
 123

LN
BI

P
30

4

8th International Conference, ICSOB 2017
Essen, Germany, June 12–13, 2017
Proceedings

Software Business

Arto Ojala
Helena Holmström Olsson
Karl Werder (Eds.)

Lecture Notes
in Business Information Processing 304

Series Editors

Wil M.P. van der Aalst
Eindhoven Technical University, Eindhoven, The Netherlands

John Mylopoulos
University of Trento, Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Arto Ojala • Helena Holmström Olsson
Karl Werder (Eds.)

Software Business
8th International Conference, ICSOB 2017
Essen, Germany, June 12–13, 2017
Proceedings

123

Editors
Arto Ojala
University of Jyväskylä
Jyväskylä
Finland

Helena Holmström Olsson
Malmö University
Malmö
Sweden

Karl Werder
University of Duisburg-Essen
Essen
Germany

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-319-69190-9 ISBN 978-3-319-69191-6 (eBook)
https://doi.org/10.1007/978-3-319-69191-6

Library of Congress Control Number: 2017956718

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Software plays an ever-increasing role in today’s society. People’s lives are affected by
software on a daily basis, as used, for example, in the smartphone plus its mobile
applications, the e-mail client at work, or online shopping conducted from home. The
pervasive nature of software increases its potential to change business models and
value propositions, within the phenomenon summarized as “digitalization.” In fact,
software works as a key enabler of digitalization, providing opportunities to create
innovative business models that would have been impossible even a decade ago.
AirBnB and Uber are good examples of such new software-based firms, highlighting
how software businesses can disrupt entire industries. A more recent example can be
observed in G-cluster – a small software business that started to market a digitalized
game console in Japan. The game console can be embedded in various devices,
including set-top boxes, TVs, tablets, and mobile phones. These three examples
illustrate how software facilitates the digitization of products in such a way as to
compete with large and well-established firms.

For the 8th International Conference on Software Business (June 2017) we received
30 submissions. The papers went through a competitive review process, with two or
three experts in the field reviewing each paper. On the basis of the reviewers’ evalu-
ations, and consideration by the track chairs, 11 full papers and five short papers were
selected for the proceedings. Here, we have organized the papers according to the
following themes: Software Startups and Platform Governance, Software Business
Development, and Software Ecosystems and App Stores.

The contributions address three research areas, investigating different phases in the
lifecycle of a software business. The phases of a software business start with its
inception as a software startup, continuing with the development of the software
business, leading thereafter to a thriving software ecosystem. Overall, three challenges
can be seen as meriting particular attention. The first challenge relates to software
startups and platform governance. The contributions here provide data on the acqui-
sition and growth of software startups as influenced by venture capital. Another paper
provides guidance on the process of moving toward validated product ideas within
software startups. A third paper explains how we can govern software ecosystems in
such a way as to implement an Internet of Things. The second challenge relates to
software business development. Two papers discuss the pricing of data products, and
explore business models for software-defined networks. In addition, we learn about
firm performance within the Finnish software industry, and the modeling of competi-
tive relationships. The third research challenge relates to software ecosystems and app
stores. The papers presented explain how software ecosystems co-evolve, and shed
light on competition in software firms. In addition, one paper addresses mobile security
threats in software ecosystems, while another paper focuses on the health measurement
of data-scarce software ecosystems. The contributions make it clear that the scope of

software businesses is expanding from traditional software firms toward firms that
develop software specifically to advance their business in the form of digital services.

As Program Committee chairs, we would like to thank the members of the Program
Committee and the additional reviewers for their efforts in evaluating the submissions
and ensuring the high quality of the conference. The efforts of the Steering Committee
and all the chairs were of enormous value in building a successful ICSOB 2017
conference. Finally, special thanks are due to all the scholars who submitted papers to
the conference, all the authors who presented papers, and to the audience, who par-
ticipated in very interesting discussions during the conference.

