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�Processes of Bone Mineralization

The majority of the presented results of bone 
mineralization and its distribution in this book 
chapter will have its focus on lamellar bone, 
which is formed by the concerted action of osteo-
blasts and deposited on a preexisting bone sur-
face, which can be either freshly resorbed 
(remodeling) or resting (modeling). Four of such 
surfaces can be distinguished: trabecular, intra-
cortical (osteonal), periosteal, and endosteal bone 
surfaces. There is some evidence that the miner-
alization processes might be somewhat different 
at these surfaces, as there are important differ-
ences in either cell activities or in mineral trans-
port distances at these bone sites [1]. Noteworthy, 
differences of mineral and matrix properties 
between periosteal and intracortical surfaces in 
humeri of macaques were found recently by 
Raman microspectroscopy [2].
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Key Points
•	 The regular mineralization of the bone 

matrix seems not only to require the 
proper composition and structure of the 
organic matrix together with the pres-
ence of sufficient calcium (Ca) and 
phosphate but also cellular activity for 
mineral transport, deposition, and 
removal of mineralization inhibitors.

•	 Mineralization of the bone matrix 
occurs in two phases of different time 
scales, which are a fast primary and a 
slower secondary phase reflecting the 
nucleation and growth of the mineral 
particles in length, width, and 
thickness.

•	 Due to the ongoing activity of the bone 
cells and the time course of mineraliza-
tion of newly formed bone matrix, bone 
is a spatially and temporarily heteroge-
neous material revealing a specific pat-
tern of mineralization which is also an 
important determinant of bone material 
stiffness/elasticity.

•	 Deviations in the mineralization pattern 
due to alterations in bone turnover and/
or mineralization kinetics measured in 
the bone biopsy sample from the patient 
provide important information for the 
clinician about underlying pathophysi-
ology, interpretation of densitometry 
data, treatment decision and monitoring 
as well as fracture risk assessment.
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In all these cases, mineralization is associated 
with a clear mineralization front extending to the 
entire surface of a forming bone packet or osteon 
up to a length of several hundred microns. This 
transition zone between nonmineralized matrix 
and the area where mineral accumulation takes 
place can be visualized by fluorescence labeling 
techniques.

However, mineralization processes as occur, 
for example, in de novo bone formation such as 
in membranous and endochondral ossification 
might be different. Nonetheless, as many of the 
observations of the first events in mineralization 
were made, in particular, in embryonic/fetal bone 
from animals, we also address these results from 
nonlamellar bone.

�Early Events of Mineralization: 
Mineral Nucleation

The prerequisite of bone matrix mineralization is 
a microenvironment of a highly supersaturated 
solution of calcium and phosphate ions (Pi) of a 
proper ratio enabling the spontaneous nucleation 
and following growth of bone mineral hydroxy-
apatite (HA) crystals. Thus, the systemic as well 
as the local Ca++ and phosphate ion (Pi) homeo-
stasis is of crucial importance of adequate bone 
matrix mineralization.

Furthermore, the proper composition and 
organization of the organic bone matrix is impor-
tant for its regular mineralization. Collagen type 
I is the main component of the organic matrix. It 
is a helical polypeptide which consists of two 
identical alpha 1 chains and one alpha 2 chain. 
This collagen matrix is formed by the osteoblasts 
and has to undergo a variety of intracellular and 
extracellular modifications before and after it is 
released from the osteoblast to form fibrils and 
fibers. In particular, investigation of the patho-
genesis in brittle bone disease osteogenesis 
imperfecta has contributed to the understanding 
of the importance of these intra- and extracellular 
processes, including the formation of the colla-
gen alpha-helices, their proper folding to triple-
helices, the formation of fibrils, and later 
mineralization [3–6]. After collagen is released 

from the osteoblasts, the collagen molecules 
form fibrils of a quasicrystalline structure in a 
self-assembling process with the collagen mole-
cules arranged in a staggered pattern such that 
there is a 35 nm gap between the termini of col-
linear molecules [7, 8]. This staggering results in 
a pattern of alternating gap and overlap zones in 
the collagen molecules causing the electron con-
trast differences in transmission electron micros-
copy (TEM) images, which are visible by light 
and dark bands in the images [9, 10].

Before mineralization starts, the newly formed 
matrix (osteoid) seems to require some modifica-
tions known as the osteoid maturation, which lasts 
about 15 days in a healthy individual [11]. It is 
assumed that during this time, the organic matrix 
is transformed to provide a scaffold or framework 
for mineral deposition by the formation of colla-
gen cross-links. Moreover, specific collagen resi-
dues were identified which might be suited to act 
as nucleation centers and might play an important 
role in onset and progression of mineralization 
[12]. However, collagen alone is not sufficient to 
drive organized mineralization; rather, specific 
non-collagenous proteins are needed which might 
act as nucleators. Candidates for these are pro-
teins from the SIBLING (small integrin-binding 
ligand, N-linked glycoprotein) family, including 
matrix extracellular phosphoglycoprotein, osteo-
pontin, dentin matrix protein 1, and bone sialo-
protein. These proteins were reported to attract 
the mineral and to control growth; however, the 
same molecules might also inhibit mineralization 
[13, 14]. The presence and activity of alkaline 
phosphatase, which transfers pyrophosphate (PP) 
to phosphate ions (Pi) was found to be crucial for 
mineralization [15]. Depending on the ratio of PP/
Pi, PP can act as initiator or inhibitor of mineral-
ization [16, 17]. In a patient with hypophosphata-
sia (HPP) and chronic kidney disease-mineral and 
bone disorder (CKD-MBD), for instance, osteo-
malacia, together with high levels of pyrophos-
phate, was observed at the bone surface [18]. This 
suggests that pyrophosphate is blocking the onset 
of mineralization [18].

It is still not fully understood how the large 
amounts of mineral (or its components) are trans-
ported to the mineralization front, where they 
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need to be quickly disposable. However, there is 
strong evidence that, apart from the properties of 
the organic matrix, the bone cells play a direct 
role in regulation of the mineralization process 
[19, 20]. It is known that the osteoblasts’ differ-
entiation to osteocytes is intimately linked to the 
mineralization process [20, 21]. Cryo-TEM stud-
ies revealed matrix vesicles containing calcium-
phosphate particles in blood vessels and in large 
amounts close to the forming bone surface in 
growing bone from an animal model [22]. This 
suggests that bone-derived exosomes (i.e., matrix 
vesicles) might not only transport a variety of dif-
ferent cell proteins to the extracellular matrix 
[23] but might also be a carrier for mineral. Such 
a transport mechanism would have the advantage 
to prevent any ectopic mineral precipitation in 
other tissues (e.g., blood vessels) and to carry the 
mineral to the place in bone where it is actually 
needed [22]. Matrix vesicles have been discov-
ered already in the 1960s in connection with the 
mineralization of cartilage [24]. It is assumed 
that these matrix vesicles are released from cells, 
which have taken up large amounts of calcium 
and phosphate ions in their mitochondria. 
Calcium- and phosphorus-containing mineral 
aggregates were found in mouse osteoblast mito-
chondria [25]. Others showed that the intracellu-
lar mineral granules consist of disordered calcium 
phosphate, which is metastable and might serve 
as a potential precursor of carbonated hydroxy-
apatite [26]. Thus, the formation of mineral crys-
tals seems to start already within the cells in the 
endosomes, which are subsequently released 
from the cell in exosomes [27]. However, it is 
still unknown how the vesicles are broken up and 
how their mineral content is transferred to the 
collagen. Furthermore, it has not been shown yet 
that this transport mechanism also plays a role in 
the mineralization of the lamellar structured oste-
oid in human bone.

