
On a Key Exchange Protocol

Mugurel Barcau1,2, Vicenţiu Paşol1,2, Cezar Pleşca1,3, and Mihai Togan1,3(B)

1 certSIGN - Research and Development, Bucharest, Romania
barcau@yahoo.com, vpasol@yahoo.com, cezar.plesca@gmail.com,

mihai.togan@gmail.com
2 Institute of Mathematics “Simion Stoilow” of the Romanian Academy,

Bucharest, Romania
3 Military Technical Academy, Bucharest, Romania

Abstract. In this paper we investigate an instance of the generalized
Diffie-Hellman key exchange protocol suggested by the equidistribution
theorem. We prove its correctness and discuss the security. Experimental
evidences for the theoretical results are also provided.

Keywords: Key exchange protocol · Diffie-Hellman · Rational
approximations

1 Introduction

The question of key exchange is a fundamental problem in the areas of cryptogra-
phy and communication security. The key exchange protocols are cryptographic
primitives used to set up shared secret keys in order to enable secure commu-
nication over unreliable networks. They are the most used cryptographic tools
in building secure communication protocols over the Internet (e.g. IPsec, SSH,
and TLS). The first practical method for establishing such a shared secret was
the Diffie-Hellman key agreement protocol, which was introduced in [3]. Much
later, a generalized Diffie-Hellman algorithm was defined as a general tool for
generating key exchange protocols (see [7]). The idea is very simple in essence
and it can be stated as follows: assume there exist a commutative semigroup G
and a set X such that G acts on X, and the action of G cannot be inverted; in
the sense that if one has x ∈ X, and g ·x (where g ∈ G), finding g is a hard task
(cannot be done in polynomial time). Then, the Diffie-Hellman algorithm runs
as follows: an element x ∈ X is publicly given. Alice and Bob each choose at
random secret private keys a ∈ G, b ∈ G, respectively. Alice sends a · x to Bob
and Bob sends b ·x to Alice. Then, Alice computes a · (b ·x), while Bob computes
b · (a · x). The associativity of the action of G on X, and the commutativity
of G imply that both Alice and Bob will arrive to the same result which is set
to be the common key. In this article, we investigate the key exchange protocol
resulted from the action of the monoid N of the set of natural numbers with
multiplication on the closed-open interval [0, 1) of the set of real numbers, given
by (c, x) �→ {cx}, where {y} is the fractional part of y ∈ R. Since real numbers
c© Springer International Publishing AG 2017
P. Farshim and E. Simion (Eds.): SecITC 2017, LNCS 10543, pp. 187–199, 2017.
https://doi.org/10.1007/978-3-319-69284-5_13

188 M. Barcau et al.

with infinite binary representations cannot be practically used in computational
algorithms, one has to use approximations of their fractional parts, so that one
discovers that an approximation of this action may be the truncated product
(c, x) �→

⌊
c·x (mod 2n)

2m

⌋
(here, y (mod 2n) is the remainder after division of y by

2n). A different property of this function (with x constant), more precisely its
“approximately” linearity, has been used by R. Merkle in [8] to construct a key
exchange protocol, which is distinct from ours.

On the other hand, a variant of the protocol constructed in this article
appears in [1]. However, the authors of [1] show only experimentally that Alice
and Bob get the same common key with great probability; our protocol is proven
to work in all cases. We also show that the protocol is a particular instance of the
generalized Diffie-Hellman key exchange protocol. Moreover, the security reduc-
tion in [1] seems faulty to us and we give two ways of showing that in fact the
security of the protocol is much stronger than the security suggested in [1] (we
support our conclusions also by experimental results); in particular the security
reductions we construct are strong arguments for believing that the protocol is
in fact a quantum-resistant protocol, which is yet another advantage over the
classical Diffie-Hellman protocols, over the sought advantage of being much more
efficient with respect to computational complexity.

