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Preface

In recent years, academic studies and practical projects produce very efficient
methodologies to provide sustainable logistics and transportation including envi-
ronmental, economic, and social measures. The main focus of this book is to bring
together the novel and recent optimization approaches for sustainable logistics
and transportation operations. It provides readers the recent developments in
optimization area within the context of transportation and logistics planning having
the sustainability perspective.

The book provides a valuable source for university professors, researchers, as
well as professionals in supply chain management. Researchers and professionals
in urban and regional planning and upper-level students interested in logistics
and transport systems and optimization can also utilize this book. Universities
having industrial and system engineering, business administration, computer and
information science, and/or mathematics departments and any organizations having
transportation and logistics activities have potential readers for the book. The
book can be utilized in the scope of optimization, supply chain management,
transportation, and logistics courses in universities.

The book includes 10 chapters. The first chapter gives recent trends and chal-
lenges for sustainable transportation and logistics management. The rest of the book
is organized into two main parts focusing on deterministic models and uncertainty.
Each part includes theory and methodologies developed for various practical
sustainable transportation and logistics problems as well as a deep literature review.

We would like to thank the authors of the chapters, the referees, and the publisher
for their participation in producing this book. We hope that this book will be a
helpful tool for researchers and professionals working in the field of logistics and
transportation.

Istanbul, Turkey Didem Cinar
Gainesville, FL, USA Konstantinos Gakis
Gainesville, FL, USA Panos M. Pardalos
May, 2017
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Toward Sustainable Logistics

Mehmet Soysal and Jacqueline M. Bloemhof-Ruwaard

Abstract The fast evolution of sustainability leads to the development of a
new fast-growing concept called sustainable logistics management. This research
addresses recent business trends and challenges in logistics and their implications
for sustainable logistics management. Additionally, we discuss policy and research
developments in resource-efficient logistics and present several practice examples
in sustainable logistics management from transportation business companies. The
conducted research on relevant literature and sustainability reports of several leading
logistics companies shows that the logistics sector is committed to sustainable
development and continually looks for ways to be environmentally and socially
responsible and more efficient right across the organizations.

1 Introduction

Logistics is the management of the flow of things between the point of origin
and the point of consumption in order to meet customer requirements. Logistics
covers several working areas including material handling, production, packaging,
transportation, inventory management, and warehousing. Logistics contributes to an
organization’s success by providing the right product, at the right price, at the right
store, with the right quantity, to the right customer, at the right time. The logistics
sector contributes to economic growth and international competitiveness.

With increasing freight volumes due to the growing population and internation-
alization of markets, policy measures and strategies are developed by countries to
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2 M. Soysal and J.M. Bloemhof-Ruwaard

increase the efficiency of freight logistics and improve supply chain sustainability.
Supply chain sustainability is about consideration of environmental and social
externalities of operations in supply chain management in addition to the traditional
economic concerns [7]. Improving supply chain sustainability in logistics has
become one of the major topics for researchers and practitioners in the last decade.
On 15 August 2016, Google and Google Scholar returned about 141,000 and
2670 hits, respectively, for the English term “supply chain sustainability” that
demonstrates the popularity of the term.

The fast evolution of sustainability leads to the development of a new fast-
growing concept called sustainable logistics management (SLM). Therefore, for
the last two decades, logistics systems have seen the transition from traditional
logistics management to SLM. SLM aims to improve the supply chain sustainability
in logistics systems. In this context, SLM enables the organizations to fulfill market
demand by providing the right product, at the right price, at the right store, with the
right quantity, to the right customer, at the right time while being as sustainable as
possible.

The policy document white paper authored by the European Commission [15]
states that shifting freight transport from road to rail or waterborne transport, pro-
moting eco-innovation in freight logistics, developing multimodal freight corridors,
supporting new vehicles and vessels, optimizing the performance of multimodal
logistics networks, and creating frameworks for seamless information flow in the
logistics chain are among the goals for achieving competitive and resource-efficient
transport system in the European Union (EU). As it has been explicitly mentioned in
Regulation (EU) No 1315/2013 of the European Parliament1, to have a sustainable
logistics system, member states of the EU shall pay attention on the EU goals while
setting their own strategies.

In line with these policy measures and strategies, the European Union has
launched several projects (e.g., SALSA2, SCALE3, NexTrust4, SuperGreen5, etc.)
to increase efficiency and sustainability in logistics. The topic is accordingly
on the agenda of both researchers and practitioners. Numerous qualitative and

1http://eur-lex.europa.eu/eli/reg/2013/1315/oj Regulation (EU) No 1315/2013 of the European
Parliament and of the Council of 11 December 2013 on Union guidelines for the development
of the trans-European transport network and repealing Decision No 661/2010/EU Text with EEA
relevance. Online accessed: August 2016.
2http://www.salsaproject.eu/ The EU project SALSA aims to develop strategies to improve
sustainable logistics in beef and soy supply chains from Latin America to the EU. Online accessed:
August 2016.
3http://sfcplatform.eu/ The EU INTERREG NWE Project aims to optimize the triple bottom line
of logistics for agri-food businesses. Online accessed: August 2016.
4http://nextrust-project.eu/ The EU project NexTrust aims to increase efficiency and sustainability
in European logistics through boosting collaboration among logistics partners. Online accessed:
August 2016.
5http://www.supergreenproject.eu/project.html The EU project SuperGreen aims to support the
development of sustainable transport networks by fulfilling requirements covering environmental,
technical, economic, social, and spatial planning aspects. Online accessed: August 2016.

http://eur-lex.europa.eu/eli/reg/2013/1315/oj
http://www.salsaproject.eu/
http://sfcplatform.eu/
http://nextrust-project.eu/
http://www.supergreenproject.eu/project.html
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quantitative studies have been conducted to develop innovative solutions to enhance
the sustainability and efficiency of the logistics systems.

To sum up, the interest in designing and redesigning sustainable logistics
networks has been increasing in the past decades. This research addresses recent
business trends and challenges in logistics and their implications for sustainable
logistics management. Additionally, we discuss policy and research developments
in resource-efficient logistics and present several practice examples in SLM from
transportation business companies. To get information about the field, relevant
literature in operations research and sustainability reports of several leading logistics
companies have been used. We would like to note that the choice of representative
papers and company reports to illustrate the field is subjective.

The next section presents the main business trends and challenges in logistics.
The subsequent section is followed by a detailed discussion on sustainable logistics
management, including main motivations behind sustainable logistics and decision
support models for SLM. This section is followed by presenting practical examples
in SLM from transportation business companies. The last section presents conclu-
sions drawn from the research.

2 Main Business Trends and Challenges in Logistics

In todays’ global world, logistics is key for international trade and contributes
to the prosperity and welfare of the nations. Materials, food, and products are
distributed from where they are extracted, harvested, or produced to the nearby
stores through logistics chains. Current logistics systems cause serious and in
the long run unacceptable environmental and social damage due to, for instance,
hazardous emissions, congestion, stench, noise, and the high price that has to be
paid in terms of infrastructural load [46]. Below, this section briefly describes the
main trends and challenges that have potential to influence the shape of the future
of logistics:

• Aging and increasing population: World population aging is projected to accel-
erate in the coming years. The number of European people aged 65 or more is
expected to increase from 17 to 30% of the population, by 2060 [14]. Especially
in developed countries, the aged population has good socioeconomic and health
conditions which motivates them to travel and see new places in the world. An
aging society clearly will place more emphasis on secure and reliable transport
services [14]. Note that the efficiency of logistics has a direct impact on security
of the operations. We are also confronted with the fact that the world population
is still growing. More people means more mobility and more transport, which
might become a burden in terms of density on future transport operations.

• Globalization: The usage of the standard shipping container in international
trade, the liberalization of international trade that reduces restrictions/barriers on
the free exchange of goods between countries, the expansion and improvement
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of international transport infrastructure, and the production and logistics cost
differentials among countries mainly lead to the increasing of globalization since
the 1970s [22]. The overall economic growth in the globalized world has led to
the movement of large streams of goods (and also people) all over the world,
which is expected to increase even more in the future. Accordingly, production,
material handling, transportation, storage, and consumption of all these goods
are important logistics-related concerns [9].

• Technology: Revolutionary developments in transport and communication tech-
nologies will reshape the future logistics systems. Advanced information and
communication technologies [42], fuel-efficient fleet technologies and design
improvements [30], and cooled (reefer) containers and data loggers for temper-
ature history [9] can be given as some of these recent technologies that have
already affected the operations in logistics.

• Increasing e-commerce: Rapid advance of e-commerce has a profound impact
on both forward and reverse logistics [12]. Logistics systems are under pressure
not only for fast delivery to customers but also for proper collection of the
returned items due to several reasons such as change of mind, defective item,
or late delivery. This progress has brought the term “closed-loop supply chains”
which are supply chain networks that include the return processes besides the
forward product movements. Numerous researchers on logistics field address this
problem to have a better logistics system (see [2, 6, 20]). The literature review
paper by Govindan et al. [21] on reverse logistics and closed-loop supply chain
can be consulted for more information on the topic.

• Increasing scarcity of fossil fuels: Oil and other fossil fuels (e.g., coal, gas) are
expected to become more expensive as demand increases and sources dry up
[14]. According to a projection made by the European Commission, oil prices are
expected to more than double in 2050 compared to the 2005 level of 59 $/barrel
[16]. The increasing scarcity of fossil fuels will be reflected by the introduction
of advanced methods to increase efficiency for decreasing the amount of fuel
consumed per unit of output. The new methods or approaches to increase fuel
usage efficiency would be (i) to use more fuel-efficient vehicles (see [29, 40]), (ii)
to have optimized logistics routes using detailed fuel consumption estimations
(see [4, 19]), (iii) to decrease empty returns through increased collaboration in
the logistics network (see [36, 38]), or (iv) to educate drivers toward fuel-efficient
driving (see [28, 45]).

• Relationships and outsourcing: Vertically and horizontally enlarged logistics
networks will require increased collaboration and outsourcing among supply
chain actors. For example, transportation and warehousing facilities can be
shared by two competitors to realize fuel consumption decrease through avoiding
empty vehicle runs [22]. An innovative solution in collaborative transport is
referred to as “carpooling for cargo.” Logistics companies are encouraged
to bundle freight flows on transport modes to increase vehicle utilization,
reduce empty movements, and stimulate co-modality, which allows sustainable
utilization of resources [42]. Such horizontal collaboration between industry
partners improves transport efficiency through increased capacity use. Another
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example, many firms prefer to outsource their logistics activities to third-party
logistics firms such as DHL or UPS to perform logistics operations which are not
regarded as a firm’s core competencies [22]. In literature, vertical and horizontal
collaborations among supply chain actors have been addressed in many studies
(see [23, 31, 41]).

• Environmental and social challenges: Another recent trend in logistics sector is
to manage negative environmental and social externalities of operations. This
means that environmental and social issues have been brought to the agenda
of the decision-makers in logistics apart from the economic concerns. In line
with that, researchers have started to focus on logistics problems by taking
three main sustainability dimensions into account. For a detailed information on
attempts that incorporate sustainability in logistics decision-making process, the
reader is referred to the literature reviews by Seuring [35], Eskandarpour et al.
[13], and Fahimnia et al. [18]. The main logistics-related environmental impacts
are climate change, air pollution, noise pollution, energy use/energy efficiency,
renewable energy use, biodiversity, land usage, and waste from packaging or
shipping. Additionally, mobility of citizens, accessibility, employment level and
conditions, and health and safety incidents can be given as foremost important
logistics-related social impacts.

• Urbanization: The number of cities in the world with over ten million inhabitants
is getting larger and larger. The logistics impacts such as congestion, noise
hindrance, and air pollution are confronted in high-density urban areas. While
planning delivery to urban areas, the last mile of the logistics chain is the most
challenging one, since it accounts for a large proportion of shipment costs and
complexity of operations [42]. Therefore, this part is often the most inefficient.
The continuing urbanization, hence, requires different modes of transport and
logistics systems than available today [12]. For instance, several projects (e.g.,
CIVITAS6 and ELCIDIS7) have been undertaken in recent years to manage
freight transportation in urban areas. Accordingly, several attempts on the urban
distribution planning problem exist in literature such as incorporating time-
dependent (e.g., [11, 26]) or stochastic (e.g., [3, 25, 34]) vehicle speed into
vehicle routing problem to better manage product delivery in congested areas.

The desire for improving sustainability has mainly brought the above-listed
logistical main business trends and challenges into the agenda of the logistics
companies. These trends and challenges contribute to the transition toward SLM.
Logistics companies have to meet the challenges that sustainability brings to their
business. In this context, sustainable logistics is concerned with not only economic
issues but also with environmental and social ones associated with the movement of
goods through a supply chain [37].

6An initiative which was launched in 2002 to redefine transport measures and policies in order to
create cleaner, better transport in cities. http://www.civitas.eu/. Online accessed: August 2016.
7A project about electric vehicle city distribution system in Rotterdam, Netherlands. http://www.
managenergy.net/resources/779. Online accessed: August 2016.

http://www.civitas.eu/
http://www.managenergy.net/resources/779
http://www.managenergy.net/resources/779
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3 Sustainable Logistics Management

In most cases, the primary objective of traditional logistics management is to
maximize profitability. Profitability calculations include only the economic costs
that companies directly incur. Therefore, the wider environmental and social costs
have been largely ignored in balance sheets, until recently [27]. SLM requires to
manage multiple Key Performance Indicators (KPIs) from three pillars (economic,
environmental, and social pillars) of sustainability. Table 1 presents an exemplary
set of KPIs for sustainable logistics management.

Table 1 reveals that a company which would like to improve its sustainability
performance first has to assess environmental and social externalities of its opera-
tions, assuming that the economic KPIs are already known. This assessment would
allow company to identify the main environmental and social KPIs for SLM. Once
the KPIs are defined, the final challenge is to achieve a more sustainable balance
between economic, environmental, and social KPIs.

Here the question is why companies should bother themselves with the environ-
mental and social objectives? Or, what are the main motivations behind being more
sustainable? The coming subsection has been proposed to briefly find answers to
these questions.

3.1 Main Motivations Behind Sustainable Logistics

The main motivations behind the desire for paying attention on the sustainability
can be summarized as follows [10]:

• Legislative changes: Legal restrictions on logistics exist to contribute to sustain-
able development, e.g., enhanced traceability and emission reduction regulations.
Enhanced traceability regulations enable to preserve interest in tracking both
forward product movement and reverse flows of secondary packaging and mate-
rial handling equipment associated with product shipment. Enhanced emission
reduction regulations enable to preserve interest in transportation energy effi-
ciency improvement and emission reduction opportunities. For instance, there are
several international standards available for airports (e.g., ISO 14001, Environ-
mental Management Systems; ISO 50001, Energy Management Systems; or EU
EMAS, EU Eco-Management and Audit Scheme) to manage their environmental
performance [17]. Airports will comply with these requirements due to EU
and national environmental management. These sorts of legal obligations place
further pressure on companies.

• Social attitudes: Stakeholders’ concerns on being more sustainable have been
growing. They have started to become more aware of how supply chain activ-
ities cause damage to the environment and society, and they are increasingly
interested in how companies are addressing sustainability challenges in their
operations. The growing awareness on the topic affects both purchase decisions
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Table 1 Exemplary set of Key Performance Indicators for sustainable logistics management

Pillars Key Performance Indicators

Economic Total logistics cost incurred
Variance of the total logistics cost
On-time delivery
Late delivery
Missed sales
Order cycle time (lead time)
Transport carriers utilized
Output growth
Labor productivity

Environmental Product waste occurred
Packaging waste occurred
GHG emitted
Energy used
Energy from renewable sources
Water used
Fuel consumed
Land used for production
Amount of soil degradation
Biodiversity affected
Eco-efficiency
Amount of returned product recycled
Ethical transport care

Social Distance between grower and distributor
Profit distribution among supply chain actors
Product quality
Quality of life and working satisfaction
Number of accrued jobs
Number of accidents
Contribution to traffic congestion
Contribution to traffic noise
Regulatory compliance
Public reporting of environmental performance

Studies of Soysal et al. [39] and Bloemhof-Ruwaard and Soysal [5] have been used while preparing
the exemplary set

and consumer choices, e.g., going for the product that has a producer looking
like more environmentally friendly than the competitors. Business attitude has
been also changing. International companies such as Unilever or P&G are paying
attention to the sustainability performances of the companies while selecting
their supply chain partners. For example, Unilever sets mandatory requirements
for its suppliers to establish and maintain a business relationship with Unilever.
Some of these requirements are as follows: all workers are treated equally and
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with respect and dignity; workers’ health and safety are protected at work;
land rights of communities, including indigenous peoples, will be protected and
promoted; business is conducted in a manner which embraces sustainability and
reduces environmental impact [43].

• Corporate commitment: Business leaders are becoming aware of the fact that a
sustainability era has already started, and they have to search for opportunities
to ensure their business excels in the new era. Business leaders know that
success in the sustainability era depends on strengthening the commitment
to sustainability principles. Logistics company UPS has a commitment on
sustainable development and leads other companies toward greater awareness
and actions. To do so, company focuses on three environmental issues most
related to UPS and its stakeholders: energy, emissions, and fuel supply [44].

• Brand value: Being more environmentally friendly or socially responsible can be
regarded among the foremost important factors that have influence on customer
perception and behavior. This motivates companies to take further actions on
environmental and social policies. There exists a community called “Sustainable
Brands” that is a learning collaboration and commerce community of over
348,000 sustainable business leaders from around the globe.8 The community
aims to inspire, engage, and equip its community to profitably innovate for
sustainability.

• Competitive advantage: Leading organizations have seen the advantages of
pursuing a sustainable business model for both the environment and society by
managing externalities of the supply chain operations. Now, they would like to
harness the associated benefits of being responsible organizations. Organizations
are more aware of economic benefits of being sustainable; they have started to
realize that win-win situations can be attained, which means that reducing exter-
nalities might provide economic benefits in the long run. For instance, reducing
inputs, waste, and emissions through innovative applications contributes both
to economic and environmental performance. Alignment with governmental
regulations on environment and society enables to avoid paying fines or penalties
and therefore can also contribute to the competitive advantage of companies. To
sum up searching for ways for being more sustainable can create new source of
competitive advantage.

3.2 Decision Support Models for SLM

SLM has to manage a broad set of KPIs from economic, environmental, and social
pillars of sustainability, as shown in Table 1. Obviously, there exist trade-offs among
these indicators. Then, the challenge for logistics decision-makers is to incorporate
these dimensions into the decision-making process. Focusing only on profit while

8http://www.sustainablebrands.com/about#null. Online accessed: August 2016.

http://www.sustainablebrands.com/about#null
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planning logistics operations without respecting environmental and social impacts
as in traditional logistics management does not guarantee long-term success for
companies. There has to be a balance among economic, environmental, and social
objectives when devising logistics operations strategy, and the relevant decisions are
being made. These aspects increase the need for advanced decision support models
for SLM that can capture current trends and challenges in logistics.

SLM has increased complexity due to the aforementioned transition from tradi-
tional logistics management, i.e., extension of indicators that have to be controlled
for achieving sustainability. At this point, operations research models can be used
to aid decision-making process in SLM. Especially in the last decade, researchers’
tendency to address problems that have sustainability concerns has increased. A
common interest is to increase the efficiency of logistics and improve supply chain
sustainability by means of advanced models that incorporate the environmental and
social KPIs besides the traditional ones.

Modeling approaches in SLM can be grouped into five categories: (i) mathe-
matical programming methods such as linear programming, mixed integer linear
programming, or dynamic programming models; (ii) simulation methods such as
discrete event simulation, discrete time simulation, or Monte Carlo simulation; (iii)
heuristic methods such as artificial intelligence techniques (approximate dynamic
programming, neural networks, etc.), meta-heuristics (genetic algorithm, particle
swarm optimization, etc.), or simple heuristics (nearest neighbor heuristic, greedy
heuristic, etc.); (iv) hybrid models such as optimization-simulation hybrid method-
ologies or optimization-heuristics hybrid methodologies; and (v) analytical models
such as multi-criteria decision-making methods, game theory-based approaches, or
life cycle analysis-based approaches. Interested readers can be referred to the recent
literature reviews by Hassini et al. [24], Seuring [35], and Brandenburg et al. [7] to
get more information about the proposed decision support models for SLM.

As it has also been indicated by the literature reviews on the field, SLM requires
more advanced models to capture the recent sector dynamics. Operations research
models are mainly interested in finding ways to improve profitability and often
do not care for operations impact on environment and society [9]. However, the
field is evolving, and there exists a growing interest in how to contribute to
the sustainable logistics through providing better models for logistics decision-
makers. This progress is obviously beneficial for both society and industry, as
improvements in decision support models will contribute to the development of
sustainable logistics networks.

4 Sustainability on Transportation Business Companies

Sustainability is on top of the agenda of logistics companies for the coming years
and requires proper strategic management. The adoption of environmentally friendly
logistics networks is required for logistics companies. They should be aware of
the trade-offs among three pillars of sustainability: economic, environmental, and
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social goals. Accordingly, companies in logistics sector have started to take actions
for further improvement in sustainability. This section presents examples related to
SLM from transportation business companies.

To share practice examples in SLM from transportation business companies, the
Dow Jones Sustainability Indices (DJSI) have been used. For investors who believe
that sustainable business practices may lead to long-term shareholder value and who
wish to reflect their sustainability convictions in their investment portfolios, DJSI
can be used as a family of benchmarks [32]. The DJSI family tracks the stock perfor-
mance of the world’s leading companies in terms of economic, environmental, and
social criteria and provides benchmarks for investors to manage their sustainability
investment portfolios [32]. RobecoSAM’s Corporate Sustainability Assessment,
which was developed in 1999, is used to analyze the companies’ sustainability
profiles. More information on the methodology can be obtained from [33].

To present practice examples in SLM from transportation business companies,
three transportation companies have been selected from the Dow Jones Sustainabil-
ity World Index, 2015. These companies are the Canadian National Railway Co
(Canada), PostNL NV (the Netherlands), and Air France-KLM (France).

4.1 Understanding Stakeholders’ Expectations

Companies organize meetings with their stakeholders to understand their expecta-
tions. There can be many sub-motivations behind setting such meetings; the main
ones can be listed as follows: (i) to identify the topics that matter most to their
business, (ii) to focus their strategic priorities, (iii) to refine their reports prepared
to inform stakeholders, and (iv) to inform stakeholders about the evolution of their
sustainability programs.

In 2015, the Canadian National Railway Co conducted a stakeholder engagement
exercise to reassess their sustainability priorities and inform the content of the
sustainability report. They engaged with approximately 200 stakeholders through
an electronic survey to understand the sustainability topics that most influence their
decisions or perspectives of the company. The group involves employees, suppliers,
governments, railway associations, customers, investors, unions, Aboriginal people,
community groups, and nongovernmental organizations. While selecting stakehold-
ers, their geographic representation and their influence and interest in companies’
business are considered. Figure 1 presents the prioritization matrix that plots the
most important topics.

4.2 Setting Sustainability Objectives

Companies aim to reduce their environmental and social impacts by improving their
operations and processes, partnering with the other companies that are willing to
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Fig. 1 Prioritization matrix for the Canadian National Railway Co (Source: Canadian National
Railway Co document [8]). In this figure, CN refers to Canadian National Railway Co

be environmentally responsible organizations and innovating in the supply chain.
Accordingly, each year commitment to sustainability improvement is formalized
through setting action plans with specific targets.

Air France-KLM aims to improve its sustainability performance and set the
targets related to carbon footprint, biofuels, noise, local air quality, waste, energy,
and biodiversity. Table 2 presents environmental and social targets for Air France-
KLM. To achieve the goals set, a diverse set of measures has been implemented,
focusing mainly on fleet renewal, operational efficiency, sustainable biofuels, and
carbon offsetting. After defining these sorts of future goals, annual action plans are
set, and progress is monitored annually by the company.

4.3 Defining KPIs to Measure Sustainability Performance

To maintain competitive focus, enhanced performance, and continuous improve-
ment, companies define KPIs to measure their sustainability performance.
Cross-functional sustainability committees in companies regularly assess the
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Table 3 Defined Key Performance Indicators for performance assessment in the Canadian
National Railway Co

Pillars Key Performance Indicators

Environment Total GHG emissions
Total direct and indirect energy consumed within the organization
Nitrous oxides
Sulfur dioxide
Particulate matter
Total weight of waste generated
Spend on biodiversity site assessments and remediation

Safety % of workforce represented in joint union-management
committees
Injury frequency rate
Lost time injury frequency rate
Accidents
Fatalities

People Total number of full-time employees (end of the year)
Permanent contract
% of employees covered by collective bargaining agreements
Total employee new hires
% employee turnover number
Average employee training hours
Females
The diversity % for Canada (visible minorities, persons with
disabilities, and Aboriginals)
The diversity % for the USA (minority)

Community and economy Direct economic value generated (revenue)
Operating costs
Payments to providers of capital – dividends
Payments to Canadian tax authorities
Payments to US tax authorities
Community investment

Source: Canadian National Railway Co document [8]

sustainability performance through the defined KPIs and are responsible for
ensuring effective implementation of companies’ sustainability priorities and
projects.

The sustainability performance assessment in the Canadian National Railway
Co is based on a thorough analysis of its economic, environmental, and social per-
formance, assessing issues related to environment, safety, people (employee), and
community and economy. Table 3 presents defined KPIs developed for performance
assessment in the Canadian National Railway Co.
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Executive compensation packages in the company comprise not only issues
about individual performance but also practices on supporting safe and reliable
operations and ensuring environmentally and socially responsible operations. For
instance, it includes instilling a strong safety culture and reducing injuries and acci-
dents, improving fuel and emissions efficiencies, deepening employee engagement
through the workforce, and ensuring solid relationships with key stakeholders.

4.4 Initiating New Projects to Improve Sustainability

Environmentally friendly companies are aware of their role and impact on the
environment and on the society in which they operate. They take corporate
responsibility seriously. The corporate responsibility in PostNL NV is based on
three pillars: being a good employer, managing sustainable operations, and a livable
society.9

• Being a good employer: Companies want their employees to feel at home and
are given the space to work on their own future prospects. The company achieves
this through several ways. They build employee engagement by carrying out
annual surveys, asking employees how they feel about PostNL as an employer.
Moreover, having a multicultural diversity and encouraging more women to
reach for the top make the organization stronger and more innovative and
attractive.

• Sustainable operations: As a logistics company, PostNL NV continuously works
on keeping its environmental and social impacts as small as possible through
different practices. The company would like to reduce their sizeable fleet’s
emissions through using e-scooters, biogas, or training drivers on fuel-efficient
driving. The company also looks continuously for new ways to recycle or reuse
their materials. Moreover, PostNL purchases 100% carbon-neutral energy. They
have initiated a new project about installing solar panels on their parcel sorting
and distribution centers in the Netherlands. Finally, they have a pilot study with
the Municipality of Delft on using smaller electric vehicles and more efficient
routes to achieve environmentally friendly transport and to create a more livable
city center. They are planning to implement this project in other municipalities
in the near future as well.

• Livable society: The company searches opportunities to use its network for more
sustainability in Dutch cities with smart city solutions. Some ideas to contribute
to a more livable society are meeting elderly lonely people and keeping an eye
on rubbish or graffiti in public spaces.

9http://www.postnl.nl/en/about-postnl/about-us/cr/. Online accessed: August 2016.

http://www.postnl.nl/en/about-postnl/about-us/cr/
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5 Conclusions

This research addresses developments toward sustainable logistics. Accordingly,
recent business trends and challenges in logistics and their implications for sus-
tainable logistics management have been discussed. Moreover, the research presents
policy and research developments in resource-efficient logistics and presents several
practice examples in SLM from transportation business companies.

The conducted research on relevant literature and sustainability reports of
several leading logistics companies shows that the logistics sector is committed to
sustainable development and continually looks for ways to be environmentally and
socially responsible and more efficient right across the organizations. Considering
environmental and social factors as well as economic benefits, therefore, becomes
crucial in logistics sector. The main lessons that can be drawn from this research can
be summarized as follows:

• The term “supply chain sustainability” is getting more popular in the logistics
sector, and the fast evolution of sustainability leads to the development of a new
fast-growing concept called sustainable logistics management.

• The trend toward ensuring sustainability has mainly brought new business
trends and challenges in logistics into the agenda of the logistics companies.
These trends and challenges contribute to the transition toward SLM. Logistics
companies have to (i) meet the challenges that sustainability brings to their
business, (ii) change the way they manage their supply chains, and (iii) find
innovative ways for improving their operations to gain a competitive advantage.

• The main motivations behind the desire for paying attention on the sustainability
can be listed as follows: legislative changes, social attitudes, corporate commit-
ment, brand value, and competitive advantage.

• The research field on developing decision support models for sustainable logis-
tics is evolving, and there exists a growing interest in how to contribute to
the sustainable logistics through providing better models for logistics decision-
makers.

• Practice examples in SLM from three transportation business companies existing
in the Dow Jones Sustainability World Index, 2015, present (i) the importance of
the sustainable logistics for the sector and (ii) main measures and actions taken
by companies toward achieving sustainable logistics.
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Transportation Network Regulation for Air
Pollution Minimization

Manon Raap, Maximilian Moll, and Stefan Pickl

Abstract Densely populated areas are often associated with high pollution of the
air. In order to decrease the air quality (health) index and thereby improve the quality
of life, we aim to minimize air pollution of a transportation network especially in
those highly air-polluted areas. Even though some transportation providers have
invested to “green up” their operations, some can or will not sufficiently trade
off their profit for reducing CO2 emissions. Therefore, governmental regulation on
transportation routing is necessary. This chapter is concerned with a novel problem
of optimizing a governmental regulation plan, by reducing the capacity of roads.
The goal is to find a regulation plan that minimizes the air pollution in dense areas
on the transportation network. As a result, transportation providers must reroute
their trucks in order to disburden the highest polluted areas. We propose a mixed
integer linear program to solve this problem and show the applicability and low
computation times of our solution in computational experiments.

1 Introduction

Sustainability is a rising concern in freight transportation networks because the
awareness of its strain to the environment has increased. According to [7] sus-
tainability depends on environmental, economic, and social factors. Due to the
importance of finding solutions that account for these factors, there is a rapidly
growing literature on this topic. An extensive literature review on the contribution
of operations research to green supply chain and logistics is given in [12], in
which the focus lays on planning and control of supply chain activities with
respect to CO2 emissions. Ramos et al. [15] aim to support tactical and operational
planning decisions of reverse logistics systems while considering environmental,
economic, and social objectives. Bektaş and Laporte [2] present the Pollution-
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Routing Problem, an extension of the classical vehicle routing problem, where the
objective function accounts not just for the travel distance but also for the amount
of greenhouse emissions, fuel, travel times, and costs. This problem is solved
using a heuristical adaptive large neighborhood search by [4]. For a bi-objective
extension of the Pollution-Routing Problem, Demir et al. [5] propose a combination
of the adaptive large neighborhood search with a speed optimization procedure.
Govindan et al. [8] aim to integrate sustainability in decision-making on distribution
in a perishable food supply chain network, by introducing a two-echelon location-
routing problem with time windows. Omidvar and Tavakkoli-Moghaddam [13], in
particular, focus on the vehicle routing for alternative fuel vehicles (e.g., hybrid,
electric, and fuel cell vehicles) minimizing the energy consumption and furthermore
account for congestions at fueling stations.

A main limitation of such approaches is that transportation providers may not
be willing to sufficiently trade off their profit for reducing CO2 emissions. The
cumulative emission of individual Pareto-optimal routings may still exceed an
acceptable threshold. On the basis of the ongoing debate on environmental issues,
it seems fair to suggest that governmental regulation on transportation routing is
necessary. Hull [9] explores the issues of such policy integration and the according
implementation mechanisms leading toward a sustainable transport system.

Employment of truck tolling schemes can be a mechanism for this purpose.
Truck tolling schemes already exist in Switzerland, Austria, and Germany [11].
A postponed British system would have allowed tolls to vary by vehicle type,
class of road, geographical area, and time of day. A review of worldwide truck
road user tolling schemes is given in [3], in which the variables used to determine
the rates for heavy trucks within different tolling schemes are examined. Capacity
limitation of roads can be another mechanism to accomplish less CO2 emissions
locally, which is often necessary in urban regions. The mathematics behind optimal
reduction of capacities on a network is widely studied in literature and is well known
as the problem of network interdiction [17]. Even though most work on network
interdiction aims for goals that maximally disrupt the enemy [10, 18, 16, 1], it is
closely related to the problem of reducing capacity on the network to disburden
highly air-polluted areas.

This chapter is concerned with the problem of optimizing a regulation plan that
minimizes the air pollution in dense areas on the transportation network by reducing
capacity. Since this is likely to lead to congestion on profitable roads with limited
capacity, we incorporate a tolling scheme in order to avoid congestion. This results
in a game in the sense that the regulator optimizes its strategy based on the optimal
routing of the transportation providers given that strategy. Therefore, the solution
approach in this chapter is inspired by the work of [14] in which a security strategy
against multiple adversaries is optimized.

The remainder of this chapter is organized as follows. In Sect. 2, a formal
description of the problem is given. A model and efficient reformulation hereof is
described in Sect. 3, followed by the computational experiments in Sect. 4. Finally,
we conclude this chapter in Sect. 5.
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2 Problem Description

This chapter has a focus on an optimization problem1 in order to disburden the
highest air-polluted areas on a transportation network. The transportation network is
described by the directed graph .V; E/ where V is the set of nodes and E ! V �V is
the set of edges. In the context of air pollution in dense areas, a spatial notion of the
network is necessary as well. Therefore, we introduce an edge-dependent indication
for the spatial pollution severity !ij, which indicates the severity of the increase in
air pollution per truck transiting along that edge. This index contains information
about the density of the network around edge .i; j/, although other factors can be
included as well.

The edges of the network are used to transport goods between nodes by means
of trucks. Each truck belongs to a transportation provider k 2 K, where K is the
set of transportation providers K. The number of trucks of transportation provider
k transiting along edge .i; j/ 2 E is denoted by x.k/

ij . In this chapter, the simplified
assumption is made that the fleet of trucks is uniform; however, a generalization to
a heterogeneous fleet is straightforward. For each transportation provider k 2 K,
source nodes for resource procurement are given by the sets Sk � V and sink nodes
for resource sales are given by the sets Uk � V . Demand is defined at each node and
for each transportation provider by d.k/

i , where d.k/
i > 0 if n 2 Uk and 0 otherwise.

Demand can be served in full or in part. The price paid to transportation provider
k per truckload delivered at node n is given by p.k/

n , such that p.k/
n > 0 if n 2 Uk

and d.k/
n D 0 otherwise. The resource is obtained by transportation provider k at the

source nodes in Sk, at no cost, and without constraint on the number of trucks. There
are base transportation costs that each transportation provider faces to transport the
resource along each edge .i; j/ that are linear in the number of trucks transiting
along the edge. The cost per truck is bij > 0. The edge capacities are described by
wij, which is the upper bound on the total number of trucks transiting along the edge
.i; j/ per time unit.

The first problem is to optimize a regulation strategy q D fqij 2 N0 W .i; j/ 2 Eg

for the case with a single transportation provider. The goal is to find a regulation
strategy that minimizes the air pollution in dense areas on the transportation
network, by minimizing the sum of the overall number of trucks xij weighted
by the pollution severity !ij. As a result, the transportation provider reroutes its
trucks in order to disburden the highest polluted areas. The aim here is to optimize
the regulation strategy by eliminating capacity within the budget. The budget
corresponds to a fraction ˇ of the total transportation capacity.

1The problem is inspired by a multi-objective optimization challenge by the MOPTA organization
in coral.ie.lehigh.edu/�mopta/AIMMS_MOPTA_case_2016.pdf.
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3 Method for Air Pollution Minimization

The goal of the method proposed in this chapter is to minimize the air pollution in
dense areas on the transportation network by minimizing the sum of the overall
number of trucks xij weighted by the pollution severity !ij. The aim here is to
optimize the regulation strategy when the budget for regulation corresponds to
eliminating a fraction ˇ of the total transportation capacity. Throughout this chapter,
the case with a single transportation provider in K is considered, which can be
extended in a straightforward manner to the case with multiple transportation
providers.

3.1 Min-Cost-Circulation Problem Under Regulation

First of all, in order to minimize the air pollution in dense areas, the minimal cost
circulation x WD fxij W .i; j/ 2 Eg for the transportation provider in K given a
regulation strategy q must be determined. To this end, we convert the problem to
a circulation problem. For this, we extend the network N by two auxiliary nodes
(super source v0 and super sink v1) and two auxiliary sets of edges (Eart and Esource).
Edge set Eart WD

S
u2U.u; 1/ contains edges from each sink u 2 U to the super sink

v1, and the edge set Esource D
S

s2S.0; s/ contains edges from super source v0 to
each source s 2 S. The capacity on each edge from the super source to a source
is set to infinity, i.e., w0s D 1, and cost to zero, i.e., b0s D 0; 8s 2 S. Moreover,
the capacity on the edge from a sink u to super sink v1 is set to equal the demand
on sink u, i.e., wu1 D du; 8u 2 U. One final edge .1; 0/ with infinite capacity and
zero costs is added to edge set Eart, so that the restriction that the outflow of the
super sink (resp. source) must equal its inflow can easily be satisfied by sending that
amount over the unrestricted edge .1; 0/ creating a circulation flow. The union of
the artificial edges in set Esource, set Eart, and .1; 0/ is referred to by Eart.

The minimal cost circulation for a transportation provider on network N, given
fixed regulation strategy q, can be obtained by solving the following min-cost-
circulation problem P.

min
X

.i;j/2E

xijbij �
X

.i;j/2Eart

xijpij (1)

s:t:
X

jW.i;j/2E[Eart

xij �
X

jW.j;i/2E[Eart

xji D 0 8i 2 V (2)

xij � wij � qij 8.i; j/ 2 E (3)

xij � dij 8.i; j/ 2 Eart (4)

xij � 0 8.i; j/ 2 E [ Eart (5)
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Here, the decision variable xij 2 R represents the number of trucks routed over
edge .i; j/ and cannot be negative. We can safely allow non-integer values for xij,
because (by the integrality theorem) the relaxed problem still yields integral results
as long as all input values for the capacities are integer, which is assumed to be the
case here. The objective function (1) is to minimize the cost minus the reward of
the circulation, which yields the maximum payoff. Constraints (2) are the typical
circulation constraints that ensure the number of incoming trucks on a node to equal
the number of outgoing nodes. Constraints (3) and (4) ensure that the capacity on
each edge is not exceeded.

3.2 Optimality Conditions of Circulation Under Regulation

The regulation strategy q must be optimized in such a way that the minimal cost
circulation x for the transportation provider in K given the regulation strategy q
is optimal. We therefore formulate the optimality conditions for circulation x as
follows.

First, associate dual variables � D f�i W i 2 Vg with the constraints in (2) and
dual variables � D f�ij W .i; j/ 2 E [ Eartg with the constraints in (3) and (4).

Furthermore, add slack variable z.1/
ij to the left-hand side of each constraint in (3)

and (4) to bring P in standard form. The Langrangian LP of P then amounts to

LP D
X

.i;j/2E

xijbij �
X

.i;j/2Eart

xijpij

�
X

i2V

�i

0

@
X

jW.i;j/2E[Eart

xij �
X

jW.j;i/2E[Eart

xji

1

A �
X

.i;j/2E

�ij

�
xij C z.1/

ij � wij C qij

�

�
X

.i;j/2Eart

�ij

�
xij C z.1/

ij � dij

�
(6)

A reformulation leads to

LP D
X

.i;j/2E

xij.bij � �i C �j � �ij/ �
X

.i;j/2Eart

xij.pij � �i C �j � �ij/

�
X

.i;j/2E[Eart

�ijz
.1/
ij C

X

.i;j/2Eart

�ijdij C
X

.i;j/2E

�ij.wij � qij/: (7)

And we arrive at the dual DP of P:

max
X

.i;j/2E

�ij.wij � qij/ C
X

.i;j/2Eart

�ijdij (8)
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s:t: �i � �j C �ij � bij 8.i; j/ 2 E (9)

�i � �j C �ij � �pij 8.i; j/ 2 Eart (10)

�ij � 0 8.i; j/ 2 E [ Eart (11)

�i 2 R 8i 2 V (12)

Now slack variables z.2/
ij are added to the left-hand side of each constraint in (9)

and (10) to bring the dual DP in standard form. The Langrangian LDP of DP then
amounts to

LDP D
X

.i;j/2E

�ij.wij � qij/ C
X

.i;j/2Eart

�ijdij

�
X

.i;j/2E

xij

�
�i � �j C �ij C z.2/

ij � bij

�
�

X

.i;j/2Eart

xij

�
�i � �j C �ij C z.2/

ij C pij

�

(13)

A reformulation leads to

LDP D
X

.i;j/2E

�ij.wij � qij � xij/ C
X

.i;j/2Eart

�ij.dij � xij/

�
X

i2V

�i

0

@
X

jW.i;j/2E[Eart

xij �
X

jW.j;i/2E[Eart

xji

1

A �
X

.i;j/2E[Eart

xijz
.2/
ij

�
X

.i;j/2E

xijbij C
X

.i;j/2Eart

xijpij: (14)

Now let x; �, and � be feasible solutions for the primal P and its dual DP. It follows,
by complementary slackness, that the following conditions are the optimality
conditions for x; �, and �.

X

jW.i;j/2E[Eart

xij �
X

jW.j;i/2E[Eart

xji D 0 8i 2 V (15)

xij C z.1/
ij D wij � qij 8.i; j/ 2 E (16)

xij C z.1/
ij D dij 8.i; j/ 2 Eart (17)

�i � �j C �ij C z.2/
ij D bij 8.i; j/ 2 E (18)

�i � �j C �ij C z.2/
ij D �pij 8.i; j/ 2 Eart (19)

�ijz
.1/
ij D 0 8.i; j/ 2 E [ Eart (20)
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xijz
.2/
ij D 0 8.i; j/ 2 E [ Eart (21)

xij; z.1/
ij ; z.2/

ij � 0 8.i; j/ 2 E [ Eart (22)

�ij � 0 8.i; j/ 2 E [ Eart (23)

�i 2 R 8i 2 V (24)

In summary, the feasible solution x; �, and � for an transportation provider that
minimizes its cost for transportation on the network N is optimal if conditions
(15), (16), (17), (18), (19), (20), (21), (22), (23), and (24) hold. These optimality
conditions are used in our model for optimal regulation.

3.3 Model for Optimal Regulation

The model for optimal reduction of air pollution presented here is the main model
that solves problem 1. It finds a regulation strategy, so that the sum of the overall
number of trucks xij weighted by the pollution severity !ij is minimized. Recall
regulation qij 2 N0; .i; j/ 2 E to be the amount by which the capacity at edge
.i; j/ 2 E is reduced. Recall that in problem P1, the regulation strategy q was fixed
in order to find the optimal circulation in response to q. In this final model for
optimal regulation, the variables fqij 2 N0 W .i; j/ 2 Eg become decision variables.
The regulation strategy q is subject to a budget W D ˇ

P
.i;j/2E wij, where the input

variable ˇ 2 Œ0; 1� is the fraction of the total transportation capacity by which the
overall capacity can be eliminated. An optimal regulation strategy is obtained by
solving the following mixed integer nonlinear program (MINLP):

min
X

.i;j/2E

xij!ij (25)

s:t:
X

jW.i;j/2E[Eart

xij �
X

jW.j;i/2E[Eart

xji D 0 8i 2 V (26)

xij C z.1/
ij D wij � qij 8.i; j/ 2 E (27)

xij C z.1/
ij D dij 8.i; j/ 2 Eart (28)

�i � �j C �ij C z.2/
ij D bij 8.i; j/ 2 E (29)

�i � �j C �ij C z.2/
ij D �pij 8.i; j/ 2 Eart (30)

�ijz
.1/
ij D 0 8.i; j/ 2 E [ Eart (31)

xijz
.2/
ij D 0 8.i; j/ 2 E [ Eart (32)
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X

.i;j/2E

qij � ˇ
X

.i;j/2E

wij (33)

xij; z.1/
ij ; z.2/

ij � 0 8.i; j/ 2 E [ Eart (34)

�ij � 0 8.i; j/ 2 E [ Eart (35)

�i 2 R 8i 2 V (36)

qij 2 N0 8.i; j/ 2 E (37)

The objective function (25) minimizes the overall number of trucks weighted by
the pollution severity. Constraints (26), (27), (28), (29), (30), (31), and (32) are the
optimality conditions that ensure the circulation of the transportation provider to be
the optimal response to regulation strategy q. Finally, constraint (33) ensures that the
total amount of capacity reduction does not exceed the given budget. This MINLP
is very difficult to solve due to the bilinear constraints (31) and (32) and the non-
convex nature of bilinear constraint. In the next subsection, we propose an exact
linearization of this model that can be solved by algorithms that are significantly
more efficient than generic algorithms for solving non-convex MINLP.

3.4 Efficient Reformulation of the Model for Optimal
Regulation

In general, a mixed integer nonlinear program, and especially a non-convex MINLP,
is much more difficult to solve compared to a mixed integer linear program (MILP).
A MILP is inherently convex due to the linearity of the objective function as
well as of the constraints. In order to reduce the calculation time significantly, we
linearize the bilinear non-convex constraints (31) and (32) in the following to obtain
a computationally tractable MILP.

We start with the linear reformulation of constraint (31). For this constraint to
be satisfied, the term �ijz

.1/
ij must be zero. Therefore, at least one of the decision

variables �ij and z.1/
ij must be zero, i.e., �ij D 0 and/or z.1/

ij D 0. This can also
be accomplished by means of the introduction of two binary auxiliary variables
aij; a0

ij 2 f0; 1g and the following three types of linear constraints:

��ij � N�ijaij 8.i; j/ 2 E [ Eart (38)

z.1/
ij � Nz.1/

ij a0
ij 8.i; j/ 2 E [ Eart (39)

aij C a0
ij � 1 8.i; j/ 2 E [ Eart (40)

Here, in constraint (38), the term N�ij represents an upper bound of ��ij. Similarly,
all N� denote the upper bound of �. This constraint forces auxiliary decision variable aij
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to 1 if �ij < 0. Analogously, auxiliary decision variable a0
ij is forced to 1 if z.1/

ij > 0

by constraint (39). At most one of both auxiliary decision variables aij and a0
ij is

allowed the value 1 by constraint (40). Consequently, at least one of both auxiliary
decision variables aij and a0

ij takes the value zero and hence �ij D 0 and/or z.1/
ij D 0.

For the term xijz
.2/
ij in constraint (32) to be zero, we construct three types of linear

constraints in a similar manner, because for this type of constraint, it holds that at
least one of the decision variables �ij and z.1/

ij must be zero as well. We introduce
two additional binary auxiliary variables a00

ij; a000
ij 2 f0; 1g and the following three

types of linear constraints analogously:

xij � Nxija
00
ij 8.i; j/ 2 E [ Eart (41)

z.2/
ij � Nz.2/

ij a000
ij 8.i; j/ 2 E [ Eart (42)

a00
ij C a000

ij � 1 8.i; j/ 2 E [ Eart (43)

Again, at least one of both auxiliary decision variables a00
ij and a000

ij is forced to take

the value zero and hence xij D 0 and/or z.2/
ij D 0.

The upper bounds N�ij; Nz.1/
ij ; Nxij, and Nz.2/

ij can be concretized as follows:

N�ij D max
.k;l/2Eart

jpklj 8.i; j/ 2 E [ Eart (44)

Here, the decision variable �ij originates from being the shadow price of the
respective constraint in (3). It is well established that the shadow price corresponds
to the increase of the objective value, when its constraint is relaxed by one unit. An
increase of the capacity on the edge .i; j/ with one unit can maximally increase the
flow by one unit. This one additional unit yields at most reward max.k;l/2Eart jpklj. The

derivation of an upper bound on z.1/
ij is straightforward. This variable is introduced

as the slack variable for its corresponding constraint in (3) or (4), and the variables
xij and qij are nonnegative, hence

Nz.1/
ij D wij 8.i; j/ 2 E (45)

and

Nz.1/
ij D dij 8.i; j/ 2 Eart (46)

Furthermore, the upper bound on the number of trucks xij on edge .i; j/ is given
explicitly in its constraint in (3) that ensures the number of trucks not to exceed its
capacity, hence

Nxij D wij 8.i; j/ 2 E [ Eart (47)
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Finally, the upper bound on variable z.2/
ij is less straightforward. Recall this decision

variable to be introduced as the slack variable for its corresponding constraint in
(9) or (10). Following a similar reasoning as for �ij, j�ij has to be bounded by the
same max.k;l/2Eart jpklj and hence �i � �j by twice that. Rearranging (9) and (10),

respectively, yields the following upper bound for z.2/
ij :

Nz.2/
ij D 3 max

.k;l/2Eart

jpklj � pij 8.i; j/ 2 E [ Eart (48)

Through the introduction of the four auxiliary binary auxiliary variables aij,
a0

ij, a00
ij , and a000

ij and the six linear constraints (38), (39), (40), (41), (42), and (43),
both bilinear constraints (31) and (32) can be omitted. We substitute the six linear
constraints for the two bilinear constraints and obtain the following MILP P1:
.P1/ W

min
X

.i;j/2E

xij!ij (49)

s:t:
X

jW.i;j/2E[Eart

xij �
X

jW.j;i/2E[Eart

xji D 0 8i 2 V (50)

xij C z.1/
ij D wij � qij 8.i; j/ 2 E (51)

xij C z.1/
ij D dij 8.i; j/ 2 Eart (52)

�i � �j C �ij C z.2/
ij D bij 8.i; j/ 2 E (53)

�i � �j C �ij C z.2/
ij D �pij 8.i; j/ 2 Eart (54)

� �ij �

�

max
i0

jpi0 j

�

aij � 0 8.i; j/ 2 E [ Eart (55)

z.1/
ij � wija

0
ij � 0 8.i; j/ 2 E [ Eart (56)

aij C a0
ij � 1 8.i; j/ 2 E [ Eart (57)

xij � wija
00
ij � 0 8.i; j/ 2 E [ Eart (58)

z.2/
ij �

�

3 max
i0

jpi0 j � pij

�

a000
ij � 0 8.i; j/ 2 E [ Eart (59)

a00
ij C a000

ij � 1 8.i; j/ 2 E [ Eart (60)
X

.i;j/2E

qij � ˇ
X

.i;j/2E

wij (61)

xij; z.1/
ij ; z.2/

ij � 0 8.i; j/ 2 E [ Eart (62)

�ij � 0 8.i; j/ 2 E [ Eart (63)
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�i 2 R 8i 2 V (64)

qij 2 N0 8.i; j/ 2 E (65)

aij; a0
ij; a00

ij; a000
ij 2 f0; 1g 8.i; j/ 2 E [ Eart (66)

Solving this MILP yields an optimal strategy for regulation that minimizes
the pollution on the network. The objective function (49) minimizes the
overall number of trucks weighted by the pollution severity. Constraints
(50), (51), (52), (53), (54), (55), (56), (57), (58), (59), and (60) are the linear
optimality conditions that ensure the circulation of the transportation provider to
be the optimal response to regulation strategy q. Finally, constraint (61) ensures
that the total amount of capacity reduction does not exceed the given budget. This
MILP is relatively easy to solve for instances of realistic sizes, which is shown by
the results of computational experiments in Sect. 4.

4 Computational Experiments

In this section, we present the environment for the computational experiments and
the results for problem 1: air pollution minimization. First, we show the changes
in optimal behavior of the regulator and the transportation provider under varying
severity of pollution on the network in Sect. 4.1. Finally, we show how much the
overall pollution on the network decreases with the increase of the regulation budget
in Sect. 4.2.

All computational experiments were performed on an Intel(R) Core(TM) i7-
5600U CPU processor with 2.6 GHz and a usable memory of 7.7 GB. The simula-
tion platform is written in Python, using IBM Cplex with default parameter settings
to solve the instances of the proposed MILP.

4.1 Scenarios with Varying Severity of Pollution

In order to show the behavior of the regulator and the transportation provider under
varying severity of pollution on the network, we show the results for three scenarios
for which the severity indices of the pollution vary as follows:

1. The severity of pollution is zero on the entire network (see Fig. 1);
2. There is medium severity of pollution on the city routes (see Fig. 2);
3. The severity of pollution is high on the city routes, medium on the northern

routes, and low on the southern route (see Fig. 3).
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4.1.1 Description of the Test Instances

The network N represents a transportation network with 14 nodes with labels .A/ �

.O/. Most nodes .D; E; F; G; I; J; L; M/ are positioned inside a city. The source .C/

and the sink .O/ have their position at opposite sides of the city. A few nodes, .H; N/

and .K/, have their position outside the city. Super source .A/ and super sink .B/ are
the artificial nodes that are necessarily introduced for our model formulation. The
nodes are reachable through edges connecting the nodes, enabling numerous routes
for the transportation provider to route its truck from its source to its sink. We refer
to the routes through nodes .H; N/ by the northern routes, the route through .K/ by
the southern route, and the remaining routes by the city routes. Each edge .i; j/ 2 E
on the network is characterized by its properties represented by the tuple .wij �

qij; bij; !ij/, where we recall wij to represent the capacity, qij the regulated amount
by which the capacity is reduced, bij the cost, and !ij the pollution severity. The tuple
.1; 0; 0/ describes the properties of artificial edges .B; A/ and .A; C/, which have
infinite capacity and zero costs and zero pollution. The tuple .dOB; pOB; 0/ describes
the properties of artificial edge .O; B/, where we recall dOB to represent the demand
on sink .O/ and pOB to represent the reward on sink .O/. This artificial edge also
has zero pollution. The values for .wij � qij; bij; !ij/ used in the three scenarios are
shown in Figs. 1, 2, and 3 respectively. The artificial edge .B; A/ is not depicted here
in favor of compactness of these figures.