The nature of the initial mineral deposits in 
the mineralization process is still under debate, 
while that of mature bone is relatively well known 
as a type of carbonated hydroxyapatite. 
Mineralization takes place in hydrated collagen, 
thus, the local degree of water content might play 
also an important role. Transient densification 

stages of mineral were observed, such as a “dense 
liquid” phase and prenucleation clusters that 
form within it [28]. Transient precursors includ-
ing amorphous calcium phosphate or octacal-
cium phosphate have been discussed for the 
initiation of biological apatite while others sug-
gest that bone mineral is initiated via a very 
small, poorly crystalline, highly substituted 
hydroxyapatite (HA) mineral [29]. Both, either 
the existence of transient precursors [30] or the 
increase in apatite crystal size and crystallinity 
[31], might explain the differences between 
newly formed and mature bone apatite including 
chemistry, size, and solubility [29].

There is an ongoing discussion about where 
the mineral depositions occur within the bone 
matrix. As the striations of the collagen overlap-
gap pattern can be also seen in mineralized tis-
sues [9, 32, 33], it is assumed that the mineral is 
associated with this pattern. Using results from 
the mineralizing tendon, it was supposed that 
mineralization starts within the gap zones and the 
majority of mineral is located there [34, 35]. It is 
believed that adjacent gaps of the collagen are in 
contact with each other forming extended grooves 
which are filled by mineral [36]. During ongoing 
mineralization, the mineral particles might also 
grow beyond this space, form a continuous cross-
fibrillar phase [37], and are also found associated 
with the fibrillar surface [38]. However, the dis-
tribution of mineral between intra- and extra-
fibrillar spaces is somewhat controversial. While 
intra-fibrillar mineral might represent the bigger 
part and extra-fibrillar mineral the smaller por-
tion of the overall mineral [39], an alternative 
model has also been discussed where most of the 
mineral is located in so-called “mineral lamellae” 
which are mineral-plates between adjacent col-
lagen fibrils [40]. In any case, mineral in the 
inter-fibrillar space was suggested to be mechani-
cally important as a component of “the glue” 
forming the connection between the mineralized 
collagen fibrils [41].

Generally, the mineral crystals (or particles) 
can be visualized individually by TEM [37, 42], 
atomic force microscopy (AFM) [43], or can be 
characterized as an average of several thousand 
to millions crystals by scattering techniques [44]. 
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Scanning small-angle X-ray scattering (SAXS) 
together with scanning wide-angle X-ray scatter-
ing (WAXS) allows us to measure the length, the 
thickness, as well as the orientation of mineral 
particles [44]. In human bone, these types of 
measurements revealed mineral particle dimen-
sions of approximately 15–200 nm with a thick-
ness of 2–7  nm [45–47]. Furthermore, these 
studies have shown that the mineral particles are 
oriented by the collagen fibrils with the long axis 
of the platelets parallel to the long axis of the col-
lagen fibril [48–50].

�The Increase in Mineral Content: 
The Fast Primary and the Slow 
Secondary Phases

Once mineralization has started in the osteoid, 
the mineralization front proceeds with a certain 
speed toward the osteoid surface (termed mineral 
apposition rate (MAR) in histomorphometry) 
while osteoblasts still deposit new bone matrix. 
MAR is about 0.6 mm per day in cancellous bone 
and a somewhat higher in cortical bone [51, 52]. 
In addition to this spatial propagation of mineral 
in the bone matrix, mineral accumulation takes 
place with time within each mineralizing volume 
element of bone. This increase in mineral content 
thereby occurs with changing mineralization 
rates resulting in a specific time course of miner-
alization (“mineralization kinetics”). Likely the 
latter is not a natural constant, but it might vary 
with different conditions such as health or dis-
ease, skeletal site, individual’s age etc. [53–56].

Until now, it is not possible to follow the accu-
mulation of mineral directly in a specific bone 
volume in humans as this would require repeated 
in vivo measurements in the identical bone vol-
ume element. However, attempts to measure the 
mineralization kinetics in small animals (mice) 
were done recently based on micro-computed 
tomography (μCT) imaging [57, 58]. As the min-
eralization front in the osteoid is moving with a 
certain speed, it is possible to obtain indirectly 
the time course of mineralization by using tech-
niques allowing to measure the mineral content 

of bone volume elements in a spatially resolved 
manner with increasing distances (i.e., with 
increasing tissue age) from the mineralization 
front in bone samples. A first rapid increase (pri-
mary mineralization) and a subsequent slowdown 
of increase (secondary mineralization) in mineral 
content up to a final plateau level have been 
observed by analyzing line profiles of mineral-
ization perpendicular to the mineralization front 
(Fig. 5.1) [59–64]. Such a biphasic behavior of 
mineralization rates might be explained by the 
following hypothetical scenarios: From a physi-
cal/chemical viewpoint, during the primary fast 
mineralization phase, the nucleation and the 
growth in predominantly two dimensions of the 
mineral particles may occur as well as single 
mineral clusters may be formed, which are subse-
quently fusing together. In the secondary slow 
mineralization phase, mineral particles are grow-
ing mainly in thickness and fusing more com-
pletely together. From the viewpoint of bone 
cells activity, the primary mineralization might 
occur essentially by the action of the osteoblasts 
which produce the matrix vesicles for supplying 
rapidly the mineral components in this initial 
phase of mineralization, while in the secondary 
phase, the mineral components might be trans-
ported by the osteocytic lacunar-canalicular net-
work [65].