The article is structured as follows: in Sect. 1 we present the general construc-
tion of the Diffie-Hellman protocol, as it appears in [7]. In the next section we
discuss the N-monoid action described above. We shall also explain how start-
ing with this monoid action one ends up with the truncated product function.
Section 3 contains the proof of our main result, and as a consequence we describe
the resulted key exchange protocol. In Sect. 4 we discuss the security of our pro-
tocol giving the necessary sizes of the parameters for practical implementation.
In the next section we give experimental evidence of the fact that the truncated
product function used in the algorithm cannot be inverted and also some appli-
cations of the protocol. We end the paper with a section that contains several
conclusions.

2 The Generalized Diffie-Hellman Protocol

Let G be a semigroup, that is a set with an associative binary operation, denoted
by “·”. In particular, we do not require that G has an identity element. The
semigroup G is abelian if the operation is commutative. If S is a set, an action
of G on S is a map

φ : G × S −→ S

such that φ(g · h, s) = φ(g, φ(h, s)),∀g, h ∈ G, s ∈ S. If G is a monoid, i.e. it has
identity element 1, then we shall require that φ(1, s) = s,∀s ∈ S. In general, we
shall denote φ(g, s) by g · s, and refer to such an action as a G-action on the set
S and to S as a G-set.

We now present the key exchange protocols based on semigroup actions, as
they where introduced in [7].

On a Key Exchange Protocol 189

Protocol 1 (Diffie-Hellman Key Exchange Protocol). Let S be a finite set, and
let G be an abelian semigroup acting on S. The Diffie-Hellman Key Exchange
Protocol based on the G-set S is the following protocol:

1. Alice and Bob publicly agree on an element s ∈ S.
2. Alice chooses a ∈ G and computes a ·s. Alice’s private key is a, and her public

key is a · s.
3. Bob chooses b ∈ G and computes b · s. Bob’s private key is b, and his public

key is b · s.
4. Their common secret key is

a · (b · s) = (a · b) · s = (b · a) · s = b · (a · s)

The above protocol is secure only if the following problem is hard:

Problem 1 (Semigroup Action Problem). Given a semigroup G acting on a set
S, and elements x ∈ S and y ∈ Gx, find g ∈ G such that g · x = y.

If an attacker, Eve, can find a′ ∈ S such that a′ · s = a · s, then she finds the
shared secret by computing: a′ · (b · s) = b · (a′ · s) = b · (a · s).

Problem 2 (The Diffie-Hellman Semigroup Action Problem). Given an abelian
semigroup G acting on a finite set S, and elements x, y, z ∈ S with y = g · x and
z = h · x for some g, h ∈ G, find (g · h) · x ∈ S.

It is clear that the security of the above protocol is equivalent to this problem.
On the other hand, the only way known to attack the Diffie-Hellman Semigroup
Action Problem is by solving the Semigroup Action Problem. It is unknown if
these two problems are equivalent. We refer to loc.cit. for a detailed discussion
about the generic attacks on the Semigroup Action Problem.

3 Case Study

3.1 Irrational Numbers and Equidistribution Theorem

The idea behind the Diffie-Hellman algorithm that we will study in this article
is based on the well known equidistribution theorem which asserts that if x is an
irrational number, then the set {{n · x} | n ∈ N} is uniformly distributed in the
interval (0, 1), where {x} stands for the fractional part of the real number x (see,
[2,13,15].) Moreover, the monoid of natural numbers with multiplication acts on
the interval [0, 1) via the formula suggested by the equidistribution theorem
N × [0, 1) �→ [0, 1), (n, x) �→ {n · x}:

It is very easy to check that indeed,

{m · {n · x}} = {mn · x} = {n · {m · x}}.
There are two issues to be resolved concerning this example. The first one is

how do we represent the irrational numbers in order to do practical computation.

