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Abstract. Relay attacks are passive man-in-the-middle attacks that
aim to extend the physical distance of devices involved in a transac-
tion beyond their operating environment. In the field of smart cards,
distance bounding protocols have been proposed in order to counter
relay attacks. For smartphones, meanwhile, the natural ambient environ-
ment surrounding the devices has been proposed as a potential Proximity
and Relay-Attack Detection (PRAD) mechanism. These proposals, how-
ever, are not compliant with industry-imposed constraints that stipulate
maximum transaction completion times, e.g. 500 ms for EMV contact-
less transactions. We evaluated the effectiveness of 17 ambient sensors
that are widely-available in modern smartphones as a PRAD method
for time-restricted contactless transactions. In our work, both similarity-
and machine learning-based analyses demonstrated limited effectiveness
of natural ambient sensing as a PRAD mechanism under the operating
requirements for proximity and transaction duration specified by EMV
and ITSO. To address this, we propose the generation of an Artificial
Ambient Environment (AAE) as a robust alternative for an effective
PRAD. The use of infrared light as a potential PRAD mechanism is
evaluated, and our results indicate a high success rate while remaining
compliant with industry requirements.

Keywords: Mobile payments · Relay attacks · Ambient environment
sensing · Contactless · Experimental analysis

1 Introduction

Today, a wide variety of application environments exist that demand proximity
of a user with a physical terminal, as well as high throughput, i.e. maximising
the number of transactions per unit time. Both smart card-based payments and
transport-related transactions are major examples of such applications in every-
day life. These particular services are governed by industry-accepted standards,
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such as the EMV specifications for card and mobile contactless payments. Under
EMV, contactless transactions should complete within 500 ms [2–4]. Similarly,
transport-related transactions should complete between 300 and 500 ms [1]. In
addition to these, other applications exist that depend on proximity and trans-
action time, particularly in the realm of the Internet of Things (IoT), such as
taking medical equipment inventories in operating theatres. The domain of sen-
sor networks is another closely-related area where communication time and the
proximity of sensors can be of paramount importance.

In this paper, we examine the problem of proximity detection in applica-
tions with restricted time-frames. Specifically, we focus on applications that are
deployed traditionally as contactless smart cards but are gradually migrating to
mobile phones using Near-Field Communication (NFC). During an NFC-based
mobile contactless transaction, a mobile handset is brought into the radio range
(<3 cm) of a payment terminal through which a dialogue is initiated. NFC, how-
ever, has no provisions to ascertain whether the device is genuinely in proximity
to the terminal, which makes them susceptible to relay attacks.

In a relay attack [8,9,38], the aim of the malicious actor is to extend the phys-
ical distance of the communication channel between the victim’s mobile phone
and the transaction terminal – relaying each message across this extended dis-
tance. The attacker extends this distance using equipment that masquerades as
legitimate devices to both the terminal and victim device, as shown in Fig. 1. The
attacker has the potential to gain access to services using the victim’s account if
messages are relayed successfully without detection. At present, additional secu-
rity mechanisms, like fingerprint scanning and Personal Identity Number (PIN)
entry, may also be required in order to perform a contactless mobile transaction
for a payment, transport ticketing, and similar services. However, even the use
of PINs and biometrics cannot always prevent relay attacks (see the Mafia fraud
attack [7]).

Fig. 1. Overview of a relay attack [31].

In recent years, a deluge of Proximity/Relay Attack Detection (PRAD) mech-
anisms have been proposed that rely on collecting information regarding the
ambient environment surrounding the transaction instrument and terminal. Such
proposals collect data using the sensors in modern mobile devices – such as tem-
perature, motion and position sensors – which is compared for similarity to assure
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that the transaction devices were genuinely in proximity. In this work, we present
an empirical evaluation of the claim that ambient sensing on mobile devices is
an effective PRAD method under the time conditions stipulated by industry. We
present an extended study before proposing the utility of an artificially generated
ambient environment as an alternative PRAD mechanism.

2 Natural Ambient Environment Sensing

In this section, we discuss a number of generic deployment models for deploying
proximity- and transaction time-sensitive applications using ambient sensing.
Next, we discuss related work before evaluating the claim that ambient sensors
are an effective PRAD mechanism under the real-world constraints imposed by
industry requirements, i.e. by EMV and ITSO.

2.1 Ambient Sensors in Conventional Transactions

For contactless smart cards, relay attacks can be countered using distance bound-
ing protocols [27] and variants of such [18]. This is still an active research domain,
with new attacks and countermeasures emerging [5,7,17]. At the current state
of the art, however, these are not easily transferable to NFC-enabled phones,
due to their high sensitivity to time delays [6,16,35]. Alternative methods have
been proposed to provide proximity detection, most of which use environmental
and motion sensors present on modern mobile handsets [16,23,32,34,36,37]. In
Sect. 2.2, we discuss how ambient sensors have been proposed to counter relay
attacks in NFC-based mobile contactless transactions.

