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Abstract A combination of transportation modes offers environmentally friendly
alternatives to transport high volumes of freight over long distances. In order to
reflect the advantages of each transportation mode, it is the challenge to deal with
data uncertainty during the transportation planning phase. This chapter investigates
the alternative ways of modeling the uncertainty by discussing them and their
characteristics in terms of solution times, the quality, and the limitations. Moreover,
several real-life case studies are provided to demonstrate potential environmental
benefits by considering the principles of green logistics for single-mode and
intermodal transportation.

1 Introduction

The growing demand leads to increased transportation volumes on the limited trans-
portation networks which leads to delays and disruptions due to unexpected events.
This is particularly crucial for road transportation which has been traditionally the
most preferred transportation mode and still has the major share on the modal split
in Europe [43]. Moreover, road transportation is one of the main contributors to
carbon dioxide equivalent (CO2e) emissions from transportation that are responsible
for severe impacts on climate [20]. Therefore, logistics companies are looking for
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Table 1 Acronyms and
abbreviations used in the
chapter

Notation Description

CO2e Carbon dioxide equivalent

GHGs Greenhouse gases

GISND Green intermodal service network design problem

SAA Sample average approximation

TEU Twenty-foot equivalent unit

TMS Transport management system

VRP Vehicle routing problem

alternative transportation solutions that would minimize negative impacts of their
transportation activities but still offer competitive solutions in a highly saturated
market (Table 1).

One of the alternatives is intermodal freight transportation, a specialization
of multimodal transportation which consecutively uses multiple transportation
modes moving the goods in the same standardized loading unit (e.g., container)
[17]. In addition to flexibility offered by multimodal transportation, intermodal
transportation offers numerous advantages for shippers with large volumes, such as
standard sizes, faster transshipments, and reduced packaging expenses [45]. How-
ever, the combination of different transportation modes requires more coordination
and accurate transportation planning. Since most of the intermodal services are
running according to fixed schedules, the reliability of the transportation plans is an
important issue in order to avoid delays and enable on-time delivery of the goods. In
this context, improved collection of real-time traffic flow information over the last
decade builds the data basis for reliability of transportation plans.

While transportation literature offers extensive methods for (unscheduled) road
transportation (see, e.g.,[31, 19]), these approaches are only of limited use for
planning transportation activities in intermodal transportation networks, where
services such as train, vessel, or flight connections follow a fixed schedule. In
such cases, service network design (SND) provides promising alternatives for the
reproduction of transportation flows on more than one mode. SND problems deal
with the selection of available services for specific transports by offering advantages
for the consolidation of transports as well as the consideration of multiple modes.
Moreover, it provides methodological possibilities which enable the representation
of transshipment as well as the consolidation of containers.

The research on dynamic SND problems is still in its early days, though, which
leads to a lack of applications to as well as the development of new methods for
service network environments. Most of the limited publications in this domain are
dealing with demand uncertainty (e.g., [32, 10]), while only a minority takes travel
time uncertainties into account. Input from practitioners, though, suggests that travel
time uncertainty is an important source of variability to consider when trying to
make accurate transportation plans.

The aim of this chapter is to give an overview about possible approaches for
modeling intermodal freight transportation planning under uncertainty. For this,
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different approaches are at first described and then compared using a case study in
order to show their advantages and weaknesses. In order to discuss different aspects
of transportation activities, multiple objectives (e.g., costs, time, emissions) are
considered in the models which provide managerial insights on interaction between
economic and ecological objectives in transportation planning and on the benefits of
using alternative transportation modes in comparison to road transportation. In this
way the ecological footprint of transportation operations can be improved which
contributes to achieving the objectives of the green logistics concept.

The remainder of the chapter is organized as follows. Section 2 introduces the
green intermodal service network design problem and discusses important points
for considering CO2e emissions in transportation planning. Section 3 describes
alternative ways of uncertainty modeling. Section 4 presents case studies to
highlight and compare the importance of methodological approaches to intermodal
transportation. Conclusions are stated in Sect. 5.

2 The Green Intermodal Service Network Design Problem

The intermodal transportation chain consists of a number of transportation services
served by different transportation modes that connect intermodal terminals where
transshipment has to be handled. These services need to be coordinated in order to
ensure smooth flow of freight in containers through the network from their origin
to the destination within time windows specified by the customer. Typically, there
exist various alternative routes within the network between the planned origin and
destination of a container, and the aim is to find the optimal route that fulfills
the criteria set by the decision maker. In this respect, the most important criteria
for transportation mode choice are not only transportation costs but also safety,
flexibility, and reliability, as shown in a survey performed by [48]. Since customers
want to have the goods delivered on time and avoid delays which can cause
additional costs or production stoppages, reliability of the system is becoming more
crucial. Therefore, it is necessary to include the uncertainties in travel times caused
by delays and disruptions of transportation network into the planning algorithms.
In this way the created transportation plan becomes robust since it can stay feasible
even if a disruption occurs, and therefore goods can be delivered on time [22].

High robustness of transportation plans is of special importance in case of
intermodal transportation planning where several vehicles of different transportation
modes are connected in one transportation chain. Thereby, every mode has its
special characteristics that need to be considered. Whereas some services in
intermodal transportation networks (e.g., rail, inland waterway) have fixed departure
times according to planned schedules, other services (mostly road) are usually
more flexible as they do not have fixed time slots when they can use the available
infrastructure. This feature further increases the complexity of the intermodal
transportation problem since the fixed departure times have to be considered when
coordinating the individual services in a transportation plan. Whereas schedules can
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be easily incorporated into planning if only deterministic travel times under ideal
conditions are considered, they might lead to disruptions of the network when delays
occur and the goods are delivered to the terminal only after the next planned service
has already left. In that case the goods have to wait for the next train or vessel
which might result in a delay of hours or even days depending on the frequency
of the connection. Alternatively, a new plan has to be found which might result in
higher costs, time, or emissions. Therefore, it is necessary to include buffer times
into transportation planning to avoid such situations.