In principle, the secondary mineralization 
process leads to a positive correlation between 
mineralized bone tissue age and mineral content. 
Thus, apart from the cement lines (which differ 
in their organic matrix from the other bone tissue 
and are generally highly mineralized [66, 67]), 
the highest mineral content is generally found in 
the oldest tissue which is interstitial bone as a 
remnant from bone remodeling. However, also 
in osteonal cortical bone, more highly mineral-
ized areas can be observed in the center of the 
osteon (adjacent to the Haversian canals) com-
pared to that in its periphery [32, 68, and own 
observation]. This observation might either be 
due to a passive deposition of calcium and phos-
phate ions near to the Haversian canal or it might 
also indicate the presence of a tertiary mineral-
ization process at least in cortical bone. This 
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Fig. 5.1  A bone- forming site of trabecular bone—  – 
scanning electron microscopic images acquired with a 
pixel resolution of 0.57  μm. (a) Backscatter electron 
image with special contrast setting showing all the miner-
alized matrix in black (not distinguishing between differ-
ent mineral content) while the differences in grey gray 
level reveal the soft non-mineralized tissue embedded in 
PMMA (bone marrow). Black empty arrows point to 
lamellar osteoid, whereas black solid arrows point to pre-
osteocytes (osteoid osteocytes). (b) The same site shown 
by the backscatter electron image with a calibrated con-
trast setting for quantitative backscatter electron imaging 
(qBEI) [63]. The grey gray levels are correlated with the 
local mineral content (the brighter the higher the mineral 
content). Bone packets of different gray levels can be seen 
within the trabecular feature. The newly forming ones at 
the surface have the lowest gray levels. White star indi-
cates old interstitial bone. Dotted lines are indicating the 
borderline of the osteoid as seen in (a). Dashed lines are 
indicating the position of the fluorescence bands of tetra-
cycline double labeling of the moving mineralization 
front (dynamic indices of bone formation) as obtained 
from (c). The white bars, perpendicular through the min-
eralization front, indicate the regions where mineraliza-
tion line profiles were analyzed as shown in (d). (c) 
Corresponding confocal laser scanning microscope image 
from the identical block surface as in (a) and (b): Parallel 
running fluorescent double labels are visualized. In this 
case, the distance between the labels corresponds to 12 
days and the position of the second label (latter time 
point) corresponds to 6.5 days before biopsy. (d) 
Mineralization line profiles pooled from the four regions 
indicated in (b) (bars): X-axis at zero position indicates 
the onset of mineralization (i.e., the mineralizing front). 

Red, regression line from data with circle symbols show-
ing the fast primary mineralization phase (steep slope). 
Blue, regression line from data with triangle symbols 
showing the slow secondary mineralization phase (flat 
slope); gray square symbols indicate the data not included 
in the regression analysis. The intersection point of both 
regression lines defines the calcium concentration at the 
transition from primary to secondary mineralization 
(CaTURN, 18.5 wt % Ca). The empty arrow indicates the 
position in the center of the two fluorescent labels and cor-
responds to a tissue age of 14  days. Note, the labelled 
areas are already in the secondary phase and their corre-
sponding Ca-content mirrors the level of early secondary 
mineralization named CaYOUNG, (at 20 wt % Ca,) in con-
trast the level of the oldest bone reflects the interstitial 
bone (star in (b)) named CaOLD (at 25 weight % Ca). 
Consequently, the secondary mineralization varies from 
20 to 25 wt % Ca corresponding to its tissue age. (e) Bone 
mineralization density distribution (BMDD) deduced 
from image (B). The five derived BMDD parameters are 
indicated: CaMEAN, the average degree of mineralization, 
obtained from the integrated area of the BMDD curve; 
CaPEAK, the position of the peak indicating the most fre-
quently (typical) calcium concentration within the sam-
ple; CaWIDTH, the width at half maximum of the BMDD, a 
parameter for the heterogeneity of mineralization, CaLOW, 
the percentage of areas with low (below 17.68 weight %) 
mineralization reflecting areas undergoing primary miner-
alization; CaHIGH, the percentage of areas with high 
(beyond 25.30 weight %) mineralization. These cut-off 
levels were established using the normative cancellous 
BMDD (see Fig. 5.2), and correspond to the 5th and 95th 
percentiles of calcium concentrations.
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additional mineral seems to be added later to the 
level reached by secondary mineralization. 
There is some evidence that this phenomenon is 
associated with the higher density of osteocytic 
canaliculi found in the central area of the osteons 
[69, 70].

It is widely accepted that the mineral accumu-
lation in the organic bone matrix is accompanied 
by the replacement of the free water present in 
the matrix [71]. For instance, this is confirmed by 
vibrational spectroscopy studies on plastic (poly-
methylmethacrylate, PMMA) embedded bone 
samples showing a clear decrease in the PMMA 
vibrational peak in tissue areas of increasing 
mineral content/tissue age [72, 73]. Since during 
the embedding process PMMA substitutes for the 
water in the sample, the PMMA peak is repre-
senting indirectly the water content and mirrors, 
therefore, also the nanoporosity of the bone 
material. According to experimental data on lat-
eral spacing of the collagen molecules (1.1 nm in 
dry, 1.55 nm in wet, and 1.25 nm in mineralized 
bone conditions) in combination with theoretical 
model considerations, the collagen fibril could 
theoretically take up to a maximum of 56 vol% 
(volume percent) mineral corresponding to 30 wt 
% (weight percent) Ca until all the free water is 
replaced [74, 71]. However, in human bone, a 
maximum mineral content of only around 25 to 
27 wt% Ca is found [75], which is consistent with 
the aforementioned 1.25  nm collagen spacing 
found for bone. Interestingly, this means that in 
reality, the mineralization seems to be limited by 
additional mechanisms and not only by the avail-
able space within the fibrils and moreover that 
water is still present in fully mineralized bone (in 
particular collagen-bound water [76, 77]). There 
is evidence that the number of nucleation centers 
for the mineral crystals and their growth to final 
size might be the determinant of the final level of 
mineral achieved in bone [78, 79]. An example 
where this was demonstrated is bone in osteogen-
esis imperfecta. In this disease, an increased 
degree of mineralization compared to healthy 
bone was observed [80–82]. First, this was linked 
to the higher amount of water present in the 
defective collagen which could be replaced by 
mineral during mineralization processes [81]. 

However, the degree of mineralization was 
increased independent of whether the patients 
had structurally aberrant collagen (qualitative 
mutation) due to the underlying collagen muta-
tion or only a reduced quantity of structurally 
normal collagen (quantitative mutation) [55]. 
This points rather toward a scenario, where the 
number of nucleation centers might be a crucial 
determinant of the final bone mineral content 
[80]. Indeed, the results from X-ray scattering 
experiments gave evidence for normal-sized 
crystals in osteogenesis imperfecta suggesting 
that the higher bone matrix mineralization is 
achieved by more densely packed mineral parti-
cles [79]. In this context, it should be mentioned 
that the bone material has not to be considered as 
a nanocomposite material of two components 
(collagen and mineral), but rather than as a three-
component system including water. Recent stud-
ies emphasized the tremendous role of the 
hydration status of the bone material on its 
mechanical performance [76, 77, 83, 84]. The 
more dehydrated the material is, the stiffer and 
less ductile are its properties. In the case of osteo-
genesis imperfecta, the increased mineral content 
as well as the reduced hydration of the collagen 
would explain the extreme brittleness of the 
material. It can be assumed that the level of about 
25 wt% Ca in normal healthy bone resulting also 
in a certain residual hydration of the matrix might 
provide optimal stiffness and ductility.