August 2017 Arto Ojala
Helena Holmström Olsson

Karl Werder

VI Preface

Organization

General Chair

Arto Ojala University of Jyväskylä, Finland

Program Chairs

Helena Holmström Olsson Malmö University, Sweden
Xiaofeng Wang Free University of Bozen-Bolzano, Italy

Steering Committee

Jan Bosch Chalmers University of Technology, Sweden
Sjaak Brinkkemper Utrecht University, The Netherlands
João M. Fernandes University of Minho, Portugal
Georg Herzwurm University of Stuttgart, Germany
Slinger Jansen Utrecht University, The Netherlands (Chair)
Christopher Jud University of Stuttgart, Germany
Thomas Kude ESSEC Business School, France
Casper Lassenius Aalto University, Finland
Eetu Luoma University of Jyväskylä, Finland
Konstantinos Manikas University of Copenhagen, Denmark
Tiziana Margaria University of Limerick and Lero, Ireland
Arto Ojala University of Jyväskylä, Finland
Helena Holmström Olsson Malmö University, Sweden
Björn Regnell Lund University, Sweden
Kari Smolander Lappeenranta University of Technology, Finland
Pasi Tyrväinen University of Jyväskylä, Finland
Krzysztof Wnuk Blekinge Institute of Technology, Sweden
Anna Lena Lamprecht Utrecht University, The Netherlands
Andrey Maglyas Lappeenranta University of Technology, Finland
Xiaofeng Wang Free University of Bozen-Bolzano, Italy

Program Committee

Carina Alves UFPE, Brazil
Siamak Farshidi Utrecht University, The Netherlands
Farnaz Fotrousi Blekinge Institute of Technology, Sweden
Samuel Fricker Blekinge Institute of Technology, Sweden
Sami Hyrynsalmi Tampere University of Technology, Finland
Slinger Jansen Utrecht University, The Netherlands
Christopher Jud University of Stuttgart, Germany

Garm Lucassen Utrecht University, The Netherlands
Jens Knodel Fraunhofer IESE, Germany
Eetu Luoma University of Jyväskylä, Finland
Thomas Kude ESSEC Business School, France
John McGregor Clemson University, The USA
Gururaj Maddodi Utrecht University, The Netherlands
Konstantinos Manikas University of Copenhagen, Denmark
Elisa Nakagawa University of Sao Paulo, Brazil
Arto Ojala University of Jyväskylä, Finland
Helena Holmström Olsson Malmö University, Sweden
Efi Papatheocharous RISE SICS, Sweden
Andrey Saltan St. Petersburg State University, Russia
Pasi Tyrväinen University of Jyväskylä, Finland
Xiaofeng Wang Free University of Bozen-Bolzano, Italy
Karl Werder University of Duisburg-Essen, Germany
Zherui Yang Tilburg University, The Netherlands

VIII Organization

Contents

Software Startups and Platform Governance

How Are Product Ideas Validated? The Process from Innovation
to Requirements Engineering in Software Startups. 3

Pertti Seppänen, Nirnaya Tripathi, Markku Oivo, and Kari Liukkunen

Acquisitions and Growth of Software Startups: The Dual Role
of Venture Capital as a Success Factor . 18

Marcus Wagner

Governing Platforms in the Internet of Things . 32
Maximilian Schreieck, Christoph Hakes, Manuel Wiesche,
and Helmut Krcmar

Software Business Development

Pricing of Data Products in Data Marketplaces . 49
Samuel A. Fricker and Yuliyan V. Maksimov

Knitting Company Performance and Board Interlocks: An Exploration
with the Finnish Software Industry . 67

Sami Hyrynsalmi, Arho Suominen, Jukka Ruohonen, Marko Seppänen,
and Antero Järvi

Modeling Strategic Complementarity and Synergistic Value Creation
in Coopetitive Relationships . 82

Vik Pant and Eric Yu

Business Model Exploration for Software Defined Networks 99
Yudi Xu, Slinger Jansen, Xuesong Gao, Sergio España, and Dong Zhang

Software Ecosystems and App Stores

How Do Software Ecosystems Co-Evolve? A View from OpenStack
and Beyond . 115

Jose Teixeira and Sami Hyrynsalmi

Health Measurement of Data-Scarce Software Ecosystems: A Case Study
of Apple’s ResearchKit . 131