Buffer times should not be too long since this would make the total transportation
time longer and therefore further decrease the competitiveness of intermodal
transportation in comparison to direct single-mode transportation which does not
require any transshipment operations on the route. The length of the buffer times is
dependent on the type and frequency of disruptions occurring on a certain route
which can be derived from historical data as well as from actual real-life data
about the current transportation network state and represented in form of travel
time probability distribution as shown in Sect. 3. In reality, the same delay can
lead to different results for different connections: e.g., a delay of 30 min can be
critical for a truck operating in a just-in-time environment, whereas the same delay
might not have any influence in case of an inland waterway vessel sailing 3 days
between origin and destination. Besides that, the type of disruption also determines
the impact of a certain disruption on the transportation: whereas a truck can usually
take a detour if an accident happens on a highway, in case of a low water level on
a certain river section, the vessel either has to wait for a couple of days, or goods
have to be transshipped to another transportation mode [47]. If all these factors are
included in the transportation planning process, the robustness of the resulting plan
can be increased so that most of the disruptions are covered by the included buffer
time.

A transportation planning approach which enables the inclusion of uncertainty
and includes multiple objectives was first studied by [15] and followed by [24].
In their paper, the authors present a mixed-integer linear program for optimizing
the transportation plan within an intermodal network considering uncertain travel
times and demands. The approach chosen is called service network design (SND)
in which each transportation link between two terminals is modeled as a service
characterized by its origin, destination, capacity, route, departure time, planned
travel time, transportation costs and emissions as well as the vehicle used for this
service. This approach is also the basis for this chapter, where we investigate the
transportation plan based on three different objectives which can have different
weights according to the user’s preferences. The objectives are transportation costs,
time in form of costs for in-transit inventory and penalty costs for late deliveries at
the final customer, and CO2e emissions expressed as emission costs. Since a survey
by [13] has shown that this combination of objectives and especially consideration
of CO2e is not usual in the current transportation management systems (TMS)
responsible for planning operations, Sect. 2.1 shortly discusses requirements and
possible problems for modeling emissions. After that, the mathematical model used
for intermodal transportation planning is presented in Sect. 2.2.
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2.1 Air Pollution and GHGs

The environmental impact of transportation can be measured in the form of
CO2e emissions which have to be calculated accurately. Using accurate calculation
methods and quantifying the emissions might help to identify possibilities for their
reductions which together with a proper implementation of green logistics bring
more advantages than disadvantages for the logistics service providers or freight
forwarders. Therefore, there is an increasing need to highlight these advantages to
transportation companies.

Greenhouse gases (GHGs) are the most studied negative externality of freight
transportation. These gases cause atmospheric changes and climate disruptions
which are harmful to the natural and built environments and pose health risks.
The primary transportation-related man-made GHGs in the Earth’s atmosphere are
carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone (O3). As
CO2 is the dominant man-made GHG, the impacts of other gases can also be
calculated based on carbon dioxide equivalent (CO2e) emissions [27, 6].

Despite the fact that transportation sector is one of the biggest contributors of
CO2e emissions, a survey performed by [13] showed that calculation of emissions
is only slowly becoming part of TMS. Even when emissions are taken into account
in TMS, they are only reported as an additional factor for the resulting routes, and
they are not used as an optimization objective. Usually only costs are taken into
account for optimization, and in case of multiple objectives, costs are combined
with service, distance, time, etc. This development might be caused by multiple
reasons which make the calculation of emissions challenging.

Firstly, the amount of emissions is dependent on the energy needed for moving
the vehicle coming either from diesel or electricity consumption. Although the
energy consumption can be easily measured after the transportation has been
conducted, calculation of energy consumption before the start of the transportation
is problematic as it is dependent on a number of factors which are not always known.
These factors include the characteristics of the vehicle (e.g., weight, air and rolling
resistance, engine), route and driving characteristics (e.g., gradient, speed, number
of stops, driving behavior), and the amount of goods transported [5, 18, 12]. In order
to be able to estimate the emissions, a number of different models requiring detailed
inputs have been developed as shown by [12] and [14]. Besides these detailed
microscopic models, emission calculators based on real-world measurements and
recommended values for a typical vehicle are also available (e.g.,[9, 18, 26]).
However, each of these models and calculators is based on certain assumptions
which lead to discrepancies between calculated and measured emissions.

Secondly, the scope of emissions has to be determined in order to know
which emissions to consider for calculation. According to the GHG protocol,
emissions can be divided into three scopes: emissions from resources owned by
a company, e.g., emissions from production (Scope 1), indirect emissions from
purchased energy (Scope 2), and all other emissions including also other stages
of supply chain, e.g., suppliers, transport, and distribution (Scope 3) [46]. Similarly,
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the emissions from transportation activities can either be calculated as emissions
from fuel consumption directly in the vehicle (tank-to-wheel, TTW) or can also
include emissions from production of the fuel (well-to-wheel, WTW). Inclusion
of emissions from fuel production is especially important in cases where electric
vehicles are involved since emissions from electricity consumption are equal to zero
[30].

Thirdly, the monetary value of CO2e emissions is unclear. Since the long-term
effects of emissions on climate change and the amount of released emissions cannot
be easily predicted, the estimation of emission costs is again based on a number
of assumptions including different discount rates for future events and risk attitude
of the decision makers. As a result, the so-called social costs of carbon emissions
are estimated to be between 0 EUR and more than 700 EUR per ton of emissions
depending on the model [3, 37, 23]. In the analysis of [16], there are also differences
in emission costs ranging between 5 EUR and 135 EUR. Therefore the monetary
value of emissions cannot be easily compared to transportation costs.

