
Mobile Software Security Threats
in the Software Ecosystem, a Call to Arms

Andrey Krupskiy(B), Remmelt Blessinga, Jelmer Scholte, and Slinger Jansen

Utrecht University, Utrecht, The Netherlands
{a.krupskiy,r.d.blessinga,j.scholte2}@students.uu.nl,

slinger@slingerjansen.nl

Abstract. This paper studies security policies of the Android and iOS
software ecosystems. These platforms have experienced security issues
since their public release in 2007. This research creates an overview of
the results that security issues cause and the actions available to limit
security infractions based on scientific literature. Following the overview,
this paper attempts to explain premises of those issues by analyzing
the security recommendations of both platforms and comparing them
to OWASP security guidelines. This is done by comparing development
guidelines set up by both platforms and assessing the importance of
each of these guidelines in the ecosystem perspective. The conclusion
highlights vulnerabilities in the developer guidelines of mobile platforms
and recommends appropriate action to improve the situation.

Keywords: Software ecosystems · Software security · OWASP ·
Development policies

1 Introduction

As smartphones increased in popularity, so did the research in the field of smart-
phone security. Smartphones rely on the security architecture of the mobile plat-
form that supports them. These platforms have different architectures, aside
from sharing several issues each one is also subjected to security issues specif-
ically harmful for the platform. This paper takes a look at the security issues
of the mobile platforms Android and iOS which both have a marketplace called
app stores. App stores are typical occurrences of a software ecosystem which
is defined by Jansen et al. (2009) [1] as: a set of actors functioning as a unit
and interacting with a shared market for software and services, together with
the relationships among them [1]. The marketplace opened up smartphones for
third-party developers as is also recognizable in personal computer platforms [2].
As personal computer platforms have struggled with security, open marketplaces
for mobile platforms resulted in a challenge for smartphone security.

Software created by third-party developers for mobile platforms are called
smartphone applications or apps which, as a result of interacting with the plat-
form, cause security issues. The OWASP foundation is a non-profit organization
c© Springer International Publishing AG 2017
A. Ojala et al. (Eds.): ICSOB 2017, LNBIP 304, pp. 161–175, 2017.
https://doi.org/10.1007/978-3-319-69191-6_11



162 A. Krupskiy et al.

which tries to bring visibility and evolution in the safety and security of the
worlds software. Most relevant for this paper is the OWASP top ten list of secu-
rity flaws that applications contain. These flaws adversely affect the actors in the
software ecosystem and therefore mobile platforms should support developers in
creating secure applications. This paper attempts to gain insight into the main
security concerns of open mobile platforms and standard prevention methods.
This paper will refer to OWASP as the golden standard of security which means
that conclusions are based on how well results fit with the OWASP recommenda-
tions. Therefore the main research question is: To what extent do the developer
guidelines for mobile platform application development follow OWASP security
recommendations? Literature is consulted to create a general overview of the
security concerns and some methods of prevention in the Android and iOS plat-
forms. Next, how security issues affect the actors in the mobile platforms. Lastly,
the Android and iOS guidelines are analysed in context of the OWASP top ten
in order to see if they are an effective prevention method.

The structure of this paper is as follows: Sect. 2 is the research approach
which describes what is done in order to research this topic. Section 3 contains
literature overviews of the Android and iOS security. OWASP and the Android
and iOS developer guidelines are researched in Sect. 4. Sections 5 and 6 contain
the discussion and conclusion respectively.

2 Research Approach

To answer the main question, two research questions (RQ) are defined: RQ1: To
what extent are ecosystem actors vulnerable to security threats? RQ2: Are there
any significant security vulnerabilities in the developer documentation?

A literature overview creates the context for the RQ1 since it delves into the
security issues regarding the mobile platforms. It approaches several issues of a
mobile platform in an attempt to highlight the most prevalent. The method to
collect literature regarding these topics consists of researching common security
threats. Papers are consulted afterwards in order to create an detailed explana-
tion and understanding of the threats and their possible solutions. References
found in papers that are useful for this research are also researched. This creates
a snowball effect resulting in detailed information about a topic.

To adjust from prevalent issues and to place the OWASP recommendations
in a refined ecosystem perspective, actors are defined and an assessment is made
to estimate to what measure ecosystem actors are vulnerable to security threats.
The top ten list created by OWASP is explored and used to see if it addresses
the security threats for the ecosystem. This allows to find specifically which
issue in OWASP has an impact on which ecosystem actor and together with
the literature overview answers RQ1. The issues addressed in the overview and
derived from the ecosystem perspective can be compared to the findings of RQ2.

