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Abstract. The evolution of the McEliece encryption scheme is a long
and thrilling research process. The code families supposed to securely
reduce the key size of the original scheme were often cryptanalyzed
and thus the future of the code-based cryptography was many times
doubted. Yet from this long evolution emerged a great comprehension
and understanding of the main difficulties and advantages that coding
theory can offer to the field of public key cryptography. Nowadays code-
based cryptography has become one of the most promising solutions to
post-quantum cryptography. We analyze in this article the evolution of
the main encryption variants coming from this field. We stress out the
main security issues and point out some new ideas coming from the Rank
based cryptography. A summary of the remaining secure variants is given
in Fig. 2.
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1 Introduction

Code-based cryptography appeared for the first time in 1978, when McEliece
proposed the first public key encryption scheme which is not based on num-
ber theory primitives [McE78]. Instead he built a scheme for which the security
stands on two problems, namely the hardness of the Syndrome Decoding Prob-
lem [BMvT78] and the difficulty to distinguish between a binary Goppa code
and a random linear code [CFS01,FGO+13]. The scheme disposes of various
advantages like

– the complexity of the encryption and decryption algorithms are equivalent
to those of symmetric schemes and thus are very efficient compared to other
public key schemes.
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– the best attacks for solving the Syndrome Decoding Problem are exponential
in the code length, which makes code-based schemes of high potential for
post-quantum cryptography.

However code-based cryptography came with a big disadvantage: the size of
the public keys was about five hundred thousands bits which was unacceptable
at that time. Nevertheless the scientific community made a huge progress in
reducing the key size of the McEliece PKC by proposing different structures like
quasi-cyclic or quasi-dyadic codes. Nowadays the key size is no longer an issue
and several practical implementations of the McEliece prove the efficiency and
potential of the scheme [BS08,Str10b,CHP12,BCS13,HvMG13,MOG15].

Ever since Peter Shor introduced a polynomial time quantum computer algo-
rithm for factoring integers over Z and for computing logarithms in the multi-
plicative group Fp [Sho94], the code-based cryptography became a serious candi-
date for public-key cryptography. The interest of the scientific community in this
field is nowadays motivated by the latest announcement of the National Institute
of Standards and Technology (NIST). They initiated the Post-Quantum crypto
Project which aims to define new standards for quantum resistant cryptogra-
phy and fixed the deadline for public key cryptographic algorithm submissions,
for November 2017 (NIST-PQcrypto Project) (http://csrc.nist.gov/groups/ST/
post-quantum-crypto/index.html). The purpose of this article is to give a com-
plete evolution of the code-based encryption schemes and rank based encryption
schemes. Proposing a global state-of-the-art, that includes both Rank distance
and Hamming distance came in a natural manner since there are several facts
relating these two topics

– both Hamming distance based schemes and Rank distance schemes sustain
their security on the same problem, namely the Syndrome/Rank Syndrome
Decoding Problem.

– the similarities do not end here since the properties of the code families that
were used are quite equivalent, take for example the case of LRPC (in Rank
metric) and LDPC codes (in Hamming metric) or Gabidulin (in Rank metric)
and GRS codes (in Hamming metric).

– also the construction techniques are rather similar, for example the QC-LRPC
(in Rank metric) and the QC-MDPC (in Hamming metric).

The article also provides a full section dedicated to the security arguments
and analyze the main types of attack and it is organized as following. We begin
with a preliminary section on the coding theory (Sect. 2). Then we give the
necessary details on the McEliece scheme and the actual security arguments
for it (see Sect. 3). In Sect. 4 we give the evolution of the McEliece variants
starting with the binary Goppa codes up to nowadays. The same analysis is
done in Sect. 5, for the Rank based encryption schemes. We conclude with some
perspectives in this area.

http://csrc.nist.gov/groups/ST/post-quantum-crypto/index.html
http://csrc.nist.gov/groups/ST/post-quantum-crypto/index.html
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2 Coding Theory

2.1 Preliminaries

Through this paper, we adopt the following notations: Fq denotes the finite field
with q elements, GLk(F) denotes the set of k × k invertible matrices over a field
F. An [n, k] linear code C over Fqm is a linear subspace of dimension k of the
vector space F

n
qm . Any element in C is called a codeword. A generator matrix

for a [n, k] linear code is a k × n matrix (often denoted by G) whose rows form
a basis for the code. The dual of C denoted by C⊥ is the linear code which
consists of all vectors y ∈ F

n
qm such that ∀ c ∈ C y · cT = 0. A parity-check

matrix of C is a generator matrix of its dual. It is also a (n − k) × n matrix H
of full rank that satisfies HcT = 0 for all c ∈ C .