In the calculation methodology used for the model, the emissions were calculated
per TEU transported by a certain service and then converted into emission costs.
As the estimation of emission costs is difficult, a fixed price of 70 EUR/ton of
CO2e emissions was used for calculations as recommended by the German Federal
Environment Agency [39]. Besides that, additional assumptions had to be made
regarding the average utilization of the vehicles since the emission functions for
trains and vessels are nonlinear. As a result, the utilization was assumed to be
80% for trains [39] and 90% for inland vessels [50]. Despite these additional
assumptions, the results show the influence of emissions on the optimal routing
decisions.

2.2 Mathematical Model

This part of the chapter provides a linear mixed-integer mathematical formulation
of the green intermodal service network design problem (GISND). The presented
model can be used to find optimal transportation plans under deterministic con-
ditions, i.e., in situations where no uncertainty is considered. The possibilities for
including uncertainty into the model are discussed in Sect. 3. The aim here is to
find an optimal plan for orders p 2 P defined by their demand dp, origin i, and
destination j nodes as well as earliest release �

p
release and due time �

p
duetime. Moreover,

�p.i; j/ D f.p 2 P/ji 2 N and j 2 N g is a set of orders with origin i and
destination node j. The orders can be routed in a transportation network consisting
of services s 2 S (scheduled transports) and nodes i; j 2 N (transshipment
locations). Each service, since it is connected to a schedule and vehicle, is unique
and connects transshipment locations i and j. Therefore, ıs.i; j; v; Ds

m/ D f.s 2
S /ji 2 N and j 2 N and v 2 V g is a set of services executed by vehicle v
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Table 2 Sets and parameters used in the model

Notation Definition

N Set of all transshipment locations

N C Set of start terminals of transportation orders

N � Set of end terminals of transportation orders

P Set of transportation orders

S Set of transportation services

�
p

release Earliest release time of order p

�
p

duetime Due time of order p

cj Transshipment costs per container in terminal j

cs Transportation costs of a service s

cemi Emissions-related costs per kg of CO2e emissions

cp
pen Penalty costs in case of late delivery of goods

cp
t In-transit inventory costs per hour for order p

caps Free capacities of services s

dp Demand (in containers) of order p

ej Emissions in kg per transshipment of container in terminal j

es Emissions in kg per transportation of container on service s

L Large (enough) number

tj Separate loading and unloading time at terminal j

ts Transportation time of service s

Ts
min Start of the departure time window for service s

Ts
max End of the departure time window for service s

!i Weight for the objective i

between origin i and destination node j within the starting time window bounded
by Ts

min and Ts
max. In addition to that, services are characterized by their scheduled

departure time Ds and service travel time ts as well as service slot price cs and
CO2e emissions per container es. Services on the road as well as transshipment are
assumed to be available when needed. We first present sets, parameters, and decision
variables and then provide the mathematical formulation of the model. This model
extends the model introduced by [15] by adding in-transit inventory costs to the
original time-related cost component of the objective.

We now provide the sets, parameters, and decision variables used for the
formulation of the mathematical model in Tables 2 and 3.

Minimize !1

X

p2P

X

s2S
xspcs C !1

X

j2N
njcj C !2

X

p2P
cp

t .ADp � �
p

release/C

!2

X

p2P

X

s2S
ap

delaycp
pen C !3cemi

X

p2P

X

s2S
xspes C !3

X

j2N
njej (1)
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Table 3 Decision variables used in the model

Notation Definition

ap
delay Delay of order p at destination node j

As Arrival time of service s at the associated destination node j

ADp Arrival time of order p to its destination

Ds Departure time of service s at the associated departure node i

Delayqrp Delay between preceding service q and succeeding service r of order p

lqr A binary variable equal to 0 if transshipment is necessary between preceding
services q and succeeding service r, 1 otherwise

nj The number of containers transshipped at terminal j

ys; ysp A binary variable equal to 1 if service s is used (for order p)

xsp The number of containers of order p carried via service s

zqrp The number of containers of order p that have to be transshipped between
preceding services q and succeeding service r

Subject to:

X

s2ı.s2S jnDi/

xsp D dp 8n 2 N jn D i; p 2 P (2)

X

s2ı.s2S jnDj/

xsp D dp 8n 2 N jn D j; p 2 P (3)

X

s2ı.s2S jnDi/

xsp �
X

s2ı.s2S jnDj/

xsp D 0 8n 2 N j.n ¤ i; j/; p 2 P (4)

X

p2�.p2P/

xsp � yscaps � 0 8s 2 ı.s 2 S / (5)

xsp � yspL 8s 2 ı.s 2 S /; p 2 �.p 2 P/ (6)

xsp � ysp 8s 2 ı.s 2 S /; p 2 �.p 2 P/ (7)

ys �
X

p2�.p2P/

xsp 8s 2 ı.s 2 S / (8)

X

p2P

X

s2
ı.s2S jiDnjjDn/

xsp � 2
X

p2P

X

q2
ı.q2S jiDn/

X

r2
ı.r2S jjDn/

zqrp D nn 8n 2 N (9)

Ds C ts � As � L.1 � ys/ 8s 2 ı.s 2 S / (10)

Aq C tjx
qp C tjx

rp � 2tjz
qrp � delayqrp � Dr � L.1 � yqp/ � L.1 � yrp/

8q 2 ı.s 2 S jj 2 N /; p 2 P; r 2 ı.s 2 S ji 2 N / (11)
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zqrp � Llqr 8q 2 ı.s 2 S jj 2 N /; p 2 P; r 2 ı.s 2 S ji 2 N / (12)

Ds � ysp�
p

release � 0 8p 2 P; s 2 ı.s 2 S ji 2 N C/ (13)

As � ap
delay � �

p
duetime � L.1 � ysp/ 8p 2 P; s 2 ı.s 2 S ji 2 N �/ (14)

ADp � As � L.1 � ysp/ 8p 2 P; s 2 ı.s 2 S ji 2 N �/ (15)