Lastly this research is focused on reviewing development guidelines of
Android and iOS platforms in terms of security. Using the top ten list of OWASP
mobile security recommendations the security policies of the Android and iOS



Mobile Software Security Threats in the Software Ecosystem, a Call to Arms 163

platforms are analysed. This results in a comparison of the two platforms and
an overview of their security guidelines. The comparison results in a table with
the complete overview offering an answer to RQ2. It is important to note that
some guidelines have different terminology than used by OWASP, this is taken
into account by searching for similar keywords and by looking at the underlying
security concern instead of just the name of the guideline.

3 Literature Overview

This section contains the overviews derived from the literature studied on
Android and iOS security in order to picture the circumstances in said field.
The split between users and developers is based on Jansen et al. definition of
an app store which has two distinct groups; users and developers [3]. In this
section the Android and iOS developers are assumed as not wanting to benefit
from deliberately releasing malicious applications or misusing user information.
They are instead assumed as wanting to provide secure applications for the users,
themselves and the software ecosystem as a whole.

3.1 Literature on Android Ecosystem Security

A literature survey by Rashidi and Fung [4] summarizes security threats caused
by applications to a users’ privacy and device. This survey consists of Android
security threats and solutions collected from literature dating from 2010 till 2015.
The three relevant threats are; 1: Information leakage, 2: Privilege escalation,
and 3: Repackaging applications. Information leakage occurs since Android uses
a permission-based system which applications use to gain access to, possibly
sensitive, data on a phone [5]. A newly downloaded application adheres to this
system since it has to explicitly request permissions up-front to access personal
information and phone features [6]. In 2012 the permissions requested by 44%
of the applications exceeded the minimum number of permissions needed to
function. This violates the principle of least privilege, a longstanding principle
in the world of computer security [7], it defines the importance of software only
accessing the minimum information to function. Davi et al. [8] conclude from
their research that the permission based system damages security for the user as
it allows for privilege escalation attacks. Furthermore, Meng et al. [9] state that
some OEM weaken the existing security of the device by customizing Android
image that may lead to privilege escalation attacks or information leakage.

Android developers can opt to make earnings from their application by inte-
grating an in-app billing service. Muliner et al. explain this service as follows:
The in-app billing service allows users to pay for options, services, subscriptions,
and virtual goods from within mobile apps themselves [10]. In their paper they
developed an attack against the in-app billing service allowing them to bypass
paying for in-app services in 60% of the 85 most popular applications. Another
issue, one which can lose developers revenue streams and credibility is repack-
aging of their application Applications that normally cost money to use or have



164 A. Krupskiy et al.

an in-app billing service can be repackaged and then released for free on the
Internet. Repackaged applications, like banking applications, can be distributed
on the Android store.

Reverse-engineering of Android applications is impossible to prevent with-
out violating the open policy of Android. There is however a tool provided by
Android that defends applications from being simple reverse-engineering tar-
gets without violating the open policy. The Android provided tool Proguard
changes features, like class and variable names, of a code to random strings.
This technique is called code obfuscation, a way to prevent analysis of the code
of an application. For the security issues that concern application users, devel-
opers have a bigger array of options to the threats mentioned earlier. Following
Rashidi and Fung [4] developers can choose for one or two different types of
strategies in regards to securing their applications. The first is making use of
existing techniques and mechanisms which consists of using options provided
in the Android OS. The second is to use software created by others which can
detect security threats.

3.2 Literature on iOS Ecosystem Security

Academic literature regarding iOS security issues shows that user privacy can
be at risk. Large scale mobile application analysis of iOS apps conducted by
Orikogbo et al. shows that a large fraction of apps contain references and make
connections to domains using the HTTP scheme [11]. Around 26% of apps stud-
ied just use HTTP connection schemes while 72% of apps use both HTTP and
HTTPS and 2% use only HTTPS. Since personal information can be sent to a
remote service, usage of HTTP is a privacy threat, since this kind of connection
is not encrypted in any way and can be read by a third party if intercepted.

