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Basic Aspects of Osteoblast 
Function

Christina Vrahnas and Natalie A. Sims

�Introduction to the Osteoblast 
Lineage: Multiple Stage-Specific 
Functions

Osteoblasts are specialized mesenchymal-
derived cells that produce and deposit the collag-
enous bone matrix and regulate the mineralization 
of that matrix by their production of additional 
non-collagenous proteins. The osteoblast lineage 
includes not only these bone-forming osteoblasts 
but also their pluripotent and lineage-committed 
precursors, bone lining cells, and matrix-
embedded osteocytes (Fig.  1.1). Each of these 
stages of the osteoblast lineage has distinct func-
tions, morphologies, particular locations relative 
to the bone surface, and increasingly well-defined 
markers of differentiation (noted on Fig. 1.1 and 
discussed below).

The different stages of osteoblast differentia-
tion allow these cells to perform three major 
functions that determine skeletal structure (noted 
on Fig. 1.1 and discussed below): (1) production 
of bone matrix (osteoid), (2) regulation of osteoid 
mineralization by production of non-collagenous 
proteins, and (3) support of osteoclast formation. 
In addition, osteoblast lineage cells produce para-
crine factors, such as IL-6 family cytokines, para-
thyroid hormone-related protein (PTHrP), and 
contact-dependent molecules such as EphrinB2, 
that regulate their own differentiation and activity 
[1–3]. Osteoblasts have also been suggested to 
act as “reversal” cells, allowing communication 
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between osteoclasts and osteoblasts, during the 
bone remodeling process [4]. The functions of 
the osteoblast lineage are not limited to the con-
trol of bone structure. They also regulate the 
hematopoietic stem cell niche [5, 6], contribute to 
hematopoietic malignancies [7], and to B cell 
homeostasis [8]. The osteoblast lineage also has 
endocrine functions in phosphate homeostasis [9] 
and glucose metabolism [10]. This chapter will 
focus on describing the stages of osteoblast dif-
ferentiation and the functions of the lineage that 
regulate bone structure and bone matrix 
composition.

�Osteoblast Differentiation 
and the Stages of the Osteoblast 
Lineage

�Osteoblast Precursors

The osteoblast lineage arises from pluripotent 
mesenchymal progenitors. In vitro, these cells 
can be induced to differentiate into other mesen-
chymal origin cells such as chondrocytes, adipo-
cytes, myoblasts, or fibroblasts [11] (Fig. 1.1). In 
vivo, bone marrow-derived mesenchymal pro-
genitors have a more restricted future, being 
capable of differentiating into chondrocytes, 

osteoblasts, and adipocytes [12]. The location of 
these cells in the marrow has been refined by cell 
lineage-tracing studies (using genetically altered 
mice with fluorescent tags that are retained 
throughout differentiation) to be in close associa-
tion with vascular structures [13]. This provided 
support for much earlier studies proposing that 
the pericyte, a cell found wrapped around endo-
thelial cells, can behave as an osteoblast progeni-
tor [14, 15]. Pericytes in different tissues appear 
to behave in an organ-specific manner, dictated 
by their anatomy and position; only bone marrow-
residing pericytes appear capable of becoming 
osteoblasts [12]. This illustrates the importance 
of the microenvironment in determining 
differentiation. For more details, the reader is 
directed to a recent focused review on the identity 
of osteoblast progenitor populations [16].

The source of osteoblast progenitors is not 
restricted to the bone marrow pericytes. During 
embryonic bone development, perichondrial cells 
were identified as precursors giving rise to osteo-
blasts on trabecular bone [17]. This has been con-
firmed by lineage-tracing studies, which also 
identified these precursors as entering the mar-
row space with invading blood vessels and 
thereby contributing to both bone development 
and fracture healing [18]. Similar observations 
have been made that differentiated hypertrophic 