Ts
minys � Ds � Ts

maxys 8s 2 S (16)

delayqrp � yqpL 8q 2 S ; r 2 S ; p 2 P (17)

delayqrp � yrpL 8q 2 S ; r 2 S ; p 2 P (18)

ys; ysp D f0; 1g 8s 2 S ; q 2 S ; r 2 S ; p 2 P (19)

ap
delay; xsp; zqrp; delayqrp; Ds; As; ADp � 0 8s 2 S ; q 2 S ; r 2 S ; p 2 P: (20)

The objective function (1) of the mathematical model minimizes a weighted
sum of the total costs. The weights enable the reflection of individual preferences
regarding direct transportation (!1), time-related (!2), and CO2e emissions-related
(!3) costs. The direct transportation costs consist of transportation costs per
container and service cs, which include the fixed transportation costs per service
allocated to one container as well as the direct transportation costs per container and
transshipment costs per container (cj). The time-related costs (cp

t ) are represented
by in-transit inventory costs for the total time spent since the release of goods
at the origin until the arrival of the order to the destination. In addition to that,
charges for delayed deliveries (cp

pen) are also included in time-related costs. As the
third objective, the CO2e emissions-related costs per kg (cemi) for the emissions
consumed per container serviced (es) and transshipped (ej) are also included.

Constraints (2), (3), and (4) handle the movement of containers. While con-
straints (2) and (3) focus on the origin and destination nodes, constraint (4) manages
the transshipment. Demand, in that regard, is positive if more containers are planned
to originate from a specific node than are destined for that node. Constraint (5)
ensures that capacity limits of services are adhered to. Constraints (6), (7), and (8)
make sure that a service is only allowed to process any amount of containers when it
is selected. While (9) tracks the transshipment necessary, constraints (10) and (11)
ensure the timely sequencing of the services within the network. As seen in (10),
each service has interrelated departure, service, and arrival times. In addition to the
synchronization at nodes in terms of loading units (2), (3), and (4), constraint (11)
takes care of the timely synchronization. It ensures the relation of sequential services
at a transshipment location. This is necessary due to more or less fixed schedules of
services, which permit services with earlier departure times than possible preceding
services from following up on them. Constraint (12) ensures that only containers
which have to change the vehicle are considered when calculating transshipment
times, costs, and CO2e-emissions. Constraints (13) and (14) provide the time frame
for each order to plan within. The lower limit (earliest pick-up time) is fixed, while
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the upper limit (due date) can be bent, with penalties – if desired – allocated to
late deliveries (ap

delay). Constraint (15) defines the arrival time of the order to the
destination which is dependent on the arrival of the last service which the order
is carried on. Constraint (16) gives the time window within which services can
depart with Ts

min D Ts
max being valid for scheduled services. Constraints (17) and

(18) ensure that the feasibility of two consecutive services is only checked if these
services are designated to be used within the same routing plan. The domain of the
decision variables is given in constraints (19) and (20).

3 Dealing with Travel Time Uncertainty

Whereas the presented mathematical model can easily calculate transportation
plans in a deterministic environment, it has only limited possibilities to handle
the increased complexity of the problem if stochastic factors are included. The
reason for this is that considering uncertainty for different variables results in
a high number of possible scenarios which cannot be handled by conventional
methods, such as dynamic programming and multistage stochastic programming
for realistic instance sizes. As an example, in a network with three services that
can have three possible travel time realizations each, in total 27 different travel
time combinations are possible, and the number of combinations is exponentially
increasing with the increasing number of services and scenarios. Therefore, two
possible approaches which can handle such complexity and evaluate the reliability
of transportation plans under uncertainty are presented in this chapter, namely,
sample average approximation and simulation-optimization. The focus here is on
travel time uncertainty, but these approaches can be easily applied to other uncertain
factors, such as demand or customer.

3.1 Sample Average Approximation

The sample average approximation (SAA) method is used to reduce the complexity
of a stochastic problem by approximating a distribution or an expected value of an
uncertain variable. The approximation of a distribution is obtained by replacing the
actual distribution with an empirical distribution by Monte Carlo sampling. In cases
where the objective function corresponds to an expected value, it is approximated by
its sample average estimate. The resulting problem is then solved by deterministic
optimization methods.

The SAA method has been widely applied in the context of transportation
planning and routing. Kenyon and Morton [28] use SAA to solve a stochastic
vehicle routing problem (VRP) under two different objective functions: minimizing
the expected completion time and maximizing the probability of completion time
being below a target level. Luedtke and Ahmed [33] provide an application of SAA
to a chance-constrained transportation problem with a convex feasible region where



Methodological Approaches to Reliable and Green Intermodal Transportation 163

the dimension of the random vector presents a computational challenge. Wang and
Meng [52] apply SAA for a schedule design problem for liner shipping services
to minimize expected costs, and [53] apply it to chance-constrained liner ship fleet
deployment problem. Verweij et al. [49] provide an introduction to the application
of SAA to stochastic routing problems with expected value objectives.

The SND formulation presented in Sect. 2 extended by travel time uncertainty
can be classified as a chance-constrained problem where a chance constraint
measuring the number of successful realizations of a transportation plan under
different travel time scenarios decides about the reliability of the plan. In this
context, SAA method is used to approximate the true probability of the constrained
event by its frequency of occurrence within the sample. In general, SAA is applied to
chance-constrained stochastic problems because of two reasons: the feasible region
defined by the chance constraint can be non-convex, and the probability of the
constrained event may be difficult to evaluate [33, 38]. It has been shown that the
optimal solution of the sampled problem converges exponentially fast to the optimal
solution of the original problem as the number of scenarios increases.