When examining the literature regarding security and the iOS system it is
shown that there have been cases of security breaches in the iOS built-in security
systems. A paper by Heider and El Khayari [12] shows that up to the iOS version
6.0.1 there was a security flaw that allowed to perform an attack on the iOS
keychain service, which allowed to get an access to all data stored on the device
and perform jailbreaking of the device. Jailbreaking is defined as a process of
getting a root access to the device. Root access provides elevated privileges and
allows user to avoid most restrictions of iOS enforced by Apple.

Additionally, Renard [13] describes a number of attacks that can be per-
formed on iOS. First, Renard points out attacks that can be performed without
jailbreaking a device. Those include getting access to the data of applications
and the users credentials, retrieving data from a devices backups, monitoring
communications, attacking secure communications to the server. In case of a
jailbroken device it is possible to gain access to all data stored on the device,
making reverse engineering an issue. For several versions of iOS it was possible
to jailbreak a device without having an access to device’s keychain and then hide
the fact of a jailbreak.

The iOS platform makes apps work in a strictly restrictive environment [14]
and it has two important security features: the app vetting process and the app



Mobile Software Security Threats in the Software Ecosystem, a Call to Arms 165

sandbox. Although these two features have proven to be effective for the iOS
ecosystem, as shown in the survey conducted by Felt et al. [15] there was no harm-
ful malware present in the iOS appstore, both methods still have some security
issues, code signing can be evaded for example as discovered by Miller [16].

Another security issue that iOS developers encountered was an XcodeGhost
attack [17]. This attack was designed so that app developers would download an
infected copy of Xcode, a development environment for iOS apps, which would
infect any apps created within it with malicious code. This is an example of the
developers not following security protocols and using software downloaded from
the not verified source. The paper by Renard [13] gives several suggestions on
how developers can avoid these security threats. These suggestions include code
obfuscation, creating kill-switches to delete user credentials in case of a reverse
engineering attempt, secure usage of memory and some recommendations on
how to prevent hooking. Hooking is as “a mechanism that allows users to alter
or augment the behavior of applications”.

A study by Teuf et al. [18] confirms, that jailbreaking a device allows to
effectively disable the iOS file system encryption, allowing attacker to gain access
to all data without knowing the passcode of the use.

4 Results

4.1 OWASP Guidelines and the Ecosystem Perspective

In this section each of the ten points is placed in an ecosystem perspective,
enabling to take a closer look at each threat and estimating what actors in
the mobile ecosystem are impacted by each vulnerability should they be left
unprotected.

In their 2013 literature review Hansen and Manikas [19] identified five of
the most common types of actors in software ecosystem literature. Each of
these roles (Orchestrator, Component Developer, External Developer, Vendor
and Customer) is directly affected by the security vulnerabilities mentioned in
the OWASP top 10. In the context of this research we can identify these roles
as the following ecosystem elements:

1. Customer. Also called end user this is the person. This actor is responsible
for bringing monetary value into the ecosystem. If customers feel insecure,
for example when their privacy is at risk, they might abandon an ecosystem
or it might affect their purchasing behavior, affecting every involved actor.

2. Orchestrator. These are the ecosystem platform owners. Affected primarily
in loss of reputation or competitive advantage when ecosystem security is
threatened.

3. Component Developer. Also called the niche player, the app developers
contribute directly to the ecosystem by providing its content applications.

4. External Developer. These are often passive participants in the ecosys-
tem. They play a non-developing role in the ecosystem. These actors can



166 A. Krupskiy et al.

for example offer certain supportive services such as ad networks to compo-
nent developers. They are mostly impacted by loss of clientele or reputation
damage if the ecosystem performs badly.

5. Vendor. Also called the reseller or added value reseller. This could be for
example a game publisher that buys game apps from component developers
and sells them under the umbrella of cross-app marketing efforts. They are
vulnerable to security threats due to being the face of the product, thus being
held responsible for the product.

4.2 The OWASP Mobile Security Top 10

OWASP Mobile Security Top 10 in Context of SSN Roles. Looking at
the top 10 mobile security threats defined by OWASP it becomes clear what each
security threat entails and how to defend against such threats. Yet what actors
are affected by such threats is not immediately clear, and neither is how the
ecosystem as a whole is affected. The technical and business threats highlighted
by OWASP do give us sufficient information to extrapolate what each threat
means for the ecosystem entire. This section looks at how the security threats of
the mobile top 10 can affect the software ecosystem, this is followed by a threat
analysis for each ecosystem actor in Sect. 4.3.