Over the three scenarios, the properties of both the regulator and the trans-
portation provider remain constant. The regulator has a budget corresponding to
a fraction ˇ D 0:15 of the total transportation capacity

P
.i;j/2E wij D 110. Hence,

the regulator is authorized to reduce the total transportation capacity by at most
16. The demand of the transportation provider is 10 at node .O/. The initial edge
capacities w remain constant as well as their costs b and are as indicated on the
edges in Figs. 1, 2, and 3. The varying edge property is the pollution severity !,
which values are indicated on the edges in aforementioned figures as well.

4.1.2 Results

The results of solving the proposed MILP P1 for air pollution minimization are
shown in Figs. 1, 2, and 3 for the three scenarios, respectively. Recall that the goal
of the regulator is to reduce the capacity on the edges such that the optimal solution
of the transportation provider emits minimal air pollution. The optimal strategy to
accomplish this goal is shown by dashed edges for those with reduced capacity,
complemented by the resulting capacity .wij � qij/ on the corresponding edges.
Recall furthermore that the goal of the transportation provider is to minimize its
costs for transportation, given the reduced capacity. The edges on the used routes by
the transportation provider are printed thick.

The results of the first scenario on network N1, in which the severity of pollution
is zero on the entire network, are shown in Fig. 1. An optimal strategy for the
regulator is to reduce the capacity of both edges .C; D/ and .E; F/ by 4. The initial
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Fig. 1 Optimal strategies of the regulator and the transportation provider on network N1

capacity on edge .C; D/ was 8, so the remainder is 4 such that 4 trucks are routed
through the city. Actually, even before the reduction of the capacity, this was already
the maximum number of trucks that could be routed through the city because of
the limited capacity of 4 on edge .M; O/. Therefore, the total reduced capacity
of 8 out of allowed 16 is redundant. This can be explained by the fact that the
objective is to minimize the air pollution, and, because the severity of the pollution
on the entire network is zero in this scenario, any feasible regulation strategy is
optimal. In order to additionally avoid redundant capacity reductions, the model can
be extended with minor adaptions such as demanding a small penalty for redundant
reductions. Nevertheless, besides the 4 trucks that are routed through the city, an
additional 6 trucks are routed over the cheapest alternative route .C � H � O/, such
that the demand of 10 in sink .O/ is satisfied. The total cost for this routing strategy
is 80 and the reward is 200, resulting in a payoff of 120. The total pollution of this
transport strategy is, of course, zero.

The results of the second scenario on network N2, in which there is medium
severity of pollution on the city routes, are shown in Fig. 2. Intuitively, the regulator
aims to reduce the transport through the city, because these routes emit pollution.
As we can see from the results, the regulator completely blocks the edges .C; D/

and .E; F/ with initial capacities of 8 and 4, respectively. The total reduced capacity
is therefore 12, which is well within the budget. Additionally reducing capacity will
apparently not result in a higher reduction of the pollution on the network. The
cheapest alternative routes are the northern route .C � H � O/, which is used up to
capacity for 6 trucks, and the southern route .C �K �O/, whose part of the capacity
is used for the remaining 4 trucks to satisfy the demand of 10 in sink .O/. The total
cost for this routing strategy is 124 and the reward is 200, resulting in a payoff of
96. The total pollution of this transport strategy is still zero, while the pollution of
the optimal transport strategy without regulation would have been 40. Thus, this
regulation strategy accomplished a pollution reduction of 40.
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Fig. 2 Optimal strategies of the regulator and the transportation provider on network N2
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Fig. 3 Optimal strategies of the regulator and the transportation provider on network N3

The results of the third scenario on network N3, in which the severity of pollution
is high on the city routes, medium on the northern routes and low on the southern
route, are shown in Fig. 3. Here, the intuitive solution to minimize the pollution is
again to maximally reduce the transport through the city. In addition, because in this
scenario the northern routes are more severely subject to pollution compared to the
southern route, the regulator may aim to also reduce the capacity on these routes.
As we can see from the results here, the strategy for the regulator accomplishes that
goal indeed. By completely blocking the city edge .M; O/, no city routes lead to
the source node .O/. Also, by completely blocking the edges .C; H/ and .D; H/ on
the northern routes, these routes are also disabled. The total reduced capacity is 16

which is the maximum reduction allowed within the budget. If the budget were 1 unit
higher, the regulator could additionally reduce the capacity on one of the edges on
the southern route. Then, the pollution would reduce even more. Nevertheless, the
optimal solution for the transportation provider, given this regulation strategy, is to
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use the full capacity on the southern route .C�K�O/ for 8 trucks. Unfortunately for
the transportation provider, it cannot meet the full demand of sink .O/; however, this
is not a constraint and the problem remains feasible. The total cost for this routing
strategy is 128 and the reward is 160, resulting in a payoff of 32. The total pollution
of this transport strategy is now 16 but corresponds to the minimum that can be
achieved within the given budget. The pollution of the optimal transport strategy
without regulation would have been 104. This regulation strategy accomplished a
huge pollution reduction of 88.

The computation time to obtain an optimal solutions was less than 1 s on each of
these instances.

4.2 Scenarios with Varying Budget for Regulation

The scenarios described in this section are introduced in order to show how the
pollution on the network and the payoff for the transportation provider decrease
with increasing budget for regulation. Moreover, the results show an increase in
computation time when the budget increases.

The network used for the tests on the scenarios with varying budget is analogous
to the network N3 as depicted in Fig. 3. Recall that on this transportation network, the
severity of pollution is high on the city routes, medium on the northern routes, and
low on the southern route. We computed the optimal solutions for 10001 instances
in which ˇ (fraction of the total capacity allowed for regulation) varies between 0

and 1 with a step size of 0:0001. All remaining parameters remain constant over the
instances.

The results are shown in Fig. 4. The main and aimed result here is that when the
budget for regulation increases, the pollution on the network decreases. As a side
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Fig. 5 Computation times of the test instances depending on fraction ˇ for regulation

effect, which is not accounted for by the regulator, the payoff for the transportation
provider also decreases. The results furthermore show that the pollution as well as
the payoff can be completely diminished already with a relatively small budget of
24 which corresponds to ˇ D 0:22 on a network with total capacity of 110. This
effect indicates a relatively small minimum cut (see [6]) on the network. When
the capacity on all edges on the minimum cut is reduced to zero, no trucks can
be routed from any source to any sink. With a larger minimum cut, the necessary
budget to completely disable any flow increases as well. The computation times
for finding optimal solutions are shown in Fig. 5. The computational burden is very
low for small ˇ. This is intuitively explained by the fact that only few resources for
regulation need to be assigned to incapacitate edges. The computation time increases
then when more resources are available, so more combinations (hence solutions) are
possible and the combinatorial problem becomes more complex. With higher ˇ, the
resources become so high that careful placement is not necessary to completely
incapacitate the network and, hence, obtain an optimal solution of zero pollution on
the transportation network.

5 Conclusion

With the increasing awareness of the negative environmental and health effects of air
pollution, transportation providers started investing in reducing the CO2 emissions
of their operations. However, some transportation providers can or will not trade
off their profit to obtain a satisfactory level. Governmental regulation proofs to be
an option in order to accomplish this goal. The goal in this chapter was to find a
regulation plan that minimizes the air pollution in dense areas, such as cities, on the
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transportation network by reducing capacities of the roads in those dense areas. The
proposed model for air pollution minimization requires very low computation times
to be solved to optimality. The computational results show a large decrease in air
pollution even when a small budget is available for regulation for the test instances.
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Cumulative VRP: A Simplified Model
of Green Vehicle Routing

Rishi Ranjan Singh and Daya Ram Gaur

Abstract There has been a recent resurge of interest in vehicle routing problems,
especially in the context of green vehicle routing. One popular and simplified model
is that of the cumulative vehicle routing problem. In this chapter, we examine the
motivation, the definition, and the mixed integer linear program for the cumulative
VRP. We review some of the recent results on approximation algorithms for the
cumulative VRP. A column generation-based procedure for solving the cumulative
VRP is also described. We also review approximation algorithms for a stochastic
version of the cumulative VRP.

1 Introduction

Nonrenewable energy resources are consumed directly or indirectly in today’s world
to run our life smoothly. Fossil fuel is one of such resource, and with its current rate
of consumption, we cannot sustain it indefinitely. Only an efficient use of it will give
the time to find alternative technologies and other fuel resources. Optimizing fossil
fuel consumption also reduces the pollution rate and makes our planet a better place
to live and breathe in. A lot of fossil fuel is burned during transportation activities.
In fact, fuel cost can be as high as 60% of the transportation cost depending on the
medium of the transport [59]. Therefore, by minimizing the fuel consumption, we
reduce the total cost of transportation, CO2 emissions, and we extend the lifespan of

R.R. Singh (�)
Department of Computer Science and Engineering, Indian Institute of Technology Bhilai,
GEC Campus, Sejbahar, Raipur, Chhattisgarh, India
e-mail: rishi@iitbhilai.ac.in

D.R. Gaur
Department of Mathematics and Computer Science, University of Lethbridge,
Lethbridge, AB, Canada
e-mail: gaur@cs.uleth.ca

© Springer International Publishing AG 2017
D. Cinar et al. (eds.), Sustainable Logistics and Transportation,
Springer Optimization and Its Applications 129,
https://doi.org/10.1007/978-3-319-69215-9_3

39

mailto:rishi@iitbhilai.ac.in
mailto:gaur@cs.uleth.ca
https://doi.org/10.1007/978-3-319-69215-9_3


40 R.R. Singh and D.R. Gaur

fossil fuels. The demand also affects fuel prices which in turn affects inflation [54].
Reduced utilization of fuel can also reduce the negative impact of such inflation
on us.

The above considerations motived researchers to develop optimization models
for minimizing fuel consumption. Fuel consumption by a vehicle is affected by
several factors. Few of the important ones are the distance traveled, weight of the
vehicle, vehicle speed, road inclination, traffic congestion, vehicle type, driving,
aerodynamic drag, etc. [23, 25]. The readers are referred to Section 2 of the survey
article due to Demir et al. [25] for more factors that affect fuel consumption in a
vehicle. The inclusion of all such factors in an optimization model will make the
model complex to analyze. A traditional way to tackle such complex problems is to
model the problem with one or two factors in the beginning and assume the rest of
the factors to be constant. Models with such assumptions do not model the original
problem exactly and therefore do not provide the optimal results. Still, with such
assumptions, the complexity of the general problem is reduced, and the special case
of the problem is easy to model, analyze, and solve. Given the variability in the
model parameters, a linear model is a good place to start the research.

One of the simplest such models was proposed by Dantzig and Ramser [22]
which assumed that the fuel consumption is proportional to the distance traveled.
This optimization model was termed as the vehicle routing problem (VRP). In
the last decade, a simplified optimization model of fuel consumption in vehicle
routing problems (VRPs) has been studied under the name of cumulative vehicle
routing problems. This model generalizes the VRP model and adds another factor,
the weight of the vehicle, to the fuel consumption model. It is a linear model of
fuel consumption in energy minimizing vehicle routing problems. In this variant
of VRPs, the objective is to minimize the cumulative cost, not just the distance
traveled. The cumulative cost per unit distance is assumed to be proportional to the
total weight of the vehicle which is the kerb weight plus the weight of the cargo on
the vehicle and the distance traveled with that weight [53, 45, 68, 33].

There exist various models that consider several other factors in addition to
the distance traveled by the vehicle or the cumulative weight. A review due to
Demir et al. [25] describes various fuel consumption models for minimizing carbon
dioxide emission in road transportation. Initially, the researchers were just focused
on reducing the transportation cost. In the last two decades, several optimization
models were developed in logistics and transportation with the objective of reducing
the pollution and keeping our planet green. Routing of vehicles with the objective
of minimizing the CO2 emission is studied under the name of green vehicle routing
[24, 26, 42, 52, 41, 48, 65, 66, 67]. Bektaş et al. [5], Lin et al. [50], Park and
Chae [55], and Toro et al. [62] individually surveyed various models on vehicle
routing problems in the context of green transportation.

Cumulative VRPs are one of the most studied variations of VRPs in the last
decade and are a popular model for fuel consumption among researchers. In this
chapter, we survey the literature on cumulative VRP and its variations. We define
the problem mathematically and discuss a mixed integer linear programming.
We summarize few of the variants of the problem considered in various studies.
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We review some of the recent theoretical and experimental results on the problem.
Theoretical results cover various approximation algorithms. Experimental results
describe various computational results due to column generation heuristics and
others. Finally, we conclude the chapter with the discussion of the possible future
directions for research.

1.1 Cumulative VRP

In this section, we define cumulative vehicle routing problem (Cu-VRP). These
definitions are from [45, 33, 31]. We are given a complete graph G.V; E/ with
weights on the edges satisfying the triangle inequality. All the nodes correspond
to customer (clients) save for one. This special node r is called the depot where a
vehicle with capacity Q is stationed. A demand of di � Q units is at each customer
node i 2 V . The vehicle visits the nodes in some order. The depot node may be
visited more than once for refilling. The vehicle picks di units of goods at the depot
and drops them at node i. The total quantity of the goods in the vehicle at any point
is at most Q. The objective is to find a schedule of the vehicle that minimizes the
total cumulative cost. The cumulative cost is a notion of fuel consumption and is
defined below.

Cumulative cost function assumes that the rate of fuel consumption per unit
distance is proportional to the overall weight of the vehicle and the kerb weight
plus the weight of the cargo on the vehicle. Let a be the cost of moving the empty
vehicle per unit distance and b be the cost of moving the unit weight of goods per
unit distance. Then, the cumulative cost of moving a vehicle unit distance with the
cargo of weight w is a C bw.

A subtour is defined as an ordered sequence of nodes starting and ending with
the depot node. Each subtour is a directed cycle that starts and ends at the depot
node and visits at least one customer. A vehicle scheduled according to a subtour
starts from the depot, traverses all the clients in the subtour in the order given by the
subtour, and finally returns to the depot. A subtour is called valid or feasible if the
weights of the objects delivered in a subtour from the depot are at most Q. A tour is
defined as the collection of valid subtours. A feasible solution to Cu-VRP is a tour T
which visits all the clients. We can represent the breakup of a feasible solution tour
T into a collection of m valid subtours fS1; S2; S3; : : : ; Smg. Note that each customer
node is in exactly one of the subtours. Let li denote the distance traveled by the
vehicle after picking di units of goods at the depot and offloading it at customer
i, in some subtour Sj. We denote the length of the directed cycle corresponding to
subtour Sj by jSjj. In T , the vehicle travels a total distance of

Pk
jD1 jSij, and each

object i with weight di travels a distance of li.
The total cumulative cost Cu.T/ of the travel schedule given by tour T is

Cu.T/ D a
kX

jD1

jSjj C b �

nX

iD1

dili: (1)
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The objective is to find a tour T� such that the cumulative cost of T� is the
minimum, i.e., Cu.T�/ � C.T/ for all tours T . Next we define a stochastic variant
of cumulative VRP.

1.1.1 Cumulative VRP with Stochastic Demand

Cu-VRP with stochastic demands (Cu-VRPSD) is a more realistic variant of Cu-
VRPs that assumes that the demands are uncertain at customer nodes. The demand at
a customer node is realized only when the vehicle visits the depot. The demands are
probabilistic. For a simplified analysis, the demands are assumed to fall uniformly
in the interval (0; Q] where Q is the capacity of the given vehicle. One can possibly
extend the analysis to other distributions. In Cu-VRP, the objective is to find a
feasible tour with minimum cumulative cost. In Cu-VRPSDs, the objective is to
find an apriori tour with the minimum expected cumulative cost.

An apriori tour is defined as an ordered sequence of the customer nodes. For a
fixed configuration of the realized demands (scenario) at the customer nodes, the
cumulative cost of an apriori tour can be computed as follows: the vehicle starts
from the depot, visits, and meets the demands of the customer node in the order of
their occurrence on the apriori tour and in between returns to the depot for refills
if required. The expected cumulative cost of an apriori tour is the mean of the
cumulative cost of the apriori tour for all possible configurations of demands.

Next, we take note of some of the possible variants of Cu-VRPs based on various
input parameters in the definition of the problem.

1.2 Variants

Below are some of the possible variants of cumulative VRPs based on various input
parameters:

• Based on capacity (Q): The problem is called Capacitated, if there is a constraint
that at any point of time the vehicle can carry at most fixed constant Q weights.
If this constraint is relaxed, and the vehicle is assumed to have infinite capacity,
the problem is called Uncapacitated.

• Based on the distribution of weights: The problem is termed as Equal-weighted
if all objects have the same weight. The problem is termed as Unequal-weighted
if the objects have distinct weights.

• Based on the type of delivery: The problem is labeled as Split-delivery if the
delivery of the demand at a customer node can possibly occur over multiple
visits. Otherwise, it is termed as Unsplit-delivery, because the delivery constraint
requires that each customer is visited exactly once.
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• Based on the knowledge of demands: If the demands are known at the start, the
problem is called as Deterministic. If there is uncertainty in the demand, it is
called Probabilistic or Stochastic.

• Based on the type of graph: If the edge costs in a given graph obeys the triangular
inequality, the problem is said to be Metric. The problem is called a restricted
version if the network is restricted to be some special graphs, tree, path, etc.

• Based on the number of refills (offloads) allowed at the depot: If there is exactly
one vehicle at the depot which once leaves the depot loaded with objects and
returns only after visiting all the customer nodes, it is called No-refiling variant.
In this case, it can be assumed that the capacity of the vehicle is at least the
sum of all the demands. If we are handling pickup demands in place of delivery
demands, the variant is called No-offloading. Another restriction can be that the
given vehicle can refill (offload) at the depot exactly k, at least k, or at most k
times for some constant k. Finally, the possibility that the vehicle can offload any
number of times at the depot.

• Based on the type of vehicles: If there are k vehicles given at the depot and all the
vehicles are of the same type in terms of parameters a, b, and Q, then the problem
is called homogeneous. This variant is equivalent to the case when exactly one
vehicle is given at the depot but k refills (offloads) are allowed. The problem is
called heterogeneous if a fleet of vehicle is present at the depot with different
parameters a, b, or Q.

• Based on the number of depots: The problem is called a single-depot problem
if in the whole network, there is exactly one depot; otherwise, it is called multi-
depot problem.

Gaur et al. [33] have considered the following four different versions of the
deterministic metric Cu-VRP obtained by varying the capacity and the distribution
of demand:

1. The vehicle has infinite capacity and all customers have equal demands.
2. The vehicle has infinite capacity and the customers have unequal demands.
3. The vehicle has capacity Q and the customers have equal demands.
4. The vehicle has capacity Q and the customers have unequal demands.

For each of the above variations, they gave constant factor approximation algo-
rithms. Gaur et al. in another paper [34] considered two different versions of
stochastic Cu-VRP based on the type of delivery:

1. Split Cu-VRP with stochastic demand
2. Unsplit Cu-VRP with stochastic demand

For the above two variants, Gaur et al. [34] gave constant factor approximation algo-
rithms for metric version of the problem. The approximation ratios are improved for
the case of when the network is a path or a tree.
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1.3 Lower Bound

Good lower bounds are integral for proving approximation ratios. Here, we mention
the lower bound for different variants that are used to analyze the performance ratio
of the approximation algorithms in [33, 34].

1.3.1 For Deterministic Variants

Gaur et al. [33] gave a lower bound for Cu-VRPs where the demands are known.
This bound is a straightforward and an important extension of the lower bound due
to Haimovich and Rinnooy Kan [40].

Theorem 1 (Theorem 4, [33]) Let T� denote an optimal TSP tour of length jT�j,
and let Q be the capacity of the vehicle. Let di be the demand at client i, and let
li be length of the shortest path between client i and the depot. Then, the minimum
cumulative cost to meet the demands of all the clients is at least

a � max

�

jT�j; 2

Pn
iD1 dili
Q

�

C b

 
nX

iD1

dili

!

:

This lower bound is valid for all the four variants of deterministic Cu-VRP listed
above in Sect. 1.2 and considered in [33].

1.3.2 For Stochastic Variants

The lower bound above can be extended to handle the stochastic case of the
cumulative VRP as shown below.

Theorem 2 (Theorem 5, [34]) Let T denote an optimal TSP tour of length � and let
Q be the capacity of the vehicle. Let the stochastic demand at each client i 2 V n frg
be specified by a random variable �i 2 .0; Q�, and let li be length of the shortest
path between client i and the depot r. Then, the minimum expected cumulative cost
for this instance of Cu-VRPSD is at least

a: max

8
<

:
�;

2

Q

X

i¤r

EŒ�i� � li

9
=

;
C b:

X

i¤r

EŒ�i� � li:

First term in the lower bound in Theorem 1 is on the cost of the optimal CVRP tour
and is due to Haimovich and Rinnooy Kan [40]. Bertsimas [8] extended the lower
bound in [40] to the stochastic version of the capacitated VRP. This is the first term
in the lower bound in Theorem 2. Gupta et al. [39] used the lower bound in [8]. The
lower bound in Theorem 2 is for both of the stochastic variants of metric Cu-VRP
listed in Sect. 1.2.
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2 Mathematical Formulation

Mathematical formulation first reported in [31] can be derived from [45, 44] with a
modification to the objective function, to account for the cumulative cost as defined
in [33]. It is a mixed integer linear programming (MILP) formulation.

Two types of variables xij and yij are used. Variable xij is a binary variable and
denotes whether the vehicle visits customer j just after visiting customer i or not
by setting xij to, respectively, 1 and 0. yij is considered as an integer variable, and
it denotes the total weight of the cargo moved from customer i to customer j by
the vehicle. The MILP formulation for the cumulative vehicle routing problem is as
follows:

min W

nX

iD0

nX

jD0

..a � xij C b � yij/cij/ (2)

s:t: W

nX

iD0

xij D 1 .j D 1; 2; : : : ; n/ (3)

nX

iD0

xip �

nX

jD0

xpj D 0 .p D 1; 2; : : : ; n/ (4)

nX

jD0

ypj �

nX

iD0

yip D dp .p D 1; 2; : : : ; n/ (5)

yij � Q � xij .i; j D 1; 2; : : : ; n/ (6)

xij 2 f0; 1g .i; j D 1; 2; : : : ; n/ (7)

yij � 0 .i; j D 1; 2; : : : ; n/ (8)

Recall that Q is the capacity of the vehicle and dp is the demand at the client p.
In the above formulation, cij denotes the distance from customer i to customer j.
Equation (2) is a different way of writing the objective function given in Eq. (1).
Constraint in Eq. (3) ensures that each customer node has exactly one incoming
edge. Constraint in Eq. (4) ensures that in-degree equals the out-degree for all the
customer nodes. Equation (5) is a flow constraint which ensures that the difference
between the sum of the weight carried by the vehicle on the outgoing edge minus
the sum of weight carried on the incoming edge equals the demand/weight at
the customer node. Equation (6) is the capacity constraint. Equation (7) is the
integrality constraint on variable xij. Equation (8) is the nonnegativity constraints
on variable yij.

To implement a column generation approach to solve Cu-VRPs, Gaur et al. [31]
decomposed this MILP into a master problem based on the set cover formulation
and a pricing problem based on the resource constrained shortest path problem. The
master problem is stated in the usual way:
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min W
X

j2R

�j � ˛j (9)

s:t: W
X

j2R

zij � ˛j � 1 .i D 1; 2; : : : ; n/ (10)

˛j 2 f0; 1g: (11)

where j denotes a feasible subset of the customer nodes such that the sum of the
demands of the clients in j is at most Q. zij is a binary variable that indicates whether
node i is in subset j or not. The minimum cumulative cost for serving the demand
of the customers in subset j is denoted by variable �j. R is the set of all the feasible
subsets of the customer nodes. �j is computed for each subset j. This computation
is NP-hard. Variable ˛j is a binary variable and denotes whether subset j is selected
in the solution to the above master problem or not by setting ˛j to, respectively, 1
and 0.

The mixed integer linear programming (MILP) formulation for the pricing
subproblem is as follows:

min W

nX

iD0

nX

jD0

..a � xij C b � yij/cij/ �

nX

iD1

0

@�i �

nX

jD0

xji

1

A (12)

s:t: W

nX

jD1

x0j D 1 (13)

nX

jD1

xj0 D 1 (14)

nX

iD0

xip �

nX

jD0

xpj D 0 .p D 1; 2; : : : ; n/ (15)

nX

jD0

ypj �

nX

iD0

yip D dp �

nX

kD0

xkp .p D 1; 2; : : : ; n/ (16)

yij � Q � xij .i; j D 1; 2; : : : ; n/ (17)

xij 2 f0; 1g .i; j D 1; 2; : : : ; n/ (18)

yij � 0 .i; j D 1; 2; : : : ; n/ (19)

where � D f�1; �2; � � � ; �ng are the dual prices corresponding to the current set of
columns in the master problem. Recall, yij is the weight of the cargo being moved
from node i to node j. Most of the constraints in the above MILP subproblem are
same as given in the MILP for Cu-VRPs. Equations (13), (14), and (16) ensure that
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the solution is a cycle. The objective function represents the reduced cost of a cycle.
The optimal solution to the above pricing subproblem is a minimum reduced cost
route starting and ending at the depot.

3 Solution Methods

VRPs are NP-hard because of a simple reduction from TSP. Algorithmic results
for general VRPs can be divided into two high-level categories. The first set of
studies address the problem theoretically and guarantees to provide a solution within
a constant multiplicative factor of the optimal solution. These solutions are known as
approximation algorithms for VRPs. The second class of solutions contains results
that are computed experimentally. The result can be exact or approximate without
any worst-case guarantee. Solution techniques in the second class can be further
divided into subclasses heuristic, exact, meta-heuristic, and matheuristic methods
[62]. In this section, we summarize results from both classes on Cu-VRPs together
with some of the well-known results on VRPS, as VRPs are a special case of Cu-
VRPs.

3.1 Theoretical Results

In this section, we discuss the theoretical results for Cu-VRP and its variants. These
are mostly the approximation algorithms for various variants of cumulative VRPs.
Recall that there are two parameters a and b in the objective function of Cu-VRP.
If b D 0, Cu-VRP reduces to vehicle routing problem (VRP). If a D 0, Cu-
VRP reduces to traveling repairmen problem (TRP) or minimum latency problem
(MLP). Therefore, we start with mentioning the renowned bounds for both VRP and
TRP/MLP.

Blum et al. [11] gave a constant factor approximation algorithm for MLP. They
extended their algorithm further to give a constant factor approximation solution
for positive-linear time-dependent TSP. This is a special case of Cu-VRP in which
the vehicle has infinite capacity and the demands of all the customer nodes are
met in a single trip. Therefore, the solution to this special case of Cu-VRP is a
TSP tour minimizing the cumulative cost. Fakcharoenphol et al. [27] also gave
constant factor approximation algorithms for MLP and TRP with k repairmen (k-
TRP). Chaudhuri et al. [14] gave better approximation factor than [11, 27] for MLP.
They also improved the approximation bounds for k-TRP. When a D 0, all the
proved approximation factors for TRP or capacitated MLP hold for Cu-VRP as
well.

All the approximation factors proved for the deterministic and stochastic VRPs
also hold for the corresponding Cu-VRPs when b D 0. Haimovich and Rinnooy
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Kan [40] gave the first constant factor
�
2 � 1

Q0

�
approximation algorithm for the

deterministic version of the capacitated VRPs with uniform demands. Here, Q0

represents the maximum number of objects that the vehicle can carry at any point in

time. For nonuniform demands, the first constant approximation factor
�
3 � 2

Q

�
is

due to Altinkemer and Gavish [1], where Q is the capacity of the vehicle. These
factors are under the assumption that an optimal TSP tour is known, a finding
which is an NP-hard problem. In case, when an ˛ factor approximate TSP tour

is known, these factors increase to 1 C ˛
�
1 � 1

Q0

�
and 2 C ˛

�
1 � 2

Q

�
respectively

[40, 1]. Bompadre et al. [12] improved these bounds to 1 C ˛
�
1 � 1

Q0

�
� 1

3Q3 and

2C˛
�
1 � 2

Q

�
� 1

3Q3 , respectively. This is an improvement in the lower order terms.

Archetti et al. [2] summarized the complexity of different variants of capacitated
VRPs on some special classes of networks: line, star, tree, or circle. Bertsimas [7]
asked the question whether there exists any constant factor approximation algorithm
for VRPs when demands are stochastic. Gupta et al. [39] settled this question by
giving 1 C ˛ and 2 C ˛ factor randomized approximation algorithms for split and
unsplit VRPs where the demands are stochastic in nature.

Gaur et al. [33] gave constant factor approximation algorithms for cumulative –
VRP. They considered four different cases of Cu-VRP mentioned in Sect. 1.2 and
gave constant factor approximation algorithm for each of the cases. Below is the
result due to Gaur et al. [33] for the case when the demands are of unequal weights,
and the vehicle has infinite capacity.

Theorem 3 (Theorem 5, [33]) Let C be a traveling salesperson tour of length jCj.
Given a metric Cu-VRP instance in which the objects are of unequal weights, and
the vehicle has infinite capacity, there exists a tour with total fuel consumption at
most:

�

1 C
2

ˇ

�

b

 
nX

iD1

widi

!

C

�

1 C
ˇ

2

�

ajCj:

Next theorem due to Gaur et al. [33] gives the bound for Cu-VRP in which the
demands are of equal or unequal weights, and the vehicle has finite capacity Q.

Theorem 4 (Theorem 6, [33]) Let C be a traveling salesperson tour of length jCj.
Given a metric Cu-VRP instance in which the objects are of unequal weights, and
the vehicle has capacity Q, there exists a tour with total fuel consumption at most�
1 C 2

ˇ

�
� b �

�Pn
iD1 widi

�
C
�
1 C ˇ

2

�
ajCj C 4a

Pn
iD1 widi

Q :

Further, if all vertices have unit weights, the fuel consumption can be reduced to:

�

1 C
2

ˇ

�

� b �

 
nX

iD1

di

!

C

�

1 C
ˇ

2

�

ajCj C 2a

Pn
iD1 di

Q
:
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By using a 1.5 factor approximate TSP tour due to Christofides [16], Gaur et al.
[33] proved the following theorem:

Theorem 5 (Theorem 7, [33]) The approximation factors achievable in polyno-
mial time for equal-demand infinite-capacity, unequal-demand infinite-capacity,
equal-demand capacitated, and unequal-demand capacitated variants of Cu-VRPs
are 2:5, 2:5, 3:186, and 4, respectively.

Similar to the deterministic variation of Cu-VRP, if in Cu-VRPSDs we set b D 0,
the problem reduces to VRPs with stochastic demands (VRPSDs). Therefore, the
approximation factors for VRPSDs hold for the special case of Cu-VRPSDs when
b D 0. VRPSD is an extensively studied probabilistic variant of VRPs. The readers
can refer to some early survey papers on VRPSDs which are due to Bertsimas and
Simchi-Levi [9], Gendreau et al. [36], Stewart and Golden [61]. We mention below
some of the popular literature and results for VRPSDs.

The Ph.D. thesis of Bertsimas [7] and the subsequent paper [8] contain some of
the seminal results on VRPSDs. Bertsimas [7] was the one to ask first whether there
exists any constant factor approximation algorithm for VRPSD, and recently Gupta
et al. [39] answer the question in affirmative by giving a randomized approximation
algorithm. Gupta et al. guaranteed the existence of 1 C ˛ and 2 C ˛ factor solution
for VRPSDs with split and unsplit deliveries, respectively. Gaur et al. [34] extend
the methodology used by Gupta et al. [39] to give constant factor approximation
algorithm for Cu-VRPs with stochastic demands (Cu-VRPSDs). Theorems below
summarize the best-known results as of the writing date on Cu-VRPSDs with split
and unsplit deliveries.

Theorem 6 (Theorems 3 and 4, [34]) Given an instance of metric Cu-VRPSD,
there exists an efficiently computable apriori tour that is .1 C 2˛/ and 7 factor
approximate solution for the split and unsplit variants, respectively.

These results are for the metric case in a general graph. If the graph in the given
instance is a tree or a path, the above factors are reduced as below.

Theorem 7 (Corollary 3 and Theorem 6, [34]) Split and unsplit Cu-VRPSDs on
the tree or path can be approximated within a factor of 3 and 5, respectively.

Gaur and Singh [32] also analyzed the upper bound on the integrality gap of
the set cover formulation given in Sect. 2 for metric instances of Cu-VRP. This
analysis is in the style of Bramel and Simchi-Levi [13]. The obtained bounds on
the integrality gap match the existing approximation factors for capacitated Cu-
VRPs due to Gaur et al. [33] and give an alternate proof of the two statements
in Theorem 5. Theorem below summarizes the worst-case bounds on the integrality
gap.

Theorem 8 (Theorems 3 and 4, [32]) The integrality gap of the set cover formu-
lation for metric Cu-VRP with equal and unequal demands are at most 3:18614 and
4, respectively.

Table 1 summarizes approximation ratios for various versions of Cu-VRPs when
both a and b are non-zero.
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Table 1 Approximation ratios for Cu-VRPs. ˛ is the ratio for metric TSP

Uncapacitated Capacitated Capacitated

Deterministic Stochastic

Graph Graph Tree

Equal demand 2.5 3.186 Split delivery (1 C 2˛) 3

Unequal demand 2.5 4 Unsplit delivery 7 5

Gaur et al. [33] Gaur et al. [34]

3.2 Experimental Results

Toro et al. [62] note four different classes of computational techniques that are used
for solving VRPs: exact algorithms, heuristics, meta-heuristic, and matheuristic
methods. There are relatively few experimental studies on Cu-VRPs in comparison
to the number of studies on VRPs. In this section, we note some popular experimen-
tal tools and studies for VRPs as these are a special case of Cu-VRP when b D 0.
Finally, we briefly discuss various computational methods for Cu-VRPs.

Branch and bound algorithms are one of the widely used experimental tools
for solving the MILP formulations. Christofides et al. [17] gave the first branch
and bound algorithm for capacitated VRPs (CVRPs). A book chapter by Toth and
Vigo [63] is recommended for the branch and bound method for VRPs. Branch
and cut algorithms are another tools that involve running branch and bound while
simultaneously tightening the LP relaxation using cutting planes. A cutting plane
corresponds to an inequality which is satisfied by all possible integral solutions of
the given LP but is violated by the current solution of LP relaxation if the solution is
fractional. Laporte [47] and Fisher [28] gave branch and cut algorithms for CVRP.
Column generation (CG) methods are another class of algorithms that can solve an
LP with a very large number of variables. It starts with a small subset of variables
and iteratively generates and adds variables that have the potential to better the
objective cost. In this way, CG solves a set of small-sized LP in comparison to
directly solving an LP with a very large number of variables. CG algorithms for
VRPs with soft time windows are due to Liberatore et al. [49] and Qureshi et al.
[58]. A CG algorithm for split delivery VRPs is due to Jin et al. [43]. A popular
hybridization of branch and bound with column generation is called branch and
price. In branch and price method, CG is used to solve the relaxed LP at each node
of the branch and bound tree. The method is called branch-cut-price if cutting planes
are used to tighten the LP relaxation. Fukasawa et al. [29] and Baldacci et al. [3]
gave branch-cut-price algorithms for VRPs. We move onto cumulative VRPs now.

An MILP formulation for Cu-VRP was given by Kara et al. [45, 44]. Kara
et al. formulated the problem, and for two instances of capacitated VRPs, they
gave a solution to the Cu-VRP. Santos et al. [60] gave a case study for cumulative
VRPs based on the mathematical formulation due to Xiao et al. [68]. Gaur and
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Singh [31, 32] modified the MILP in [45, 44] with the objective function based
on the objective function in [33]. They use the modified MILP in their column
generation matheuristic [31, 32].

Recently Lysgaard and Wohlk [51] describe a branch-cut-price algorithm for
cumulative capacitated VRPs. The exact algorithms can typically solve only small-
sized instances in the order of 100 clients or so. Fukasawa et al. [30] also gave a
branch-cut-price algorithm for the cumulative vehicle routing problem. Xiao and
Konak [65] gave an MILP formulation and algorithms to solve a similar VRP called
the green vehicle routing problem. Next, we mention a few heuristic methods for
VRPs and cumulative VRPs.

A two-phase heuristic for VRPs is due to Beasley [4]. A routing problem is
divided into two steps when a two-phase heuristics is used. One step assigns
customer nodes to a subtour, and the other one determines in which order the
customer nodes in a subtour is visited. The steps can be executed in any order:
cluster-first route-second or route-first cluster-second [4]. Another most widely used
construction heuristic is due to Clarke and Wright [20]. Recently, Cinar et al. [19]
gave a two-phase constructive heuristic for cumulative VRPs with limited time
duration by adopting the heuristic due to Clarke and Wright [20].

Meta-heuristics [38, 35] are another class of computational methods that have
been widely used to solve VRP and its variants. Some of the methods in this
category are ant colony optimization [6], simulated annealing [15], and evolutionary
algorithms [56, 57] including genetic algorithms [10, 64], Tabu Search [21], variable
neighborhood search [46], etc. An extensive bibliography on the meta-heuristic
approaches for VRPs is due to Gendreau et al. [37]. Based on the available literature,
it is evident that several meta-heuristics exist for various variants of VRPs. For
Cu-VRPs, not many meta-heuristics are known. Meta-heuristics are not as a well-
explored tool for solving Cu-VRPs and remain open for examination by the future
researchers. Cinar et al. [18] gave a simulated annealing-based meta-heuristic to
solve cumulative VRPs with limited time duration.

Matheuristic algorithms are a newer methodology and are designed by com-
bining heuristic or meta-heuristic techniques with exact techniques. Gaur and
Singh [31, 32] gave a matheuristic for constructing solutions to Cu-VRPs and have
performed a detailed computational study. They showed that a method based on
rounding solutions to a linear program performs well in practice. The linear program
(LP) considered in their paper is based on the set cover formulation. The solution
of the LP is computed using column generation where a dynamic programming
heuristic is used to solve the pricing problem. Column generation is one of the
promising tools to solve large-scale linear programming relaxations. However, their
approach is inexact whereas a branch-cut-price-based approach will deliver an exact
answer. They [31, 32] establish the efficacy of their approach by simulations on
several sets of VRP instances. The simulation results were better than the theoretical
bounds on Cu-VRP due to [33].
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4 Conclusion

Cumulative VRPs are variants of VRPs. These are one of the popular models for
fuel consumption in the last decade. Cumulative VRPs also generalize minimum
latency problem and the k-traveling repairmen problem. Following are a few open
questions. NP-hardness of split cumulative VRP with stochastic demands on paths
is still open. The approximation bounds of Cu-VRPs given in [33, 34] are not yet
proven to be tight; a natural question is to either reduce it or prove it to be tight.
The approximability of Cu-VRPs when the number of offloads is provided as an
input is still an open question. The worst-case analysis on the performance ratio
of the column-generation-based algorithm given in [31, 32] is still open. Extremely
few heuristics and meta-heuristics are known for Cu-VRP. This provides an open
direction for future research on Cu-VRPs. Cu-VRPs considered only two factors:
length of the route and weight of the vehicle to model the fuel consumption. Finally,
the inclusion of more factors in the objective function and performing similar studies
as currently done on Cu-VRPs is another direction that is open.
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Constructive Algorithms for the Cumulative
Vehicle Routing Problem with Limited Duration

Didem Cinar, Beyzanur Cayir Ervural, Konstantinos Gakis,
and Panos M. Pardalos

Abstract In this chapter, several constructive algorithms developed for the cumu-
lative vehicle routing problem with limited duration are used as an initial solution
generator algorithm for various metaheuristics. Their performance on the solution
quality obtained by solution-based and population-based metaheuristics is inves-
tigated. Data sets from the literature are used for the computational tests. The
computational experiments show that the performance of simulated annealing is
significantly affected by the initial solution generator. Although initial solution
generators do not affect the performance of genetic algorithms as much as simulated
annealing, choosing the best initial solution generator is still an important issue to
obtain high-quality solutions in a proper computational time.

1 Introduction

Vehicle routing problems (VRPs) have been an important issue in several industrial
and scientific studies on environment management, sustainable logistics, and trans-
portation systems. They mainly focus on minimizing transportation cost, which can
be defined as travel time, travel distance, truck load, emission, fuel consumption, etc.
while maximizing service area under the assumption that each customer is served
only once.
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Although VRPs are discussed in a vast amount of studies, there are still
some challenges to solve due to enhanced formulations with new constraints and
objectives. Since VRP is a combinatorial optimization problem which is NP-hard
in the strong sense, exact algorithms are insufficient to solve big size problems in
a polynomial time. To overcome this deficiency, various heuristics, metaheuristics,
and hybrid approaches have been developed to obtain reasonable solutions in an
acceptable computational time. Several variants of VRPs exist in the literature such
as the capacitated VRP, dynamic VRP, stochastic VRP, green VRP, VRP with time
window, VRP with backhauls, the multi-depot VRP, heterogeneous or mixed fleet
VRP, the split delivery VRP, and many others. Braekers et al. [15] analyzed the VRP
literature extensively and classified 277 VRP articles published between 2009 and
2015 according to the problem characteristics adapted from the taxonomy proposed
by Eksioglu et al. [30].

The capacitated VRP is one of the most studied types of the VRP which is
firstly defined by Dantzig and Ramser [22]. The capacitated VRP takes into account
vehicle capacities besides other specific VRP constraints. The cumulative VRP
(CumVRP), which is defined by Kara et al. [44], is a capacitated VRP broadened
by the cost function specified as a product of the distance traveled. Cost function
can be illustrated as a step function which shows an increasing flow based on tour
length, such as a cumulative structure. The energy minimizing VRP, the m-traveling
repairman problem, and the distance minimizing school bus routing problem are
addressed as different cases of the CumVRP [44]. The CumVRP can be also defined
as the routing problem having the objective of minimization of sum of arrival times
at customers [61].

In this study, several constructive algorithms developed in the literature for
CumVRP with limited duration (CumVRP-LD) are investigated. Moreover, their
performances on several metaheuristic approaches as initial solution generators are
analyzed by computational experiments on data sets from the literature. Clarke
and Wright algorithm (C&W), which is one of the most widely used heuristics
for capacitated VRP, and a modified Clarke and Wright algorithm and a two-
phase constructive algorithm developed by Cinar et al. [20] for CumVRP-LD are
the constructive algorithms used as the initial solution generators in this study. A
solution-based metaheuristic, simulated annealing, and a population-based meta-
heuristic, genetic algorithms, are used to test the performances of the constructive
heuristics.

The remainder of this chapter is organized as follows. Section 2 presents the
definition of CumVRP-LD. Section 3 gives a literature review on CumVRP-LD.
Sections 4 and 5 give a brief information on the constructive algorithms and
metaheuristics investigated in this study, respectively, and include a literature review
on their application in VRP studies. Computational results are discussed in Sect. 6
and concluding remarks are given in Sect. 7.
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2 Cumulative VRP with Limited Duration

Let G D .V; A/ be a directed graph where V D f0; 1; : : : ; Ng is the set of vertices
and A D f.i; j/ j i; j 2 V; i ¤ jg is the set of arcs. There is a set M D f1; : : : ; Kg

for vehicles which are supposed to visit all vertices in set V , and the demand of
each vertex should be satisfied by only one vehicle. Vehicles have different capacity
Qk.k 2 M/ and fuel consumption rates, ak and bk, where ak is the fuel consumption
rate of an empty vehicle k per unit distance and bk is the fuel consumption rate
of vehicle k per load and unit distance. Vertex 0 refers to the depot wherein each
vehicle starts and finishes the corresponding route and other vertices in set V can
be defined as customers. CumVRP-LD is a problem of finding an optimum route
set and optimum assignment of these routes to the vehicles within a predetermined
time limit TL. Fuel consumption is the objective to be minimized and computed by
using distance, load, and vehicles’ fuel consumption rates. Let dij be the distance
from vertex i to vertex j where i; j D 0; 1; : : : ; N, and ci be the demand of vertex i.
The demand of depot (vertex 0) is zero. In each vertex, unloading time is considered
as pi, i D 1; : : : ; N. Reloading is not considered in this study. Total transportation
and loading time should be within a time limit TL; overtime is not allowed. Each
vertex should be visited once, and total demand of the vertices in the same route
cannot exceed the vehicle’s capacity. A feasible instance should satisfy the following
inequalities:

.d0i C di0/=v � TL 8i 2 V n f0g (1)

ci � Qk 8i 2 V n f0g ; k 2 M (2)

where v represents the average speed of the vehicles.
Ma et al. [57] and Demir et al. [27] listed several emission models from

the literature to compute fuel consumption. In this study, the fuel consumption
expression from Kopfer and Kopfer [51] and Kara et al. [44], which is a function
of the distance, the load, and fuel consumption rates of the vehicle, is used as
the objective function. Only the delivery case is considered in this study. But, the
methodologies used in this study can easily be applied for collection case without
loss of generality.

Let R be a feasible route set and assignment where .i; j; k/ 2 R if vehicle k visits
vertex j immediately after vertex i. Total fuel consumption can be given as follows:

F D
X

.i;j;k/2R

dij.ak C bkqijk/ (3)

where F is the total fuel consumption of R and qijk is the total load transported from
customer i to customer j by vehicle k. If bk D 0, then the problem becomes classical
VRP minimizing total distance. Since VRPs are NP-hard problems [52], CumVRP-
LD is NP-hard in strong sense. Therefore, large instances may not be solved by
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exact optimization methods in acceptable computational times. That is why, several
heuristics and metaheuristic algorithms have been developed to solve CumVRPs. A
brief literature review about CumVRPs is given in the next section.

3 Literature Review

In recent years, green logistics have received attention from researches and policy
makers to address environmental concerns with reducing energy usage, fuel con-
sumption, and greenhouse gas emissions [11, 27, 29, 48]. Bektaş et al. [11] presented
an overview of the last progresses in the green vehicle routing as a subdiscipline
of the green logistics, comprising the characterization of some emission models
with definitions and applications on the road transportation. Demir et al. [28] listed
the vehicle, environment, traffic, driver, and operations-related factors affecting fuel
consumption. Figliozzi [33] evaluated the emissions rates of vehicles considering
the travel speed and distance traveled. Demir et al. [26] emphasized that emissions
rates can change depending on speed limits. Soysal et al. [72] developed a MILP
formulation for two-echelon capacitated VRP with environmental aspects in which
fuel consumption is estimated considering vehicle types, speed, load, and distance.

In the literature, most of the studies related to CumVRP have been broadly
applied in the case of energy consumption and CO2 emissions minimization in
order to determine an optimal routing policy, particularly in the transportation
and logistics management. Recent studies on CumVRP and its variations are
summarized in Table 1. Lysgaard and Wøhlk [56] used a branch-and-cut-and-price
algorithm to reduce the sum of arrival times at the customers for the CumVRP.
Gaur and Singh [38] considered the CumVRP as a set cover form and used column
generation method to solve the problem. Dynamic programming was utilized for the
pricing subproblem of the proposed model. Gaur et al. [39] examined four types of
CumVRP and developed constant factor approximation algorithms.

Since CumVRPs are NP-hard problems, various heuristics and metaheuristics
have been developed to obtain good solutions in a reasonable computational time
for big instances. Cinar et al. [20] developed a two-phase constructive algorithm
integrating Clarke and Wright algorithm and K-means clustering approach for a
CumVRP with time limit constraint in order to reduce fuel consumption. Load,
distance, and the features of the vehicles are taken into account for computing the
amount of fuel consumption. Ke and Feng [47] developed a two-phase metaheuristic
approach that combines various perturbation and local search operators in different
phases of the algorithm to get better solutions. After determining customers, the
algorithm is performed according to reducing the cumulative time of each route
in the second phase. The proposed method presents better solutions compared to
some studies in the literature. Ngueveu et al. [61] solved CumVRP using upper and
lower bounding procedures. The lower bound is derived from CumVRP features,
and the upper bound is analyzed by using memetic algorithms that work with a cost
function in the exploration space. Ribeiro and Laporte [67] developed an adaptive
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large neighborhood search heuristic in order to reduce the sum of arrival times
at the customers for CumVRP in emergency cases for humanity aid. Chen et al.
[17] proposed an iterated local search heuristic algorithm for the CumVRP. Xiao
et al. [78] considered the fuel consumption rate as a load-dependent factor in the
CumVRP and used a simulated annealing algorithm to get good results.

Alinaghian and Naderipour [5] studied a time-dependent VRP model to reduce
fuel consumption. While calculating fuel consumption, they have considered load,
vehicle speed, road gradient, and urban traffic factors, and they developed a modified
metaheuristic algorithm based on a Gaussian firefly algorithm. Xiao and Konak [77]
developed a MILP model for heterogeneous green vehicle routing with time horizon
to reduce CO2 emissions. The problem is defined as a kind of scheduling one since
it includes customer-vehicle assignment, route selection, and travel time scheduling
decisions. They proposed a hybrid approach combining MILP optimization and
iterative neighborhood search. Zhang et al. [83] introduced the capacitated VRP
with reducing fuel consumption under three-dimensional loading constraints. The
problem aimed to minimize fuel consumption considering loading plan on the
route. They proposed an evolutionary local search for solving problem. Akpinar [4]
developed a new hybrid algorithm combining large neighborhood search algorithm
and ant colony optimization for capacitated VRP. The study focuses on improving
performance of the algorithms with providing diversification in search space con-
sidering solution improvement/construction mechanisms. Flores-Garza et al. [34]
developed a MILP formulation and greedy randomized adaptive search algorithm to
reduce arrival times at cities in the multi-vehicle cumulative covering tour problem.
Lima et al. [54] studied a capacitated rural school bus routing problem utilizing
five metaheuristic-based algorithms to provide cost saving and optimal fleet size.
Various local search neighborhood approaches were adapted to deal mixed loads and
a heterogeneous fleet. Ozsoydan and Sipahioglu [62] compared the performances of
genetic algorithms, tabu search, and a hybrid algorithm including particle swarm
optimization and genetic algorithms for the CumVRP in terms of CPU times and
objective values. Although hybrid algorithms outperform genetic algorithms, the
best solutions were found with tabu search algorithm. Victoria et al. [74] presented
the CumVRP with time-dependent demand in humanitarian logistics where the
demand is dynamic and the aim is to minimize the sum of arrival times at critical
nodes. They developed a MILP model and a two-phase heuristic method based on
multi-start iterated local search.

Multi-trip CumVRPs, in which the vehicles are allowed to perform multiple
trips to reduce the investment cost on vehicles, have been also investigated in
recent years. Rivera et al. [68] considered a multi-trip cumulative capacitated
VRP for disaster relief operations, which aims to reduce sum of arrival times at
required nodes, and each vehicle may perform multiple trips to provide a flexibility
under demand excess. The authors proposed to utilize a multi-start evolutionary
local search besides an adapted split procedure and a variable neighborhood
descent algorithm. Rivera et al. [69] developed a mixed integer linear programming
(MILP) model, a dominance rule, and a hybrid metaheuristic for a multi-trip
CumVRP. Rivera et al. [70] proposed two MILP models – flow-based model and
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set partitioning model – to minimize the sum of arrival times of the single vehicle,
which is able to perform multiple trips for an emergency response after a disaster.
Since exact algorithms are insufficient to find optimum solution for large instances,
Bellman-Ford algorithm is conducted to solve CumVRP with limited capacity. The
proposed method is more successful than a commercial MILP software for small
instances. Cinar et al. [19] presented a MILP model for a multi-trip CumVRP with
a limited duration to reduce fuel consumption that considers the distance, the load,
and the features of vehicles. The authors developed a solution-based metaheuristic
approach, simulated annealing, which conducts the Clarke and Wright algorithm to
start with a good initial solution.

4 Constructive Algorithms

4.1 The Clarke and Wright Algorithm

The Clarke and Wright algorithm (C&W) was developed by Clarke and Wright [21]
for capacitated VRPs. Since it is easy to implement and is able to find reasonably
good results in a very short time, it is one of the most widely used heuristic
algorithms in the VRP literature.

Capacitated VRP is a more general version of VRP where a limited number of
vehicles can perform tours to deliver the products to the customers (or collect the
products from suppliers). The load of a vehicle cannot exceed the vehicle’s capacity.
The C&W algorithm initiates with assigning a vehicle to each vertex. If the number
of vehicles is less than the number of vertices, then the algorithm creates artificial
vehicles to assign a vehicle to each vertex. Then, the following saving value is
calculated for each vertex pair .i; j/, i < j:

sij D d0i C d0j � dij (4)

where dij is distance between vertices i and j for all i; j 2 V , sij is saving value
for vertex pair .i; j/, and d0i and d0j are distances from depot to vertices i and j,
respectively. A vertex pair .i; j/ having the largest savings is merged if vertices i and
j belong to separate vehicles, the capacity constraint of the vehicle is not exceeded,
and i and j are the first or the last customer to be merged. The algorithm proceeds
until a merging is no longer possible. There are two options of the algorithm, which
are sequential and parallel building of routes. The parallel version outperforms the
sequential one according to performance experiments from the literature [21].