Fig. 1.1  Stages of the osteoblast lineage. The osteoblast 
lineage arises from pluripotent mesenchymal progenitors, 
capable of differentiating into adipocytes or into chondro-
cytes or osteoblasts. Commitment to the osteoblast lin-
eage is determined by expression of transcription factors 
including Runx2 and osterix. Once osteoblasts become 
mature, they deposit collagen type I-rich matrix (osteoid) 
as a template for bioapatite mineral deposition and express 
alkaline phosphatase (ALP), osteopontin, and osteocalcin, 
proteins that regulate bone mineralization. Osteoblasts 

then undergo one of three fates: (1) apoptosis, (2) remain 
on the bone surface as bone lining cells, or (3) become 
embedded within their collagenous bone matrix as 
“osteoid-osteocytes,” which then become terminally dif-
ferentiated osteocytes. Osteocytes also regulate the miner-
alization of the bone matrix through their production of 
DMP-1, MEPE, and sclerostin. Bone lining cells appear 
to be capable of reactivation to become active osteoblasts 
or osteoblast precursors 
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chondrocytes at the growth plate can “transdif-
ferentiate” into osteoblasts during development 
and fracture healing [19], again confirming much 
earlier in vitro work [20]. Lineage tracing studies 
have also suggested that bone lining cells [21] 
and recently embedded osteocytes [22] can act as 
osteoblast precursors, although the latter remain 
highly controversial. It is likely that lining cells 
are already committed to the lineage, rather than 
having the potential to differentiate in chondro-
cytes or adipocytes. This suggests that there are 
multiple sources of osteoblast progenitors 
in vivo, with differentiation that is both context- 
and location-specific.

Commitment of precursors to the osteoblast 
lineage is controlled by the expression of a range 
of transcription factors. Absolutely essential for 
the commitment to the preosteoblast stage are 
runt-related transcription factor 2 (Runx2) and 
osterix [23, 24]. Other transcription factors 
including activating transcription factor 4 (ATF4) 
[25], activator protein 1 (AP-1) [26], and CCAAT/
enhancer-binding proteins β and δ (C/EBPβ and 
C/EBPδ) [27] promote the transition to matrix-
producing osteoblasts.

Since osteoblasts and adipocytes are derived 
from common precursors, many of these tran-
scription factors also inhibit mesenchymal pro-
genitor commitment to adipogenesis [26, 28]. 
Alternatively, transcription factors such as per-
oxisome proliferation-activated receptor γ 
(PPARγ) [29] and CCAAT/enhancer-binding 
protein α (C/EBPα) [30] promote differentiation 
into adipocytes. This inverse relationship between 
osteoblast and adipocyte differentiation was first 
observed in cell culture [31]. This has also been 
described in  vivo in genetically altered mouse 
models, either where high osteoblast numbers are 
associated with low marrow adipocyte volume 
[26] or where low osteoblast numbers are associ-
ated with high marrow adipocyte volume [32–
34]. Similar reciprocal regulation has been 
made in animal models of ovariectomy-induced 
bone loss [35]. There are exceptions to this, such 
as the C3H/HeJ mouse strain which has high 
bone mass [36] and high marrow adiposity [37]. 
Reciprocal regulation of osteoblasts and adipo-
cytes has also been observed clinically: increased 

marrow adiposity is associated with age-related 
osteoporosis [38]. Understanding the relation-
ships between osteoblast and adipocyte commit-
ment remains an area of active research, since 
it may allow the development of additional treat-
ments to increase bone mass.

The osteoblast precursor can also give rise to 
chondrocytes; this is important in the context of 
developmental and pediatric bone growth, and 
fracture healing, and may be of relevance for 
methods to repair joint cartilage. The osteoblast 
commitment transcription factors Runx2 and 
osterix not only promote osteoblast commitment 
but also stimulate the final stage of chondrocyte 
differentiation prior to vascular invasion in endo-
chondral ossification [39–41]. Reciprocal regula-
tion of chondrogenesis versus osteoblastogenesis 
from the same common precursor has also been 
suggested [42], as described above for adipo-
cytes, but mechanisms controlling this have not 
yet been identified.

�Matrix-Forming Osteoblasts

Mature matrix-forming osteoblasts are character-
ized by a cuboidal morphology and are located in 
groups with extensive cell-cell contact [43–45]. 
Osteoblasts are also located in close apposition to 
the bone surface; this indicates that as they dif-
ferentiate to this stage, these cells must migrate, 
probably in groups to the bone surface, likely in 
response to coupling factors produced by osteo-
clasts or other cells within the basic multicellular 
unit [46–48]. There are two exceptions to this. 
During skeletal development, osteoblasts can 
form bone de novo (without a surface to work 
on), and during endochondral ossification, calci-
fied cartilage serves as a template on which 
osteoblasts deposit bone.

