simulation techniques. This state-of-the-art algorithm integrates Monte
15 Carlo-based simulation and heuristic optimisation techniques into a global system
16 that directly provides NPV optimal pit outlines. This new approach to open pit
17 optimisation is demonstrated for a large copper deposit using multiple orebody
18 models.19

20 Introduction

21 Several open pit optimisation techniques such the Lerchs–Grossman algorithm
22 (Lerchs and Grossman 1965), network flow (Johnson 1968), pseudoflow network
23 models (Hochbaum and Chan 2000) and others, involve a 3D grid of regular blocks
24 that is converted a priori into a pay-off matrix by considering a 3D block model of
25 mineral grades and economic and mining parameters. These algorithms rely on the
26 block pay-offs averaging linearly, as is the case when undiscounted block pay-offs
27 are considered. However, the Net Present Value (NPV) of the block pay-offs is a
28 non-linear function of the undiscounted block pay-offs that depends explicitly on
29 the discount to be applied to the individual blocks, which in turn depends on the
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30 block mining schedule. To overcome the issue of discounting block pay-offs, tra-
31 ditional implementations of open pit optimisation algorithms are designed simply to
32 find a set of nested open pit limits that maximise the undiscounted financial pay-off
33 for a series of constant commodity prices using a single ‘estimated’ orebody model.
34 Then, the maximum NPV open pit limit is derived by considering alternate (usually
35 only best and worst-case) mining schedules for each open pit limit. This two-step
36 approach to finding the maximum NPV open pit limit raises three significant issues:

37 1. Divorcing the open pit limit delineation from the NPV calculation does not
38 guarantee that an optimal (maximum) NPV open pit solution will be found;
39 2. NPV calculations are based on a constant commodity price that fails to consider
40 its time-dependant and uncertain nature; and
41 3. The single ‘estimated’ orebody model is invariably smoothed, thus it fails to
42 consider short-scale grade variations.
43

44 Consequently, the block model does not accurately reflect the grade and tonnage
45 of ore that will be extracted and processed during mining.
46 To overcome the inadequacy of undiscounted pay-offs in commonly used
47 algorithms for open pit optimisation, it is proposed to embed a scheduling heuristic
48 within an open pit optimisation algorithm. This may be seen as an alternative
49 avenue to that taken by mixed integer programming approaches (eg. Caccetta and
50 Hill 2003; Ramazan 2007; Stone et al. 2017; Menabde et al. 2007) that may become
51 numerically demanding in the case of large deposits. As a consequence, uncertain
52 and time-dependent variables such as commodity prices can also be incorporated
53 stochastically into the optimisation process. This permits strategic options for
54 project timing and staging to be assessed as discrete optimisation problems and
55 compared quantitatively and is more advanced than other recent approaches
56 (Monkhouse and Yates 2017 in this volume; Dimitrakopoulos and Abdel Sabour
57 2007). It is also proposed to consider multiple conditional simulations in the
58 optimisation process such that the mining and financial implications related to
59 small-scale grade variations are honoured (Menabde et al. 2017 in this volume;
60 Ramazan and Dimitrakopoulos 2013, 2017 in this volume; Leite and
61 Dimitrakopoulos 2007; Godoy and Dimitrakopoulos 2004; Ravenscroft 1992). By
62 considering discounted block pay-offs, stochastic models of commodity prices and
63 short-scale grade variations a more accurate discounted pay-off matrix (revenue
64 block model) is generated, which in turn will yield an open pit limit that will be
65 closer to the true optimum.