Paul van Vulpen, Abel Menkveld, and Slinger Jansen

http://dx.doi.org/10.1007/978-3-319-69191-6_1
http://dx.doi.org/10.1007/978-3-319-69191-6_1
http://dx.doi.org/10.1007/978-3-319-69191-6_2
http://dx.doi.org/10.1007/978-3-319-69191-6_2
http://dx.doi.org/10.1007/978-3-319-69191-6_3
http://dx.doi.org/10.1007/978-3-319-69191-6_4
http://dx.doi.org/10.1007/978-3-319-69191-6_5
http://dx.doi.org/10.1007/978-3-319-69191-6_5
http://dx.doi.org/10.1007/978-3-319-69191-6_6
http://dx.doi.org/10.1007/978-3-319-69191-6_6
http://dx.doi.org/10.1007/978-3-319-69191-6_7
http://dx.doi.org/10.1007/978-3-319-69191-6_8
http://dx.doi.org/10.1007/978-3-319-69191-6_8
http://dx.doi.org/10.1007/978-3-319-69191-6_9
http://dx.doi.org/10.1007/978-3-319-69191-6_9

Coopetition of Software Firms in Open Source Software Ecosystems. 146
Anh Nguyen Duc, Daniela S. Cruzes, Geir K. Hanssen, Terje Snarby,
and Pekka Abrahamsson

Mobile Software Security Threats in the Software Ecosystem,
a Call to Arms . 161

Andrey Krupskiy, Remmelt Blessinga, Jelmer Scholte,
and Slinger Jansen

Short Papers

Experimentation that Matters: A Multi-case Study on the Challenges
with A/B Testing . 179

Helena Holmström Olsson, Jan Bosch, and Aleksander Fabijan

Why Do Users Install and Delete Apps? A Survey Study. 186
Selim Ickin, Kai Petersen, and Javier Gonzalez-Huerta

Evolving Software Products, the Design of a Water-Related
Modeling Software Ecosystem . 192

Konstantinos Manikas

Towards Understanding Startup Product Development as Effectual
Entrepreneurial Behaviors . 199

Anh Nguven Duc, Yngve Dahle, Martin Steinert,
and Pekka Abrahamsson

Should We Be Thanking Microsoft, Apple and Google for Their
Contributions to Open Source Software? The Case
of Multinational Platform Leaders . 205

Dominique Doorhof, Elizabeth A. Schermerhorn, Slinger Jansen,
and Sjaak Brinkkemper

Author Index . 211

X Contents

http://dx.doi.org/10.1007/978-3-319-69191-6_10
http://dx.doi.org/10.1007/978-3-319-69191-6_11
http://dx.doi.org/10.1007/978-3-319-69191-6_11
http://dx.doi.org/10.1007/978-3-319-69191-6_12
http://dx.doi.org/10.1007/978-3-319-69191-6_12
http://dx.doi.org/10.1007/978-3-319-69191-6_13
http://dx.doi.org/10.1007/978-3-319-69191-6_14
http://dx.doi.org/10.1007/978-3-319-69191-6_14
http://dx.doi.org/10.1007/978-3-319-69191-6_15
http://dx.doi.org/10.1007/978-3-319-69191-6_15
http://dx.doi.org/10.1007/978-3-319-69191-6_16
http://dx.doi.org/10.1007/978-3-319-69191-6_16
http://dx.doi.org/10.1007/978-3-319-69191-6_16

Software Startups and Platform
Governance

How Are Product Ideas Validated?

The Process from Innovation to Requirements
Engineering in Software Startups

Pertti Seppänen(&), Nirnaya Tripathi, Markku Oivo,
and Kari Liukkunen

M3S/M Group, University of Oulu, 90015 Oulu, Finland
{pertti.seppanen,nirnaya.tripathi,markku.oivo,

kari.liukkunen}@oulu.fi

Abstract. Although software startups are considered important for economic
development due to their ability to quickly create cutting-edge technologies and
their potential to scale to a wide market, contextual knowledge about the product
idea development process of startups is poorly understood in the literature. This
study explores the idea validation process of software startups in an attempt to
understand the practices used for idea validation, discover how the process is
affected by the founder’s prior competencies, and determine the effect of those
practices on requirement gathering. We conducted an exploratory multiple case
study in nine software startups to determine the kind of practices they used for
idea validation. We identified ten practices used as elements of the idea vali-
dation process. Our results show that idea validation is a highly non-linear
process in which several validation practices are used in varying combinations
and timing. The most frequently used practices included copying existing
products, prototyping, utilizing expert support, and cooperating closely with
customers. The founder’s prior competencies also influenced the selected
practices. Copying and prototyping were common practices when the founders
had prior competencies in the application area, while utilizing expert support
was a widespread practice to compensate for the founder’s missing competen-
cies. We also observed that the idea validation practices identified in the study
serve requirement gathering at different levels of abstraction, varying from
business-related requirements down to design-level requirements.

