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Abstract. In this paper, we consider Identification Schemes (IS) in the
context of attacks against their deniability via Fiat-Shamir transforma-
tions. We address the following issue: How to design and implement a
deniable IS, that is secure against ephemeral leakage on both a Prover’s
and a Verifier’s side, and withstands attacks based on Fiat-Shamir trans-
formation. We propose a new security model to address the leakage on
the Verifier’s side, extending the previous propositions [1]. During the
Query Stage, we allow the malicious Verifier to set random values used
on the Prover’s side. Additionally, we allow malicious Prover to access
ephemeral values of the Verifier during the Impersonation Stage. We
introduce two generic constructions based on three-step IS. Finally, we
provide an example scheme based on the extended construction from [1],
which is provably deniable and secure in our new strong model.

Keywords: Identification scheme · Ephemeral secret setting ·
Ephemeral secret leakage · Deniability · Simulatability · Zero-knowledge
proofs

1 Introduction

Identification schemes (IS) based on Public Key Infrastructure (PKI) allow a
Prover, holding a secret key, to prove its possession via a zero-knowledge proto-
col executed with a Verifier holding a corresponding public key. There are two
common requirements that IS should satisfy: (1) security - a malicious Prover
should not be able to successfully complete the protocol without the correspond-
ing secret key; (2) privacy - in some scenarios, the protocol should be deniable,
meaning that its transcript must not be a strong proof of Prover’s participation.
Alternatively, there are cases in which the protocol should not be deniable and
must provide a strong proof of Prover’s participation. Typically, ISes require com-
plex computations over large numbers, and are deployed on the users’ electronic
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devices, which store sensitive secret keys. There are several common threats con-
cerning this aspect, emerging from the fact that the end users see the devices as
black boxes, and they have to trust that the scheme implementation processes are
not tampered with. Very often, such devices are produced by vendors beyond of
the end users’ control, and as such are subject to malicious modification, which
can bring about the following vulnerabilities:

– Prover’s Ephemeral Leakage: Especially important for three round iden-
tification schemes, with three messages exchanged between a Prover and a
Verifier :
(1) the Prover sends a commitment to a random value to the Verifier ;
(2) the Verifier sends to the Prover another random value called a challenge;
(3) a response message sent by the Prover is a result of a function of the

challenge and the secret key masked by the committed ephemeral.
At the Verifier’s side, this response is checked by the means of the public
key with the commitment and the challenge. If a malicious manufacturer
implements a covert channel within a Prover’s device, it can learn (or set)
ephemeral values coined in the commitment phase, and unmask the secret
key from the response. This way, the ephemeral leakage subsequently enables
impersonation attacks using the Prover’s identity. Note that Schnorr [2] and
Okamoto [3] ISes are vulnerable to this attack. Recently, a remedy for that
problem has been proposed in [1]. The solution is quite flexible and works for
many similar three round constructions.

– Verifier’s Ephemeral Leakage: Alternatively, if there is a back-door chan-
nel in a Verifier’s device, it can be exploited by a malicious Prover to read
ephemeral values coined by the Verifier before the challenge phase. There are
ISes which rely on the secrecy of such values e.g. [4–6]. In all these schemes
the Adversary knowing the Verifier’s ephemeral value can impersonate the
Prover without the secret key. It is worth to notice that typical three round
identification schemes are immune, from their design, to attacks based on the
Verifier’s ephemeral leakage, since the only random value of the Verifier is
the challenge revealed to the Prover in the second message. This statement,
however, requires an assumption that the challenge value is coined strictly
after the commitment phase, as otherwise impersonation would be trivial,
due to simulatability property of the IS.

– Losing Deniability: Although typical three round ISes resist Verifier’s
ephemeral leakage attacks, they suffer from the deniability attacks mounted
by the active malicious Verifier. Indeed, instead of coining the challenge at
random, the Adversary can use a Fiat-Shamir transformation [7] and com-
pute challenge as a hash value over the commitment, this way changing the
scheme into an undeniable signature.