190 M. Barcau et al.

And the second issue (which is obviously related to the first one) is how certain
we are that the corresponding Diffie-Hellman algorithm is secure. There are two
alternatives to represent a real number: by symbols or by approximation.
The first alternative implies that the number is considered as a solution of cer-
tain algebraic/differential equations, e.g. we represent

√
2 as the unique positive

solution of the equation x2−2 = 0. This type of representation is not suitable for
our purposes since the representation of {n · x} would reveal n, or, even worse,
would be impossible even to compute {n · x} for large n.
On the other hand the alternative of approximating a real number (by some
finite expression) seems to be also doomed since that representation would actu-
ally represent a rational number (in any of the natural known representations,
i.e. by digits in some base, by continued fraction, etc.). But then, we will loose
the nice property of uniform distribution of the numbers {n · x} when n varies,
which should be important for proving the randomness of the algorithm.

We will choose the second alternative and see that in fact, the randomness
property is not entirely lost, but rather propagates well enough to prove the
security of the algorithm.

3.2 Base 2 Approximation of Subunitary Numbers and Merkle’s
Approximately Linear Hash Function

We choose base 2 approximation because it is the most suited for computer
manipulations. Let n be a natural number (to be setup later) and consider an
irrational number x ∈ (0, 1). We write x̄ = x̄n ∈ {0, . . . , 2n−1} its base 2, n-digit
expansion i.e. x̄ = �2nx�, where �y� stands for the integer part of a real number
y. In general, for any positive real number, we write x̄ = x̄n := �2nx� (mod 2n).
We omit the index n in the notation of x̄ if it is obvious from the context. If a is
a k-digit number (k ≤ n), then the (n − k)-bit expansion of {ax} will be almost
�(ax̄(mod 2n)/2k�, where by ax̄(mod 2n) we mean the remainder from division
of ax̄ by 2n. One should notice that the function a �→ �(ax̄(mod 2n)/2k� is the
approximately linear function AL(a, x) in [8]. It will become clear in the next
sections how good is the last approximation (it can differ by 1 at most). Observe
that if we publicly publish x of size n, then {ax}n determines a if small enough,
thus we cannot use this function for a key exchange protocol. However, if we cut
the last k digits, where k is the size of a, the function becomes not invertible,
as we shall see in the section dedicated to the security of the protocol. We have
now in our hands, indeed the tools (commutative semigroup action and hardness
of semigroup action problem) in order to produce the Diffie-Hellman protocol.

4 Key Exchange Protocol

For any a ∈ [0, 2k − 1], x ∈ [0, 2n − 1] and positive integer m ≤ n we define the
function

φ(k,n,m)(a, x) :=
⌊
2m

{ax

2n

}⌋
=

⌊
ax (mod 2n)

2n−m

⌋

On a Key Exchange Protocol 191

(here, as before, by ax (mod 2n) we mean the remainder from division of ax by
2n).

Theorem 2. Let k, n,m, l be positive integers such that m ≥ k + l. For any
a, b ∈ [0, 2k − 1], x ∈ [0, 2n − 1] there exists δ ∈ {−1, 0, 1} such that

φ(k,m,l)(a, φ(k,n,m)(b, x)) ≡ φ(k,m,l)(b, φ(k,n,m)(a, x)) + δ (mod 2l)

Proof. We make the following notations:

xA := φ(k,n,m)(a, x) ∈ [0, 2m − 1], xB := φ(k,n,m)(b, x) ∈ [0, 2m − 1]

Since
ax

2n
=

⌊ax

2n

⌋
+

{ax

2n

}
we get:

ax

2n−m
= 2m

⌊ax

2n

⌋
+ 2m

{ax

2n

}
= 2m

⌊ax

2n

⌋
+ xA +

{
2m

{ax

2n

}}
,

which yields the inequalities:

0 ≤ ax

2n
−

⌊ax

2n

⌋
− xA

2m
<

1
2m

Now, denote by xAB := φ(k,m,l)(a, xB), and by xBA := φ(k,m,l)(b, xA), then we
have:

0 ≤ abx

2n
− b

⌊ax

2n

⌋
− bxA

2m
<

b

2m

0 ≤ abx

2n
− b

⌊ax

2n

⌋
−

⌊
bxA

2m

⌋
−

{
bxA

2m

}
<

b

2m

0 ≤ abx

2n−l
− 2l

(
b
⌊ax

2n

⌋
+

⌊
bxA

2m

⌋)
− 2l

{
bxA

2m

}
<

b

2m−l

0 ≤ abx

2n−l
− 2l

(
b
⌊ax

2n

⌋
+

⌊
bxA

2m

⌋)
−

⌊
2l

{
bxA

2m

}⌋
−

{
2l

{
bxA

2m

}}
<

b

2m−l

0 ≤ abx

2n−l
− 2l

(
b
⌊ax

2n

⌋
+

⌊
bxA

2m

⌋)
− xBA <

b

2m−l
+

{
2l

{
bxA

2m

}}

Since m ≥ k + l, we deduce 0 ≤ b

2m−l
+

{
2l

{
bxA

2m

}}
< 2, so that:

⌊
abx

2n−l

⌋
= 2lαBA + xBA + εBA (1)

for some integer αBA and εBA ∈ {0, 1}. Similarly we have:
⌊

abx

2n−l

⌋
= 2lαAB + xAB + εAB (2)

for some integer αAB and εAB ∈ {0, 1}. From (1) and (2) we get the congruence:

xAB ≡ xBA + δ (mod 2l)

where δ ∈ {−1, 0, 1}.

192 M. Barcau et al.

Notice that if l ≥ 2 the last congruence gives xAB ≡ xBA+δ (mod 22), which
means that the last two digits in the binary decompositions of xAB and xBA

determine δ. This simple but important observation is included in the following
key exchange protocol.

1. Public key: Choose n, k,m, l such that n ≥ m ≥ k + l. Pick a random good
number x ∈ [0, 2n − 1]. The public key is (n, k,m, l, x).

2. Secret choices: Alice picks a random number a ∈ [0, 2k − 1] and Bob picks
a random number b ∈ [0, 2k − 1].

3. Exchange: Alice computes xA :=
⌊

ax(mod 2n)
2n−m

⌋
and Bob computes xB :=

⌊
bx(mod 2n)

2n−m

⌋
. Alice sends xA to Bob and Bob sends xB to Alice.

4. Verify key: Alice computes xAB :=
⌊

axB (mod 2m)
2m−l

⌋
, then she sets (kA, vA)

to be the most significant l−2 digits, respectively the least significant 2 digits
of xAB . Similarly, Bob computes (kB , vB). Both publicly publish vA and vB ,
respectively.

5. Common key: If (vA, vB) = (00, 11) then the common key is K := kA =
(kB + 1) (mod 2l−2). If (vA, vB) = (11, 00) then the common key is K :=
(kA + 1) (mod 2l−2) = kB . Otherwise, the common key is K := kA = kB .

By a good number, we mean an odd number whose distribution of 0′s and
1′s in its binary expansion is random.

Notice that the value n − m must be large enough to be resistant to brute
force attacks, thus from the security perspective, the choice of n, m, and l has
to be such that n ≥ m + k ≥ 2k + l.

4.1 Security

As explained in Sect. 2, the security of our protocol is based on the hardness

of inverting the function a �→
⌊

ax(mod 2n)
2n−m

⌋
, where x is a known (good) n-

digit number. The authors in [1] suggest that the hardness of this problem can
be reduced to an instance of SAT by explicitly writing down the equations for
the digits of a and the carry-overs, and comparing those equations with the
equations used in [5] to instantiate SAT from FACT which is believed to be
classically hard. However, Merkle’s 3SAT reduction, see [8], suggests that the
hardness of the problem is in fact based on an NP complete problem, which
indicates that the problem might be also quantum secure. Our personal take is
towards Merkle’s point of view. Moreover, the authors in [1] seem to overlook
some facts about the shape of the equations in their comparison with FACT. To
give a stronger argument why we are inclined towards Merkle’s point of view,
we argue that the problem is more related to CVP (closest vector problem in

a lattice) than to FACT. Let y =
⌊

ax(mod 2n)
2n−m

⌋
, then there exist q ∈ Z and

On a Key Exchange Protocol 193

r ∈ [0, 2n−m − 1] such that
ax

2n
− q =

y

2m
+

r

2n
.