At the electron microscope level, matrix-
forming osteoblasts exhibit abundant endoplas-
mic reticulum, in line with their major function as 
factories for production of type I collagen, the 
main component of the osteoid matrix (see 
below). Matrix-producing osteoblasts also 
express a range of non-collagenous proteins. 
These include proteins involved in regulating the 
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incorporation of mineral into the osteoid matrix 
(alkaline phosphatase [49], osteocalcin [50], and 
osteopontin [50]) and receptors that regulate their 
response to factors influencing their further dif-
ferentiation and function, such as receptors for 
IL-6 family cytokines [33, 51] or the receptor 
used by parathyroid hormone (PTH) and PTH-
related protein (PTHrP), PTH1R [52]. The mech-
anisms of matrix production and mineralization 
will be discussed below.

When their production of osteoid matrix is com-
plete, mature osteoblasts undergo one of three 
fates: [1] remain on the surface of bone as less 
metabolically active bone lining cells, [2] die by 
apoptosis, or [3] become entrapped within the oste-
oid matrix and, as the osteoid is mineralized, fur-
ther differentiate to become osteocytes (Fig. 1.1).

�Osteocytes

Osteocytes are embedded within the bone matrix 
during the process of bone formation, and through 
their extensive dendritic processes and their fluid-
filled network of communicating channels, they 
sense and respond to mechanical strain and 
microdamage to bone. They are the most abun-
dant cells in bone by far, forming a highly com-
plex cellular communication network through the 
bone matrix with a total of ~3.7 trillion connec-
tions throughout the adult skeleton [53].

How osteoblasts become embedded into the 
bone matrix remains unknown. The manner in 
which osteoblasts become osteocytes has been 
described as “encased,” “buried,” and “merged” 
into the matrix suggesting that the manner of 
transformation may depend on the type of bone 
formed [54]. It is possible that the type of bone 
being made (woven vs lamellar) or mode of ossi-
fication as well as location (periosteal/endocorti-
cal/trabecular) can determine how an osteoblast 
becomes embedded into the matrix. There are no 
specific signals made by the osteoblast that have 
been found to directly control this process. When 
an osteoblast transitions into the recently 
secreted matrix (osteoid) to become an osteocyte 
(Fig.  1.1) they are termed “osteoid-osteocytes” 
[55]. The most striking difference between 

osteoblasts and osteoid-osteocytes is the mor-
phological change that occurs during this transi-
tion. The cuboidal morphology of the osteoblast 
changes into a less cuboidal cell which eventu-
ally transforms into a smaller cell body with 
many dendritic cellular projections characteris-
tic of osteocytes. Upon mineralization of the 
osteoid, the ultrastructure of the osteocyte 
changes in line with its reduced protein-produc-
tion capacity, including reduced endoplasmic 
reticulum and Golgi apparatus [56].

Differentiated osteocytes reside within lacu-
nae in the bone matrix and form an extensive 
intercellular network throughout the bone 
matrix and regulate both bone formation and 
resorption. Cell contact is a notable feature of 
this network [53], as is the ability of these cells 
to sense and respond to mechanical load and 
microdamage [57]. In addition to controlling 
osteoblast activity on the bone surface by the 
release of local factors such as sclerostin [58], 
and oncostatin M [33], osteocytes regulate min-
eralization of the bone matrix by expressing fac-
tors such as dentin matrix protein 1 (DMP-1) 
[59] and matrix extracellular phosphoglycopro-
tein (MEPE) [60] and act in an endocrine man-
ner to control phosphate homeostasis by their 
release of fibroblast growth factor 23 (FGF23) 
[61] (refer also to Chap. 3 (Basic Aspects of 
Osteocyte Function)).

�Bone Lining Cells

Osteoblasts that do not become terminally differ-
entiated osteocytes or undergo apoptosis remain 
on the bone surface to become flattened bone lin-
ing cells. Lining cells are characterized by flat 
nuclei and the ability to synthesize only small 
amounts of protein and, like other cells of the 
osteoblast lineage, connect with each other via 
gap junctions [62].

Although long regarded as a protective cell 
population covering the bone surface that is “rest-
ing,” or “quiescent”, bone lining cells, like osteo-
blasts, express receptors for endocrine and 
paracrine agents. Their contraction from the bone 
surface in response to PTH [63] was suggested to 
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allow osteoclasts access to the bone surface [64]. 
It has been suggested that this lifting of the bone 
lining cell layer occurs not only in response to 
PTH treatment but also at the commencement of 
bone remodeling to generate a temporary canopy 
[65]. Such a canopy was previously suggested as 
a mechanism that encloses the bone remodeling 
activity, separating it from the rest of the bone 
marrow microenvironment [66], thereby provid-
ing a controlled locale in which osteoblast lin-
eage cells, osteoclasts, and other contributing 
marrow cells, may exchange factors. This canopy 
is also closely associated with blood vessels, 
which can thereby readily provide both osteo-
blast and osteoclast precursors for the bone 
remodeling process [67, 68].