Problem Statement: In this paper we address the following issue: How to
design and implement a deniable IS:

(1) secure against ephemeral leakage on both Prover’s and Verifier’s side;
(2) withstanding attacks based on Fiat-Shamir transformation.
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1.1 Contribution of the Paper

The contribution of the paper is the following:

– We introduce a new strong security model for deniable identification schemes
in which we allow Adversaries:

• to set ephemerals on Provers’ side in the Query Stage of the security
experiment,

• to read ephemerals used on Verifiers’ side in the final (Impersonation)
Stage of the security experiment.
We define the IS to be secure if no Adversary, even given such a power
and knowledge, is able to impersonate a Prover, without their secret key.

– We propose a general extension to three-rounds identification protocols, e.g.
[1–3], hardening them against Attacks on Deniability by Fiat-Shamir trans-
formation, secure in our stronger model.

– We show an example of our extension based on a modified Schnorr scheme,
and prove its security in our model.

Our proposition is useful for systems based on three-round IS, where randomness
leakage is possible. There is a growing demand for schemes secure in such sce-
narios, due to recent revelations regarding undermining cryptographic standards
and implementations.

Remark: note that typical, 4-round Malicious Verifier Zero Knowledge schemes,
that are based on commitments to challenge are not secure in the Verifier Leak-
age model. Coining challenge before Prover’s commitment is sent may lead to
straightforward impersonation: the challenge leakage allows for textbook simu-
lation.

Previous Work. Identification schemes have been in use since the dawn of
the modern, public-key cryptography [2,7–9]. Schnorr has introduced a DLP
based construction [2], followed by [3] of Okamoto. Several ISes are specialized
in terms of models or attack schemes, e.g. [10,11]. [12] introduced a notion of
vulnerability to ephemeral leakage and proposed IS protocols invulnerable to
such attacks. [13] shown IS secure against Reset Attacks based on stateless,
deterministic signature schemes, CCA-secure asymmetric encryption schemes
and pseudorandom functions with trapdoor commitments. Subversion resilience
is a concept regarding security of various schemes in settings, where malicious
manufacturer may replace original scheme with a modified one that behaves
identically, but may leak additional information by hidden trapdoors in regular
outputs [14–16].

The paper is organized in the following way. In Sect. 2 we review our strong
security model, strongly based on models from [1]. In Sect. 3 we propose the
extensions of generic three-rounds ISes following the commit, challenge, response
schema, which protects against Fiat-Shamir transformation-based attacks on
deniability. In Sect. 4 we modify the protocol from [1], and prove its security in
our model.
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2 System Model

Let us first recall the definition of IS from [1] loosely based on Okamoto’s defin-
ition [3].

Definition 1 (Identification Scheme). An identification scheme IS is a tuple
of procedures (PG,KGP ,KGV ,P,V, π):

par ← PG(1λ): takes the parameter λ, and outputs public parameters.
(sk, pk) ← KGP(par): outputs secret and public keys of the prover.
(se, pe) ← KGV(par): (optional) outputs secret and public keys of the verifier.
P(sk, pe): denotes the Prover algorithm which interacts with the Verifier V.
V(pk, se): denotes the Verifier algorithm which interacts with the Prover P.
π(P,V): denotes the protocol of interactions between P and V.

IS has Initialization and Operation Stages. In Initialization Stage, parameters
and keys for users are generated. In the latter, a user proves interactively its
identity in front of the Verifier: π(P(sk, pe),V(pk, se)). We write π(P,V) → 1 if
P and V have mutually accepted each other in π. The scheme is complete iff

Pr[(sk, pk) ← KGP(), (se, pe) ← KGV(), π(P(sk, pe),V(pk, se)) → 1] = 1.

The optional, verifier key pair (se, pe) exists in several IS schemes. If the IS does
not rely on it, or even explicitly denies its existence, we may assume KGV always
returns (⊥,⊥) on any input.

2.1 Impersonation Resilience

The fundamental security requirement for IS is that no malicious Prover algo-
rithm A, without the secret key sk corresponding to the public key pk used by
the Verifier, should be accepted in protocol π. In other words, we require that
probability Pr[π(A(pk, pe),V(pk, se)) → 1] ≤ ελ where ελ is a negligible function.
We formally define our security model in Sect. 2.3.