The application of SAA to the GISND problem has been studied by [15]. In
their approach, a number of different independent samples are created where each
sample consists of M scenarios representing different travel time realizations based
on their probability distributions. Then, the model is solved for each of the samples
which results in a number of candidate solutions. These candidate solutions are then
tested on another test sample with a large number of scenarios in order to evaluate
the probability that a plan is not feasible under a certain travel time combination,
and therefore replanning is required. If this probability is higher than a certain value
1 � ˛ which has to be chosen arbitrarily before the start of the process, then the
plan is not considered as a feasible solution. From all feasible candidate solutions,
the solution with minimal total costs is chosen at the end as an optimal solution. In
order to apply the SAA method to the GISND, the mathematical model presented
in Sect. 2 has to be extended by a set of travel time scenarios M and the following
constraints checking the reliability of the plan:

1 � f qrp
m � delayqrp

m 8q 2 S ; r 2 S ; p 2 P; m 2 M (21)

L.1 � f qrp
m / � delayqrp

m 8q 2 S ; r 2 S ; p 2 P; m 2 M (22)

f qrp
m � f p

m 8q 2 S ; r 2 S ; p 2 P; m 2 M (23)
X

m2M
f p
m � M˛ 8p 2 P; (24)

where f qrp
m is a binary variable checking whether an order p can catch the planned

ensuing service after arriving to a transshipment terminal (f qrp
m D 1) or not (f qrp

m D
0), depending on the delay of the order determined by constraint (11). Based on the
constraints (21), (22), and (23), the binary variable f p

m then shows whether a certain
transportation plan for order p is feasible (f p

m D 1) or not (f p
m D 0). Constraint (24)

is then the chance constraint measuring the number of feasible scenarios which has
to be higher than the factor ˛ (e.g., 95%) in order to classify a plan as reliable.
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3.2 Simulation-Optimization Approach

Another possibility for including uncertainty into the green intermodal transporta-
tion problem is a two-step hybrid approach combining the presented deterministic
optimization model in Sect. 2 with a simulation model which is able to create and
evaluate a high number of scenarios for the stochastic elements. This approach is
getting more attention in the last years when it has been used for solving complex
dynamic problems in supply chain management (see, e.g.,[2, 1, 35]). As an example,
[40] combines simulation and optimization models in order to optimize a supply
chain by combining transportation planning and production decisions including
stochastic and nonlinear elements. In case of [44], a simulation-based approach
is used for sustainable transportation optimization by searching for strategies that
minimize the generalized costs of multimodal planning. In addition to that, [7]
and [42] apply a hybrid approach combining simulation and optimization for
coordinating production and distribution decisions, and [11] uses a similar method
for the perishable goods industry. Whereas these contributions cover the production
processes and their combination with distribution, the application of the simulation-
optimization approach to the transportation planning area is very limited. Besides
that, the main purpose of combining the two methods is usually the estimation of
uncertain parameters by simulation which are then used for the optimization. This
differs from our approach where the simulation model with stochastic travel times
is used to evaluate the reliability of deterministic transportation plans created by the
optimization model.

The solution procedure has been described in detail in [24] and is presented in
Fig. 1. The authors considered a system which consists of an optimization model and
a simulation model run in different software that are connected through a database
including the relevant transportation network represented by terminals and services

Optimization
model

Simulation 
model

Deterministic
transportation

plans

Orders with
unreliable transpor-

tation plans + 
service sequence

Orders with
reliable

transportation
plans

Service 
capacity
updates

Orders

Services

Terminals

Model inputs

Data exchange between models

Model outputs

Fig. 1 An overview of the simulation-optimization approach presented by [24]
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as well as orders that need to be shipped. All of the data has to be available at
the beginning of the process and is the input for the optimization model which
computes the optimal transportation plan considering deterministic travel times
in ideal situation where no congestion or delay occurs. In this way the optimal
plan is obtained relatively quickly, and additional constraints connected to travel
time uncertainty which might limit the size of the instances that can be solved to
optimality can be avoided.

The transportation plans calculated by the optimization model serve as a basis for
the simulation model which in the second step of the solution procedure evaluates
their reliability under stochastic circumstances. In this step, the travel time is
uncertain and can take different values depending on the underlying probability
distribution that has to be determined in advance. During the simulation, multiple
runs of the simulation model are executed in order to consider different possible
travel time combinations for all services in the transportation network. Within each
run, the optimal deterministic route for each order is simulated in order to see
whether the plan is still feasible under the chosen travel time realizations. In this
way, in addition to calculating the number of scenarios in which a plan becomes
infeasible, also the problematic service or sequence of services which might lead to
delay and infeasibility of the plan can be identified. The plan becomes infeasible if
the containers arrive too late to an intermediate terminal, and therefore the planned
subsequent service is missed. In this case the transportation process cannot be
continued according to the original plan, and therefore an alternative solution has to
be found. The simulation model enables to define some simple solutions in advance
(e.g., using an additional truck to transport the containers directly to the destination)
which can be used and simulated in case of infeasibility. In this way not only the
reliability of the plan but also the additional costs in case of infeasibility can be
estimated.

At the end of the simulation phase, the reliability of the plans is evaluated based
on two criteria: the number of runs in which the plan was infeasible and the average
additional costs of this infeasibility in comparison to the optimal deterministic
solution. The thresholds for these criteria have to be set at the beginning of
the optimization process, and they are decisive for classifying a transportation
plan as reliable or not reliable. Transportation plans which are reliable leave the
optimization process and are fixed for execution which means that the service
capacity used by these plans has to be blocked and the free capacity of the services
has to be updated in the database. Transportation plans which are not reliable are
sent back to the optimization model together with the updated service capacities,
and the whole optimization process starts from the beginning. In order to prevent
the repeated choice of the unreliable plan by the optimization model, the service
sequence of the plan is also used as input for the optimization model and is handled
in an additional constraint so that an alternative plan has to be chosen. This process
is repeated until a reliable plan is found for all orders. If there is no feasible and
reliable route for an order in the considered network, a direct transportation by truck
is used as a default option.
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3.3 A Comparison of the Methods