An ambient sensor measures a particular environmental property of its imme-
diate surroundings, such as temperature, light, humidity and sound; a wealth of
such sensors are deployed in modern smartphones and tablets. In Fig. 2, we illus-
trate a generic approach for deploying ambient sensing as a proximity detection
mechanism for mobile payments, with the following variations:

Fig. 2. Generic deployment of mobile sensing for proximity detection [31].
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1. Independent Reporting. Both the smartphone and payment terminal col-
lect sensor measurements independently of each other and transmit these to
a trusted authority (depicted as solid lines in Fig. 2). The authority compares
the sensor measurements, based on some predefined comparison algorithm
with set margins of error (threshold), and decides whether the two devices
are within proximity to each another.

2. Payment Terminal Dependent Reporting. This set-up involves the
smartphone encrypting the sensor measurements with a shared key between
smartphone and trusted authority, and transmitting the encrypted message to
the payment terminal (shown as double-dot-dash lines in Fig. 2). The payment
terminal sends its own measurements and the smartphone’s to the trusted
authority for comparison.

3. Payment Terminal (Localised) Evaluation. The smartphone transmits
its measurement to the payment terminal, which compares it with its own
measurements locally; the payment terminal then decides whether the smart-
phone is in proximity.

2.2 Related Work

We identify and summarise key pieces of related work that have suggested using
natural ambient sensing as a PRAD mechanism.

Ma et al. [23] explored the use of GPS (Global Positioning System) location
data for determining the proximity of two mobile phones. A ten-second recording
window was used in which GPS data was collected every second, which was
subsequently compared across various devices. The work reported a high success
rate in identifying co-located devices.

Halevi et al. [16] demonstrated the use of ambient sound and light for
proximity detection. The authors analysed sensor measurements – collected for
2 and 30 s duration for light and audio respectively – using a range of similarity
comparison metrics. Extensive experiments were performed in different physical
locations with a high success rate in detecting proximate devices.

Varshavsky et al. [37] used the shared radio environment of devices – the
presence of WiFi access points and associated signal strengths – as a proximity
detection mechanism for secure device pairing. The approach was considered
to produce low error rates and, while it did not focus on NFC-based mobile
transactions, their techniques and methodologies may still be applicable.

Urien et al. [36] suggested using ambient temperature with an elliptic curve-
based RFID/NFC authentication protocol to determine whether two devices are
co-located before creating a secure channel. The proposal combines the timing
channels in RFID, used traditionally in distance bounding protocols, in conjunc-
tion with ambient temperature. The work, however, was not implemented and
has no experimental data to evaluate its effectiveness.

Mehrnezhad et al. [25] proposed the use of an accelerometer to provide
proximity assurances of a mobile device with a payment terminal. The scheme
requires the user to tap the terminal twice in succession, before comparing the
sensor data from the device and the terminal for similarity. It is difficult to
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deduce the total time it took to complete a transaction entirely, but the authors
provide a recording time range of 0.6–1.5 s.

Truong et al. [34] evaluated four different sensors using a recording duration
of 10–120 s. While the results were positive, the long sampling duration renders
it unsuitable for NFC-based mobile transactions.

Additional work by Jin et al. [20] showed that a smartphone’s magnetometer
can be used to establish proximity assurance. This approach requires more than
500 ms; the authors do not claim that magnetometers can provide an effective
relay attack detection mechanism.

Shrestha et al. [32] used a number of ambient sensors within specialised hard-
ware, known as Sensordrone, for proximity detection. The work was not evalu-
ated using the ambient sensors available on commodity handsets, did not provide
the sampling duration, and states that data from each sensor was collected for
a few seconds.

Table 1. Related work in sensor-based PRAD mechanisms.

Paper Sensor(s) used Sample duration Contactless
suitability

Ma et al. [23] GPS 10 s Unlikely

Halevi et al. [16] Audio 30 s Unlikely

Light 2 s More Likely

Varshavsky et al. [37] WiFi (Radio waves) 1 s More Likely

Urien et al. [36] Temperature N/A –

Mehrnezhad et al. [25] Accelerometer 0.6 to 1.5 s More Likely

Truong et al. [34] GPS raw data 120 s Unlikely

WiFi 30 s Unlikely

Ambient audio 10 s Unlikely

Bluetooth 12 s Unlikely

Shrestha et al. [32] Temperature (T) Few seconds Unlikely

Precision Gas (G) Few seconds Unlikely

Humidity (H) Few seconds Unlikely

Altitude (A) Few seconds Unlikely

HA Few seconds Unlikely

HGA Few seconds Unlikely

THGA Few seconds Unlikely

Table 1 summarises past work, using sensor sampling durations to determine
their suitability for NFC-based mobile phone transactions in banking and trans-
portation. ‘Unlikely’ proposals have sample durations so large that they may not
be adequate for mobile-based services that substitute contactless cards, while
those with reasonably short durations are labelled ‘More Likely’. However, even
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schemes denoted as ‘More Likely’ may not be suitable as no proposal is evalu-
ated under the time constraints stipulated by the banking and transport sectors.
In these sectors, the goal is to serve people as quickly as possible to maximise
customer throughput, as alluded to in Sect. 1; time is critical in determining
whether a transaction is successful and, indeed, permitted. Here, an optimal
transaction duration is 500 ms rather than seconds.