In addition to forming a canopy, bone lining 
cells are capable of reactivation to form active 
matrix-producing osteoblasts. This was first 
hypothesized when intermittent PTH administra-
tion increased osteoblast number on the bone sur-
face without increasing osteoblast proliferation 
[69]. This mechanism has now been verified by 
lineage-tracing studies where intermittent admin-
istration of PTH reactivated quiescent lining cells 
to mature osteoblast in vivo [70]. Such reactiva-
tion of lining cells has also been demonstrated 
after mechanical loading [71] and after treatment 
with anti-sclerostin, a therapeutic stimulus of 
bone formation [72]. This reactivation is in addi-
tion to the proposal that these cells form a prolif-
erating progenitor population during adulthood 
[21] and may provide a more rapidly inducible 
partially differentiated source of osteoblast 
precursors.

�Bone Formation: Osteoid 
Production and its Mineralization

Bone is a heterogenous compound material. The 
mineral phase, in the form of modified hydroxy-
apatite (bioapatite)  crystals, contributes about 
two-thirds of its weight. The remaining organic 
matrix consists largely of type I collagen (~90%) 
[73, 74], with small amounts of lipid (~2%), ~5% 
non-collagenous proteins, proteoglycans, and 
water [75]. Non-collagenous proteins within the 

bone matrix include substances that act as signal-
ing molecules (such as transforming growth fac-
tor β (TGFβ) and insulin-like growth factor 1 
(IGF1)) and substances that regulate mineraliza-
tion (such as osteocalcin and DMP-1).

While a range of cell types are capable of 
depositing mineral, particularly in cell culture 
conditions or in pathological circumstances (such 
as vascular calcifications), it is only the osteo-
blast that is capable of bone formation. 
Osteoblasts are responsible for the deposition of 
bone matrix on a range of surfaces and in a num-
ber of different contexts. During endochondral 
bone formation, osteoblasts deposit bone on a 
cartilage template. This process occurs both in 
skeletal development and in fracture healing. In 
these instances, osteoblasts attach to the cartilage 
template and deposit osteoid, which becomes 
mineralized, according to processes described 
below. During intramembranous bone develop-
ment, bone is formed directly by mesenchymal 
precursors with no underlying template. This 
process occurs largely during skeletal develop-
ment, particularly of the calvarial bones, and 
occurs during the formation of the periosteal col-
lar at the diaphysis (midshaft) of bones that form 
by endochondral ossification. During bone 
remodeling, bone mass is maintained by osteo-
blasts that form sufficient bone to replace bone 
that was recently removed by osteoclasts. In con-
trast, during bone growth, periosteal expansion 
occurs by modeling, where osteoblasts form bone 
on a bone surface that has not been previously 
resorbed. There are also pathological conditions, 
where bone is formed in locations where it is not 
normally found, e.g., in heterotopic ossifications 
in the muscle in the context of injury [76] or in 
rare genetic conditions [77]. In all of these pro-
cesses, bone formation occurs as follows.

Osteoblasts do not produce “bone” per se, but 
synthesize a collagen-rich osteoid matrix. The 
osteoid matrix serves as a template for the subse-
quent deposition of mineral in the form of bioapa-
tite which contributes to the hardness of bone. The 
balance between osteoid and mineral content 
determines bone strength: essentially, the collagen 
provides flexibility, while the mineral provides 
hardness. The process of mineralization is 
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controlled by non-collagenous proteins produced 
by late-stage osteoblasts and osteocytes. We will 
describe each of these processes in turn (Fig. 1.2).