2.2 Adversary Model

The process in which an Adversary gains knowledge about the attacked protocol
is modeled by a Query Stage of the security experiment. This means that the
Adversary runs a polynomial number � of the protocol executions between the
Prover and the Verifier: π(P(sk, pe),V(pk, se)). We consider the Active Adversary
which actively participates in the stage, usually as a Verifier ˜V, i.e. it actively
chooses messages sent to the Prover. Based on [1], we assume the Adversary
additionally adaptively sets the ephemeral values for the Prover in each protocol
run in the Query Stage. Finally, extending the model from [1], we consider the
Adversary that can read ephemeral values of the Verifier in the Impersonation
Stage, immediately after those values are produced.
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2.3 Security Experiments

Let x̄i be adaptive ephemerals from a malicious Verifier ˜V injected to the Prover
P x̄i in the ith execution of the Query Stage. Let the view vi = {T1, . . . , Ti} ∪
{x̄1, . . . , x̄i} be the total knowledge A can gain after i runs of π, where Ti is the
transcript of the protocol messages in the ith execution. The IS is CPLVE-secure
if such a cumulated knowledge after � executions does not help the Adversary
to be accepted by the Verifier except with a negligible probability.

Definition 2 (Chosen Prover-Leaked Verifier Ephemeral – (CPLVE)).
Let IS = (PG, KGP , KGV , P, V, π). We define security experiment ExpCPLVE,λ,�

IS :

Init Stage: par ← PG(1λ), (sk, pk) ← KGP(par), (se, pe) ← KGV(par).
A:( ˜P(pk, pe), ˜V(pk, pe)).

Query Stage: For i = 1 to � run π(P x̄i(sk, pe), ˜V(pk, pe, x̄i, vi−1)), where x̄i ∈
{x̄1, . . . , x̄�} are the adaptive ephemerals from ˜V injected to the Prover P x̄i

in the ith execution, and vi−1 is the total view of A until the ith execution.
Impersonation Stage: A executes the protocol π( ˜P(pk, pe, v�, ē),V(pk, se)),

where ē are the ephemerals of the Verifier leaked to the malicious Prover ˜P.

The advantage of A in the experiment ExpCPLVE,λ,�
IS is the probability of accep-

tance in the last stage:

Adv(A, ExpCPLVE,λ,�
IS ) = Pr[π( ˜P(pk, pe, v�, ē),V(pk, se)) → 1].

We say that the IS is (λ, �)-CPLVE–secure if Adv(A, ExpCPLVE,λ,�
IS ) ≤ ελ and ελ

is negligible in λ.

We utilize the definition of deniability from [17], which itself generalizes the
idea from [18]. Let π be a protocol in IS. We assume an adversary M which inputs
an arbitrary number of public keys pkpkpk = (pk1, . . . , pk�), randomly coined with
an appropriate key generating algorithm. The adversary initiates an arbitrary
number of protocols with the honest parties, some in a role of the prover, others
in a role of the verifier. The view of M consists of its internal randomness,
and the transcript of the entire interaction, in all the protocols in which M
participated. We denote this view as ViewM(pkpkpk, a).

Definition 3. We say that π is a strongly deniable protocol of IS with respect to
the class A of auxiliary inputs if for any adversary M, for any input of public
keys pkpkpk = (pk1, . . . , pk�) and any auxiliary input a ∈ A, there exists a simulator
SIMM that, running on the same inputs as M, produces a simulated view which
is indistinguishable from the real view of M. That is, consider the following two
probability distributions, where pkpkpk = (pk1, . . . , pk�) is the set of public keys of the
honest parties:

Real(λ, a) = [(ski, pki) ← KG(1λ); (a,pkpkpk,ViewM(pkpkpk, a)]

Sim(λ, a) = [(ski, pki) ← KG(1λ); (a,pkpkpk, SIMM(pkpkpk, a)]
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then for all probabilistic poly-time machines Dist and all a ∈ A, there exists a
function ελ negligible in λ s.t.:

|Pr x∈Real(λ,a)[Dist(x) = 1]| − |Pr x∈Sim(λ,a)[Dist(x) = 1]| ≤ ελ.