Minimum distance of a code. There are several metrics over the vector space Fn
qm

that are known in the literature like the Lee distance, the Hamming distance,
the Rank distance etc. In code-based cryptography there are only two of them
that became famous: The Hamming distance dH, that denotes the number of
coordinates on which two vectors differ and The Rank distance dR defined as
follows.

Definition 1 (Rank distance). The rank weight of a vector x =
(x1, x2, ..., xn) in F

n
qm denoted by |x|q is the dimension of the Fq-vector space

generated by {x1, . . . , xn}

|x|q = dim
n∑

i=1

Fqxi.

The rank distance dR(x,y) is then given by:

dR(x,y) = |x − y|q
In the sequel, for a given vector x ∈ F

n
qm , |x| will denote the Hamming weight

of x.

Definition 2 (Minimum distance). The minimum distance of a linear
code is:

dmin (C ) = min
(c,c∗)∈C×C

c �=c∗

d(c, c∗)

where d is any of the aforementioned distances.

2.2 The General Decoding Problem

The initial purpose of a linear code is to provide an efficient tool for a reliable
communication process and it was introduced by Claude Shannon [Sha48]. We
explain here a simple case, namely binary linear codes over the Binary Symmetric
Channel. Let C be a [n, k, d] binary linear code with generator matrix G and
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parity check matrix H, where d is the minimum distance of the code. Encoding
a message m into a codeword c is equivalent to compute c = mG. Then the
codeword c is sent over a BSC(p), where p is the probability of flipping a bit. In
other words the receiver obtains z = c⊕e ∈ F

n
2 where e is the error vector. The

problem the receiver needs to solve here is to recover c from z, which is called
the general decoding problem.

Since for any codeword c of C we have HcT = 0n−k we deduce that HzT =
HeT . Therefore the dual version of the later problem can be defined generally
as follows:

Definition 3 (Syndrome Decoding Problem).
Instance: A full rank matrix H ∈ Mn−k,n (Fqm), a vector s ∈ F

n−k
qm

and an integer ω > 0.
Question: Is there a vector x ∈ F

n
qm of weight ≤ ω, such that HxT = s?

In the case of the Hamming distance we call it the Syndrome Decoding Problem
and Rank Syndrome Decoding Problem in the case of the Rank distance. These
problems are NP-complete [BMvT78,GZ16].

There are code families for which the later problem is no longer difficult and
for which efficient decoding algorithms are known. In the next part we recall
some of the linear codes that are used for cryptographic purpose.

2.3 Some Code Families

Reed-Muller codes. The Reed-Muller codes were introduced by David Muller
[Mul54] and rediscovered shortly after with an efficient decoding algorithm by
Irving Reed [Ree54].1 The scientific community was highly interested in this
family of codes and therefore discovered many structural properties of Reed-
Muller codes. Recently Kudekar et al. proved that Reed-Muller codes achieve
the capacity of the Erasure channel [KKM+17].

Definition 4 (Reed-Muller codes). Let m and r be two integers such that

1 ≤ r ≤ m and let n
def
= 2m. Then the rth order Reed-Muller code R(r,m) is the

binary linear code defined as the set of all vectors (g(v1, . . . , vm))(v1,...,vm)∈F
m
2

∈
F

n
2 , where g ranges over the set of polynomials over F2 in m variables with degree

at most r.

R(r,m)
def
=

{
(g(v1, . . . , vm))(v1,...,vm)∈F

m
2

| g ∈ F2[x1, . . . , xm] deg g ≤ r
}
.

Generalized Reed-Solomon and Goppa codes. Generalized Reed-Solomon
codes, or shortly GRS codes, were introduced by Reed and Solomon in [ISR60]
and represent a powerful family of codes with many applications. Ten years after,
a new class of codes, binary Goppa codes, was introduced by Valery Goppa
[Gop70]. The main reason we detail Goppa codes in the same paragraph with
GRS codes is because Goppa codes can be defined as subfield subcodes of GRS
codes.
1 Although it seems that these codes were firstly discovered by Mitani in 1951 [Mit51],

they became popular only after the article of Muller and Reed.
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Definition 5 (Generalized Reed-Solomon codes). Let k and n be two inte-
gers such that 1 ≤ k < n ≤ q where q = pm is a power of a prime number p. Let
(x,y) ∈ F

n
q ×F

n
q be a pair such that x is an n-tuple of distinct elements of Fq and

the elements yi are nonzero elements in Fq. Then the Generalized Reed-Solomon
code GRSk(x,y) is given by:

GRSk(x,y)
def
= {(y1f(x1), . . . , ynf(xn)) | f ∈ Fq[x], deg(f) < k} .