�Osteoid Deposition

When osteoid is deposited by osteoblasts, it has 
two potential forms depending on its collagen 
orientation and speed of production: woven and 
lamellar bone. During bone development and 
fracture healing, woven bone is deposited rap-
idly: this substance contains disordered, seem-
ingly randomly oriented collagen fibers. In 
contrast, lamellar bone is highly organized. 
Fibers are more slowly deposited, predominantly 
oriented longitudinally, and create a defined, 
ordered structure [78]. Collagen fibers in lamellar 
bone are oriented in perpendicular planes in adja-
cent lamellae [79], adding strength of the sub-
stance. The loose structure and random 
orientation of woven bone suggest that it is 

mechanically weaker than lamellar bone. This 
has been tested in human fetal bone, where 
younger, more woven bone was associated with 
lower elasticity and lower resistance to penetra-
tion (microhardness) [80].

How osteoblasts are instructed to form either 
woven or lamellar bone is not known, but ultra-
high voltage electron microscopy studies suggest 
that even during lamellar bone formation, colla-
gen fibers are deposited sparsely and randomly, 
but as the osteoblast becomes more distant due to 
further deposition, the  fibres begin to reoirent 
parallel to the direction of growth and become 
thicker [81]. This suggests that as-yet unidenti-
fied events after initial collagen secretion may be 
responsible for the woven or lamellar nature of 
bone. Adding to these observations, live cell 
imaging of osteoblasts engineered to deposit 
fluorescent-labeled collagen has recently revealed 
that osteoblasts constantly move during the col-
lagen assembly process, and actively exert forces 
on the fibrils, physically shaping the collagen 

Fig. 1.2  The process of bone matrix production and min-
eralization. Mature osteoblasts on the bone surface deposit 
newly formed matrix, known as osteoid (1), largely com-
prised of type I collagen (a triple helical structure). After 
collagen deposition, the matrix becomes progressively 
mineralized by the accumulation of hydroxyapatitic bio-
apatite crystals (2). This mineralization process has two 

phases. Within ~5–10 days, osteoid undergoes rapid pri-
mary mineralization, and over subsequent weeks, months, 
and years, secondary mineralization occurs. The bioapa-
tite crystals grow and accumulate carbonate in the more 
mature regions of bone, and collagen fibers become more 
condensed (compact) presumably due to steric hindrance 
caused by the presence of the growing crystals
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matrix and potentially guiding the formation of 
osteocyte lacunae [82].

Type I collagen comprises a triple-helix struc-
ture of two α1 and one α2 polypeptide chain 
[83]. In osteoblasts, single pro-α chains are syn-
thesized in the endoplasmic reticulum, which 
assemble into procollagen triple helices, and are 
released by exocytosis into the extracellular 
space, where the N- and C-termini are cleaved, 
allowing the formation of fibrils [84]. Multiple 
intracellular posttranslational modifications, 
including hydroxylation of proline and lysine 
residues, and glycosylation, stabilize the colla-
gen triple helical structure [85]. After secretion, 
collagen fibers are stabilized and bone is 
strengthened further by the formation of inter- 
and intra-molecular cross-links, through the 
action of lysyl oxidase [86]. Other modifications 
such as advanced glycation adversely affect the 
mechanical properties of the bone matrix, par-
ticularly during ageing [87]. Defects not only in 
the proteins coding collagen itself but also in the 
many different aspects of collagen fibril assem-
bly, including collagen folding, secretion, cross-
linking, and posttranslational modifications, 
have been described in the diverse family of skel-
etal fragilities observed in osteogenesis imper-
fecta [88].

�Matrix Mineralization

After collagen is deposited, it becomes progres-
sively mineralized by the accumulation of bio-
apatite crystals. This mineralization process has 
two phases. Within ~5–10 days, osteoid under-
goes rapid primary mineralization, and over sub-
sequent weeks, months, and years, secondary 
mineralization occurs [89]. During primary min-
eralization, the tissue usually reaches ~50–70% 
of its final mineral content [90, 91]. During sec-
ondary mineralization, mineral continues to 
accumulate at a slower rate [92], the crystals 
beome larger [89], and carbonate is substituted 
for phosphate groups within the matrix [93, 94]. 
In addition, as mineral is deposited, the sur-
rounding collagen fibers of bone also change, 

becoming more compact, possibly in response to 
the growing crystals [93, 94] (Fig. 1.2).

The final stage of mineralization achieved in 
the bone substance varies locally within the bone 
matrix and depends on the species, sex, age, and 
anatomical location of the bone [95]. 
Mineralization involves the release of matrix ves-
icles, which are cell-derived extracellular 
membrane-enclosed particles of poorly crystal-
line bioapatite mineral [96, 97]. The mineral 
crystals become ordered (a process termed nucle-
ation) by a process driven by contact with colla-
gen, local availability of calcium and phosphate, 
and by apatite nucleators such as DMP-1 and 
osteopontin [98, 99]. The importance of 
phosphate-regulating proteins is clearly illus-
trated by the association of human and murine 
genetic insufficiencies in phosphate regulators 
with impaired bone mineralization [100–102].