The idea behind this definition is that no adversary can follow a strategy that
is not simulatable, i.e. there exist a distinguisher differentiating between the
real adversary and a simulator. In other words, all adversarial strategies are
simulatable.

2.4 Deniability Attack in Active Mode

Let T = (X, c, S) denote the transcript of a 3-round IS. In Fig. 1 we recall how
active Verifier can use the Fiat-Shamir transformation to generate undeniable
transcript of the protocol, effectively transforming the 3-round interactive IS
into non-interactive signature scheme. The value r is a randomizing factor. In
real signature schemes, the value r is replaced by message m. The hash input
i = (X, r) is an undeniable proof that the party P has participated in the
protocol.

Fig. 1. The attack on deniability of typical 3-round IS.

3 Extended Identification Schemes

3.1 General Idea – Commitment to an Unknown Value

The general idea behind the proposed extensions is that in order to achieve the
strong deniability property in the Verifier Ephemeral Leakage scenario, the Veri-
fier has to prove that the challenge has not been produced via the transformation
of the Prover’s commitment X. Therefore, at the beginning of the protocol, the
Verifier itself randomly chooses a commitment to an unknown challenge, which
can be opened by them only after they obtain the first message from the Prover.
We propose two different methods for this purpose: (a) Deterministic Encryp-
tion Method ; (b) Proof of Computation Method ; which can be used separately
or together.
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3.2 Deterministic Encryption Method

This extension is based on the assumption that the scheme in subject can be used
in conjunction with a deterministic asymmetric encryption, for which, w.l.o.g.,
we use the following definition.

Definition 4 (Asymmetric Encryption Scheme). Let E = (KGE, E ,D)
denote a secure deterministic encryption scheme, s.t. (se, pe) ← KGE():

(1) ∀(m∈M) : E(pe,m) → c ∈ C, s.t.D(se, c) → m,
(2) ∀(c∈C) : D(se, c) → m ∈ M, s.t.E(pe,m) → c

where (se, pe) is a secret/public key pair; M,C are plaintext, and ciphertext
spaces; (KGE, E ,D) are key generation, encryption and decryption algorithms.

The only security property of E that is required in the proposed scheme is
its secrecy or one-wayness, that is:

Definition 5 (Encryption One-Wayness). An Asymmetric Encryption
Scheme E has encryption one-wayness property, if for any PPT algorithm A,
for (se, pe) ← KGE(1λ) and for a c ∈ C selected uniformly at random:

Pr[A(pe, c) = D(se, c)] ≤ ελ

for a negligible function ελ.

Note that the equation is actually equivalent to Pr[E(pe,A(pe, c)) = c] ≤ ελ and
to Pr[A(pe, E(pe,m)) = m] ≤ ελ for uniformly selected message m ∈ M .

An example of such a scheme is a textbook RSA Encryption [19]. With the
E scheme, as of Definition 4, the extension is the following: at the beginning
the Verifier chooses the ciphertext ĉ randomly, which is immediately sent to the
Prover. This is a commitment to a yet unknown challenge c, and corresponds
to the Verifier’s ephemeral value, known to the malicious Prover in the Verifier
Ephemeral Leakage model. Then, the Verifier waits until it gets a commitment
from the Prover and only then opens the commitment m = D(se, ĉ), chooses
a random bit b ←R {0, 1} and sends m, b to the Prover. The bit b allows for
randomization of c, but the information size of b is insufficient to indicate the
Prover’s identity, as both options are equally simulatable. Both parties compute
the commitment with a secure one way hash function c = H(m, b). This reflects
the situation in which both the Prover and the Verifier learn the commitment c
only after X has been received by the Verifier. On the other hand, the Prover
checks if the value m agrees with the commitment E(pe,m) ?= ĉ, and then it
is convinced that the challenge m has not been produced by a Fiat-Shamir-like
transformation over its own commitment X. If E(pe,m) 	= ĉ, the Prover stops
the protocol.