The vector x is called the support of the code and y the multiplier vector.
One can easily deduce that a generator matrix of GRSk(x,y) is given by

G =

⎛

⎜⎜⎜⎝

1 1 . . . 1
x1 x2 . . . xn

...
...

...
...

xk−1
1 xk−1

2 . . . xk−1
n

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

y1
y2 0

0
. . .

yn

⎞

⎟⎟⎟⎠ .

Proposition 1 ([MS86]Theorem 4, Chap. 10). The dual of a GRS code is
also a GRS code and we have

GRSk(x,y)⊥ = GRSn−k(x,z),

where z is a non-zero codeword of the (n, 1, n) GRS code GRSn−1(x,y)⊥.

We notice that the vector z with ∀ 1 ≤ i ≤ n, zi �= 0 exists since any non
zero codeword of a [n, 1, n] GRS code has a Hamming weight equal to n.

Definition 6 (Alternant codes). A p-ary alternant code of order r associated
to (x,y) ∈ F

n
pm × F

n
pm

denoted by Altr(x,y) is

Altr(x,y)
def
= GRSr(x,y)⊥ ∩ F

n
p .

Definition 7 (Binary Goppa codes). Let x ∈ F
n
2m be a n − tuple of distinct

elements and g ∈ F2m [x] be a polynomial of degree t such that ∀ i, g(xi) �= 0. Let

y
def
= (1/g(xi), . . . , 1/g(xn)) then the binary Goppa code is defined by

Γ(x, g)
def
= Altt(x,y).

There are several decoding techniques for Goppa codes like for example the
Berlekamp-Massey algorithm, the Extended Euclidean Algorithm or the Patter-
son algorithm [MS86, Chap. 12].

LDPC and MDPC codes. Another important class of linear codes is the
family of low density parity check (LDPC) codes discovered by Gallager [Gal63].
He was motivated by the problem of finding “random-like” codes that could be
decoded near the channel capacity with quasi-optimal performance and feasible
complexity. Since LDPC were too complex for the technology at that time, they
were forgotten for more than 30 years, and rediscovered by MacKay [Mac99] and
Sipser and Spielman [SS96]. These codes were extended in a natural way to mod-
erate density parity check codes in [OB09]. LDPC codes have many applications
in communication field as well as in cryptography.



134 D. Bucerzan et al.

Definition 8 (LDPC/MDPC codes). A (n, k, ω)-code is a linear code
defined by a k × n parity-check matrix (k < n) where each row has weight ω.

A LDPC code is a (n, k, ω)-code with ω = O (1), when n → ∞. [Gal63]
A MDPC code is a (n, k, ω)-code with ω = O (

√
n), when n → ∞. [OB09]

The theory of error correcting codes is not only a highly important tool in
the communication field, it is also applied to public key cryptography. One of
the oldest public key encryption scheme, namely the McEliece PKC [McE78], is
based on several aspects from coding theory.

3 McEliece and Niederreiter Encryption Scheme

3.1 Description

The McEliece public key encryption scheme [McE78] is composed of three algo-
rithms: key generation (KeyGen), encryption (Encrypt) and decryption (Decrypt).
The key generation algorithm takes as input the integers n,m, k, t, q such that
k < n and t < n and outputs the public key/private key pair (pk, sk).

KeyGen(n,m, k, t, q) = (pk, sk)

1. Pick a generator matrix G of a [n, k] code C that can corrects t errors.
2. Pick at random S in GLk(Fqm) and a n × n permutation matrix P .
3. Compute Gpub

def= SGP .
4. Return

pk = (Gpub, t) and sk = (S,P ).