Because the C&W algorithm is easy to implement and produces fairly good
solutions in a short time, it has been widely used in capacitated VRP studies.
Campbell et al. [16] utilized from C&W’s savings for initial trips in the proposed
three-phase heuristic approach for time-limited bus routing problem. Lima et al.
[54] used a modified C&W algorithm for a better initial solution of the proposed
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metaheuristics in a capacitated rural school bus routing problem. Li et al. [53]
developed a two-stage heuristic involving C&W algorithm for VRP. Expósito-
Izquierdo et al. [32] proposed a two-level solution approach to solve the clustered
capacitated VRP. C&W algorithm is utilized for creating the first route for applying
record-to-record travel algorithm. Junqueira and Morabito [45] defined a heuristic
approach for a three-dimensional loading capacitated VRP to achieve minimum cost
delivery routes. They applied the C&W algorithm or the Gillett and Miller algorithm
to generate the routes. Akpinar [4] proposed a novel hybrid metaheuristic algorithm,
which combines large neighborhood search algorithm and ant colony optimization,
for the capacitated routing problem to improve search ability of algorithm. The
C&W algorithm was utilized to compute saving values between vertices. Cinar et al.
[19] applied the C&W algorithm to generate initial solution at the beginning of a
simulated annealing algorithm.

To improve the performance of the C&W algorithms, various augmentations have
been conducted to the standard saving formula. Gaskell [37] and Yellow [80] defined
a route shape parameter, �, to highlight the distances between customers other than
the distances to depot:

sij D d0i C d0j � �dij (5)

Paessens [63] proposed a new parameter, �, which refers to asymmetry between
two nodes:

sij D d0i C d0j � �dij C �jd0i � d0jj (6)

Altınel and Öncan [7] took into account demands of the vertices to compute saving:

sij D d0i C d0j � �dij C �jd0i � d0jj C v
ci C cj

Nc
(7)

where ci and cj are the demands of vertices i and j, respectively, Nc is the
average demand which is used for normalization, and v is the new parameter. An
enhancement of C&W algorithm, called the modified C&W algorithm, proposed by
Cinar et al. [20] for CumVRP is explained in the next subsection.

4.2 The Modified C&W Algorithm

The modified C&W (mC&W) algorithm was developed by Cinar et al. [20], for
the CumVRP-LD considering total load and fuel consumption features of vehicles,
besides distances between vertices. While total distance saving is computed in C&W
algorithm, total fuel consumption saving is calculated in mC&W. So, the saving
depends not only on distances between vertices but also on the total load of the
vehicles in mC&W algorithm.
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It is assumed that two tours are numerized as 1 and 2 which represent preceding
and subsequent tour, respectively. Let ft and lt be the first and last vertices in tour
t.t D 1; 2/. The enhanced saving formulation for assigning tour 2 after tour 1 is
given as follows:

sl2f1 D a.dl10 C d0f2 � dl1f2 / C bq0
2.d0f2 � d0

1 � dl1f2 / C b
q0

1

d0
1

(8)

where q0
t is the total demand of the vertices in tour t, d0

t is the total distance from
depot to the last customer in tour t, and p0

t is the total service time for tour t. Only
the savings satisfying the following inequalities are considered in each iteration:

q0
1 C q0

2 � Q (9)

d0
1 C dl1f2 C d0

2 � d0f2 C dl20

v
C p0

1 C p0
2 � TL (10)

where Q is the capacity of a vehicle. Inequality (9) guarantees that total load on
the merged tour cannot be more than vehicle’s capacity. Inequality (10) ensures that
total travel and service time in the merged tour cannot exceed predefined time limit.
In C&W algorithm, savings are calculated and fixed at the initial iteration of the
algorithm. On the other hand, savings are updated at the beginning of each iteration
in mC&W which increases the computational complexity of the algorithm.

Cinar et al. [20] have validated the performance of the mC&W algorithm with
data sets from the VRP literature. The mC&W algorithm provides more successful
results in terms of fuel consumption compared to the C&W algorithm. On the other
hand, its performance on computational time is worse than C&W. To overcome
this drawback of mC&W, a two-phase constructive algorithm was developed by
Cinar et al. [20] by combining clustering approach with mC&W to maintain solution
quality while accelerating the computational performance.

4.3 A Two-Phase Constructive Algorithm

To solve VRP problems, various heuristic-based techniques have been devel-
oped. Bowerman et al. [14] categorized the heuristic approaches to the VRP
into five sections: (1) cluster-first/route-second, (2) route-first/cluster-second, (3)
savings/insertion, (4) improvement/exchange, and (5) simpler mathematical pro-
gramming representations through relaxing some constraints. In clustering first-
route later algorithms, the nodes are initially classified into clusters, each cluster
is assigned to a vehicle, and lastly a tour is determined for each vehicle. Due to its
effectiveness, most of the studies utilize from clustering first-route later algorithms.

Clustering methods are one of the most remarkable data mining techniques due
to the efficient managing and analyzing capabilities of huge data sets. They have a
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very wide application area to classify data into homogenous categories. K-means
clustering is one of the well-known unsupervised learning algorithms. Different
from other clustering approaches, the K-means algorithm forms a single level of
clusters, not a tree structure to define the groupings. The technique uses the actual
observations in the observed data set, not only their closeness (proximity) [31].
Additionally the K-means algorithm can easily come up with enormous amounts
of data for clustering. The K-means algorithm separates the data into groups or
clusters, and the clusters are determined by positioning centroids in sites of space.
Each observation is matched with the closest one. According to an iterative way,
which includes calculation of a square error function, the final positions of the
centroids are identified.

A number of clustering studies have been published in VRP literature. Gao et al.
[35] applied a K-means clustering algorithm to overcome the places of depots and
nearby cities in each class, and then an ant colony algorithm is implemented to
handle the VRP in dynamic conditions. Yücenur and Demirel [82] developed a
new geometric shape-based genetic clustering algorithm to solve multi-depot VRP.
Geetha et al. [40] used a K-means algorithm for clustering that reduces the multi-
depot VRP to multiple VRPs. Wang et al. [76] utilized a fuzzy clustering algorithm
to categorize the customers into multiple clusters. Dechampai et al. [24] handled
the General Q-Delivery VRP with clustering of customer vertices method named
the Multifactor-Based Evolving Self-Organizing Map. Geetha et al. [40] developed
a genetic algorithm, an article swarm optimization (PSO) and a hybrid PSO to
solve multi-depot VRP. The first particles in hybrid PSO are created using K-means
clustering and nearest neighbor heuristic. Alvarenga Rosa et al. [23] analyzed a
capacitated helicopter routing problem with creating a mathematical model and
using a clustering search metaheuristic in a simulated annealing approach. New
solution is composed with a simulated annealing approach and stated to the closest
cluster noticing a distance metric. Expósito-Izquierdo [32] studied a clustered
capacitated VRP to detect the routes of the vehicles for satisfying the demand
of customers assigned into clusters. In the problem, the main point is that all the
customers in the same cluster have to be fulfilled by the same vehicle.

To improve the computational performance of the mC&W algorithm, a two-
phase algorithm which is based on the principle of clustering first-routing second
is proposed by Cinar et al. [20]. In the first stage, using a coordinate system in
two-dimensional space, vertex components are arranged according to the angle of
the vertex place, and so the problem is converted to one-dimensional clustering
case. The K-means algorithm is utilized to build the segment of vertices that are
constructed by the angles of the vertices. In the second stage, by implementing
the mC&W algorithm under time and capacity constraints, reasonable tours are
obtained for each cluster which is constructed in the first stage. For a mathematical
background of two-phase algorithm, the readers are referred to Cinar et al. [20].

Computational experiments, performed by using data sets from the literature,
showed that two-phase constructive algorithm improves the computational time
significantly with only a slight loss in total fuel consumption compared with
mC&W algorithm. Although the performances of the aforementioned constructive
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algorithms have been analyzed in the literature for CumVRP-LD, the authors have
not encountered a study that analyzes the performance of these algorithms as initial
solution generators for metaheuristics. The metaheuristics used in this study to solve
CumVRP-LD are explained in the next section.

5 Metaheuristics

Only a small number of VRP instances can be solved by exact solution methods
owing to time-consuming complexities. It may not be possible to find an optimal
solution in a polynomial time. Metaheuristic approaches have emerged as a response
for reducing/eliminating challenges of the combinatorial optimization problems.
Metaheuristic algorithms are generally simple to implement and flexible to tackle
with problems with various characteristics which include continuous, discrete, or
mixed objective functions.

Most of the metaheuristics are generally based on populations, which are called
population-based approaches, and they simulate the collective behavior of colonies
or groups in nature. Single solution-based approaches concentrate on changing and
progressing a unique candidate solution, while the population-based approaches
tackle with multiple candidate solutions in search space. Solution-based approaches
are listed as simulated annealing, iterated local search, variable neighborhood search
algorithms, etc. [13]. Evolutionary computation, genetic algorithms, and particle
swarm optimization are some techniques addressed as population-based approaches.

In this study, constructive algorithms mentioned in Sect. 4 are used to generate
initial solutions for simulated annealing and genetic algorithm approaches which
are solution-based and population-based metaheuristics, respectively. A general
discussion and literature review on simulated annealing and genetic algorithm are
given in the following section.

5.1 Simulated Annealing

Simulated annealing (SA), firstly introduced by Kirkpatrick [49], is a probabilistic
local search algorithm inspired from the physical annealing process of solid matter.
It consists of heating and controlled cooling processes to reach the minimum energy
configuration of its atoms. The working principle of SA is based on avoiding local
optima utilizing hill-climbing procedure [12]. In order to apply the SA algorithm,
the following parameters should be identified: the energy (objective) function,
the candidate solution generator neighbor, the acceptance probability function, the
annealing determined temperature, and the initial temperature. All these parameters
can change according to the problem characteristic, and there is no rule to implement
a fixed set of parameters for all problems.
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In the literature, several studies employed SA approach for VRPs. Some recent
studies are presented as follows. Moshref-Javadi and Lee [58] hybridized SA and
variable neighborhood search to minimize total waiting time of customers in multi-
commodity VRP. Yu et al. [81] proposed an SA algorithm to solve an open VRP
with crossdocking. Afifi et al. [1] presented an SA-based algorithm for the VRP with
time windows and synchronized visits. García-Nájera et al. [36] developed a hybrid
metaheuristic algorithm based on SA to solve the VRP with stochastic demands.
Afshar-Nadjafi and Afshar-Nadjafi [2] analyzed the time-dependent multi-depot
VRP using SA. Mu et al. [59] considered a VRP with simultaneous pickup
and delivery and developed a parallel SA algorithm using various neighborhood
features. Wang et al. [76] proposed a parallel SA algorithm to reduce routing cost
for VRP. Allahyari et al. [6] utilized a hybrid metaheuristic which includes GRASP
(greedy randomized adaptive search procedure), iterative local search, and SA for
the multi-depot capacitated VRP. Ghorbani and Jokar [41] defined a new heuristic
which comprises SA and imperialist competitive algorithm to solve the multiproduct
and multi-period location-routing problem. Cinar et al. [19] proposed an SA-based
solution methodology for cumulative multi-trip VRP with limited duration which
aims to minimize total fuel consumption.

In this study, the SA configuration used by Cinar et al. [19] is utilized to solve
CumVRP-LD. A solution is represented with the order of the vertices in the tours.
Tours are separated by zeros. A sample feasible solution and its representation are
illustrated in Fig. 1. In this study, we performed C&W, mC&W, and two-phase
constructive algorithms to generate an initial solution for SA. By this way, we aim to
see the effect of the constructive algorithms on SA performance. Several runs, which
start different initial solutions, will be performed to observe the performance of the
constructive algorithms. In order to start with different initial solution, a random
parameter is added to the saving expressions as follows:

sij D d0i C d0j � �dij (11)

Fig. 1 A sample solution
representation
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sl2f1 D a.dl10 C d0f2 � dl1f2 / C bq0
2.d0f2 � d0

1 � dl1f2 / C �b
q0

1

d0
1

(12)

where � is a random integer from the uniform distribution between 1 and 100.
Equation (11) is used in C&W, while Eq. (12) is utilized in mC&W and two-phase
algorithms to compute savings during initial solution generation. The operators used
for the neighbor generation in SA are one-to-one exchange and reverse and delete-
insert operators [50] which are illustrated in Fig. 2. One-to-one exchange operator
swaps two randomly selected vertices. Reverse operator inverts the randomly
selected substring. Finally, delete-insert operator removes a randomly selected
vertex and inserts it in another randomly selected position.

5.2 Genetic Algorithms

Genetic algorithms (GAs) are a widely applied nature-inspired soft computing
method. It was developed by Holland in 1975, and the applicability of GA to
solving multidimensional complex problems was demonstrated by De Jong [25] and
Goldberg [42]. A GA uses selection, crossover, and mutation operators, which are
inspired from natural selection. It evaluates a group of candidate solutions, called
population, instead of single solution. Therefore, the search mechanism works
through a multiple direction simultaneously.

In GA, the population consists of individuals (solutions) encoded as chromo-
somes. The selection procedure begins with choosing solutions from the population
for mating. A crossover operator maintains reproduction by producing new individ-
uals (offsprings) from two selected solutions (parents) in the mating pool. Mutation
operator randomly alters one or more genes in a chromosome to ensure genetic
diversity. A solution is evaluated using its fitness value which is described by the
objective function of the problem. Building of the initial solution at the beginning
of the algorithm has a significant influence on GA performance in order to keep a
broad searching ability under exploration and exploitation concepts.

Some recent studies that concentrate on GA to solve VRPs are given as follows.
Pierre and Zakari [65] presented a stochastic partially optimized cyclic shift
crossover for multi-objective GAs for VRP with time windows. Park et al. [64]
utilized a GA for the inventory-routing problem with lost sales. The GA identified
vehicle routes and replenishment times while maximizing supply chain profits. Bae
and Moon [9] used a GA for the multi-depot VRP with time windows to reduce fixed
costs as well as other related expenses. Karakatic and Podgorelec [46] gave a survey
of GAs for solving multi-depot VRP. Ahmadizar et al. [3] proposed a GA for two-
level VRP with crossdocking under transportation cost. Barkaoui et al. [10] used
a hybrid GA for dynamic vehicle routing and scheduling problem. Shaabani and
Kamalabadi [71] proposed a population-based SA algorithm for inventory-routing
problem and compared the results with GA. Lu and Yu [55] proposed a GA for
solving the pickup and delivery VRP with time windows. Vidal et al. [75] utilized
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Fig. 2 Operators used to generate neighbors [19]. (a) One-to-one exchange operator. (b) Reverse
operator. (c) Delete-insert operator

a hybrid genetic search within each cluster for a clustered VRP. Nazif and Lee [60]
used a GA for solving capacitated VRP. Pop et al. [66] presented a hybrid heuristic
algorithm which combines GA and local search procedure for the generalized VRP.
Anbuudayasankar et al. [8] developed an adaptive GA for bi-objective VRP with
forced backhauls.
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In this paper, the implementation of GA for the CumVRP-LD is given as follows.
Each individual is represented as in SA (Fig. 1). Initial population is generated
using constructive algorithms given in Sect. 4. Since GA is a probabilistic approach,
several runs will be performed to observe the performance of the algorithm as in SA.
Equations (11) and (12) are used to start with different initial populations. Elitist
rule and roulette wheel selection are performed for selection. In order to satisfy
monotonical improvement, a predetermined number of the best solutions in the
population are reserved for the mating pool by using the elitist rule. The rest of the
individuals in the mating pool are determined by roulette wheel selection, which is
the most widely used selection operator. Offsprings are generated by crossover and
mutation operators by using the individuals in mating pool. The operators given in
Fig. 2 are used as the crossover operators in GA. The mutation operators – split-
tour and merge-tour operators – are illustrated in Fig. 3. The split-tour operator
divides a subtour into two separate subtours from the randomly selected position.
The merge-tour operator merges two randomly selected subtours if the capacity and
time limitations are satisfied after merging. The number of offsprings generated
by crossover and mutation is determined according to the crossover and mutation
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Fig. 3 Operators used for mutation in GA. (a) Split-tour operator. (b) Merge-tour operator
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probabilities, respectively. If the fitness value of the offspring is better than the
parent, then it is transferred to the next generation. Iteration ends after the next
generation is formed and replaced the population. The algorithm is terminated when
the maximal number of generations is reached.

6 Experimental Analysis

Well-known capacitated VRP instances from the literature are utilized to test the
performance of aforementioned constructive algorithms as initial solution genera-
tion algorithms for SA and GA. Fourteen instances in the data set of Christofides
et al. [18] (C1–C14) having between 50 and 200 customers, 13 instances in the
data set of Taillard [73] (T1–T13) including between 75 and 385 customers, and 20
instances in the data set of Golden et al. [43] (G1–G20) ranging from 240 to 483
are used for the computational tests. All algorithms used in this study were coded
in Microsoft Visual C++ Version 10.0. The computational tests were performed on
a portable work station with a 1.73 GHz Intel Core i7 processor and 4 Gb of RAM.

6.1 Configuration of the Experiments

Demand, distance, and vehicles’ capacity values are taken from the data sets. Other
parameters are fixed as follows. Service time for each customer and the average
velocity of the vehicles are fixed to 10 and 1, respectively. In order to get a tight
time constraint, the time limit is fixed according to the following expression for
each instance:

TL D
lmaxi2Vnf0g d0i

10

m
� 10 � 2 C

l
max

i2Vnf0g
pi

m
(13)

where TL is time limit and pi is service time for vertex i. Parameter ak, which refers
to the fuel consumption of an empty vehicle per kilometer, is 26, and parameter bk,
to the fuel consumption per ton and kilometer, is 0.36 as in Kopfer and Kopfer [51].
SA and GA parameters used in the computational experiments are given in Tables 2
and 3, respectively.

Table 2 Parameters of
proposed SA

Parameters

Initial temperature 20

Minimum temperature 0.1

Temperature factor 0.95

Operators One-to-one exchange (40%),
reverse (30%), delete-insert (30%)
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Table 3 Parameters of
proposed GA

Parameters

Population size 100

Selection Elitist rule (1%), roulette
wheel (99%)

Crossover One-to-one exchange (40%),
reverse (30%), delete-insert (30%)

Mutation Split-tour (50%),
merge-tours (50%)

Crossover probability 0.9

Mutation probability 0.1

Number of generations 100

6.2 Computational Results

Both SA and GA run 25 times for each instance with each initial solution generator.
To reduce the effects stemming from randomness, each run is implemented with a
fixed random seed. For example, the same random seed is used to generate random
numbers in the first runs of SAs and GAs with C&W, mC&W, and two-phase
algorithms for each instance.

Let A1, A2, and A3 refer to C&W, mC&W, and two-phase algorithms, respec-
tively. F.Ai/ .i D 1; 2; 3/ represents the total fuel consumption obtained by SA with
initial solution generator Ai. C.Ai/ is the total computational time (CPU time) in
second achieved by SA with initial solution generator Ai. Pairwise comparisons of
initial solution generators for SA are given in Table 4. The first column represents
the name of the instances. The size of the instances is given in the second column.
The number of runs where SA with Ai outperforms SA with Aj .j D 1; 2; 3/ is
given by the columns between three and eight in terms of fuel consumption and
computational time. For example, SA with mC&W algorithm (A2) obtained better
fuel consumption values in 21 runs than SA with two-phase algorithm (A3) for the
instance C1.

Cinar et al. [20] tested the performances of C&W, mC&W, and two-phase
algorithms without hybridizing with any other algorithms. According to their
experimental results, the mC&W algorithm has the best performance in terms of fuel
consumption, while the C&W algorithm outperforms others with respect to CPU
time. In this study, we investigate the performances of the constructive algorithms
as initial solution generators while hybridizing with metaheuristics. According to
Table 4, the best performance with respect to fuel consumption belongs to SA with
mC&W algorithm, while the worst one is SA with C&W algorithm for most of the
instances. On the other hand, the reverse is true in terms of CPU time. According
to the computational time, C&W and mC&W algorithms have the best and worst
performances, respectively.

The best results are obtained by different algorithms in terms of fuel consumption
and CPU times. So, the question of which algorithm should be preferred to be used
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as an initial solution generator for SA still stands. To decide the most appropriate
initial solution generator for SA, relative deviations (RD) for C&W and mC&W are
also investigated. The relative deviation is calculated as follows:

RD D
P.A3/ � P.Ai/

P.A3/
� 100 (14)

where P.Ai/ is the performance indicator for corresponding metaheuristic algorithm
with initial solution generator Ai. The two-phase algorithm is chosen as the base
algorithm to compute RD. Positive RD refers to the percentage of improvement
obtained by SA with algorithm Ai (i D 1; 2) compared with the two-phase
algorithm.

Average RD values for each instance are given in Table 5. According to the RDs,
SA with C&W algorithm has significantly worse results than SA with two-phase
algorithm in terms of fuel consumption. However, its computational performance

Table 5 RDs for SA algorithms with C&W and mC&W algorithms

C&W mC&W

Fuel CPU Fuel CPU

Instance N av. std dev. av. std dev. av. std dev. av. std dev.

C1 50 �30.78 10.06 46.35 14.20 1.38 1.75 �3.16 26.55

C2 75 �33.87 10.36 16.65 19.18 2.33 0.33 �33.77 23.30

C3 100 �37.64 12.78 9.70 21.89 2.88 0.51 �82.37 48.24

C4 150 �41.44 13.86 7.34 23.28 0.94 0.26 �113.77 58.47

C5 199 �42.00 14.79 34.44 14.50 0.49 0.34 �86.58 51.79

C6 50 �29.42 7.67 46.41 12.21 1.16 1.85 5.28 23.48

C7 75 �34.33 11.58 9.35 16.96 2.34 0.24 �37.66 22.55

C8 100 �37.58 12.94 19.81 18.12 2.74 0.59 �70.64 51.51

C9 150 �41.71 13.20 9.36 21.41 0.88 0.28 �87.60 65.32

C10 199 �42.23 15.23 39.82 13.29 0.47 0.36 �86.59 57.35

C11 120 �41.34 13.48 23.64 16.48 0.54 0.21 �55.44 33.49

C12 100 �29.30 10.36 9.78 22.18 3.77 0.83 �87.75 31.21

C13 120 �42.84 12.22 15.54 19.50 0.50 0.27 �77.78 30.87

C14 100 �28.41 10.00 9.08 19.44 3.80 0.95 �85.17 38.99

G1 240 �58.07 11.54 41.05 20.65 0.18 0.18 0.56 26.55

G2 320 �64.70 18.67 68.19 8.34 0.16 0.11 �7.73 20.71

G3 400 �72.25 21.91 56.00 14.70 0.51 0.13 �41.25 38.84

G4 480 �72.06 24.47 96.02 1.48 0.47 0.11 85.28 3.47

G5 200 �65.32 20.69 64.49 8.43 0.09 0.31 3.64 17.71

G6 280 �71.35 21.88 74.55 10.75 0.40 0.18 �4.04 25.37

G7 360 �78.41 23.08 70.98 8.03 0.44 0.10 13.68 22.48

G8 440 �76.65 23.06 73.03 12.58 �0.04 0.08 1.16 30.42

G9 255 �16.44 7.55 52.51 15.36 0.17 0.46 �32.10 41.70

G10 323 �20.95 9.78 57.11 25.41 �0.28 1.03 �165.28 116.83

(continued)
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Table 5 (continued)

C&W mC&W

Fuel CPU Fuel CPU

Instance N av. std dev. av. std dev. av. std dev. av. std dev.

G11 399 �21.15 9.14 37.06 22.48 0.24 0.68 �147.87 121.50

G12 483 �22.43 10.56 43.65 33.45 �0.31 1.16 �137.52 70.58

G13 252 �16.16 5.50 53.75 15.00 �0.93 1.32 7.50 37.51

G14 320 �19.01 7.52 60.36 18.33 �0.05 0.91 �26.00 37.65

G15 396 �20.21 8.26 39.38 23.39 �0.03 0.61 �13.12 28.15

G16 480 �19.95 7.85 45.01 25.25 �0.12 0.55 �18.25 35.46

G17 240 �20.62 7.13 19.51 24.38 0.77 1.07 �78.94 47.92

G18 300 �37.75 15.48 40.17 14.26 1.24 0.95 �117.34 68.66

G19 360 �44.00 18.23 59.83 11.78 1.65 0.75 �246.08 164.68

G20 420 �43.77 15.36 55.20 11.24 1.41 0.42 �146.17 76.43

T1 385 �63.26 22.22 50.20 17.47 3.59 0.33 �101.38 43.50

T2 75 �12.40 2.00 38.93 15.24 0.08 0.27 �15.39 19.13

T3 75 �9.17 2.54 36.17 10.37 �0.22 0.59 �20.29 25.68

T4 75 �15.70 3.01 59.92 6.72 �0.45 0.47 27.44 12.02

T5 75 �10.28 2.90 49.39 8.61 0.53 0.25 �26.37 17.97

T6 100 �14.89 3.62 29.80 12.72 0.58 0.45 �64.12 28.35

T7 100 �11.87 2.97 18.90 17.07 0.66 0.33 �69.04 46.39

T8 100 �11.56 2.76 22.52 14.34 0.35 0.49 �25.88 30.85

T9 100 �19.70 3.91 18.81 14.48 0.68 0.33 �61.07 28.39

T10 150 �12.74 3.82 28.05 11.78 0.20 0.36 �40.51 23.60

T11 150 �11.28 2.93 33.11 9.78 0.12 0.29 �51.37 27.00

T12 150 �11.24 3.19 21.39 17.90 0.34 0.86 �70.01 34.74

T13 150 �13.57 3.28 27.71 18.28 0.33 0.34 �55.04 31.68

is better than SA with two-phase algorithm. On the other hand, although the
RDs for SA with mC&W are positive for most of the instances in terms of fuel
consumption, the performance improvement of SA with the mC&W algorithm is
significantly small compared to SA with two-phase algorithm (averages of RD are
close to zero and standard deviations are very small for all instances). But SA with
two-phase algorithm has quite better computational times than SA with mC&W
algorithm. So, although using SA with two-phase algorithm causes slightly less
quality solutions, it accelerates the computational performance of SA with mC&W
algorithm significantly, and its solution quality is substantially better than C&W
algorithm. These inferences overlap with the observations in Cinar et al. [20]. It
can be concluded that the performance of SA is significantly affected by the initial
solution generator.

Pairwise comparisons of initial solution generators for GA are given in Table 6.
The algorithm having the best performance differs for each instance. Average RD
values are given in Table 7. According to the RDs, GA with mC&W and GA
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with two-phase algorithms have similar performances in terms of fuel consumption
(averages of RD are close to zero and standard deviations are very small for all
instances). This situation is similar for GA with C&W and GA with two-phase,
except that for some instances (G11, G2, G3, G5, G8), GA with C&W achieves
more than 10% improvement. Also, its computational performance is significantly
better than GA with two-phase. Consequently, for most of the instances, initial
solution generator does not affect the performance of GA as much as SA. The reason
of this may be that SA generates only one solution and proceeds on this solution
while the GA works on a set of solutions. Also, the most appropriate initial solution
generation algorithm changes according to the instance when using GA.

Table 7 RDs for GA algorithms with C&W and mC&W algorithms

C&W mC&W

Fuel CPU Fuel CPU

Instance N av. std dev. av. std dev. av. std dev. av. std dev.

C1 50 2.49 1.83 �129.33 79.98 0.73 0.49 8.52 32.97

C2 75 0.62 1.86 �97.11 17.21 �0.34 0.38 27.56 6.49

C3 100 8.99 1.33 �178.99 24.27 1.07 0.26 �66.84 13.77

C4 150 8.22 1.44 �160.65 23.67 0.75 0.36 18.96 9.45

C5 199 5.26 1.48 �360.71 230.43 0.41 0.21 �67.80 64.10

C6 50 2.49 1.83 �47.94 19.33 0.73 0.49 40.16 7.62

C7 75 0.62 1.86 �161.62 30.30 �0.34 0.38 21.12 10.07

C8 100 8.99 1.33 �291.80 31.41 1.07 0.26 �96.23 15.60

C9 150 8.22 1.44 �259.07 33.94 0.75 0.36 �1.33 8.56

C10 199 5.26 1.48 �452.73 283.31 0.41 0.21 �103.34 70.62

C11 120 �1.47 0.87 �234.25 78.10 0.25 0.22 �33.93 19.76

C12 100 �0.79 0.78 �211.96 84.89 0.71 0.26 �66.73 9.54

C13 120 �1.47 0.87 �232.89 76.87 0.25 0.22 �42.08 19.57

C14 100 �0.79 0.78 �205.09 84.10 0.71 0.26 �53.72 15.57

G1 240 22.34 0.15 �302.45 147.65 �0.04 0.12 24.71 22.44

G2 320 20.40 2.13 �283.66 54.11 0.05 0.09 11.50 11.37

G3 400 11.17 3.49 �637.31 66.48 0.05 0.06 �23.59 9.70

G4 480 1.47 0.69 �615.97 257.91 �0.24 0.04 �41.04 16.18

G5 200 10.92 1.54 �277.56 106.73 0.07 0.04 �11.02 13.19

G6 280 8.56 1.61 �107.47 71.85 �0.13 0.10 �1.15 36.39

G7 360 6.98 2.05 �144.22 32.42 0.08 0.07 6.83 7.30

G8 440 10.16 2.73 �151.96 97.78 �0.24 0.06 �61.69 48.31

G9 255 0.75 2.06 �32.15 99.12 �0.02 0.13 22.22 30.45

G10 323 �3.16 0.27 65.28 4.58 �0.14 0.14 �22.82 17.79

G11 399 �3.05 0.76 �56.57 122.09 0.00 0.14 �16.54 17.42

G12 483 �3.33 0.31 70.17 5.36 0.02 0.11 �34.23 24.71

G13 252 �4.97 1.62 �15.19 209.50 0.21 0.07 �22.76 40.31

(continued)
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Table 7 (continued)

C&W mC&W

Fuel CPU Fuel CPU

Instance N av. std dev. av. std dev. av. std dev. av. std dev.

G14 320 �4.30 0.26 58.26 6.66 0.23 0.13 �23.39 17.80

G15 396 �4.07 1.09 36.67 89.03 �0.25 0.04 �12.43 20.87

G16 480 �2.98 0.88 44.81 61.85 �0.40 0.07 �15.92 17.08

G17 240 8.37 0.75 �177.15 123.33 0.42 0.05 �53.88 49.56

G18 300 1.24 0.59 �244.24 38.43 1.59 0.14 �56.19 20.24

G19 360 1.45 0.65 �231.44 49.82 2.06 0.09 �46.84 42.68

G20 420 3.22 0.65 �141.68 29.76 0.82 0.19 35.11 8.08

T1 385 4.53 1.01 �204.64 98.06 1.84 0.40 48.77 16.40

T2 75 �0.23 0.29 12.35 9.72 0.30 0.19 13.29 9.41

T3 75 �0.48 1.02 34.95 15.91 0.16 0.29 25.74 11.10

T4 75 �1.31 0.99 42.24 7.52 �0.07 0.15 23.62 8.76

T5 75 �0.40 0.54 42.70 6.86 0.19 0.22 �14.81 7.51

T6 100 �0.65 0.59 40.85 8.39 0.57 0.12 12.21 9.23

T7 100 �1.21 0.68 52.30 5.14 0.38 0.14 25.89 3.67

T8 100 �2.51 0.63 50.34 5.60 �0.16 0.30 6.99 8.92

T9 100 �2.07 1.04 42.38 8.65 0.26 0.18 23.34 5.57

T10 150 �0.15 0.66 39.03 8.42 0.27 0.39 25.04 6.59

T11 150 �1.23 0.43 46.44 4.58 �0.03 0.06 20.53 3.88

T12 150 �1.97 0.47 43.10 2.32 0.12 0.15 12.77 6.55

T13 150 �2.71 0.67 49.01 5.85 0.17 0.09 22.07 6.41

Finally, we compared our results with the ones obtained by Cinar et al. [20].
As it is expected, using metaheuristic algorithms after finding initial solution(s)
with constructive algorithms improves the solution quality, i.e., routing policies
with less fuel consumption are obtained. Moreover, the computational experiments
performed in this study showed that the constructive algorithms have significant
effects on the performance of metaheuristics. Therefore, choosing the best initial
solution generator is an important issue for metaheuristics to obtain high-quality
solutions in a reasonable computational time.

7 Concluding Remarks

In this study, several constructive algorithms – C&W, mC&W, and two-phase
algorithms – are investigated to evaluate their performances as initial solution
generators of a solution-based and a population-based metaheuristic approaches
developed for the CumVRP-LD. SA is used as a solution-based metaheuristic,
while GA is utilized as a population-based metaheuristic. Data sets from the
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literature are used for the computational tests. Computational experiments show
that the performance of SA is significantly affected by the initial solution generator.
Although initial solution generators do not affect the performance of GA as much as
SA, choosing the best initial solution generator is still an important issue to obtain
high-quality solutions in a proper computational time. Since SA works on only one
solution while GA evaluates a group of solutions (population), the impact of initial
solution quality is higher in SA than GA.
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Column Generation for Optimal Shipment
Delivery in a Logistic Distribution Network

George Kozanidis

Abstract We consider a logistic distribution decision-making problem, in which
a vehicle fleet must carry out a set of deliveries between pairs of nodes of
the underlying transportation network. The goal is to maximize the number of
deliveries that will be carried out, while also minimizing the number of vehicles
utilized to this end. The optimization is lexicographic in the sense that the former
objective exhibits higher priority than the latter one. For this problem, we develop
an integer programming model formulation and an associated column generation-
based solution methodology. The proposed methodology utilizes a master problem
which tries to fulfill the maximum possible number of deliveries given a specific
set of vehicle routes and a column generation subproblem which is used to
generate cost-effective vehicle routes1, for improving the master problem solution.
We describe the steps of the proposed methodology, illustrating how it can be
modified to accommodate interesting problem variations that often arise in practice.
We also present extensive computational results demonstrating the computational
performance of the proposed solution algorithm and illustrating how its behavior is
influenced by key design parameters.

1 Introduction

We consider a logistic distribution network, in which a set of deliveries must be
carried out by a fleet of vehicles. Each vehicle is initially positioned in one of the
underlying transportation network nodes. Each delivery has a fixed departure time,

1We use the term vehicle route to denote a feasible sequence of deliveries assigned to a specific
vehicle.
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as well as a fixed trip duration determined by its origin and destination network
nodes. The aim is to perform as many deliveries as possible, while also minimizing
the number of vehicles utilized to this end. Since the objective of maximizing the
number of deliveries that will be performed exhibits higher priority than that of
minimizing the number of utilized vehicles, the cost of not performing a delivery is
considered significantly larger than that of utilizing an extra vehicle.

Our motivation to deal with this particular problem stems from a realistic
problem setting originating in the context of airline management. Specifically, the
problem arises in the daily operation of a freight transportation airline that makes
scheduled deliveries between specific nodes of a logistic distribution network. One
of the most important decision making problems this airline is faced with regards
the optimal design of its aircraft routes, so that the number of deliveries performed
is maximized, while the number of aircraft utilized to this end is minimized.

The actual problem definition dictates that the composition of each shipment is
fixed; thus, its content cannot be altered. This implies that each delivery can be
looked at as a scheduled flight that must be carried out independently, imposing
the constraint that at most one such delivery can be carried out by a specific
aircraft at any point in time. In turn, this implies that each delivery must be
uninterrupted, while any two distinct deliveries carried out by the same aircraft must
be non-overlapping. Due to economic efficiency reasons, aircraft deadheading is
also prohibited. As a result, for any two consecutive deliveries assigned to the same
aircraft, the arrival node of the preceding one must coincide with the departure node
of the succeeding one.

The problem under consideration is very similar to the tail assignment problem
which arises in the context of airline fleet management [12]. Motivated from theory
that has been developed for addressing that problem, we develop an integer pro-
gramming model formulation, and an associated column generation-based solution
algorithm in what follows. The proposed methodology utilizes a master problem
which solves the problem given a specific set of vehicle routes. This solution is
gradually improved through the inclusion of additional cost-effective vehicle routes
which are identified by a second optimization problem termed column generation
subproblem. Due to the fact that excessively many feasible vehicle routes exist, out
of which only very few can be part of the optimal solution, the algorithm generates
only those looking promising for improving the current master problem solution.
To accomplish this, the column generation subproblem utilizes the optimal dual
solution of the master LP relaxation in order to identify the vehicle route with the
minimum reduced cost. If this reduced cost is negative, this vehicle route is added
to the master problem, causing an update of the dual information. Otherwise, the
generation of cost-effective vehicle routes is terminated, since the optimal solution
of the master LP problem cannot be further improved at that point.

Suitable branching on fractional vehicle route variables takes place at that
point, guiding the search toward the optimal integer solution. The feasible space
is partitioned by imposing integrality on a proper set of decision variables. The
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solution of each master problem resulting after the incorporation of the branching
constraints necessitates the generation of additional vehicle routes, which become
cost-effective as a consequence of the modifications caused on the feasible space
due to the associated branching decisions.

The main contribution of the present work lies in the development of sev-
eral innovative techniques facilitating the actual implementation of the proposed
methodology, as well as in the illustration of how the challenges encountered upon
its actual deployment in a realistic environment have been successfully handled.
We present extensive computational results demonstrating the proposed solution
algorithm’s performance on realistic problems, as well as the impact of several
alternative design options on its behavior. Additionally, we introduce interesting
variations of the problem that often arise in practice, and we illustrate how the
proposed methodology can be adapted in order to handle them.

A paper relevant to the present research is currently under publication in an
international scientific journal [16]. For reasons of brevity, we refrain from repeating
all the theoretical findings developed in that work in what follows. Instead, we
present additional computational results illustrating the performance of the proposed
solution algorithm on realistic problems of particularly large size.

The remainder of the current work is structured as follows. In the next section,
we summarize the related literature, while in the one that follows after that, we
present the optimization model formulation. Then, we develop the proposed solution
methodology, and we investigate how its algorithmic performance is affected by
alternative design parameter choices. In the following section, we elaborate on
interesting problem variations, and we modify the proposed methodology in order to
accommodate them. The next section presents our computational experience from
the application of this methodology in a realistic environment, while the last section
concludes this work.

2 Literature Review

In the context of optimal vehicle routing in supply chain coordination, one is often
faced with linear programs having so many decision variables that it is almost
impossible to explicitly consider all of them. Column generation is a very powerful
methodology for addressing such problems, because it succeeds in obtaining the
optimal solution of particularly large problems by explicitly considering only a very
small subset of the decision variables. The robustness of column generation lies in
that it can be appropriately modified to also accommodate integer programs with
a vast number of decision variables. The related framework, which comprises a
novel combination of column generation and branch and bound, is called branch
and price.
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An insightful technical review on column generation for integer programs using
three distinct framework types is provided by Wilhelm [25]. After presenting
a taxonomy of the column generation literature and proposing suitable model
formulations, the author elaborates on theoretical properties, branching strategies,
acceleration techniques, and alternative algorithmic designs. He also illustrates the
deployment of the column generation methodology in common application areas,
such as vehicle routing and assembly design.

Bard and Nananukul [1] address the problem of making production planning and
vehicle routing decisions in order to minimize the total cost of a distribution network
which comprises of a homogeneous vehicle fleet, a set of customers with time-
varying demand, and a production facility exhibiting both production and inventory
costs. The authors develop a column generation-based solution framework, which
utilizes both heuristic and exact techniques. Chang et al. [5] consider a supply
chain including both production and distribution decisions and develop a column
generation solution framework for optimizing it.

In the related literature, there are many published works which propose branch
and price solution algorithms for addressing similar vehicle deployment optimiza-
tion problems in the context of passenger or freight transportation. A common
example is that of the vehicle scheduling problem, which aims to find the optimal
assignment of a set of scheduled duty trips to a fleet of vehicles [4]. Although that
problem exhibits many similarities with the one addressed in the current work, its
objective and set of constraints are typically different. The most common objective
of the vehicle scheduling problem is the minimization of the transportation cost,
while its model definition usually includes constraints limiting the number of
utilized vehicles or prescribing the type of vehicle that can serve each trip.

Other solution methodologies that have been proposed for addressing similar
vehicle deployment problems include branch and cut [18], dynamic programming
[7], and Lagrangean relaxation [17]. In addition, to overcome the inherent com-
plexity of the involved formulations, the authors often choose to compromise for
near-optimal solutions by utilizing heuristic solution approaches [19].

The problem under study is very similar to the tail assignment problem, which
aims to optimally assign a set of passenger flights to a fleet of commercial
aircraft. Among others, Grönkvist [11, 13, 14] and Gabteni and Grönkvist [10]
have developed column generation-based solution methodologies for this problem.
Although the general problem context of these works is similar to that of the
present work, the particular algorithmic design is different in various aspects, as
demonstrated in the remainder of this work.

A slightly different version of the tail assignment problem, which aims to
minimize the flight schedule disruptions, has been addressed by Borndörfer et al.
[3]. After solving the master LP relaxation with column generation, the authors
utilize a heuristic scheme in order to reach an integer solution. In contrast, the
algorithm that we develop in what follows exhibits an exact nature, since it
converges to the exact optimal solution of the problem.
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3 Model Development

In this section, we develop the master and the column generation problem formula-
tions. Both of them utilize the following two common sets:

I: set of vehicles
D: set of deliveries

The notation which is specific to each formulation is introduced in the corre-
sponding subsection.

3.1 Master Problem Formulation

For the master problem formulation, we introduce the following notation:
Sets:

Ri: set of routes of vehicle i

Parameters:

f : cost for each utilized vehicle
h: cost for each delivery that remains unfulfilled
aird: binary parameter that takes the value 1 if route r of vehicle i fulfills delivery d,

and 0 otherwise, i2I, r2Ri, d2D

Decision variables:

xir: binary decision variable that takes the value 1 if route r is assigned to vehicle i,
and 0 otherwise, i2I, r2Ri

yd: binary decision variable that takes the value 1 if delivery d remains unfulfilled,
and 0 otherwise, d2D

Utilizing the above mathematical notation, the master problem is formulated as
follows:

Min
X

i2I

X

r2Ri

fxir C
X

d2D

hyd (1)

s:t:
X

r2Ri

xir � 1; 8i 2 I (2)

yd C
X

i2I

X

r2Ri

airdxir D 1; 8d 2 D (3)

xir; yd binary; 8i; r; d (4)
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The total cost, comprising of the vehicle utilization cost and the cost of unfulfilled
deliveries, is minimized in the objective function (1). Cost parameter h is always
sufficiently larger than f, imposing the relative priority between the two objectives.
Constraint set (2) limits the number of routes selected for each vehicle to at most
1; of course, a fixed cost equal to f is imposed for each utilized vehicle. These
constraints are called the vehicle rows. Constraints (3) ensure that each delivery is
either fulfilled by a selected vehicle route or remains unfulfilled, in which case, a
cost equal to h is added to the objective. These constraints are called the delivery
rows. Finally, constraint set (4) restricts the decision variables to binary values.

The above set partitioning type master problem formulation is quite typical
in column generation solution methodologies. It is often utilized in numerous
application contexts, such as crew assignment, vehicle scheduling, and maintenance
routing [2, 21, 24]. Typically, these problems do not exhibit significant formulation
requirements necessitating the development of sophisticated modeling techniques.
Instead, the research focus is mostly on the development of highly effective
solution approaches that will handle efficiently the excessive size of typical realistic
problems. As a result, the relevant active research concentrates on the algorithmic
rather than the modeling part.

3.2 Column Generation Subproblem Formulation

The master problem formulation introduced above solves the optimization problem
using a given set of vehicle routes. On the other hand, the column generation
subproblem, introduced next, tries to identify cost-effective vehicle routes to be
added to the master problem for improving its solution. This is achieved by iden-
tifying negative reduced-cost vehicle routes, with respect to the current master LP
relaxation optimal solution. If the reduced cost of a vehicle route is negative, this is
an indication that it has the potential to improve this solution. Therefore, it is added
to the master problem, updating its dual optimal solution. On the other hand, if the
reduced cost of any vehicle route is non-negative, this is an indication that the master
solution cannot be further improved; therefore, the column generation procedure
terminates. Complex constraints accommodating special requirements that may be
present are typically incorporated into the column generation formulation. This way,
the master problem formulation retains its simple structure, enabling the efficient
treatment of particularly large-sized problems.

Let dnd, and, dtd, and atd be the departure node, the arrival node, the departure
time, and the arrival time of delivery d, respectively. Let also ni be the node at
which vehicle i is initially located. For the formulation of the column generation
problem, we consider a network N D fV, Ag. For each vehicle i2I, we denote by Fi

the set of deliveries which are next-compatible with vehicle i. A delivery d is next-
compatible with vehicle i if ni D dnd. For each delivery, we define three similar
sets. Bd is the set of vehicles which are previous-compatible with delivery d, where
vehicle i is previous-compatible with delivery d if delivery d is next-compatible
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with vehicle i. Nd is the set of deliveries which are next-compatible with delivery
d, where a delivery e is considered next-compatible with delivery d if dne D and

and dte �atd. Finally, Pd is the set of deliveries which are previous-compatible with
delivery d, where delivery e is previous-compatible with delivery d if delivery d
is next-compatible with delivery e. The set of vertices, V, of network N includes
one node for each vehicle, one node for each delivery, as well as a fictitious node,
E, which acts as the terminal node. The set of arcs, A, includes edges connecting
each vehicle node with its corresponding next-compatible delivery nodes, edges
connecting pairs of compatible delivery nodes, and edges connecting each delivery
node with the terminal node.

The column generation subproblem aims to identify the longest (minimum
negative-distance, to be precise) path in the above network that begins in some
vehicle node, visits at least one delivery node, and ends in the terminal node. Let i
be the index of the vehicle associated with the initial node of a path, K � Dbe the set
of delivery nodes this path visits, and bi/cd be the dual value of the corresponding
vehicle/delivery row in the current master LP optimal solution. The length of this
path is equal to - f C bi C

P

d2K
cd. Since the cost of each aircraft route is equal to

f, finding the longest such path is equivalent to finding the minimum reduced-cost
vehicle route. The terminal node can succeed any delivery node, since the trip of a
vehicle practically terminates as soon as this vehicle fulfills its last delivery, without
having to return to some particular depot node. On the other hand, the terminal node
cannot succeed any vehicle node, since an empty vehicle route not including any
delivery triggers a vehicle utilization cost without resulting in unfulfilled delivery
cost savings. Since there is a one-to-one correspondence between paths of this
network and actual vehicle routes, we use the terms path and route interchangeably
in what follows. With these in mind, we introduce the following decision variables
for the formulation of the column generation subproblem.

Decision variables:
zi: binary decision variable that takes the value 1 if the route identified by the column

generation subproblem pertains to vehicle i, and 0 otherwise, i2I
wid: binary decision variable that takes the value 1 if the route identified by the

column generation subproblem includes a direct travel from vehicle node i to
delivery node d in the associated network, and 0 otherwise, i2I, d2Fi

wde: binary decision variable that takes the value 1 if the route identified by the
column generation subproblem includes a direct travel from delivery node d to
node e in the associated network, and 0 otherwise, where e is either a delivery
node or the terminal node, d2D, e 2 Nd [ fEg

ud: binary decision variable that takes the value 1 if the route identified by the
column generation subproblem fulfills delivery d, and 0 otherwise, d2D
Utilizing the above decision variables, as well as sets Fi, Bd, Nd, and Pd, and

parameters bi/cd defined above, the column generation subproblem is formulated as
follows:
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Min f �
X

i2I

bizi �
X

d2D

cdud (5)

s:t:
X

i2I

zi D 1 (6)

zi D
X

d2Fi

wid; 8i 2 I (7)

X

i2Bd

wid C
X

e2Pd

wed D
X

g2Nd[fEg

wdg; 8d 2 D (8)

ud D
X

i2Bd

wid C
X

e2Pd

wed; 8d 2 D (9)

zi; ud; wid; wed; wdg binary; 8i; d; e; g (10)

In the objective function (5), the reduced cost of the vehicle route that will be
identified is minimized, which is equal to the vehicle utilization cost minus the
dual value of the corresponding vehicle row, minus the sum of the duals of the
corresponding delivery rows. Constraint (6) ensures that one route for exactly one
vehicle will be constructed. Constraint set (7) states that the identified path must
commence with a flow from a vehicle node to a delivery node. Constraint set (8)
ensures flow balance at each delivery node. Incoming flow can originate either at
a vehicle node or at a delivery node, while outgoing flow can be directed either to
another delivery node or to the terminal node. For each delivery d, constraint set
(9) updates the value of variable ud indicating whether this delivery is fulfilled in
the associated vehicle route. Finally, constraint set (10) imposes binary values on
the decision variables. Variables ud and constraint set (9) are redundant, since the
fulfillment of a delivery can be determined by the flows into its corresponding node.
Nevertheless, it is a good practice to include them, since they facilitate considerably
the implementation of the proposed methodology, without having any significant
impact on its computational requirements.

4 Solution Methodology

In this section, we describe the proposed solution methodology for the treatment
of the problem. It is organized in a branch and price tree, that is, a branch and
bound tree in which the optimal solution of each master LP tree node subproblem
is obtained with column generation. We employ the best LP bound strategy for
the tree node selection, which out of all active nodes selects the most promising,
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i.e., the one with the best LP bound on the optimal objective. If the associated
solution is non-integral, the algorithm branches on a set of fractional decision
variables, creating two new subproblems and their corresponding tree nodes. Each
of these subproblems is then re-optimized using column generation. The procedure
terminates when the optimal solution to the subproblem selected next for exploration
is integer; the best LP bound node selection strategy ensures that this will be the
exact optimal solution. The following subsections portray in sufficient detail the
specifics of the proposed solution methodology. In order to be able to test the
behavior of the algorithm extensively and compare the performance of alternative
algorithmic designs, we introduce a set of realistic instances first.

4.1 Test Instances

For the needs of our experiments, we use as test cases six realistic problems
extracted from the live database of an actual logistic distribution air carrier. The
choice of an air carrier does not introduce any particular difficulties requiring special
treatment. This stems from the fact that the proposed methodology does not include
anything specific that would prohibit the model’s applicability in different contexts,
such as that of airline management. It is pretty much standard, independently of
whether fleets of vehicles, trains, aircraft, or even ships are involved in the actual
application.

The realistic problems drawn from the live database of the air carrier in question
differ in terms of the fleet size, the number of deliveries, as well as the length of
the planning horizon. The specific characteristics of these problems are presented
in Table 1. All our experiments were performed on a Core 2 Duo 2.4 GHz
Intel processor with 4 GB system memory, a machine with considerably inferior
technical characteristics to those of machines typically encountered in practical
environments. In all the computational time results that we present, we adopt the
format XX:YY:ZZ, where XX is the number of hours, YY the number of minutes,
and ZZ the number of seconds. We suppress the hour part when these times are
less than 1 h. We also impose a predefined maximum time limit of 120 min on the

Table 1 Data of the six realistic test instances

No. Fleet size Number of deliveries
Length of planning
horizon (days) Average duration (min)

1 31 247 1 179.25
2 43 352 1 173.97
3 57 449 2 177.24
4 69 561 2 173.94
5 80 654 3 172.22
6 93 769 3 168.76
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total computational time of every computational experiment that we perform, the
only exception being the experimental results reported in Table 9 which pertain to
particularly large-scale problems.

4.2 Solving the Master LP Relaxation

Each node of the branch and price tree is associated with a distinct master
problem and its companion column generation subproblem, which originate in the
two fundamental formulations (1)–(4) and (5)–(10), respectively. The optimization
models of two distinct nodes differ only with respect to the extra constraints that
have been added as a result of branching. The specific logic determining the addition
of these constraints is explained in the following sections. The optimal solution to
the master LP relaxation of each tree node is obtained with column generation,
according to the logic flow depicted in Fig. 1.

The master LP formulation at the root of the branch and price tree is initialized
with an empty set of routes for each vehicle and the slack variable yd of each delivery
set equal to 1. It is a good practice to refrain from removing variables yd even if they
drop to 0 value after some branching decision, as this could cause feasible solutions
to be overlooked. This might happen when the addition of a branching constraint
renders temporarily a master problem infeasible, even though this infeasibility can

solve restricted master LP problem to obtain optimal dual solution

update dual values in column generation subproblem formulation

solve column generation suproblem to identify minimum reduced-cost vehicle

add this vehicle-route to 
the master problem

YES

NO

DONE

is the reduced cost of 
the identified vehicle 

route negative?

Fig. 1 Column generation logic flow
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be repaired through the generation of additional vehicle routes. In such a case,
variables yd preserve the feasibility of the model, enabling the continuation of the
search for the optimal integer solution in the associated subtree.

A crucial design option with significant impact on computational performance
regards the algorithmic selection for the solution of the master LP relaxation at
each node of the branch and price tree. Our implementation utilizes the commercial
optimization software IBM ILOG CPLEX 12.5.1 [15], which has seven alternative
options for the LP solver: a default one and the options to employ primal simplex,
dual simplex, a network optimizer, a barrier optimizer, a sifting optimizer, and a
concurrent optimizer. Table 2 presents a comparison of the three most reasonable
options, i.e., primal simplex, dual simplex, and barrier optimizer without crossover.
The crossover operation of the barrier algorithm transforms the possibly interior
point primal optimal solution to a basic one; in our case, it is turned off as irrelevant,
since our aim is to solely acquire the dual optimal solution. The particular selection
of these three LP algorithms is motivated partly by our computational experience
and partly by the fact that the same exact selection was considered by Grönkvist
[12]. For each of the six test instances of Table 1, Table 2 presents the total
computational time, the total number of generated aircraft routes, and the total
number of tree nodes upon termination of the algorithm, using each of these three
LP solvers for the master problem solution.