Thus, one has to find the closest vector to y
2m in the “lattice” Λ̃x := Z · x

2n + Z.
The fact that the point y

2m + r
2n is (probabilistically) the closest vector in Λ̃x for

sufficiently random public key x is implied by the fact that the function a �→ y
is probabilistically injective as shown bellow.

The “lattice” Λ̃x is “an approximation” of the lattice Λα := Zα+Z, for α an
irrational number. Notice that the later lattice corresponds to a noncommutative
elliptic curve Eα := R/Λα (see [14]) and the action of the monoid of natural
numbers acts as usual multiplication (successive additions) on Eα. One may
argue now that in CVP the dimension of the lattice is important for the hardness
of the problem. Note that in fact, by approximating the lattice and taking only
the most important bits in this approximation, the “dimension” of the “lattice”
can be considered to be 2k (this is the number of free variables over F2), which
is in agreement with the usual setup of CVP.

4.2 Hashing Perspective

Another perspective over the security of the exchange protocol could be seen
by considering Alice’s computation xA as a multiplicative hash function of key
a ∈ [0, 2k − 1], where x, n and m are constant parameters:

xA :=
⌊

ax (mod 2n)
2n−m

⌋

A simplified version of the general multiplicative hash function was proposed
by Dietzfelbinger et al. [9] and consists in obtaining a hash value of size m for an
integer key a ∈ [0, 2n − 1], using the previous formula: h(a) = xA. The authors
show that if x is a randomly chosen odd integer in [0, 2n − 1], then the collision
probability of two different keys is almost 2/2m, which is a factor of two larger
than what one could expect with a random function from 2n → 2m.

Now, let’s consider a ∈ [0, 2k −1] as a fixed value. Given the above mentioned
collision probability, it means that if we randomly choose a′ ∈ [0, 2n − 1], the
probability to collude with a (i.e. h(a) = h(a′)) is almost 2/2m. One can easily
notice that, knowing the approximately linear behavior of the hash function, if
we restrain a′ to the range [0, 2k − 1], the collision probability remains 2/2m.

Let X be a random variable that counts the number of collisions for function
h in the range [0, 2k−1]. Using a technique similar to the analysis of the birthday
paradox [10], the expected number of collisions is limited to:

E[X] ≤
(

2k

2

)
2

2m

Now applying Markov’s inequality, we have: Prob(X ≥ 1) ≤ E[X]. This implies
that one can approximate the probability of no collision in all 2k keys:

Prob(no collision)=Prob(X = 0) = 1 − Prob(X ≥ 1) ≥ 1 − E[X]

194 M. Barcau et al.

=⇒ Prob(no collision) ≥ 1 −
(

2k

2

)
2

2m
= 1 − 2k(2k − 1)

2
· 2
2m

> 1 − 2m−2k

Therefore, taking for instance m ≥ 3k, the hash function h becomes prob-
abilistically injective, which implies that no further reductions can be made by
an attacker on a brute force verification over the range [0, 2k − 1]. Finally, we
can conclude that the security parameter of the presented protocol is k.

However, the experiments show that in fact the conclusions of this subsection
are in fact valid for smaller values, i.e. m = 2k + 2(see the bellow experimental
results).

5 Experiments

5.1 Key Distribution

An important issue in the application of this protocol in practice is related
to the randomness of the common secret key. In order to test this property,
we conduct an experiment using a library for arbitrary-precision integer math,
namely BIGNUM library that comes with OpenSSL [11].

As we want to obtain shared secret keys of length 128 bits, we have chosen
the following values for the scheme parameters: k = 128, l = k + 2 = 130,
m = 2k + 2 = 258 and n = 3k + 2 = 386. We pick three random numbers (using
three independent generators): x ∈ [0, 2n − 1], a ∈ [0, 2k − 1] (Alice choice) and
b ∈ [0, 2k − 1] (Bob choice). Then, using the protocol described in Sect. 4, we
compute the shared secret key s = kA = kB . For such an execution, we also
count if the protocol needs an additional step at the end to adjust the keys of
Alice or Bob. We called this a key adjustment.