In order to encrypt a message m ∈ F
k
qm one applies the following function

Encrypt(m, pk) = z

1. Generate a random error-vector e ∈ F
n
qm with |e| ≤ t

2. Return z = mGpub ⊕ e

The decryption takes as input a ciphertext z and the private key sk and
outputs the corresponding message m

Decrypt(z, sk) = m

1. Compute z∗ = zP−1 and m∗ = Decode(z∗,H)
2. Return m∗S−1.

Decode(., .) is an efficient decoding algorithm for C . Notice that multiplying the
error vector by a permutation does not change the weight of the vector. One can
easily verify the correctness of the scheme by checking

Decrypt(Encrypt(m, pk), sk) = m.

The Niederreiter public-key encryption scheme [Nie86] is similar to the
McEliece’s scheme. It uses the dual code and thus the public key is a parity
check matrix for the code. The message will be an error vector that is encrypted
into a syndrome. In [LDW94] it is showed that the two schemes are equivalent
in term of security.
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3.2 Security Arguments

The security of all the variants à la McEliece is based on two facts: firstly the
public code is supposed to be indistinguishable from a random code. If the later
supposition is satisfied then in order to decrypt a cyphertext one has to solve
the Syndrome Decoding Problem for a random code (see Definition 3), which
is known as a difficult problem. There are three types of attacks known in the
literature: Distinguishing Attacks, Message Recovery Attacks (MRA) and Key
Recovery Attacks (KRA).

Distinguishing attacks. Even though the indistinguishably of the public code
in the original McEliece scheme was not proved, there is a strong believe that
this problem is hard. However, a recent breakthrough in this area was the dis-
tinguisher for high rate Goppa codes, proposed in [FGO+13]. It is based on the
star product of two codes and uses the dimension of the square code in order
to distinguish between a random linear code and a high rate Goppa code. This
technique also works on high rate Alternant codes [FGO+13], Reed-Solomon
codes [CGG+14], Reed-Muller codes [CB13,OTK15] etc.

Message Recovery Attacks. In this scenario an adversary aim to recover
the plaintext from a given ciphertext. If the public code is indistinguishable
from a random code then the MRA become equivalent to solving the Syndrome
Decoding Problem. The most efficient algorithm to solve the Syndrome Decod-
ing Problem is the Information Set Decoding (ISD). Details about the different
variants of ISD and their complexity analysis are given in [CTS16]. However, the
best variant has a complexity which is exponential in the codes parameters.

Key Recovery Attacks. The key recovery adversary aims to retrieve the pri-
vate key from a given public key. If the cryptanalyst manages to efficiently recover
the private key, then he can also decode and find all the messages that have been
encrypted with that key. Therefore it is considered as the most powerful possible
attack. In the KRA scenario the adversary is often reduced to solve the following
problem.

Definition 9 (Permutation Code Equivalence Problem). Let G and G∗

be the generating matrices for two [n, k] binary linear codes. Given G and G∗

does there exist a k×k binary invertible matrix S and n×n permutation matrix
P such that G∗ = SGP ?

The computational problem was studied by Petrank and Roth over the binary
field [PR97], in which the authors proved that the problem is not NP-complete.
The most common algorithm used to solve this problem is the Support Splitting
Algorithm (SSA) [Sen00]. This algorithm is very efficient in the random case,
but cannot be used in the case of codes with large Hulls or codes with large
Permutation group such as Goppa codes, Reed-Muller codes, ... When the SSA
is infeasible, other efficient technique can be employed such as the Minimum
Weight Codewords approach. The idea is to use the subcode spanned by the set
of minimum weight codewords and solve the code equivalence problem for the
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later code. Indeed, in the case of many linear codes, the code spanned by the set
of minimum weight codewords is almost the entire code. This is the case of Polar
codes and more generally of any Decreasing Monomial codes (see [BDOT16]).
This technique was used to solve the code equivalence problem for Reed-Muller
codes [MS07] and Polar codes [BCD+16]. The main step of this technique is the
minimum weight codewords searching. The most efficient algorithms for this are
derived from the Information Set Decoding algorithm.

Side-channel attacks. The importance of practical issues is crucial for design-
ing a cryptosystem. A designer should be able to prove that the scheme can
be securely implemented and that eventual side-channel attacks can easily be
countered. In this scenario the attacker has the capability to access and monitor
different parameters of the implementation, like for example a particular function
in the decryption process. In a successful side-channel attack, the aforementioned
advantage reveals information on the private message or on the private key of
the scheme.

4 McEliece Variants

In the previous section, several security issues are revealed, fact that raised a
fundamental question: What is the most appropriate code family for the McEliece
scheme?