The proposed extension is depicted in Fig. 2. Note that the IS has a slightly
different interface as P and V take each others’ public keys and their own secret
keys on input (contradictory to the Definition 1 where only Prover’s keys were
considered). The single random bit b has a very small influence on the protocol
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Fig. 2. Extension based on encryption scheme.

itself, but is crucial in proving the security of the underlying IS, when the proof
uses rewinding techniques, in order to produce two distinct challenges for the
same initial commitment.

Lemma 1. The extension proposed in Fig. 2 protects against deniability attacks
on 3-round IS via Fiat-Shamir transformation - as of Fig. 1.

Proof. The proof is by contradiction. Assume that a malicious Verifier success-
fully, with non-negligible probability, mounts the attack resulting with transcript
T = (ĉ, X,m, b, S) and the proof i = (X, r), s.t: m = D(se, ĉ), c = H(m, b) and
c = H′(X, r) for any hash function H′, then we successfully find a collision for
the hash function H with inputs i = (m, b) and i = (X, r) (if H = H′), or break
preimage resistance of either H (with the image being c = H′(X, r)) or H′ (with
the image being c = H(m, b)). 
�
Lemma 2. The extension proposed in Fig. 2 retains zero-knowledge properties
of the underlying IS.

Proof (Sketch).

Completeness. Straightforward verification shows that if the original IS was com-
plete, the modified scheme is complete as well. The addition of ĉ and the way c
is computed does not influence the protocol if only H is a secure hash function
indistinguishable from a Random Oracle into the challenge space.

Soundness. The method of proving soundness of the modified scheme is closely
related to the method used to prove the soundness of IS. In principle, P cannot
derive any knowledge from the commitment scheme except with a negligible
probability. If P could derive any information about the challenge message before
the commitment phase, they would be able to break the encryption one-wayness
of E (cf. Definition 5).
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Zero-knowledge. The protocol is simulatable if only IS is simulatable. Let us
choose m ∈ M and b ∈ {0, 1} at random. Compute c = H(m, b) and simulate
transcript (X, c, S) of IS for the given challenge c. Compute commitment ĉ =
E(pe,m). Return (ĉ, X, (m, b), S) as the simulated transcript. 
�

3.3 Proof of Computation Method

This extension is based on the assumption that the Verifier’s computing device
DV is faster than the Prover’s computing device DP . Let RTD(A) denote a run-
ning time of the device D executing an algorithm A. Let (P,X) denote a com-
putational problem in domain X, and ς denote its solution. Let Ver(P,X, ς)
denote a fast verification algorithm which returns 1 if ς is a solution for (P,X)
or returns 0 otherwise. Let S(P,X) denote the algorithm solving (P,X). We
assume that S(P,X) is “quite” complex, that is, on any device D it holds that:
RTD(ς = S(P,X)) � RTD(Ver(P,X, ς)). To capture that the Verifier’s comput-
ing device DV is faster than the Prover’s computing device DP we assume that:
RTDV (S(P,X)) < RTDP (S(P,X)), for any (P,X,S).

Let G(P, w) be a domain generation algorithm for problem P that takes a seed
w ∈ Seed as an input, and outputs a domain X for P. Let H : {0, 1}∗ → Seed be
a one way function used to compute a seed w for G(P,w). Assume the following
process of generating a sequence of problems P,Xi and its solutions ςi from the
random seed w ∈R Seed.

Gen(P, w):
Init Stage: n = 0, X0 = G(P, w), ς0 = S(P,X0)
Iterate since Start signal until Stop signal:
n = n + 1, wn = H(ςn−1), Xn = G(P, wn), ςn = S(P,Xn),
Return: 〈ςi〉n

i

Assume the verification process:

Check(P, w, 〈ςi〉n
i ):

Init Stage: n = 0, X0 = G(P, w), v0 = Ver(P,X0, ς0)
Iterate for all i ∈ {1 . . . n}: wi = H(ςi−1), Xi = G(P, wi), vi = Ver(P,Xi, ςi)
Return:

∏n
i=0 vi

The Proof of Computation System PCS is a tuple of the above defined algo-
rithms: (G,P,S,Ver,Gen,Check,H). The proposed extension is depicted in Fig. 3

Lemma 3 The extension proposed in Fig. 3 protects against deniability attacks
on 3-round IS via Fiat-Shamir transformation - as of Fig. 1.