As the results of Table 2 demonstrate, there is a substantial improvement in
algorithmic convergence when the barrier optimizer is employed for solving the
master problem. This observation agrees with the results reported by Grönkvist
[12], who attributes this behavior to two main reasons: the superior computational
performance of the barrier algorithm and the fact that the dual values it provides
are less extreme and therefore more suitable for column generation since they
might be interior point and not basic solutions. As no significant difference
in the computational performance of the three algorithms was observed in our
experiments, we are leaning towards attributing this behavior to the latter of these
two reasons.

A final critical remark regarding the master problem is related to its mathematical
formulation. Since the feasible region remains unchanged when the upper bounds
of the decision variables xir and yd are set equal to infinity, it is preferable to avoid

Table 2 Comparison of different LP solvers

Primal simplex Dual simplex Barrier optimizer
No. Time Routes Nodes Time Routes Nodes Time Routes Nodes

1 00:21 2087 53 00:22 2057 55 00:18 1260 55
2 02:33 5900 75 02:42 5408 75 00:46 3443 81
3 11:58 10843 101 10:25 9550 101 01:26 5643 109
4 44:00 17690 119 23:38 14541 115 02:23 8866 121
5 >2 h – – 56:10 19965 119 04:12 11940 137
6 >2 h – – >2 h – – 06:16 14414 149
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imposing explicit upper bound constraints (�1) on them. This technique seems to
slightly improve the computational performance of the proposed solution algorithm,
since it saves the trouble of having to deal with the corresponding dual variables of
these constraints.

4.3 Solving the Column Generation Subproblem

The column generation subproblem can be solved efficiently with a shortest path
algorithm for acyclic networks (e.g., [22]), exploiting the acyclic topology of the
associated network. The algorithm initializes the reduced cost of each vehicle node
i to f -ci and that of each delivery node to infinity and then scans the network arcs in
topological order, identifying possible path extensions through pairs of compatible
nodes and updating the corresponding reduced costs accordingly. A label denoting
the reduced cost of the best path ending at each node is saved, which is updated
accordingly each time an improved path is identified.

The correctness of the acyclic shortest path algorithm (ASPA) sketched above
relies on the monotonicity of a path’s reduced cost when this path is extended
through the inclusion of additional deliveries. This key property ensures that storing
the best path ending at each node of the network is sufficient for identifying
the optimal solution. Since the complexity of this algorithm is linear in the total
number of network arcs, its performance is considerably superior to that of integer
programming solvers that can be employed alternatively for the solution of the
model formulation (5)–(10). In large-scale problems, the associated time savings
become substantial.

The column generation subproblem can also be modeled as a shortest path
network flow problem, which possesses the total unimodularity (TUM) property;
this enables the solution of the problem very fast, using efficient LP algorithms. The
computational performance of such an implementation would still be substantially
inferior to that of ASPA, however, since the complexity of linear programming
solvers (even of those which are polynomial) is far worse than linear.

Another significant obstacle that the adoption of this implementation would raise
is that it would not be applicable for the treatment of several interesting problem
extensions that arise in practice. Typical such extensions are the incorporation
of resource constraints and/or the incorporation of different objectives like the
workload balance, for which the TUM property no longer holds, rendering the LP
solvers unsuitable for the solution of the problem. For this reason, we do not pursue
such an implementation.

According to Desrosiers and Lübbecke [8], a very effective enhancement for sub-
stantial computational performance improvement involves the addition of multiple
vehicle routes with negative reduced cost to the master problem in each iteration.
In our case, this is straightforward since ASPA identifies the optimal route of each
vehicle separately. Of course, several other design variations stem out as possible,
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depending on the exact number of vehicles considered in each iteration, as well as
on the number of routes added to the master problem for each of them.

Rather than using the same set of dual values in order to identify the optimal
route of each vehicle, Grönkvist [12] has proposed a re-evaluation technique for
updating these values each time a route is added to the master problem. This
technique updates the dual value of a master row covered by a specific aircraft
route added to the master problem as dualnew D dualold C rc

	jMj
, where rc is the

reduced cost of this route, jMj is the number of master problem rows in which
the corresponding decision variable appears, and 	 is a smoothing parameter. The
dual solution resulting after this update is not necessarily feasible, but this is not
important, since our aim is to penalize the corresponding master rows in order to
avoid the generation of routes exhibiting high similarity. In our implementation, we
adopt the value 1 for parameter 	 , which provides satisfactory results.

4.4 Branching

When the optimal solution to the master LP relaxation of the currently explored
tree node is non-integer, the algorithm branches in order to eliminate the non-
integralities. The situation is typical in a branch and bound setting. New sub-
problems are created by adding constraints which eliminate fractional solutions.
The most typical design chooses a fractional decision variable and partitions the
solution space by setting it equal to 0 and 1. Ryan and Foster [23] have proposed
an alternative branching scheme which has turned out to be very efficient for set
partitioning problems. In our case, the validity of this scheme is reestablished in the
following proposition.

Proposition 1 If the optimal solution to the master LP relaxation contains one or
more fractional decision variables, then there exist one vehicle row and one delivery
row, such that the sum of the variables that appear in both these rows is fractional.

Proof When the optimal solution to the master LP relaxation contains one or more
fractional decision variables, then at least one route variable is clearly fractional, too.
Let xir be one such variable and d be a delivery that it includes (note that at least one
such delivery exists since any vehicle route includes at least one delivery). Since the
sum of the decision variables appearing in delivery row d is equal to 1, there exists
at least one other variable appearing in this constraint which is also strictly positive.
If yd >0, or xir is the only positive route variable of vehicle i that includes delivery
d, then the proposition holds for vehicle row i and delivery row d. Otherwise, let xik

be another positive route variable of vehicle i that also includes delivery d. Since
any two route variables are always distinct (it is never cost-effective to add the same
variable to the master problem twice), there exists at least one delivery with index
e ¤ d, which is covered by either xir or xik, but not by both of them. In this case, the
proposition holds for vehicle row i and delivery row e. �
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Proposition 1 enables the selection of the branching variables in an elegant
way. If the master LP optimal solution is fractional, then at least one pair of
rows prescribed by this proposition exists. The algorithm creates two new tree
subproblems by branching simultaneously on all the variables appearing in both
these rows. In the left subproblem, the sum of these variables is set equal to 0;
in the right subproblem, it is set equal to 1. This feasible space partition imposes
the restriction that either exactly one of the associated routes will be assigned to
vehicle i or none of them. We term this branching strategy multi-branching in order
to distinguish it from the case of branching on a single variable, which we term
single-branching.

The branching constraints are not appended to the master problem as additional
constraints; they are directly incorporated into the existing formulation instead.
This retains the same number of master problem constraints, saving the trouble of
dealing with extra dual variables. The incorporation of the branching decision into
the master problem is straightforward. In the left subproblem in which the branching
variables are set equal to 0, each of them is deleted from the master problem. In the
right subproblem in which the sum of the branching variables is set equal to 1, the
corresponding vehicle constraint is turned into an equality, and all the remaining
route variables of the same vehicle are deleted from the master problem.

As far as the column generation subproblem is concerned, the branch to 1
constraint is incorporated easily by eliminating from the associated network the
node of the vehicle the branching variables belong to, as well as the nodes of those
deliveries which are included in all the branching variable routes. On the other hand,
in order to incorporate the 0-branch constraint, we utilize a procedure that has been
proposed by Martins [20] for determining the k shortest paths in a directed network.
In each iteration, this procedure finds the shortest path of the current network
and then modifies this network accordingly, so as to eliminate this path, without,
however, eliminating any other path. Utilizing the same procedure, we are able to
modify the network so that it is not possible to generate the path corresponding to the
branching variable, without excluding any other path. The details of this procedure
are presented in the aforementioned reference.

Alternative branching schemes can be devised through proper adjustment of sev-
eral key parameters, such as the size of the branching variable set, the exact nature
of the branching variable values, etc. In case that multi-branching (M) is employed,
we consider two distinct choices regarding the size of the variable set, i.e., branch
on the smallest (S) and branch on the first one identified (I). We do not consider
the choice of branching on the largest set because our computational experience
suggests that it exhibits considerably inferior computational performance. When the
above options do not determine a unique branching variable set, we also consider the
option of whether the selected set should be the one including the largest fractional
variable or whether it should be chosen randomly. Table 3 presents the six strategies
resulting from the combination of the available options (not all three options are
always applicable), while Table 4 presents computational results demonstrating how
the performance of the algorithm varies for the six instances when each of these
strategies is adopted. In this table, the strategy index is shown in the column labeled
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Table 3 Alternative branching strategies

Strategy
Single- (S) or multi-
(M) branching

Size of branching
variable set

Branch on set with
largest fractional

1 S – No
2 M S No
3 M I No
4 S – Yes
5 M S Yes
6 M I Yes

Table 4 Comparison of alternative branching strategies

Test problem 1 Test problem 2 Test problem 3
s t r n t r n t r n
1 00:21 1634 45 00:57 4397 75 02:00 7150 97
2 00:28 1564 49 01:34 3765 69 04:22 6327 93
3 00:27 1529 65 03:07 4276 127 04:40 6727 155
4 00:18 1260 55 00:46 3443 81 01:26 5643 109
5 00:23 1379 51 01:36 3436 77 04:32 5755 109
6 00:37 1413 75 03:10 4276 127 08:44 6914 153

Test problem 4 Test problem 5 Test problem 6
s t r n t r n t r n
1 03:22 10128 109 05:33 13732 125 06:54 15508 141
2 09:48 9176 103 16:21 12097 119 27:20 15016 135
3 11:49 10093 183 18:37 12481 189 32:16 15828 221
4 02:23 8866 121 04:12 11940 137 06:16 14414 149
5 09:28 8813 115 16:52 11814 135 27:15 14384 149
6 23:08 10616 187 37:34 12573 203 01:06:26 17784 245

s, the computational time is shown in the column labeled t, the number of generated
routes is shown in the column labeled r, and the number of tree nodes is shown in
the column labeled n.

Table 4 reveals that branching on the single largest valued fractional variable
(strategy 4) appears to exhibit the best performance. Our computational experience
suggests that this is due to the fact that this strategy leads quickly to specific
route selections for the vehicles. The huge feasible space leaves plenty of room
to the column generation procedure for rectifying those selections which may turn
out to be provisionally poor. In contrary, the multi-branching scheme eliminates
multiple routes simultaneously in the 0-branch but leaves open the question of which
particular one will be selected for the associated vehicle in the 1-branch.

At this point, it is crucial to emphasize the importance of the 1-branches for fast
algorithmic convergence, since they make it possible to reach integer solutions fast.
The 0-branches, on the other hand, stall the algorithm, since they only eliminate a
few out of a huge number of alternative vehicle routes, whose inclusion into the
solution has a similar effect and leads to the same objective value. Motivated by this
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Table 5 Benefit from skipping column generation on 0-branch subproblems

Strategy adopted Strategy not adopted
No. No. of 0-branch nodes created Time Routes Time Routes

1 27 00:18 1260 00:28 1465
2 40 00:46 3443 01:10 4042
3 54 01:26 5643 02:14 6237
4 60 02:23 8866 03:48 9560
5 68 04:12 11940 05:42 13133
6 74 06:16 14414 08:57 15916

observation, we adopt a “branch on 1 first” strategy, according to which the branch
to 1 is always selected for exploration before its branch to 0 counterpart.

In order to further exploit the above behavior, we employ a clever strategy that
skips column generation on the 0-branch nodes immediately after their creation. As
the large feasible space makes backtracking rather rare, only a small percentage of
these nodes actually need to be solved for reaching the optimal solution. Hence,
we add each of these nodes to the tree with LP bound equal to that of its parent
node, and we postpone its solution with column generation for when and if it will
be subsequently selected for exploration. Table 5 presents the computational times
of the algorithm and the number of vehicle routes generated when this strategy is
adopted and when it is not for each of the six test instances. These results confirm
our claim, since they demonstrate that the computational savings of the proposed
strategy are significant, leading to computational times which are smaller by more
than 35% in some cases.

4.5 Further Enhancements for Large-Scale Problems

Although the proposed solution methodology converges to the exact optimal
solution given that it is provided with sufficient computational resources, for large-
scale problems, the user must inevitably compromise for a near-optimal solution.
To this end, the algorithm incorporates a suitable backtrack tolerance on the optimal
objective. When the relevant option is active, the algorithm does not backtrack to
tree nodes created earlier unless this tolerance is violated. Otherwise, it continues
its dive in the tree, making it possible to reach an integer solution faster. Through
the exact backtrack tolerance value, the user can control how close this solution will
be to the exact optimum and may choose to terminate the algorithm if the quality of
this solution is acceptable.

The decision for termination of the algorithm is controlled by an integer gap
tolerance with respect to the master LP optimal objective. Naturally, the algorithm
terminates when an integer solution satisfying this tolerance is identified. Note that,
in contrary to the integer gap tolerance, the backtrack tolerance never influences the
decision for algorithmic termination. Each time a new integer solution is identified,
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the incumbent is suitably updated, and the search for a solution that satisfies the
integer gap tolerance continues.

In large-scale problems, obtaining a near-optimal solution in reasonable com-
putational times is enabled through the premature termination of the column
generation procedure, which is controlled by two threshold parameters. The first
one defines a minimum improvement on the master LP objective in a given number
of iterations, while the second one defines a maximum value on the reduced cost
of the optimal route variable. When both these two thresholds are not met (the
master LP objective improvement is not sufficiently large and the optimal reduced
cost is not sufficiently negative), the column generation procedure terminates in the
associated tree node. Despite the fact that the LP solution returned at that point
is suboptimal, the tailing-off effect of the column generation procedure makes
preferable a branching decision at that point. By careful selection of these two
threshold values, the user can successfully handle much larger problems, at the cost
of compromising for solutions which are not necessarily optimal.

5 Problem Extensions

In this section, we elaborate on some interesting problem extensions, and we
explain how the proposed methodology can be modified in order to accommodate
them. More specifically, we illustrate how hard/soft preferences and resource-
type constraints can be incorporated, and we discuss the alternative objective of
distributing equally the total workload among the vehicles.

5.1 Preference Incorporation

In practical cases, a set of hard and/or soft preferences are often present, which
depict the degree to which it is desirable to combine a specific delivery with a
particular vehicle (V-D-type preference) or two specific deliveries consecutively on
the same vehicle route (D-D-type preference). Each of these restrictions can be clas-
sified as hard (its satisfaction is absolutely necessary), or soft (its satisfaction must
be fulfilled at the largest possible extent), and may express positive (must/should go
with) or negative (must not/should not go with) preference.

The incorporation of a hard preference is straightforward. A hard V-D-type
preference is ensured by including delivery D in every route generated for vehicle V
and excluding it from any route generated for any other vehicle. Including delivery
D in every route generated for vehicle V is achieved by computing a minimum
distance path with origin the vehicle network node V and destination the delivery
network node D and by computing a second minimum distance path with origin the
delivery network node D and destination the fictitious network node. The situation
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is similar in the case of many V-D-type hard preferences pertaining to the same
vehicle, the only difference being that the optimal path comprises of many subpaths
rather than one. On the other hand, prohibiting the assignment of delivery D to
vehicle V is ensured by excluding all the nodes pertaining to delivery D from the
column generation network utilized for vehicle V.

Similarly, a soft preference can be either of the V-D or of the D-D type,
too, and is incorporated by imposing a suitable penalty upon realization of the
corresponding V-D or D-D pairing on the same route. Of course, the lower the
associated preference, the higher the value of the corresponding penalty will be.
Typically, a soft preference is introduced to allow the possibility of deadheading
(empty trips) or to legalize a departure-arrival time incompatibility between two
consecutive deliveries. The satisfaction of a type D-D soft preference depends on
whether the two associated deliveries are included consecutively on the same route,
independently of which vehicle this route pertains to.

The incorporation of preferences does not increase considerably the complexity
of the problem, since the extension of the objective function beyond a network node
still retains its monotonicity. As a consequence, the optimal solution can still be
reached by saving the best partial path ending at each node of the network. In
general, the inclusion of a hard preference reduces the total computational effort
since it excludes certain solutions from consideration, whereas the inclusion of a
soft preference has the opposite effect, since it introduces a utility-based ranking of
the vehicle routes.

A special case of hard preference constraints is that of linked deliveries. Linked
deliveries are pairs of deliveries which, for some reason, must necessarily be
assigned to the same vehicle, independently of which specific vehicle this is. The
most typical way to hard-link two deliveries D1 and D2 is by adding a hard must-
go-with V-D preference for delivery D2 and vehicle V once a partial route including
delivery D1 is realized. If a partial route that does not include delivery D1 is realized
instead, then a hard must-not-go-with V-D preference is added for vehicle V and
delivery D2.

Besides satisfying special technical restrictions, the incorporation of linked
deliveries is a very effective technique for handling computational difficulties that
inevitably arise in large-scale problems. More specifically, linking pairs of deliveries
for which it is feasible and reasonable to be assigned to the same vehicle even if this
is not an absolute requirement assists in overcoming such difficulties and makes it
possible to reduce the involved computational effort substantially. The justification
of the effectiveness of this technique lies in that it eliminates several combinations
from consideration, thus reducing the size of the feasible space and, in turn, the
computational effort required to find the optimal solution.
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5.2 Incorporation of Resource Constraints

In many practical cases, the column generation procedure is subject to additional
resource-type constraints. Typically, these constraints impose an upper bound either
on the total number of deliveries that will be assigned to a specific vehicle or on the
total travel time of that vehicle. In order to incorporate this restriction, a suitable
modification of the acyclic shortest path algorithm is necessary, along the lines of
the methodology that has been proposed by Desrochers and Soumis [6] for resource-
constrained shortest path problems. Instead of one, this methodology stores several
partial paths at each node of the network, which differ from each other in terms
of their reduced cost and resource consumption. This modification is dictated by
the fact that the incorporation of the resource constraint eliminates a large number
of paths from the feasible space, making it necessary to monitor the associated
resource consumption. Of course, a path with both worse reduced cost and higher
resource consumption than another one ending at the same node can always be
discarded, as it can never be part of an optimal solution. This dominance relationship
limits somewhat the number of distinct paths that the algorithm needs to consider
in order to reach the optimal solution; still, however, the algorithmic performance
deteriorates significantly, since finding a shortest path in an acyclic network when
resource constraints are present is an NP-hard problem, even if a single resource
constraint is imposed and all costs and resource consumptions are positive [9].

When the problem size becomes too large, the number of distinct paths that need
to be stored at each node of the network becomes excessive. As a consequence, it
becomes essential to impose an upper bound on this number, discarding additional
paths once this limit is reached. When this is the case, it appears more efficient
to compare the associated reduced costs in order to decide which one to save
and which one to discard between two alternative paths. While incorporating this
limit attributes a heuristic nature to the algorithm, it gives the user the ability to
control, and at the same time exploit, the compromise between solution quality and
computational time. Of course, the algorithm’s exact nature is restored when this
limit becomes sufficiently large.

Table 6 presents results regarding the computational performance of the proposed
algorithm on the six test instances when resource constraints are present. For the
execution of these tests, we used four experiment sets, as described next. After
computing the average number of deliveries and the average travel time, we first
rounded up these two values to the next integer, imposing them as corresponding
upper bounds. In the first experiment set, the maximum number of paths stored at
each node was equal to 5, while in the second one, it was set equal to 10. In the next
two experiment sets, the two upper bounds were imposed after rounding down the
two averages to the next integer, while the values 5 and 10 were considered again
for the maximum number of paths stored at each node. The results in the first line of
Table 6 regard the nominal case, i.e., when no resource constraints are included. The
results in the next four lines regard the four aforementioned experiment sets in the
order introduced. For each of the six instances, Table 6 presents the computational
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times, as well as the percentage increase of the optimal objective with respect to the
nominal case.

The results of Table 6 demonstrate that the incorporation of resource constraints
increases substantially the algorithmic computational requirements. Specifically, the
largest computational time percentage increase with respect to the nominal case
is close to 400%. The optimal objective value does not appear to be influenced
significantly by the incorporation of the resource constraints, with the maximum
corresponding percentage increase being close to 10%. The only two exceptions to
this are experiment sets 4 and 5 on test instance 6, for which the incorporation of
the resource constraints increased the optimal objective value by more than 100%.
Moreover, storing at most 10 instead of 5 paths at each node of the network does
not appear to improve significantly the quality of the obtained solution.

5.3 Workload Balance

While the problem’s primary objective always seeks to maximize the number of
fulfilled deliveries, sometimes the secondary objective tries to divide the workload
equally among the vehicles instead of minimizing the number of utilized vehicles.
Typically, this workload is defined either as the total number of deliveries or as
the total travel time of all deliveries. A first modification deemed necessary as a
consequence of this differentiation is that the vehicle constraints must be expressed
as equalities instead of inequalities, imposing this way the selection of one route for
each vehicle.

To initialize the master problem, we add an empty route (no deliveries) for
each vehicle in this case; such a route may now be part of an optimal solution,
in contrary to what happens when the number of utilized vehicles is minimized.

Table 6 Computational performance of the algorithm when resource constraints are present

Test instance 1 Test instance 2 Test instance 3
Set Time % Obj incr Time % Obj incr Time % Obj incr
1 00:18 – 00:46 – 01:26 –
2 00:27 1.76% 02:13 0.38% 03:55 0.71%
3 00:28 1.76% 02:15 0.15% 05:01 0.29%
4 00:33 3.51% 01:49 3.02% 04:28 9.12%
5 00:34 3.50% 02:13 2.99% 05:25 9.06%

Test instance 4 Test instance 5 Test instance 6
Set Time % Obj incr Time % Obj incr Time % Obj incr
1 02:23 – 04:12 – 06:16 –
2 09:21 1.16% 13:07 2.44% 19:33 4.58%
3 09:56 0.14% 19:19 0.26% 32:21 2.12%
4 09:13 10.33% 14:07 3.04% 18:24 114.42%
5 10:39 10.23% 18:16 0.63% 30:19 113.38%



Column Generation for Optimal Shipment Delivery in a Logistic Distribution Network 107

Another important difference is that the cost of each route is no longer fixed
but varies depending on the particular workload it includes. This is incorporated
by including the balance cost in the computation of the reduced cost of each
path. We perform this straightforwardly by storing and updating accordingly a
resource variable monitoring the workload of each network path during the column
generation procedure.

The balance objective incorporation comprises yet another problem extension
that necessitates the treatment of multiple paths at each network node in order to
identify the optimal vehicle route. This happens because the balance cost is not
a monotonic function; thus, between two distinct paths with different workloads
ending at the same node, any of the two can lead to the optimal solution in the
general case. In order to limit the number of paths that the algorithm considers in
order to reach the optimal solution, we utilize the next proposition which establishes
a suitable dominance relationship under certain special conditions.

Proposition 2 Consider two distinct paths ending at the same node, and suppose
that the reduced cost of the first one is greater or equal to that of the second one. If,
in addition, the workload of the first path is greater or equal to the average workload
and the deviation of the second path’s workload from the average is smaller or equal
to that of the first one, then the first path is dominated and can be disregarded.

Proof The validity of the proposition results from the fact that for any possible
extension of the two paths from the current node with the same set of deliveries, the
balance cost of the first one will always be greater or equal to that of the second
one. Thus, the reduced cost of the route identified by extending the first path will be
greater or equal to that of the second one, too. �

Apart from the fact that the total workload deviation of all vehicles from the
average should be minimized, equity reasons dictate that it should also be distributed
evenly among the vehicles. This can be incorporated by increasing the unit deviation
penalty as the total deviation increases, for example, through the penalization of its
square value; we refrain from utilizing this approach, however, in order to keep our
model linear. As an alternate workaround, we define distinct deviation ranges and
associated cost penalties, which penalize the workload deviations as they become
larger. Our default implementation defines three parameters r1, r2, and p, such that
each of the first r1 deviation units from the average is penalized with cost p, each
unit deviation between r1 and r1 is penalized with an additional cost equal to p2, and
each unit deviation above r2 is penalized with an additional cost equal to p3.

Table 7 presents results demonstrating the computational performance of the
algorithm when the balance objective is incorporated. The first line of this table
pertains to the nominal case, i.e., when the secondary objective minimizes the
number of utilized vehicles. The next two lines pertain to the case in which the
secondary objective tries to balance the number of deliveries, with parameters r1

and r2 set equal to 1 and 2, respectively. In the first case, the maximum number
of paths saved at each node was set equal to 5, while in the second one it was set
equal to 10. The next two lines pertain to the case in which balance is performed
on the travel time of each vehicle, with parameters r1 and r2 set equal to 2 and 5,
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Table 7 Computational performance of the algorithm with balance used as secondary objective

Test instance 1 Test instance 2 Test instance 3
Set Time Obj decr Time Obj decr Time Obj decr
1 00:18 – 00:46 – 01:26 –
2 00:50 70.32% 03:20 88.17% 05:59 83.33%
3 01:01 70.65% 04:00 89.21% 09:31 84.16%
4 00:55 68.87% 03:19 86.96% 06:52 90.06%
5 01:08 71.56% 04:19 87.19% 09:42 90.33%

Test instance 4 Test instance 5 Test instance 6
Set Time Obj decr Time Obj decr Time Obj decr
1 02:23 – 04:12 – 06:16 –
2 16:08 89.45% 17:41 91.72% 47:56 91.32%
3 19:10 89.47% 28:40 91.73% 01:04:12 91.51%
4 17:18 87.58% 21:25 90.61% 53:02 90.89%
5 22:18 87.74% 34:34 90.73% 01:16:33 91.24%

respectively. Again, the maximum number of paths saved at each node was set equal
to 5 in the first case and equal to 10 in the second one. Parameter p was always set
equal to 10.

For each of the six instances, Table 7 presents the computational time, as well as
the percentage by which the balance objective decreased with respect to the nominal
case. To compute this, we calculated the optimal balance cost in the nominal case
in which balance was not subject to optimization, and then we re-calculated it
when it was optimized as the secondary objective. In all cases, the optimal value
of the primary objective remained unchanged after the incorporation of the balance
objective.

As the results of Table 7 demonstrate, the algorithm is capable of achieving a
satisfactory level of balance, at the expense of a substantial increase in its com-
putational requirements. Of course, the main factor attributing to the algorithmic
performance deterioration is the increased number of paths that need to be stored at
each node of the network. Similarly as in the case of the resource constraints, the
increase on the number of paths stored at each node from 5 to 10 does not seem to
improve significantly the solution quality.

6 Computational Implementation

In this section, we present computational results demonstrating the performance
of the proposed solution methodology on a large collection of realistic instances.
First, we test the algorithm on instances with similar size to that of the instances
depicted in Table 1. We use the word “similar” to highlight that, being drawn from
a live database of an actual air carrier, the actual number of deliveries that these
instances include, for a particular fleet size, exhibits a small variation. The number
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Table 8 Computational performance of the algorithm on realistic problems of moderate size

Deliveries Time Routes Nodes
No. Min Max Avg Min Max Avg Min Max Avg Min Max Avg

1 243 279 258 00:14 00:31 00:22 1203 2875 1990 45 59 56
2 348 396 364 00:42 01:09 00:57 2790 5367 4472 69 87 80
3 437 507 460 01:17 02:20 01:58 4048 8521 6976 59 113 105
4 548 628 573 02:01 04:54 03:58 6147 14734 12423 83 131 127
5 641 732 667 02:10 08:25 05:18 6543 22194 14524 113 149 143
6 769 886 796 06:56 12:31 08:59 14414 26059 19325 133 153 148

Table 9 Computational performance of the algorithm on particularly large realistic problems

Fleet Flights Time
No. Size Min Max Avg Min Max Avg
1 432 2882 2917 2901 03:34:30 04:02:54 03:47:13
2 456 2958 2991 2976 04:01:46 04:35:02 04:11:55
3 481 3153 3186 3174 04:02:58 04:39:36 04:28:47
4 503 3238 3272 3257 04:22:33 04:48:51 04:31:26
5 532 3441 3483 3469 04:34:27 05:13:22 04:54:42
6 554 3511 3556 3533 04:45:11 05:32:17 05:08:31

Fleet Routes Nodes
No. Size Min Max Avg Min Max Avg
1 432 41011 43534 42213 872 934 911
2 456 42149 45252 43764 925 986 959
3 481 44322 46991 45235 1055 1103 1079
4 503 44723 48924 46543 1068 1234 1103
5 532 46874 49841 48250 1137 1213 1167
6 554 50036 55143 53224 1201 1360 1252

of random instances tested for each fleet size was always set equal to 30. Table 8
presents the minimum, average, and maximum value of the number of deliveries,
the computational times, the number of routes generated, and the number of tree
nodes. In all the test problems, the number of utilized vehicles was minimized as
the secondary objective, while actual soft preferences were incorporated, as these
had been set up by the final user.

Table 8 confirms the effectiveness of the proposed solution methodology. Since
the tolerances used were negligible, the algorithm was always able to reach the
exact optimum using moderate computational resources. Although considerable,
the variances of the computational times, of the number of generated routes, and
of the number of tree nodes cannot be characterized as over-excessive. Note that
the size of the branch and price tree does not seem to increase substantially as
the problem size increases. This is a very important observation, because the
algorithmic computational performance is primarily affected by this factor.

In Table 9, we present results demonstrating the algorithm’s computational
performance on really large-scale problems. This enables the assessment of the
effectiveness of the acceleration strategies presented earlier. Due to the lack of
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such large-sized problems in the live databases of logistic distribution air carriers,
these instances have been drawn from the live database of a passenger airline.
This implies that the associated flight workload concerns passenger flights instead
of cargo deliveries, i.e., the underlying decision-making problem being solved is
the tail assignment; this, however, makes no significant difference as far as the
algorithm’s application is concerned, since the problem formulation remains exactly
the same.

These problems have been tested with no preference penalties, as none had been
defined by the final user. In order to handle the particularly large size of these
problems, the default parameter settings of the proposed algorithm were altered,
as explained next. First of all, the relative integer gap tolerance was set equal to
2%, while the relative backtrack tolerance was set equal to 5%. With the cost of
each uncovered delivery being equal to 106 and the cost for each utilized aircraft
being equal to 103, two conditions were imposed for the continuation of the column
generation procedure in the current tree node, a master LP objective difference at
least equal to 100 on the average in two successive iterations, or an optimal reduced
cost more negative than �50. This implies that the algorithm terminated prematurely
the column generation procedure whenever both these two conditions were violated.

For six significantly large problem sizes, Table 9 presents the same computational
results as those shown in Table 8. An important remark is the fact that the integer-
gap tolerances do not define accurately how close to the true optimum the obtained
solution is in this case. This happens because these tolerances are computed with
respect to the best master LP objective, which, however, is not exact due to the
premature termination of the column generation procedure. In most cases, however,
these two tolerances give a pretty accurate estimate of the final solution’s quality.

The results of Table 9 confirm the substantial increase in the computational
requirements of the algorithm in the case of large-scale problems. Despite typically
ranging in the order of minutes for the instances presented in the previous tables,
the computational times now range in the order of hours. One of the main reasons
for this difference is the substantial increase of the fleet sizes. The number of
tree nodes and the number of generated routes have also increased drastically, but
they cannot be considered over-excessive. The instances of Table 9 are considered
particularly large by air transportation practitioners; therefore, these results confirm
the proposed solution algorithm’s capability of handling even such problems
successfully.

7 Summary and Future Work

This work addressed the problem of fulfilling a set of deliveries in a logistic
distribution network with a fleet of vehicles. For this problem, we developed
an integer programming model formulation and an associated branch and price
solution methodology. This methodology utilizes column generation to solve the
master LP relaxation associated with each node of the branch and price tree. If the
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optimal solution to the currently explored subproblem is non-integral, the algorithm
branches on a set of fractional decision variables, creating two new tree node
subproblems. The procedure continues similarly, until the optimal solution of the
selected subproblem is integer, which, due to the best LP node selection strategy,
signifies that it is also optimal for the original integer problem.

We have used a large variety of realistic instances drawn from the live databases
of actual air carriers in order to test the performance and study the behavior
of the proposed solution methodology. Besides validating the correctness of this
methodology and confirming its effectiveness, these tests have made it possible
to fine-tune several key design parameters that have a significant impact on its
performance.

Future research could be directed toward the development of clever enhance-
ments that can accelerate the performance of the proposed methodology. We
make this recommendation motivated by the fact that the OR research community
unanimously perceives the column generation framework as the most suitable for
addressing problems of this type. In that direction, a challenging goal for future
research efforts is the evolution of the proposed methodology, so that it can become
capable of handling problems with substantially larger size and considerably
different characteristics and requirements.
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Sustainable Logistics Network Design Under
Uncertainty

Rozita Daghigh, Mir Saman Pishvaee, and Seyed Ali Torabi

Abstract This chapter mainly discusses the mathematical programming models
and methods used to design sustainable logistics networks (SLN) under epistemic
uncertainty. Firstly, the relevant concepts and definitions are described and analyzed.
Thereafter, a systemic review and analysis of the recent literature is provided
to explore the most attractive research avenues in this area. A comprehensive
description is given on environmental and social impact assessment methods in
order to facilitate the quantification of environmental and social burden in the
mathematical decision models. Two selected mathematical programming models
for SLN design problem under uncertain data are provided and explained in detail to
support quantitative decision-making in this area. Finally, a real industrial case study
is described and investigated to show the applicability of the previously discussed
mathematical programming methods.

1 Introduction

Sustainable development (SD) was defined by the World Commission on Envi-
ronment and Development (WCED) as a kind of development which “meets
the needs of the present generation without compromising the ability of future
generation to meet their own needs” [78]. SD of a country depends on the efficient
utilization of limited and irreplaceable resources. Regarding this issue and the lack
of nonrenewable resources (e.g., oil, natural gas, etc.) and governmental legislation,
considering various policies and corrective actions to reduce the environmental
impact (EI) is necessary [14]. Therefore, enterprises rethink their strategies to ensure
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Fig. 1 Three aspects of
sustainability (Carter 2008)

economic

environmentenvsocial

Sustainable

the sustainability of their operations. These strategies include using raw materials
compatible with the environment in production and industrial centers, reducing
the use of fossil and oil energy sources, using energy-efficient technologies,
green procurement, reducing packaging, employee recognition, establishing closed-
loop supply chains [37], remanufacturing [42, 46], product recovery [41], reverse
logistics [67, 68], and carbon emission reduction [60]. Two end-of-life methods,
namely, recovery and recycling of used products, are among the most eco-efficient
methods to cope with used products; however, they might increase operating cost
[14]. SD must meet the following three objectives (see Fig. 1):

• Continue and support an optimum and stable level of economic development.
• Protect the environment (Env).
• Consider social (Soc) growth and meet the needs of everyone.

1.1 The Most Important Drivers of Sustainable Development

According to the aspects of sustainable development, the main drivers of sustain-
ability can be divided into three categories:

• Economic advantages, saving and competitive advantages which include:

1. Saving resources
2. Eliminating waste
3. Productivity improvement
4. Environmental legislation
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• Environmental concerns which include:

1. Global warming (rising the global temperature between 0.8 and 3.8 in this
century)

2. Reduction of the ozone layer
3. Lack of fresh water
4. Desertification and loss of soil quality
5. Air pollution and acid rain
6. Deforestation and destruction of biodiversity

• Social concerns which include:

1. Lack of sanitary conditions
2. Poverty and injustice
3. Inequality of income
4. Lack of equal opportunity in terms of geographical areas, gender, and age

In addition to the abovementioned drivers, awards, standards, and certifications
related to environmental and social protection (e.g., SA 8000, ISO 14001, ISO
26000, GRI Guidance), consumer pressure, reputation and social image, and
the Kyoto Protocol in 1997 that limits the emissions of greenhouse gases from
industrialized countries are some other drivers forcing organizations to consider
sustainability in all their activities.

1.2 Sustainable Supply Chain

What is important is that SD must not only be deployed and implemented within
the boundary of corporation ownership but also should be implemented at the
whole supply chain despite its complex concept [15]. Globalization and increasing
customer and government concerns about the environmental impact of activities as
well as the appearance of the issue of social responsibility have led companies to
employ sustainable supply chain management (SSCM). SSCM can be defined as the
strategic management of information, financial and material flows, and transparent
integration among the supply chain organizations in order to cover objectives at
economic, environmental, and social aspects and consequently enhance the long-
term performance of the whole supply chain network [13]. SSCM covers both
the greenness and social responsibility of supply chain activities, simultaneously.
Environmental or green supply chain management (GSCM) can be defined as the
integration of environmental aspects into every supply chain management decisions,
especially the strategic level decisions [56, 58, 64]. The traditional part of GSCM is
dedicated to reverse logistics (RL) that includes all activities related to handling the
end-of-life (EOL) products (e.g., recovery, recycling, and safe disposal). RL is use-
ful by recapturing the value of EOL products, reducing the negative environmental
impact of EOL products, and enhancing the green image of the concerned firm in
the market. For example, IBM, which has profited by receiving end-of-use products,
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promotes secondhand items in Internet auctions and dismantles equipment as a
source of spare parts [26]. Along RL process, managers can find out the necessity
and importance of corporate social responsibility (CSR) in their corporate missions
and strategies [16]. Indeed, CSR considers the social aspects in supply chain
management to create more value for the whole society. CSR includes environment
protection, workplace safety, human right, proper conditions for employees, etc.
that affect different social stakeholders (i.e., consumers, staff, community activists,
nongovernmental organizations, governmental legislation, and global competition)
[12]. If corporations ignore social responsibility, they will be pressured by media,
nongovernmental organization, professional unions, and other groups of society,
and consequently they will lose a part of their market/profit. For example, popular
corporations such as Shell and Walmart experienced damages on their image and
profit according to media reports and campaigns of social groups [56, 58].

Sustainable development can be viewed as a source of long-term profit (i.e., the
economic opportunity) against cost center (i.e., the economic threat). Saving cost by
improving efficiency (e.g., reusing the value of EOL products), reducing risk (e.g.,
strike labor and local community complains leading to decrease profits), identifying
new markets for new products (e.g., increasing demand for green products), and
improving the image and reputation are examples of such long-term profits.

1.3 Sustainable Logistics Network Design

Globalization of logistics networks has increased transportation distances which
in turn has led to intensification of air and pollution, resource consumption, land
use, and acidification which can affect the human health and ecosystem quality
[47]. For instance, in the USA, from 1995 to 2006, the total amount of emissions
by trucks increased about 7% [77]. Furthermore, governments have passed rules
to support environment, such as greenhouse gas reduction regulation in European
Union, Australia, and Canada. In addition, they have considered targets to decrease
emission and force companies to switch over to green logistics and measure and
control their carbon footprints [64].

Organizing and designing of logistics networks based on sustainable devel-
opment paradigms can play fundamental role in moving toward sustainability.
Network design is the initial point to start when looking for sustainable supply
chain network [55]. Logistics network design (LND) is the most important strategic
decision in the supply chain management. LND problem includes the determination
of the number, location, capacity, and technology of the required network facilities
and the quantities of aggregate flow between them to meet the demand nodes [30].
In the traditional view, the LND problem only focuses on long-term economic
performance without paying attention to the environmental and social issues.
However, the necessity of sustainability creates a need for considering Env and Sol
objectives in the LND problem.
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The remainder of this book chapter is organized as follows. In the next section,
the relevant literature is reviewed. In Section 3, a comprehensive description is given
on environmental and social impact assessment methods. Two selected mathemat-
ical programming models for sustainable logistics network design problem under
uncertain data are presented in Section 4. The studied case and its acquired results
are described in Section 5. Finally, some future research directions are presented in
Section 6.

1.4 Uncertainty in Sustainable Logistics Network Design

Complicated and dynamic nature of supply chain injects a high degree of uncertainty
into decisions, which is an inevitable feature of any supply chain [45]. The degree
of complexity in SLND is greater than traditional supply chains, since extra goals in
designing sustainable supply chain networks should also be taken into account. In
addition, accounting for data uncertainty especially in the strategic decisions (e.g.,
network design) is inevitable due to fluctuation of input parameters in a long time
horizon and thus the difficulty of forecasting confident values for them.

Uncertainty is classified in different general and SCM-related categorizations.
Klibi et al. [45] classify supply chain uncertainty into two groups: (1) business-
as-usual uncertainty, such as usual fluctuations in demand, supply, etc., and (2)
disruption uncertainty that has low frequency of happening (i.e., likelihood) but
high impact. This type of uncertainty can originate from natural sources (e.g.,
earthquake, flood, tsunami) or man-made sources such as war, terrorist attacks,
sanctions, etc. Dubois et al. [21] also classified uncertainty as (1) uncertainty in
input data and (2) flexibility in constraints and goals. Uncertainty in data can
be categorized into two groups [49]: (1) Randomness, which is the result of
inherent randomness of the parameters, and stochastic programming methods are
the most applied approaches to cope with this sort of uncertainty. (2) Epistemic
uncertainty, which originates from insufficient knowledge for estimating the exact
values of parameters, and possibilistic programming approaches are usually applied
to cope with such uncertainty [49, 57]. Furthermore, elasticity in constraints and
flexibility in goals deal with the inherent flexibility in the target values of goals
and constraints for which flexible mathematical programming models are utilized
to cope with such flexible target values [49]. There are different approaches to
deal with uncertainty whose applications depend on the structure and context of the
concerned problem, the type and the level of uncertainty in the model’s parameters.
Three main approaches are mostly employed to deal with uncertainty in the context
of mathematical programming which include:

1. Stochastic programming, which can be used whenever randomness is the main
source of uncertainty in input data for which random variables with known
probability distributions are utilized (e.g., [10, 52]) and can be classified into
two main categories: scenario-based stochastic programming with recourse and
probabilistic (i.e., chance constrained) programming [62].
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2. Fuzzy programming can handle both epistemic uncertainty in data and flexibil-
ity in goals and/or elasticity in constraints and can be classified into two main
classes [40, 49, 74]: (1) possibilistic programming and (2) flexible program-
ming. Possibilistic programming is used when there is lack of knowledge (i.e.,
epistemic uncertainty) about the exact value of parameters due to unavailability
or insufficiency of required data. Flexible programming is used to cope with
flexibility in target value of goals and/or elasticity in soft constraints.

3. Robust optimization provides risk-averse methods to cope with uncertainty in
optimization problems. According to Pishvaee et al. [56, 58], “a solution to an
optimization problem is said to be robust if it has both feasibility and optimality
robustness. Feasibility robustness means that the solution should remain feasible
for (almost) all possible values of uncertain parameters and optimality robustness
means that the value of objective function should remain close to optimal value
or have minimum (undesirable) deviation from the optimal value for (almost)
all possible values of uncertain parameters.” Robust programming approaches
can be classified into three groups [56, 58]: (1) the hard worst-case robust
programming [5, 6, 69], (2) the soft worst-case robust programming (Inuiguchi
and Sakawa 1998; [7]), and (3) the realistic robust programming [50].

2 Literature Review

In the recent decades, interest in SSCM has increased both in academic community
and among practitioners. To respond to the need of sustainability, a number of
research works have been presented in the context of SCND problem. Nevertheless,
the literature on sustainable SCND (SSCND) that covers all the three aspects of sus-
tainability is very scarce. Some authors review the papers about sustainability and
investigate them from different points of view. Seuring and Muller [65] reviewed
191 papers from 2002 onward and only found 21 papers that have investigated
three aspects of sustainability. Carter and Rogers [13] identified papers with a
conceptual framework for sustainable supply chain and prepared a literature review
on sustainable supply chain (SSC). Seuring [66] reviewed papers on modeling
approaches for SSCM problem. Tang and Zhou [73] reviewed 56 papers about SSC.
Brandenburg et al. [9] identified and investigated 1422 papers and only found 134
papers on modeling approaches for SSC. Table 1 shows some survey articles in the
field of SSC.

Despite the importance of social responsibility, the related literature is not rich
and only considers the economic and environmental aspects. Generally, the relevant
literature can be classified into two major groups: green SCND and SSCND.
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Table 1 Review articles in the field of SSC [9]

Authors
Scope of supply
chain Time horizon

The number
of reviewed
papers

Supply
chain
perspective

Seuring and Muller [65] Forward 1994–2007 191 General
Min and Kim (2012) Forward and reverse 1995–2010 519
Gold et al. (2010) Forward 1994–2007 70 Experimental
Carter and Easton (2011) Unknown 1991–2010 80
Sarkis (2012) Forward and reverse 2000–2010 100
Sarkis (2011) Forward and reverse 1995–2010 150
Golicic and Smith Unknown 2000–2011 77
Hassini et al.[35] Forward and reverse 2000–2010 87 Quantitative

modelsSeuring (2012) Forward 1994–2010 87
Tang and Zhou [73] Forward and reverse Unlimited 56
Dekker et al. (2012) Forward and reverse Unlimited 60
Ligin and Gupta (2010) Forward and reverse 1999–2010 540
Brandenburg et al. [9] Forward 2008–2012 134

2.1 Green Supply Chain Network Design Literature

Fonseca et al. [27] proposed a bi-objective model in which the entire costs and
environment emission in reverse logistics were investigated. A two-stage stochastic
programming model was utilized to deal with data uncertainty. Pishvaee et al. [51,
53] developed a mixed integer programming model for a multi-objective reverse
logistics supply chain network design problem and proposed a simulated annealing
algorithm with specific neighborhood search mechanism to solve this NP-hard
model. Chaabane et al. [14] presented a mathematical programming model for
designing a sustainable supply chain network and considered carbon emissions
and total cost of supply chain in the aluminum industry. Pishvaee and Razmi [54]
proposed a multi-objective fuzzy programming model to design an environmental
sustainable supply chain under uncertainty of input parameters and used the life
cycle analysis to quantify the environmental impact of the designed network.
Pishvaee et al. [56, 58] presented a fuzzy programming model for designing a
forward network supply chain aiming at minimizing the environment emission and
total cost. Govindan et al. [31] presented a multi-objective optimization model
for a sustainable two echelon location-routing problem with time windows. The
purpose of the model is to determine the number and location of the facilities, the
amount of aggregated flow between different echelons, and the optimal routes of
the networks. In order to solve this problem, two hybrid metaheuristics based on the
multi-objective particle swarm algorithm and multi-objective variable neighborhood
search, were utilized. Tseng and Hung [75] suggested a strategic model according
to the operating and social costs resulting from the production of greenhouse gas
emissions for sustainable supply chain. In addition, they investigated the amount of
CO2 emission and operating cost under different scenarios in the clothing network
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supply chain. Govindan et al. [32] presented a bi-objective model, which integrates
the sustainable supplier selection and order allocation and sustainable supply chain
network design problems under stochastic demand. The model aims at minimizing
the total costs and environmental effect. Hybridization of two multi-objective
algorithms, namely, the adapted multi-objective electromagnetism mechanism algo-
rithm (AMOEMA) and adapted multi-objective variable neighborhood search
(AMOVNS), were used to solve the model. Talaei et al. [72] presented a novel
bi-objective facility location-allocation model for closed-loop green supply chain
network design problem for which the robust and fuzzy programming approaches
were used to cope with the uncertainty of input data. A case study of copier industry
was used to show the applicability of the proposed model.

2.2 Sustainable Supply Chain Network Design Literature

Dehghanian et al. [18] developed a three-objective mathematical programming
model to design a sustainable recycling network to balance all three sustainability
factors. Life cycle analysis (LCA) was also used to study the environmental effects
of various EOL options. A multi-objective genetic algorithm was implemented
to find the Pareto-optimal solutions, and the model was implemented for rubber
wastes. Pishvaee et al. [56, 58] developed a bi-objective programming model by
considering social and economic aspects to optimize supply chain network under
uncertainty. They proposed several robust possibilistic programming models to deal
with data uncertainty. Pishvaee et al. [55] proposed a multi-objective possibilistic
programming model to design a sustainable medical supply chain by considering
economic, environmental, and social objectives under uncertainty. In order to solve
the proposed model, a customized Benders decomposition algorithm was also
implemented. Mota et al. [48] presented a multi-objective programming model to
design a closed-loop supply chain in which economic, environment, and social
aspects were simultaneously considered. For the first time, they implemented
an environmental methodology, namely, “Recipe,” in their model. Also, they
investigated their model in the manufacturer and distributors of batteries in Portugal.
Devika et al. [20] developed a mixed integer programming model for a multi-
objective closed-loop supply chain design network to take into account all three
sustainability factors simultaneously. In order to solve this complicated problem,
three hybrid metaheuristics, which are based on imperialist competitive algorithm
and variable neighbor search algorithm, were utilized. Finally, a glass industry
case study was used to show the applicability of this approach. Ramezani et al.
[59] demonstrated the fuzzy set theory application in designing a multi-period,
multiple product closed-loop supply chain network. The presented model includes
three-objective functions: profit maximization, delivery time minimization, and
quality maximization. Using the fuzzy approach, flexible restrictions, and fuzzy
coefficients, an efficient model was obtained. Mohammadi et al. [47] developed
a novel sustainable hub location problem in which two new environmental-based
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cost function accounting for air and noise pollution of vehicles are incorporated. To
cope with uncertain data, a mixed possibilistic-stochastic programming approach
was proposed to construct the crisp counterpart, and also a simulated annealing
and imperialist competitive algorithms are used to solve the real-sized instances.
Zhang et al. [81] presented a sustainable multi-objective optimization model for
sustainable supply chain network design considering multiple distribution channels.
The model aims at reducing the economic cost, enlarging the customer coverage,
and weakening the environmental influences. In order to solve this model, a
modified multi-objective artificial bee colony algorithm is introduced. Babazadeh
et al. [2] presented a multi-objective possibilistic programming model to design a
second-generation biodiesel supply chain network under risk. It aims at minimizing
the cost and environmental impact of all processes. To solve this multi-objective
model, they used a hybrid solution approach based on the flexible lexicographic and
augmented epsilon-constraint methods. Govindan et al. (2016) proposed a multi-
objective model to design an optimized reverse logistics network while considering
the economic, social, and environmental aspects simultaneously. To deal with data
uncertainties in many parameters, the fuzzy approach was used, and for solving
the model efficiently, a multi-objective genetic algorithm is devised. Daghigh et
al. [17] proposed a multi-objective sustainable location-inventory model for third-
party logistics providers. The model aims at minimizing the total cost and the
environmental emission due to the fuel consumption of vehicles and maximizing
the social responsibility subject to fair access to products, number of created job
opportunities, and local community development. Input parameters of the model are
tainted with epistemic uncertainty for which a possibilistic programming approach
is used. To provide a systemic view on the SSCND literature, we have classified and
tabulated some of the important published papers in Table 2.

3 Measuring Sustainability

Assessing sustainable development in macro and micro levels requires appropriate
tools to quantify environmental and social impacts. In this section, a number of
important environmental and social impact assessment methods are studied and
described.

3.1 Environmental Impact Assessment (EIA)

Each product has different EI in its life cycle stages. Life of a product or a service
starts from its design phase and finishes with the end-of-life stages such as recycling,
recovering, and internment. All of the activities that are done during the life cycle
of a product or a service have EI due to the resources’ consumption, emissions,
and environmental exchanges. Focusing on the cradle-to-grave perspective of a
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Life Cycle Assessment framework (LCA)

Reviews and 
commentary

Determine scope and 
purpose (ISO 14041)

Inventory (ISO 14041)

Impact assessment (ISO 
14042)

Fig. 2 Life cycle assessment framework based on ISO 14040

product provides an appropriate framework to discover opportunities for improving
the efficiency and effectiveness of the concerned system. Now, researchers and
practitioners use LCA methodology to quantify and assess the EI of every prod-
uct/service. The international standard organization presented ISO 14000 standard
series on LCA that is the most credible structure for life cycle assessment [61]. This
standard is designed in the form of a quartet structure:

• ISO 14040, which is related to the principle and framework for life cycle
assessment

• ISO 14041, which is related to the purpose, scope, and life cycle inventory
• ISO 14042, which is related to the life cycle impact assessment
• ISO 14043, which is related to the interpretation of life cycle

Figure 2 shows the relationships between different parts of the life cycle
assessment framework based on ISO 14040. According to this structure, at first the
scope of the system and its function as well as the purpose of the application of the
life cycle assessment must be described. The second stage determines the inventory
(including materials, flows, and processes) of different stages of the life cycle. In
the next stage, the environmental impact caused by inventory must be evaluated
according to the related indicators. Reviews and commentary section is done in
parallel to the aforementioned stages.

The impact assessment part consists of three elements (including the impact
categories, relevant indicators, and inventory allocation to impact categories),
description (including the quantitative calculation of each inventory into the relevant
impact categories), and calculation of the final result through normalizing and
weighting methods. Despite the advantages of LCA, this methodology requires
a complex, costly, and time-consuming process, and its direct usage needs to be
weighted and interpreted. Several methods have been developed as standardized and
simplified versions of LCA. These methods are formed based on LCA methodology,
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Table 3 Characteristics of credible EIA methods [55]

EIA methods

Covering
midpoint
Impact
categories

Covering
end-point
impact
categories

Providing
normalization
method

Providing
weighting
method

Requiring
goal setting

CML2001 [34] * *
Eco-indicator 99
[29]

* * * *

EDIP 2003 [36] * * * *
EPS 2000 [70] *
IMPACT 2002C
[44]

* * *

Ecological
scarcity [8]

* * * * *

TRACI (Bare et
al. 2003)

*

Recipe 2008
[28]

�

a * * *

aThe method is able to assess EI based on both midpoint and end-point impacts

and most of them classify and standardize EIs in midpoint and/or end-point impact
categories to select an appropriate method for EI assessment (EIA). Also, some of
the methods provide normalization and weighting mechanisms to quantify the final
results. The list of these methods and some of their characteristics are illustrated in
Table 3.