�Mineralization Distribution in Bone

The matrix mineralization pattern as seen in 
images such as Fig. 5.1b and the resulting min-
eralization distribution of bone can be consid-
ered as a kind of fingerprint of bone at the 
material level [85]. It reflects the history of bone 
cell activity, like conditions of low and high 
bone turnover rates as well as changes/abnor-
malities in the mineralization kinetics [86]. 
When visualizing bone material, for instance, in 
the backscatter electron mode of the scanning 
electron microscope, areas (so-called bone 
packets) with different gray levels can be seen 
(Fig. 5.1). These bone packets or bone structural 
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units (BSUs) were formed by osteoblasts during 
one bone formation cycle. Given the mineraliza-
tion processes as described above, the mineral 
content of bone is dependent on its tissue age. 
Recently formed BSUs have lower degree of 
mineralization than older ones. Consequently, 
the mineralization distribution depends strongly 
on the bone formation/turnover situation. If 
bone formation is high, many BSUs are formed; 
thus, a high percentage of the bone packets will 
have young tissue age and correspondingly low 
mineral content. This is the reason why growing 
bone from children has on average a lower 
degree of mineralization compared to bone from 
adult individuals [78, 87]. Additionally, in the 
case of high bone resorption, there is low chance 
that a bone packet will become old and will have 
accordingly high mineral content as the proba-
bility for resorption is high. Thus, in high bone 
turnover (high formation and resorption), the 
overall bone tissue age is low. Vice versa, when 
bone turnover is low, the tissue age will be high, 
and thus a larger percentage of higher mineral-
ized bone packets will be present [63, 88]. This 
pattern of mineralization can be described/
quantified by deduction of gray-level (Ca con-
tent) histograms from the microscopic images 
the so-called bone mineralization density distri-
bution (BMDD) (Fig. 5.1). For the measurement 
of the BMDD, spatially resolved techniques are 
necessary. Several methods with spatial resolu-
tion from few microns to submicron resolution, 
which make use of different physical mecha-
nisms, are available for this purpose (see in the 
following).

Before an overview of methods for the mea-
surement of the local mineral content and its 
variation in bone at the material level is given, the 
difference of the latter to the clinically (in vivo) 
measured bone mineral density (BMD) at the 
organ level by dual X-ray absorptiometry has to 
be mentioned. BMD is widely used as a surrogate 
measure of bone strength and is determined by 
the amount/volume of bone present and its mate-
rial density (the latter is dominated by the cal-
cium content). Hence, low BMD might be due to 
low bone volume or due to decreased bone min-
eral content or due to a combination of both. It is 

important to have this in mind when interpreting 
BMD data, in particular, for the evaluation of 
treatment effects [89].

�Measurement of the Mineralization 
Distribution

One important technique, which measures the 
mineral content of bone in a spatially resolved 
manner, is vibrational spectroscopy (infrared and 
Raman microspectroscopies). It makes use of the 
absorption or inelastic scattering of light (infra-
red light or laser light of different wavelength 
from infrared to ultraviolet, respectively) by the 
bone sample [90–93]. The chemical groups of the 
bone sample are not stationary but undergo twist-
ing, bending, rotation, and vibration causing 
absorption or inelastic scattering at specific 
wavelengths, which are characteristic for struc-
ture and environment of the molecules. Most 
commonly, the spectra are analyzed by measur-
ing a specific absorption peak height, peak areas, 
peak width, and calculation of the ratios of spe-
cific peak areas (e.g., mineral to matrix ratio). 
The strength of these spectroscopic techniques is 
that both basic components mineral and organic 
matrix can be analyzed, however, it usually can 
provide only relative amounts between these 
components.

Other methods utilize the attenuation of an 
X-ray beam by the sample. The oldest method is 
microradiography which measures the X-ray 
absorption in an about 100-μm-thick bone sec-
tions [94, 95] using either photographic films or 
in newer systems a digital detector [96]. The 
resulting gray levels on the film or the measured 
intensities on the detector reflect the X-ray inten-
sities transmitted through the bone slice and are 
evaluated by microdensitometric methods. The 
most modern technique is synchrotron radiation 
micro computed tomography (SR-μCT). It mea-
sures the X-ray absorption under different angles 
in similar concept as in computer tomography 
scanners in the clinic, however in contrast to the 
latter SR-μCT  analyzes the gray levels for infor-
mation on the bone mineralization [97, 98]. More 
modern techniques additionally combine the 
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information from X-ray tomography with phase 
retrieval (“holotomography”) which enhances the 
sensitivity of mineral content measurement [99].

A further frequently applied method is quanti-
tative backscatter electron imaging (qBEI or 
qBSE) which measures the intensity of the back-
scattered electron signal from the surface of a 
block bone sample [63, 100–102]. In bone, this 
signal is correlated to the local calcium content, 
which enables the calcium mapping of a sec-
tioned bone area.

In all methods, the result is a frequency his-
togram of pixels (or voxels) with different cal-
cium concentrations occurring in the sample, 
the so-called bone mineralization density distri-
bution (BMDD) derived from the acquired 
images (Fig. 5.1) [63]. Typically, the BMDD is 
normalized to the measured bone area (i.e., the 
area under the frequency histogram is 100%). 
The typical BMDD is similar to a bell-shaped 
curve, however, shows some asymmetry with 
higher portion of low than highly mineralized 
areas. In order to perform statistical analysis 
between different BMDDs, special parameters 
deduced from the BMDD were successfully 
introduced describing the mean, the most fre-
quently occurring and the variation in Ca con-
tent. Furthermore, the percentage of bone area 
with very low or high mineral contents is quan-
tified (Fig. 5.1).

The measurement of the BMDD requires bone 
samples. For scientific purposes, these can be dif-
ferent types of postmortem bone samples. 
However, commonly these are transiliac bone 
biopsy samples, which were primarily obtained 
for histopathologic examinations for the differen-
tial diagnosis or classification of bone diseases or 
as part of clinical trials to analyze treatment effects. 
The additional histologic/histomorphometric 
characterization of the biopsy is an enormous 
advantage as it enables to interpret the BMDD 
data in combination with histomorphometric data. 
In addition, these analyses can be combined (at 
defined anatomical locations) with other tech-
niques (such as Raman spectroscopy, scattering 
techniques, ultrasound microscopy, nanoindenta-
tion, etc.) to get detailed information on structure/
function relationship of the bone material.