66 NPV Calculations with Uncertain Variables

67 Calculation of the NPV for a given open pit limit relies on estimates of numerous
68 parameters, including (but not restricted to) the mineral grades, extraction sequence
69 and timing, mineral recovery, prevailing commodity price and capital and operating
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70 costs. All of these parameters are uncertain and should be modelled stochastically.
71 For example, mineral grade values by geostatistical simulations, operating costs
72 with growth functions and commodity prices using long-term mean reverting
73 models that account for periodicity. Consequently, the cumulative distribution of
74 total financial pay-offs for an open pit limit can be derived from the combination of
75 a series of stochastic models of mineral grades, costs, prices, recoveries, etc.
76 Given L potential NPV outcomes for a block (related to L realisations of grade
77 values, commodity prices, etc), we can calculate the NPV for any realisation l:
78

NPVl ¼
XB

j¼1

dl bj
� �

ij ð1Þ
8080

81 and the expected NPV for L realisations:
82

NPVL ¼ 1
L

XL

l¼1

NPVl

( )
ð2Þ

8484

85 where:

86 B is the number of blocks under consideration
87 dl(bj) is the discounted value for block bj for the lth realisation
88 ij = 1 if bj falls within the open pit limit and 0 otherwise
89
90 The idea being to find the open pit limit that maximises NPVL. Additional
91 financial goals, for example minimising downside risk (Richmond 2004a) could
92 also be considered, but are outside the scope of this paper.

93 Accounting for Multiple Orebody Models

94 Pit optimisation algorithms found in the literature invariably consider an orebody
95 block model with a single grade value for each block (or parcel). In such an
96 approach, a simple decision rule is used where block bj is processed using option
97 k if gk � z*(bj) < gk+1, where:
98 gk is the cut-off grade for processing option k (by convention g1 = 0 and k = 1
99 indicates waste)

100 z* is the estimated grade value
101 To account for grade uncertainty in open pit optimisation, Richmond (2004a)
102 proposed incorporating L grade values for each block. In this approach, multiple
103 grade values zl(bj), l=1,…,L were generated by conditional simulation and a pro-
104 cessing option kl(bj) was determined for each realisation. Alternatively, conditional
105 simulation provides short-scale grade variations that permit local ore loss and
106 mining dilution to be readily accounted for in open pit optimisation by (Richmond
107 2004a):
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108 • Generating geometrically irregular dig-lines (that separate ore and waste) based
109 on small-scale grade simulations with a floating circle algorithm, and
110 • Assimilating the dig-lines into large-scale geometrically regular blocks by a
111 novel re-blocking method.
112

113 This two-step approach accounts for short-scale grade variation, but also pro-
114 vides ‘recoverable’ grade and tonnage information for large regular blocks suitable
115 for open pit optimisation. In other words, the simulated grade models are com-
116 pressed without loss of accuracy so that optimisation is computationally tractable.

117 An NPV Open Pit Optimisation Algorithm

118 For the vast majority of open pit optimisation techniques a directed graph is super-
119 imposed onto the pay-off matrix to identify the blocks that constitute an optimal open
120 pit limit. To paraphrase Dowd and Onur (1993)—each block in the grid, represented
121 by a vertex, is assigned a mass equal to its net expected revenue. The vertices are
122 connected by arcs in such a way that the connections leading from a particular vertex
123 to the surface define the set of vertices (blocks) that must be removed if that vertex
124 (block) is to be mined. A simple 2D example is shown in Fig. 1. Blocks connected by
125 an arc pointing away from the vertex of a block are termed successors of that block, ie.
126 bi is a successor of bi if there exists an arc directed from bi to bi. In this paper, the set of
127 all successors of bj will be denoted as Cj. For example, in Fig. 1, C8 = {2, 3, 4}.
128 A closure of a directed graph, which consists of a set of blocks B, is a set of blocks
129 Bp�B such that if bj2Bp then Cj2Bp. For example, in Fig. 1, Bp = {1–5, 7–9, 13} is a
130 closure of the directed graph. The value of a closure is the sum of the pay-offs of the
131 vertices in the closure. As each closure defines a possible open pit limit, the closure
132 with the maximum value defines the optimal open pit limit.
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Fig. 1 Directed graph representing 2D vertical orebody model