3.2 Social Impact Assessment (SIA)

World Business Council for Sustainable Development (WBCSD) defined social
responsibility as “the continued organizational commitment to ethical principle
and contribution to social development, while improving the quality of life of the
workforce and their families as well as local communities and society in general”
[79]. Generally, measuring the social responsibility is difficult due to its extensive
scope and complex nature of social impacts. Also, the social responsibility subject
is a multidisciplinary and multi-stakeholder issue that measuring all SIs of an
activity would be impossible [56, 58]. However, ISO developed the “International
Guidance standard on social responsibility-ISO 26000” to provide a comprehensive
framework for SR. ISO 26000 has classified the social responsibility into seven core
subjects as follows [39]:

• Organizational governance: it means that the organization adopts its decision
by organizational governance in order to achieve its objectives. Organizational
governance is the most important core subject for creating social responsibility
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and necessary for the fulfillment of social responsibility in six other core subjects.
For example: respecting the law and responsibility.

• Human rights: it is related to basic rights of every human. This right is
categorized into two parts: (1) political rights (e.g., the equality right against
the law, right to life) and (2) economic and social rights (including the right to
work and access to food and health).

• Labor practices: it includes all political and activities related to the work in
the organization by workers (e.g., health and safety workers, hire and upgrade
workers).

• Environment: it means the organizational activities that affect the environment. It
is mentioned with respect to the high importance of environment in sustainability
paradigm, Env issues are considered as a separate part from the Soc issues.

• Fair operating practices: it is related to ethical conduct in dealing with other
organizations, suppliers, and customers.

• Consumer issues: it is related to that organizations are responsible to their
customers and consumers and includes reducing the risk of consumer products
and services and promoting the design and sustainable consumption and fair
access to all segments of society.

• Community involvement and development: community involvement and devel-
opment is the most important parts of the sustainable development. Each
organization according to the type of its industry must help and affect on this
process.

Methods and reporting frameworks of the social impact are weaker than those
of environmental impact assessment. However, researchers and practitioners have
developed some methods and guidelines based on ISO 26000 core subjects. Table 4
shows the most popular and credible methods and guidelines on SR.

4 Selected Fuzzy Mathematical Models

In this section, two different uncertainty mathematical models are elaborated in the
context of SLND under uncertainty. For the sake of simplicity, the notations used in
this section are the same as those represented in the original papers.

4.1 A SLND Model with Possibilistic Programming and Hybrid
Solution Approach

This problem is presented by Babazadeh et al. [2] for SLND in which possibilistic
programming is used to deal with uncertainty. The simplified proposed model is
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a multi-objective, multiproduct, multimodal, and capacitated biodiesel SCND in
which all involved stages from feedstock supply centers to distribution of biodiesel
and by-product glycerin are integrated under uncertainty. Biodiesel is a type of
biofuel whose use in the transportation sector has intensively increased due to
energy crisis, environmental, and social concerns. Biofuels are divided into the
first and second generations. First-generation biofuel has been commercialized
worldwide, but there is a significant concern about food crisis. However, the second-
generation biofuels are environmentally and socially sustainable and do not compete
with food resources. Jatropha Curcas L. (JCL) is a nonedible feedstock which does
not compete with food crops and is only used for biodiesel production. JCL seeds
are harvested from farms and then shipped to JCL oil extraction. Then, JCL oil
is shipped to bio-refinery centers and converted to main biodiesel product and by-
product glycerin. Biodiesel is shipped to end customers through distribution centers,
but glycerin is directly transported to related customers. In the considered integrated
supply chain network, only the locations of final customers are known, but other
locations of facilities in each layer should be selected among the candidate locations.
The model has two different objectives, i.e., minimizing the environmental impact
(EI) of all involved processes in the considered biodiesel SC network and minimiz-
ing the total costs subject to real-life assumptions and constraints. The model aims to
determine the numbers, locations and capacities of candidate facilities, the amount
of production, inventory levels, imported JCL, aggregated material flow between
network nodes, and transportation modes in different periods. Feedstock supply,
biodiesel and glycerin demands in constraints, cost, and environmental coefficients
in the objective functions are under uncertainty. Possibilistic programming is used
to deal with uncertainty due to lack of reliable historical data about uncertain
parameters. In this paper, EI of all involved processes in the considered biodiesel
network is assessed by Eco-indicator 99 method employing SimaPro software. The
structure of the problem is depicted in Fig. 3, and the notations are described
thereafter.

Supply 
center: 

JCL farms

Biodiesel 
distribution 

centers

Bio-
refinery 
centers

JCL oil 
extraction 

centers

Biodiese
l and 

glycerin 
customers

Fig. 3 The integrated biodiesel supply network
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Indices

f Index of candidate locations of JCL cultivation centers

i Index of candidate locations for collection and oil extraction centers of JCL yields
j Index of candidate locations for bio-refinery centers of biodiesel production
k Index of candidate locations for storage and distribution centers of biodiesel
c Index of consumer centers of biodiesel
n Index of consumer centers of glycerin
l Index of transportation mode (road and railway)
t Index of time period

Parameters

�

Dct Demand of consumer center c for biodiesel in period t (ton/period)
�

DEnt Demand of consumer center n for glycerin in period t (ton/period)
�

n ft Amount of JCL yields per hectare at location f in period t (ton/ha)
' Conversion factor of JCL yield to JCL oil (percent)
  Conversion factor of JCL oil to biodiesel (percent)
LAf Minimum land area dedicated for JCL cultivation center at location f (ha)
UAf Maximum land area dedicated for JCL cultivation center at location f (ha)
LCi Lower bound dedicated on capacity of collection and oil extraction center of JCL

yields at location i (ton)
UCi Upper bound of capacity of collection and oil extraction center of JCL yields at

location i (ton)
LBj Lower bound dedicated on capacity of bio-refinery center at location j (ton)
UBj Upper bound dedicated on capacity of bio-refinery center at location j (ton)
LSk Lower bound dedicated on capacity of storage and distribution center at location k

(ton)
USk Upper bound of capacity of storage and distribution center at location k (ton)
DisJTfli Distance between cultivation center f and oil extraction center i by mode l

DisOTilj Distance between JCL oil extraction center i and bio-refinery j by mode l

DisBTjlk Distance between bio-refinery j and distribution center k by mode l

DisGTjln Distance between bio-refinery j and consumer center n by mode l

DisMTklc Distance between distribution center k and consumer center c by mode l
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Cost parameters

F
�

CJft Fixed cost of JCL cultivation at location f in period t (MIRR/period)

F
�

CCit Fixed cost of opening oil extraction center of JCL seeds at location i in period t

F
�

CBjt Fixed cost of opening bio-refinery center at location j in period t

F
�

CSkt Fixed cost of opening distribution center at location k in period t

V
�

CJf Variable cost of JCL cultivation per hectare at location f (MIRR/ha)

V
�

CCit Variable cost per unit capacity for oil extraction center of JCL seeds at location i in
period t (MIRR ton1/period)

V
�

CBjt Variable cost per unit capacity for bio-refinery center j in period t
(MIRR ton1/period)

V
�

CSkt Variable cost per unit capacity for distribution center k in period t
(MIRR ton1/period)

P
�

CJft Unit production cost of JCL seeds at location f in period t (MIRR ton1/period)

P
�

CBjt Unit production cost of biodiesel at bio-refinery center j in period t
(MIRR ton1/period)

P
�

CGjt Unit production cost of glycerin at bio-refinery center j in period t
(MIRR ton1/period)

P
�

COit Unit oil extraction cost from JCL seeds in oil extraction center i in period t
(MIRR ton1/period)

I
�

CJit Unit inventory holding cost of JCL seeds at oil extraction center i in period t
(MIRR ton1/period)

I
�

CBjt Unit inventory holding cost of biodiesel at bio-refinery center j in period t
(MIRR ton1/period)

I
�

CGjt Unit inventory holding cost of glycerin at bio-refinery center j in period t
(MIRR ton1/period)

I
�

CSKt Unit inventory holding cost of biodiesel at distribution center k in period t
(MIRR ton1/period)

J
�

CTflit Transportation cost of JCL seeds from cultivation center f to oil extraction center I
by mode l in period t (MIRR ton1/period)

O
�

CTiljt Transportation cost of JCL oil extraction center i to bio-refinery j by mode l in
period t (MIRR ton1/period)

B
�

CTjlkt Transportation cost of biodiesel from bio-refinery j to distribution center k by mode l
in period t (MIRR ton1/period)

G
�

CTjlnt Transportation cost of glycerin from bio-refinery j to consumer center n by mode l in
period t (MIRR ton1/period)

M
�

CTklct Transportation cost of biodiesel from distribution center k to consumer center c by
mode l in period t (MIRR ton1/period)

C
�

I mit Importing cost of JCL seeds in oil extraction center i in period t (MIRR ton1/period)
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Environmental parameters

�

e xf Environmental impact of harvesting 1 t JCL seeds at location f for planning horizon
(pt)

�

e ui Environmental impact of establishing 1 t capacity of oil extraction center of JCL
seeds at location I for planning horizon (pt)

�

e vj Environmental impact of establishing 1 t capacity of bio-refinery at location i
planning horizon (pt)

�

e wk Environmental impact of establishing 1 t capacity of distribution center of biodiesel
at location I for planning horizon (pt)

�

EBj Environmental impact of producing 1 t biodiesel at bio-refinery center j
�

EGj Environmental impact of producing 1 t glycerin at bio-refinery center j
�

EOi Environmental impact of producing 1 t JCL oil extraction center i

E
�

I Ji Environmental impact of inventory holding of JCL seeds at oil extraction center i

E
�

I Bj Environmental impact of inventory holding of biodiesel at bio-refinery center j

E
�

I Gj Environmental impact of inventory holding of glycerin bio-refinery center j

E
�

I Sk Environmental impact of inventory holding of biodiesel at distribution center k

E
�

J Tfli Environmental impact of transporting 1 t JCL seeds per km from cultivation center f
to oil extraction center i by mode l

E
�

OTilj Environmental impact of transporting 1 t JCL oil per km from oil extraction center i
to bio-refinery j by mode l

E
�

BTjlk Environmental impact of transporting 1 t biodiesel per km from bio-refinery j to
distribution center k by mode l

E
�

GTjln Environmental impact of transporting 1 t glycerin per km from bio-refinery j to
consumer center n by mode l

E
�

MTklc Environmental impact of transporting 1 t biodiesel per km from distribution center k
to consumer center c by mode l

E
�

I mi Environmental impact of importing 1 t JCL seeds imported in oil extraction center i

Binary decision variables

xf 1 if location f is selected for JCL cultivation; 0 otherwise

ui 1 if location i is selected for opening collection and oil extraction center of JCL yields; 0
otherwise

vj 1 if location j is selected for opening bio-refinery; 0 otherwise
wk 1 if location k is selected for opening storage and distribution center of biodiesel; 0

otherwise
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Continuous decision variables

IJit Inventory level of JCL yields at collection and oil extraction center i in period t
(ton/period)

Imit Amount of JCL yields imported at collection and oil extraction center i in period t

IBjt Inventory level of biodiesel at bio-refinery j in period t

IGjt Inventory level of glycerin at bio-refinery j in period t

ISkt Inventory level of biodiesel at storage and distribution center k in period t

PJft Produced amount of JCL at cultivation center f in period t

PBjt Produced amount of biodiesel at bio-refinery j in period t

PGjt Produced amount of glycerin at bio-refinery j in period t

POit Produced amount of JCL oil at collection and oil extraction center i in period t

JTflit Transported amount of JCL yields from cultivation center f to collection and oil
extraction center I by mode l in period t

OTiljt Transported amount of JCL oil from collection and oil extraction center i to
bio-refinery j by mode l in period t

BTjlkt Transported amount of biodiesel from bio-refinery j to storage and distribution center
k by mode l in period t

GTjlnt Transported amount of glycerin from bio-refinery j to consumer center n by mode l in
period t

MTklct Transported amount of biodiesel from storage and distribution center k to consumer
center c by mode l in period t

CJf Amount of cultivated area of JCL at location f (ha)
CCit Total capacity of collection and oil extraction center i in period t

CECit Amount of capacity expansion at collection and oil extraction center i in period t (ton)
CBjt Total capacity to bio-refinery j in period t

CEBjt Amount of capacity expansion at bio-refinery j in period t

CSkt Total capacity of storage and distribution center k in period t
CESkt Amount of capacity expansion at storage and distribution center k in period t

Using aforementioned notation, the proposed mathematical model is as follows:
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uiLCi � CCit � uiUCi 8i; t (20)

CSkt D CSk;t�1 C CESkt 8k; t (21)

wkLSk � CSkt � wkUSk 8k; t (22)

xf ; ys; ui; vj; wk � 0 (23)

IJit; Imit; IBjt; IGjt; ISkt; PJft; PBjt; PGjt; POit; JTflit; OTiljt; BTjlkt;

GTjlnt; MTklct; CJf ; CCit; CECit; CBjt; CEBjt; CSkt; CESkt � 0
(24)
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The objective function (1) minimizes the total expenses of biodiesel supply
chain network. The first and second parts belong to fixed and variable costs of
opening different facilities. The third part describes the production cost. The fourth
part expresses the inventory holding cost. The fifth part states the transportation
cost of various network layers. The sixth part shows the importing cost. Objective
function (2) describes the sustainability environmental goal which tries to minimize
the environmental impacts of all processes in the network. The first part shows the
environmental impact of established facilities and related capacity installation. The
second part expresses the environmental impact of production processes at different
facilities. The third part states the environmental impact of inventory holding.
The fourth part shows the environmental impact of transporting material between
different nodes in the network, and the final part shows the environmental impact
of importing JCL seeds. Constraints (3) and (4) show demands of biodiesel and
glycerin at different cities for each period that should be fully satisfied. Constraint
(5) ensures that all JCL seeds are collected and transported to oil extraction in each
period. Constraint (6) shows the amount of JCL oil production at related facilities
in each period. Constraint (7) illustrates the amount of JCL seeds produced in each
cultivated area in any period. Constraints (8) and (9) state the amount of biodiesel
and glycerin production at bio-refinery in each period from JCL oil. Constraints
(10)–(13) are inventory balance for oil extraction center of JCL seeds, biodiesel,
and glycerin at related facilities. Constraints (14)–(16) are capacity constraints
at oil extraction centers of JCL seeds, bio-refineries, and distribution centers.
Constrains (17)–(22) show capacity expansions and lower and upper bounds in oil
extraction centers of JCL seeds, bio-refineries, and distribution centers, respectively.
When a specific facility opens, its capacity must be between the lower and upper
bound, and also the capacity of any open facility in each period is equal to
the capacity determined in the previous period and the capacity expanded in the
current period. As mentioned in the previous section, the feedstock supply and
biodiesel and glycerin demands in constraints (3), (4), and (7) as well as the cost
and environmental coefficients in the objective functions are tainted by epistemic
uncertainty. Due to the limited historical data, a possibility distribution is estimated
for each uncertain parameter using experts’ subjective opinions. In this paper, a new
formulation of possibilistic programming approach integrating mean and absolute
deviation of the uncertain objective function (OF) is used. Possibilistic absolute
deviation of uncertain OF is considered as a risk measure. The possibilistic mean-
absolute deviation model based on fuzzy numbers is as follows:

min z D M .Qcx/ C � j� .Qcx/j

s:t: Qaix � Qbi i D 1; : : : ; l

Qaix D Qbi; i D l C 1; : : : ; m

x � 0 (25)
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In fact, there is a trade-off between possibilistic mean value and absolute
deviation of objective function in the above formulation. � is a risk coefficient that
allows the decision-maker to consider risk-averse aspects in the decision-making
besides considering the average condition under uncertainty. In this model, the
possibilistic mean operator is used to convert the possibilistic objective functions
into their crisp ones. To do so, according to Carlsson and Fuller [11], the possibilistic
mean of a triangular fuzzy number

�
c with three prominent points

�
c D .cp; cm; co/ is

equal to the half point of its interval-valued mean:

M .Qc/ D
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�
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�

C M2

�
QC
�

2
D

�
2
3
cm C 1

3
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�

C
�

2
3
cm C 1

3
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�

2
D .cp C 4cm C co=6/

and the possibilistic absolute deviation for the given triangular fuzzy number
�
c according to Zang and Zang [80] is equal to �

�
�
c
�

D 1
3

.co � cp/. Following

these definitions and by defining the relation of fuzzy preference N

�
�
aI

�

b

�

based on

possibilistic mean values of fuzzy numbers, possibilistic constraints are transformed

to their crisp counterparts. For any pair of fuzzy numbers
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b is defined as follows [43]:
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where
�
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1; Ma
2

	
and

�
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1; Mb
2

	
are the mean intervals of fuzzy numbers
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a and
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b,

respectively. When �N
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�

b, at least at degree ˛ and it is shown by
�
a�˛

�

b. It is stated that
�
a is equal

�

b in

degree ˛ if the following inequalities hold simultaneously: ˛
2

� �N

�
�
a;

�

b

�

�

1 � ˛
2

. By considering the above definitions, the crisp counterpart of model (25)
is reformulated as below:
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1

3
.co � cp/




.1 � ˛/

�
2

3
am C

1

3
ao

�

C ˛

�
2

3
am C

1

3
ap

��

x

� ˛

�
2

3
bm C

1

3
bo

�

C .1 � ˛/

�
2

3
bm C

1

3
bp

�

; i D 1; : : : l



138 R. Daghigh et al.




.1 � ˛=2/

�
2

3
am C

1

3
ao

�

C ˛=2

�
2

3
am C

1

3
ap

��

x

�
˛

2
�

2
3
bm C 1

3
bo
� C

�
1 �

˛

2

��2

3
bm C

1

3
bp

�

; i D l C 1; : : : m




.˛=2/

�
2

3
am C

1

3
ao

�

C
�
1 �

˛

2

��2

3
am C

1

3
ap

��

x

�
�
1 �

˛

2

��2

3
bm C

1

3
bo

�

C .˛=2/

�
2

3
bm C

1

3
bp

�

; i D 1; : : : l

x � 0 (27)

4.2 Optimization of Natural Gas Supply Chain Through
a Greenhouse Gas Reduction Under Uncertainty

Natural gas is the most environmentally friendly fossil fuel because it contains less
carbon. Natural gas industry is one of the most important and costly industries
in which development and planning of natural gas networks as multidisciplinary
projects have crucial impact on the gas-rich countries. Thus, management of
environmental aspects and the best approaches to achieving high environmental
performance in natural gas production, processing, and transmission must be
investigated. In this part, the simplified model proposed by Azadeh et al. [1] is
presented as a sample model for sustainable logistics network design in gas industry
in which a possibilistic programming model is used to convert the original model
into its crisp equivalent. The gas supply chain network design includes five levels:
two types of supplies are (a) the gas and oil wells to provide raw materials as the
first type of supply and (b) importation of the final product as the second type of
supply. Producers, i.e., the refineries, are at the second level of the supply chain.
In the third level, there is one type of distributor that is called compressor stations.
Storage is in the fourth level acting as inventory place. Finally, in the fifth level,
three consumer groups are located which are (1) power plants, (2) injection, and
(3) exportation. Relations among different components of this supply chain are
shown with arrows in Fig. 4. There are different properties in the route parameter
like length/diameter of pipelines and hardness coefficient of the existent relations
among entities. The model has two different objectives, i.e., minimization of overall
environmental effects and minimization of total costs. The following notations are
used for model formulation.
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Fig. 4 Natural gas network design

t Time period � � f1, 2, : : : j� jg t�

f, s Suppliers set fs : Gas Well, f : importationg

r Refineries set
m Compressor stations set
n Injection customer
e Exportation
v Power plant customer
w Storage tank set
i Starting nodes ifs [ f [ r [ mg

j Finishing nodes jfe [ n [ r [ m [ vg

Cost parameters

�

csst Cost of supply by gas well per unit in period t
�

cf ft Cost of supply by importation per unit in period t
�

crrt Cost of production by refinery per unit in period t
�

cmmt Operation cost of compressor station per unit in period t
�

cwwt Operation cost of storage tank per unit in period t
�

c o Transportation cost per product unit per distance unit
�

cg Social cost caused by per unit of greenhouse gas emission
�

clm Fixed cost of establishing compressor
�

czw Fixed cost of establishing storage



140 R. Daghigh et al.

Capacity and demand parameters

�

scst Capacity of gas well in period t
�

fcft Capacity of importation in period t
�

rcrt Capacity of refinery in period t
�

mcmt Capacity of compressor station in period t
�

wcw Capacity of storage tank
�

ndnt;
�

edet;
�

vdvt Demand of each kind of customer in period t

Route parameters

lij Length of the route between node I and node j
oij Hardness coefficient of the route between node I and node j

�ij

(
1 if there is a routebetween node i and node j

0 otherwise

)

Qmin
ij Minimum flow rate between node I and node j

Qmax
ij Maximum flow rate between node I and node j

	r, 	m Efficiency coefficient of refinery and compressor station, respectively

Greenhouse gas emissions parameters

gs Average amount of greenhouse gas emissions produced by gas wells per unit
gr Average amount of greenhouse gas emissions produced by refineries per unit
gm Average amount of greenhouse gas emissions produced by compressor stations per unit
gn Average amount of greenhouse gas emissions produced by customers (injection) per unit
gv Average amount of greenhouse gas emissions produced by customers (power plant) per

unit

Variables

xijijt Amount of the gas transmitted from the ith level to the jth in period t for different
starting and finishing nodes

ym 1 if compressor station is opened at location m otherwise 0
Lw 1if a storage tank is opened at location w otherwise 0
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xrnrnt � Qndndt 8n; t (30)

X

m

xmemet � Qeddt 8e; t (31)

X
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xmvmvt � Qvdvt 8v; t (32)



142 R. Daghigh et al.

X
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xsrsrt � Qscst 8s; t (33)
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xsrsrt � M�SR
sr 8s; r; t (41)

xrmrmt � M�RM
rm ym8r; m; t (42)

xfmfmt � M�FM
fm ym8f ; m (43)

xrnrnt � M�RN
rn 8r; n; t (44)

�SR
sr QminSR

sr � xsrsrt � �SR
sr QmaxSR

sr 8s; r (45)
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�RM
rm QminRM

rm � xrmrmt � �RM
rm QmaxRM

rm 8r; m (46)

�FM
fm QminFM

fm � xfmfmt � �FM
fm QmaxFM

fm 8f ; m (47)

�RN
rn QminRN

rn � xrnrnt � �RN
rn QmaxRN

rn 8r; n (48)

�ME
me QminME

me � xmemet � �ME
me QmaxME

me 8m; e (49)

�MV
mv QminMV

mv � xmvmvt � �MV
mv QmaxMV

mv 8m; v (50)

�Mw
mw QminMw

mw � xmwmwt � �Mw
mw QmaxMw

mw 8m; w (51)

�WM
wm QminWM

wm � xwmwmt � �WM
wm QmaxWM

wm 8w; m (52)

xijijt � 0; ym; Lw 2 Œ0; 1� (53)

The objective function (28) minimizes the total opening costs, supplying and
transmission to the next level. The second objective function (Equation (29) is also
related to minimizing the costs of emission of greenhouse gases across the supply
chain. Constraints (30)–(32) show the demands of each customer shall be fulfilled.
Constraints (33)–(38) guarantee that each supplier must have an output flow equal
or less than its capacity. Constraints (39) and (40) show the balance flow in the
refinery centers and compressor stations according to their efficiency coefficients.
Constraints (41) and (44) explain the presence or absence of a path. If the parameter
� accepts a value of 1, the corresponding decision variable can take a value of 1,
otherwise it is zero. Constraints (45)–(52) ensure the upper and lower bounds of the
gas flow which are determined according to the pipeline diameter and gas pressure.

Jimenez et al. (2007) method is used to deal with uncertain coefficients in the
objective functions and constraints. This method is based on the definition of the
“expected interval (EI)” and the “expected value (EV)” of fuzzy numbers. Assume
that

�
c is a triangular fuzzy number in which cmos, cpes, copt are the three prominent

points (i.e., the most likely, the most pessimistic, and the most optimistic values),
respectively. Then, the membership function EI and EV of fuzzy number

�
c can be

defined as the following equations:
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�Qc.x/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

fc.x/ D
x � cpes

cmos � cpes
if cpes � x � cmos

1 if x D cmos

gc.x/ D
copt � x

copt � cmos
if cmos � x � copt

0 if x � cpes or x � copt

(54)
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EV .Qc/ D
Ec

1 C Ec
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2
D

cpes C 2cmos C copt

4
(56)

As it was mentioned in the previous model, when �M
�
Qa; Qb
�

� ˛ it is represented
as Qa�˛

Qb: Now, consider the following fuzzy mathematical programming model in
which all parameters are defined as triangular or trapezoidal fuzzy numbers.

min z D Qctx

s:t:

Qaix � Qbi i D 1; : : : ; l

x � 0 (57)

Also, a decision vector x 2 Rn is feasible in degree of ˛ ifmin
˚
�N

�
Qaix; Qbi

�
D ˛

�
.

According to (26), equation Qaix � Qbi is equivalent to the following equation:

Ma
2 � Mb

1

Ma
2 � Mb

1 �
�
Ma

1 � Mb
2

� � ˛ i D 1; : : : ; l (58)

Finally, by the aid of the definition of expected interval and expected value of a
fuzzy number, the equivalent crisp ˛�parametric model of the model (58) can be
written as follows:

min EV .Qc/ x

s:t:

�
.1 � ˛/ Mai

2 C ˛Mai
1

	
x � ˛Mbi

2 C .1 � ˛/ Mbi
1 i D 1; : : : ; l

x � 0 (59)
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By considering the above mentioned definition and due to the prolongation of
contents, only a part of the first objective function (Equation 28) and two constraints
(Equations 30 and 33) of the defuzzied model have been presented below. Other
equations are similar to these presented ones:

minZ1

D
P

m
ym

�
cl1mC2cl2mCcl3m

4

�

C
P

w
Lw

�
cz1

wC2cz2
wCcz3

w
4

�P

s

P

r

P

t
xsrsrt

�
cs1

stC2cs2
stCcs3

st
4

C lSR
sr oSR

sr
c1

oC2c2
oCc3

o
4

�
C : : :

X

r

xrnrnt � ˇ

�
nd2

nt C nd3
nt

2

�

C .1 � ˇ/

�
nd1

nt C nd2
nt

2

�

8n; t

X

r

xsrsrt � ˇ

�
sc1

st C sc2
st

2

�

C .1 � ˇ/

�
sc2

st C sc3
st

2

�

8s; t (60)

5 Case Study

In this section, a sustainable supply chain network design case study is
reviewed which has already been presented in Pishvaee et al. [55]. The case
study is related to an Iranian single-use medical needle and syringe (SMNS)
manufacture named Avapezeshk (AVAP) which has itself about 70% market
share (www.avapezeshk.com). SMNS as one of the key products of health has
particular role in the health system. The World Health Organization reported that
16 billion injections that were performed while reusing unsterilized needles and
syringes led to 8–16 million hepatitis B, 2.3–4.7 million hepatitis C, and 80,000–
160,000 human immunodeficiency virus (HIV) infections around the globe. The
main theme of corporate vision is sustainability, because SMNS has significant
environmental effects especially in the end-of-life (EOL) phase and infected SMNS
affects severely in health and social-political stability of any country. To do this,
the corporate strategic committee considered three major aspects, (1) profits, (2)
people, and (3) planet, which are very similar to the sustainability aspects. As a
result, the company’s supply chain network should be redesigned to satisfy new
demands while accounting for Env and Soc issues alongside the Eco objectives.
As it was mentioned before, the Env impact of other phases of the SMNS life
cycle should not be neglected in the concerned problem, thus reverse supply
chain should also be considered in the company’s supply chain network redesign
problem. There are three methods for managing the EOL phase of SMNS: (1)
incineration methods at cement incinerator; (2) non-incineration methods, such as

http://www.avapezeshk.com
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Production centers (i ) Customer zones (j )

Landfill centers (o )

Steel recycling centers
(l )

Plastic recycling centers
(m )

Forward flow
Reverse flow

Collection centers
(k )

Incineration centers (n )

Fig. 5 The concerned forward-reverse supply chain network [55]

safe landfill; and (3) recycling at plastic and steel recycling centers. The case study
supply chain is illustrated in Fig. 5. This company has one production plant with
capacity of producing about 600 million products per year in which new products
are transported to the 23 customer zones including 3 foreign and 20 domestic
customers in the forward network without any shortage, and after being used, the
EOL SMNS (a predefined percent of customer’s demand) are transported to the
collection centers by the reverse flow and then shipped to incineration, landfill, or
recycling centers.

For implementing the studied case, the company considered seven other can-
didate locations for establishing new plants in addition to one active plant. It is
significant that there are four production technologies that have important effect on
Soc, Env, and Eco performance. So, four types of production technologies and two
capacity levels of facilities are also considered as output decisions. In the reverse
flow, 11 candidate locations are available for establishing collection centers. Five
joint locations also considered among the candidate ones for production centers and
collection centers that may result in cost saving and also different impacts on Env
and Soc performances when they are established in the same locations. Furthermore,
seven steel and five plastic recycling centers and five incineration centers and eight
safe landfill locations are also available for handling used products.

The model determines the number, location, and capacity of required production
centers and collection centers, the best production technologies for production
centers and the best EOL options as well as the aggregated material flow quantities
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between network facilities with the following three conflicting objectives covering
the three aspects of sustainability:

• Minimizing the total cost D fixed opening costs C variable transportation and
processing costs - saving from integrating facilities

• Minimizing the Env impact D damage to human health C damage to ecosystem
C damage to resources

• Maximizing the SR D created job opportunities - consumer risk - damage to
workers health C value of local development

The dynamic nature of supply chains leads to considerable fluctuations in input
parameters, which impose a high degree of uncertainty to SCND problems in
the long-term horizon. Here, the uncertain parameters due to lack of knowledge
about their exact values are presented by imprecise values presented in the form
of fuzzy numbers and a possibilistic programming approach with the minimum
confidence level of 0.9 for possibilistic chance constraints (i.e., the credibility-based
possibilistic programming approach) is used to handle these uncertain parameters in
the model. GLCAP and Recipe life cycle assessment methods are incorporated in
the model to estimate the relevant social and environmental impacts. In order to
deal with multiple conflicting objectives of the proposed model, a posteriori fuzzy
solution approach [22, 38] is used in which the range 0.8–1 is assigned to importance
weight of economic objective and the range of 0–0.15 is also dedicated to other two
objective functions (i.e., Env and Soc OFs).

Solving the discussed model using the aforementioned methods, one can see that
the three OFs are in conflict with each other. According to such confliction between
OFs, it can be concluded that when the value of protection price (i.e., the solution
obtained when the model is solved only according to the cost OF) increases, more
desirable value of Env and Soc protection can be achieved. Also, the cost-based
objective function has a tendency toward designing a centralized network with less
total cost and expensive production technologies while the environmental-based
objective function offers a more decentralized network and more environmentally
friendly production technologies.

Additionally, the performance of the proposed model under various minimum
acceptable confidence level of chance constraints shows that when ’-level value
increases (in response to uncertainty with higher confidence level), it will lead to
increase in values of three objective functions because more resources must be used
to satisfy the chance constraints. Since the model is strongly NP-hard, an accelerated
Benders decomposition algorithm utilizing three efficient acceleration methods is
designed which can achieve the exact optimal solution in a reasonable time.

6 Future Research Direction

Given the current state-of-the-art literature in sustainable logistics network design
under uncertainty, there are various avenues for further research as follows:
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• Despite the fact that the corporate social responsibility is one of the main aspects
of the sustainability, investigation on it is so limited in the current literature.
Therefore, in order to move toward sustainable supply chain networks, it is
necessary to include the social aspects beside the environmental and economic
dimensions in the developed models.

• Integrating tactical and operational planning issues into the current strategic
models to broaden the scope of developed models could be another interesting
research direction with significant practical relevance.

• Considering the uncertainty in input parameters (i.e., operational risks) as well
as uncertainty in supply chain network (i.e., disruption risks) at the same time.

• Accounting for multiple types of uncertainties in input parameters (e.g., stochas-
tic and fuzzy data) and developing mixed uncertainty programming approaches
(e.g., mixed possibilistic-stochastic programming) to cope with these uncertain-
ties.

• Since most of real-life problems are large, and the exact methods can solve
only small- to moderate-sized problem instances, devising tailored solution
approaches including heuristics, metaheuristics, or matheuristics (the interoper-
ation of metaheuristics and mathematical programming techniques) would be of
particular interest.
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Methodological Approaches to Reliable
and Green Intermodal Transportation

Emrah Demir, Martin Hrušovský, Werner Jammernegg,
and Tom Van Woensel

Abstract A combination of transportation modes offers environmentally friendly
alternatives to transport high volumes of freight over long distances. In order to
reflect the advantages of each transportation mode, it is the challenge to deal with
data uncertainty during the transportation planning phase. This chapter investigates
the alternative ways of modeling the uncertainty by discussing them and their
characteristics in terms of solution times, the quality, and the limitations. Moreover,
several real-life case studies are provided to demonstrate potential environmental
benefits by considering the principles of green logistics for single-mode and
intermodal transportation.

1 Introduction

The growing demand leads to increased transportation volumes on the limited trans-
portation networks which leads to delays and disruptions due to unexpected events.
This is particularly crucial for road transportation which has been traditionally the
most preferred transportation mode and still has the major share on the modal split
in Europe [43]. Moreover, road transportation is one of the main contributors to
carbon dioxide equivalent (CO2e) emissions from transportation that are responsible
for severe impacts on climate [20]. Therefore, logistics companies are looking for
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Table 1 Acronyms and
abbreviations used in the
chapter

Notation Description

CO2e Carbon dioxide equivalent

GHGs Greenhouse gases

GISND Green intermodal service network design problem

SAA Sample average approximation

TEU Twenty-foot equivalent unit

TMS Transport management system

VRP Vehicle routing problem

alternative transportation solutions that would minimize negative impacts of their
transportation activities but still offer competitive solutions in a highly saturated
market (Table 1).

One of the alternatives is intermodal freight transportation, a specialization
of multimodal transportation which consecutively uses multiple transportation
modes moving the goods in the same standardized loading unit (e.g., container)
[17]. In addition to flexibility offered by multimodal transportation, intermodal
transportation offers numerous advantages for shippers with large volumes, such as
standard sizes, faster transshipments, and reduced packaging expenses [45]. How-
ever, the combination of different transportation modes requires more coordination
and accurate transportation planning. Since most of the intermodal services are
running according to fixed schedules, the reliability of the transportation plans is an
important issue in order to avoid delays and enable on-time delivery of the goods. In
this context, improved collection of real-time traffic flow information over the last
decade builds the data basis for reliability of transportation plans.

While transportation literature offers extensive methods for (unscheduled) road
transportation (see, e.g.,[31, 19]), these approaches are only of limited use for
planning transportation activities in intermodal transportation networks, where
services such as train, vessel, or flight connections follow a fixed schedule. In
such cases, service network design (SND) provides promising alternatives for the
reproduction of transportation flows on more than one mode. SND problems deal
with the selection of available services for specific transports by offering advantages
for the consolidation of transports as well as the consideration of multiple modes.
Moreover, it provides methodological possibilities which enable the representation
of transshipment as well as the consolidation of containers.

The research on dynamic SND problems is still in its early days, though, which
leads to a lack of applications to as well as the development of new methods for
service network environments. Most of the limited publications in this domain are
dealing with demand uncertainty (e.g., [32, 10]), while only a minority takes travel
time uncertainties into account. Input from practitioners, though, suggests that travel
time uncertainty is an important source of variability to consider when trying to
make accurate transportation plans.

The aim of this chapter is to give an overview about possible approaches for
modeling intermodal freight transportation planning under uncertainty. For this,
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different approaches are at first described and then compared using a case study in
order to show their advantages and weaknesses. In order to discuss different aspects
of transportation activities, multiple objectives (e.g., costs, time, emissions) are
considered in the models which provide managerial insights on interaction between
economic and ecological objectives in transportation planning and on the benefits of
using alternative transportation modes in comparison to road transportation. In this
way the ecological footprint of transportation operations can be improved which
contributes to achieving the objectives of the green logistics concept.

The remainder of the chapter is organized as follows. Section 2 introduces the
green intermodal service network design problem and discusses important points
for considering CO2e emissions in transportation planning. Section 3 describes
alternative ways of uncertainty modeling. Section 4 presents case studies to
highlight and compare the importance of methodological approaches to intermodal
transportation. Conclusions are stated in Sect. 5.

2 The Green Intermodal Service Network Design Problem

The intermodal transportation chain consists of a number of transportation services
served by different transportation modes that connect intermodal terminals where
transshipment has to be handled. These services need to be coordinated in order to
ensure smooth flow of freight in containers through the network from their origin
to the destination within time windows specified by the customer. Typically, there
exist various alternative routes within the network between the planned origin and
destination of a container, and the aim is to find the optimal route that fulfills
the criteria set by the decision maker. In this respect, the most important criteria
for transportation mode choice are not only transportation costs but also safety,
flexibility, and reliability, as shown in a survey performed by [48]. Since customers
want to have the goods delivered on time and avoid delays which can cause
additional costs or production stoppages, reliability of the system is becoming more
crucial. Therefore, it is necessary to include the uncertainties in travel times caused
by delays and disruptions of transportation network into the planning algorithms.
In this way the created transportation plan becomes robust since it can stay feasible
even if a disruption occurs, and therefore goods can be delivered on time [22].

High robustness of transportation plans is of special importance in case of
intermodal transportation planning where several vehicles of different transportation
modes are connected in one transportation chain. Thereby, every mode has its
special characteristics that need to be considered. Whereas some services in
intermodal transportation networks (e.g., rail, inland waterway) have fixed departure
times according to planned schedules, other services (mostly road) are usually
more flexible as they do not have fixed time slots when they can use the available
infrastructure. This feature further increases the complexity of the intermodal
transportation problem since the fixed departure times have to be considered when
coordinating the individual services in a transportation plan. Whereas schedules can
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be easily incorporated into planning if only deterministic travel times under ideal
conditions are considered, they might lead to disruptions of the network when delays
occur and the goods are delivered to the terminal only after the next planned service
has already left. In that case the goods have to wait for the next train or vessel
which might result in a delay of hours or even days depending on the frequency
of the connection. Alternatively, a new plan has to be found which might result in
higher costs, time, or emissions. Therefore, it is necessary to include buffer times
into transportation planning to avoid such situations.

Buffer times should not be too long since this would make the total transportation
time longer and therefore further decrease the competitiveness of intermodal
transportation in comparison to direct single-mode transportation which does not
require any transshipment operations on the route. The length of the buffer times is
dependent on the type and frequency of disruptions occurring on a certain route
which can be derived from historical data as well as from actual real-life data
about the current transportation network state and represented in form of travel
time probability distribution as shown in Sect. 3. In reality, the same delay can
lead to different results for different connections: e.g., a delay of 30 min can be
critical for a truck operating in a just-in-time environment, whereas the same delay
might not have any influence in case of an inland waterway vessel sailing 3 days
between origin and destination. Besides that, the type of disruption also determines
the impact of a certain disruption on the transportation: whereas a truck can usually
take a detour if an accident happens on a highway, in case of a low water level on
a certain river section, the vessel either has to wait for a couple of days, or goods
have to be transshipped to another transportation mode [47]. If all these factors are
included in the transportation planning process, the robustness of the resulting plan
can be increased so that most of the disruptions are covered by the included buffer
time.

A transportation planning approach which enables the inclusion of uncertainty
and includes multiple objectives was first studied by [15] and followed by [24].
In their paper, the authors present a mixed-integer linear program for optimizing
the transportation plan within an intermodal network considering uncertain travel
times and demands. The approach chosen is called service network design (SND)
in which each transportation link between two terminals is modeled as a service
characterized by its origin, destination, capacity, route, departure time, planned
travel time, transportation costs and emissions as well as the vehicle used for this
service. This approach is also the basis for this chapter, where we investigate the
transportation plan based on three different objectives which can have different
weights according to the user’s preferences. The objectives are transportation costs,
time in form of costs for in-transit inventory and penalty costs for late deliveries at
the final customer, and CO2e emissions expressed as emission costs. Since a survey
by [13] has shown that this combination of objectives and especially consideration
of CO2e is not usual in the current transportation management systems (TMS)
responsible for planning operations, Sect. 2.1 shortly discusses requirements and
possible problems for modeling emissions. After that, the mathematical model used
for intermodal transportation planning is presented in Sect. 2.2.
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2.1 Air Pollution and GHGs

The environmental impact of transportation can be measured in the form of
CO2e emissions which have to be calculated accurately. Using accurate calculation
methods and quantifying the emissions might help to identify possibilities for their
reductions which together with a proper implementation of green logistics bring
more advantages than disadvantages for the logistics service providers or freight
forwarders. Therefore, there is an increasing need to highlight these advantages to
transportation companies.

Greenhouse gases (GHGs) are the most studied negative externality of freight
transportation. These gases cause atmospheric changes and climate disruptions
which are harmful to the natural and built environments and pose health risks.
The primary transportation-related man-made GHGs in the Earth’s atmosphere are
carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone (O3). As
CO2 is the dominant man-made GHG, the impacts of other gases can also be
calculated based on carbon dioxide equivalent (CO2e) emissions [27, 6].

Despite the fact that transportation sector is one of the biggest contributors of
CO2e emissions, a survey performed by [13] showed that calculation of emissions
is only slowly becoming part of TMS. Even when emissions are taken into account
in TMS, they are only reported as an additional factor for the resulting routes, and
they are not used as an optimization objective. Usually only costs are taken into
account for optimization, and in case of multiple objectives, costs are combined
with service, distance, time, etc. This development might be caused by multiple
reasons which make the calculation of emissions challenging.

Firstly, the amount of emissions is dependent on the energy needed for moving
the vehicle coming either from diesel or electricity consumption. Although the
energy consumption can be easily measured after the transportation has been
conducted, calculation of energy consumption before the start of the transportation
is problematic as it is dependent on a number of factors which are not always known.
These factors include the characteristics of the vehicle (e.g., weight, air and rolling
resistance, engine), route and driving characteristics (e.g., gradient, speed, number
of stops, driving behavior), and the amount of goods transported [5, 18, 12]. In order
to be able to estimate the emissions, a number of different models requiring detailed
inputs have been developed as shown by [12] and [14]. Besides these detailed
microscopic models, emission calculators based on real-world measurements and
recommended values for a typical vehicle are also available (e.g.,[9, 18, 26]).
However, each of these models and calculators is based on certain assumptions
which lead to discrepancies between calculated and measured emissions.

Secondly, the scope of emissions has to be determined in order to know
which emissions to consider for calculation. According to the GHG protocol,
emissions can be divided into three scopes: emissions from resources owned by
a company, e.g., emissions from production (Scope 1), indirect emissions from
purchased energy (Scope 2), and all other emissions including also other stages
of supply chain, e.g., suppliers, transport, and distribution (Scope 3) [46]. Similarly,
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the emissions from transportation activities can either be calculated as emissions
from fuel consumption directly in the vehicle (tank-to-wheel, TTW) or can also
include emissions from production of the fuel (well-to-wheel, WTW). Inclusion
of emissions from fuel production is especially important in cases where electric
vehicles are involved since emissions from electricity consumption are equal to zero
[30].

Thirdly, the monetary value of CO2e emissions is unclear. Since the long-term
effects of emissions on climate change and the amount of released emissions cannot
be easily predicted, the estimation of emission costs is again based on a number
of assumptions including different discount rates for future events and risk attitude
of the decision makers. As a result, the so-called social costs of carbon emissions
are estimated to be between 0 EUR and more than 700 EUR per ton of emissions
depending on the model [3, 37, 23]. In the analysis of [16], there are also differences
in emission costs ranging between 5 EUR and 135 EUR. Therefore the monetary
value of emissions cannot be easily compared to transportation costs.

In the calculation methodology used for the model, the emissions were calculated
per TEU transported by a certain service and then converted into emission costs.
As the estimation of emission costs is difficult, a fixed price of 70 EUR/ton of
CO2e emissions was used for calculations as recommended by the German Federal
Environment Agency [39]. Besides that, additional assumptions had to be made
regarding the average utilization of the vehicles since the emission functions for
trains and vessels are nonlinear. As a result, the utilization was assumed to be
80% for trains [39] and 90% for inland vessels [50]. Despite these additional
assumptions, the results show the influence of emissions on the optimal routing
decisions.

2.2 Mathematical Model

This part of the chapter provides a linear mixed-integer mathematical formulation
of the green intermodal service network design problem (GISND). The presented
model can be used to find optimal transportation plans under deterministic con-
ditions, i.e., in situations where no uncertainty is considered. The possibilities for
including uncertainty into the model are discussed in Sect. 3. The aim here is to
find an optimal plan for orders p 2 P defined by their demand dp, origin i, and
destination j nodes as well as earliest release �

p
release and due time �

p
duetime. Moreover,

�p.i; j/ D f.p 2 P/ji 2 N and j 2 N g is a set of orders with origin i and
destination node j. The orders can be routed in a transportation network consisting
of services s 2 S (scheduled transports) and nodes i; j 2 N (transshipment
locations). Each service, since it is connected to a schedule and vehicle, is unique
and connects transshipment locations i and j. Therefore, ıs.i; j; v; Ds

m/ D f.s 2

S /ji 2 N and j 2 N and v 2 V g is a set of services executed by vehicle v
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Table 2 Sets and parameters used in the model

Notation Definition

N Set of all transshipment locations

N C Set of start terminals of transportation orders

N � Set of end terminals of transportation orders

P Set of transportation orders

S Set of transportation services

�
p

release Earliest release time of order p

�
p

duetime Due time of order p

cj Transshipment costs per container in terminal j

cs Transportation costs of a service s

cemi Emissions-related costs per kg of CO2e emissions

cp
pen Penalty costs in case of late delivery of goods

cp
t In-transit inventory costs per hour for order p

caps Free capacities of services s

dp Demand (in containers) of order p

ej Emissions in kg per transshipment of container in terminal j

es Emissions in kg per transportation of container on service s

L Large (enough) number

tj Separate loading and unloading time at terminal j

ts Transportation time of service s

Ts
min Start of the departure time window for service s

Ts
max End of the departure time window for service s

!i Weight for the objective i

between origin i and destination node j within the starting time window bounded
by Ts

min and Ts
max. In addition to that, services are characterized by their scheduled

departure time Ds and service travel time ts as well as service slot price cs and
CO2e emissions per container es. Services on the road as well as transshipment are
assumed to be available when needed. We first present sets, parameters, and decision
variables and then provide the mathematical formulation of the model. This model
extends the model introduced by [15] by adding in-transit inventory costs to the
original time-related cost component of the objective.

We now provide the sets, parameters, and decision variables used for the
formulation of the mathematical model in Tables 2 and 3.

Minimize !1

X

p2P

X

s2S

xspcs C !1

X

j2N

njcj C !2

X

p2P

cp
t .ADp � �

p
release/C

!2

X

p2P

X

s2S

ap
delaycp

pen C !3cemi

X

p2P

X

s2S

xspes C !3

X

j2N

njej (1)
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Table 3 Decision variables used in the model

Notation Definition

ap
delay Delay of order p at destination node j

As Arrival time of service s at the associated destination node j

ADp Arrival time of order p to its destination

Ds Departure time of service s at the associated departure node i

Delayqrp Delay between preceding service q and succeeding service r of order p

lqr A binary variable equal to 0 if transshipment is necessary between preceding
services q and succeeding service r, 1 otherwise

nj The number of containers transshipped at terminal j

ys; ysp A binary variable equal to 1 if service s is used (for order p)

xsp The number of containers of order p carried via service s

zqrp The number of containers of order p that have to be transshipped between
preceding services q and succeeding service r

Subject to:

X

s2ı.s2S jnDi/

xsp D dp 8n 2 N jn D i; p 2 P (2)

X

s2ı.s2S jnDj/

xsp D dp 8n 2 N jn D j; p 2 P (3)

X

s2ı.s2S jnDi/

xsp �
X

s2ı.s2S jnDj/

xsp D 0 8n 2 N j.n ¤ i; j/; p 2 P (4)

X

p2�.p2P/

xsp � yscaps � 0 8s 2 ı.s 2 S / (5)

xsp � yspL 8s 2 ı.s 2 S /; p 2 �.p 2 P/ (6)

xsp � ysp 8s 2 ı.s 2 S /; p 2 �.p 2 P/ (7)

ys �
X

p2�.p2P/

xsp 8s 2 ı.s 2 S / (8)

X

p2P

X

s2
ı.s2S jiDnjjDn/

xsp � 2
X

p2P

X

q2
ı.q2S jiDn/

X

r2
ı.r2S jjDn/

zqrp D nn 8n 2 N (9)

Ds C ts � As � L.1 � ys/ 8s 2 ı.s 2 S / (10)

Aq C tjx
qp C tjx

rp � 2tjz
qrp � delayqrp � Dr � L.1 � yqp/ � L.1 � yrp/

8q 2 ı.s 2 S jj 2 N /; p 2 P; r 2 ı.s 2 S ji 2 N / (11)
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zqrp � Llqr 8q 2 ı.s 2 S jj 2 N /; p 2 P; r 2 ı.s 2 S ji 2 N / (12)

Ds � ysp�
p

release � 0 8p 2 P; s 2 ı.s 2 S ji 2 N C/ (13)

As � ap
delay � �

p
duetime � L.1 � ysp/ 8p 2 P; s 2 ı.s 2 S ji 2 N �/ (14)

ADp � As � L.1 � ysp/ 8p 2 P; s 2 ı.s 2 S ji 2 N �/ (15)

Ts
minys � Ds � Ts

maxys 8s 2 S (16)

delayqrp � yqpL 8q 2 S ; r 2 S ; p 2 P (17)

delayqrp � yrpL 8q 2 S ; r 2 S ; p 2 P (18)

ys; ysp D f0; 1g 8s 2 S ; q 2 S ; r 2 S ; p 2 P (19)

ap
delay; xsp; zqrp; delayqrp; Ds; As; ADp � 0 8s 2 S ; q 2 S ; r 2 S ; p 2 P: (20)

The objective function (1) of the mathematical model minimizes a weighted
sum of the total costs. The weights enable the reflection of individual preferences
regarding direct transportation (!1), time-related (!2), and CO2e emissions-related
(!3) costs. The direct transportation costs consist of transportation costs per
container and service cs, which include the fixed transportation costs per service
allocated to one container as well as the direct transportation costs per container and
transshipment costs per container (cj). The time-related costs (cp

t ) are represented
by in-transit inventory costs for the total time spent since the release of goods
at the origin until the arrival of the order to the destination. In addition to that,
charges for delayed deliveries (cp

pen) are also included in time-related costs. As the
third objective, the CO2e emissions-related costs per kg (cemi) for the emissions
consumed per container serviced (es) and transshipped (ej) are also included.

Constraints (2), (3), and (4) handle the movement of containers. While con-
straints (2) and (3) focus on the origin and destination nodes, constraint (4) manages
the transshipment. Demand, in that regard, is positive if more containers are planned
to originate from a specific node than are destined for that node. Constraint (5)
ensures that capacity limits of services are adhered to. Constraints (6), (7), and (8)
make sure that a service is only allowed to process any amount of containers when it
is selected. While (9) tracks the transshipment necessary, constraints (10) and (11)
ensure the timely sequencing of the services within the network. As seen in (10),
each service has interrelated departure, service, and arrival times. In addition to the
synchronization at nodes in terms of loading units (2), (3), and (4), constraint (11)
takes care of the timely synchronization. It ensures the relation of sequential services
at a transshipment location. This is necessary due to more or less fixed schedules of
services, which permit services with earlier departure times than possible preceding
services from following up on them. Constraint (12) ensures that only containers
which have to change the vehicle are considered when calculating transshipment
times, costs, and CO2e-emissions. Constraints (13) and (14) provide the time frame
for each order to plan within. The lower limit (earliest pick-up time) is fixed, while
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the upper limit (due date) can be bent, with penalties – if desired – allocated to
late deliveries (ap

delay). Constraint (15) defines the arrival time of the order to the
destination which is dependent on the arrival of the last service which the order
is carried on. Constraint (16) gives the time window within which services can
depart with Ts

min D Ts
max being valid for scheduled services. Constraints (17) and

(18) ensure that the feasibility of two consecutive services is only checked if these
services are designated to be used within the same routing plan. The domain of the
decision variables is given in constraints (19) and (20).

3 Dealing with Travel Time Uncertainty

Whereas the presented mathematical model can easily calculate transportation
plans in a deterministic environment, it has only limited possibilities to handle
the increased complexity of the problem if stochastic factors are included. The
reason for this is that considering uncertainty for different variables results in
a high number of possible scenarios which cannot be handled by conventional
methods, such as dynamic programming and multistage stochastic programming
for realistic instance sizes. As an example, in a network with three services that
can have three possible travel time realizations each, in total 27 different travel
time combinations are possible, and the number of combinations is exponentially
increasing with the increasing number of services and scenarios. Therefore, two
possible approaches which can handle such complexity and evaluate the reliability
of transportation plans under uncertainty are presented in this chapter, namely,
sample average approximation and simulation-optimization. The focus here is on
travel time uncertainty, but these approaches can be easily applied to other uncertain
factors, such as demand or customer.

3.1 Sample Average Approximation

The sample average approximation (SAA) method is used to reduce the complexity
of a stochastic problem by approximating a distribution or an expected value of an
uncertain variable. The approximation of a distribution is obtained by replacing the
actual distribution with an empirical distribution by Monte Carlo sampling. In cases
where the objective function corresponds to an expected value, it is approximated by
its sample average estimate. The resulting problem is then solved by deterministic
optimization methods.