1. Weak Server Side Controls. In the ecosystem perspective this means
customer data can be lost or affected during an attack. It can also mean
that an app becomes unusable.

2. Insecure Data Storage. In the ecosystem perspective this means that cus-
tomer privacy and security is at risk from attacks. In extreme cases sensitive
data of developers or vendors could also be at risk.

3. Insufficient Transport Layer Protection. In the ecosystem perspective
this means that customer data is at risk from interception, this might not
only affect customer privacy but also external developers that rely on the
exclusivity of specific data.

4. Unintended Data Leakage. In the ecosystem perspective this means that
customer privacy is at risk from attack, damaging the reputation of and trust
in some ecosystem actors.

5. Poor Authorization and Authentication. In the ecosystem perspective
this is primarily a risk for customers, but hacked accounts can be of concern
to component developers or vendors who rely on the proper usage of their
apps, the spread of spam through such accounts could for example dam-
age its profitability. Malicious users might be able to obtain privileges they
should not have.

6. Broken Cryptography. In the ecosystem perspective this affects customer
privacy violations. It can also lead to information theft, code theft, intellec-
tual property theft and reputation damage, affecting vendors.

7. Client Side Injection. Not only is this a risk to the customer due to
privacy violations but the component developer as well as their security
precautions could be directly affected by injected code. In extreme cases the
orchestrator reputation might be affected.



Mobile Software Security Threats in the Software Ecosystem, a Call to Arms 167

8. Security Decisions Via Untrusted Inputs. In the ecosystem perspective
this is a threat primarily for the actors that can be at risk from users with
malicious intentions, customer data might be vulnerable to attack.

9. Improper Session Handling. Customer privacy and security could be at
risk from attack. Component developers might be directly affected by secu-
rity breaches, vendors might experience an interruption in common business
procedures.

10. Lack of Binary Protections. In the ecosystem perspective a lack of binary
protections is of great concern to all involved actors. A reversed engineered
app is a great way for malicious parties to spread malicious content, relying
on the trust customers place in certain ecosystem actors. Duplicate apps are
a security risk. A hacked app can lead to privacy or confidential data theft.
For the orchestrator it will lead to brand damage and revenue loss through
pirating.

Table 1 shows an overview of the relations between ecosystem actors and how
each actor is affected by the OWASP security top 10 threats.

4.3 Comparing the Effect of Security Threats to Ecosystem
Actors

Given the five types of roles and how they are affected by security vulnerabilities,
we can compare them to the OWASP mobile top 10. Table 2 shows the security
threat identified by OWASP in the first column, followed by a threat assessment
for each role of either low (no or little direct impact), moderate (some threats but
either case specific or limited impact) or severe (certain to suffer some damage).
The following table is primarily intended to give an overview and visualization
of security threats to the ecosystem as a coherent set of actors.

The further away from using or directly developing the application with the
possible security vulnerability, the less security risks affect the actor. Customers
are shown to be most at risk from vulnerabilities in the ecosystem, followed by
component developers while the orchestrator is shown to be least vulnerable.

4.4 Android and iOS Developer Guidelines

Both ecosystem orchestrators offer comprehensive guidelines for their developing
partners. The Android guidelines are set up in a training and reference format,
taking on the role of teaching the developer using any means deemed effective.
Apple structures the documentation as a reference guide instead of guiding the
developer through a series of trainings, as such this documentation is primarily
text based and most effective when searching for specific advice.

In terms of security the iOS guidelines include a section named the Secure
Coding Guide while Android offers a section under the header Best Practices for
Security & Privacy. The Secure Coding Guide by Apple is the central reference
point for their security recommendations, and they always link back to this
document. Android is less inclined to discuss security concerns in other parts of
the documentation, concentrating most advice in the best practices section.



168 A. Krupskiy et al.

Table 1. Security threats for the SSN stakeholders

4.5 Guidelines Comparison Table

Comprehensively studying the developer guidelines allows for the creation of a
comparison table to see if and how Android and iOS make security recommenda-
tions suggested by OWASP in the mobile top 10. There are three levels designed
to indicate if each guideline is present:

Insufficient: There is no advice or reference present in the developer guidelines
on how to develop for the security vulnerability, developers are not made aware of
the security risks. If a developer depends on sole advice offered by the guidelines
this will result in an insecure application.



Mobile Software Security Threats in the Software Ecosystem, a Call to Arms 169

Table 2. Vulnerability effect on ecosystem roles. L is low threat, M is moderate threat,
S is severe threat.