As the number of possible common keys is very large, we divide the range
[0, 2128 − 1] into 128 equal bins. We repeat the previous execution a number of
N = 108 times, and for each execution, we place the secret key into its corre-
sponding bin. The percentage of key adjustment cases is about 6, 6%. Finally, we
count the number of keys belonging to each bin, and normalize these frequen-
cies. As expected, the keys distribution is almost uniform as shown in Fig. 1. The
mean square error between our distribution and the ideal one is approximatively
7 ∗ 10−9.

In order to verify the theoretical results presented in Sect. 4.2, we conduct
another experiment, to obtain the collision probability for the hash function
h(a) = xA : [0, 2k − 1] → [0, 2m − 1]. We vary the length of the shared key k in
the range [10 − 20]; the other parameters are computed as previously: l = k + 2,
m = 2k + 2 and n = 3k + 2.

For each k, using three independent random generators for x ∈ [0, 2n − 1],
a ∈ [0, 2k−1] and b ∈ [0, 2k−1], we compute xA and xB. Theoretically, we’ll have
a collision (i.e. xA = xB) with a probability inferior to 1/2m−1. We execute this
experience a number of N = 2m−1 · 1000 times, count the number of collisions
and convert this number into a probability.

The results obtained are illustrated in Fig. 2, using a logarithmic scale for
collision probability. One can notice that the collision probability is a factor of

On a Key Exchange Protocol 195

two smaller than the theoretical limit 1/2m−1. In other words, this empirical
probability (i.e. 1/2m) is equivalent to what one could expect with a random
function from 2k → 2m. Building on this result, we can assume that the function
xA is statistically injective, which confirms the theoretical results from Sect. 4.2.

5.2 Rough Distributions

We will show in what follows why the probability of key adjustment agrees with
the empirical data we produced.

As in the previous sections, we have the following (m = n − k):

0 ≤ abx

2n−l
− 2l

(
b
⌊ax

2n

⌋
+

⌊
b · xA

2n−k

⌋)
− xBA =

b · rA

2n−l
+

{
2l

{
b · xA

2n−k

}}
.

Taking the integer parts, we get:
⌊

abx

2n−l

⌋
− 2l

(
b
⌊ax

2n

⌋
+

⌊
b · xA

2n−k

⌋)
= xBA +

b · rA

2n−l
+

{
2l

{
b · xA

2n−k

}}
.

Modulo 2l the left hand side is the same for Alice and Bob, therefore for a
key adjustment to take place, the right hand side has to change. Since

{
2l

{
b · xA

2n−k

}}
=

{
abx (mod 2n)

2n−l
− b · rA

2n−l

}
.

Thus in order to have a change on the right hand side either{
abx(mod 2n)

2n−l − b·rA

2n−l

}
+ b·rA

2n−l > 1 and
{

abx(mod 2n)
2n−l − a·rB

2n−l

}
+ a·rB

2n−l < 1 or the
other way around.

Fig. 1. Shared secret keys distribution

196 M. Barcau et al.

Fig. 2. Collision probability of hash function

Notice that {u− v}+ v > 1 ⇔ {u} < v for any real u and 0 < v < 1. We get:

a · rB

2n−l
≤

{
abx (mod 2n)

2n−l

}
<

b · rA

2n−l
,

or the other way around. That means that abx(mod 2n) sits in a short inter-
val. As one can see, the length of this interval depends upon the choice of a
and b. However, on average (over x good), the length of the interval is around
|b−a|
2n−l . Using the uniform distribution of abx (mod 2n) when x varies, we get that
Pa,b(change) � |b−a|

2k
, where by Pa,b(change) we mean the probability of having

different xAB and xBA fixed secret keys (only the public key is variable). We
should be careful not to double count since Pa,b(change) = Pb,a(change) (the
interval is symmetric in the secret keys thus the same x is valid for change when
we swipe the secret keys.). The total average would be:

P (change) =
1

22k

1
2

∑
a,b

Pa,b(change) � 1
23k+1

∑
a,b

|b − a| =
1

23k

∑
c

c(c + 1)
2

,

The last sum equals 1
23k

M(M+1)(M+2)
3 where M = 2k − 1 is the range of sum-

mation. This gives a rough approximation of P (change) = 1
3 .