4.1 Binary Irreducible Goppa Codes

They were proposed in the original paper of McEliece [McE78]. Even though
the original parameters were broken in [BLP08], they proposed a new set of
secured parameters (see Fig. 1). Despite their well known structure there are
no efficient key recovery or decoding attacks against binary irreducible Goppa
codes. A distinguisher exists in the case of high rate Goppa codes [FGO+13].
But despite of this potential vulnerability there is no efficient algorithm for the
moment exploiting the knowledge and the properties of the distinguisher. The
existence of weak keys for Goppa codes was raised by Sendrier and Loidreau
in [LS01].

We notice from Fig. 1 that the size of the public key is a real disadvantage
of the McEliece scheme compared to the well known RSA encryption scheme
[RSA78]. Therefore reducing the size of the keys is one of the starting points
of a continuous research interest in this field. We mention the existence of a

Security level( -bit) [n, k] t Public Key size (bits) RSA - Public key size (bits)

80 [1632, 1269] 33 460647 512

128 [2960, 2288] 56 1537536 3072

256 [6624, 5129] 115 7667855 15360

Fig. 1. Parameters and key size for McEliece with Goppa codes from [BLP08] and key
size for the RSA scheme
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compact variant of the McEliece scheme based on quasi-dyadic Goppa codes due
to Misoczki and Barreto [MB09], variant that is not yet broken in the binary
case. The binary Goppa codes were also the most cryptanalyzed scheme from
side-channel perspective. There are mainly two types of side-channel attacks
classified by their goal:

1. Recover the secret message [STM+08,AHPT11];
2. Recover the private key (fully or partially) [Str13,Str10a,SSMS09,BCDR16].

In each article the authors propose to counter the leak and thus step towards
a secure implementation of the scheme. Countermeasures and secured implemen-
tations are also proposed in [CHP12,DCCR13,BCS13].

4.2 Generalized Reed-Solomon Codes

This family was proposed for the first time by Niederreiter in [Nie86] but turned
out to be an insecure solution. Indeed, six years after the article was published,
Sidelnikov and Shestakov proposed a polynomial time attack against this variant
[SS92]. Nevertheless the idea of using GRS codes was reconsidered more than ten
years after by Berger and Loidreau when they proposed to consider subcodes of
GRS codes [BL05]. Unfortunately this technique was also attacked in two steps
by Wieschebrink [Wie06a,Wie09], using the square code structure.

Other attempts to repair the Niederreiter variant were proposed by Wiesche-
brink [Wie06b] who’s idea was to add random column to the generator matrix.
But this variant turned out to be extremely unsecure against square code
type attacks [CGG+14]. Nevertheless GRS codes are still of high interest for
this community since several modified version of the McEliece scheme use this
family of codes. For example Baldi et al. [BBC+16] proposed to change the per-
mutation matrix, Tillich et al. [MCT16] propose to use them in a “u | u + v”
construction, Wang [Wan16] propose to use a technique derived from Wiesche-
brink’s idea.

4.3 Reed-Muller Codes

Reed-Muller codes were proposed by Sidelnikov’s in [Sid94] and was firstly
attacked by Minder and Shokrollahi [MS07]. In the case of Reed-Muller codes
the Key Recovery Attack is reduced to solving the code equivalence problem
since there is only one R(r,m). Minder and Shokrollahi managed to solve this
problem using a filtration type attack based on the structure properties of the
minimum weight codewords. The complexity of their algorithm was dominated
by the minimum weight codewords searching algorithm.

Recently, Chizhov and Borodin [CB14] proposed another attack that could
solve the code equivalence problem, for some of the parameters of the Reed-
Muller codes, in polynomial time. Their idea was to use two simple operations
in order to find the first order Reed-Muller code given the rth order Reed-Muller
code. Indeed they noticed that the dual and the square code of a Reed-Muller
code is still a Reed-Muller code. So they combined these operations in order to
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approach the R(1,m). A modified version using the masking technique intro-
duced by Wieschebrink was proposed in [GM13] and recently broken by Otmani
and Talé-Kalachi [OTK15] using a square code type attack.

4.4 Algebraic-Geometry Codes

This family of codes was suggested by Janwa and Moreno [JM96]. Several arti-
cles discussed the potential vulnerabilities of this variant and proposed algo-
rithms that could be deployed to attack in some particular cases [FM08,SS92].
Nevertheless they can not be generalized and suffer in terms of efficiency. In
[CMCP14] Couvreur, Marquez-Corbella and Pellikaan proposed a polynomial
type algorithm that works on codes from curves of arbitrary genus.