Mineralization initiation, accrual, and crystal 
maturation are controlled, not only by apatite 
nucleators but also by a range of multifunctional 
non-collagenous proteins secreted by mature 
osteoblasts and osteocytes. Osteoblasts and osteo-
cytes express proteins that support mineralization 
such as alkaline phosphatase, PHOSPHO1, phos-
phate-regulating neutral endopeptidase, X-linked 
(PHEX), and bone sialoprotein/integrin-binding 
sialoprotein. Osteoblasts and osteocytes also 
express proteins that inhibit mineralization, such as 
osteocalcin [103], MEPE, and PC-1 (Enpp1) [104]. 
An illustration of the fine control exerted by osteo-
blasts on mineralization is their ability to control 
local levels of inorganic phosphate through alka-
line phosphatase (ALP) and plasma cell membrane 
glycoprotein-1 (PC-1). Hydroxyapatite nucleation 
depends on a high ratio of inorganic phosphate (Pi), 
which promotes mineralization, to inorganic pyro-
phosphate (PPi), which inhibits it. Alkaline phos-
phatase (ALP) positively regulates this balance by 
hydrolyzing PPi to form the Pi required for hydroxy-
apatite crystal nucleation; insufficiency of ALP 
leads to poor mineralization, as observed in indi-
viduals with hypophosphatasia [100]. In contrast, 
PC-1 inhibits mineralization by producing inor-
ganic pyrophosphate; insufficiency of PC-1 there-
fore leads to excessive mineralization [104].
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�The Osteoblast Lineage Supports 
Osteoclast Formation, Attachment, 
and Bone Resorption

The function of the osteoblast lineage is not 
restricted to bone formation. Osteoblast lineage 
cells also control the differentiation of osteo-
clasts, the cells responsible for bone resorption. 
There are three major ways in which cells of the 
osteoblast lineage carry out this role: (1) by pro-
ducing RANKL and OPG in response to para-
crine and endocrine agents, (2) by releasing 
chemoattractants that draw osteoclast precursors 
to the bone surface, and (3) by preparing the bone 
surface for osteoclast attachment. We will discuss 
each of these actions in turn.

�Production of RANKL and OPG

A range of locally acting cytokines, including 
interleukin-11 (IL-11), prostaglandin E2, PTHrP, 
and oncostatin M, stimulate osteoclast formation, 
but do not achieve this by direct action on osteo-
clast precursor themselves. Instead, these agents, 
and endocrine factors like PTH and 
1,25-dihydroxyvitamin D, stimulate osteoclast 
formation indirectly, by acting on osteoblast lin-
eage cells to stimulate expression of RANKL and 
CSF-1 (M-CSF), two regulatory molecules that 
are both required for osteoclastogenesis [105–
110]. It is the interaction of RANKL with its 
receptor (RANK), expressed on the cell surface of 
mononuclear hemopoietic osteoclast precursors, 
that triggers osteoclast formation (Fig. 1.3).

The necessity for RANKL and RANK for 
osteoclastogenesis was demonstrated by the gen-
eration of genetically altered mice that lack either 
RANKL or RANK and exhibited a lack of osteo-
clasts and severe osteopetrosis [111, 112]. 
Osteoblast lineage cells also express a soluble 
protein that is a non-signaling decoy receptor for 
RANKL, known as osteoprotegerin (OPG). OPG 
acts as a “brake” on osteoclast differentiation by 
blocking the interaction of RANKL and RANK 
[113, 114], and through modulation of RANKL 
and OPG expression, osteoblasts can precisely 
regulate the formation of osteoclasts.