Our initial study (Shepherd et al. [31]) questioned the effectiveness of ambient
sensing as a proximity detection mechanism under short time frames (500 ms)
– illustrating that numerous sensors available via the Android platform per-
form poorly within an operating distance of <3 cm and transaction-duration of
<500 ms. Both threshold- and machine learning-based analyses were employed
using sensor data collected from mock transactions in the field. Similar results
were also exhibited by further experimentations (Haken et al. [15]) using sensors
on the Apple iOS platform. Our third analysis (Gurulian et al. [14]) selected
seven of the best-performing sensors from our first study [31]. In this study, sen-
sor data from genuine and relay transactions was collected from an emulated
relay attack set-up, with the goal of determining whether data from relayed
transactions can be distinguished from legitimate ones. In the following sections,
we reproduce the results from these initial studies along with additional analyses
conducted post-publication. Note that the focus of this work is on conventional
transactions that require no further interaction with the terminal, e.g. double-
tapping, a gesture, or otherwise. Ambient sensing has also been used in various
user-device authentication, key generation and secure channel schemes [21,30].
These applications typically measure the environment for longer periods of time
(>1 s) and, generally speaking, their primary goal is not proximity detection of
a device with a terminal. As such, we omit these from the discussion.

2.3 Approaches and Evaluation Metrics

In previous work, two approaches have been used predominately for sensing-
based PRAD mechanisms:

– Threshold-based Similarity : the use of time and frequency domain similarity
metrics, such as Mean Absolute Error (MAE), Pearson’s Correlation Coeffi-
cient and Coherence. A single threshold is generated that aims to separate
all legitimate transactions from illegitimate ones using a particular similar-
ity metric. The transaction is accepted if the metric result falls within this
pre-set threshold of the maximum allowed dissimilarity.

– Machine Learning : the use of well-known classification algorithms, such as
Näıve Bayes, Support Vector Machines (SVMs) and Random Forests. The
classifier is trained on a set of feature vectors with corresponding binary
labels (legitimate or relayed transaction), which are collected beforehand.
The trained model is used to classify subsequent transaction data streams as
legitimate or relayed.

Standard binary classification evaluation metrics have been applied to mea-
sure the effectiveness of a particular scheme, namely classification accuracy [16],
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f-scores1 [32,34] and Equal Error Rate (EER) [25]. F-scores and EERs involve
the computation of false positives/acceptances (the number of relayed transac-
tions accepted erroneously) and false negatives/rejections (the number of legal
transactions rejected). F-scores account for precision, the correct positive results
divided by the number of all positive results, and recall, the number of correct
positive results as proportion of the number of positive results that should have
been identified (see Eq. 1). The EER – used extensively in biometrics, e.g. finger-
print recognition [24] – is found by calculating the False Acceptance Rate (FAR)
and False Rejection Rate (FRR), shown in Eq. 2, over a range of thresholds and
finding the rate at which FAR = FRR. Alternatively, some authors have opted
to present the FAR and FRR results alone [37]. Finally, accuracy represents the
correct identification of positive and negative transactions in the test set (Eq. 3),
but does not clearly illustrate the number of false positives and negatives.

F-scores and accuracy have been used to primarily evaluate machine learning-
based relay attack detection, e.g. [32,34], while EERs have been employed for
threshold-based similarity approaches [25] to find an acceptance threshold that,
broadly speaking, balances usability (false rejection rate) with security (false
acceptance rate). We use the EER as a common evaluation metric for assessing
the performance of machine learning and threshold-based approaches across a
variety of similarity metrics.

Fscore =
2TP

2TP + FP + FN
(1)

FAR =
FP

FP + TN
FRR =

FN

FN + TP
(2)

Accuracy =
TP + TN

P + N
(3)

2.4 Effectiveness for Proximity Detection

In our first study [31], we evaluated the effectiveness of ambient sensors to
determine whether two devices are in proximity to one another (irrespective
of whether a relay attack is in action). A field trial was conducted in which
sensor data from 1000 transactions per sensor was collected from 252 users at
four different locations on a university campus. Two devices were used for the
data collection: a transaction terminal (TT), and a transaction instrument (TI).
Data was collected for 500 ms upon the initiation of the NFC-based transaction,
and stored locally for later evaluation (Fig. 3).

We subjected this data to the two analyses discussed in Sect. 2.3 –
threshold-based similarity and machine learning – to determine whether data
from legitimately co-located devices can be distinguished from non-proximate
pairs. The implementation of the test-bed, data analysis and collected data
sets are made available at: https://github.com/AmbientSensorsEvaluation/
Ambient-Sensors-Proximity-Evaluation.git. The source code for the additional
1 Also known as the F1 score or F-measure.

https://github.com/AmbientSensorsEvaluation/Ambient-Sensors-Proximity-Evaluation.git
https://github.com/AmbientSensorsEvaluation/Ambient-Sensors-Proximity-Evaluation.git
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TT TI

1) sensor—transaction ID

recordSensor() recordSensor()

validateReceivedData()

2) sensor—transaction ID

saveMeasurement()validateReceivedData()

saveMeasurement()

Fig. 3. Measurement recording overview.

threshold-based experiments presented in this paper can be found at: https://
github.com/AmbientSensorsEvaluation/Threshold-Based-Analysis.