4 A. Richmond

Layout: T1_Standard Book ID: 457301_3_En Book ISBN: 978-3-319-69319-4

Chapter No.: 15 Date: 14-10-2017 Time: 12:04 pm Page: 4/12



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

133 For simplicity of notation, the algorithm proposed in this paper is described for a
134 single orebody model. The undiscounted pay-off matrix {w(b), b2B} typically used
135 for open pit optimisation is calculated as:
136

w bð Þ ¼ tonbðvz bð Þrk � ckÞ ð3Þ
138138

139 where:

140 tonb represents the tonnage of block b
141 v is the commodity (attribute z) value per concentration unit
142 rk is the proportion of the mineral recovered using processing option k
143 ck is the mining and processing cost for k ($/ton)
144
145 In practice, rk and ck commonly vary spatially and v and ck temporally. The
146 discounted pay-off matrix {d(b|S), b2B}, conditional to a mining schedule S, that is
147 required for NPV open pit optimisation is calculated as:
148

d bjSð Þ ¼ ½tonbðvtz bð Þrk � ck;tÞ�=ð1 þ DRÞt ð4Þ
150150

151 where:

152 t is the time period in which block b is scheduled for extraction and
processing

153 vt ck, t are the prevailing commodity price and operating cost at time t
154 DR is the discount rate
155
156 In Eq. 4, discounted pay-offs are conditional to the mining schedule as alternate
157 schedules can be derived for the same open pit closure. It is also important to note
158 that, cut-off grades and consequently the processing option k, may change in
159 response to commodity price and operating cost fluctuations over time. Does not
160 imply that the discounted value for is positive.
161 The traditional floating cone algorithm decomposes the full directed graph
162 problem into a series of independent evaluations of individual Cj and if the sum of
163 the pay-offs associated with Cj is positive, then bj is added to Bp. However, a
164 positive undiscounted value for Cj. does not imply that the discounted value for Cj

165 is positive. In other words, negatively-valued successors bj or block bj that may be
166 mined significantly earlier in the mining schedule and receive substantially less
167 discounting may not be carried by a more heavily discounted positively-valued bj.
168 Furthermore, the modified schedule may have shifted more profitable bj into later
169 periods and additional wasted blocks into earlier periods, reducing the discounted
170 value of the pit. As traditional independent evaluation of locally decomposed Cj.
171 To allow for discounting, it is proposed that a Direct NPV Floating Cone
172 algorithm (DFC) proceeds as follows:

173 1. Select the time for initial investment (start of construction) tI;
174 2. Define a cone that satisfies the physical constraints of the desired open pit slope
175 angles;

Direct Net Present Value Open Pit Optimisation … 5
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176

177 3. Define an ordered sequence of visiting blocks [1,2,…#<B] with positive w(b),
178 by ordering the blocks bi firstly on decreasing elevation, and then for blocks
179 with identical elevations on decreasing value in w(bi);
180 4. Set the open pit closure counter n = 0, the initial open pit closure Bn

p to a null set
181 of blocks, and the Net Present Value of initial open pit closure NPVn = 0;
182 5. Set j = 0;
183 6. Set j = j + 1;

184 7. Float the cone to bj to create a new closure Bnþ 1
p = Bn

p + Cj (excluding from Cj

185 any block that currently belongs to Bn
p);

186 8. Determine the schedule S for the new closure Bnþ 1
p ;

187 9. Calculate the discounted pay-off matrix {d(b|S), b2Bnþ 1
p } using Eq. 4 and the

188 Net Present Value of the new closure using Eq. 1;
189 10. Accept the new closure if NPVn + 1−NPVn > 0, whereupon the current closure
190 is updated into a new optimal closure, ie. n = n + 1 and go to step 5; and
191 11. if j < #, the number of blocks with positive pay-offs w(b), then go to step 6.
192