Both presented methods can be used to get reliable transportation plans; however,
the decision about which method to use and also the quality of the solution for
each method might be dependent on the complexity of the problem which has to
be solved. The division of the solution procedure into two steps in the simulation-
optimization approach decreases the complexity for the mathematical optimization
model which only has to deal with deterministic times. Therefore, larger instances
can be solved than in the case of the SAA approach since the scenarios are
included in the mathematical model which limits the size of the problem a solver
can handle. In terms of computational time, the integration of scenarios into the
model leads to faster solutions for SAA for smaller instances since the simulation
model needs some time to run all scenarios and the time further increases if
solutions are infeasible and further runs of the optimization and simulation model
are necessary. However, whereas the computational times for SAA tend to increase
exponentially with the increasing complexity of the instances, the time needed for
one simulation run is rather stable. Moreover, with regard to the quality of the
solution, the simulation-optimization approach evaluates the reliability based on
two criteria so that some plans which are unreliable according to SAA can be
accepted by simulation since the infeasibility might cause only very small cost
increase that might be negligible in comparison to the higher costs of an alternative
plan. Furthermore, the simulation model shows where the disruption occurs which
is not reported by SAA where only a solution is chosen based on the chance
constraint. The simulation model also gives possibilities to increase the number of
considered scenarios and replications in order to increase the statistical significance
of the solution, and the travel time can be modeled by using different probability
distributions. The described differences are also illustrated by a computational
comparison in Sect. 4.2.

4 Case Studies

The combination of different objectives and the consideration of travel time
uncertainty in the optimization process often lead to trade-offs and conflicting
solutions which are dependent on the priorities that the transportation planner
sets before the solution process is started. In order to illustrate these trade-offs,
this section consists of two case studies that show the influence of the individual
objectives and the travel time uncertainty on the optimal solution. Comparing results
for different objectives is not only important in the intermodal transportation, which
is described in Case study B (Sect. 4.2), but can also help to improve the reliability
of single-mode transportation, as it is illustrated in Case study A (Sect. 4.1).
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4.1 Case Study A: Choosing the Optimal Route for Road
Transportation

Road transportation is a very popular transportation mode with the highest share on
the modal split within the EU (74.9% in 2014) [21]. The reason for this is a high
flexibility of this transportation mode since most of the customers can be reached
without problems via the dense road network so that a truck can be used either
for the pick-up and last-mile delivery of goods within intermodal transportation
chains but also for direct connections between origin and destination. However,
the high volume of road freight transportation is responsible for a significant
amount of emissions from transportation, and the limited infrastructure capacity
in combination with dense individual passenger traffic might cause unexpected
congestions or delays that might influence the reliability of this transportation mode
and cause late deliveries of goods to the customer. Since the dense road network
usually offers a number of alternative routes between two terminals, a comparison
of the possible routes according to transportation costs, travel time, and CO2e
emissions can lead to transportation plans that might cause slightly higher costs but
improve the environmental impact and reliability of travel times so that buffer times
accounting for possible delays might be reduced. In order to be able to compare the
routes according to travel time uncertainty, historical data about past trips has to be
available.

The importance of travel time reliability can be illustrated on regular truck
transportation of air freight between major European airports which is necessary
due to consolidation of goods or due to changes in available plane capacities that
are used for further transportation of the goods. As the changes in capacities are
announced at very short notice, the planning process has to be fast and use very
accurate data. In order to achieve this, a detailed analysis of travel times for truck
transportation between the airports in Amsterdam and Frankfurt (AMS-FRA) and
Amsterdam and Brussels (AMS-BRU) was conducted. The distance for AMS-FRA
is approximately 450 km, whereas for AMS-BRU trucks are traveling slightly more
than 200 km. The available data covered 3 weeks of transports in spring and summer
2014 in which around 300 trips were conducted for each origin-destination pair.
The collected data included travel times, speed, direction, breaks, delays, departure
times, and GPS coordinates of the trips [4]. As a result, three different routes
could be identified for AMS-FRA and two different routes for AMS-BRU. They are
displayed in Fig. 2 (routes 1–3 for AMS-FRA and 4–5 for AMS-BRU). Whereas the
number of trips was almost equal for routes 4 and 5, route 1 was clearly preferred
for the relation AMS-FRA.

Since the distance of the routes for each origin-destination pair is very similar,
the differences in total costs and emissions between the routes are less than 2%.
However, the analysis of travel times revealed important differences in travel
time distributions that might have influence on the reliability of transportation.
Although most of the trips were conducted during evening or night hours due to
flight schedules, there were enough trips during the day and rush hours for which
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Fig. 2 Route alternatives for AMS-FRA and AMS-BRU

typical delays could be observed. Therefore, the travel times were divided into three
categories: uncongested travel time accounting for minimal travel time without any
disruptions, congested travel time representing travel times with small delays caused
by usual (recurring) congestion, and disrupted travel time which was observed
for trips with major delays. The resulting travel times with their correspondent
probability of occurrence for each route are summarized in Table 4.

As shown in Table 4, route 1, which is preferred by the truck drivers, is the route
with the lowest uncongested travel time for FRA-AMS and therefore the fastest
route if no disruption occurs. However, this happens only in about 75% of the cases,
and the risk of delay of 1 h is about 20%, caused mainly by the fact that there are
regular congestions on the route which is passing important German cities (Cologne,
Düsseldorf, Dortmund). In addition to that, there is even a risk of major disruptions
adding another 4 h to the transportation time. In contrast to that, route 3 has a slightly
higher uncongested travel time, but the probability of congestion is lower, and also
the average delay is lower which reduces the fluctuation in arrival times. Therefore,
it might be more convenient to choose route 3 when trying to avoid driving on
congested highways which leads to delays and, especially in a stop-and-go traffic,
to higher fuel consumption and CO2e emissions.
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In the case of AMS-BRU, average travel times are the same for both routes, and
route 4 has a higher probability of congestion with longer average delay. However,
when taking into account disrupted travel times, route 4 might be better since the
probability and also average delay for this travel time category is lower.