Analysis Approach. For each sensor, the EER and associated threshold,
t, were computed using six time- and frequency-domain similarity measures,
including those used in previous work. We list these forthwith. Time domain met-
rics: Mean Absolute Error (MAE), Eq. 4; Pearson’s correlation coefficient [25],
Eq. 5; maximum cross-correlation [16,34], Eq. 6; and Euclidean distance [34],
Eq. 7. Frequency domain: coherence [25], Eq. 8. Both domains: time-frequency
distance [16,34], Eq. 9. In [31], we presented results only from the MAE and
Pearson’s correlation coefficient; in this work, we present the results from all of
these similarity metrics. Each metric was applied directly onto the sensor data
collected during the field trials. For machine learning, the Weka package was
employed, while a Python application was developed for threshold-based simi-
larity learning using the Numpy, Scipy, Matplotlib and Pandas Python packages
for metric implementations, graph plotting and CSV data processing.

MAE(A,B) =
1
N

N∑

i=1

|Ai −Bi| (4)

corr(A,B) =
∑N

i=1((Ai − µA)(Bi − µB))√∑N
i=1 (Ai − µA)2

∑N
i=1 (Bi − µB)2

(5)

Where µA represents the arithmetic mean of A.

Mcorr(A,B) = max(cross correlation(A,B)) (6)

https://github.com/AmbientSensorsEvaluation/Threshold-Based-Analysis
https://github.com/AmbientSensorsEvaluation/Threshold-Based-Analysis
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d(A,B) =

√√√√
N∑

i=1

(Bi −Ai)
2 (7)

CAB(f) =
|GAB(f)|2

GAA(f) ·GBB(f)
FAB =

∑

f

CAB(f) (8)

Where GAA is the auto-spectral density of A and GAB is the cross-spectral
density of signals A and B (left). The similarity is found by the sum of the
magnitudes of coherence values at all frequencies (right).

Diff(A,B) =
√

Dtime(A,B)2 + Dfreq(A,B)2 (9)

Where Dtime(A,B) = 1 − Mcorr(A,B) and Dfreq(A,B) = ||FFT (A) −
FFT (B)||, in which ||FFT (A) − FFT (B)|| is the Euclidean norm of the FFTs
of signals A and B.

Results. The results for the threshold-based and machine learning analyses
are presented in Tables 2 and 3 respectively. Note that the proximity sensor
was excluded from the analysis. On some Android devices, proximity sensors
return the precise distance at which an object is located from the sensor, whereas
others return a binary value for whether an object is close to/far from the sensor
(within 5 cm)2. Our test-bed devices returned only binary values. Virtually every
transaction contained ‘far’ values, as the devices were tapped back-to-back and
the sensor was located on the front of the device. Consequently, this returned
identical values in almost all cases when applying the similarity metrics described
previously, e.g. MAE = 0, which impeded threshold-finding. Machine learning
was able to capture the rare times in which the sensor returned ‘close’ values,
like when the user covered the device with their hand during the transaction.
While the machine learning results are included, the issues identified mean they
should be treated with caution. Other technical challenges existed elsewhere; the
Rotation Vector sensor, for example, returned significant numbers of zero values
on the test-bed devices, which likely distorted the results of our analysis, while
sound was capable of capturing values for only half of the permitted 500 ms
time-frame. The reader is referred to [31] for a breakdown of sensor success and
any technical limitations encountered.

The results indicate that no sensor in either analysis can satisfactorily dis-
tinguish between proximate and non-proximate device data pairs. Some sensors
provide virtually no discrimination and perform similarly to a random classi-
fier, e.g. accelerometer (43.4–49.8% EER) and linear acceleration (42.6–50.0%).
Other sensors provide better discrimination, e.g. magnetic field (29.2–32.3%)
and pressure (9.2–27.0%), but still fall short of acceptable performance. Even
in the best case – the pressure sensor using the Decision Tree classifier – the

2 http://developer.android.com/guide/topics/sensors/sensors position.html#
sensors-pos-prox.

http://developer.android.com/guide/topics/sensors/sensors_position.html#sensors-pos-prox
http://developer.android.com/guide/topics/sensors/sensors_position.html#sensors-pos-prox
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Table 2. Threshold-based EERs for each sensor with Mean Absolute Error (MAE),
Pearson’s Correlation Coefficient (PCC), Maximum Cross-Correlation (C-Corr),
Euclidean Distance (ED), Coherence (Coh) and Time-Frequency Distance (T-FD).
Best result for each sensor shown in bold.