The SAA method has been widely applied in the context of transportation
planning and routing. Kenyon and Morton [28] use SAA to solve a stochastic
vehicle routing problem (VRP) under two different objective functions: minimizing
the expected completion time and maximizing the probability of completion time
being below a target level. Luedtke and Ahmed [33] provide an application of SAA
to a chance-constrained transportation problem with a convex feasible region where
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the dimension of the random vector presents a computational challenge. Wang and
Meng [52] apply SAA for a schedule design problem for liner shipping services
to minimize expected costs, and [53] apply it to chance-constrained liner ship fleet
deployment problem. Verweij et al. [49] provide an introduction to the application
of SAA to stochastic routing problems with expected value objectives.

The SND formulation presented in Sect. 2 extended by travel time uncertainty
can be classified as a chance-constrained problem where a chance constraint
measuring the number of successful realizations of a transportation plan under
different travel time scenarios decides about the reliability of the plan. In this
context, SAA method is used to approximate the true probability of the constrained
event by its frequency of occurrence within the sample. In general, SAA is applied to
chance-constrained stochastic problems because of two reasons: the feasible region
defined by the chance constraint can be non-convex, and the probability of the
constrained event may be difficult to evaluate [33, 38]. It has been shown that the
optimal solution of the sampled problem converges exponentially fast to the optimal
solution of the original problem as the number of scenarios increases.

The application of SAA to the GISND problem has been studied by [15]. In
their approach, a number of different independent samples are created where each
sample consists of M scenarios representing different travel time realizations based
on their probability distributions. Then, the model is solved for each of the samples
which results in a number of candidate solutions. These candidate solutions are then
tested on another test sample with a large number of scenarios in order to evaluate
the probability that a plan is not feasible under a certain travel time combination,
and therefore replanning is required. If this probability is higher than a certain value
1 � ˛ which has to be chosen arbitrarily before the start of the process, then the
plan is not considered as a feasible solution. From all feasible candidate solutions,
the solution with minimal total costs is chosen at the end as an optimal solution. In
order to apply the SAA method to the GISND, the mathematical model presented
in Sect. 2 has to be extended by a set of travel time scenarios M and the following
constraints checking the reliability of the plan:

1 � f qrp
m � delayqrp

m 8q 2 S ; r 2 S ; p 2 P; m 2 M (21)

L.1 � f qrp
m / � delayqrp

m 8q 2 S ; r 2 S ; p 2 P; m 2 M (22)

f qrp
m � f p

m 8q 2 S ; r 2 S ; p 2 P; m 2 M (23)
X

m2M

f p
m � M˛ 8p 2 P; (24)

where f qrp
m is a binary variable checking whether an order p can catch the planned

ensuing service after arriving to a transshipment terminal (f qrp
m D 1) or not (f qrp

m D

0), depending on the delay of the order determined by constraint (11). Based on the
constraints (21), (22), and (23), the binary variable f p

m then shows whether a certain
transportation plan for order p is feasible (f p

m D 1) or not (f p
m D 0). Constraint (24)

is then the chance constraint measuring the number of feasible scenarios which has
to be higher than the factor ˛ (e.g., 95%) in order to classify a plan as reliable.



164 E. Demir et al.

3.2 Simulation-Optimization Approach

Another possibility for including uncertainty into the green intermodal transporta-
tion problem is a two-step hybrid approach combining the presented deterministic
optimization model in Sect. 2 with a simulation model which is able to create and
evaluate a high number of scenarios for the stochastic elements. This approach is
getting more attention in the last years when it has been used for solving complex
dynamic problems in supply chain management (see, e.g.,[2, 1, 35]). As an example,
[40] combines simulation and optimization models in order to optimize a supply
chain by combining transportation planning and production decisions including
stochastic and nonlinear elements. In case of [44], a simulation-based approach
is used for sustainable transportation optimization by searching for strategies that
minimize the generalized costs of multimodal planning. In addition to that, [7]
and [42] apply a hybrid approach combining simulation and optimization for
coordinating production and distribution decisions, and [11] uses a similar method
for the perishable goods industry. Whereas these contributions cover the production
processes and their combination with distribution, the application of the simulation-
optimization approach to the transportation planning area is very limited. Besides
that, the main purpose of combining the two methods is usually the estimation of
uncertain parameters by simulation which are then used for the optimization. This
differs from our approach where the simulation model with stochastic travel times
is used to evaluate the reliability of deterministic transportation plans created by the
optimization model.

The solution procedure has been described in detail in [24] and is presented in
Fig. 1. The authors considered a system which consists of an optimization model and
a simulation model run in different software that are connected through a database
including the relevant transportation network represented by terminals and services

Optimization
model

Simulation 
model

Deterministic
transportation

plans

Orders with
unreliable transpor-

tation plans + 
service sequence

Orders with
reliable

transportation
plans

Service 
capacity
updates

Orders

Services

Terminals

Model inputs

Data exchange between models

Model outputs

Fig. 1 An overview of the simulation-optimization approach presented by [24]
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as well as orders that need to be shipped. All of the data has to be available at
the beginning of the process and is the input for the optimization model which
computes the optimal transportation plan considering deterministic travel times
in ideal situation where no congestion or delay occurs. In this way the optimal
plan is obtained relatively quickly, and additional constraints connected to travel
time uncertainty which might limit the size of the instances that can be solved to
optimality can be avoided.

The transportation plans calculated by the optimization model serve as a basis for
the simulation model which in the second step of the solution procedure evaluates
their reliability under stochastic circumstances. In this step, the travel time is
uncertain and can take different values depending on the underlying probability
distribution that has to be determined in advance. During the simulation, multiple
runs of the simulation model are executed in order to consider different possible
travel time combinations for all services in the transportation network. Within each
run, the optimal deterministic route for each order is simulated in order to see
whether the plan is still feasible under the chosen travel time realizations. In this
way, in addition to calculating the number of scenarios in which a plan becomes
infeasible, also the problematic service or sequence of services which might lead to
delay and infeasibility of the plan can be identified. The plan becomes infeasible if
the containers arrive too late to an intermediate terminal, and therefore the planned
subsequent service is missed. In this case the transportation process cannot be
continued according to the original plan, and therefore an alternative solution has to
be found. The simulation model enables to define some simple solutions in advance
(e.g., using an additional truck to transport the containers directly to the destination)
which can be used and simulated in case of infeasibility. In this way not only the
reliability of the plan but also the additional costs in case of infeasibility can be
estimated.

At the end of the simulation phase, the reliability of the plans is evaluated based
on two criteria: the number of runs in which the plan was infeasible and the average
additional costs of this infeasibility in comparison to the optimal deterministic
solution. The thresholds for these criteria have to be set at the beginning of
the optimization process, and they are decisive for classifying a transportation
plan as reliable or not reliable. Transportation plans which are reliable leave the
optimization process and are fixed for execution which means that the service
capacity used by these plans has to be blocked and the free capacity of the services
has to be updated in the database. Transportation plans which are not reliable are
sent back to the optimization model together with the updated service capacities,
and the whole optimization process starts from the beginning. In order to prevent
the repeated choice of the unreliable plan by the optimization model, the service
sequence of the plan is also used as input for the optimization model and is handled
in an additional constraint so that an alternative plan has to be chosen. This process
is repeated until a reliable plan is found for all orders. If there is no feasible and
reliable route for an order in the considered network, a direct transportation by truck
is used as a default option.
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3.3 A Comparison of the Methods

Both presented methods can be used to get reliable transportation plans; however,
the decision about which method to use and also the quality of the solution for
each method might be dependent on the complexity of the problem which has to
be solved. The division of the solution procedure into two steps in the simulation-
optimization approach decreases the complexity for the mathematical optimization
model which only has to deal with deterministic times. Therefore, larger instances
can be solved than in the case of the SAA approach since the scenarios are
included in the mathematical model which limits the size of the problem a solver
can handle. In terms of computational time, the integration of scenarios into the
model leads to faster solutions for SAA for smaller instances since the simulation
model needs some time to run all scenarios and the time further increases if
solutions are infeasible and further runs of the optimization and simulation model
are necessary. However, whereas the computational times for SAA tend to increase
exponentially with the increasing complexity of the instances, the time needed for
one simulation run is rather stable. Moreover, with regard to the quality of the
solution, the simulation-optimization approach evaluates the reliability based on
two criteria so that some plans which are unreliable according to SAA can be
accepted by simulation since the infeasibility might cause only very small cost
increase that might be negligible in comparison to the higher costs of an alternative
plan. Furthermore, the simulation model shows where the disruption occurs which
is not reported by SAA where only a solution is chosen based on the chance
constraint. The simulation model also gives possibilities to increase the number of
considered scenarios and replications in order to increase the statistical significance
of the solution, and the travel time can be modeled by using different probability
distributions. The described differences are also illustrated by a computational
comparison in Sect. 4.2.

4 Case Studies

The combination of different objectives and the consideration of travel time
uncertainty in the optimization process often lead to trade-offs and conflicting
solutions which are dependent on the priorities that the transportation planner
sets before the solution process is started. In order to illustrate these trade-offs,
this section consists of two case studies that show the influence of the individual
objectives and the travel time uncertainty on the optimal solution. Comparing results
for different objectives is not only important in the intermodal transportation, which
is described in Case study B (Sect. 4.2), but can also help to improve the reliability
of single-mode transportation, as it is illustrated in Case study A (Sect. 4.1).
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4.1 Case Study A: Choosing the Optimal Route for Road
Transportation

Road transportation is a very popular transportation mode with the highest share on
the modal split within the EU (74.9% in 2014) [21]. The reason for this is a high
flexibility of this transportation mode since most of the customers can be reached
without problems via the dense road network so that a truck can be used either
for the pick-up and last-mile delivery of goods within intermodal transportation
chains but also for direct connections between origin and destination. However,
the high volume of road freight transportation is responsible for a significant
amount of emissions from transportation, and the limited infrastructure capacity
in combination with dense individual passenger traffic might cause unexpected
congestions or delays that might influence the reliability of this transportation mode
and cause late deliveries of goods to the customer. Since the dense road network
usually offers a number of alternative routes between two terminals, a comparison
of the possible routes according to transportation costs, travel time, and CO2e
emissions can lead to transportation plans that might cause slightly higher costs but
improve the environmental impact and reliability of travel times so that buffer times
accounting for possible delays might be reduced. In order to be able to compare the
routes according to travel time uncertainty, historical data about past trips has to be
available.

The importance of travel time reliability can be illustrated on regular truck
transportation of air freight between major European airports which is necessary
due to consolidation of goods or due to changes in available plane capacities that
are used for further transportation of the goods. As the changes in capacities are
announced at very short notice, the planning process has to be fast and use very
accurate data. In order to achieve this, a detailed analysis of travel times for truck
transportation between the airports in Amsterdam and Frankfurt (AMS-FRA) and
Amsterdam and Brussels (AMS-BRU) was conducted. The distance for AMS-FRA
is approximately 450 km, whereas for AMS-BRU trucks are traveling slightly more
than 200 km. The available data covered 3 weeks of transports in spring and summer
2014 in which around 300 trips were conducted for each origin-destination pair.
The collected data included travel times, speed, direction, breaks, delays, departure
times, and GPS coordinates of the trips [4]. As a result, three different routes
could be identified for AMS-FRA and two different routes for AMS-BRU. They are
displayed in Fig. 2 (routes 1–3 for AMS-FRA and 4–5 for AMS-BRU). Whereas the
number of trips was almost equal for routes 4 and 5, route 1 was clearly preferred
for the relation AMS-FRA.

Since the distance of the routes for each origin-destination pair is very similar,
the differences in total costs and emissions between the routes are less than 2%.
However, the analysis of travel times revealed important differences in travel
time distributions that might have influence on the reliability of transportation.
Although most of the trips were conducted during evening or night hours due to
flight schedules, there were enough trips during the day and rush hours for which
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Fig. 2 Route alternatives for AMS-FRA and AMS-BRU

typical delays could be observed. Therefore, the travel times were divided into three
categories: uncongested travel time accounting for minimal travel time without any
disruptions, congested travel time representing travel times with small delays caused
by usual (recurring) congestion, and disrupted travel time which was observed
for trips with major delays. The resulting travel times with their correspondent
probability of occurrence for each route are summarized in Table 4.

As shown in Table 4, route 1, which is preferred by the truck drivers, is the route
with the lowest uncongested travel time for FRA-AMS and therefore the fastest
route if no disruption occurs. However, this happens only in about 75% of the cases,
and the risk of delay of 1 h is about 20%, caused mainly by the fact that there are
regular congestions on the route which is passing important German cities (Cologne,
Düsseldorf, Dortmund). In addition to that, there is even a risk of major disruptions
adding another 4 h to the transportation time. In contrast to that, route 3 has a slightly
higher uncongested travel time, but the probability of congestion is lower, and also
the average delay is lower which reduces the fluctuation in arrival times. Therefore,
it might be more convenient to choose route 3 when trying to avoid driving on
congested highways which leads to delays and, especially in a stop-and-go traffic,
to higher fuel consumption and CO2e emissions.
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In the case of AMS-BRU, average travel times are the same for both routes, and
route 4 has a higher probability of congestion with longer average delay. However,
when taking into account disrupted travel times, route 4 might be better since the
probability and also average delay for this travel time category is lower.

Although the historical data cannot certainly predict the exact travel time for
the next trip, the distribution of past travel times can at least help to avoid routes
which might be critical when a disruption occurs. In this way the efficiency
of transportation can be increased minimizing the costs, delays, and emissions.
Whereas the current study was only based on a limited number of trips, recording
and analyzing historical data continuously can further improve the accuracy of travel
time distributions and predictions.

4.2 Case Study B: Intermodal Transportation Planning Under
Travel Time Uncertainty

The second case study investigates an intermodal transportation planning problem
on which the differences between the methods presented in Sects. 2 and 3 and the
influence of the individual optimization objectives can be presented. For this, an
intermodal transportation network consisting of intermodal terminals connected by
services on road, rail, and inland waterway has been created. This network is based
on real-world connections where [34] and [29] were used for railway schedules,
[51] was the basis for modeling inland waterway services, and road connections
were designed based on [41]. In total, the network consists of 20 terminals located
in Austria, Slovakia, Czech Republic, Germany, Slovenia, and Italy which are
used either as ports or as collection terminals for feeder services to Western
European harbors. For each terminal and service, the estimated transshipment and
transportation costs, times, and emissions have been assigned. The transportation
network, which was firstly defined in [15], is depicted in Fig. 3. Due to the
high complexity of the network, only rail and inland waterway connections are
included in the figure. These connections are extended by road services. The travel
time distribution for each service was modeled as a three-point distribution with
uncongested, congested, and disrupted travel time as already described in Sect. 4.1.

The analysis was conducted on an Intel(R) Core(TM) i5-5300U CPU with
2.3 GHz and 8 GB of memory. The deterministic optimization model and the
SAA model were solved using CPLEX 12.6 [25], and the simulation was run in
Anylogic University 7.2.0 [8]. For the inventory costs, 1 EUR/h was assumed for
each order, and the penalty costs are different for each order varying between 1 and
10 EUR/h. The emission costs were estimated to be 70 EUR/t of CO2e emissions as
recommended by [39].The thresholds for evaluating the reliability of the plans were
set to 5% for the share of infeasible scenarios and also 5% for the additional costs
of unreliability. In the simulation-optimization model, an extraordinary truck which
transports the goods directly to the destination is chosen as an alternative plan in
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Fig. 3 Rail and inland waterway services in the intermodal transport network

case of infeasibility. This truck is usually the fastest option if the original plan does
not work; however, since it has to be organized in a short time, an increase of 25%
for the transportation costs in comparison to a planned truck on the same route is
assumed.

In the first step, the solutions of the deterministic optimization model, SAA, and
simulation-optimization were compared with regard to computational times, quality,
and limitations. For this, the number of services in the network with 20 terminals
was stepwise increased from 50 to 500, and the number of orders considered varied
between 1 and 20. In this setting, the deterministic model could find an optimal
solution for all instances with up to 250 services; bigger instances could not be
solved due to memory problems of the solver. For SAA it could be observed that
the approach is limited by the number of scenarios M used where more than ten
scenarios for choosing candidate solutions significantly reduce the network size
that can be handled by the model. Besides that, the number of orders also has a
negative influence on computational time since the computational time tends to grow
exponentially with the increasing number of orders. The SAA approach could find
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optimal solutions for all instances with up to 250 services and 5 orders. The best
results with regard to size limitations were obtained by the simulation model used
in simulation-optimization where it can be seen that the model can handle all of the
tested instances and the computational times are relatively stable. This means that it
is more convenient to use the simulation-optimization model especially for bigger
instances where the computational time using ten simulation runs is lower than in
the case of SAA. In addition to that, the simulation model can also handle increased
number of scenarios which improves the statistical significance of the results. This is
also illustrated in Fig. 4, where computational times for deterministic model, SAA,
and simulation model with 10 and 100 runs are summarized.

When looking at the quality of the results, it could be observed that both SAA
and simulation-optimization are able to identify the same unreliable plans based on
the number of scenarios where the plan becomes infeasible. This is mainly the case
in small network with 50 services where usually very limited number of possible
connections exist. However, there is a difference in the estimated total costs of the
reliable solution since SAA only estimates the increase in costs due to unreliability,
whereas the simulation model can also calculate the costs of the extraordinary truck.
Therefore, it might happen that the estimated costs after simulation are lower than
the costs from the deterministic optimization model. This might indicate that using
a direct truck for a part of the route or the whole route might be a more convenient
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option when considering the economic factors and reliability. However, this has
usually a negative impact on CO2e emissions.

In order to analyze the influence of different objectives on the optimal route, 50
orders were created randomly, and their optimal route was calculated for different
combinations of objectives using the deterministic mathematical model in the first
step. The underlying network consisted of 100 services, and the results showed that
for 25 orders there was only one optimal route independent of the objective weights.
For the remaining 25 orders, where a change in plans was recorded, the dominance
of solutions minimizing the transportation costs is clearly visible since this cost
category has the highest share on the total costs. However, there is also a visible
influence of other objectives as it is shown in Fig. 5 where in each of the three
graphs, a trade-off between two objectives is shown, whereas the third objective is
not considered in the optimization process.

In the first graph, the trade-off between transportation costs and CO2e emissions
is shown where the transportation cost-minimizing solution clearly dominates the
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Table 5 Cost overview for different objectives of 25 orders

Transportation costs Time costs Emission costs Total costs

Optimization according to (EUR) (EUR) (EUR) (EUR)

Costs (1,0,0) 101,847.50 5,638.10 2,919.07 110,404.67

Time (0,1,0) 155,304.50 2,655.17 5,917.86 163,877.53

CO2e emissions (0,0,1) 104,265.50 5,594.00 2,802.71 112,662.21

emission minimization. A change occurs only when the emission objective has a
weight of 0.8 or higher. In this case the transportation plans for some of the orders
change toward more environmentally friendly transportation modes which results in
about 4% saving in CO2e emissions, whereas the increase in transportation costs is
only 2.4%. A similar picture can be seen when the trade-off between transportation
costs and time is analyzed; however, in this case the increase in total costs due
to time-optimizing solutions is much higher. Due to the increased use of direct
and fast truck services, the time costs can be minimized by 53%. However, this
is only possible when the transportation costs are increased by 53% in comparison
to the transportation cost-minimizing solution. Moreover, an increase in emissions
by 103% also has to be accepted. The negative impact of time optimization on total
costs is even more visible in the third graph where the trade-off between time and
CO2e emissions is depicted. Here the total costs are continuously increasing from
the minimum when only emissions are minimized until the maximum for the time-
minimizing scenario. Similar to the previous case, also here the transportation costs
increase in total by 49%, whereas 53% of time costs can be saved. The increase in
total emissions is with 111% even higher. The comparison of the individual cost
components for optimal deterministic plans according to every single objective is
displayed in Table 5.

The reliability of the calculated plans for all 50 orders was tested by the
simulation model. Since the travel time uncertainty can be modeled in different
ways, three different travel time distributions were used in order to compare the
influence of travel times on the reliability of the plans. Besides the discrete three-
point distribution, which was already used in Sect. 4.1, two continuous distributions
were also applied: a shifted exponential distribution, as suggested by [36], and the
uniform distribution, which is usually used if no or insufficient information about
the distribution of the uncertain variable is available. The exponential distribution
is shifted to the right starting at the uncongested travel time from the discrete
distribution, and its shape was obtained by fitting it to three intervals (uncongested,
congested, and disrupted) which were also created from the discrete distribution and
have borders located in the middle between the discrete travel times for each state
and probabilities corresponding to the discrete ones [24]. The borders of uniform
distribution are located at the uncongested and disrupted travel time for each service.
All three travel time distributions are illustrated in Fig. 6.

The output of the simulation model shows that many of the deterministic plans
in the studied instance are not reliable and require replanning. This is especially
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true for the time optimization where the created deterministic plans often combine
various truck services which might be faster than waiting for a direct train that
departs only in a couple of days. However, since the truck services are shared by
many orders, the truck service has to wait until all orders are available which might
result in delay for another order if the truck arrives too late to the destination. This
is not such a big problem for trains and vessels where the departure time is given by
the schedule and the vehicle is not waiting for a delayed order. Since the network is
limited by 100 services, it is often the case that there is only one available route in
the intermodal network for a certain order, and if this route is evaluated as unreliable,
the only alternative is to use a direct truck, which is then suggested by the simulation
model. This is especially true for orders which have to travel for very long distances
and have to combine a lot of services (up to eight in the studied instance). In
these cases avoiding the unreliable intermodal connection and using direct truck
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Table 6 Comparison of costs for different objectives and travel time realizations for 50 orders

Optimization Total deterministic Total costs after simulation for

according to costs Discrete Shifted exponential Uniform

Costs 183,949.04 166,493.40 167,771.54 173,396.52

Time 233,612.27 220,797.20 223,542.52 227,515.27

CO2e emissions 186,206.59 174,209.05 174,960.51 180,312.37

might be more beneficial. In this way the model can increase the motivation of
transportation planners to consider intermodal planning as an alternative since it
offers them only routes which are reliable. The use of direct truck, which is not
available in the original network, might be sometimes cheaper but can have negative
impacts on the environment. This can be also seen in Table 6, where the costs after
simulation are lower than the deterministic costs especially due to the use of direct
truck connections as an alternative to the limited intermodal network.

When comparing the results for the three travel time distributions displayed in
Table 6, it can be noticed that the costs in case of continuous distributions are higher
than for the discrete distribution. The reason for that might be that the uncongested
travel time is the most important travel time for the discrete distribution, whereas it is
only the lower border for the continuous distribution, and therefore the travel times
for continuous distributions are higher on average. However, since for continuous
distributions any time within the specified interval can be chosen, the results give
a better picture about the reliability of the plans. Especially in the case of the
exponential distribution, the number of infeasible scenarios in cases where these are
caused only by very small delays at the destination is decreasing, and the number
of infeasible scenarios for plans where the time causing infeasibility is located
between uncongested and congested time is increasing. Also it can be seen that
due to the equal distribution of travel times in case of uniform distribution, some of
the plans that are reliable under exponential distribution become unreliable due to
higher number of scenarios with longer travel times. Due to this more conservative
evaluation of the plans, the uniform distribution can be used especially in situations
where the information about the real distribution of travel times is not available.

5 Conclusions

This chapter provided an overview of current studies aiming at intermodal trans-
portation planning with travel time uncertainty. Even though this area is quite new
and there is only limited research, very recent research has been summarized and
highlighted to bring more attention on data uncertainty from both the academia and
the practice.

Two possible approaches which can handle such complexity and evaluate the
reliability of intermodal transportation plans under uncertainty are discussed and
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compared in terms of solution times, the quality, and the limitations. The method-
ological approaches presented in this chapter are sample average approximation and
simulation-optimization, which both can easily handle travel time complexity. The
focus of this chapter was on travel time uncertainty, but these approaches can be
easily applied to other uncertain factors (i.e., demand and customer uncertainties).

Moreover, we investigate the transportation plan based on three different objec-
tives which can have different weights according to the transport user’s preferences.
The objectives are transportation costs, time in form of inventory costs and penalty
costs for late deliveries at the final customer, and CO2e emissions expressed as
emission costs.

Computational experiments confirm that both methods can be used to get reliable
transportation plans. With regard to the quality of the solution, the simulation-
optimization approach evaluates the reliability based on two criteria so that some
plans which are unreliable according to SAA can be accepted by simulation since
the infeasibility might cause only very small cost increase that might be negligible in
comparison to the higher costs of the alternative plan. Furthermore, the simulation
model shows where the disruption occurs which is not reported by SAA where only
a solution is chosen based on the chance constraint. The simulation model also gives
possibilities to increase the number of considered scenarios and replications in order
to increase the statistical significance of the solution and the travel time can be
modeled by using different probability distributions.
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A Multiproduct Multi-vehicle Inventory
Routing Problem with Uncertainty

Secil Ercan and Didem Cinar

Abstract As a result of the increase in environmental problems, green logistics
has become an important subject in the supply chain literature. In this study, a
multiproduct multi-vehicle inventory routing problem is modeled by considering the
cost stemming from fuel consumption as an environmental objective. Demand and
inventory holding costs are taken into account as uncertain parameters. A sample
average approximation algorithm is used to solve the problem. The performance of
the algorithm is evaluated in terms of optimality gap and computational time by
using a data set from the literature. The computational experiments give promising
results for further research.

1 Introduction

Because of increasing environmental concerns, government and business orga-
nizations have attempted to decrease carbon emissions stemming from logistics
processes. Since transportation has significant impact on global warming in the
world, environmentally sensitive logistics and transportation schemes have been
developed to get more sustainable policies with less negative effects on the
environment [3, 23].

The inventory routing problem (IRP) was first introduced by Bell et al. [5] by
integrating inventory management and vehicle scheduling for the distribution of
industrial gases. The traditional vehicle routing problem deals with finding the
vehicle route that minimizes an economic indicator. On the other hand, IRP deals
with finding optimal routing and inventory policies where no stockouts are allowable
for each customer. Quantity and time of delivery to each customer and vehicle routes
are the decisions that policy makers have to make simultaneously in IRP [32].
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In the literature, the most considered objective is to minimize total distribution
and inventory costs during the planning horizon. Environmental concerns increase
the focus on sustainability issues in transportation and logistics processes. There-
fore, environmental and social factors have been taken into account in the recent IRP
studies. However, although the critical parameters – such as demand of customers,
distance, transportation cost, and inventory holding cost – are uncertain in real life,
the majority of IRP studies have considered deterministic parameters.

In this study, a mixed-integer linear programming (MILP) model is developed for
the multiproduct multi-vehicle inventory routing problem (MMIRP). The objective
of the investigated MMIRP is to minimize total transportation and inventory costs.
During the computation of transportation cost, fuel consumption is taken into
account. Fuel consumption is computed by considering load, distance, and fuel
consumption rates of the vehicles. In order to deal with uncertainties, a stochastic
MILP model, which allows demand and unit inventory holding costs as uncertain
parameters, is proposed. A sample average approximation algorithm is used to
solve the MMIRP with uncertain demand and inventory holding cost. The main
contributions of this study can be summarized as follows: (i) A MILP model
is developed for MMIRP considering environmental aspects. (ii) A two-stage
stochastic programming model for MMIRP taking two sources of uncertainty into
account is proposed, and a sample average approximation algorithm is implemented
to solve the problem.

The remainder of this chapter is organized as follows. Section 2 provides a review
of recent IRP studies considering environmental factors. Section 3 presents the
definition and a MILP model for MMIRP. The two-stage stochastic programming
model of MMIRP is given in Sect. 4. The sample average approximation algorithm
is described in Sect. 5. The computational tests and analyses are presented in Sect. 6.
Finally, some conclusions and directions for future research are presented in Sect. 7.

2 Literature Review

Since carbon emissions have a significant role in global warming, environmental
aspects have become important topics for transportation and logistics in recent
years. Interested readers are referred to Lin et al. [23] for the green logistics
literature including IRP studies published until 2013. In this section, a brief literature
review on recent IRP studies taking into account environmental concerns is given.

Kuo et al. [22] developed a MILP and a decision-making model for the carbon
footprint IRP which includes supplier selection and efficient carbon emission
inventory route planning. The objective was to minimize total cost, including
inventory verifier cost, service time cost, and traveling time cost. Mirzapour and
Rekik [25] also employed MILP for multiproduct multi-capacitated vehicle IRP
to minimize total costs including inventory holding cost and transportation cost.
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A transshipment option and GHG emission restriction were considered in the model.
Alkawaleet et al. [3] proposed a MILP model minimizing the sum of transportation
cost, inventory cost, stock-out penalty, and carbon emission cost of a single-product
IRP with a heterogeneous fleet of vehicles. Al Shamsi et al. [4] developed a
mixed-integer nonlinear programming model to minimize the total transportation,
inventory, and CO2 emission costs for an IRP with perishable products. The vehicle
load was considered to calculate the CO2 emissions as well as distance. Rahimi
et al. [29] proposed a bi-objective mathematical model for an IRP with perishable
products. The model included both economic and social objectives. The rate of
accidents and the number of expired products were taken into account as social
factors. GHG emission was also considered in the model as an environmental factor.
Cheng et al. [9] proposed several mixed-integer nonlinear programming models and
a hybrid genetic algorithm to analyze the impacts of carbon emission regulations
on a multi-period IRP problem with single-product and identical vehicles. The
objective was to minimize total cost including transportation cost, inventory holding
cost, and fuel consumption cost. The fuel consumption cost was calculated by using
the fuel consumption rate, the vehicle’s load, the distance, and the fuel price. Qiu
et al. [28] proposed a MILP model for a production IRP that aims to determine
the quantity of production as well as the optimum inventory and routing policy.
They presented a branch-and-price heuristic to minimize operational cost and CO2

emission cost. Kumar et al. [21] developed a multi-objective mathematical model
that minimizes the total operational costs and total emissions for a multi-period
multi-vehicle production and pollution routing problem with time window. A hybrid
self-learning particle swarm optimization algorithm was implemented to solve the
problem.

Some IRP studies considering fuel consumption also regard uncertainties in
parameters such as demand, distances, capacity of vehicles, capacity of retail center,
cost of transportation, etc. These studies generally apply chance-constrained model,
fuzzy approaches and heuristics, or hybridize these methods. Soysal et al. [32]
proposed a chance-contrained programming model for the multi-period IRP with
perishable products. The handled IRP was a single-product problem from one
supplier to many customers with uncertain demands. The total cost including the
inventory cost, the waste cost, the fuel cost, and the driver cost was minimized.
Distance, load, and speed were taken into account during the fuel consumption esti-
mation. The proposed methodology was implemented to a real-life case study on the
fresh tomato distribution operations of a supermarket chain. Soysal et al. [33] also
used a chance-constrained model for IRP with multiproduct from many suppliers to
many customers under demand uncertainties. Soysal [31] proposed a probabilistic
MILP model for a multiproduct closed-loop IRP to deal with the uncertainty in
demand. They used a simulation model to evaluate the solution of the proposed
MILP model with respect to inventory and routing performances. Zhalechian et al.
[36] designed a multi-objective mixed-integer nonlinear programming model and
proposed a new two-stage approach with possibilistic programming and modified
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game theory. The problem was formulated to minimize total cost and environmental
impacts of CO2 and maximize positive social impacts for a multiproduct IRP with
heterogeneous vehicles utilizing fuzzy parameters such as demand, distances, and
capacities of suppliers, retailers, and vehicles. They also developed a hybrid two-
stage metaheuristic algorithm and obtained lower bounds for large-size problems.
Niakan and Rahimi [26] hybridized two possibilistic methods applying a fuzzy
approach for a multi-objective healthcare IRP. The objectives were minimizing
total cost, minimizing forecast error because of shortages and expired products,
and minimizing GHG emissions. Demand, transportation cost, and shortage cost
were considered as uncertain. Tavakkoli-Moghaddam and Raziei [34] presented a
multi-objective possibilistic MILP model for a multi-period multiproduct location-
routing-inventory problem with heterogeneous fleets in a two-echelon distribution
network. The objectives were to minimize total cost, including fuel consumption
cost and cost of shortages of products for customers. Uncertainty was considered
both in the parameters of constraints and in the objective functions. Demand was
the uncertain parameter which was represented with a fuzzy approach.

Table 1 gives a brief summary for IRP studies considering fuel consumption
or CO2 emission. In this study, a stochastic approach is proposed to solve a
multiproduct, multi-vehicle IRP from one supplier to many customers considering
demand and unit inventory holding cost as uncertain parameters. The objective
is the minimizing of total cost including transportation and inventory costs. The
transportation cost consists of the fuel consumption cost which is computed by
considering load and vehicle features as well as distance.

Table 1 Summary of literature on IRP considering fuel consumption of CO2 emission

Ref.
Solution
approach

Product
type Vehicle type Uncertainty

Considering
load for fuel
consumption?

Supplier-to-
customer

[32] Stochastic Single Identical C C One-to-many

[25] Deterministic Multi Heterogeneous � � Many-to-one

[31] Stochastic Multi Identical C C One-to-many

[33] Stochastic Multi Identical C C Many-to-many

[9] Deterministic Single Identical � C One-to-many

[22] Deterministic Single Identical � � Many-to-one

[36] Fuzzy Multi Heterogeneous C C Many-to-many

[21] Deterministic Single Identical � C One-to-many

[29] Deterministic Multi Heterogeneous � � One-to-many

[4] Deterministic Single Identical � C One-to-many

[28] Deterministic Single Identical � C One-to-many

[26] Fuzzy Multi Heterogeneous C � One-to-many

[34] Fuzzy Multi Heterogeneous C C Many-to-many

[3] Deterministic Single Heterogeneous � � One-to-many

This study Stochastic Multi Heterogeneous C C One-to-many
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3 Multiproduct Multi-vehicle Inventory Routing Problem

Let G D .V;A/ be a directed graph where V D f0; 1; : : : ; Ng is the set of vertices
and A D f.i; j/ j i; j 2 V; i ¤ jg is the set of arcs. Vertex 0 refers to the supplier,
and vertices in the set V0 D V n 0 represent customers. There is a set of products
M D f1; : : : ; Mg which are distributed to the customers by the supplier. A fleet of
heterogeneous vehicles, K D f1; : : : ; Kg, is available for delivering the products to
the customers. MMIRP is the problem of finding the optimal routing and inventory
policy in the planning horizon T .T D f1; : : : ; Tg/ to meet the demand for each
customer. The quantity of product m 2 M that is available for delivery by the
supplier is st

m at time period t 2 T. Demand of product m by each customer i 2 V

for each time period t is ct
im. It is assumed that backlogging is not allowed, so the

supplier has enough products to satisfy the demand of the customers. There is no
restriction on the product type for the inventory of vertices. In other words, a vertex
can hold all kind of products as its inventory. The initial inventory level of vertex i
for product m is represented by I0

im. The unit inventory holding cost in vertex i for
product m is him. The inventory holding capacity of vertex i is HCi. A vehicle k 2 K

has limited capacity represented by Qk. Each vehicle can perform only one tour per
time period and deliver the products from supplier to a subset of customers during
the tour. The distance from vertex i to vertex j is represented by dij .i; j 2 V/. The
notation used in this study is given in Table 2.

The objective is to minimize total transportation and inventory costs. Only the
transportation cost arising from fuel consumption is taken into account. In the
literature several formulations to represent fuel consumption have been proposed
for routing problems [12, 24]. In this study, fuel consumption is computed by
considering load, distance, and vehicle features [20, 17]. Let xt

ijk be a binary decision
variable that is set to 1 if vehicle k visits vertex j immediately after vertex i in time
period t, 0 otherwise, and qijkmt be a continuous variable referring to the quantity of
product m carried by vehicle k on arc .i; j/ in time period t. The total fuel cost (TFC)
can be represented as follows:

TFC D u
X

.i;j/2A

dij

 
X

k2K

X

t2T

akxt
ijk C

X

m2M

X

k2K

X

t2T

bkqt
ijkmwm

!

(1)

where u is the unit fuel cost, ak is the fuel consumption rate per kilometer for vehicle
k when it is empty, and bk is the fuel consumption rate per load per kilometer for
vehicle k. Let It

im be the inventory level of product m in vertex i at the end of period
t. The total inventory cost (TIC) is computed as follows:

TIC D
X

i2V0

X

m2M

X

t2T

It
imhim (2)
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Table 2 Notation for MMIRP

Sets

V Set of vertices, V D f0; 1; : : : ; Ng, where 0 refers to supplier

V0 D V n f0g Customers

A Set of arcs A D f.i; j/ j i; j 2 V; i ¤ jg

M Set of products M D f1; : : : ; Mg

K Set of vehicles K D f1; : : : ; Kg

T Set of time periods T D f1; : : : ; Tg

Decision variables

xt
ijk 1 if vehicle k visits vertex j immediately after vertex i, 0 o.w.

(i; j 2 V; k 2 K; t 2 T)

qt
ijkm Total quantity of product m transported from vertex i to vertex j by vehicle k in

time t (i; j 2 V; m 2 M; k 2 K; t 2 T)

It
im Inventory level of product m in vertex i at the end of time period t

(i 2 V0; m 2 M; t 2 T)

Rt
im Total amount of product m received at vertex i from the supplier at time t

(i 2 V0; m 2 M; t 2 T)

Parameters

st
m Quantity of product m that is available for delivery by the supplier at time t

.t 2 T/

ct
im Demand for product m by vertex i at time period t .i 2 V0; m 2 M; t 2 T/

him Unit inventory holding cost for product m in vertex i .i 2 V0; m 2 M/

I0
im Initial inventory level of vertex i for product m .i 2 V0; m 2 M/

HCi Inventory holding capacity of vertex i .i 2 V0/

dij Distance from vertex i to vertex j .i; j 2 V/

Qk Capacity of vehicle k .k 2 K/

ak Fuel consumption rate for empty vehicle k per kilometer .k 2 K/

bk Fuel consumption rate for vehicle k per unit of load per kilometer .k 2 K/

wm Weight of one unit of product m .m 2 M/

u Unit fuel price

The MILP model for MMIRP is given as follows:

min u
X

.i;j/2A

dij

 
X

k2K

X

t2T

akxt
ijk C

X

m2M

X

k2K

X

t2T

bkqt
ijkmwm

!

C
X

i2V0

X

m2M

X

t2T

It
imhim

(3)

s:t:
X

j2V;j¤i

X

k2K

xt
ijk � 1 8i 2 V0; 8t 2 T (4)

X

j2V;j¤i

xt
ijk D

X

j2V;j¤i

xt
jik 8i 2 V0; 8k 2 K; 8t 2 T (5)
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X

k2K

xt
ijk � 1 8.i; j/ 2 A; 8t 2 T (6)

X

j2V0

xt
0jk � 1 8k 2 K; 8t 2 T (7)

X

j2V;j¤i

X

k2K

qt
jikm D Rt

im C
X

j2V;j¤i

X

k2K

qt
ijkm 8i 2 V0; 8m 2 M; 8t 2 T (8)

It�1
im C Rt

im D ct
im C It

im 8i 2 V0; 8m 2 M; 8t 2 T (9)
X

m2M

qt
ijkmwm � Qkxt

ijk 8.i; j/ 2 A; 8k 2 K; 8t 2 T (10)

X

j2V0

X

k2K

qt
0jkm � st

m 8m 2 M; 8t 2 T (11)

X

m2M

It
imwm � HCi 8i 2 V0; 8t 2 T (12)

qt
ijkm � 0 8i; j 2 V; 8m 2 M; 8k 2 K; 8t 2 T (13)

xt
ijk 2 f0; 1g 8i; j 2 V; 8k 2 K; 8t 2 T (14)

It
im � 0 8i 2 V; 8m 2 M; 8t 2 T (15)

Rt
im � 0 8i 2 V0; 8m 2 M; 8t 2 T (16)

The objective function, which minimizes the total cost, is given by expression (3).
The total cost is computed as the sum of the transportation cost (TFC) and the
inventory cost (TIC). Constraints (4) ensure that each customer is visited at most
once in each time period. Constraints (5) guarantee that if a vehicle arrives at
vertex i in time period t, then it has to leave that vertex in the same time period.
According to constraints (6), at most one vehicle can use arc .i; j/ in each time
period. Constraints (7) satisfy that a vehicle performs a tour at most once in each
period. Constraints (8) ensure that the difference between incoming and outgoing
amounts of product m in vertex i should be equal to the received amount of
product m by vertex i in time period t. Constraints (9) give the inventory level of
product m for each vertex i in time period t. Capacity restrictions for each vehicle
are satisfied by constraints (10). Constraints (11) ensure that the total amount of
product m delivered by the supplier cannot exceed the available amount of product.
Constraints (12) guarantee that the inventory level of a vertex cannot be more than
the inventory holding capacity within each time period. Constraints (13), (14), (15),
and (16) give the integrality and nonnegativity restrictions for decision variables.
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4 Stochastic Programming Model

In this study, two-stage stochastic programming, which is the most well-known
stochastic programming (SP) model [8], is used to cope with the uncertainties
in the MMIRP. In two-stage SP, uncertainties are characterized by a finite set of
scenarios where each scenario is a realization of the uncertain parameters with
specific values. Let S be the set of scenarios. It is assumed that the probability of
realization of scenario s 2 S, which is represented by ps, is known in advance.
Decision variables are divided into two groups as first-stage and second-stage
variables. First-stage variables represent the decisions which are made before the
realization of uncertainties. Decisions for the second-stage variables are called as
recourse decisions and made after the realization of uncertainties. SP minimizes
(maximizes) total cost (benefit) results from first-stage variables and expected value
of costs (benefits) as given by the distribution of the finite set of scenarios. A general
formulation of the scenario-based mixed-integer linear SP for a minimization
problem is given as follows:

min cTx C
X

s2S

psqT
s ys (17)

s:t: Ax � b (18)

Tsx C Wsys � hs 8s 2 S (19)

x 2 R
n1�r1

C � Z
r1

C (20)

ys 2 R
n2�r2

C � Z
r2

C 8s 2 S (21)

x and ys are the first-stage and second-stage decision variables, respectively. The
objective function (17) includes the sum of costs associated with first-stage variables
and expected future costs related with second-stage variables. While constraints
(18) include only the first-stage decision variables, constraints (19) connect the first-
stage with second-stage decision variables. Domains of first-stage and second-stage
decision variables are given in constraints (20) and (21), respectively.

There are several studies on IRP dealing with uncertainties. Kleywegt et al.
[19] presented a brief review of stochastic and deterministic demand in IRP and
applied Markov decision processes. Juan et al. [16] also gave a detailed review of
the IRP with stochastic demands. Verweij et al. [35] developed new approaches for
a stochastic routing problem but not IRP. They designed a sample average approx-
imation method for three routing problems: the shortest path problem with random
travel times, the shortest path problem with arc failures, and the traveling salesman
problem with random travel times. Hvattum and Løkketangen [15] implemented
scenario trees and a progressive hedging algorithm for stochastic IRP. Elbek et al.
[13] utilized a neighborhood search to examine the uncertainty in accretion rate for
materials by minimizing the operation cost. Huang et al. [14] modified ant colony
optimization to minimize the total travel length of a multiproduct IRP with uncertain
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demand. Bertazzi et al. [7] proposed a stochastic dynamic programming approach
to minimize the total cost for IRP with stochastic demand by implementing a
heuristic algorithm on an exact dynamic programming algorithm. Popovi et al. [27]
also developed a stochastic variable neighborhood search algorithm for IRP in fuel
delivery and compared it with different deterministic models. To handle stochastic
demand in IRP, Coelho et al. [11] developed heuristic policies, Alaei and Setak [2]
proposed a metaheuristic algorithm, and Juan et al. [16] hybridized a simulation
model with a heuristic. Bertazzi et al. [6] presented a dynamic programming model
to minimize total cost including shortage penalty cost. While many of the studies
concern demand as a stochastic parameter, Agra et al. [1] considered both sailing
and port times as stochastic parameters because of the weather conditions and
uncertain waiting times at ports. They implemented a two-stage sample average
approximation method to solve this problem.

In this study, we develop a mixed-integer linear SP model for MMIRP. The
uncertainties in the problem result from the demand and inventory holding cost.
The proposed mixed-integer linear SP model for MMIRP is given as follows:

min u
X

.i;j/2A

dij

 
X

k2K

X

t2T

akxt
ijk C

X

s2S

X

m2M

X

k2K

X

t2T
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!
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X
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X

m2M

X

t2T

psI
t
imshims (22)

s:t:
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j2V;j¤i

X

k2K
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ijk � 1 8i 2 V0; 8t 2 T (23)

X

j2V;j¤i

xt
ijk D

X

j2V;j¤i

xt
jik 8i 2 V0; 8k 2 K; 8t 2 T (24)

X

k2K

xt
ijk � 1 8.i; j/ 2 A; 8t 2 T (25)

X

j2V0

xt
0jk � 1 8k 2 K; 8t 2 T (26)

X

j2V;j¤i

X

k2K

qt
jikms D Rt

ims C
X

j2V;j¤i

X

k2K

qt
ijkms 8i 2 V0; 8m 2 M; 8t 2 T; 8s 2 S

(27)

It�1
ims C Rt

ims D ct
ims C It

ims 8i 2 V0; 8m 2 M; 8t 2 T; 8s 2 S (28)
X

m2M

qt
ijkmswm � Qkxt

ijk 8.i; j/ 2 A; 8k 2 K; 8t 2 T; 8s 2 S (29)
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X

j2V0

X

k2K

qt
0jkms � st

m 8m 2 M; 8t 2 T; 8s 2 S (30)

X

m2M

It
imswm � HCi 8i 2 V0; 8t 2 T; 8s 2 S (31)

qt
ijkms � 0 8i; j 2 V; 8m 2 M; 8k 2 K; 8t 2 T; 8s 2 S (32)

xt
ijk 2 f0; 1g 8i; j 2 V; 8k 2 K; 8t 2 T (33)

It
ims � 0 8i 2 V; 8m 2 M; 8t 2 T; 8s 2 S (34)

Rt
ims � 0 8i 2 V0; 8m 2 M; 8t 2 T; 8s 2 S (35)

This SP formulation is the straightforward extension of deterministic formulation
given in Sect. 3. ct

ims and hims are scenario-dependent parameters. ct
ims denotes

the demand of product m of vertex i in time period t under scenario s, and hims

represents unit inventory holding cost for product m in vertex i under scenario
s. In the SP model, variables are partitioned in two stages. The binary variables
(xt

ijk), which refer to the decision whether transportation activity is performed on arc
.i; j/ 2 A by vehicle k in time period t, are the first-stage decision variables. After
the transportation decisions are made, qt

ijkm, Rt
ims, and It

ims are decided as the second-
stage variables, which represent the load of product m transported from vertex i to
vertex j directly by vehicle k, the received amount of product m and the inventory
level of product m in vertex i at the end of time period t under the scenario s,
respectively. Objective function (22) minimizes the sum of current transportation
costs and expected future inventory costs. Constraints (23), (24), (25), and (26)
include first-stage variables, while constraints (27), (28), (29), (30), and (31) connect
the first-stage to the second-stage variables. In order to solve this problem, a sample
average approximation approach is used. A brief definition of sample average
approximation is given in the next section.

5 Methodology: Sample Average Approximation

Sample average approximation (SAA) method is a scenario-based stochastic opti-
mization algorithm. The scenarios are mostly generated by Monte-Carlo simulation
in SAA. The probability of each scenario is accepted as 1/N where N denotes the
sample size. A typical two-stage SAA method has the following steps [18]:

Step 1: Let M be the number of independent samples and N be the sample size. At
the beginning of the algorithm, M and N values are determined. If N is a big number,
the problem complexity and computation time will increase. On the other hand,
bigger N values show a higher tendency to find a near optimal solution. With smaller
N values, the solution of the problem will not be close to the optimal solution.
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Step 2: For each scenario m D f1; : : : ; Mg, the following sub-steps are repeated.
Step 2.1: A sample is generated in size N and the SAA problem is solved. Let

Oxm
N and Ovm

N indicate the optimal value of decision variables and objective function,
respectively.

Step 2.2: In order to test the solution, a new sample is generated in size N0 which
is bigger than N. The value of the first decision variables in the solution produced
with size N is given directly to this new problem as shown in constraint (36). Let
gm

N0 denote the optimal objective function value for each m, as shown in (37) where
	 shows the scenario.

Oxm
N D Oxm

N0 8m 2 M (36)

gm
N0 D cTy C EŒQ.Ox; 	/� 8m 2 M (37)

Step 3: For a minimization problem, solving the model in sample size N gives a
lower bound for the optimal objective value, and sample size N0 gives an upper
bound and vice versa. The lower bound is estimated by the mean of optimal
objective function values produced in the first problem with sample size N, whereas
the upper bound is estimated by the mean of optimal objective function values
produced in the second problem with N0. The estimation of the lower bound is shown
in (38), and the variance of the lower bound is shown in (39).

vM
N D

1

M

X

m2M

Ovm
N (38)

s2

vM
N

D
1

M.M � 1/

X

m2M

�
Ovm

N � vM
N

�2
(39)

Since N0 scenarios are generated in the second problem and the first stage
decision variables are taken from the solution of the first problem, the second
problem gives an upper bound for the optimal objective function. The estimation
of the upper bound and the variance of the upper bound are shown in (40) and (41),
respectively.

gM
N0 D

1

M

X

m2M

gm
N0 (40)

s2

gM
N0

D
1

M.M � 1/

X

m2M

�
gm

N0 � gM
N0

�2
(41)

Step 4: The difference between the lower bound and the upper bound defines the
optimality gap. Since the optimal solution is in this gap, a small gap is desired. If
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the estimation of the optimality gap and its variance are sufficiently small, there is
no sufficient evidence for any significant difference between the lower and upper
bounds. Then, the algorithm stops. If not, the sample size N and/or N0 is increased,
and the algorithm returns to step 2.

Step 5: The best solution is selected among the candidate solutions produced with
sample size N in M independent samples. The minimum of Ovm

N in M experiments
gives the best solution with decision variables Oxm

N and Oym
N .

v� D arg min
˚

Ovm
N W m 2 f1; : : : ; Mg

�
(42)

6 Computational Results

The data set generated by Coelho and Laporte [10] for MMIRPs is used in this
study to assess the performance of the proposed methodology. The lognormal
distribution is convenient to represent economic stochastic parameters because it
provides nonnegativity [30]. Thus, the lognormal distribution is utilized for the
inventory holding cost where the deterministic data is taken as mean and 2.5% of
mean value is received as standard deviation. The demand is uniformly distributed
where the parameters, minimum and maximum values, are determined by using the
deterministic data points and a coefficient of 0.2. For example, if the demand of
vertex i is di in the data set, then the minimum and maximum values are taken as
0:8 � di and 1:2 � di, respectively. Other parameters, i.e., deterministic parameters,
are provided from the data set.

Since Coelho and Laporte [10] computed transportation costs considering only
the distances traveled by vehicles, fuel consumption rates and fuel prices do not
exist in the data set. In the scope of this study, fuel rates of the vehicles (ak and
bk) are taken from Kopfer and Kopfer [20] and given in Table 3. For each instance,
the vehicles are chosen in the order given by Table 3 according to the size of the
fleet. For example, if the instance only includes one vehicle, the vehicle’s fuel
consumption rates are a1 D 26 and b1 D 0:36. In the same way, if the instance
has the fleet with three vehicles, corresponding parameters for these vehicles are
a1 D 26, b1 D 0:36, a2 D 20, b2 D 0:76, a3 D 15, and b3 D 1:54. In the data
set of Coelho and Laporte [10], the number of vehicles is 5 for some instances. In
this case, the fleet has 2 type 1 vehicles and 1 of each other types. Without loss of
generality, the weight of each product (wm) and fuel price (u) are fixed as 1.

Table 3 Fuel rates for
vehicles [20]

Vehicles ak bk

1 26 0.36

2 20 0.76

3 15 1.54

4 8 3.31
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Table 4 Number of samples
and sample sizes for testing

M N N0

5 20 100

10 40 300

15 60 –

Table 5 Instances used in
performance analysis [10]

#customers #products #vehicles Horizon

10 1 1 3

10 1 1 5

10 1 3 3

10 1 3 5

10 3 1 3

10 3 1 5

The proposed SP model and SAA are coded in Microsoft Visual Studio 2013 C#.
The computational tests are performed on a portable work station with a 2.20 GHz
Intel Core i7-4702HQ processor and 16 Gb of RAM.

In order to determine the proper values for the parameters of SAA – the number
of independent samples (M), sample size (N), and the size of test sample (N0) –
computational experiments are performed. All values of M, N, and N0 tested to
determine the best parameter combination are given in Table 4. The instances used
to test these parameter combinations are given in Table 5. The columns refer to the
number of customers (#customers), the number of products (#products), the number
of vehicles (#vehicles), and the length of the planning horizon, respectively. In the
data set, there are five instances generated for each problem size. The first instances
of each problem size are performed with each parameter combination given in
Table 4. The average percentages of optimality gap and computational time (CPU
time) obtained by SAA with different parameter combinations are given in Figs. 1
and 2, respectively. The parameter combinations that result in high computational
time are not shown in the figures. According to the percentages of optimality gap
and computational time, the parameter combination .M; N; N0/ D .10; 20; 100/ is
selected and implemented for all instances.