�Bone Mineralization Distribution 
in Healthy Individuals

Trabecular bone was found to have a relatively 
low biological variation from early adulthood up 
to 100 years of age. The authors’ own reference 
BMDD (based on qBEI measurements) revealed 
a mean calcium concentration of 22.3  ±  0.45 
weight % Ca (mean ± standard deviation) mea-
sured in healthy individuals (Fig.  5.2) [103]. 
Comparison of the average degree of mineraliza-
tion in humans showed neither significant differ-
ences between skeletal sites (iliac crest, 
vertebrae, patella, femoral neck, or head), nor 
dependency on other biological factors such as 
sex and ethnicity. While small increases of aver-
age calcium concentration of cancellous bone 
with age were observed recently [104], other 
studies did not find such an increase with age 
[95, 103]. In any case, the merely small variation 
of the mineralization distribution of cancellous 
bone in healthy adult individuals (within an age 
range of about 25–100 years) made it possible to 
establish normative data which are the basis for 
comparison to bone mineralization in pathologi-

Fig. 5.2  BMDD in health and in examples of diseased 
bone: AdRef adult healthy reference of cancellous 
bone— – white dotted  line represents the mean of each 
histogram bin value and the gray band its standard devia-
tion from a cohort of 52 individuals [103], osteomalacia 
due to coeliac disease, pmOP postmenopausal osteoporo-
sis (high bone turnover) [128], Hypopara hypoparathy-
roidism post surgery [133], OI osteogenesis imperfecta in 
an adult patient due to mutation in the gene region respon-
sible for the C-terminal propeptide cleavage site of pro-
collagen [147].
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cal cases and after treatment (Fig.  5.2). 
Remarkably, despite these general small varia-
tions in healthy cancellous bone, the close rela-
tionship between bone turnover/formation and 
bone mineralization could still be detected. For 
example, in a cohort of healthy premenopausal 
women, the average degree of mineralization 
was negatively correlated with bone turnover 
(albeit within the normal range) and positively 
correlated with heterogeneity of bone matrix 
mineralization [105].

Normative BMDD data could also be estab-
lished in transiliac bone biopsy samples from 
children aged 1.5–20 years [87]. This is extremely 
helpful in detecting and describing rare diseases, 
which are associated with a bone phenotype 
[106–108, 79]. For the cancellous and cortical 
compartment, a mean and standard deviation of 
20.95 ± 0.57 and 20.31 ± 0.93 wt % Ca, respec-
tively, were found. This level of bone mineraliza-
tion is distinctly lower and its inter-individual 
variation is higher compared to adults, which can 
be explained by the higher bone formation rate 
and growths spurts in developing iliac crest of 
children.

All together the relatively constant mineral-
ization around 22 weight % Ca is likely indicat-
ing the existence of an ideal range in degree and 
heterogeneity of bone matrix mineralization in 
relation with the trabecular bone’s biological 
function and mechanical performance. Deviations 
in both directions, to lower and to higher miner-
alization densities, were reported to be associated 
with bone fragility [109]. Similar, heterogeneity 
of mineralization (and other properties such as 
lamellar orientation) has a consequence for the 
mechanical properties. Neither too little nor too 
much might be favorable as heterogeneity might 
hinder crack propagation while it might also 
facilitate crack initiation [110, 111].

Cortical compact osteonal bone, however, 
was found to show generally a higher average 
mineral content compared to cancellous bone. 
Additionally, differences in cortical bone miner-
alization itself also exist generally throughout 
the human skeleton [112]. However, it is remark-
able that to date, systematic studies on cortical 
bone mineralization are rather sparse, although 

cortical bone represents about 80% of the entire 
skeleton, and is thus considered most relevant 
for weight bearing and also bone fragility. Skull 
bone (e.g., mandibles) seems to be generally 
more highly mineralized as the femoral mid-
shaft or the cortex of the iliac crest [113]. Thus, 
intraindividual differences between cortical 
compartments and between cortical and trabec-
ular compartments of the skeleton seem to exist. 
As explained above, the mineralization distribu-
tion of bone is closely related to both the bone 
turnover rate and the mineralization kinetics. It 
is intuitively clear that bone volumes within the 
thick cortex might have less probability to be 
remodeled compared to those in the relatively 
thinner trabecular struts which are closer to the 
surface where bone resorption takes place. Thus, 
cortical bone is expected to have higher tissue 
age, because of reduced bone turnover rates, 
which is reflected by in average higher degree of 
mineralization. Indeed, this was found for bone 
at the femoral neck and midshaft compared to 
cancellous bone [112, 114, 75]. On the other 
hand, it was observed that bone mineralization 
is clearly related to loading demands in the fem-
oral neck, which might be accomplished by an 
adaption of the mineralization kinetics. Bone 
mineral content was found higher at the inferior 
compared to the superior region, which is pre-
dominantly loaded in compression, while the 
superior region is loaded in tension [114, 115]. 
Furthermore, the differences between cortical 
mineralization at femoral midshaft bone and 
cancellous bone might not be fully explained by 
the differences in bone turnover between these 
sites [56, 116]. This suggests that additionally to 
the variation in bone turnover, differences in 
mineralization kinetics among different skeletal 
sites and between cortical and trabecular bone 
might also exist due to the loading demands. 
Noteworthy, about 25% higher mineral/matrix 
ratios in human ossicles compared to femoral 
bone were reported albeit, it has to be mentioned 
that ossicles are not only comprised of lamellar 
bone but also woven bone and mineralized car-
tilage [117]. This high mineral content, how-
ever, can be considered as an adaptation to their 
function of sound transmission [117].
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It is remarkable that the two cortical plates of 
transiliac bone biopsy samples were found to be 
very similar in mineralization with that of the 
corresponding cancellous bone compartment 
[118]. Moreover, the degree of mineralization of 
cortical bone was strongly correlated with that of 
trabecular bone. Individuals with relatively 
higher cancellous bone mineralization also have 
higher cortical bone mineralization and vice 
versa, which suggests a tight coupling of bone 
turnover in these two compartments of the iliac 
crest. For this reason, one should be cautious to 
extrapolate the BMDD findings in the iliac crest 
to other cortical sites. In this context, it would be 
helpful to establish normative BMDD reference 
values for different fracture relevant skeletal sites 
in relationship to iliac cortical bone for fracture 
risk prediction.

�Mineralization Distribution 
in Diseased Bone

The aforementioned link between bone turnover 
and the mineralization kinetics with the bone 
mineralization distribution suggest that altera-
tions in the former processes have an impact on 
the latter mineralization distribution. In specific 
diseases, the bone mineralization distribution 
clearly follows the deviation in bone turnover 
from normal, that is, high turnover is associated 
with low tissue age and low mineralization densi-
ties and vice versa. In other cases, however, an 
altered time course and/or final level of mineral 
accumulation within each bone packet occurs.

Postmenopausal osteoporosis (pmOP) with 
high fracture risk (“fracture disease”) is one of 
the chronic diseases, which has been affecting a 
high portion of the elderly population with 
increasing incidence during the last decades 
[119]. To facilitate noninvasive diagnosis and 
assessment of fracture risk, osteoporosis is com-
monly diagnosed by low BMD according to the 
WHO classification. However, in a large portion 
of the patients, bone fragility is not attributable to 
reduced BMD.  Thus, changes in bone material 
quality, specifically bone matrix mineralization, 
might affect the mechanical competence of bone.

There seems to exist some variety in bone 
turnover abnormalities in pmOP [120–122]; 
however, usually women with pmOP are diag-
nosed with high turnover [123, 124]. High turn-
over, in particular, during perimenopause and the 
first years after decline of estrogens, together 
with the imbalance of bone formation and resorp-
tion is leading to gradual bone loss, and this alters 
the bone mineralization distribution in pmOP by 
decreasing the average degree and increasing the 
heterogeneity of bone matrix mineralization 
compared to healthy individuals (Fig.  5.2) 
[125–131].