Sensor MAE PCC C-Corr ED Coh T-FD

Accelerometer 0.434 0.458 0.501 0.498 0.542 0.501

GRVa 0.384 0.486 0.500 0.442 0.524 0.498

Gravity 0.429 0.424 0.498 0.501 0.506 0.498

Gyroscope 0.443 0.441 0.493 0.498 0.548 0.499

Light 0.488 0.496 0.545 0.502 0.471 0.546

Linear acceleration 0.496 0.426 0.494 0.507 0.507 0.500

Magnetic field 0.323 0.384 0.537 0.337 0.568 0.536

Pressure 0.270 0.492 0.601 0.283 0.503 0.601

Rotation Vector 0.498 0.466 0.501 0.278 0.500 0.273

Sound 0.417 0.488 0.481 0.338 0.518 0.481

Proximity excluded due to insufficient unique values.
aGRV: Geomagnetic Rotation Vector sensor

Table 3. Estimated EERs for machine learning algorithms, obtained by repeating
stratified 10-fold cross-validation 10 times. Best result for each sensor shown in bold.

Sensor Random

Forest

Naive Bayes Logistic

Regression

Decision Tree Support

Vector

Machine

Multilayer

Perceptron

Accelerometer 0.626 ± 0.024 0.509±0.026 0.526±0.023 0.500 ± 0.0 0.498 ± 0.025 0.551± 0.025

GRV 0.435± 0.021 0.447 ± 0.024 0.474 ± 0.031 0.500 ± 0.0 0.489 ± 0.036 0.450 ± 0.026

Gravity 0.874 ± 0.018 0.579 ± 0.020 0.579 ± 0.024 0.500 ± 0.0 0.500 ± 0.026 0.746 ± 0.112

Gyroscope 0.683 ± 0.027 0.499 ± 0.024 0.543 ± 0.024 0.500 ± 0.0 0.511 ± 0.025 0.514 ± 0.025

Light 0.576 ± 0.026 0.515 ± 0.024 0.533 ± 0.025 0.500 ± 0.0 0.508 ± 0.024 0.513 ± 0.028

Linear

acceleration

0.603 ± 0.025 0.507 ± 0.027 0.543 ± 0.023 0.500 ± 0.0 0.500 ± 0.021 0.554 ± 0.028

Magnetic field 0.292 ± 0.021 0.319 ± 0.020 0.322 ± 0.020 0.415 ± 0.015 0.398 ± 0.046 0.329 ± 0.026

Pressure 0.103 ± 0.010 0.107 ± 0.010 0.287 ± 0.013 0.092 ± 0.054 0.319 ± 0.045 0.114 ± 0.019

Proximity 0.499 ± 0.031 0.537 ± 0.069 0.476 ± 0.188 0.500 ± 0.0 0.543 ± 0.254 0.508 ± 0.197

Rotation

Vector

0.276 ± 0.046 0.563 ± 0.243 0.596 ± 0.233 0.500 ± 0.0 0.513 ± 0.243 0.488 ± 0.245

Sound 0.288 ± 0.019 0.314 ± 0.022 0.310 ± 0.021 0.347 ± 0.136 0.411 ± 0.041 0.306 ± 0.020

EER was 9.2%. By definition of the EER, this implies that approximately
9.2% of both legitimate and illegitimate transactions would be rejected and
accepted respectively. Rejecting almost 1-in-10 legitimate transactions in a high
throughput scenario is likely to cause user annoyance in practice, such as mobile
ticketing in a subway system. As such, it is difficult to recommend any single
sensor in our analysis as an effective proximity detection method.
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2.5 Effectiveness for Relay Attack Detection

The first evaluation [31] focused only on proximity detection, rather than using
data from relay attacks. In our next major work, we conducted further field
trials [14] in which data was collected from two devices that were genuinely in
proximity, and a third device that was located 1.5 m/5 ft away. This replicated a
relay attack in which an adversary launches the attack on a nearby victim, such
as in a shop queue. We aimed to determine whether sensor data from the relay
device pair – the terminal and the device 5 ft away – could be distinguished from
a legitimate pair, i.e. the terminal and the device in proximity.

The relay pair comprised a transaction terminal (TT) and a transaction
instrument (TI′), whereas the legitimate pair consisted of a relay transaction
terminal (TT′), and a transaction instrument (TI). Devices TI′ and TI were
tapped simultaneously against devices TT and TT′ respectively. A 500 ms NFC-
based transaction was then initiated on both sides and, upon completion, the
devices TT, TI′, and TI stored the collected sensor data locally for off-line analy-
sis. Figure 4 presents an overview of the recording process.

TT TI′ TT′ TI

NFC: 1) sensor|transaction ID

WiFi: sensor|transaction ID

NFC: 1) sensor|transaction ID

recordSensor()

NFC: 2) sensor|transaction ID

recordSensor() recordSensor()

NFC: 2) sensor|transaction ID

saveMeasurement() saveMeasurement()validateReceivedData()

saveMeasurement()

Fig. 4. Measurement recording process.

The implementation of the test-bed, data analysis and collection data
sets for [14] are available at: https://github.com/AmbientSensorsEvaluation/
Ambient-Sensors-Relay-Attack-Evaluation.