RANKL is expressed at all stages of osteo-
blast differentiation, including in precursors, 
matrix-producing osteoblasts, bone lining 
cells, and osteocytes [115]. RANKL produc-
tion is not exclusive to osteoblast lineage cells. 
T-cells and natural killer (NK)-cells also 
express RANKL and are capable of promoting 
osteoclast formation [116, 117]. It appears that 
expression of RANKL by T-cells is dispens-
able for normal bone development and mainte-
nance [118]. In contrast, in mice that lack 
RANKL in the osteoblast lineage, severe 
osteopetrosis is observed [119]. However, the 
most important stage in osteoblast differentia-
tion for production of RANKL is not known, 
and whether the key source of RANKL is the 
osteocyte, the bone lining cell, or the preosteo-
blast remains controversial [21, 119–122]. One 
important concept to consider is that direct 
contact between the RANKL-expressing osteo-
blast lineage cells and the RANK-expressing 
haemopoietic osteoclast precursors is abso-
lutely required for osteoclast formation in vitro 
[123, 124], and the same situation is likely to 
be true in  vivo (Fig.  1.3). While recombinant 
soluble RANKL certainly promotes osteoclast 
formation from precursors in vitro [125], and 
in vivo [126], there remains no convincing evi-
dence that soluble RANKL, produced by 
osteoblast lineage cells, can substitute for the 
membrane form, nor is there any convincing 
evidence of a physiological role for circulating 
RANKL.  This means it is important to con-
sider the location of the osteoblast lineage cells 
most likely to support osteoclast formation. 
Cells in the marrow, or in direct contact with it, 
such as osteoblast precursors and bone lining 
cells, rather than embedded osteocytes, are 
more likely to come into contact with osteo-
clast precursors, and therefore more likely to 
support osteoclast formation in normal remod-
eling. It has been difficult to understand how 
osteocytes, from within the matrix, could con-
trol RANKL availability to osteoclast precur-
sors in the bloodstream through a 
contact-dependent mechanism although it has 
been suggested that osteocyte processes extend 
into the marrow space [127]. However, even 
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when osteocytes were cultured in direct con-
tact with osteoclast precursors and stimulated 
with appropriate stimuli, only binucleated 
“osteoclasts” formed [120].

RANKL production by osteoblast-lineage 
cells is also stimulated by microdamage within 
the bone matrix. Microdamage or microcracks are 
small defects in the bone matrix that occur in both 
pathological conditions and with normal skeletal 
loading [128]. Experimental loading, which 
causes a higher level of microdamage, initiates 
bone resorption [129], and indeed, resorption and 
replacement of the bone compromised by this 
damage is one of the important mechanical func-
tions of bone remodeling [128]. It has been sug-
gested that the microdamage site “steers” those 
osteoclasts already functioning on the bone sur-
face toward the site of damage [130]. Microdamage 

within the bone is sensed by osteocytes, which are 
terminally differentiated osteoblasts that reside 
within the bone matrix, and sense changes in pres-
sure within the matrix. Anatomical studies of rat 
bone in which microcracks were induced by 
ex  vivo loading demonstrated that osteocytes 
located near to microcracks are more likely to be 
apoptotic compared to sites more distant to the 
microcrack [131]. Mechanical loading of human 
bone ex  vivo and of rat bone in  vivo increases 
osteocyte apoptosis [132, 133], and osteocytes 
surrounding the dying cell increase their produc-
tion of RANKL to initiate resorption [134]. In 
support of this, short-term deletion of osteocytes 
in vivo resulted in a rapid increase in expression 
of RANKL mRNA in the bone, presumably by 
osteoblast lineage cells, and an increase in osteo-
clast formation [135].

Fig. 1.3  The osteoblast lineage supports osteoclasto-
genesis. Osteoblast lineage cells control the differentia-
tion of osteoclasts in response to paracrine and endocrine 
agents and locally acting cytokines such as vitamin D, 
interleukin-6 (IL-6), oncostatin M (OSM), and parathy-
roid hormone (PTH) / parathyroid hormone-related pro-
tein (PTHrP). These agents and factors act on the 
osteoblast lineage to stimulate expression of RANKL 
and M-CSF which each promote osteoclast formation. 
M-CSF is soluble. Receptors for both RANKL and 
M-CSF are expressed on the cell surface of mononuclear 

hemopoietic osteoclast precursors. Direct contact 
between membrane-bound RANKL and its membrane-
bound receptor (RANK) triggers osteoclast formation. 
Osteoblast lineage cells also express a decoy receptor for 
RANKL, known as osteoprotegerin (OPG), which 
blocks the interaction of RANKL and RANK. Through 
their modulation of RANKL and OPG expression, osteo-
blasts can precisely regulate the formation of osteoclasts. 
Osteocytes also express RANKL, but the mechanism by 
which this reaches the osteoclast precursors remains 
undefined
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Another factor produced by the osteoblast lin-
eage and required for osteoclast formation is 
CSF-1/M-CSF [136, 137]. Together, RANKL 
and CSF-1 are all that is required to support 
osteoclast formation from bone marrow precur-
sors in  vitro. Just as observed in RANKL null 
mice, mutant mice lacking CSF-1 also exhibit 
severe osteopetrosis due to lack of osteoclast for-
mation [138]. While RANKL is membrane bound 
and acts to promote osteoclast precursor fusion, 
CSF-1 is secreted by osteoblasts and promotes 
osteoclast precursor proliferation [139].