In addition to these findings in pmOP, a close 
relationship of the bone mineralization distribu-
tion with bone turnover was observed also in 
other pathologic conditions. For instance, patients 
with hyperparathyroidism reveal high bone turn-
over and correspondingly low bone mineraliza-
tion densities [95, 132]. Vice versa, patients with 
hypoparathyroidism have suppressed bone turn-
over and increased matrix mineralization 
(Fig. 5.2) [133]. Low bone turnover and increased 
bone matrix mineralization were also reported 
for children with inflammatory bowel disease 
[134], for children after organ transplantation 
[135], and for young patients with chronic kidney 
disease and growth retardation [136], which were 
all associated with reduced bone formation and 
turnover. Deviations from normal bone mineral 
content and distribution were also described in 
association with increased bone fragility in sev-
eral investigations [114, 115, 137–139].

In contrast to the aforementioned examples, 
where the bone mineralization distribution fol-
lows the deviation in bone turnover from normal, 
there exist also pathological conditions where the 
change of bone turnover is not predictive for the 
mineralization distribution. Male patients with 
osteoporosis and premenopausal women with 
idiopathic osteoporosis, for instance, were 
observed to have low bone turnover but also a low 
degree of bone mineralization [105, 140–142]. 
These unexpected findings might indicate that 
either the mineralization processes are slower or 
the final level of mineralization is reduced in these 
patients. Such modified material properties per se 
might be caused by altered osteoblast function in 
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idiopathic forms of osteoporosis associated with 
differences in the organic matrix and the mineral-
ization kinetics thereof [141, 105]. The latter was 
also suggested for patients carrying COLIA1 Sp1 
polymorphisms with increased bone fragility and 
reduced and more heterogeneous matrix mineral-
ization [143].

Osteogenesis imperfecta is another example 
where the mineralization distribution does not fol-
low the aforementioned correlation with bone 
turnover [80]. Many forms of this genetic disease 
have been described so far, including those with 
mutations in the collagen genes (“classical 
forms”) and those more recently discovered hav-
ing mutations in genes encoding for proteins 
which are associated with extracellular modifica-
tion, cleavage of terminal endings, etc. While 
almost all of these forms are reported with high 
turnover [144], they have also in common an ele-
vated mineral content of bone which contributes 
to bone brittleness [80, 145]. However, the 
hypermineralized bone matrix might occur in par-
allel with hyperosteoidosis in new forms of osteo-
genesis imperfecta [146–148]. This indicates that 
the onset of mineralization in the osteoid is 
delayed, but once mineralization has begun, it 
goes up to higher levels than normal (Fig. 5.2).

Another group of patients are those whose 
calcium and/or phosphate homeostasis is highly 
disturbed due to calcium ions uptake deficiency, 
kidney disease (with impaired renal phosphate 
excretion), and/or phosphate wasting. Both Ca 
and phosphate deficiency lead to mineralization 
defects with highly mineralized bone matrix 
coexisting with only weakly mineralized and 
nonmineralized bone matrix (Fig.  5.2). Such 
mineralization defects might occur in cases of 
renal osteodystrophy in patients with chronic 
kidney disease (CKD-MBD) [136], as well as 
in fibroblast growth factor 23 (FGF23)-induced 
hypophosphatemia as, for example, in patients 
with X-linked hypophosphatemic rickets 
(XLH) [149] or tumor-induced osteomalacia 
[54]. In a child with XLH, the transiliac biopsy 
sample showed areas of unmineralized bone 
within the mineralized bone matrix giving bone 
a mottled appearance [149]. Also, the mineral-
ized bone matrix showed differences in the 

BMDD, revealing an increased frequency of 
bone areas with low calcium concentrations 
(i.e., low material density) in the patient’s 
biopsy sample. Furthermore, bone mineraliza-
tion abnormalities due to disturbance of cal-
cium and phosphate metabolism might occur in 
celiac disease [63]. Just recently a patient with 
Crohn’s disease and severe hypophosphatemic 
osteomalacia linked to iron substitution has 
been described (Fig. 5.2) [150].

Hypophosphatasia (HPP) which is caused by 
mutations in genes encoding for the tissue non-
specific alkaline phosphatase enzyme (TNSALP) 
is also an example where bone mineralization is 
disturbed [15, 151]. Clinically HPP is essentially 
identified by low serum alkaline phosphatase lev-
els and increased levels of alkaline phosphatase 
substrates (pyrophosphate and pyridoxal-5′-
phosphate). The deficiency of TNSALP activity 
leads to extracellular accumulation of its natural 
substrates including pyrophosphate which is a 
potent inhibitor of mineralization. The common 
radiographic finding in children with HPP is 
poorly mineralized bone [151, 152]. However, a 
huge range of severity in the phenotype has been 
described from lethal forms without mineraliza-
tion of the skeleton to adults who are virtually 
asymptomatic [153, 154]. In general, the pheno-
typic severity present is related to the severity of 
the inherited TNSALP mutation. Bone biopsy 
samples from adult patients revealed (depending 
on the severity of HPP) the presence of osteoma-
lacia and changes in the bone mineralization dis-
tribution [155].

Interestingly, there is strong evidence that 
bone matrix which has been nonmineralized for 
longer time in the aforementioned cases might be 
able to mineralize, if treatment is able to establish 
the proper Ca and Phosphate levels in the patient 
[18, 150]. The most impressive example are the 
children with HPP, who develop normally miner-
alized bone after alkaline phosphatase enzyme 
replacement therapy (asfotase alfa) which enables 
the mineralization of already formed bone matrix 
[152, 156]. So far, information on the mineraliza-
tion changes at material level due to enzyme 
replacement treatment was obtained in mouse 
models, where increases in tissue mineral density 
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were reported with treatment [157, 158]. Apart 
from enzyme replacement treatment, an interest-
ing observation was made in sequential biopsy 
samples from one adult patient with HPP 
(Fig. 5.3) [18]. In the first biopsy obtained from 
this patient, large unmineralized or poorly miner-
alized areas which showed diffuse fluorescence 
labeling were visible. In the later biopsy samples, 
this diffuse labeling was embedded in mineral-
ized bone tissue, further indicating that osteoid, 
which does not mineralize for longer periods, 

might also be mineralized as soon as an appropri-
ate environment exists and inhibitors of mineral-
ization are removed from the matrix [18]. In this 
context, the case of iron treatment-induced osteo-
malacia in a patient with Crohn’s disease should 
be mentioned as well [150]. The intravenous iron 
therapy induced a hypophosphatemia, which led 
to a severe osteomalacia as detected in the trans-
iliac bone sample and contributed to a progres-
sive decline of BMD (DXA). Cessation of iron 
therapy and the supplementation with phosphate 

a

b

Fig. 5.3  Mineralization of aged osteoid in sequential 
biopsy samples from a patient with hypophosphatasia and 
renal failure [18]: (a) (left): backscatter electron (BE) 
image of a trabecular feature of the first transiliac biopsy 
sample with history of alendronate treatment and tetracy-
cline labeling prior to biopsy: dashed white line indicates 
the border of the osteoid seam, which is visualized by 
confocal laser scanning microscopy (CLSM) of identical 

sample surface in a (right) as bright diffuse fluorescent 
region. (b) pair of BE (left) and CLSM (right) image of 
the second biopsy after stopping alendronate treatment 
(second biopsy without tetracycline labeling before). 
Diffuse labelled regions are now mineralized and embed-
ded in mineralized bone tissue formed later as indicated 
by the dashed lines in BE.
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was associated with a prompt positive response 
in BMD, which was likely due to filling of the 
osteoid matrix with mineral.