Analysis Approach and Results. In this study, we limited our sensor selec-
tion to the best performing sensors from our first analysis (Shepherd et al. [31]),
i.e. those which successfully and consistently captured values within the 500 ms
time limit over 1,000 transactions. Additionally, based on our initial investiga-
tions, we eliminated sensors that are largely uncommon on commodity hand-
sets in the current market (2016–2017), like the pressure sensor. The reader is

https://github.com/AmbientSensorsEvaluation/Ambient-Sensors-Relay-Attack-Evaluation
https://github.com/AmbientSensorsEvaluation/Ambient-Sensors-Relay-Attack-Evaluation
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referred to [14,31] for a detailed discussion of these matters. The same analysis
techniques were used as the previous work for proximity detection – threshold-
based analysis with the same similarity measures, and machine learning – using
the EER evaluation metric. The results for the threshold-based and machine
learning analyses of this study can be found in Tables 4 and 5 respectively.

Similar to our previous study (Sect. 2.4), some sensors provided poor dis-
criminatory power; the magnetic field sensor, for instance, gave EERs of 36.1%
and 43.3% in the analyses. Some sensors provided greater discriminatory power,
e.g. gyroscope (17.9% EER with Random Forest) and the rotation vector sen-
sor (27.7%, also with Random Forest). These EERs, however, are still too high
to recommend as an effective PRAD in high throughput situations. Based on
this evaluation, we reached the tentative conclusion that sensing the transaction
devices’ natural ambient environment may not be a suitable PRAD mechanism
under industry-specified time constraints. In future work, we aim to conduct
additional experiments using multiple sensors with various permutations and
sensor fusion techniques to further interrogate the veracity of our conclusions.

Table 4. Threshold-based EERs (using the metric abbreviations in Table 2).

Sensor MAE PCC C-Corr ED Coh T-FD

Accelerometer 0.494 0.477 0.590 0.468 0.507 0.590

Gyroscope 0.521 0.455 0.535 0.495 0.528 0.489

Magnetic field 0.444 0.473 0.470 0.433 0.487 0.470

Rotation vector 0.330 0.472 0.327 0.670 0.534 0.509

Gravity 0.521 0.490 0.401 0.289 0.503 0.362

Light 0.367 0.488 0.444 0.372 0.505 0.437

Linear acceleration 0.482 0.536 0.503 0.506 0.443 0.493

The poor performance of measuring the natural environment as a PRAD led
us to explore the generation of an artificial ambient environment that is unique
to each transaction. In the following section of this paper, we introduce and
discuss artificial ambient environments in greater detail.

3 Detection via Artificial Ambient Environments

As an alternative to the natural ambient environment, we proposed the gener-
ation of an Artificial Ambient Environment (AAE) using the peripherals of the
transaction devices [12]. In this section, we discuss the basic principles of using
AAEs as an anti-relay mechanism. Firstly, we present how infrared light can be
used as an AAE actuator, before describing the use of sound as a proximity detec-
tion mechanism and as a communication medium for proximate devices. Finally,
we suggest how other actuators may be used to provide proximity assurances.
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Table 5. Estimated EER for machine learning algorithms, obtained by repeating 10-
fold cross-validation 10 times.

Sensor Random
Forest

Naive
Bayes

Decision
Tree

Logistic
Regression

Support
Vector
Machine

Accelerometer 0.277 ± 0.052 0.474 ± 0.047 0.358 ± 0.059 0.483 ± 0.050 0.454 ± 0.126

Gyroscope 0.179 ± 0.041 0.354 ± 0.059 0.228 ± 0.049 0.356 ± 0.055 0.288 ± 0.045

Magnetic field 0.361 ± 0.055 0.400 ± 0.053 0.389 ± 0.063 0.421 ± 0.061 0.385 ± 0.053

Rotation vector 0.285 ± 0.052 0.327 ± 0.055 0.317 ± 0.073 0.353 ± 0.050 0.325 ± 0.050

Gravity 0.499 ± 0.046 0.488 ± 0.043 0.494 ± 0.057 0.484 ± 0.043 0.486 ± 0.156

Light 0.361 ± 0.059 0.369 ± 0.058 0.293 ± 0.149 0.407 ± 0.054 0.351 ± 0.054

Linear
acceleration

0.307 ± 0.050 0.484 ± 0.048 0.392 ± 0.057 0.502 ± 0.049 0.397 ± 0.058

3.1 Artificial Ambient Environments

In order to increase the irreproducibility and uniqueness of an ambient envi-
ronment, the transaction devices generate an artificial environment using their
peripherals – measurable by a particular ambient sensor(s). The artificial envi-
ronment should be based on randomly generated bits or sequences to act as
a second (out-of-band) channel for assuring proximity between the transaction
devices (see Fig. 5).

Fig. 5. High-level communication overview.

Upon initiation of a transaction, one (unidirectional) or both (bidirectional)
device(s) are responsible for the generation and/or sensing of the AAE for some
predefined time. After recording the sensor measurement, a comparison is per-
formed with the captured data from both devices. The comparison may be per-
formed by one of the communicating parties or by a trusted third party, as
discussed in Sect. 2.1.

During the comparison, only the data that was captured while the artificial
ambient channel was active should be considered; data captured outside this
time-frame should be discarded. This way, an attacker cannot capture the gen-
erated sequence and then replay it at a remote location. Moreover, for an effective
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AAE, the attacker should not be able to relay the data from the out-of-band
channel in a way that the trusted comparison party cannot distinguish between
a legitimate and an illegitimate transaction with a high degree of confidence.