�Release of Chemoattractants

Another mechanism by which osteoblasts control 
osteoclast differentiation is by controlling the 
movement of osteoclast precursors toward each 
other (allowing fusion) and to the bone surface 
(allowing attachment) through their release of 
chemoattractants. These factors may be depos-
ited in the bone matrix itself during bone forma-
tion; they may be released by active osteoblasts 
or may be released from apoptotic osteocytes. 
Some bone matrix-derived factors, suggested to 
act as chemoattractants for monocytic osteoclast 
precursors, include osteocalcin, fetuin-A, and 
collagen-I fragments [140]. Thus, attraction of 
osteoclast precursors to the bone surface may be 
determined by the specific content of the bone to 
be resorbed; this is supported by studies of age-
ing bone. As bone ages, collagen-I is isomerized, 
and aged bone, which has a higher ratio of α/β 
collagen isomers, supports the formation of many 
more osteoclasts in  vitro than younger bone 
[141], supporting a role for matrix constituents, 
deposited by osteoblasts, in the control of osteo-
clast formation.

Production of a range of chemokines (includ-
ing stromal-derived factor-1 (SDF-1/CXCL12); 
chemokine-ligands 3, 5, and 7 (CCL3, CCL5, 
CCL7) [142]; chemokine (C-X-C motif) ligand 1 
(CXCL1) [143]; and monocyte chemoattractant 
protein-1 (MCP-1) [144]) by osteoblast-lineage 
cells is stimulated by osteoclastogenic factors 
including the cytokines interleukin-1β (IL-1β), 
tumor necrosis factor α (TNF-α), and PTHrP. Such 

factors have been shown in vitro to act on osteo-
clast precursors (monocyte macrophages) to stim-
ulate their chemotaxis and fusion [143, 145, 146], 
and it is likely that they have similar roles in vivo.

�Preparing the Bone Surface 
for Osteoclast Attachment 
and Resorption

To commence resorption, the multinucleated 
osteoclast attaches to the bone matrix via the 
interaction of integrins with arginine-glycine-
aspartic acid (RGD) sequences in non-
collagenous matrix proteins including osteopontin 
and bone sialoprotein [147]. These proteins were 
laid down by osteoblasts during the previous 
cycle of bone formation. So, at some distance, it 
could be said that osteoblasts regulate osteoclast 
attachment by their control of the bone matrix 
itself. Intriguingly, mice lacking bone sialopro-
tein or osteopontin demonstrate, respectively, 
reduced osteoclast surface and reduced response 
to osteoclastogenic stimuli [148, 149]. However, 
this appears to be an indirect result of the reduced 
osteoblast numbers (and therefore reduced 
osteoblast-derived RANKL and M-CSF), or a 
requirement for intracellular osteoclastic osteo-
pontin [150], rather than it relating to attachment 
to the bone matrix. Further work is required to 
determine how the bone matrix itself regulates 
osteoclast attachment; however, it should be 
noted that this is unlikely to be a method that pre-
cisely controls bone resorption, given the time 
delay between bone formation and subsequent 
resorption; more likely it is a mechanism that 
may exist in different types of bone that are 
responsible for biological variation in the level of 
bone resorption.

�Concluding Remarks

The osteoblast lineage includes a range of cell 
types: multipotent precursors, matrix-producing 
osteoblasts, osteocytes, and bone lining cells; 
each of these stages of the lineage has distinct 
functions which we are only beginning to fully 
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understand. The most well-known role of the 
osteoblast lineage is the production of bone 
matrix and the control of its mineralization by 
non-collagenous proteins. The osteoblast lineage 
controls both the progression of differentiation of 
its own lineage and the formation of osteoclasts, 
the cells that resorb bone. As such the lineage is 
central to the control of bone mass, both by form-
ing it and by controlling its destruction.
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