4.5 Concatenated Codes

Concatenated codes were the first family of probabilistic codes analyzed from
a cryptographic point of view. Sendrier detailed in [Sen94,Sen98] the main vul-
nerabilities of ordinary concatenated codes.

4.6 LDPC Codes

Monico, Rosenthal and Shokrollahi were the first ones to propose and analyze
a McEliece variant using low density parity check codes in [MRAS00]. Using
the idea of Gaborit to consider quasi-cyclic codes [Gab05]2 the new QC-LDPC
cryptosystem was presented by Baldi and Chiaraluce in [BC07]. Both BCH codes
and LDPC codes with quasi-cyclic structure were successfully cryptanalyzed
by Otmani, Tillich and Dallot [OTD08]. In order to prevent the last attack, a
modification based on increasing the weight of the codewords in the public code
was proposed in [BBC08]. In the book of Baldi [Bal14] all the details about the
thrilling combats defeating and attacking the LDPC codes are given.

4.7 Wild Goppa Codes

This code family is a natural extension from binary Goppa codes to non binary
fields. It was proposed by Bernstein, Lange and Peters in [BLP10] and [BLP11].
Many of the proposed parameters were broken by Couvreur, Otmani and Tillich
using filtration type techniques [COT14a,COT14b], for quadratic extensions.

4.8 Srivastava Codes

Srivastava codes were proposed in [Per12] in order to reduce the key length of
the original McEliece scheme. The author uses Quasi-Dyadic Srivastava codes
and gives another application of these types of codes for signature schemes.
Even though the parameters for the signature were broken in [FOP+16], the
parameters for the encryption scheme are still valid.
2 In [Gab05] the author proposes BCH codes with quasi-cyclic structure. The idea of

adding the quasi cyclic structure became one of the main techniques for reducing
the key size in the McEliece scheme.
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4.9 MDPC Codes

Moderate Density Parity-Check codes are probably the most suitable codes in a
McEliece type scheme [MTSB13]. Many cryptographic arguments are in favour
of this family of codes like efficiency, small key size when used with a quasi-cyclic
structure and the most important to our opinion the lack of algebraic structure.
Another security argument is the fact that the usual distinguisher does not
work for MDPC codes. In a recent paper, weak keys of the QC-MDPC scheme
are revealed [BDLO16]. However the authors show how to avoid vulnerable
parameters.

4.10 Convolutional Codes

Convolutional codes represented among the shortest term solutions since
between the proposed article by Londahl and Johansson [LJ12] and the efficient
attack by Landais and Tillich [LT13] only one year passed.

4.11 Polar Codes

This family of codes was as unfortunate as convolutional code. The first variant
using Polar codes was proposed by Shrestha and Kim [SK14] while the second
one using subcodes of Polar codes was given in [HSEA14]. In [BCD+16] the first
variant was attacked using the structure of the minimum weight codewords. The
authors managed to solve the code equivalence problem for Polar codes and thus
completely break the scheme.

To close this section we emphasize that there are code families which are
not appropriate in this context due to their structural properties, namely the
GRS codes, the Reed-Muller codes, the Polar codes ... However several classes
of codes remain secure in a McEliece PKC such as original binary Goppa codes,
LDPC and MDPC codes etc. A complete summary of the remaining secure code
families is also given in Fig. 2. Meanwhile the scientific community developed a
new idea, that consists in working with another metric, for instance the rank-
metric. Nowadays, this part of the public-key cryptography is known under the
name of rank-based cryptography.

5 Rank Based Encryption Schemes

The first rank-metric scheme was proposed in [GPT91] by Gabidulin, Paramonov
and Tretjakov which is now called the GPT cryptosystem. This scheme can be
seen as an analogue of the McEliece public key cryptosystem based on the class
of Gabidulin codes. In the following, we present the class Gabidulin codes. In
order to simplify the notation, for any x in Fqm and for any integer i, the quantity
xqi

is denoted by x[i].
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Definition 10 (Gabidulin code). Let g ∈ F
n
qm such that |g|q = n. The (n, k)−

Gabidulin code denoted by Gk (g) is the code with a generator matrix G where:

G =

⎛

⎜⎜⎝

g
[0]
1 · · · g

[0]
n

...
...

g
[k−1]
1 · · · g

[k−1]
n

⎞

⎟⎟⎠ . (1)

A matrix of the form (1) is called a q− Vandermonde matrix. Gabidulin codes
are known to have a good decoding capability [GPT91].