To summarise, the basic principles of an AAE are:

1. The AAE generation should be based on random bits/sequences.
2. The AAE should provide sufficient evidence in order for two genuine devices

to establish proximity assurance.
3. It should be hard for the attacker to accurately reproduce the AAE at a

remote location.

The primary goal of the AAE is to protect against the off-the-shelf attacker.
A resourceful attacker with access to state of the art equipment might be capable
of effectively reproducing the same conditions at a remote location in a timely
fashion. However, smartphones suffer from a plethora of security issues [26] and,
in practice, a resourceful attacker is more likely to exploit these than invest in
state of the art hardware to conduct a relay attack. On modern smartphones,
widely-available peripherals that could potentially act as AAE actuators include:
1. the device’s infrared emitter, 2. speaker, 3. flash light, 4. vibration, 5. display,
6. WiFi, 7. Bluetooth, 8. camera.

3.2 Infrared Light as an AAE Actuator

In [12], the use of infrared light as an AAE actuator was empirically evaluated.
The AAE generation was based on 500 random bits, represented by 200µs long
pulses (1s) and pauses (0s) of the infrared emitter (therefore the total emis-
sion time was 100 ms). The bit sequence ‘1101110011’, for instance, would be
represented by the stream shown in Fig. 6.

Fig. 6. Representation of the bit sequence ‘1101110011’ in pulses-pauses.

The transaction instrument (TI) begins the infrared emission process when
the transaction is initiated. The transaction terminal (TT) listens for infrared
signals for 100 ms plus some acceptable offset window (4 ms), and rejects any
signals received outside of this time-frame. Due to intrinsic hardware delays
encountered during the experiments, TI was not able to immediately initiate
the emission process, and some time xi was required prior to the process to
compensate for this. This time was quantifiable because the total emission time
(100 ms) was known, as well as the total time required between the initiation
and completion of the emission process. The bits accepted by device TT hence
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depended upon time xi. Any bits captured prior to (xi − 2 ms) and after (xi +
100 ms + 2 ms) were rejected, where the 2 ms before and after comprises the
acceptable offset. The offset is the maximum allowed deviation from the average
time required by the transaction initiation. Figure 7 depicts the process on the
two channels.

Fig. 7. Infrared as an AAE actuator.

The generated bits from TI and the captured bits from TT are compared for
similarity after this process. As mentioned in Sect. 2.1, the comparison itself may
take place on the terminal or by a trusted third party. Further investigations [13]
showed that the process overhead is minimal, and the comparison can take place
effectively during the transaction time (500 ms) by one of the devices.

The assumption of this technique is that an attacker, using off-the-shelf equip-
ment, cannot effectively relay infrared data within that time-frame without being
detected. A delay of more than 200µs in relaying a single bit would introduce
new bits into the sequence. Caching might increase the potential for an attacker
to evade the proposed solution, since the risk of introducing extra bits is shifted
from the bit level to the cache length level (when the relay is delayed by more
than 200µs). However, extensive caching (more than approximately 4 ms) would
prolong the completion of the emission process beyond the acceptable time-limit
of 100 ms, and so the delayed bits would not be considered. Hence, caching and
subsequently relaying segments of the captured random sequence would have to
be limited a maximum of a few milliseconds. Moreover, relay equipment such as
fibre optics, where a cable connects the two relay devices, were not considered,
as it can be easily detectable by the victim and/or terminal operator.

During a legitimate transaction, the similarity between the emitted and cap-
tured data was measured to be 98% or higher on approximately 98% of the
performed transactions. This, therefore, was set as a baseline threshold. The
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dwdiff tool3 was used for the comparison of the two bit-streams. Six distinct
relay test-beds were developed using off-the-shelf equipment, such as infrared
extenders, Raspberry Pis, and mobile devices. None of the test-beds could effec-
tively attack the proposed solution. The highest similarity rate after conducting
a relay attack was achieved by an infrared extender, with 95% similarity across
approximately 10% of all performed transactions. The reader is referred to [12]
for a detailed discussion of the test-beds and the results.

3.3 Sound as an AAE Actuator

To use sound as an AAE actuator, one or both of the transaction devices generate
and play a random sound through their speakers for some predefined time. In the
event that only one device is playing the sound, the other should be recording.
The captured sound-waves should then undergo a similarity comparison upon
completing the recording. In case both devices are playing a randomly generated
sound, they should also record simultaneously. The two captured sound-waves
should again be compared against each other upon completion. A variation of this
approach was investigated by Li et al. [22]. Even though the primary purpose
was to restrict the communicating distance of two devices, they also demon-
strate the effectiveness against relay attacks as part of their solution. In this
work, the acoustic channel was used as the main channel for communicating
messages between two devices. Signals were transmitted at a high frequency
by both devices simultaneously (full-duplex communication). The full-duplex
approach assisted towards relay attack prevention, as each device was captur-
ing signals from both communicating devices, including itself. It could therefore
estimate whether a message from the opposite party was received within some
acceptable window by juxtaposing it with the message emanating from itself.
Positive results were reported by the authors with a high success rate in silent
environments; however, this degraded as the surrounding environment became
noisier.