Finally, notice that the key adjustment occurs only 1/4 of the times since
out of the 8 possibilities for (vAB , vBA), only 2 of them produce key adjustment.
Thus the rough probability (on average) of key adjustment would be around
1/12. We have to be notice that in practice, this probability is in fact smaller
since the choice of the public key is not in fact random, but it has to be a random
number so it comes from a good approximation of an irrational number.

It seems a difficult task to compute the exact probability of key adjustment
and we leave this computation as an open question.

On a Key Exchange Protocol 197

5.3 Comparison with DLP-Based Diffie-Hellman Protocol

An important issue is also the computation effort required to run the protocol
phases. This could have severe implications, especially in the case of resources
with low power consumption requirements (like IoT devices) or in the cases
where the millions of secret keys must be exchanged during a short time period.
The key exchange protocol presented above is much less computing intensive
than Diffie-Hellman protocol based on classical discrete logarithm problem over
Zp. To achieve a common secret, each party has to make only two multiply
operation on integers, the first one to generate the information XA that has to
be exchanged, and the second one to compute the verify key XAB . Truncations
are also used to discard the first and the last k-bits of the result, but these are
almost free in terms of computing costs. Besides this, the initial setup of the
protocol required to generate the parameters and the public/secret keys are also
free in terms of computational effort.

For comparison purpose, we conducted few experiments intended to estimate
the computation efforts required by our key-exchange protocol by comparison
with DLP-based DH and ECDH protocols. We used an OpenSSL BIGNUM
library based implementation for our protocol and the reference implementations
for DH and ECDH variants included also in the OpenSSL package.

To have a relevant comparison, we have used similar configurations for the
security-bits level (it is established by k value in our protocol), and identical
length for the computed secret keys. For an equivalent security parameter k and a
given length LSK for the outputted secret key, we instantiated the protocol with
a setup based on the following parameters: l = LSK + 2, m = k + LSK + 2 and
n = 2k + LSK + 2. To estimate the required computation effort, we measured
the costs in terms of the processing time of the steps that compute the common
secret key. The initial phases of the protocol required for the generation of the
parameters, public and private keys have not been taken into account.

In the case of DH protocol over Fp and using a modulus p of 2048-bits
length (this leads to a security level of k = 112-bits [12]), our protocol was 4500
times faster. In the case of DH with a modulus of 3072-bits length (security
level of 128-bits), our protocol was 10000 times faster. Even DH on elliptic
curves is less expansive that DH on Fp, our key-exchange variant is about 1000
times faster than ECDH on prime fields Fp, and respectively about 2000 times
faster than ECDH on binary fields F2m . Our experiments were conducted on a
machine based on Intel(R) Xeon(R) E5-1620 at 3.60GHz CPU. In the case of
much slower computing resources (such as IoT enabling devices), we expect that
the mentioned speed-up rates will be much higher.

6 Conclusions

The observations in Sect. 4.1 might suggest new types of key exchange pro-
tocols by considering rational approximations for other geometric meaningful
encryption algorithms. The advantage of rational approximations would be two
folded: computational complexity relaxation of the usual encryption algorithms

198 M. Barcau et al.

and additional security via a CVP-type argument. The theoretical and exper-
imental results in this paper make our protocol valuable for the cases where
slow computing resources are available as mentioned above. Further work will
concentrate on improving the theoretical security bounds as suggested by the
experimental results and on the practical implementation of the protocol.

After the write-up of the paper we learned that there exists an attack of
the key exchange protocol presented in this paper using an embedding of the
security problem of our protocol into a two dimensional Closest Vector Problem
(see for instance [16]). More precisely, one has a precise description of a two
dimensional lattice and the constraints in our protocol ask for finding a lattice
vector of bounded distance. Moreover, the exact conditions imposed on the para-
meters imply that one has a unique solution, thus one can test the enumerated
lattice vectors output by the Bounded Distance Decoding algorithm (see [6]) and
find a solution of our security problem. Unfortunately, one cannot modify the
parameters in our protocol so the attack becomes unfeasible.