5.1 The General GPT Cryptosystem

The key generation algorithm of the general GPT cryptosystem takes as input
the integers k, �, n and m such that k < n ≤ m and � � n and outputs the
public key/private key pair (pk, sk).

KeyGen(n,m, k, �, q) = (pk, sk)

1. Let G ∈ Mk,n (Fqm) be a generator matrix of the Gabidulin code Gk (g)
2. Pick S ∈ GLk(Fqm), X ∈ Mk,� (Fqm) and P ∈ GLn+�(Fq).

3. Compute Gpub
def= S(X | G)P and t = n−k

2
4. Return

pk = (Gpub, t) and sk = (S,P ).

To encrypt a message m ∈ F
k
qm , apply the following function

Encrypt(m, pk) = z

1. Generate a random error-vector e ∈ F
n
qm with |e|q ≤ t

2. Return z = mGpub ⊕ e

The decryption takes as input a ciphertext z and the private key sk and
outputs the corresponding message m. Decrypt(z, sk) firstly computes zP−1 =
mS (X | G) + eP−1. The last n components of zP−1 will satisfy z′ = mSG +
e′ where e′ is a sub-vector of eP−1 hence |e′|q ≤ t. It then applies a fast decoding
algorithm of Gk (g) to z′ and obtain mS and hence m.

Security. In [Ove08], Overbeck proposed a very efficient attack on the GPT
cryptosystem. Several works propose to resist to Overbeck’s attack either
by taking a column scrambler matrix defined over the extension field Fqm

[Gab08,GRH09,RGH11,GP14] or by taking special distortion matrix as in
[Loi10,RGH10]. We describe in the following all existing variant of the GPT
cryptosystem after the apparition of Overbeck’s attacks, and we give the state
of the security of each variant.



Evolution of the McEliece Public Key Encryption Scheme 141

5.2 GPT Cryptosystem with Column Scrambler on the Extension
Field

The first paper that consider column scrambler matrix over the extension field
is Gabidulin’s paper [Gab08]. The important points are Key generation and
decryption; the encryption phase is without change. The author proposed to
describe the system as follows:

Description of the Scheme. The key generation algorithm works as for the
general GPT scheme, with the difference: P in GLn+�(Fqm) is such that there
exist Q11 in M�,� (Fqm), Q21 in Mn,� (Fqm), Q22 in Mn,n (Fq) and Q12 in
M�,n (Fqm) with |Q12| = s < t so that

P−1 =
([

Q11 Q12

Q21 Q22

])
. (2)

The public key is (Gpub, tpub) with tpub = t − s and Gpub = S (X | G)P .

Decryption. We have cP−1 = mS (X | G) + eP−1. Suppose that e =
(e1 | e2) where e1 ∈ F

�
qm and e2 ∈ F

n
qm . We have:

eP−1 = (e1Q11 + e2Q21 | e1Q12 + e2Q22) (3)

It is clear that

|e1Q12 + e2Q22| ≤ |e1Q12| + |e2Q22| ≤ s + t − s.

So the plaintext m is recovered by applying the decoding algorithm only to
the last n components of cP−1.

Several authors also proposed other constructions of the column scrambler
on the extension field. In [GRH09,RGH11] it is proposed for instance to choose
a column scrambler matrix P ∗ = TP such that

P−1 = (Q1 | Q2) (4)

where Q1 ∈ Mn,s (Fqm) while Q2 ∈ Mn,(n−s) (Fq). This construction can
be seen as a variant of the more general construction given in [Gab08] (see
[OTKN16] for more details). In [GP13,GP14], another variant is also proposed.
This variant consists to use a column scrambler matrix P such that

P−1 = T + Z (5)

T ∈ GLn+�(Fq) and Z ∈ Mn+�,n+� (Fqm) with |Z| = s. However, this last
variant was shown in [UG14] to be equivalent to the general GPT cryptosystem
[GO01] and hence not secure.