Proof The proof is by contradiction. Similarly as in the proof of Lemma1, if
a malicious Verifier successfully, with non-negligible probability, attacks the
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Fig. 3. Extension based on Proof of Computation System.

scheme getting the transcript T = (w,X, 〈ςi〉n
i , S) and the Fiat-Shamir undeni-

ability proof i = (X,m), s.t: 〈ςi〉n
i = Gen(P, w), c = H(〈ςi〉n

i ), and c = H(X,m),
then we successfully find a collision for the hash function H with inputs
i = (〈ςi〉n

i ) and i = (X, r) (if H = H′), or break preimage resistance of either H
(with the image being c = H′(X, r)) or H′ (with the image being c = H(〈ςi〉n

i )).

�

4 Specific Scheme Proposition

To show the applicability of our propositions we introduce the modification of
the scheme from [1] augmented with our first extension, using textbook RSA
encryption. The proposed scheme is depicted in Fig. 4.

4.1 Simulation in the Passive Adversary Mode

The modified Schnorr IS preserves the simulatability property of its original
version. The protocol transcript can be efficiently simulated by the following
algorithm (for any public keys (pk, pe) and challenge message (m, b)):

Sim SPA
IS ((pk, pe = (e,N)), (m, b)):
ĉ = me, c = Hq(m, b), s ←R Z

∗
q ,

X := (gs/pkc), ĝ := HG(X, c), S := ĝs

return:
T = (ĉ, X, (m, b), S)

Observe that for this transcript the verification holds: ê(S, g) = ê(HG(X, c),
Xpkc). The simulator can play the simulated transcript T = (ĉ, X,m, S) in the
correct order, thus mimicking the real interaction between the parties. The real
transcript and the simulated tuple are identically distributed.
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Fig. 4. The proposed modified IS.

4.2 Security Analysis

In our analysis we assume that there is an effective Adversary that breaks our
scheme from Fig. 4. In the Query Stage, we interact with the Adversary, simulat-
ing the proofs without the secret key, but using the injected ephemerals. In the
Impersonation Stage, there are two mutually exclusive possibilities: either the
Adversary knows the challenge c = Hq(m, b) before sending X, or he does not.
Therefore, in our reduction proof, we guess in which alternative the Adversary
exists. If it knows the value c = Hq(m, b), we use it to break underlying secu-
rity of RSA. If the Adversary attacks without the knowledge of the challenge
c = Hq(m, b) we proceed as in the original proof from [1]. In the latter case,
we follow the methodology from [2,3], using rewinding technique. Namely, we fix
randomness ĉ, X, but change the bit b by setting it to 0 for the first run, and to
1 for the second run. This results with two tuples (ĉ, X,m, 0, S1), (ĉ, X,m, 1, S2)
letting us solve the underlying hard problem – in this case CDH.

Theorem 4. Let IS denote the modified identification scheme (as in Fig. 4). IS
is secure (in the sense of Definition 2), i.e. the advantage Adv(A, ExpCPLVE,λ,�)
is negligible in λ, for any PPT algorithm A.

We postpone the proof to the AppendixA.

5 Conclusion

In this paper, we have shown how to modify a wide class of three-move iden-
tification schemes secure against Prover Ephemeral Injection into identification
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schemes secure against Verifier Ephemeral Leakage and Deniability Attack. We
have shown an example based on a modified Schnorr IS from [1]. We have for-
malized a security model and proved the security of our constructions.