OWASP guideline Customer Orchestrator Comp. Dev. Ext. Dev.Vendor

Weak server side controls M L S L L

Insecure data storage S M S M S

Insufficient transport layer protection S L M M L

Unintended data leakage S M S L M

Poor authorization and authentication S M S L M

Broken cryptography S M S L S

Client side injection S M S M M

Security decisions via untrusted inputs M L M L M

Improper sessions handling S L M M M

Lack of binary protections S M S M S

Partial: Some advice is given or the guideline is mentioned but not com-
prehensively enough to adequately assist developers to secure an application.
Alternatively the security recommendation in the documentation is outdated.

Sufficient: Either coding guidelines, explanation of the security vulnerability
with recommended precautions or specific advice on how to prevent the vulner-
ability is given. If a developer relies solely on the developer guidelines it will not
pose a danger to application security.

When the results of the comparison table are transformed to scores (where
insufficient is 0%, partial is 5%, and sufficient is 10%) the results show a 55% com-
pleteness score for iOS and 60% completeness score for Android. The Android
documentation has six points out of ten that could do with improving, the iOS
documentation has five points of out ten that could do with improving.

IOS Explained. The following overview explains where and how each OWASP
guideline is present in the developer documentation (Table 3).

1. The Apple developer documentation focuses on how to handle authenti-
cation when exchanging information with a server. No mention of server
configurations, backend services or best practices when setting up a server
could be found.

2. Apple refers to storing information in the appropriate directory and setting
the right file system permissions. Apples File Protection mechanism is con-
sidered to be safe for use for consumer-grade data. The documentation states
that the various APIs should be sufficient. This is contrarian to the OWASP
recommendation that developers should consider adding an additional layer
of encryption.

3. Apple recommends choosing the appropriate transport protocol and high-
lights some concerns for each option. A set of secure networking pages is
available, offering comprehensive guidelines and coding recommendations
to create sufficient transport layer protection.



170 A. Krupskiy et al.

Table 3. Comparison of OWASP, iOS and Android developer guidelines.

OWASP guideline iOS guidelines Android guidelines

Weak server side controls Insufficient Insufficient

Insecure data storage Partial Sufficient

Insufficient transport layer protection Sufficient Sufficient

Unintended data leakage Insufficient Partial

Poor authorization and authentication Sufficient Sufficient

Broken cryptography Sufficient Sufficient

Client side injection Sufficient Partial

Security decisions via untrusted inputs Sufficient Partial

Improper sessions handling Insufficient Insufficient

Lack of binary protections Insufficient Partial

4. Apple does not refer directly to data leakage, nor to the ways mentioned
by OWASP on how data leakage could occur on iOS. They consider the
platform to be inherently secure due to apps being restricted in the files and
system resources it can access.

5. Apple has a number of pages dedicated to authentication and authorization,
they offer various coding recommendations as well as best practices and
explanations on why or how something should be build to be considered
secure.

6. iOS applications are, in theory, protected from reverse engineering via code
encryption. Apple offers comprehensive explanations on cryptography top-
ics, an API to use for cryptographic tasks and coding guidelines on how to
securely implement cryptography.

7. Apple has dedicated an entire page to this security vulnerability, offering
coding advice, examples of risks and information on injection attacks.

8. Comprehensive advice on how to validate input is present. Coding guidelines
are offered, as is information on what kind of vulnerabilities might lead to
security breaches and how.

9. The Apple developer guidelines offer no recommendations, coding advice or
information on secure sessions handling.

10. Apple does not refer to the risks of not including binary protection and
relies solely on its app review and submission process, binary encryption is
central to iOS. However, this process is vulnerable to attacks when jailbreak-
ing a device [13]. Apple does not recommend to developers that they take
additional action such as jailbreak detection or certificate pinning controls.

Android Explained. In this section two main Android guidelines were used
as a source: a training guide for developers and a guide for android source code.

1. The Android documentation does not provide any guidelines for setting up a
server.



Mobile Software Security Threats in the Software Ecosystem, a Call to Arms 171

2. The Android guidelines describe all possible ways of storing app data on the
device and secure ways of sharing data between apps. These guidelines also
provide information on how to implement app data encryption and handle
sensitive data.