Although the historical data cannot certainly predict the exact travel time for
the next trip, the distribution of past travel times can at least help to avoid routes
which might be critical when a disruption occurs. In this way the efficiency
of transportation can be increased minimizing the costs, delays, and emissions.
Whereas the current study was only based on a limited number of trips, recording
and analyzing historical data continuously can further improve the accuracy of travel
time distributions and predictions.

4.2 Case Study B: Intermodal Transportation Planning Under
Travel Time Uncertainty

The second case study investigates an intermodal transportation planning problem
on which the differences between the methods presented in Sects. 2 and 3 and the
influence of the individual optimization objectives can be presented. For this, an
intermodal transportation network consisting of intermodal terminals connected by
services on road, rail, and inland waterway has been created. This network is based
on real-world connections where [34] and [29] were used for railway schedules,
[51] was the basis for modeling inland waterway services, and road connections
were designed based on [41]. In total, the network consists of 20 terminals located
in Austria, Slovakia, Czech Republic, Germany, Slovenia, and Italy which are
used either as ports or as collection terminals for feeder services to Western
European harbors. For each terminal and service, the estimated transshipment and
transportation costs, times, and emissions have been assigned. The transportation
network, which was firstly defined in [15], is depicted in Fig. 3. Due to the
high complexity of the network, only rail and inland waterway connections are
included in the figure. These connections are extended by road services. The travel
time distribution for each service was modeled as a three-point distribution with
uncongested, congested, and disrupted travel time as already described in Sect. 4.1.

The analysis was conducted on an Intel(R) Core(TM) i5-5300U CPU with
2.3 GHz and 8 GB of memory. The deterministic optimization model and the
SAA model were solved using CPLEX 12.6 [25], and the simulation was run in
Anylogic University 7.2.0 [8]. For the inventory costs, 1 EUR/h was assumed for
each order, and the penalty costs are different for each order varying between 1 and
10 EUR/h. The emission costs were estimated to be 70 EUR/t of CO2e emissions as
recommended by [39].The thresholds for evaluating the reliability of the plans were
set to 5% for the share of infeasible scenarios and also 5% for the additional costs
of unreliability. In the simulation-optimization model, an extraordinary truck which
transports the goods directly to the destination is chosen as an alternative plan in
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Fig. 3 Rail and inland waterway services in the intermodal transport network

case of infeasibility. This truck is usually the fastest option if the original plan does
not work; however, since it has to be organized in a short time, an increase of 25%
for the transportation costs in comparison to a planned truck on the same route is
assumed.

In the first step, the solutions of the deterministic optimization model, SAA, and
simulation-optimization were compared with regard to computational times, quality,
and limitations. For this, the number of services in the network with 20 terminals
was stepwise increased from 50 to 500, and the number of orders considered varied
between 1 and 20. In this setting, the deterministic model could find an optimal
solution for all instances with up to 250 services; bigger instances could not be
solved due to memory problems of the solver. For SAA it could be observed that
the approach is limited by the number of scenarios M used where more than ten
scenarios for choosing candidate solutions significantly reduce the network size
that can be handled by the model. Besides that, the number of orders also has a
negative influence on computational time since the computational time tends to grow
exponentially with the increasing number of orders. The SAA approach could find
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optimal solutions for all instances with up to 250 services and 5 orders. The best
results with regard to size limitations were obtained by the simulation model used
in simulation-optimization where it can be seen that the model can handle all of the
tested instances and the computational times are relatively stable. This means that it
is more convenient to use the simulation-optimization model especially for bigger
instances where the computational time using ten simulation runs is lower than in
the case of SAA. In addition to that, the simulation model can also handle increased
number of scenarios which improves the statistical significance of the results. This is
also illustrated in Fig. 4, where computational times for deterministic model, SAA,
and simulation model with 10 and 100 runs are summarized.

When looking at the quality of the results, it could be observed that both SAA
and simulation-optimization are able to identify the same unreliable plans based on
the number of scenarios where the plan becomes infeasible. This is mainly the case
in small network with 50 services where usually very limited number of possible
connections exist. However, there is a difference in the estimated total costs of the
reliable solution since SAA only estimates the increase in costs due to unreliability,
whereas the simulation model can also calculate the costs of the extraordinary truck.
Therefore, it might happen that the estimated costs after simulation are lower than
the costs from the deterministic optimization model. This might indicate that using
a direct truck for a part of the route or the whole route might be a more convenient
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option when considering the economic factors and reliability. However, this has
usually a negative impact on CO2e emissions.

In order to analyze the influence of different objectives on the optimal route, 50
orders were created randomly, and their optimal route was calculated for different
combinations of objectives using the deterministic mathematical model in the first
step. The underlying network consisted of 100 services, and the results showed that
for 25 orders there was only one optimal route independent of the objective weights.
For the remaining 25 orders, where a change in plans was recorded, the dominance
of solutions minimizing the transportation costs is clearly visible since this cost
category has the highest share on the total costs. However, there is also a visible
influence of other objectives as it is shown in Fig. 5 where in each of the three
graphs, a trade-off between two objectives is shown, whereas the third objective is
not considered in the optimization process.

In the first graph, the trade-off between transportation costs and CO2e emissions
is shown where the transportation cost-minimizing solution clearly dominates the
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Table 5 Cost overview for different objectives of 25 orders

Transportation costs Time costs Emission costs Total costs

Optimization according to (EUR) (EUR) (EUR) (EUR)

Costs (1,0,0) 101,847.50 5,638.10 2,919.07 110,404.67

Time (0,1,0) 155,304.50 2,655.17 5,917.86 163,877.53

CO2e emissions (0,0,1) 104,265.50 5,594.00 2,802.71 112,662.21

emission minimization. A change occurs only when the emission objective has a
weight of 0.8 or higher. In this case the transportation plans for some of the orders
change toward more environmentally friendly transportation modes which results in
about 4% saving in CO2e emissions, whereas the increase in transportation costs is
only 2.4%. A similar picture can be seen when the trade-off between transportation
costs and time is analyzed; however, in this case the increase in total costs due
to time-optimizing solutions is much higher. Due to the increased use of direct
and fast truck services, the time costs can be minimized by 53%. However, this
is only possible when the transportation costs are increased by 53% in comparison
to the transportation cost-minimizing solution. Moreover, an increase in emissions
by 103% also has to be accepted. The negative impact of time optimization on total
costs is even more visible in the third graph where the trade-off between time and
CO2e emissions is depicted. Here the total costs are continuously increasing from
the minimum when only emissions are minimized until the maximum for the time-
minimizing scenario. Similar to the previous case, also here the transportation costs
increase in total by 49%, whereas 53% of time costs can be saved. The increase in
total emissions is with 111% even higher. The comparison of the individual cost
components for optimal deterministic plans according to every single objective is
displayed in Table 5.