A Postponed Proof

Proof. We use ROM for hash queries. The proof is by contradiction. Sup-
pose there is an Adversary A = ( ˜P, ˜V) for which Adv(A, ExpCPLVE,λ,�) is non-
negligible. Thus, it can be used as a subprocedure: either to break security of
RSA by taking eth root in Z

×
N of a given challenge ciphertext c̃, or to break GDH

for the given instance g, gα, gβ , by computing gαβ , either with a non-negligible
probability. Therefore we draw a bit d which determines our strategy. If d = 0,
we assume a play against the Adversary in the first scenario, breaking the secu-
rity of RSA; otherwise, we play against the Adversary in the second scenario,
solving the CDH problem.

Init Stage: Let par ← G = (q, g,G) and (g, gα, gβ) be the CDH problem input
instance. We set pk = gα and give it to A. If d = 0, we assume pe and c̃ to
be the RSA input instance, thus we do not know the proper verifier’s secret
key; otherwise, we honestly generate verifier secret keys (pe, se). We initiate
RO table with columns I,H, r.

Query Stage: We interactively simulate, with an active malicious Verifier ˜V,
the protocol π(P x̄i(pk), ˜VOHG (pk, x̄i, {vi−1})), without the secret key, using
injected ephemerals x̄i, � times.

Serving Hash queries OHG
(Ii): If input Ii is in the RO table, the oracle returns

the corresponding output Hi. Otherwise, ri ←R Z
∗
q , Hi = gri , add (Ii,Hi, ri) to

the RO table.

(1) Commitment ĉ: Receive the commitment ĉ in the first message.
(2) Commitment X: Send ˜X = gx̄ to the Verifier ˜V.
(3) Proof S: Upon obtaining m, b from the Verifier, check me ?= ĉ and compute

c̄ = Hq(m, b). Query OHG
( ˜X, c̄) for r. Set ˜S = ˜Xrpkrc̄ = ĝx̄+skc̄. Note that:

ê(˜S, g) = ê(ĝ, ˜Xpkc̄). The simulated transcript tuple ˜T = (ĉ, ˜X, (m, b), ˜S)
and the potential real protocol execution transcript T = (ĉ, X, (m, b), S) are
of the same distribution.

Impersonation Stage: The strategy differs between the scenarios:

d = 0 We send the challenge ciphertext c̃ as Verifier’s commitment. If the Adver-
sary computes the challenge c = Hq(m, b) before sending X, we use him to
break the security of the underlying encryption scheme. Intercepting query
OHq

(m, b), we obtain m breaking the encryption one-wayness, in this case,
being the eth root of c̃ in Z

×
N , as me = c̃.
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d = 1 In ROM, we run π( ˜POHG (pk, pe, {vi}),V(pk, se)) playing the role of
the honest Verifier. We use the rewinding technique: we fix the random
value x used for X = gx by ˜P, and upon obtaining a correct proof mes-
sage, we rewind the prover back to the challenge phase, choosing b = 0 in
the first run and b = 1 in the second run. This gives us c1 = Hq(m, 0)
for the first run and c2 = Hq(m, 1) for the second run. Finally, we get
tuples (ĉ, X,m, 0, c1, S1, ĝ1, r1) and (ĉ, X,m, 1, c2, S2, ĝ2, r2). By inspecting
RO tables, we obtain ĝ1 = OHG

(X, c1) → gβr1 , ĝ2 = OHG
(X, c2) → gβr2 . If

we accept the Prover both times, i.e.: ê(S1, g) = ê(ĝ1, Xpkc1) and ê(S2, g) =
ê(ĝ2, Xpkc2). Hence we conclude: S1 = gβr1(x+αc1) and S2 = gβr2(x+αc2).
Thus S

1/r1
1 /S2

1/r2 = gβ(αc1−αc2) and gαβ = (S1/r1
1 /S2

1/r2)1/(c1−c2).

Now, let p denote the non-negligible probability of A breaking our scheme.
Let p0 be the probability that it knows c = Hq(m, b) before sending X. Let
p1 = 1 − p0 be the probability that it doesn’t know c = Hq(m, b) before sending
X. Thus, we break RSA with probability 1

2pp0, or alternatively, we break CDH
with probability 1

2p(1 − p0). Hence, we break one of the problems with non
negligible probability, which contradicts our assumptions for any probability
value p0 ∈ [0, 1]. 
�
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