3. The Android security guidelines dedicate a section to securely implementing
HTTPS and SSL.

4. The Android guidelines mention the problem of data leakage and provide
advice for some cases on how to avoid such a risk. There are some recommen-
dations on how to work with log files, regarding them as being potentially
vulnerable. The guidelines do not cover URL caching, keyboard press caching,
Copy/Paste buffer caching, application backgrounding, HTML5 data storage,
browser cookie objects or analytics sent to 3rd parties, which are mentioned
in the OWASP guidelines.

5. The Android documentation has a number of sections describing authentica-
tion procedures. The documentation has a section dedicated to implementa-
tion of OAuth2 Services, which is an open standard for authorization.

6. Android provides a number of recommendations on how to implement cryp-
tography. The guidelines encourage developers to use standard protocols
instead of creating their own, this approach is also recommended by the
OWASP guidelines.

7. Android guidelines acknowledge the danger and offer security advice of how
to prevent XSS and SQL and JavaScript code injection on Android devices.
Nevertheless, the list of security issues in Android guidelines does not include
some problems mentioned in the OWASP security recommendations.

8. Android guidelines provide basic information on input validation methods,
input validation security threats, and also state that Android has a number
of countermeasures build in to prevent input related security problems. The
guidelines do not provide concrete examples of tools used to reduce this secu-
rity threat. Furthermore, no coding examples or best practices are described
in this section.

9. Android security guidelines provide no information on secure session handling.
10 Android provides some guidelines on binary protection in context of Google

Play in app billing. These guidelines suggest signature verification, code obfus-
cation and modifying sample code for in app billing system to decrease the
ease of its detectability. OWASP also mentions a root detection problem.
Rooting an Android phone is similar to jailbreaking iPhone, but Android
guidelines provide no information about security in context of rooting.

5 Discussion

Security is one of the big issues for developers who have the optimal security for
themselves and their users in mind. In this paper the belief is that developers
want the most secure software ecosystem as to benefit the actors that partici-
pate. Therefore something not touched on is that there are also developers and
organizations who intentionally force privacy risks on users.



172 A. Krupskiy et al.

This research does not include the orchestrator actors perspective on the
importance of ecosystem security aspects, interviews with Apple or Google would
have been an excellent source of data but setting this up did not fit in the scope
of this research. Additional research could be done to investigate why both the
studied platforms did not include specific OWASP guidelines and the role of
the developer guidelines in the development process. One way to execute such
research is to create app security conceptualization similar to mobile application
usability conceptualisation performed by Hoehle and Venkatesh [20]. For exam-
ple, the most recent research on iOS apps, which included an inspection of almost
42.000 apps, showed that almost 26% of apps reference external resources strictly
via HTTP, which is considered to be an insecure way of transferring informa-
tion by OWASP, iOS and Android guidelines. Both iOS and Android guidelines
actively encourage developers to use the HTTPS protocol, which is considered
to be far more secure, and provide detailed guidelines on how to implement it.

Although attacking a jailbroken iOS system was proven to be a much simpler
task for attackers, no literature or reports were found regarding a working mech-
anism for jailbreaking a device running iOS 10 protected with passcode without
knowing a passcode for the device. This leads to conclusion that at this time,
passcode of sufficient length and base (number of characters used to create a
passcode) serves as a sufficient way of protecting a device against jailbreaking,
this does not take into account for the risk of social engineering being used to
recover the passcode or user negligence when setting a passcode.

It should be mentioned that the mobile top 10 list dated 2012 was used. It was
considered to use mobile top 10 dated 2016, but this list is still in development
and incomplete.

This paper was written from the perspective of security in the software
ecosystem domain. As such it did not look at the quality of advice and infor-
mation offered in the developer documentation. This is considered a task more
suited for security experts.

6 Conclusions

The literature used for the overview shows that there are several issues apparent
for the two groups that participate in app store based mobile platforms. For user
issues both ecosystems are lacking in offering full protection. Both ecosystems
have different foundational functionalities that cause insecurities for the users.
Developers seem to encounter more problems on the Android platform, mainly
revenue based, in comparison to iOS developers since the iOS environment is
more restricted. Both platforms however also provide integrated and external
options for developers to create secure applications for both themselves and the
users. These options do not always offer a working solution in regards to one of
the issues.