After selecting a proper combination for M, N, and N0, SAA is applied to the
instances given in Table 6 to evaluate the performance of SAA. The number of
decision variables and constraints is higher in the SP model than in the deterministic
model. This situation results in higher computational effort in SP. Therefore, only
the instances having five customers are considered in this study. There are three
alternatives for the other parameters: the number of products can be 1, 3, or 5; the
number of vehicles can be 1, 3, or 5; and the length of the horizon can be 3, 5, or 7.
The time limit is set to 10,800 s. Computational results are placed in Table 7. Names
of the instances are given in the first column. The second to fifth columns give the
size of the instances. The sixth and seventh columns present the CPU time and the
optimality gap attained by SAA, respectively. We exclude the experiments which
take more than the time limit.
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Fig. 1 Average optimality gap for the instances used for parameter setting

Fig. 2 CPU time for the instances used for parameter setting
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Table 6 Instances used in
performance analysis [10]

#customers #products #vehicles Horizon

5 1 1 3

5 1 1 5

5 1 1 7

5 1 3 3

5 1 3 5

5 1 3 7

5 1 5 3

5 3 1 3

5 3 1 5

5 3 1 7

5 5 1 3

5 5 1 5

The optimality gap provides the closeness of the obtained results to the optimal
solution. Although the optimality gap is less than 1% for all experiments, the CPU
time is getting larger when the number of products and the time horizon increase.
To improve the computational performance of SAA, it can be hybridized with other
algorithms, or decomposition algorithms can be used. Acceleration of the algorithm
in terms of computational time is left for further research.

7 Conclusion

In this study, a two-stage stochastic model is developed for the MMIRP and solved
by the SAA. The proposed model considers uncertainty in demand and inventory
holding cost. The objective of the problem is to minimize total cost including total
transportation cost and total inventory cost. Total transportation cost includes also
fuel consumption cost, which is an important issue for the environmental aspect.
Load, distance, and vehicle features are considered during the computation of total
fuel consumption. The problem is modeled as a two-stage SP problem. In the first
stage, transportation routes between cities are decided. Transportation quantities and
inventory levels are decision variables for the second stage.

The experiments based on data from the literature are analyzed in terms of
the optimality gap and CPU time. Since the numbers of decision variables and
constraints are higher in the SP model than in the deterministic model, only the
instances having five customers are considered in this study. The optimality gap
shows the closeness to the optimal solution. Optimality gaps that are less than 1%
are obtained for all instances. However very high CPU time is observed for the big
instances.
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Table 7 Computational
results

Instance N M K T CPU time Gap %

mmirp-10-1-1-3-1 5 1 1 3 694.26 0.0012

mmirp-10-1-1-3-3 5 1 1 3 224.19 0.0017

mmirp-10-1-1-3-4 5 1 1 3 140.36 0.0001

mmirp-10-1-1-3-5 5 1 1 3 438.48 0.0008

mmirp-10-1-1-5-1 5 1 1 5 915.23 0.0036

mmirp-10-1-1-5-2 5 1 1 5 1171.72 0.0027

mmirp-10-1-1-5-3 5 1 1 5 393.14 0.0028

mmirp-10-1-1-5-4 5 1 1 5 811.33 0.0035

mmirp-10-1-1-5-5 5 1 1 5 440.53 0.0053

mmirp-10-1-1-7-1 5 1 1 7 481.92 0.0010

mmirp-10-1-1-7-2 5 1 1 7 1170.57 0.0011

mmirp-10-1-1-7-3 5 1 1 7 2039.82 0.0018

mmirp-10-1-1-7-4 5 1 1 7 1441.51 0.0001

mmirp-10-1-1-7-5 5 1 1 7 1733.68 0.0002

mmirp-10-1-3-3-1 5 1 3 3 2176.60 0.0019

mmirp-10-1-3-3-2 5 1 3 3 615.39 0.0021

mmirp-10-1-3-3-3 5 1 3 3 731.71 0.0024

mmirp-10-1-3-3-4 5 1 3 3 997.18 0.0021

mmirp-10-1-3-3-5 5 1 3 3 1024.68 0.0028

mmirp-10-1-3-5-1 5 1 3 5 3377.43 0.0005

mmirp-10-1-3-5-4 5 1 3 5 1940.61 0.0016

mmirp-10-1-3-5-5 5 1 3 5 1453.64 0.0026

mmirp-10-1-3-7-3 5 1 3 7 1892.48 0.0017

mmirp-10-1-5-3-1 5 1 5 3 4644.89 0.0055

mmirp-10-1-5-3-2 5 1 5 3 917.25 0.0015

mmirp-10-3-1-3-1 5 3 1 3 1278.72 0.0002

mmirp-10-3-1-3-2 5 3 1 3 1233.30 0.0025

mmirp-10-3-1-3-3 5 3 1 3 754.98 0.0013

mmirp-10-3-1-3-4 5 3 1 3 2286.31 0.0013

mmirp-10-3-1-3-5 5 3 1 3 3235.96 0.0015

mmirp-10-3-1-5-1 5 3 1 5 5522.17 0.0003

mmirp-10-3-1-5-2 5 3 1 5 4851.80 0.0016

mmirp-10-3-1-5-3 5 3 1 5 10,844.44 0.0012

mmirp-10-3-1-5-4 5 3 1 5 7227.30 0.0013

mmirp-10-3-1-5-5 5 3 1 5 3848.28 0.0016

mmirp-10-3-1-7-2 5 3 1 7 9614.08 0.0023

mmirp-10-3-1-7-3 5 3 1 7 10,592.53 0.0014

mmirp-10-3-1-7-4 5 3 1 7 10,459.43 0.0008

mmirp-10-3-1-7-5 5 3 1 7 10,623.20 0.0006

mmirp-10-5-1-3-1 5 5 1 3 6259.56 0.0002

mmirp-10-5-1-3-2 5 5 1 3 5391.63 0.0007

mmirp-10-5-1-3-3 5 5 1 3 3116.87 0.0012

mmirp-10-5-1-3-4 5 5 1 3 3404.58 0.0007

mmirp-10-5-1-3-5 5 5 1 3 3292.02 0.0012

mmirp-10-5-1-5-2 5 5 1 5 9181.67 0.0030
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Although the results are promising to obtain good quality solutions for MMIRP
with uncertainties, the computational performance should be improved for large
instances. In further studies, decomposition algorithms will be used to improve the
computational performance.
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The Impact of Bunker Risk Management on
CO2 Emissions in Maritime Transportation
Under ECA Regulation

Yewen Gu, Stein W. Wallace, and Xin Wang

Abstract The shipping industry carries over 90% of the world’s trade, and is hence
a major contributor to CO2 and other airborne emissions. As a global effort to reduce
air pollution from ships, the implementation of the ECA (Emission Control Areas)
regulations has given rise to the wide usage of cleaner fuels. This has led to an
increased emphasis on the management and risk control of maritime bunker costs for
many shipping companies. In this paper, we provide a novel view on the relationship
between bunker risk management and CO2 emissions. In particular, we investigate
how different actions taken in bunker risk management, based on different risk
aversions and fuel hedging strategies, impact a shipping company’s CO2 emissions.
We use a stochastic programming model and perform various comparison tests in
a case study based on a major liner company. Our results show that a shipping
company’s risk attitude on bunker costs has impacts on its CO2 emissions. We also
demonstrate that, by properly designing its hedging strategies, a shipping company
can sometimes achieve noticeable CO2 reduction with little financial sacrifice.

1 Introduction

Maritime transport is one of the most important freight transportation modes in the
world, since it is by far the most cost-effective alternative for transporting large-
volume goods between continents. In 2015, more than 90% of global trade is carried
by sea [13]; therefore, the shipping industry plays a vital role in the world economy.
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Due to the enormous amount of marine fuel consumed by the world fleet,
the maritime sector is one of the biggest sources of CO2 emissions among all
transportation industries. International shipping emits approximately 2.2% of the
world’s anthropogenic CO2 emissions. This number may further increase to 17% by
2050 if no effective control measure is applied [3].

On the other hand, fuel cost is the major cost driver in the shipping industry. It
is therefore critical for a shipping company to manage its bunker purchasing and
consumption properly. In practice, fuel prices are highly volatile which could bring
considerable risks. Bunker risk management is then commonly applied by shipping
companies in order to control the risk brought by the high volatility of the fuel cost.
For example, risk measures such as CVaR (conditional value-at-risk) from the field
of financial portfolio management may be used to represent a shipping company’s
risk aversion. Fuel hedging is also one of the popular risk control approaches in the
shipping industry. As a contractual tool, it allows the shipping company to reduce
its exposure to fuel risk by establishing a fixed or capped cost for its future fuel
consumption.

In [11], a maritime bunker management (MBM) problem that combines tactical
fuel hedging and operational ship routing and speed optimization is introduced,
which aims to minimize a shipping company’s expected total bunker costs based
on its risk attitude. Using a case study, the authors show that the integration of the
tactical and operational levels of MBM is vital for a shipping company after the
implementation of Emission Control Areas (ECA) which regulate sulfur emissions.
In this study, the same mathematical model and a similar case are used, but we focus
on the impact of a shipping company’s bunker risk management on its fleet’s CO2

emissions.
As individual research topics, both CO2 emissions and bunker risk management

have been intensively studied in the maritime transportation literature. Regarding
CO2 emissions, many studies focus on the relationship between speed reduction,
also known as slow steaming, and emission reduction. Corbett et al. [6] evaluate
whether speed reduction is a cost-effective option to mitigate CO2 emissions for
ships calling on US ports. Cariou [4] examines the break-even price of the maritime
bunker at which the slow steaming strategy and the corresponding CO2 emissions
reduction are sustainable in the long run. Lindstad et al. [17] investigate the impacts
of slow steaming on CO2 emissions and costs in maritime transport. They show
that the emissions of CO2 can be decreased by 19% with a negative abatement
cost and by 28% at a zero abatement cost if a proper slow steaming strategy is
applied. Maloni et al. [18] show that under current conditions, extra slow steaming
can achieve substantial reductions in both total cost and CO2 emissions. Tai and
Lin [25] compare the unit CO2 emissions in the cases when daily frequency or
slow steaming strategies are applied in international container shipping on Far
East-Europe routes. Wong et al. [27] generalize the traditional discrete cost-based
decision support model in slow steaming maritime operations into novel continuous
utility-based models which balance fuel consumption, carbon emission, and service
quality. Another research direction on CO2 reduction in maritime transportation
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is green ship routing and scheduling. It extends the traditional ship routing and
scheduling problems and integrates environmental concerns. Related studies can
be found in, for instance, [23, 15] and [7].

As regards bunker risk management, fuel hedging is the most commonly used
instrument in maritime transportation. Menachof and Dicer [19] argue that the
bunker surcharges widely applied in liner shipping can be eliminated and replaced
by the utilization of oil commodity futures contracts. The hedging effectiveness
of futures contracts among different fuel commodities is examined and compared
in [1]. Wang and Teo [26] offer a comprehensive review of all the fuel hedging
instruments available on the market and integrate fuel hedging into the modeling of
liner network planning. Pedrielli et al. [21] propose a game theory-based approach
to optimize the fuel hedging contract so that the expected profit for the bunker
supplier and the expected refueling cost for the shipping company are maximized
and minimized, respectively.

To the best of our knowledge, none of the studies in the literature have explored
the relationship between bunker risk management and CO2 emissions in maritime
transportation. Such a gap in knowledge is, to a certain degree, expected as the
former had no impact on the latter in the past. This is because in most circumstances,
the sailing pattern of the fleet (and hence its CO2 emissions) is relatively fixed and
irrelevant to the shipping company’s bunker risk management, i.e., the shortest path
and the slowest possible speed is usually chosen during the whole voyage, no matter
what actions are taken in terms of the company’s bunker risk management, such as
the amounts of marine fuel hedged.

However, things have changed significantly in the shipping industry during the
last decade due to the implementation of the ECA regulation. It is a regional
sulfur emission control regulation that restricts the maximum sulfur content in the
marine bunker burnt inside the regulated areas; see Fig. 1. The ECA regulation has
forced the shipping companies, who have not invested in sulfur emission reduction
technologies (scrubber system or liquefied natural gas-powered propulsion), to
switch their fuels from the traditional heavy fuel oil (HFO) to the expensive marine
gasoline oil (MGO) when their vessels navigate inside ECA.

One of the consequences of the ECA regulation and the substantial price differ-
ence between MGO and HFO is that the shipping companies no longer necessarily
operate their fleet in the old-fashioned “shortest and slowest possible” way. They
now have the motivation to change the sailing behavior of the vessels, so as to
minimize the total bunker cost and simultaneously comply with the ECA regulation.
Two types of potential change in sailing behavior, namely, speed differentiation and
ECA evasion, are shown in [8] and [9]. We illustrate these two types of sailing
behavior change in Fig. 2. First, in order to reduce the consumption of MGO, a ship
may choose to use different speeds inside and outside ECA, as shown in Fig. 2a,
if the voyage involves both regulated and unregulated sea areas. Second, a vessel
may make a detour so that the sailing distance inside ECA, and hence its MGO
consumption, can be considerably decreased; see, for example, Fig. 2b. However,
to what extent the speed differentiation and ECA-evasion strategies will be applied
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Fig. 1 Map and requirements of the emission control areas

Fig. 2 Two types of sailing behavior change after the implementation of ECA regulation. (a)
Speed differentiation. (b) ECA evasion

depends on the price difference between MGO and HFO. For example, if the price
difference increases, so will the incentive to reduce MGO consumption, in which
case sailing a route with lower ECA involvement may be more beneficial.

A vessel’s CO2 emissions mainly depend on its fuel consumption. The CO2

emission factors we use in this paper for MGO and HFO are 3.082 (tons/ton fuel)
and 3.021 (tons/ton fuel), respectively [22]. Therefore, it is the total amount of
the two fuels consumed that affects the CO2 emissions the most, rather than the
different combination of the two. Fuel consumption is further determined by the
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vessel’s sailing speed and travelling distance. After the introduction of ECA, the
shipping company’s optimal speed and routing choices, which may include speed
differentiation and ECA evasion, also depend on the prices of the two fuels and the
associated hedging decisions made [11]. In this paper, we seek to investigate how
different actions taken in bunker risk management, including different settings of
risk aversion and fuel hedging strategies, impact the shipping company’s optimal
speed and routing choices and the corresponding CO2 emissions.

We use the stochastic programming model introduced in Gu et al. [11] and
propose various comparison tests based on different levels of risk aversion, fuel
hedging strategies, and fuel prices. The tests are performed on a case based on a
real liner service offered by Wallenius Wilhelmsen Logistics (WWL), one of the
world’s largest liner service providers for rolling equipment. We aim to provide a
novel view on the relationship between bunker risk management and CO2 emissions,
which would hopefully contribute to the worldwide effort in reducing greenhouse
gas emissions.

The rest of the paper is structured as follows. Section 2 gives the description of
the maritime bunker management (MBM) problem and the mathematical model. In
Sect. 3 we introduce the test case and the scenario generation process. Section 4
presents the results of our computational study. Our conclusion is given in Sect. 5.

2 The Problem and Mathematical Model

The problem description and the mathematical formulation are given in this section.
In Sect. 2.1, we summarize the settings and assumptions of the problem. The
mathematical formulation is then presented in Sect. 2.2.

2.1 Problem Statement

First, we introduce four important terms, loop, leg, leg option, and stretch, which
are frequently used in this paper; see Fig. 3 for illustration. A loop refers to a round
trip calling several ports in a predetermined order, while a leg refers to the voyage
between two consecutive ports in the loop. A leg option represents a possible sailing
path for a leg. For different leg options of a same leg, the total sailing distance and
the sailing distance inside ECA are also different. A leg option may have one or
more stretches. When the vessel crosses the ECA border, the current stretch ends
and a new one begins. We also combine the stretches of the same type (on which
we assume the same speed) for every single-leg option and thus represent each
leg option with only two segments: the ECA stretch and the non-ECA stretch. For
example, in Fig. 3c, we combine Stretch 1 and Stretch 3 as the ECA stretch.

For simplification, the MBM problem in this paper only considers one single
vessel operating on one single loop. The length of the planning period is assumed to
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Fig. 3 Illustration of a loop and its associated legs, leg options, and stretches

be equal to the scheduled time for the vessel to finish a round trip on the loop. The
sequence of the port calls on the loop and the related leg information, including all
possible leg options for every leg and the associated stretches, are also assumed to
be given as input to our model.

As an essential instrument in bunker risk management, fuel hedging reduces
the fuel consumers’ exposure to financial risk caused by volatile fuel prices. We
consider the so-called forward-fuel contract with exit terms and physical supply
(FFC in the following) in this study. An FFC endows the shipping company with
the right to buy a specified amount of a certain type of fuel with a predetermined
price during an agreed time period. The forward price of a certain fuel in the FFC
is normally higher than this fuel’s expected price during the contract period. We
assume this to be the case in our tests as well, and as a result, a risk-averse shipping
company can, and normally will, use FFC for risk control purposes, while a risk-
neutral one never enters the forward market due to the expected loss. However, if the
shipping company realizes that the remaining fuel in the ongoing FFC is no longer
needed and decides to terminate the contract, the leftovers are sold back to the fuel
supplier with a penalty.

The spot prices for MGO and HFO fuels during the planning period are assumed
to be stochastic, and the MBM problem can be described using a two-stage model
with scenarios representing the stochastics. In the first stage, decisions with respect
to the amounts of MGO and HFO to be hedged in an FFC must be made at the
beginning of the planning period. The spot prices of the two fuels in different
scenarios are then realized in the second stage and are assumed to remain constant
during the whole planning period. Several operational decisions will be made
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Fig. 4 Piecewise linearization of the fuel consumption function

afterward based on the realized fuel prices and the first-stage hedging decisions.
These second-stage decisions are made of two major parts. The first consists of
speed and routing choices on each leg. The second part consists of fuel allocation
decisions, i.e., how much spot and forward fuels should be used during operations.
The objective of the MBM problem is to minimize the total bunker cost which is
the sum of the first-stage purchasing costs of the forward fuels and the expected
second-stage costs on spot fuels and penalties for unused forward fuels, meanwhile
controlling the bunker cost risk within a desirable level.

The relationship between a vessel’s sailing speed and its fuel consumption per
unit distance is normally considered as a quadratic function [20]. We use a piecewise
linearization approach [2] to approximate the fuel consumption rate for different
sailing speeds, as shown in Fig. 4. Note that an overestimation is expected in the
application of this approach (see Andersson et al. for detailed discussion), but it is
normally insignificant as long as sufficient discrete speed points are used. A good
estimation of the relation between speed and traveling time can also be made using
this approach.

As part of the risk control measures for bunker risk management, we model
the risk attitude of the shipping company using a conditional value-at-risk (CVaR)
approach, which is extensively used in the field of financial risk management to
evaluate various risks. The standard expression of CVaR with a discrete probability
distribution can be expressed as follows:

CVaR� .�/ D
1

1 � �

X

sWf .�;ıs/�VaR� .�/

psf .�; ıs/ (1)
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In (1) � are the decision variables, � refers to the confidence level, f .�; ıs/ refers
to the cost or loss function whose risk (expected value in the worst cases) needs to
be controlled, ı are the random variables, while ıs represent the realization of the
random variables in scenario s and ps which refers to the probability of scenario s.
According to the definition of CVaR, only the scenarios in which the cost is larger
than the VaR (value-at-risk) value (s W f .�; ıs/ � VaR� .�/) need to be accumulated
for the calculation of CVaR. Since the expression of CVaR explicitly involves the
VaR function, it becomes difficult to work with due to the nonlinearity. Therefore,
it is common to use its equivalent auxiliary alternative [24]:

CVaR� .�; ˛/ D ˛ C
1

1 � �

X

sWf .�;ıs/�˛

psŒf .�; ıs/ � ˛� (2)

CVaR� .�; ˛/ D ˛ C
1

1 � �

X

s2S

psŒf .�; ıs/ � ˛�C (3)

Note that the VaR function in (1) is replaced by the artificial variable ˛ in (2).
Moreover, the expression of CVaR is further simplified to (3) through the Œ �C

operator which produces nonnegative results.
In our model, we impose CVaR constraints on the total bunker costs to achieve

the desired risk control effect. Two key parameters, a confidence level and a
maximum tolerable CVaR value, are defined and used as inputs for our model.
For instance, if the confidence level and the maximum CVaR value are set to 95%
and 1.2 million USD, respectively, the CVaR constraints will then ensure that the
expected total bunker costs in the worst 5% cases will not exceed 1.2 million USD
during the planning period.

2.2 Mathematical Formulation

The mathematical formulation is presented as follows:

Sets

J Set of sailing legs along the loop
Rj Set of leg options for Leg j
V Set of feasible discrete speed points for the ship
S Set of scenarios

Parameters

PMGO�F Price per ton of MGO agreed in the forward-fuel contract
PHFO�F Price per ton of HFO agreed in the forward-fuel contract
PMGO�S

s Price per ton of MGO on spot market under scenario s
PHFO�S

s Price per ton of HFO on spot market under scenario s
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PMGO�P Penalty per ton for the unused MGO left in the forward-fuel contract
PHFO�P Penalty per ton for the unused HFO left in the forward-fuel contract
Wj Latest starting time for Leg j
WS

j Service time for Leg j in the departing port
WECA

jrv Sailing time on ECA stretches on Leg j under Leg option r with Speed v

WN
jrv Sailing time on non-ECA stretches on Leg j under Leg option r with Speed

v

DECA
jr Sailing distance on ECA stretches on Leg j under Leg option r

DN
jr Sailing distance on non-ECA stretches on Leg j under Leg option r

Fv Fuel consumption per unit distance sailed with speed alternative v (same
for both HFO and MGO)

ps Probability of scenario s taking place
� Confidence level applied in CVaR
A� The maximum tolerable CVaR value under confidence level �

Decision variables

xECA
jrvs Weight of speed choice v used on ECA stretches on Leg j with Leg

option r under scenario s
xN

jrvs Weight of speed choice v used on non-ECA stretches on Leg j with Leg
option r under scenario s

yjrs Binary variables representing the decisions on route selection, equal to
1 if Leg option r is sailed on Leg j under scenario s and 0 otherwise

zMGO�S
js Amount of MGO from spot market used on Leg j under scenario s

zMGO�F
js Amount of MGO from forward contract used on Leg j under scenario s

zHFO�S
js Amount of HFO from spot market used on Leg j under scenario s

zHFO�F
js Amount of HFO from forward contract used on Leg j under scenario s

uMGO�F
s Amount of unused forward MGO left at the end of the planning period

under scenario s
uHFO�F

s Amount of unused forward HFO left at the end of the planning period
under scenario s

mMGO�F Agreed amount of MGO in the forward contract
mHFO�F Agreed amount of HFO in the forward contract
˛ Artificial variable for CVaR constraints
hs Artificial variables for CVaR constraints under scenario s

The mathematical formulation of the model starts here:

min PMGO�FmMGO�F C PHFO�FmHFO�F

C
X

s2S

ps

X

j2J

�
PMGO�S

s zMGO�S
js C PHFO�S

s zHFO�S
js

�

�
�
PMGO�F � PMGO�P

�
uMGO�F

s �
�
PHFO�F � PHFO�P

�
uHFO�F

s

�

(4)
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Subject to

WjC1 � Wj C WS
j C

X

r2Rj

X

v2V

�
WECA

jrv xECA
jrvs C WN

jrvxN
jrvs

�
s 2 S; j 2 J (5)

X

v2V

xECA
jrvs D yjrs s 2 S; j 2 J; r 2 Rj (6)

X

v2V

xN
jrvs D yjrs s 2 S; j 2 J; r 2 Rj (7)

X

r2Rj

yjrs D 1 s 2 S; j 2 J (8)

zMGO�F
js C zMGO�S

js D
X

r2Rj

X

v2V

FvDECA
jr xECA

jrvs s 2 S; j 2 J (9)

zHFO�F
js C zHFO�S

js D
X

r2Rj

X

v2V

FvDN
jrxN

jrvs s 2 S; j 2 J (10)

X

j2J

zMGO�F
js C uMGO�F

s D mMGO�F s 2 S (11)

X

j2J

zHFO�F
js C uHFO�F

s D mHFO�F s 2 S (12)

yjrs 2 f0; 1g s 2 S; j 2 J; r 2 Rj (13)

xECA
jrvs ; xN

jrvs � 0 s 2 S; j 2 J; r 2 Rj; v 2 V (14)

zMGO�F
js ; zMGO�S

js ; zHFO�F
js ; zHFO�S

js � 0 s 2 S; j 2 J (15)

uMGO�F
s ; uHFO�F

s � 0 s 2 S (16)

CVaR constraints:

˛ C
1

1 � �

X

s2S

pshs � A� (17)

hs � 0 s 2 S (18)
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hs � PMGO�FmMGO�F C PHFO�FmHFO�F

�
�
PMGO�F � PMGO�P

�
uMGO�F

s �
�
PHFO�F � PHFO�P

�
uHFO�F

s (19)

C
X

j2J

�
PMGO�S

s zMGO�S
js C PHFO�S

s zHFO�S
js

�
� ˛ s 2 S

The objective function (4) minimizes the expected total bunker cost for the
planning period. The purchasing costs for the stated amounts of both fuels in the
FFC are given in the first line of (4). The second line of the objective function refers
to the expected costs for the consumption of spot fuels. The last line represents
the treatment of the unused forward fuels. At the end of the planning period, the
leftovers in the FFC (if any) are sold back to the bunker supplier at “buyback” prices,
computed as their contractual forward prices subtracted by a penalty.

Constraints (5) enforce the time constraints for all sailing legs according to the
schedule. Constraints (6) and (7) connect x- and y-variables with respect to the
speed-routing choices in ECA and non-ECA stretches, respectively. They ensure
that the sums of the speed weights, xECA

jrvs and xN
jrvs, respectively, for ECA and non-

ECA stretches, are equal to 1 if Leg option r is chosen for Leg j in scenario s and
0 otherwise. Constraints (8) ensure that only one leg option is used on any specific
leg. Constraints (9) and (10) make sure that for each scenario the sum of the spot
and forward fuels used on each leg equals the actual fuel consumption on that leg
based on the speeds and leg options chosen. Constraints (11) and (12) ensure that
the forward fuels used plus the leftovers equal the agreed amounts in the forward
contract. Constraints (13), (14), (15), and (16) define the domains of the decision
variables. Constraints (17), (18), and (19) are the CVaR constraints representing
the risk attitude of the shipping company, restricting the risk on the total bunker
costs to be within an acceptable level. Constraint (17) ensures that the actual CVaR
value during the optimization will not exceed the desired risk level (A� ). On the
other hand, the Œ �C operator in (3) is replaced by the artificial variables hs and
constraints (18) and (19) for optimization purpose.

It is important to notice that the CO2 emissions are not directly considered in the
formulation. Instead, they can be calculated based on the optimal solutions obtained
using the CO2 emission factors for the two fuels (see Sect. 1), 3.082 (tons/ton fuel)
and 3.021 (tons/ton fuel) for MGO and HFO, respectively. More details will be
discussed in Sect. 4.1.

3 The Test Case and Scenario Generation

In this section, we briefly describe the test case in Sect. 3.1, while the scenario
generation process is discussed in Sect. 3.2.
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Table 1 Sequence of the
port calls in the case loop

Origin port Destination port

Leg 1 Brunswick Galveston

Leg 2 Galveston Charleston

Leg 3 Charleston New York

Leg 4 New York Bremerhaven

Leg 5 Bremerhaven Brunswick

3.1 The Test Case

The case considered in this paper is based on a liner service offered by Wallenius
Wilhelmsen Logistics (WWL). The company offers roll-on roll-off (RoRo) services
for transporting cars, trucks, and other types of rolling equipment. In our case,
the service loop and its corresponding schedule are adapted from one of WWL’s
Europe-Americas trade lanes. The sequence of the port calls in the loop is shown in
Table 1. The scheduled total traveling time for a round trip on this loop is 35 days.
We therefore also set the planning period to 35 days.

We further assign five leg options to each leg in the case loop. Although different
leg options of a specific leg share the same origin and destination ports, they differ
in terms of ECA, non-ECA, and total sailing distances. As an example, Fig. 5
illustrates all five leg options of Leg 3 (Charleston, New York), where Leg option
1 takes the shortest possible path which is completely inside ECA, and Leg option
5, on the contrary, has the least ECA sailing. The detailed information about sailing
distances for each leg option of every leg is displayed in Table 2.

Additionally, the fuel consumption data we use is collected from the historical
record of a real RoRo ship under normal conditions. Figure 6 shows the fuel
consumption per nautical mile for seven selected discrete speed points ranging from
15 to 24 knots.

3.2 Scenario Generation

As mentioned earlier, the uncertainties considered in our problem refer to the
spot prices for MGO and HFO. We assume we know their marginal distributions
and the correlation between them and apply a version of the scenario-generating
heuristic developed by [12] in order to generate scenarios for fuel prices. However,
since fuel prices are significantly dependent over time, generating fuel prices using
distributions derived from historical data directly can be problematic. For example,
the generated fuel prices will not be representative if the historical data during
the past booming period (e.g., 2008) is directly used in the process of scenario
generation, when the current market is actually in recession.
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Fig. 5 Five leg options for Leg 3 (Charleston, New York) (Google Maps, 2016)

Table 2 Travelling distances for all ECA/non-ECA stretches

Nautical mile Option 1 Option 2 Option 3 Option 4 Option 5

Leg 1 (ECA/non-ECA) 1191/35 569/774 495/870 469/905 408/1062

Leg 2 (ECA/non-ECA) 1271/34 686/704 524/906 458/1083 397/1241

Leg 3 (ECA/non-ECA) 632/0 560/330 499/429 443/515 423/602

Leg 4 (ECA/non-ECA) 1767/1629 1379/2125 1042/2503 899/2652 752/2903

Leg 5 (ECA/non-ECA) 2393/1626 1110/2984 1013/3109 817/3337 751/3428

Therefore, we use a two-step approach to construct the scenarios for the spot-fuel
prices for the next planning period. As a first step, we observe the latest fuel prices
on the spot market and use them as base prices, which are also the expected spot
prices during the planning period. Then, we generate price increments using the
scenario generation heuristic, either positive or negative, and add them to the base
prices. This approach corresponds to the special dynamic of the development of fuel
price, which can be seen as a Lévy process with independent increments [16, 10].
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Fig. 6 Speed and fuel consumption relation for the selected discrete speed points

We use the historical data provided by Clarkson Research Services Limited [5]
to obtain an estimation of the distributions and correlation for the price increments.
The data is collected from three major ports, Rotterdam, Houston, and Singapore,
and consists of monthly prices of the two fuels (HFO and MGO) at these ports from
January 2000 to December 2015. According to the data, the price increments of
HFO and MGO are positively correlated and the correlation coefficient is estimated
at 0.75. Furthermore, we assume triangular distributions for the random increments.
The lower limit, mode, and upper limit that control the marginal distributions
applied in the scenario-generating heuristic are set to (�40, 0, 40) and (�120, 0,
120) for HFO and MGO, respectively. The latest observations of the spot-fuel prices
(used as base prices or expected spot prices) are from December 2015, and the prices
of HFO and MGO are 150 USD/ton and 375 USD/ton, respectively. Also note that
in our model the forward prices are always set to be marginally higher than the
corresponding expected spot prices to prevent speculation.

Finally, an in-sample stability test [14] is performed to check the reliability of the
scenario generation process. By comparing the results with different scenario trees
generated under the same conditions, this test checks whether the optimal objective
function value has a significant dependence on the specific scenario tree used. In
our case, 10 scenario trees, each with 100 scenarios, are generated. The difference
among the objective values solved with all 10 scenario trees is smaller than 0.02%,
which shows that the scenario generation process used in this paper is stable and
reliable.
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4 Computational Study

In this section, we investigate how CO2 emissions may be affected by a shipping
company’s risk attitude (Sect. 4.1) and its fuel hedging decisions (Sect. 4.2). The
mathematical model in this paper is programmed in C++ with Microsoft Visual
Studio. The commercial solver, CPLEX Optimization Studio V12.6.1, is called to
solve the model in our tests. All computational tests are performed with an Intel
Celeron 1.60 GHz CPU and 8 Gb RAM. The computational time does not exceed
1 min for an individual test.

4.1 Impact of Risk Attitude on CO2 Emissions

In our model, the shipping company’s risk attitude toward its total bunker costs, i.e.,
its risk aversion level, can be represented by a maximum tolerable CVaR value (A� )
and a confidence level (� , set to a fixed value of 95% in our study). The A95% value
determines an upper bound of the average total cost allowed in the worst (5%) cases.
A larger A95% then corresponds to a higher tolerance of extreme risk and hence a
lower risk aversion level. This allows us to use different A95% values to represent the
different levels of risk aversion, in order to study the impact of the company’s risk
attitude on its CO2 emissions.

4.1.1 Effect of Changing Risk Aversion Levels

First, we assume a “standard” risk aversion level for our case study. The correspond-
ing A95% is set to 390,000 USD which is approximately 1%1 higher than the optimal
total bunker cost in a risk-neutral case or the objective function value obtained when
solving the problem without the CVaR constraints. The standard risk aversion level
is then used as a benchmark for comparing the CO2 emissions at different risk
aversion levels.

We use in total 8 different A95% values, ranging from 388,000 USD (extremely
risk-averse) to 400,000 USD (least risk-averse). We also test the risk-neutral case
which can be equivalently considered as having an enormously large A95% value,
and the CVaR constraints are thus no longer binding. We then solve the problem
with each of these A95% values and observe, in each case, the optimal fuel allocation
decisions, i.e., the forward fuels

�
zMGO�F

js and zHFO�F
js

�
and spot fuels

�
zMGO�S

js and
zHFO�S

js

�
consumed for every scenario s 2 S. The amount of CO2 emitted (in tonnes)

for every scenario s can then be calculated using the following formula:

1It is feasible and reasonable to restrict the risk level to such extent in this test because the forward-
fuel prices are set to be only marginally higher than the expected spot-fuel prices.
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Table 3 Worst-case CO2 emissions under different risk aversion levels

Value set for A95% (maximum CVaR)

[1000 USD] 388 389 390a 391 392 393 395 400 Risk-neutral

% �0.51 �0.26 0.0 C0.26 C0.51 C0.77 C1.28 C2.56 �

Worst-case CO2 emitted (average of five worst scenarios out of 100)

[tonnes] 5653 5695 5785 5787 5890 5930 6046 6046 6046

% �2.28 �1.56 0.0 C0.03 C1.82 C2.51 C4.41 C4.41 C4.41
aBenchmark case with “standard” risk aversion

Table 4 Example of fuel consumption for a particular scenario under different risk aversion levels

Value set for A95% (1000 USD) 388 389 390 391 392 393 � 395a

MGO consumption (tonnes) 482.2 473.1 455.4 454.4 435.5 426.5 404.8

HFO consumption (tonnes) 1379.4 1402.6 1449.8 1451.9 1504.5 1527.8 1588.5

Total consumption (tonnes) 1861.6 1875.7 1905.2 1906.3 1940.0 1954.2 1993.3
aIncluding the risk-neutral case

CO2Emitted D
X

j2J

�
3:082

�
zMGO�S

js C zMGO�F
js

�
C 3:021

�
zHFO�S

js C zHFO�F
js

�	
(20)

Out of 100 scenarios, we can then find the 5 scenarios with the highest amounts of
CO2 emitted and calculate their average as the worst-case CO2 emission for each
given A95% value.

Table 3 displays the results comparing the worst-case CO2 under different risk
aversion levels (A95% values). We may observe that the worst-case CO2 emissions
increase when the company lowers its risk aversion level (or accepts a higher A95%

value). We may also notice that the amount of CO2 emitted stops increasing and
remains at 6046 tonnes when A95% is above 395,000 USD.

Recall that the stochastics in our model come from the uncertain spot-fuel prices,
creating risk on the total bunker costs. The introduction of CVaR constraints is
therefore to contain such risk in the extreme cases. When the risk attitude is more
relaxed in a shipping company’s bunker risk management, i.e., with higher A95%,
the company will have a higher willingness to take risks and rely more on the fuels
from the spot market, rather than buying from the forward market. This actually
allows the shipping company to operate the ship with higher flexibility in terms of
more freedom to apply ECA-evasion and/or speed differentiation strategies, in order
to avoid consuming the more expensive MGO. In contrast, for example, if a fair
amount of MGO is already hedged, the shipping company’s routing decisions may
be restricted to the more traditional “shortest but more ECA involved” alternative,
just to commit to the hedging contract and thus avoid paying too much penalty for
unused MGO eventually. In Table 4, we show the fuel consumption for a specific
scenario (where the spot prices for MGO and HFO are 413 USD/ton and 140
USD/ton, respectively) under different risk aversion levels. We can see that the total
fuel consumption (bottom row in Table 4) increases when setting a higher A95%,
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and hence the CO2 emissions also increase (since the emission factors for MGO
and HFO are practically the same). This is due to the fact that when relying more on
spot fuels (at higher A95%) and in the light of the significant price difference between
MGO and HFO, the ship is sailing more “aggressively,” such as evading ECA as
much as possible and sailing as slowly as possible inside ECA (see Appendix 1
for details). The aggressive sailing has brought down the consumption of MGO
but increased HFO consumption even more, which is beneficial in terms of total
bunker costs but leads to an increase in total fuel consumption and eventually more
CO2 emitted. Once the A95% exceeds 395,000 USD, nevertheless, the pattern of fuel
consumption for both fuels and thus the sailing behavior remain stable in the worst
scenarios, since the sailing behavior in these scenarios has already been pushed
to the most aggressive level. Therefore, the average CO2 emissions in the worst
scenarios remain unchanged after the A95% surpasses 395,000 USD, as observed in
Table 3.

It is important to notice that the above results are based on studying the worst-
case CO2 emissions under different risk aversion levels, which show a clear
tendency that the imposition of financial risk control measures (CVaR constraints)
is also, to a certain degree, able to contain the “environmental risk” (CO2 emissions
in the worst scenarios). On the other hand, the relationship between average CO2

emissions and risk aversion level is more complicated and is influenced by how
much more expensive MGO is than HFO.

4.1.2 Influence of Price Gap Between MGO and HFO

In our model, the base prices for MGO and HFO (see Sect. 3.2), 375 USD/ton and
150 USD/ton, respectively, refer to the spot prices observed in December 2015
and are used as expected spot prices for the planning period. This has led to an
Expected Spot Price Gap (ESPG in short) of 225 USD/ton. In the following test,
we aim to study how average CO2 emissions change with different ESPG. This
is done by altering the base price for MGO and hence the ESPG, solving the
corresponding MBM problem, and observing the average amount of CO2 emitted
across all scenarios (instead of the five worst scenarios). We also test for two risk
settings: standard risk-averse (see Sect. 4.1.1) and risk-neutral.

Table 5 displays the average amounts of CO2 emitted, for both standard risk-
averse and risk-neutral settings, at various ESPG ranging from 100 USD/ton to 400
USD/ton. The corresponding expected spot MGO ranges from 250 to 550 USD/ton,
while the expected spot HFO is fixed at 150 USD/ton. We can clearly see from
Table 5 that for the risk-averse setting, the amount of CO2 emitted becomes higher
with increasing ESPG. It is also the case for the risk-neutral setting. This is in fact
consistent with the conclusion shown in [9], that is, in general, CO2 emissions would
also increase when the price gap between MGO and HFO increases, due to a higher
tendency to implement ECA-evasion and speed differentiation strategies. However,
when comparing the CO2 emissions between risk-averse and risk-neutral settings,
i.e., the Difference% row of Table 5, we cannot easily tell which risk attitude is
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Table 5 Average CO2 emissions at different ESPG, for both standard risk-averse and risk-neutral
settings

ESPG (USD/ton) 100 150 200 250 260 270 300 350 400

CO2 (tonnes)
Risk-averse

5586.7 5618.2 5655.6 5743.3 5852.3 5988.1 6023.1 6045.2 6046.4

CO2 (tonnes)
Risk-neutral

5561.0 5619.7 5670.7 5821.2 5869.0 5913.0 5999.2 6043.8 6046.4

Difference%a �0.46 C0.03 C0.27 C1.36 C0.29 �1.25 �0.40 �0.02 0.00
aRelative increase in CO2 for the risk-neutral case compared to the risk-averse case

Fig. 7 Difference of expected CO2 emissions between risk-averse and risk-neutral cases under
different levels of price gap

more “environmentally friendly.” We further illustrate in Fig. 7 the comparison of
average CO2 between risk-averse and risk-neutral settings.

In Fig. 7, the average CO2 emitted at different ESPG under the standard risk-
averse setting is represented by the solid line and the risk-neutral setting by the
dashed line. Unlike the results shown in Sect. 4.1.1, where stronger risk aversion
leads to a lower worst-case CO2 emissions (which is, in fact, a general trend
regardless of ESPG according to our experiments), the effect of risk aversion on
average CO2 emissions is undetermined and depends upon the specific ESPG that
we face. For example, in Fig. 7, when the ESPG is around 250 USD/ton, the risk-
averse setting has lower average CO2 emissions than the risk-neutral case, whereas
at around 270 USD/ton, the opposite situation is observed.

In order to explain this somewhat surprising result, we first need to explain what
we call a jump in sailing behavior. If there is no price gap between MGO and HFO,
the shipping company has no incentive to change its sailing behavior and thus sails
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Fig. 8 Simple example illustrating a jump in sailing behavior change

the traditional leg option (shortest path) between two ports in the same ECA. When
the price gap increases, a leg option change will not immediately occur. The vessel
will stick to the shortest path until the price gap between MGO and HFO reaches
a certain level and then switch to another leg option, looking something like Leg
Option 2 in Fig. 5; the sailing pattern makes a jump. Figure 8 is used to illustrate
the principle of a jump. The solid line represents the traditional leg option between
two ports located inside the same ECA, the dash-dot line illustrates the leg option
following a jump. For simplicity of the argument, let us simply assume that one
universal speed is applied both in- and outside ECA. Hence, fuel consumption is
proportional to distance. The fuel cost for the traditional leg is PMGO � a, while the
total bunker cost for the “Jump-to” leg option is PMGO �2dCPHFO �.a�2c/. Hence,
until the MGO price becomes .a � 2c/=.a � 2d/ times as high as the HFO price, it
is cheaper to sail the shortest path and a jump will not be triggered. However, once
the price gap exceeds that level, the optimal leg option switches to the “Jump-to”
leg option and the jump occurs. Note that jumps are a natural part of the underlying
problem and not caused by the fact that we have discretized sailing patterns into
possible leg options. Furthermore, if time and speed considerations are involved, the
“Jump-to” leg option will need a higher average speed, thus higher fuel consumption
to maintain the schedule, which leads to an even higher price gap to trigger the jump.

A risk-averse company relies mainly on the forward market while using small
amounts of spot fuels as supplements. Moreover, the forward price difference
approximately equals the ESPG since the prices of the forward fuels are set to be
just marginally higher than the expected spot fuel prices (basis prices). Therefore,
the actual price gap which decides the sailing behavior in the risk-averse setting
is significantly affected by the ESPG and only slightly influenced by the Realized
Spot Price Gap (RSPG in short) in each scenario. The RSPG in scenario s can be
expressed as:

RSPGs D ESPG C
�
IMGO
s � IHFO

s

�
(21)
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where IMGO
s and IHFO

s represent the price increments of MGO and HFO, respectively,
in scenario s. The risk-neutral company, however, is more willing to take market
risks and thus only buys from the spot market. Hence, in the risk neutral case,
the sailing pattern in each specific scenario purely depends on the RSPG in that
scenario. In sum, the price gaps in most scenarios in the risk-averse setting are
approximately the same as the ESPG, while the price gaps in the risk-neutral setting
(RSPG) differ substantially from scenario to scenario.

Since most scenarios in the risk-averse setting have similar price gaps, the jump
happens almost simultaneously in these scenarios when the ESPG increases to the
level that satisfies the requirement illustrated in Fig. 8. Such a clustered change
in sailing behavior (thus CO2 emissions) in most scenarios brings a sudden and
major increase in average CO2 emissions in the risk-averse setting, as observed
in Fig. 7. From (21), we see that RSPG increases together with the ESPG, but
such that the scenario with the largest price increment difference will also have
the largest RSPG. Hence, when ESPG increases, these scenarios with large price
increment differences will first trigger a jump. Then the scenarios with moderate
price increment differences (thus moderate RSPGs) follow along with the increase
of ESPG, and finally the jump occurs in the scenarios which have small price
increment differences (thus small RSPGs). As we can see, contrary to the clustered
jump in the risk-averse setting, the jump in the risk-neutral setting happens gradually
from the scenarios with larger RSPGs to the ones with smaller RSPGs. The
corresponding effect on average CO2 emissions is much more widely distributed
along the ESPG axis, which eventually leads to a smoother increasing curve for the
risk-neutral setting, as witnessed in Fig. 7.

To summarize, in this section we show that the shipping company’s risk attitude
has impact on its CO2 emissions in various ways. On one hand, the worst-case CO2

emissions will be reduced by financial risk control measures, i.e., a stronger risk
aversion will lead to less CO2 emitted in the worst scenarios; on the other hand, the
effect of risk aversion on average CO2 emissions is undetermined and is influenced
by the expected price gap between MGO and HFO on the spot market.

4.2 Impact of Hedging Strategies on CO2 Emissions

We now study how different hedging strategies affect a shipping company’s
expected CO2 emissions. For all experiments presented in this section, we assume
the company’s risk attitude is always standard risk-averse (see Sect. 4.1.1), and the
expected CO2 emissions refer to the average amount of CO2 emitted across all
scenarios.
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Using the input data given in Sect. 3, we can first obtain the optimal hedging
amounts of both MGO and HFO by solving the stochastic MBM problem to
optimality. We then fix the hedging decision for one fuel, HFO for instance, and
change the hedging amount of the other (MGO) to get different combinations of
hedging decisions. For each such combination, we solve the problem after fixing
the hedging decisions accordingly and record the expected CO2 emissions. The
results are shown in Fig. 9a, where the hedged MGO varies from 70% to 120%
of its optimal amount. We also show in Fig. 9b the opposite case in which we vary
the hedging amount for HFO while fixing the hedged MGO at its optimal amount.

From the two charts in Fig. 9, we can see that the expected CO2 emissions
will (a) decrease when hedging more MGO and (b) increase when hedging more
HFO. These changes in CO2 emissions may be explained by the changes in the
company’s willingness to apply ECA-evasion and speed differentiation strategies.
As mentioned earlier, when more MGO is hedged, in order to commit to the forward
contract and avoid paying too much penalty for unused forward MGO, the company
may be restricted to the traditional “shorter but more ECA involved” routes. In
this case, the total fuel consumption (MGO&HFO) is usually lower because of
the shorter total distance sailed, hence the CO2 emissions are also lower. On the
other hand, when more HFO is hedged, the company may be more likely to sail
“aggressively,” e.g., with as little ECA involvement as possible, in order to consume
more HFO. As a result, the total sailing distance is usually longer, which eventually
leads to higher total fuel consumption and more CO2 emitted.

Note that the above tests only show how expected CO2 emissions change when
altering the hedging amount of one type of fuel alone. In addition, apart from
the environmental impact, different hedging decisions may also affect the total
bunker costs, which is more of a concern for most shipping companies. Therefore,
in the following tests, we demonstrate the effects of simultaneously changing the
hedging amounts of MGO and HFO, both environmentally (in terms of expected
CO2 emissions) and financially (in terms of expected total bunker costs and worst-
case total bunker costs). We seek to provide an insight into the question: can we
effectively reduce CO2 emissions through different hedging strategies? And at what
cost?

Let us look at two 3-D charts in Fig. 10. In both charts, we use the changes
(%) in the hedging amounts of MGO and HFO (relative to their respective optimal
amounts) as x- and y- axes, respectively. For Fig. 10a, we show two plotted surfaces
representing expected CO2 emissions (bottom surface) and expected total bunker
costs (top surface), both are changes (%) relative to their corresponding values
obtained with the optimal hedging decisions. For Fig. 10b, the surface of expected
CO2 emissions remains the same, and we also show the surface for the worst-case
total bunker costs, computed as the average of the five worst scenarios out of 100.
Let us further focus on the red areas in the two charts, where the x- (change in
MGO) values and y- (change in HFO) values correspond to [+5%, +10%] and
[�6%,�2%], respectively. Therefore, by hedging 5–10% more on MGO and 2–6%
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Fig. 9 Expected CO2 emissions under different fuel hedging strategies. (a) CO2 under different
MGO hedging amount. (b) CO2 under different HFO hedging amount
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Fig. 10 Illustration of the relation between CO2 emissions and expected and worst-case total
bunker costs under different hedging strategies. (a) Surfaces for expected total bunker costs
and expected CO2 emissions. (b) Surfaces for worst-case total bunker costs and expected CO2

emissions
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less on HFO, we are able to reduce expected CO2 emissions by 0.75–1.63%. This is
achieved at the expense of increasing the expected total bunker costs by 0.04–0.50%,
which are not significant. Furthermore, we show in Fig. 10b that such reduction
in CO2 sometimes even coincides with an improved situation (decrease) in the
worst-case bunker cost (ranging from �0.27% to 0.08%). These results are meant
to provide an example that sometimes a shipping company can achieve noticeable
reduction in CO2 emissions with little sacrifice on its financial costs by changing the
hedging strategies. For any single player in maritime transportation, such reduction
may not be significant. But for the shipping industry on a global scale, this could
become a sizable contribution if more companies are coming to the realization of
the potential environmental benefits of proper design of hedging and other bunker
risk management measures.

5 Conclusion

Bunker risk management is widely practiced in the shipping industry to reduce
financial risk and can be vital for a shipping company to remain competitive.
Nevertheless, dramatic changes have taken place after the introduction of the ECA
regulation. In this paper, we use a stochastic maritime bunker management (MBM)
model and a case study on a major liner shipping company to show that bunker risk
management has impacts on the company’s CO2 emissions.

We first study the impact of the shipping company’s risk attitude on its CO2

emissions. The results show that stronger risk aversion can also lead to lower
“environmental risk,” i.e., less CO2 emissions in the worst cases. Meanwhile, we
also show that the effect of risk aversion on average CO2 emissions is undetermined
and is influenced by the expected price gap between MGO and HFO on the spot
market. We then study the impact of hedging strategies on CO2 emissions. We
show that a shipping company can sometimes achieve noticeable reduction in
CO2 emissions with little sacrifice on its financial costs by changing its hedging
strategies.

Acknowledgements The authors acknowledge the financial support from the project “Green
Shipping Under Uncertainty (GREENSHIPRISK)” partly funded by the Research Council of
Norway under grant number 233985.

Appendix 1

The detailed speed-routing decisions in scenario no. 26 under different maximum
CVaR values are shown in the following table (Table 6).
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Table 6 Sailing behaviors in scenario no. 26 under different risk aversions

Max CVaR
(1000 USD) 388 389 390 391 392 393 Neutral

Leg 1
Leg option 4 5 5 5 5 5 5

ECA/non-ECA
distance
(nautical mile)

496/905 408/1062 408/1062 408/1062 408/1062 408/1062 408/1062

ECA/non-ECA
speed (knot)

15/15 15/15 15/15 15/15 15/15 15/15 15/15

Leg 2
Leg option 3 3 5 5 5 5 5

ECA/non-ECA
distance
(nautical mile)

524/906 524/906 397/1241 397/1241 397/1241 397/1241 397/1241

ECA/non-ECA
speed (knot)

15/15 15/15 15/15 15/15 15/15 15/15 15/15

Leg 3
Leg option 1 1 1 1 4 4 4

ECA/non-ECA
distance
(nautical mile)

632/0 632/0 632/0 632/0 443/515 443/515 443/515

ECA/non-ECA
speed (knot)

15/15 15/15 15/15 15/15 15/15 15/15 15/15

Leg 4
Leg option 4 4 4 4 4 4 5

ECA/non-ECA
distance
(nautical mile)

889/2652 889/2652 889/2652 889/2652 889/2652 889/2652 752/2903

ECA/non-ECA
speed (knot)

15/20.6 15/20.6 15/20.1 15/20.1 15/20.1 15/20.1 15/20.5

Leg 5
Leg option 5 5 5 5 5 5 5

ECA/non-ECA
distance
(nautical mile)

751/3428 751/3428 751/3428 751/3428 751/3428 751/3428 751/3428

ECA/non-ECA
speed (knot)

15/18.1 15/18.1 15/18.1 15/18.1 15/18.1 15/18.1 15/18.1
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Allied Closed-Loop Supply Chain Network
Optimization with Interactive Fuzzy
Programming Approach

Ahmet Çalık, Nimet Yapıcı Pehlivan, Turan Paksoy, and İsmail Karaoğlan

Abstract The concept of closed-loop supply chain (CLSC) has started to attract
growing attention due to the consumer pressures, environmental awareness, and
legislations. Managers in many companies have realized that a well-designed supply
chain (SC) can improve the companies’ performance in the market. Thus, a lot of
companies start to focus on CLSC issues including remanufacturing, refurbishing,
recycling, and disposal of end-of-life products. The body of literature on CLSC
management has been overwhelmingly dominated by noncooperative studies. In
order to fill up this gap in the literature, we deal with an allied SC network
in cooperative environment. With the implementation of allied SCs, companies
not only maximize their profit but also minimize their various costs and become
more flexible and efficient in the market. Following this motivation, we develop
a decentralized multilevel CLSC model for allied SCs. At the first decision level,
the plants in allied SCs are considered as the upper-level DMs of the Stackelberg
game. At the second level, raw material suppliers, common suppliers, assembly
centers, and common collection centers are considered as the lower-level DMs of the
Stackelberg game. In order to tackle each decision-maker (DM)’s unique objectives,
we propose a new fuzzy analytic hierarchy process (AHP)-based interactive fuzzy
programming (IFP) approach. In the IFP approach, upper-level DMs determine the
minimum satisfactory level for their own objectives, and by using this value, the
lower DMs evaluate their own satisfactory level. A compromise solution can be
derived until termination conditions are satisfied. The primary aim of this study is
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to design a decentralized CLSC network in cooperative environment and to propose
a novel IFP approach. Finally, a numerical example is implemented and analyzed in
order to demonstrate the efficiency of the proposed approach.