The reliability of the calculated plans for all 50 orders was tested by the
simulation model. Since the travel time uncertainty can be modeled in different
ways, three different travel time distributions were used in order to compare the
influence of travel times on the reliability of the plans. Besides the discrete three-
point distribution, which was already used in Sect. 4.1, two continuous distributions
were also applied: a shifted exponential distribution, as suggested by [36], and the
uniform distribution, which is usually used if no or insufficient information about
the distribution of the uncertain variable is available. The exponential distribution
is shifted to the right starting at the uncongested travel time from the discrete
distribution, and its shape was obtained by fitting it to three intervals (uncongested,
congested, and disrupted) which were also created from the discrete distribution and
have borders located in the middle between the discrete travel times for each state
and probabilities corresponding to the discrete ones [24]. The borders of uniform
distribution are located at the uncongested and disrupted travel time for each service.
All three travel time distributions are illustrated in Fig. 6.

The output of the simulation model shows that many of the deterministic plans
in the studied instance are not reliable and require replanning. This is especially
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true for the time optimization where the created deterministic plans often combine
various truck services which might be faster than waiting for a direct train that
departs only in a couple of days. However, since the truck services are shared by
many orders, the truck service has to wait until all orders are available which might
result in delay for another order if the truck arrives too late to the destination. This
is not such a big problem for trains and vessels where the departure time is given by
the schedule and the vehicle is not waiting for a delayed order. Since the network is
limited by 100 services, it is often the case that there is only one available route in
the intermodal network for a certain order, and if this route is evaluated as unreliable,
the only alternative is to use a direct truck, which is then suggested by the simulation
model. This is especially true for orders which have to travel for very long distances
and have to combine a lot of services (up to eight in the studied instance). In
these cases avoiding the unreliable intermodal connection and using direct truck
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Table 6 Comparison of costs for different objectives and travel time realizations for 50 orders

Optimization Total deterministic Total costs after simulation for

according to costs Discrete Shifted exponential Uniform

Costs 183,949.04 166,493.40 167,771.54 173,396.52

Time 233,612.27 220,797.20 223,542.52 227,515.27

CO2e emissions 186,206.59 174,209.05 174,960.51 180,312.37

might be more beneficial. In this way the model can increase the motivation of
transportation planners to consider intermodal planning as an alternative since it
offers them only routes which are reliable. The use of direct truck, which is not
available in the original network, might be sometimes cheaper but can have negative
impacts on the environment. This can be also seen in Table 6, where the costs after
simulation are lower than the deterministic costs especially due to the use of direct
truck connections as an alternative to the limited intermodal network.

When comparing the results for the three travel time distributions displayed in
Table 6, it can be noticed that the costs in case of continuous distributions are higher
than for the discrete distribution. The reason for that might be that the uncongested
travel time is the most important travel time for the discrete distribution, whereas it is
only the lower border for the continuous distribution, and therefore the travel times
for continuous distributions are higher on average. However, since for continuous
distributions any time within the specified interval can be chosen, the results give
a better picture about the reliability of the plans. Especially in the case of the
exponential distribution, the number of infeasible scenarios in cases where these are
caused only by very small delays at the destination is decreasing, and the number
of infeasible scenarios for plans where the time causing infeasibility is located
between uncongested and congested time is increasing. Also it can be seen that
due to the equal distribution of travel times in case of uniform distribution, some of
the plans that are reliable under exponential distribution become unreliable due to
higher number of scenarios with longer travel times. Due to this more conservative
evaluation of the plans, the uniform distribution can be used especially in situations
where the information about the real distribution of travel times is not available.

5 Conclusions

This chapter provided an overview of current studies aiming at intermodal trans-
portation planning with travel time uncertainty. Even though this area is quite new
and there is only limited research, very recent research has been summarized and
highlighted to bring more attention on data uncertainty from both the academia and
the practice.

Two possible approaches which can handle such complexity and evaluate the
reliability of intermodal transportation plans under uncertainty are discussed and



Methodological Approaches to Reliable and Green Intermodal Transportation 177

compared in terms of solution times, the quality, and the limitations. The method-
ological approaches presented in this chapter are sample average approximation and
simulation-optimization, which both can easily handle travel time complexity. The
focus of this chapter was on travel time uncertainty, but these approaches can be
easily applied to other uncertain factors (i.e., demand and customer uncertainties).

Moreover, we investigate the transportation plan based on three different objec-
tives which can have different weights according to the transport user’s preferences.
The objectives are transportation costs, time in form of inventory costs and penalty
costs for late deliveries at the final customer, and CO2e emissions expressed as
emission costs.

Computational experiments confirm that both methods can be used to get reliable
transportation plans. With regard to the quality of the solution, the simulation-
optimization approach evaluates the reliability based on two criteria so that some
plans which are unreliable according to SAA can be accepted by simulation since
the infeasibility might cause only very small cost increase that might be negligible in
comparison to the higher costs of the alternative plan. Furthermore, the simulation
model shows where the disruption occurs which is not reported by SAA where only
a solution is chosen based on the chance constraint. The simulation model also gives
possibilities to increase the number of considered scenarios and replications in order
to increase the statistical significance of the solution and the travel time can be
modeled by using different probability distributions.
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