Justified by the results from the actor/OWASP guideline impact evaluation
on a software ecosystem level, it is concluded that the biggest impact of security
breaches is felt by customers and component developers. This aligns with the



Mobile Software Security Threats in the Software Ecosystem, a Call to Arms 173

literature overview which reveals that there are numeral issues affecting these
groups. Vendors are moderately at risk, depending on how close they are to
the direct development, management or publishing of the application. Exter-
nal developers and the ecosystem orchestrators have the least risk as they are
furthest removed from the security vulnerabilities. This answers RQ1: To what
extend are ecosystem actors vulnerable to security threats?

From the developer guideline evaluation results, it is concluded that the eval-
uated guidelines form a solid basis for the development of a secure application
but can still be improved. The documentation for iOS offers a comprehensive
security guide that helps with many issues not included in the OWASP mobile
top 10. However, four out of ten points in the OWASP mobile top 10 are not
sufficiently presented in these guidelines and one point offers incomplete advice,
leading to the conclusion that the iOS guidelines need improving before they can
be considered fully secure. The results of this study confirm that inherent protec-
tions can sometimes be circumvented, leading to the conclusion that additional
advice should be offered to developers in case this occurs.

It can be concluded that the Android guidelines leave the impression of being
a good starting point for the developer. However, the results show that some sec-
tions only acknowledge a security issue and let a developer either find a solution
himself, or suggestively use a solution built into the Android framework, which
has its downsides according to OWASP. The results from the comparison of
the OWASP guidelines with Android guidelines allow for the conclusion that
the Android guidelines should be further developed, particularly in a sense of
improving existing sections with concrete solutions and best practices on how to
deal with security threats.

It is difficult to decisively conclude if one of the platforms does a better job
offering secure guidelines following the OWASP framework, as both have their
individual strengths and weaknesses.

The results show significant security risks are posed by the incompleteness
of advice on server side controls, secure data storage, unintended data leakage,
client side injection, security decisions via untrusted inputs, improper session
handling and lack of binary protections. This answers RQ2: Are there any sig-
nificant security vulnerabilities in the developer documentation? with a yes. The
significant risks as a result from incomplete advice correspond with the findings
of RQ1 in regards to the issues users, developers and other software ecosystem
actors encounter. This correspondence can be derived from the descriptions of
the lacking guidelines and their interaction with the issues.

The comparison tables and subsequent evaluation of the results lead to the
conclusion that neither platform adequately adheres to the security guidelines
set by the OWASP mobile security project. This provides an answer to the main
research question posed in this paper.

Final Conclusions and Recommendations. The literature regarding the
security issues in both analysed ecosystems show that they are not completely
secure for their users and developers. Customers do not always understand how



174 A. Krupskiy et al.

the applications can seriously affect their security. Developers are not always
capable of securing their applications as a result of problems like repackaging.
Problems like these add to the importance of secure ecosystems especially in the
form of well-defined security guidelines that follow security recommendations.

The impact on the entire ecosystem was assesed when the OWASP frame-
work was placed in the context of software ecosystems, it is considered of high
importance to the security and health of the mobile software platforms that
security guidelines are fully included in the developer documentation. Based on
the conclusions presented in this paper, the recommendation can be made that
platforms should consider including more comprehensive information on secure
development using a framework such as OWASP. Regardless if the operating
system has been designed with protections in mind, orchestrators should still
include information on secure development in their documentation, as it has
been shown that these measures can be circumvented in some cases and the
additional measures taken by developers can only benefit the ecosystem. Some
platforms already show the value of the OWASP guidelines by referring to them
on the introductory page of the security guide, while others do no such thing. It
is recommended that the value of these guidelines is more clearly referred to in
the developer documentation.

References

1. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: a research
agenda for software ecosystems. In: 31st International Conference on Software
Engineering-Companion Volume. ICSE-Companion 2009, pp. 187–190 (2009)

2. Asokan, N., Davi, L., Dmitrienko, A., Heuser, S., Kostiainen, K., Reshetova, E.,
Sadeghi, A.R.: Mobile Platform Security Synthesis Lectures on Information Secu-
rity, Privacy, and Trust. Morgan & Claypool Publishers (2013)

3. Jansen, S., Bloemendal, E.: Defining app stores: the role of curated market-
places in software ecosystems. In: Herzwurm, G., Margaria, T. (eds.) ICSOB
2013. LNBIP, vol. 150, pp. 195–206. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39336-5 19

4. Rashidi, B., Fung, C.: A survey of android security threats and defenses. J. Wirel.
Mob. Netw. Ubiquitous Comput. Dependable Appl. (JoWUA) 6(3), 3–35 (2015)

5. Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: Permission evolution in the android
ecosystem. In: Proceedings of the 28th Annual Computer Security Applications
Conference, pp. 31–40. ACM (2012)

6. Grace, M.C., Zhou, Y., Wang, Z., Jiang, X.: Systematic detection of capability
leaks in stock android smartphones. In: NDSS, vol. 14, p. 19 (2012)

7. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems.
Proc. IEEE 63(9), 1278–1308 (1975)

8. Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation attacks
on android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC
2010. LNCS, vol. 6531, pp. 346–360. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-18178-8 30

9. Meng, X., Song, C., Ji, Y., Shih, M.-W., Kangjie, L., Zheng, C., Duan, R., Jang,
Y., Lee, B., Qian, C., et al.: Toward engineering a secure android ecosystem: a
survey of existing techniques. ACM Comput. Surv. (CSUR) 49(2), 38 (2016)

http://dx.doi.org/10.1007/978-3-642-39336-5_19
http://dx.doi.org/10.1007/978-3-642-39336-5_19
http://dx.doi.org/10.1007/978-3-642-18178-8_30
http://dx.doi.org/10.1007/978-3-642-18178-8_30


Mobile Software Security Threats in the Software Ecosystem, a Call to Arms 175

10. Mulliner, C., Robertson, W., Kirda, E.: VirtualSwindle: an automated attack
against in-app billing on android. In: Proceedings of the 9th ACM Symposium on
Information, Computer and Communications Security, pp. 459–470. ACM (2014)

11. Orikogbo, D., Büchler, M., Egele, M.: CRiOS: toward large-scale iOS application
analysis. In: Proceedings of the 6th Workshop on Security and Privacy in Smart-
phones and Mobile Devices, pp. 33–42. ACM (2016)

12. Heider, J., El Khayari, E.: iOS keychain weakness FAQ. Frauenhofer Institute for
Secure Information Technology (SIT) (2012)

13. Renard, M.: Practical iOS apps hacking. GreHack 2012. 14 (2012). https://papers.
put.as/papers/ios/2012/GreHack-2012-paper-Mathieu Renard - Practical iOS
Apps hacking.pdf

14. Han, J., Yan, Q., Gao, D., Zhou, J., Deng, R.H.: Comparing mobile privacy pro-
tection through cross-platform applications (2013)

15. Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A survey of mobile
malware in the wild. In: Proceedings of the 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, pp. 3–14. ACM (2011)

16. Miller, C.: Inside iOS code signing. In: Symposium on Security for Asia Network
(SyScan) (2011)

17. Meng, W., Luo, X., Furnell, S., Zhou, J.: Protecting mobile networks and devices:
challenges and solutions (2016)

18. Teufl, P., Zefferer, T., Stromberger, C., Hechenblaikner, C.: iOS encryption sys-
tems: Deploying iOS devices in security-critical environments. In: 2013 Interna-
tional Conference on Security and Cryptography (SECRYPT), pp. 1–13. IEEE
(2013)

19. Manikas, K., Hansen, K.M.: Software ecosystems-a systematic literature review. J.
Syst. Softw. 86(5), 1294–1306 (2013)

20. Hoehle, H., Venkatesh, V.: Mobile application usability: conceptualization and
instrument development. MIS Q. 39(2), 435–472 (2015)

https://papers.put.as/papers/ios/2012/GreHack-2012-paper-Mathieu_Renard_-_Practical_iOS_Apps_hacking.pdf
https://papers.put.as/papers/ios/2012/GreHack-2012-paper-Mathieu_Renard_-_Practical_iOS_Apps_hacking.pdf
https://papers.put.as/papers/ios/2012/GreHack-2012-paper-Mathieu_Renard_-_Practical_iOS_Apps_hacking.pdf

	Mobile Software Security Threats in the Software Ecosystem, a Call to Arms
	1 Introduction
	2 Research Approach
	3 Literature Overview
	3.1 Literature on Android Ecosystem Security
	3.2 Literature on iOS Ecosystem Security

	4 Results
	4.1 OWASP Guidelines and the Ecosystem Perspective
	4.2 The OWASP Mobile Security Top 10
	4.3 Comparing the Effect of Security Threats to Ecosystem Actors
	4.4 Android and iOS Developer Guidelines
	4.5 Guidelines Comparison Table

	5 Discussion
	6 Conclusions
	References