Karapanos et al. [21] explored the use of sound as a two-factor authentication
method; however, attacks and potential solutions against this method have been
demonstrated by Shrestha et al. [33].

Yi et al. [39] used the acoustic channel as a means of user authentication
for unlocking mobile devices using a wearable device (smartwatch). The authors
reported promising results with a lower bit error rate than conventional smart-
phone unlocking methods, e.g. PIN entry. While the main purpose of this work
was not to counter relay attacks, they argue that such attacks would be expen-
sive to carry out and, as the size of the relay equipment is large, it could easily
be identified by a genuine user. They also claim that fingerprinting techniques
can be used to uniquely identify the acoustic hardware to determine whether
it originated from a genuine or relay device. Lastly, they mention that distance
bounding protocols can be used, but a full investigation of this was considered
out of scope.

3 dwdiff tool: http://os.ghalkes.nl/dwdiff.html.

http://os.ghalkes.nl/dwdiff.html
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Based on the analysis in [31], while promising results have been demonstrated
through the use of sound as a PRAD mechanism, it might not be applicable
in EMV, transport ticketing, or other transactions with industry-imposed time
restrictions of up to 500 ms. On average, due to latency related to initiating the
recording process, recordings lasted for less than 280 ms within a 500 ms per-
mitted time-frame. Similar latencies were not observed on most of the evaluated
sensors; we concluded that sensor hardware may have a significant bearing on
the effectiveness of a PRAD mechanism.

3.4 Other AAE Actuators

In this section, we discuss other potential AAE actuators; we focus on the can-
didate actuators listed in Sect. 3.1. In some cases, like in the case the Bluetooth
or the WiFi, the underlying technology may not be flexible enough to be used
as an AAE actuator without substantial modifications.

The display of a device could be used as a potential AAE actuator in combi-
nation with the camera of the communicating device. One device could display a
randomly generated video feed to be recorded by the other device; the displayed
and captured video feeds may then be compared for similarity. The advantage
of this technique is that relaying video may incur a relatively large degree of
latency. The main downsides are that: 1. the two devices ought to be held in the
correct way to maximise success; and 2. the delay in capturing and playback of
a stream could potentially negatively affect the results.

Similarly, the device’s flashlight could be used by displaying a random pattern
that is captured by the communicating party’s camera or light sensor. Previous
work has achieved reliable emission at speeds up to 500 bits per second (bps)
using a LED flashlight and 15 bps using a Xenon flashlight [10,11,19], but this is
5 times slower than a typical infrared emitter, as per [12]. As such, an attacker
would have a much larger relay window, which may hinder the effectiveness of
this method. Additionally, the flashlight falls within the visible light spectrum,
which may physically disturb nearby users.

One other potential option is vibration. While vibration has not been used
to the best of our knowledge as a relay attack detection mechanism, it has been
used to authenticate RFID tags [28] and to exchange secrets [29] with a high
success rate. This evidence suggests that there is a potential in using vibration as
an anti-relay mechanism. Here, one or both of the transaction devices generate
a random vibration pattern, which is measured by both devices using a motion
sensor, e.g. accelerometer. The captured data can be transmitted to a trusted
third party upon the completion of the transaction for comparison.

4 Conclusion and Future Work

Proximity and Relay-Attack Detection (PRAD) is an important element for
many contactless and wireless technologies. In this work, we illustrated that the
viability of PRAD mechanisms can be largely dependent on the time constraints
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mandated by industry requirements. Contactless payment transactions for exam-
ple – whether smart card- or smartphone-based – must adhere to <3 cm for prox-
imity and <500 ms for transaction duration, as stipulated by the EMV specifi-
cations. We evaluated the claim that natural ambient environments can provide
a robust PRAD, as stated by some previous literature, under industry-specified
time constraints. This was evaluated for both proximity detection (Sect. 2.4)
and as a relay attack detection mechanism using a test-bed that reflected an
actual attack (Sect. 2.5). We presented the results of a two-part evaluation using
six similarity metrics used previously and several widely-used machine learning
classifiers. In all cases, the results were far from what was claimed in past liter-
ature; our initial results indicate that natural ambient environments provide a
poor PRAD for time-critical domains such as banking and transport. As such,
we strongly recommend that any PRAD proposal should be evaluated based on
the operating restrictions of the suggested deployment application.

This led to the development of artificially generated environments, which are
random and unique to each transaction, for providing a more effective PRAD
mechanism. To test this, we proposed a framework for deploying an artificial
ambient environment (AAE) for PRAD. We developed a test-bed to evaluate
the effectiveness of infrared in conjunction with six relay attack test-beds. In all
cases, the genuine and relayed transactions were distinguishable for 97–98% of all
transactions – far greater than the results using natural ambient sensing from
our investigations. At present, we are expanding our interrogation of natural
environment-based PRADs, using multiple sensors simultaneously with a range
of sensor fusion techniques. Moreover, we are investigating the applicability of
other smartphone sensors as an AAE-based PRAD mechanism. The first phase
of this evaluation has been conducted using vibration as an AAE, which has
yielded promising results.
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