The examples mentioned above showed that 
information about the status of bone turnover in 
the individual is important for the correct inter-
pretation of bone mineralization distribution. 
When increases in bone turnover rates are not 
associated with low bone mineral content and 
vice versa, alterations in the mineralization kinet-
ics have to be taken into consideration.

�Bone Mineralization Distribution 
after Treatment of Osteoporosis

Treatment of osteoporosis aims to decelerate bone 
loss and/or to increase bone volume. The different 
mechanisms of action of anabolic or antiresorp-
tive agents (see Chaps. 12 and 14) are reflected in 
the typical changes in the distribution of bone 
mineralization accompanying the different types 
of treatment (Fig. 5.4) [159]. Noteworthy, during 
therapy, bone turnover/formation undergoes rapid 

Ca+VitD 3yrs

RIS 3yrs

baseline

baseline

fr
eq

ue
nc

y 
[%

bo
ne

 a
re

a]
fr

eq
ue

nc
y 

[%
bo

ne
 a

re
a]

weight % Ca
w

ei
gh

t %
 C

a
∆ 

w
ei

gh
t %

 C
a

10
0

20

0

1

2

3

4

5

21

22

23

24

w
ei

gh
t %

 C
a

∆ 
w

ei
gh

t %
 C

a

20

0

1

2

3

4

5

21

22

23

24

w
ei

gh
t %

 C
a

∆ 
w

ei
gh

t %
 C

a

20

0

1

2

3

4

5

21

22

23

24

1

2

3

4

5

6

15 20 25

CaPEAK

CaPEAK

CaPEAK

CaWIDTH

CaWIDTH

CaWIDTH

30

weight % Ca
10

0

1

2

3

4

5

6

15 20 25 30

AdRef±SD

AdRef±SD

baselinePTH 18mo

fr
eq

ue
nc

y 
[%

 b
on

e 
ar

ea
]

weight % Ca
10

0

1

2

3

4

5

6

15 20 25 30

AdRef±SD

Fig. 5.4  The typical 
changes in BMDD of 
pmOP after treatment 
with calcium and 
vitamin D, RIS 
(risedronate) or 
PTH. Left column: 
examples of individual 
BMDD curves of paired 
biopsy samples before 
and after treatment. 
Right column: statistical 
analysis of BMDD-
parameters CaPEAK and 
CaWIDTH of experimental 
groups before and after 
treatment [64, 128]. 
Bars indicate group 
mean values; error bars 
show standard 
deviations. Gray 
horizontal band 
indicates healthy adult 
reference data of 
cancellous bone (mean ± 
SD) [103]. The left bars 
show baseline values, 
and the right bars values 
after treatment.
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changes as shown by the significant changes in 
the biochemical bone markers. For instance, a 
sudden drop of the C-telopeptide of type I colla-
gen (CTX) and the intact procollagen I 
N-propeptide (P1NP) within as early as 1 week to 
few weeks depending on the type of bisphospho-
nate (BPs) was reported [160]. This rapid change 
pushes bone turnover and also the mineralization 
distribution out of an equilibrium stage making an 
observation of transient effects on the mineraliza-
tion distribution possible [161] as will be 
described for antiresorptive treatment.

�Treatment with Calcium 
and Vitamin D

Commonly, patients participating in a clinical 
trial receive calcium and vitamin D supplementa-
tion already before starting the active antiosteo-
porosis (or the placebo) treatment. However, the 
study design of the Vertebral Efficacy with 
Risedronate Therapy, North American trial 
(VERT-NA) and the Multiple Outcomes of 
Raloxifene Evaluation trial (MORE) provided an 
insight into the calcium and vitamin D effects in 
paired biopsy samples. Comparison of the bone 
matrix mineralization outcomes before and after 
treatment with calcium and vitamin D (and pla-
cebo) showed a shift to higher mineralization 
densities due to treatment [127, 128, 162]. The 
comparison of bone mineralization from the 
patients from the VERT-NA trial reference data 
revealed that these patients had undermineralized 
bone matrix at baseline [128]. This suggests that 
calcium and vitamin D deficiency alone is likely 
a cause of undermineralization, which can be off-
set by calcium and vitamin D supplementation 
(Fig. 5.4).

�Hormone Replacement Therapy

Treatment with estrogen or with selective estro-
gen receptor modulators (SERMs) provide skele-
tal benefits in postmenopausal osteoporosis where 
estrogen deficiency is an important contributor to 
the pathogenesis of osteoporosis [163]. In studies 

where bone matrix mineralization was analyzed 
in postmenopausal osteoporotic patients after 
treatment with estrogen or SERMs, an increase in 
degree of mineralization or mineral:matrix ratio 
was reported [162, 164, 165].

�Antiresorptive Treatment

Bisphosphonates (BPs) have been used for treat-
ment of osteoporosis for several decades [166]. 
BPs inhibit bone resorption as they get adsorbed 
to mineral surfaces in bone, where they interfere 
with the action of the bone-resorbing osteoclasts. 
Their antiresorptive action is rather fast as already 
mentioned while the changes in mineralization 
are much slower (given the time of several months 
required for completion of one remodeling cycle 
[167]). Due to the sudden drop in bone resorption 
and formation in relation to the time which is 
needed for achieving a new bone turnover equilib-
rium, the measured effects of antiresorptive ther-
apy on the bone mineralization distribution 
depend on the duration of therapy, short term (up 
to about 3 years) versus long term (5 years and 
longer). For short-term BP therapy (including 
alendronate, risedronate, ibandronate and zole-
dronic acid), a significant decrease in the hetero-
geneity of mineralization has been reported [130]. 
Moreover, the percentage of low mineralized 
areas is decreased and the average degree of min-
eralization is increased [130]. Noteworthy, these 
changes occur in osteoporotic bone which has 
generally lower degree and increased heterogene-
ity of mineralization than healthy bone before 
therapy. Moreover, part of these BP effects, in 
particular the reduction in mineralization hetero-
geneity, seem to be transient. After longer therapy 
duration, the heterogeneity together with the 
degree of bone mineralization is normalized 
(Fig. 5.4) [128, 168]. In the context of long-term 
antiresorptive treatment, it has to be noted that 
while no adverse effect on the bone mineraliza-
tion distribution per se could be observed, the 
increasing occurrence of atypical femoral frac-
tures have been reported [169]. These are there-
fore unlikely related to the changes in 
mineralization during therapy but more likely 
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related to the suppression of the internal fracture-
repair mechanism by the decreased osteoclast 
activity (see also Chap. 21).