Security. In was recently shown in [OTKN16] that the Gabidulin’s general
construction [Gab08] is not secured, even if a more general column scrambler
P ∗ = TPQ is considered (T ,Q ∈ GLn+�(Fq) and P being a matrix that the
inverse is given by Eq. 2). This attack also implies and attack on the variant
of [GRH09,RGH11] since the construction of [Gab08] is a generalization of the
constructions given in [GRH09,RGH11,GP14,GP13].
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5.3 GPT Cryptosystems with a Special Distortion Matrix

Loidreau reparation. The main objective of the Loidreau reparation [Loi10]
is not to propose a new system, but to propose parameters that would prevent
Overbeck’s attack. The idea is to take a very large � (� >>> n − k) and use a
matrix X ∈ Mk,� (Fqm) with a very low rank s such that s(n−k) ≤ �−a where
a is a given integer. Even if the keys sizes of this reparation are small compared
to what we have in the McEliece encryption scheme [McE78], they remain very
large. It is the reason why the author of [RGH10] proposed the “smart approach”
that aim to avoid Overbeck’s attack while keeping small keys sizes.

The smart approach. As in the Loidreau’s reparation, the only difference
is on the generation of X. The authors proposed to take a distortion matrix
X ∈ Mk,� (Fqm) that is a concatenation of a q−Vandermonde matrix X1 ∈
Mk,a (Fqm) and a random matrix X2 ∈ Mk,�−a (Fqm) with 0 < a < �.
More precisely, to design the public generator matrix, let S ∈ GLk(Fqm),
X2 ∈ Mk,�−a (Fqm), b = (b1, · · · , ba) and

X1 =

⎛

⎜⎜⎝

b
[0]
1 · · · b

[0]
a

...
...

b
[k−1]
1 · · · b

[k−1]
a

⎞

⎟⎟⎠ . (6)

Select P ∈ GLn+�(Fq) and compute

Gpub = S (X1 | X2 | G)P

Security. A successful cryptanalysis of the previous variants was recently pro-
pose in [HMR15]. We also emphasise that there is a recent Message Recovery
Attack against the aforementioned variants by [GRS16,HTMR16].

5.4 LRPC Cryptosystem

Beside the Gabidulin codes and inspired by the class of MDPC/LDPC codes
in Hamming metric, a new class of rank metric codes was recently proposed in
[GMRZ13] namely Low Rank Parity Check codes. They are the adaptation of
the MDPC/LDPC codes in the rank metric. The LRPC cryptosystem [GMRZ13]
is thus the analogue of the MDPC McEliece scheme. The main advantage of the
scheme is that it comes, as the MDPC PKC, with a quasi-cyclic version, which
allows to drastically reduce the key size. The QC-LRPC scheme is therefore one
of the most promising rank-based encryption scheme since it has many security
arguments in its favour: compared to the Gabidulin codes, the LRPC codes have
a weak algebraic structure and thus seem much more fitted for a cryptographic
purpose. Secondly the QC-LRPC scheme is equivalent to the NTRU [HPS98]
and thus benefit of a quite long research experience from a cryptanalytic point
of view.
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Security level( -bit) Binary Goppa Wild Goppa QD - Srivastava QC - LDPC QC - MDPC LRPC
[BLP08] [BLP10] [Per12] [Bal14] [MTSB13] [GMRZ13]

80 460647 - 36288 - 4801 1681

128 1537536 1523278 37440 12351 9857 2809

Fig. 2. Key size in bits for the remaining secure code families in the McEliece scheme

6 Conclusion and Perspectives

In this article we have given a state-of-the-art of the McEliece encryption scheme.
We have also detailed the main security threats for the scheme and for each of
the mentioned variants. The general idea is to choose an appropriate private
code that will be masked into a public one. This technique opens a general
security question of indistinguishability of the public code from a random code.
Even though several variants remain secured against existing attacks there is
no theoretical guaranty of their security. By that we mean there is no security
proof for the aforementioned variants. For instance there is no formal proof
of the indistinguishability of the public code from a random one. The table
bellow summarizes the remaining secure code families in the McEliece scheme.
We emphasize that this table is not complete, but the variants given are the
principal ones known with parameters.

Following McEliece’s idea a possible solution for this problem would be to
find a new masking technique for which there is a formal proof of the indis-
tinguishability of the public code from a random one. In [Wan16] the author
propose a masking technique for which he proves that the public code is equiv-
alent to a random code and thus reintroduce in the context all the struc-
tural codes that have been broken. Another solution was already proposed by
Alekhnovich who proposed an innovative approach based on the difficulty of
decoding purely random codes [Ale11]. Several authors were inspired by his work
[DMN12,DV13,KMP14,ABD+16]. This two approaches open a new perspective
for code-based cryptography.
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