Acknowledgments. This research was partially supported by the Romanian National
Authority for Scientific Research (CNCS-UEFISCDI) under the project PN-III-P2-2.1-
PTE-2016-0191.

References

1. Azhari, A., Bouftass, S.: On a new fast public key cryptosystem. https://eprint.
iacr.org/2014/946.pdf

2. Bohl, P.: Über ein in der Theorie der säkutaren Störungen vorkommendes Problem.
J. Reine Angew. Math. 135, 189–283 (1909)

3. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976)

4. Gerold Grünauer Proposal of a new efficient public key system for encryption and
digital signatures. https://eprint.iacr.org/2007/445.pdf

5. Horie, S., Watanabe, O.: Hard instance generation for SAT. In: Leong, H.W., Imai,
H., Jain, S. (eds.) ISAAC 1997. LNCS, vol. 1350, pp. 22–31. Springer, Heidelberg
(1997). doi:10.1007/3-540-63890-3 4

6. Liu, Y.-K., Lyubashevsky, V., Micciancio, D.: On bounded distance decoding
for general lattices. In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.)
APPROX/RANDOM -2006. LNCS, vol. 4110, pp. 450–461. Springer, Heidelberg
(2006). doi:10.1007/11830924 41

7. Maze, G., Monico, C., Rosenthal, J.: Public key cryptography based on semigroup
actions. Adv. Math. Commun. 1(4), 489–507 (2007)

8. Merkle, R.C.: Public key distribution using approximately linear functions. http://
www.merkle.com/papers/approxLinearPK.html

9. Dietzfelbinger, M., Hagerup, T., Katajainen, J., Penttonen, M.: A reliable random-
ized algorithm for the closest-pair problem. J. Algorithms 25(1), 19–51 (1997)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

11. Serpette, B., Vuillemin, J., Hervé, J.-C.: BigNum: a portable and efficient package
for arbitrary-precision arithmetic. Digital, Paris Research Laboratory (1989)

https://eprint.iacr.org/2014/946.pdf
https://eprint.iacr.org/2014/946.pdf
https://eprint.iacr.org/2007/445.pdf
http://dx.doi.org/10.1007/3-540-63890-3_4
http://dx.doi.org/10.1007/11830924_41
http://www.merkle.com/papers/approxLinearPK.html
http://www.merkle.com/papers/approxLinearPK.html

On a Key Exchange Protocol 199

12. NIST: Recommendation for Key Management, NIST Special Publication 800–57
Part 1 Revision 4 2016

13. Sierpinski, W.: Sur la valeur asymptotique d’une certaine somme. Bull Intl. Acad.
Polonmaise des Sci. et des Lettres (Cracovie) series A, 9–11 (1910)

14. Soibelman, Y.: Quantum tori mirror symmetry and deformation theory. Lett.
Math. Phys. 56(2), 99–125 (2001)

15. Weyl, H.: Über die Gibbs’sche Erscheinung und verwandte Konvergenzphänomene.
Rendiconti del Circolo Matematico di Palermo, pp. 377–407 (1910)

16. Zhang, Y.: A practical attack to Bouftass’s crypto system. https://arxiv.org/abs/
1605.00987v1

https://arxiv.org/abs/1605.00987v1
https://arxiv.org/abs/1605.00987v1

	On a Key Exchange Protocol
	1 Introduction
	2 The Generalized Diffie-Hellman Protocol
	3 Case Study
	3.1 Irrational Numbers and Equidistribution Theorem
	3.2 Base 2 Approximation of Subunitary Numbers and Merkle's Approximately Linear Hash Function

	4 Key Exchange Protocol
	4.1 Security
	4.2 Hashing Perspective

	5 Experiments
	5.1 Key Distribution
	5.2 Rough Distributions
	5.3 Comparison with DLP-Based Diffie-Hellman Protocol

	6 Conclusions
	References