The BP effect on bone turnover and its conse-
quences on bone matrix mineralization are well 
understood [63, 88, 98, 126, 128–130, 159, 161, 
170–173]; however, it is unclear whether the 
change in turnover is also accompanied (at least to 
some extent) by a change in mineralization kinet-
ics. Studies on bone from treated animals sug-
gested no significant effect of alendronate or 
risedronate on the temporal course of mineral 
accumulation in bone [174]. However, on the other 
hand, it is assumed that the BP which is absorbed 
to the mineral might alter the chemistry and elec-
trostatic properties of the bone surface which 
might be detected by osteoblasts [175]. Data from 
vibrational microspectroscopy suggested devia-
tions in material properties from normal after dif-
ferent types of BP [176] as well as differences in 
the matrix formed under subsequent anabolic ther-
apy in BP pretreated patients [177, 178].

While the effects of BP on human bone miner-
alization are well known as shown by the results 
from the numerous biopsy studies, much less is 
known about these effects in treatment with deno-
sumab, a human monoclonal antibody to RANKL 
(see Chap. 15). Long-term safety and efficacy of 
this osteoporosis treatment have been published 
recently [179]; histologic evaluation of transiliac 
biopsy samples showed normal bone microarchi-
tecture without evidence of adverse effects on 
mineralization or the formation of lamellar bone 
[180]. First data on bone mineralization in trans-
iliac biopsy samples from patients were published 
recently [131]. In this study, bone biopsies from 
participants of the FREEDOM and FREEDOM 
extension study were analyzed. Outcomes showed 
an increase in the average degree and a decrease 
in the heterogeneity of mineralization in both can-
cellous and cortical compartments in denosumab 
versus placebo-treated patients.

There has been a debate whether therapy with 
strontium ranelate (SrR) exerts a combination of 
anabolic and concurrent antiresorptive action in 
bone [181]. Chavassieux and colleagues reported 
no evidence for anabolic but antiresorptive 
action only [182], which is in agreement with the 

bone matrix mineralization outcomes based on 
qBEI in transiliac biopsy samples [183]. Similar 
to above-mentioned fluoride, the element stron-
tium gets incorporated into the bone mineral 
crystal; in the young bone packets formed during 
SrR therapy, it replaces approximately 5 at% of 
calcium [183, 184]. It was shown also that the 
strontium content of the bone matrix increases 
with increasing bone volume formed under ther-
apy [185]. In contrast to fluoride, strontium 
seems not to change the mechanical properties 
of the bone material [184]. As strontium is an 
element with high atomic number, its incorpora-
tion into mineral, however, influences the mea-
surement of BMD (mimics higher bone mass in 
DXA), bone volume by computed tomography, 
as well as bone mineralization and makes the 
evaluation of the genuine effects of SrR chal-
lenging [183].

�Anabolic Treatment

Anabolic treatment with sodium fluoride was 
considered for treatment of postmenopausal 
osteoporosis some decades ago. However, the 
treatment was not widely accepted as it was rec-
ognized that despite the large increases in bone 
volume, bone fragility was not decreased in the 
treated patients [186]. It was recognized that 
bone formed under treatment was altered and 
mechanically inferior to normal bone as the ele-
ment fluoride gets incorporated into the mineral 
resulting in a disturbance of the normal collagen–
mineral relationship [187]. Abnormally large 
mineral particles and abnormal size distributions 
of the mineral particles have been observed [188, 
189] together with mineralization defects [190] 
and abnormally high degree of bone mineraliza-
tion [63]. Due to these adverse effects, systemic 
sodium fluoride has not gained wide use, although 
attempts have been undertaken to decrease the 
adverse effects by sustained-release sodium fluo-
ride given on an intermittent basis [191].

The current options of anabolic therapy are 
treatment with parathyroid hormone (PTH 1–84), 
teriparatide (PTH 1–34), or abaloparatide. 
Significant changes in the bone mineralization 
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distribution with PTH or teriparatide are com-
monly observed. In line with an increase in bone 
formation, decreases in the average degree and 
increases in the heterogeneity of bone mineral-
ization were reported (Fig.  5.4) [64, 192]. The 
decrease in average mineralization density can be 
explained by the increase in the percentage of 
low mineralized bone areas, which is a typical 
change in the BMDD in a situation of high bone 
formation/turnover. The experimental findings 
were confirmed by computed modeling, which 
revealed the occurrence of a “shoulder” in the 
BMDD at lower calcium concentrations after 
1  year anabolic treatment [161]. Interestingly, 
only 1  year with PTH 1–84 was sufficient to 
change the mineralization distribution signifi-
cantly in patients with hypoparathyroidism, a 
condition with suppressed bone turnover at base-
line [133]. Similarly, an increase in the portion of 
low mineralized bone was observed after sequen-
tial treatment with bisphosphonates followed by 
teriparatide in postmenopausal osteoporotic 
patients [193]. BMDD data from combined treat-
ment with anabolic and concurrent antiresorptive 
treatment are lacking so far.

More recently, treatment with parathyroid 
hormone-related peptide (PTHrP, abalopara-
tide) has come into focus (see also Chaps. 14 and 
15) [194]. In a recent study, histologic analysis 
revealed no evidence of adverse effects on miner-
alization in bone biopsy samples from treated 
patients [195]; however, no data on its effect on 
the mineralization distribution exist so far. 
Similar for alternative novel anabolic agents such 
as sclerostin antibody therapy (see Chap. 16), 
only bone mineralization data from animal mod-
els are available yet. For treated rats [196], as 
well as for a treated mouse model of osteogenesis 
imperfecta, no significant effects on mineraliza-
tion were reported [197].

�Summary 

The proper mineralization of the bone matrix is 
important for its mechanical performance. In 
bone from healthy individuals, relatively small 
variation in the distribution of cancellous bone 

mineralization could be observed which enabled 
to establish reference mineralization data that 
can be used for differential diagnosis. Indeed, 
deviations from normal have been observed in 
several bone diseases. Increased bone turnover 
associated with lowered average tissue age and 
lowered mineralization is found in postmeno-
pausal osteoporosis. Antiosteoporosis therapies 
exert antiresorptive or anabolic mechanisms in 
the skeleton. Both treatment options have typical 
effects on the bone mineralization distribution. 
While antiresorptive therapy decreases bone 
resorption and formation resulting in higher tis-
sue age, and thus a higher degree of mineraliza-
tion, anabolic therapy increases the bone 
formation resulting in relatively young bone tis-
sue having low mineralization densities. These 
changes might play a role in enhancing mechani-
cal properties after treatment and have to be con-
sidered when evaluating the BMD changes in 
diseases and/or after treatment. In cases where 
predominately the Ca and Phosphate metabolism 
is disturbed, extreme deviations from normal 
BMDD can be observed showing shifts to lower 
calcium concentrations together with a strong 
increase in heterogeneity of mineralization.
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