1 Introduction

The traditional dynamics of business environment have changed over the last years,
and supply chain management will gain a critical concern in the competitive
business environment. In the future, the relationships between companies will
change into the relationships between supply chains. The traditional concept of
“SC,” which is an important key of profitability of companies, has gained new
features. Many more companies are faced to new terms in SCs: “competitive” or
“alliance.” In competitive SC companies conduct their actions across the other
supply network entities [1]. But in alliance SC companies work together and
coordinate their actions in an alliance [2]. With the use of alliance SC, companies
work together, share common units, and reach the success faster than by working
alone. There are some studies that consider competitive SC [3–5] in comparison
with the allied SC.

The “closed-loop supply chain” becomes an increasingly growing concept with
rapid technological developments, increasing consumer pressures, and government
regulations. The managers of companies are responsible of their end-of-life products
(EOLPs) with the increase in public awareness about environmental issues and
environmental regulations [6]. Many companies such as Xerox, HP, and IBM
focus on remanufacturing activities. In 2014, Fuji Xerox Australia has increased
the mass of remanufactured parts for reuse by 43 percent to 280 tons and has
increased mass of recycled materials up to 10 percent to 3577 tons with the
remanufacturing activities [7]. In 2013 IBM, 32.200 metric tons of end-of-life
products were collected for end-of-life products management. From 1995 to 2013,
IBM had processed over 2 billion pounds (913,000 metric tons) of product and
product waste worldwide [8]. On the other hand, we can find alliance SC examples
in the automotive, aerospace, and personal computer (PC) industries, where in
these examples many original equipment manufacturers (OEMs) share common
suppliers [1].

Supply chain network design (SCND) includes three main decisions. Determina-
tion of capacity, location of facility, and optimal number of facilities are handled as
strategic decisions [1]. Determination of produced, sent, and stored parts/products
is handled as tactical decisions [12–16]. Integration of production planning and
inventory control decisions such as routing and scheduling are called operational
decisions [17–19]. We have encountered centralized strategies in most of the CLSC
studies. But in this study, we focus on decentralized CLSC strategies [20].

In many CLSC network designs, the units may have decentralized strategies,
which means all the units have different individual objectives under some parame-
ters and constraints. In this situation, the SC units may adopt cooperative strategies
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by centralizing their decisions and operating jointly (e.g., they may share/mutualize
some physical resources such as warehouses or vehicle fleet or may do some project
jointly such as shipment consolidation, joint replenishment). In this case, each of
them will get a portion of the achieved savings [21].

The Stackelberg game model is the most used modeling method in decentralized
organizations. In the model there are two players; each of the players knows
their strategies and determines their own strategy according to the other player’s
strategy. But in this model, players do not cooperate with each other. In real-world
examples, top management or an executive board must think other players’ strategy
in overall management policy. In order to overcome this problem, Sakawa et al. [22,
23] have proposed IFP [24]. Sakawa et al. [22] have developed interactive fuzzy
programming for two-level linear programming problems to overcome the problem
in the above methods. Moreover, from the viewpoint of experts’ imprecise or fuzzy
understanding of the nature of parameters in the problem formulation process, they
have extended it to interactive fuzzy programming for two-level linear programming
problems with fuzzy parameters [23].

Following this motivation, in this paper we developed a decentralized multilevel
CLSC model for alliance SCs. Two closed-loop supply chains with alliance in
some units are taken into account. The raw material suppliers, common suppliers,
assemblers, and common collection centers are handled allied units in two SCs. The
proposed model is able to help how we integrate two SCs simultaneously. A novel
IFP approach which is based on fuzzy AHP is proposed for a decentralized model
with multiple DMs at the upper levels and multiple DMs at the lower level. In this
approach, the balance of the upper-level DMs and lower-level DMs is obtained by
using a ratio. With the usage of this ratio, DMs can cooperate with each other, and
a compromise solution can be obtained.

The remainder of this paper is organized as follows: Section 2 presents a
comprehensive literature review related to CLSC and IFP approaches. Section 3
describes problem definition and model formulation in detail; assumptions, sets,
parameters, variables, objective functions, and constraints are described. Section
4 gives the novel interactive fuzzy programming approach. Section 5 presents
computational results. Finally, we finish the study and give some future directions
in Sect. 6.

2 Literature Review

A number of studies have been handled in CLSC management by many researchers.
A comprehensive review of reverse logistics and CLSC is investigated by Govindan
et al. [25]. A bibliometric and network analysis of green supply chain management
is handled in detail by Fahimnia et al. [26].

An interactive fuzzy goal programming approach is proposed for solving a CLSC
network problem by Zarandi et al. [11]. According to the numerical example,
they showed that the proposed approach is adequate to solve the proposed CLSC
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distribution network. Pishvaee et al. [27] developed a mixed-integer linear model
for CLSC network design. In order to handle uncertainty, a robust optimization
model is proposed by authors. The robustness of the proposed model showed with
computational results. Pishvaee and Razmi [28] presented a multi-objective fuzzy
mathematical programming model for environmental SCND. An interactive fuzzy
solution approach is developed based on the "-constraint method and possibilistic
programming approach proposed by Jiménez et al. [29]. The validity of the
developed model is investigated for a real industrial case. Farahani et al. [3]
provided a review of competitive environment on SCND. They categorized the
related literature in SCND that considered competition in modeling SCND. After
the review they proposed potential gaps and a general framework for modeling
the competitive SCND problems. Rezapour et al. [4] designed a competitive SC
network between two SCs. Internal and external competitions are modeled at the
SCND stage of a CLSC. In order to solve the model, a modified projection method
is used, and in an automotive spare parts market, the proposed model is tested. Fallah
et al. [30] addressed the competition between two SCs in an uncertain environment.
The developed CLSC model competes on following factors: the retail prices and
incentive quantity. In order to solve the model, they proposed a possibilistic SCND
model. The validity of proposed model is tested via an Iranian battery manufacturer
company. In order to solve decentralized bi-level multi-objective programming
problems, Toksari and Bilim [31] proposed an interactive fuzzy goal programming
approach based on Jacobian matrix. In the proposed model, a single DM at the first
level and multiple decision-makers at the second level are accepted. With the use
of the proposed approach, DMs obtain satisfactory solutions. Subulan et al. [32]
handled various recovery options including remanufacturing, recycling, and energy
recovery for tire CLSC model via holistic view. The developed model was tested
using an interactive fuzzy goal programming approach for the tire industry in the
Aegean Region of Turkey.

Fuzzy programming approaches are the most used approach for solving multi-
objective and multilevel programming models. The first approach is developed by
Zimmermann [33] called max–min approach. Li et al. [34] improved the fuzzy
compromise approach of Guua and Wu [35] by computing proper membership
thresholds. Ahlatcioglu and Tiryaki [36] proposed two different IFP approaches for
a decentralized two-level linear fractional programming. In both approaches, upper-
level DM reflects the judgments with the help of analytic hierarchy process. The
validity of the proposed approaches is shown with different numerical examples.
Selim and Ozkarahan [37] developed a multi-objective linear programming model
that selects the optimum numbers, locations, and capacity levels of plants and
warehouses. A new and generic interactive fuzzy goal programming (IFGP)-
based solution approach is proposed for obtaining compromise solution. Torabi
and Hassini [38] proposed a multi-objective possibilistic mixed-integer linear
programming model (MOPMILP). They developed a two-phase interactive fuzzy
programming approach, and for the second phase, they proposed a novel inter-
active fuzzy approach to find an efficient compromise solution. The numerical
experiments indicate that the proposed approach is better than the considered
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fuzzy approaches. Özceylan and Paksoy [39] used different fuzzy interactive
programming approaches for solving the developed fuzzy multi-objective mixed-
integer nonlinear programming model. The proposed fuzzy model is converted to
the auxiliary crisp multi-objective model via two methods.

3 Problem Definition and Model Formulation

In this section, the developed multilevel, multiproduct, and multi-echelon CLSC
model is presented. In this study, two different SCs are handled with the usage of
common sources: the first SC hereafter the SC1 and the allied SC hereafter the SC2.
As distinct from conventional SCs, in this study, we use common sources in the
network. Not only SCs have own sources but also they can share some sources for
obtaining the final product. The integration of the SC1 and SC2 is shown in Fig. 1.
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3.1 Assumptions

The main characteristics and some assumptions contained in this study given as
follows:

• The locations of facilities both forward and reverse SC fixed and predefined.
• The capacities of all facilities both forward and reverse are limited and fixed.
• All demands of customers must be fully satisfied at the same period.
• The cost of transportation, purchasing, inventory holding, and opening facilities

is fixed and deterministic.
• The end product is assembled by different components, the semifinished product

and raw material with different utilization rates by various suppliers.
• The percentage of collected product is known a priori.

3.2 Sets

K set of raw material suppliers k 2 K
I set of common suppliers i 2 I
R set of suppliers in SC1 r 2 R
S set of suppliers in SC2 s 2 S
M set of plants in SC1 m 2 M
N set of plants in SC2 n 2 N
U set of customers in SC1 u 2 U
V set of customers in SC2 v 2 V
J set of common collection centers j 2 J
L set of assemblers l 2 L
C set of parts c 2 C
F set of parts of semifinished product f 2 F
T set of periods t 2 T

3.3 Parameters

3.3.1 Distances and Unit Shipping Cost

dkm distance between raw material “k” and plant “m” in SC1 (km)
dkn distance between raw material “k” and plant “n” in SC2 (km)
dki distance between raw material “k” and common supplier “i” (km)
dim distance between common supplier “i” and plant “m” in SC1 (km)
din distance between common supplier “i” and plant “n” in SC2 (km)
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dil distance between common supplier “i” and assembler “l” (km)
drm distance between supplier “r” and plant “m” in SC1 (km)
drl distance between supplier “r” and assembler “l” in SC1 (km)
dsn distance between supplier “s” and plant “n” in SC2 (km)
dsl distance between supplier “s” and assembler “l” in SC2 (km)
dlm distance between assembler “l” and plant “m” in SC1 (km)
dln distance between assembler “l” and plant “n” in SC2 (km)
dmu distance between plant “m” and customer “u” in SC1 (km)
dnv distance between plant “n” and customer “v” in (km)
duj distance between customer “u” and common collection center “j” in SC1

(km)
dvj distance between customer “v” and common collection center “j” in SC2

(km)
djm distance between common collection center “j” and plant “m” in SC1 (km)
djn distance between common collection center “j” and plant “n” in SC2 (km)
utc the shipping cost of one unit (($/ton).km)

3.3.2 Capacities

askt the steel plate capacity of raw material supplier “k” at time period “t” (ton)
aI

rct the part “c” capacity of supplier “r” at time period “t” in SC1 (ton)
aII

sct the part “c” capacity of supplier “s” at time period “t” in SC2 (ton)
aict the part “c” capacity of common supplier “i” at time period “t” (ton)
aI

rft the part “f” capacity of supplier “r” at time period “t” in SC1 (ton)
aII

sft the part “f” capacity of supplier “s” at time period “t” in SC2 (ton)
aift the part “f” capacity of common supplier “i” at time period “t” (ton)
bI

mct the part “c” capacity of plant “m” at time period “t” in SC1 (ton)
bII

nct the part “c” capacity of plant “n” at time period “t” in SC2 (ton)
aalt the semifinished product capacity of assembler “l” at time period “t” (ton)
cajt the capacity of common collection center “j” at time period “t” (ton)

3.3.3 Demands

deI
ut demand of customer “u” at time period “t” in SC1 (ton)

deII
vt demand of customer “v” at time period “t” in SC2 (ton)

3.3.4 Fixed Costs

˛I
mt fixed-opening cost of plant “m” at time period “t” in SC1 ($)

˛II
nt fixed-opening cost of plant “n” at time period “t” in SC2 ($)

˛jt fixed-opening cost of common collection center “j” at time period “t” ($)
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3.3.5 Purchasing Costs/Selling Prices

prc purchasing cost of part “c” from supplier “r” in SC1 ($/ton)
psc purchasing cost of part “c” from supplier “s” in SC2 ($/ton)
pic purchasing cost of part “c” from common supplier “i” (original part) ($/ton)
prf purchasing cost of part “f” from supplier “r” in SC1 ($/ton)
psf purchasing cost of part “f” from supplier “s” in SC2 ($/ton)
pif purchasing cost of part “f” from common supplier “i” (original part) ($/ton)
pk purchasing cost/selling price of raw material from raw material supplier “k”

($/ton)
ejc purchasing cost/selling price of part “c” from common collection center “j”

(second-hand part) ($/ton)
el purchasing cost/selling price of semifinished product from assembler “l”

($/ton)

3.3.6 Inventory Holding Costs

hcpI
mct inventory holding cost of part “c” in plant “m” at time period “t” in SC1

($/ton)
hcpII

nct inventory holding cost of part “c” in plant “n” at time period “t” in SC2
($/ton)

3.3.7 Ratios and Percentages

r weight ratio of semifinished product in final product
rc weight ratio of part “c” in final product
r

0

weight ratio of raw material in final product
roc weight ratio of part “c” in one ton steel plate
rof weight ratio of part “f” in one ton steel plate
rff weight ratio of part “f” in semifinished product
�1 percentage of collected amount which is resent to plants in SC1
�2 percentage of collected amount which is resent to plants in SC2

3.4 Variables

3.4.1 Outbound Logistics of Raw Material Suppliers

RMI
kmt amount of steel plate shipped from raw material supplier “k” to plant “m”

at time period “t” in SC1 (ton)
RMII

knt amount of steel plate shipped from raw material supplier “k” to plant “n”
at time period “t” in SC2 (ton)
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RMSI
krt amount of steel plate shipped from raw material supplier “k” to supplier

“r” at time period “t” in SC1 (ton)
RMSII

kst amount of steel plate shipped from raw material supplier “k” to supplier
“s” at time period “t” for SC2 (ton)

RMCkit amount of steel plate shipped from raw material supplier “k” to common
supplier “i” at time period “t” (ton)

3.4.2 Outbound Logistics of Common Suppliers

CPI
imct amount of part “c” shipped from common supplier “i” to plant “m” at

time period “t” in SC1 (ton)
CPII

inct amount of part “c” shipped from common supplier “i” to plant “n” at time
period “t” in SC2 (ton)

CAilft amount of part “f ” shipped from common supplier “i” to assembler “l” at
time period “t” (ton)

3.4.3 Outbound Logistics of Suppliers

SPI
rmct amount of part “c” shipped from supplier “r” to plant “m” at time period

“t” in SC1 (ton)
SPII

snct amount of part “c” shipped from supplier “s” to plant “n” at time period
“t” in SC2 (ton)

SAI
rlft amount of part “f ” shipped from supplier “r” to assembler “l” at time

period “t” in SC1 (ton)
SAII

slft amount of part “f ” shipped from supplier “s” to assembler “l” at time
period “t” in SC2 (ton)

3.4.4 Outbound Logistics of Assemblers

API
lmt amount of semifinished product shipped from assembler “l” to plant “m” at

time period “t” in SC1 (ton)
APII

lnt amount of semifinished product shipped from assembler “l” to plant “n” at
time period “t” in SC2 (ton)

3.4.5 Outbound Logistics of Plants

YI
mut amount of product shipped from plant “m” to customer “u” at time period

“t” in SC1 (ton)
YII

nvt amount of product shipped from plant “n” to customer “v” at time period
“t” in SC2 (ton)
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3.4.6 Outbound Logistics of Customers

WI
ujt amount of used product shipped from customer “u” to common collection

center “j” at time period “t” in SC1 (ton)
WII

vjt amount of used product shipped from customer “v” to common collection
center “j” at time period “t” in SC2 (ton)

3.4.7 Outbound Logistics of Common Collection Centers

ZI
jmct amount of part “c” shipped from common collection center “j” to plant “m”

at time period “t” in SC1 (ton)
ZII

jnct amount of part “c” shipped from common collection center “j” to plant “n”
at time period “t” in SC2 (ton)

3.4.8 Fixed Facility Cost Variables

QI
mt if plant “m” is open at time period “t”, 1; otherwise, 0 in SC1

QII
nt if plant “n” is open at time period “t”, 1; otherwise, 0 in SC2

QCjt if common collection center “j” is open at time period “t”, 1; otherwise, 0

3.4.9 Inventory Holding Cost Variables

CinvI
mct inventory level of part “c” at plant “m” at time period “t” for SC1 (ton)

CinvII
nct inventory level of part “c” at plant “n” at time period “t” for SC2 (ton)

3.5 Objective Functions

The objective functions of the multilevel CLSC model are given in the following
equations. As mentioned in Abstract, we have six different DMs, and the objective
functions are changed according to the DM.

3.5.1 Objective Function of Plants in SC1 (DM01)

Objective function (1) is constituted for the plants in SC1. Also this DM is the
first upper-level DM of the Stackelberg game. The objective function consists of
four components, and objective function for DM1 with the cost components can be
formulated as follows:

Min Z1 D TC1 C PC1 C FFC1 C IHC1 (1)
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The transportation cost between the facilities can be calculated by multiplying
the unit transportation cost:

TC1 D utc �
hX

k

X

m

X

t
RMI

kmt � dkm C
X

r

X

m

X

c

X

t
SPI

rmct

� drm C
X

i

X

m

X

c

X

t
CPI

imct � dim C
X

m

X

u

X

t
YI

mut

� dmu C
X

j

X

m

X

c

X

t
ZI

jmct � djm C
X

l

X

m

X

t
API

lmt � dlm

i

(2)

The purchasing cost of raw material, original or second-hand part, and semifinished
product can be calculated as follows:
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The fixed-opening cost of plant “m” can be formulated as follows:

FFC1 D
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mt � ˛I
mt (4)

The inventory holding cost of part “c” can be formulated as follows:
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3.5.2 Objective Function of Plants in SC2 (DM02)

Objective function (2) is formulated for the plants in SC2. Also this DM is the
second upper-level DM of the Stackelberg game. The objective function consists of
four components and similar the DM1’s objective function:

Min Z2 D TC2 C PC2 C FFC2 C IHC2 (6)
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3.5.3 Objective Function of Common Suppliers (DM11)

Common suppliers are the first lower-level DM. The objective function maximizes
the total profit, and it composes total revenue and transportation cost. Therefore, the
objective function can be written as follows:

Max Z3 D TR3 � TC3 (10)

The total revenue of common suppliers can be calculated as follows:
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The transportation cost between common suppliers and steel plate suppliers can be
determined as follows:
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3.5.4 Objective Function of Common Collection Centers (DM12)

Common collection centers are the second lower-level DM. The objective function
maximizes the total profit and consists of three components:

Max Z4 D TR4 � TC4 � FFC4 (13)

The total revenue of common collection centers can be calculated as follows:
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The transportation cost between common collection centers and customers can be
determined as follows:
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The fixed-opening cost of common collection center “j” can be formulated as
follows:

FFC4 D
X

j

X

t
QCjt � ˛jt (16)

3.5.5 Objective Function of Raw Material Suppliers (DM13)

Steel plate suppliers are the third lower-level DM, and the objective function of the
DM maximizes the selling price of raw material:
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3.5.6 Objective Function of Assemblers (DM14)

Assemblers are the fourth lower-level DM, and the objective function of the DM
maximizes the total profit:

Max Z6 D PC6 � TC6 (18)
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3.6 Constraints

3.6.1 Capacity Constraints

The total quantity of raw material which is sent from steel plate suppliers to the
suppliers in each SC, common suppliers, and plants in each SC should be less than
or equal to the capacity of those raw material suppliers during any period:
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The total quantity of part “c” which is sent from suppliers to the plants in SC1
should be less than or equal to the capacity of part “c” of those suppliers during any
period:

X

m
SPI

rmct � aI
rct8r;c;t (22)

The total quantity of part “f ” which is sent from suppliers to the assemblers in SC1
should be less than or equal to the capacity of part “f ” of those suppliers during any
period:

X

l
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rlft � aI
rft8r;f ;t (23)
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The total quantity of part “c” which is sent from suppliers to the plants in SC2
should be less than or equal to the capacity of part “c” of those suppliers during any
period:
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The total quantity of part “f ” which is sent from suppliers to the assemblers in SC2
should be less than or equal to the capacity of part “f ” of those suppliers during any
period:
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The total quantity of part “c” which is sent from common suppliers to the plants
should be less than or equal to the capacity of part “c” of those common suppliers
during any period:
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The total quantity of part “f ” which is sent from common suppliers to the assemblers
should be less than or equal to the capacity of part “c” of those common suppliers
during any period:
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The total quantity of semifinished products that is sent from assemblers to the plants
should be less than or equal to the capacity of those assemblers during any period:
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The total quantity of products that is sent from plants to customers at SC1 should be
less than or equal to the capacity of part “c” of those plants during any period:
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The total quantity of products that is sent from plants to customers at SC2 should be
less than or equal to the capacity of part “c” of those plants during any period:
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The total quantity of used products collected from customers should be less than or
equal to the capacity of product of common collection centers during any period:
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3.6.2 Demand Constraints

The demands of all customers are fully satisfied, and the total quantity of products
should be greater than the customers’ demand during any period:
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3.6.3 Balance Constraints (Kirchhoff Law)

According to the principle of conservation, Kirchhoff equalities assure that the sum
of flows coming into that node is equal to the sum of flows going out that node in
the CLSC network.

Constraints (34) and (35) ensure the flow balance at supplier “r” for both part “c”
and part “f ”:
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Constraints (36) and (37) ensure the flow balance at supplier “s” for both part “c”
and part “f ”:
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Constraints (38) and (39) ensure the flow balance at common supplier “i” for both
part “c” and part “f ”:
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Constraint (40) ensures the flow balance at assembler “l” for part “f ”:
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Constraints (41) and (42) ensure the flow balance of used products that are collected
from customers after one period usage in each SC:
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j
WII

vj.tC1/ D 08v;t (42)

Constraints (43) and (44) ensure the flow balance of part “c” at common collection
center “j”:

rc

�
�1

X

u
WI

ujt

�
�
X

m
ZI

jmct D 08j;c;t (43)

rc

�
�2

X

v
WII

vjt

�
�
X

n
ZII

jnct D 08j;c;t (44)

Constraints (45) and (46) ensure the flow balance of semifinished product at plants
“m” and “n”:

X

l
API

lmt � r
X

u
YI

mut D 0 8m;t (45)

X

l
APII

lnt � r
X

v
YII

nvt D 08n;t (46)

Constraints (47) and (48) ensure the flow balance of raw material at plants “m” and
“n”:

X

k
RMI

kmt � r0
X

u
YI

mut D 0 8m;t (47)

X

k
RMII

knt � r0
X

v
YII

nvt D 0 8m;t (48)

3.6.4 Inventory Constraints

Constraints (49) and (50) calculate inventory levels of part “c” at plants “m” and
“n”:
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CinvI
mc.t�1/ C

X

r
SPI

rmct C
X

i
CPI

imct C
X

j
ZI

jmct � rc

X

u
YI

mut D CinvI
mct 8m;c;t

(49)

CinvII
nc.t�1/ C

X

s
SPII

snct C
X

i
CPII

inct C
X

j
ZII

jnct � rc

X

v
YII

nvt D CinvII
nct8n;c;t

(50)

The inventory level of part “c” should be less than or equal to capacity of plants “m”
and “n”:

CinvI
mct � bI

mct8m;c;t (51)

CinvII
nct � bII

nct8n;c;t (52)

3.6.5 Non-negativity Constraints

The following constraints show non-negativity restrictions on the decision variables:

XI
rmct � 0 8r;m;c;t (53)

XII
snct � 08s;n;c;t (54)

XI
imct � 0 8i;m;c;t (55)

XII
inct � 0 8i;n;c;t (56)

YI
mut � 0 8m;u;t (57)

YII
nvt � 08n;v;t (58)

WI
ujt � 08u;j;t (59)

WII
vjt � 0 8v;j;t (60)
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ZI
jmct � 0 8j;m;c;t (61)

ZII
jnct � 0 8j;n;c;t (62)

CinvI
mct � 08m;c;t (63)

CinvII
nct � 08n;c;t (64)

3.6.6 Binary Variables Constraints

The following constraints show binary restrictions on the decision variables:

QI
mt D f0; 1g 8m;t (65)

QII
nt D f0; 1g 8n;t (66)

QCjt D f0; 1g 8j;t (67)

4 A Novel Interactive Fuzzy Programming Approach

Multilevel programming problems are the most used method in decision-making
problems in which one or more upper-level DMs assess the main objectives and then
the lower-level DMs assess their own [24, 40]. According to the DM’s behavior,
multilevel programming models can be solved by centralized or decentralized
approach. Many decentralized models can be solved using the Stackelberg game
at which the DM at the first level chooses a strategy and after that the other DMs
determine their own strategy. In this game, there is no relationship or cooperation
among DMs. Thus, Stackelberg solutions do not satisfy Pareto optimality. To
overcome these difficulties, in this study, we proposed a novel IFP approach using
the cooperation concept between DMs. The steps of the proposed IFP approach can
be summarized as follows:
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Step 1 The upper-level DMs determine the importance weight of lower DMs by
using a multi-criteria decision-making method such as AHP, ANP, etc. In this study,
we used fuzzy AHP for obtaining lower-level DMs’ relative weights. The pairwise
comparison matrix can be shown as follows:

QD D

2

6
6
6
6
6
6
4

1 � � � Qa1j � � � Qa1n
:::

:::
:::

Qai1 � � � 1 � � � Qain
:::

:::
:::

Qan1 Qanj � � � 1

3

7
7
7
7
7
7
5

The weight vector of the lower-level DMs obtained by this pairwise comparison
matrix, wj, shows the relative weight of lower-level DM. Geometric mean is used to
aggregate upper-level DMs’ opinions.

4.1 Determining the Weights of Individual Objective Functions

Step 2 All DMs determine their own weights of their objectives. According to
the obtained individual objective weights, all of them optimize their objectives as
follows:

Min Z0i D w0i1 � x1 C w0i2 � x2 C � � � C w0il � xm

Min Z1j D w1j1 � x1 C w1j2 � x2 C � � � C w1jl � xn

We consider that there are i DMs at the upper level (DM1,DM2, : : : , DMm) [Z0i]
and j DMs (DM1,DM2, : : : , DMn) [Z1j] at the lower level and l shows the number of
objectives.

w0il: The weight of the objective l of the upper-level DM i
w1jl: The weight of the objective l of the lower-level DM j

4.1.1 Creating the Payoff Table

Step 3 According to the weighted sum method, the payoff table is obtained using
the individual objective functions for all DMs.
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4.1.2 Determining the Minimum Satisfactory Levels

Step 4 The upper-level DM determines the minimum satisfactory level (ı0), and
the lower DMs determine their own minimum satisfactory level based on the upper
level’s minimum satisfactory level.

� L
1j D wj � ı0

4.1.3 Solving the Main Problem

Step 5 The following problem is solved and the satisfactory levels are obtained for
all the DMs.

Max
Xm

iD1
�0i .Z0i/ C

Xn

jD1
wj � �1j

�
Z1j
�

�0i .Z0i/ � ı0

�1j
�
Z1j
�

� � L
1j

Ax � b (68)

4.1.4 Interaction between Upper- and Lower-Level DMs

Step 6 The upper-level DMs specify the lower bound and the upper bound [ΔL, ΔU]
of Δj for the satisfactory balance between upper- and lower-level DMs. The ratio of
satisfactory levels for DMs can be determined as follows:

Δj D
�1j

�
Z1j
�

min .�0i .Z0i//
(69)

After the ratio is determined, the following conditions are examined:

(i) If Δj 2 [ΔL, ΔU], an efficient compromise solution is obtained and algorithm is
ended.

(ii) If Δj � ΔL, the minimum satisfactory level of the lower-level DM “j” is
determined according to the following equation:
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� L
1j D

wj � ı0

ΔU
(70)

(iii) If Δj > ΔL, the minimum satisfactory level of the lower-level DM “j” is
determined according to the following equation:

� L
1j D wj � ı0� ΔU (71)

4.1.5 Termination Condition

The upper-level DM updates the minimal satisfactory levels of lower-level DMs
until the second or third conditions are satisfied. The IFP algorithm continues until
the upper-level DMs are satisfied with the compromise solution.

5 Computational Experiments

In this section, we give the computational results to explore the validity of
the proposed CLSC model and proposed IFP approach. We then present some
managerial implications based on the computational results. The description of the
data is given in following section.

5.1 Description of Data

The performance of the proposed model CLSC model is investigated by randomly
generated parameters. The distributions of the parameters are given in Table 1. After
defining the parameters, the individual objective functions are solved.

For solving individual objective functions, three raw material suppliers, two
common suppliers, two assemblers, and two common suppliers are determined in
alliance SC, while four suppliers, three plants, and five customers are determined
in SC1 and SC2. It is assumed that one final product includes four parts, one
semifinished product, and raw material. Also, a semifinished product includes three
parts. The utilization rates of the semifinished product parts and of raw material in
one final product are given in Fig. 2.

The shipping cost (utc) was accepted as 0.75 cents per ton-km, the purchasing
cost/selling price of semifinished product was accepted $1000, and the purchasing
cost/selling price of raw material was accepted $50. It is assumed that amount of
used products, defined as a percentage �1 D 0.25 for SC1 and �2 D 0.25 for SC2, of
demand must be collected in customer zones.

The decentralized multilevel CLSC model (1)–(67) of the sample network
contains 1189 variables and 666 constraints for DM01. The mathematical model was
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Table 1 The values of
random generated data

Parameters Corresponding random distribution

dkm, dkn � Uniform (100, 400)
dki � Uniform (50, 200)
dim, din � Uniform (100, 300)
dil, drl, dsl � Uniform (60, 240)
drm, dsn � Uniform (100, 300)
dlm, dln, dmu, dnv � Uniform (50, 150)
duj, dvj � Uniform (25, 200)
djm, djn � Uniform (50, 450)
askt � Uniform (100, 2000)
aI

rct, aII
sct � Uniform (500, 1000)

aict � Uniform (500, 2000)
aI

rft, aII
sft, aift � Uniform (500, 1000)

bI
mct, bII

nct � Uniform (250, 750)
aalt � Uniform (500, 1400)
cajt � Uniform (2000, 5000)
deI

ut, deII
vt � Uniform (100, 400)

˛I
mt, ˛II

nt � Uniform (10,000, 100,000)
˛jt � Uniform (5000, 50,000)
prc, psc � Uniform (50, 500)
pic � Uniform (40, 400)
prf , psf � Uniform (30, 450)
pif � Uniform (25, 400)
ejc � Uniform (800, 1200)
hcpI

mct, hcpII
nct � Uniform (100, 500)

Raw material
(0.08)

Part 1
(0.09)

Part 2
(0.18)

Part 3
(0.23)

Part 4
(0.05)

Semi-finished product
(0.37)

Part 1
(0.35)

Part 2
(0.25)

Part 3
(0.40)

End product

Fig. 2 Bill of materials of the final product
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solved with GAMS-CPLEX 24.0.1, on a laptop with Intel Core i5 M480 2.67 GHz
and 3 GB RAM memory, and the computation time required to solve the model
to optimality using the GAMS-CPLEX 24.0.1 is 0.28 CPU seconds. To give some
details about the solutions, firstly we solved individual objectives for the upper-level
DMs, and distribution plans of these DMs can be seen in Fig. 3 and Fig. 4.

When the model is designed, the product is considered to use at least one period
before entering into recycling and so nothing returned from customers during the
first period as seen in Figs. 3 and 4. According to Fig. 4, in first period, 1936.07
tons of raw materials are sent from raw material suppliers to plants, suppliers, and
common suppliers. 743.33 tons of semifinished product are used for obtaining 971
tons of product in plant 3 in SC1. As it can be seen in Figs. 3 and 4, common
suppliers did not open in the third period.

When the CLSC model is solved for the plants in SC1 (DM01), the maximum cost
(2,436,751.87) is obtained for purchasing cost of plants in SC2 as seen in Fig. 5. As
the results show, there is no inventory cost, and purchasing cost is the highest ratio
for the plants in SC1 (DM01). According to the results, we say that the purchasing
cost is the most important factor for all DMs.

Comparison of the objective function values is given in Fig. 5. When we
calculated the objective function values via minimizing Z2, all the objective function
values were increased except for the DM14. Note that a major cost of the production
is carried out in the plants in SC2, and the plants in SC2 did not keep any inventory
for production. Figure 6 shows the purchased unused parts and used parts of plants
for SC1, and SC2 is given in Fig. 6.

As it is seen from Fig. 6, the amounts of purchased virgin parts stayed in the range
of minimum and maximum values in the optimal solution of Z4 and Z6 for SC2. As
expected, maximum purchased used part amounts are obtained in the solution of Z4,
while the minimum virgin part amounts are purchased in the solution of Z1.

5.2 The Solution of the CLSC Model with Novel IFP Approach

Step 1 In order to obtain the importance weight/relative weight of lower-level DMs,
we used Chang’s extent analysis method [41]. For the evaluation procedure, the
linguistic terms given in Table 2 are used. In order to aggregate different expert
opinions, geometric mean is used.

The assessments of upper-level DMs were presented in Table 3. It represents
assessment information provided by the two upper-level DMs and aggregation of
these judgments.

The weight vector of the lower-level DMs obtained by this pairwise comparison
matrix was given as (0.4504, 0.2090, 0.1416, 0.1990).

Step 2 All DMs determined their own objectives and the following weight vectors
are obtained (Table 4).

According to the DM01 and DM02, the most important factors of the objective
functions are the cost of purchasing over all product parts, the cost of transportation,
the fixed-opening costs, and the cost of inventory of parts, respectively. According
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Fig. 5 Comparison of objective function values for the plants SC1 (DM01) and the plants SC1
(DM02)
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to the DM12, the cost of purchasing overall product parts, the fixed-opening costs,
and the cost of transportation are the most important factors.

Step 3 We obtained the following trade-off table using the weighted sum method.
The membership functions belonging to objectives for DMs are obtained as the
following: (Table 5)

�01 .Z01/ D

8
<̂

:̂

1; Z01.x/ � 1093235:85
2110998:50�Z01.x/

2110998:50�1093235:85
; 1093235:851 � Z01.x/ � 2110998:50

0; Z01.x/ � 2110998:50

(72)
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Table 2 Linguistic scale for weight matrix

Linguistic terms Triangular fuzzy scale Triangular fuzzy reciprocal scale

Equal importance (1, 1, 1) (1/1, 1/1, 1/1)
Moderate importance (1, 3, 5) (1/5, 1/3, 1/1)
Essential or strong importance (3, 5, 7) (1/7, 1/5, 1/3)
Demonstrated importance (5, 7, 9) (1/9, 1/7, 1/5)
Extreme importance (7, 9, 9) (1/9, 1/9, 1/7)
Intermediate values (1, 2, 3) (1/3, 1/2, 1)

(3, 4, 5) (1/5, 1/4, 1/3)
(5, 6, 7) (1/7, 1/6, 1/5)
(7, 8, 9) (1/9, 1/8, 1/7)

Table 3 Comparative judgments of the lower-level DMs and aggregated weights

DM11 DM12 DM13 DM14

DM01

DM11 (1, 1, 1) (3, 5, 7) (3, 4, 5) (3, 4, 5)
DM12 (0.14, 0.2, 0.33) (1, 1, 1) (3, 5, 7) (3, 5, 7)
DM13 (0.2, 0.25, 0.33) (0.14, 0.2, 0.33) (1, 1, 1) (0.2, 0.25, 0.33)
DM14 (0.2, 0.25, 0.33) (0.14, 0.2, 0.33) (3, 4, 5) (1, 1, 1)
DM02

DM11 (1, 1, 1) (0.2, 0.33, 1) (3, 4, 5) (0.14, 0.2, 0.33)
DM12 (1, 3, 5) (1, 1, 1) (0.14, 0.2, 0.33) (0.14, 0.2, 0.33)
DM13 (0.2, 0.25, 0.33) (3, 5, 7) (1, 1, 1) (5, 6, 7)
DM14 (3, 5, 7) (3, 5, 7) (0.14, 0.16, 0.2) (1, 1, 1)
Aggregation of upper-level DM judgments

DM11 (1, 1, 1) (0.77, 1.29, 2.64) (3, 4, 5) (0.65, 0.89, 1.29)
DM12 (0.37, 0.77, 1.29) (1, 1, 1) (0.65, 1, 1.52) (0.65, 1, 1.52)
DM13 (0.2, 0.25, 0.33) (0.65, 1, 1.52) (1, 1, 1) (1, 1.22, 1.52)
DM14 (0.77, 1.11, 1.52) (0.65, 1, 1.52) (0.65, 0.85, 1) (1, 1, 1)

Table 4 Relative weights of
objectives for all DMs

Decision-makers Weight vector

DM01 (0.25, 0.55, 0.15, 0.05)
DM02 (0.25, 0.55, 0.15, 0.05)
DM11 (0.60,0.40)
DM12 (0.50, 0.40, 0.10)
DM13 (1)
DM14 (0.80,0.20)
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Table 5 The payoff table

Z1 Z2 Z3 Z4 Z5 Z6

min Z1 1.093.235,85 1.580.918,18 43.426,38 287.024,06 332.805,75 1.562.666,72
min Z2 2.110.998,50 1.130.015,62 51.246,98 256.599,65 402.829,50 1.816.494,19
maks Z3 1.870.777,27 1.617.982,84 499.527,66 345.856,19 402.829,50 1.845.534,01
maks Z4 1.559.424,06 1.957.316,69 113.562,55 464.204,50 402.829,50 1.775.631,37
maks Z5 1.942.005,07 1.579.774,20 104.757,66 294.194,89 406.700,00 1.824.714,49
maks Z6 1.376.014,91 1.994.078,41 40.371,94 409.405,71 406.700,00 2.208.122,17
The worst
values

2.110.998,50 1.994.078,41 40.371,94 256.599,65 332.805,75 1.562.666,72

�02 .Z02/ D

8
<̂

:̂

1; Z02.x/ � 1130015:62
1994078:41�Z02.x/

1994078:41�1130015:62
; 1130015:62 � Z02.x/ � 1994078:41

0; Z02.x/ � 1994078:41

(73)

�11 .Z11/ D

8
<̂

:̂

1; Z11.x/ � 499527:66
Z11.x/�40371:94

499527:66�40371:94
; 40371:94 � Z11.x/ � 499527:66

0; Z11.x/ � 40371:94

(74)

�12 .Z12/ D

8
<̂

:̂

1; Z12.x/ � 464204:50
Z12.x/�256599:65

464204:50�256599:65
; 256599:65 � Z12.x/ � 464204:50

0; Z12.x/ � 256599:65

(75)

�13 .Z13/ D

8
<̂

:̂

1; Z13 .x/ � 406700:00
Z13.x/�332805:75

406700:00�332805:75
; 332805:75 � Z13 .x/ � 406700:00

0; Z13 .x/ � 332805:75

(76)

�14 .Z14/ D

8
<̂

:̂

1; Z14 .x/ � 2208122:17
Z14.x/�1562666:72

2208122:17�1562666:72
; 1562666:72 � Z14 .x/ � 2208122:17

0; Z14 .x/ � 1562666:72

(77)

Step 4 Assume that DM01 and DM02 specify the minimal satisfactory level
as ı0 D 0.75. Using this value, the satisfactory levels for lower-level DMs are
evaluated:

� L
11 D w1 � ı0 D 0:4504 � 0:75 D 0:3378

� L
12 D w2 � ı0 D 0:2090 � 0:75 D 0:1567
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� L
13 D w3 � ı0 D 0:1416 � 0:75 D 0:1062

� L
14 D w4 � ı0 D 0:1990 � 0:75 D 0:1492

Step 5 The following problem is solved and the satisfaction levels are obtained for
all the DMs.

Max .�01 .Z01/ C �02 .Z02// C w1 � �11 .Z11/ C w2 � �12 .Z12/

C w3 � �13 .Z13/ C w4 � �14 .Z14/

�01 .Z01/ � ı0 D 0:75

�02 .Z02/ � ı0 D 0:75

�11 .Z11/ � � L
11 D 0:3378

�12 .Z12/ � � L
12 D 0:1567

�13 .Z13/ � � L
13 D 0:1062

�14 .Z14/ � � L
14 D 0:1492

Constraints .1/–.67/ (78)

Step 6
Iteration 1. The satisfactory levels of DMs, �01(Z01) D 0.81, �02(Z02) D 0.95,
�11(Z11) D 0.53, �12(Z12) D 0.18, �13(Z13) D 0.11, and �14(Z14) D 0.25, are
obtained.

Assume that the upper-level DMs specify [ΔL, ΔU] D [0.40,0.80]. The ratio of
satisfactory levels between the upper and lower DMs is obtained using

Δj D
�1j

�
Z1j
�

min .�0i .Z0i//
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and then,

Δ1 D
�11 .Z11/

�01 .Z01/
D

0:53

0:81
D 0:6543

Δ2 D
�12 .Z12/

�01 .Z01/
D

0:18

0:81
D 0:2222

Δ3 D
�13 .Z13/

�01 .Z01/
D

0:11

0:81
D 0:1358

Δ4 D
�14 .Z14/

�01 .Z01/
D

0:25

0:81
D 0:3086

Since Δ2, Δ3, and Δ4 < ΔL, the DMs determine their own satisfactory levels as
follows:

� L
12 D

w2 � ı0

ΔU
D

0:1567

0:80
D 0:1958

� L
13 D

w3 � ı0

ΔU
D

0:1062

0:80
D 0:1327

� L
14 D

w4 � ı0

ΔU
D

0:1492

0:80
D 0:1865

Using these values the main problem is formulated in the following equation:

Max .�01 .Z01/ C �02 .Z02// C w1 � �11 .Z11/ C w2 � �12 .Z12/

C w3 � �13 .Z13/ C w4 � �14 .Z14/

�01 .Z01/ � ı0 D 0:75

�02 .Z02/ � ı0 D 0:75

�11 .Z11/ � � L
11 D 0:3378

�12 .Z12/ � � L
12 D 0:1958
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�13 .Z13/ � � L
13 D 0:1327

�14 .Z14/ � � L
14 D 0:1865

Constraints.1/–.67/ (79)

Iteration 2. The satisfactory degrees of DMs, �01(Z01) D 0.81, �02(Z02) D 0.94,
�11(Z11) D 0.53, �12(Z12) D 0.20, �13(Z13) D 0.13, and �14(Z14) D 0.26, are
obtained, and the ratios of satisfactory levels are obtained as follows:

Δ1 D
�11 .Z11/

�01 .Z01/
D

0:53

0:81
D 0:6543

Δ2 D
�12 .Z12/

�01 .Z01/
D

0:20

0:81
D 0:2469

Δ3 D
�13 .Z13/

�01 .Z01/
D

0:13

0:81
D 0:1604

Δ4 D
�14 .Z14/

�01 .Z01/
D

0:26

0:81
D 0:3209

Since Δ2, Δ3, and Δ4 < ΔL, the DMs determine their own satisfactory levels as the
following:

� L
12 D

w2 � ı0

ΔU
D

0:1958

0:80
D 0:2447

� L
13 D

w3 � ı0

ΔU
D

0:1327

0:80
D 0:1658

� L
14 D

w4 � ı0

ΔU
D

0:1865

0:80
D 0:2331

Using these values the main problem is formulated in the following equation:

Max .�01 .Z01/ C �02 .Z02// C w1 � �11 .Z11/ C w2 � �12 .Z12/

C w3 � �13 .Z13/ C w4 � �14 .Z14/

�01 .Z01/ � ı0 D 0:75
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�02 .Z02/ � ı0 D 0:75

�11 .Z11/ � � L
11 D 0:3378

�12 .Z12/ � � L
12 D 0:2447

�13 .Z13/ � � L
13 D 0:1658

�14 .Z14/ � � L
14 D 0:2331

Constraints .1/–.67/ (80)

Iteration 3. The satisfactory degrees of DMs, �01(Z01) D 0.83, �02(Z02) D 0.89,
�11(Z11) D 0.53, �12(Z12) D 0.27, �13(Z13) D 0.17, and �14(Z14) D 0.28, are
obtained, and the ratios of satisfactory levels are obtained as follows:

Δ1 D
�11 .Z11/

�01 .Z01/
D

0:53

0:83
D 0:6385

Δ2 D
�12 .Z12/

�01 .Z01/
D

0:27

0:83
D 0:3253

Δ3 D
�13 .Z13/

�01 .Z01/
D

0:17

0:83
D 0:2048

Δ4 D
�14 .Z14/

�01 .Z01/
D

0:28

0:83
D 0:3373

Since Δ2, Δ3, and Δ4 < ΔL, the DMs determine their own satisfactory levels as
follows:

� L
12 D

w2 � ı0

ΔU
D

0:2447

0:80
D 0:3058

� L
13 D

w3 � ı0

ΔU
D

0:1658

0:80
D 0:2072
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� L
14 D

w4 � ı0

ΔU
D

0:2331

0:80
D 0:2913

Using these values the main problem is formulated in the following equation:

Max .�01 .Z01/ C �02 .Z02// C w1 � �11 .Z11/ C w2 � �12 .Z12/

C w3 � �13 .Z13/ C w4 � �14 .Z14/

�01 .Z01/ � ı0 D 0:75

�02 .Z02/ � ı0 D 0:75

�11 .Z11/ � � L
11 D 0:3378

�12 .Z12/ � � L
12 D 0:3058

�13 .Z13/ � � L
13 D 0:2072

�14 .Z14/ � � L
14 D 0:2913

Constraints .1/–.67/ (81)

Iteration 4. The satisfactory degrees of DMs, �01(Z01) D 0.85, �02(Z02) D 0.84,
�11(Z11) D 0.54, �12(Z12) D 0.31, �13(Z13) D 0.21, and �14(Z14) D 0.30, are
obtained, and the ratios of satisfactory levels are obtained as follows:

Δ1 D
�11 .Z11/

�02 .Z02/
D

0:54

0:84
D 0:6428

Δ2 D
�12 .Z12/

�02 .Z02/
D

0:31

0:84
D 0:3690

Δ3 D
�13 .Z13/

�02 .Z02/
D

0:21

0:84
D 0:25

Δ4 D
�14 .Z14/

�02 .Z02/
D

0:30

0:84
D 0:3571
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Since Δ2, Δ3, and Δ4 < ΔL, the DMs determine their own satisfactory levels as
follows:

� L
12 D

w2 � ı0

ΔU
D

0:3058

0:80
D 0:3822

� L
13 D

w3 � ı0

ΔU
D

0:2072

0:80
D 0:259

� L
14 D

w4 � ı0

ΔU
D

0:2913

0:80
D 0:3641

Using these values the main problem is formulated in the following equation:

Max .�01 .Z01/ C �02 .Z02// C w1 � �11 .Z11/ C w2 � �12 .Z12/

C w3 � �13 .Z13/ C w4 � �14 .Z14/

�01 .Z01/ � ı0 D 0:75

�02 .Z02/ � ı0 D 0:75

�11 .Z11/ � � L
11 D 0:3378

�12 .Z12/ � � L
12 D 0:3822

�13 .Z13/ � � L
13 D 0:259

�14 .Z14/ � � L
14 D 0:3641

Constraints .1/–.67/ (82)

Iteration 5. The satisfactory degrees of DMs, �01(Z01) D 0.89, �02(Z02) D 0.79,
�11(Z11) D 0.46, �12(Z12) D 0.38, �13(Z13) D 0.26, and �14(Z14) D 0.36, are
obtained, and the ratios of satisfactory levels are obtained as follows:

Δ1 D
�11 .Z11/

�02 .Z02/
D

0:46

0:79
D 0:5822
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Δ2 D
�12 .Z12/

�02 .Z02/
D

0:38

0:79
D 0:4810

Δ3 D
�13 .Z13/

�02 .Z02/
D

0:26

0:79
D 0:3291

Δ4 D
�14 .Z14/

�02 .Z02/
D

0:36

0:79
D 0:4556

Since Δ3 < ΔL, the third DM determines its own satisfactory level:

� L
13 D

w3 � ı0

ΔU
D

0:259

0:80
D 0:3237

Using this value the main problem is formulated in the following equation:

Max .�01 .Z01/ C �02 .Z02// C w1 � �11 .Z11/ C w2 � �12 .Z12/

C w3 � �13 .Z13/ C w4 � �14 .Z14/

�01 .Z01/ � ı0 D 0:75

�02 .Z02/ � ı0 D 0:75

�11 .Z11/ � � L
11 D 0:3378

�12 .Z12/ � � L
12 D 0:3822

�13 .Z13/ � � L
13 D 0:3237

�14 .Z14/ � � L
14 D 0:3641

Constraints .1/–.67/ (83)

Iteration 6. The satisfactory degrees of DMs, �01(Z01) D 0.83, �02(Z02) D 0.79,
�11(Z11) D 0.55, �12(Z12) D 0.38, �13(Z13) D 0.32, and �14(Z14) D 0.37, are
obtained, and the ratios of satisfactory levels are obtained as follows:
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Δ1 D
�11 .Z11/

�02 .Z02/
D

0:55

0:79
D 0:6962

Δ2 D
�12 .Z12/

�02 .Z02/
D

0:38

0:79
D 0:4810

Δ3 D
�13 .Z13/

�02 .Z02/
D

0:32

0:79
D 0:4050

Δ4 D
�14 .Z14/

�02 .Z02/
D

0:37

0:79
D 0:4683

At the sixth iteration, the ratio between satisfactory levels is in the specified
interval. Therefore, this solution satisfies all DMs and the algorithm is finished.

6 Implications and Discussion

As mentioned in Sect. 1, the relationships between companies have changed into
relationships between SCs in order to achieve higher service level. Companies
decide how they become more flexible or more efficient in their markets. They
can choose to share some units that companies are become allied with usage of
this choice or they can be rival in their market. From this point in this study, we
developed allied SCs which the echelons in the SCs have common units in the
network.

Some of the implications derived from the study are given below:

• With the use of the developed model, two SCs integrated under alliance behavior.
• In the proposed model, the end product consists of raw material, one semifinished

product, and parts with different utilization rates.
• In order to obtain the balance constraints, the weight ratios are used.
• Based on the experimental results, transportation and purchasing costs have the

highest ratio in the total cost when compared to inventory and fixed costs.
• The objectives of different DMs are handled simultaneously with the proposed

IFP approach.
• The satisfactory balance between the upper-level and lower-level DMs guaran-

tees a ratio.
• If the proposed IFP approach is used, the lower-level DMs can achieve higher

satisfactory levels by 4%, 111%, 190%, and 48% with respect to the initial
satisfactory levels.
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7 Conclusions

As a result of globalization, management of EOLPs has gained more attention.
There is a growing pressure to cooperate in SCND. In real-world examples, SCs are
becoming more complex when the number of facilities increases and the integration
of these facilities found out new terms in SCND. In order to fulfill customers’ needs,
companies are forced to compete or cooperate with each other. This paper is an early
attempt to integrate two closed-loop SCs under alliance behavior.

The SC network considered in this paper consists of two allied SCs. To cope with
the allied SCs, a decentralized multilevel CLSC model is developed. There are allied
units in the network: raw material suppliers, suppliers, assemblers, and collection
centers are common in two SCs, and these units are accepted lower-level DMs of a
Stackelberg game. The upper-level DMs are plants in two SCs. Since the DMs have
individual objectives, whose the upper-level DMs minimize their total cost and the
lower-level DMs maximize their total revenue, an IFP approach is proposed.

The proposed IFP approach is based on the “cooperate” concept. In the IFP
approach, minimum satisfactory level of upper-level DMs is guaranteed with ı0,
and with the use of this value, lower-level DMs determine their own satisfactory
level. Also, the minimum satisfactory level of lower-level DMs multiplies with
relative weights that are determined by the fuzzy AHP method. To tackle the balance
between the upper- and lower-level DMs, a ratio is constituted. According to this
ratio, the lower-level DMs are updated by their minimum satisfactory level. The
IFP algorithm continuous until upper-level DMs are satisfied with the compromise
solution. The compromise solution guarantees the satisfactory balance between the
upper-level and lower-level DMs.

The main contributions of this study are given as follows:

• A CLSC model is developed in which the alliance behavior is used for integration
of two SCs.

• In the developed model, an end product consists of four parts, a semifinished
product, and raw materials with different utilization rates and assembled by
plants in each SC. A semifinished product is assembled with three parts by
assemblers.

• The flow balance at each node is provided by weight ratios.
• In order to handle decentralized model, a novel IFP approach is proposed.
• The novel approach that allows multi-DMs at the first level and combines their

judgments in an analytically structured method by using fuzzy AHP.
• In order to obtain a compromise solution for the DMs, a ratio is constituted. With

the use of this value, a cooperative relation between decision-makers is provided.

However, the extension of the model and IFP approach in this paper can be
also done for future researches. The uncertainty of parameters such as capacity,
demand, or other relevant parameters of the problem can be handled with fuzzy,
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Grey theory, and stochastic modeling approaches. Heuristics algorithms such as
genetic algorithms, simulated annealing, and particle swarm optimization can be
used for the solution of allied CLSC models. Some of the multi-criteria decision-
making methods are also combined at the novel proposed IFP approach.
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