193 The deterministic floating cone algorithm presented above is heuristic in nature
194 and not be optimal. Alternate Bp can be generated by varying the initial investment
195 timing (step 1), the ordered path (step 3) and/or the mining schedule (step 8).
196 Investment timing to satisfy corporate constraints or to take advantage of
197 cyclical commodity prices can be investigated as mutually exclusive opportunities
198 by varying tI, which modifies implicitly the mining schedule in step 8 above. For
199 example, given a schedule S commencing at t = 0, the modified schedule t′ = t + tI.
200 For delayed investment, the NPV for many potential production assets will typically
201 be reduced unless maximum production/grade happens to coincide with the peak in
202 cyclical commodity prices. However, for a risk averse and capital constrained
203 company, the shift of the capital cost into future years may be strategically
204 advantageous when considered in conjunction with other mining assets.
205 Re-initiating the test sequence from the top of the mineral deposit each time a
206 positively-valued cone is found and added to the closure is generally regarded to
207 estimate the heuristic maximum undiscounted pay-off solution (Lemieux 1979).
208 Computational experimentation on the ordering of blocks in step 3 above suggested
209 that this also holds true for the discounted case when tI is fixed. Note that, due to

210 re-initiation of the test sequence it is p common for Bnþ 1
p = Bn

p in step 7 above. For
211 such instances, steps 8–10 above are ignored.
212 It is well known that the floating cone algorithm may not return the maximum
213 undiscounted pay-off solution. However, it is used in the algorithm presented above
214 to generate physically feasible solutions. The author has not investigated whether
215 the Lerchs–Grossman and network flow algorithms could be substituted for the
216 floating cone algorithm, but the non-linearity of the proposed objective function
217 may present some difficulty. The computational efficiency of the proposed algo-
218 rithm is enhanced significantly when a simple scheduling algorithm in step 8 above
219 is employed. However, more complex risk-based scheduling algorithms to account
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220 for multiple orebody models and production goals (eg. Godoy 2002) could be
221 considered.

222 Application to a Copper Deposit

223 This section demonstrates the proposed concepts for a large subvertical copper
224 deposit. The geometry and contained copper per level are variable, but there is no
225 strong trend. The options considered in this study were:

226 • Two processing options (ore and waste), ie. K = 2;
227 • 60 Mt/year mill constraint;
228 • 25 realisations of copper grades by Sequential Gaussian Simulation (SGS);
229 • 25 stochastic simulations of future copper prices with a two factor Pilipovic
230 model that was modified to account for periodicity and cap and collar aversion
231 (Fig. 2);
232 • 25 stochastic simulations of operating costs with a growth model (Fig. 3);
233 • Monthly copper recoveries randomly drawn from normal distribution with mean
234 of 80% and a standard deviation of 1%2;
235 • A fixed annual discount rate of 10%; and
236 • Initial investment timings at discrete yearly intervals for five years.
237

238 Figure 2 shows 25 stochastic simulations of future copper prices. The assump-
239 tions in this study were:

240 • A long-term copper price of $1.30/lb,
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Fig. 2 Thirty year future copper price simulations with mean reversion and collar and cap
aversion
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241 • The present time ($2.50/lb) was near the peak of the price cycle,
242 • An average eight year copper price cycle, and
243 • $0.50/lb and $3.00/lb lower and upper aversion values.
244

245 Note that, as time increases uncertainty in the simulated copper price increases
246 and the deviation of the average simulated value to the long-term price decreases.
247 The average copper price does not fluctuate symmetrically around the long-term
248 copper price due to the asymmetrical aversion limits. Figure 3 shows 25 stochastic
249 simulations of waste and ore processing costs.
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Fig. 3 Thirty year wate and ore processing cost simulations
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250 To assess the potential improvement in NPV against the traditional two-stage pit
251 optimisation approach a base case scenario ($1.30/lb—80% recovery, $1.90/t waste
252 cost and $8.50/t milling cost) was run to generate a series of nested pits using a
253 FCA. The E-type (or average) of the 25 SGS realisations was adopted as the single
254 grade model as it is known to be smoothed. The NPV for this series of pits using the
255 base case assumptions are shown in Fig. 4 as crosses. The maximum NPV under
256 the base case scenario is associated with a pit closure of 26,402 blocks. Note that,
257 the capital cost, which could also be modelled stochastically, was not included in
258 this study.
259 The NPV for the FCA nested pits were also calculated using the simulated
260 grades, metal prices, costs and recoveries for the six annual investment timings,
261 shown in Fig. 4. Note that:

262 • These curves vary substantially from the base case.
263 • In all instances the maximum NPV pit is significantly larger (49,239–85,093
264 blocks) than the base case and the maximum NPV is higher than for the base
265 case.
266 • Delaying the investment from Year 3 to Year 5 results in a higher NPV ($3.02
267 billion versus $2.88 billion). At first this relationship appears counter-intuitive
268 as costs are greater and discounting greater. However it is related to higher Cu
269 prices in key production periods.
270

271 The NPV of the proposed DFC approach for the six annual investment timings
272 are also shown in Fig. 4. Note that, considering the mining schedule explicitly in
273 the optimisation process was successful in finding the maximum NPV pit in a single
274 run. Whilst the improvement over the maximum NPV pit from the two-step
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Fig. 4 Pit size versus NPV (FCA = floating cone algorithm; DFC = proposed direct NPV FCA)
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275 approach that considered the stochastic inputs was limited (usually <0.5% in NPV),
276 there was often some difference in the pit dimension. It is likely that these differ-
277 ences would be reduced further if additional pit closures had been generated for
278 evaluation in the two-step approach. Computationally, it was more efficient to post
279 process a finite series of pit closures than embed the scheduler in the pit optimi-
280 sation process. In the example shown, the DFC approach that generated a single pit
281 required around the same computational time as that required in generating 36
282 nested pits by a simple FC approach.
283 Figure 5 shows the distribution of potential NPVs for the set of nested FCA pits
284 without any investment delay. As expected, the uncertainty increases with pit size
285 with some possibility of negative NPVs for large pit closures. If minimising
286 downside financial risk is of greater importance than maximising the NPV then the
287 financially efficient set (frontier) of open pit limits could be determined under a
288 stochastic framework (Richmond 2004a).

289 Conclusions

290 A novel method for working with discounted pay-off matrices during open pit
291 optimisation was proposed. The approach used in this study embedded a simple ore
292 scheduler in a floating cone-based heuritic algorithm. It was a trivial exercise to
293 further consider multiple orebody models, local ore loss and mining dilution,
294 time-dependent commodity prices and costs and variable metal recoveries during
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Fig. 5 Pit size versus NPV distirbution

10 A. Richmond

Layout: T1_Standard Book ID: 457301_3_En Book ISBN: 978-3-319-69319-4

Chapter No.: 15 Date: 14-10-2017 Time: 12:04 pm Page: 10/12



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

295 optimisation. As a consequence, alternate project development timings could be
296 strategically assessed. Traditional evaluation of a set of nested pit shells with
297 constant metal prices and operating costs failed to determine the maximum NPV pit
298 under uncertain conditions. However, provided that sufficient pit shells were gen-
299 erated and evaluated with the same stochastic price and cost input as for the
300 proposed algorithm there was little difference in the maximum NPV shell derived.
301 Further experimentation should be undertaken to determine whether this observa-
302 tion holds for more complex mining schedule algorithms and geometrically irreg-
303 ular orebodies, as well as when a smoothed block model other than the E-type of
304 the stochastic grade model is used to generate a series of nested closures.
305 This study demonstrated that uncertainty in future metal prices and operating
306 costs cannot be adequately captured in open pit optimisation by simply
307 post-processing a series of nested pit closures with constant values. Stochastic
308 modelling of mineral grades, mineral recovery, commodity prices and capital and
309 operating costs provide an ideal platform to:

310 • Generate an optimal pit to maximise the overall project NPV considering
311 geological and market uncertainty,
312 • Determine the optimum investment and project start up timing, and
313 • Quantify the multiple aspects of uncertainty in a mine plan.
314

315 The example studied in this paper indicates periods of potential financial
316 weakness that could benefit from management focus (eg. forward selling strategies
317 and placing the mine on care and maintenance) prior to difficulties arising.
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