Keywords: Software startup � Initial team � Idea validation � Competency
needs � Requirement gathering � Lean startup � Product development � Product
development process

1 Introduction

The number of software startups and their role in technical and economic development
have increased globally. Many recent success stories, such as Facebook, Spotify, and
LinkedIn, originated from startup companies [1]. Studies have explored software
startups from different viewpoints, such as challenges, success factors, startup pro-
cesses, and models [2–9]. In recent years, the lean startup approach [5] has gained

© Springer International Publishing AG 2017
A. Ojala et al. (Eds.): ICSOB 2017, LNBIP 304, pp. 3–17, 2017.
https://doi.org/10.1007/978-3-319-69191-6_1

popularity among researchers, presenting principles for developing a business model
built on a relevant problem/solution and product/market fit. Some derivatives of lean
startup have been created [7, 10], fine-tuning the original ideas. Steinert et al. [6]
proposed a similar concept focusing on seeking the great idea.

In software startups, self-destruction is a bigger cause of failure than the compe-
tition [4, 11]. Broad and reliable validation of a product idea from innovation to
prototype and creating the first product is a crucial period in a software startup’s
evolution, independent of the model or process that the work is following [4]. The
importance is further increased due to the challenges a startup faces, such as limited
resources, inexperienced teams, and dependency on a single product [1]. Studies on
suitable practices for validating ideas are, however, missing, as shown in a thorough
mapping study of software startups [1].

In this paper, we study the practices used in a sample of European software startups
for idea validation, the effect of available competencies on the idea validation process,
and the role of the practices during requirement gathering. We broaden the principles of
the build-measure-learn process defined in [5] from the validation of a business case to
cover also the technical aspects of the idea. While validating the idea a startup gathers
requirements for the product. To highlight that we map our findings to a requirement
gathering model presented in [12].

We define the key concepts of our paper as follows: Idea validation refers to all the
actions and steps that are directly targeted to improve the idea and validate its technical
and commercial feasibility. An idea validation practice refers to the elements of the idea
validation process. Competencies refer to the skills and knowledge needed to conduct
the process successfully [13].

The research was conducted as a multiple case study [14]. We interviewed a sample
of software startups in four European locations and analyzed the collected research data
via thematic analysis following the guidelines of [15].

The rest of the paper is structured as follows: Sect. 2 describes the background of
and motivation for the study; Sect. 3 presents the research method and data analysis
technique used; and Sect. 4 presents the empirical results. Section 5 discusses the
answers to the research questions. Section 6 concludes the paper, briefly describing the
limitations of the study and directions for future research.

2 Background and Motivation

Innovative startups play an important role in the economy because of their potential to
grow through rapid expansion even in highly competitive markets. However, internal
problems are a bigger cause of startup failure than the competition [3, 4].

2.1 Startup Models and Processes

Increasing interest in startups has led to the development of models describing the
evolution of a startup. Crowne [9] introduced a startup model with four phases: startup,
growth, stabilization, and maturity. Paternoster et al. broadly studied software startups
in [16] and introduced a greenfield model of software startups. The lean startup

4 P. Seppänen et al.

approach [5] and the hunter-gatherer model [6] deal with business model creation by
focusing on finding a winning innovation.

The lean startup model proposes practices for managing the uncertainty that char-
acterizes startups’ business prospects by defining the minimal viable product (MVP) and
the build-test-learn loop for finding a problem/solution fit and a product/market fit for a
product idea. Bosch et al. in [7] used lean startup as a basis and proposed an early stage
software startup development model (ESSDM) while exploring the distinctive chal-
lenges of a startup in searching for a product idea worth scaling. Wang et al. [17]
identified a set of challenges perceived during the idea conceptualization stage, such as
building the product, creating a business model, and building an MVP.

Two recent mapping studies by Paternoster et al. [1] and Klotins et al. [18] on
software engineering in startups conclude that startups typically don’t follow strictly
defined processes.

Coleman et al. [8] concluded in their grounded theory study that the key persons’
earlier experiences act as the basis of the process development in startups. The same
phenomenon was identified in our prior research on the initial team of a software
startup [13].

In a startup, the early development steps, during which the idea is validated, build
the basis for the next process steps, requirement engineering and product specification.
According to [12], a typical product development project in an established company is
organized so that the marketing department of the company acts as the customer
whereas the development department acts as a supplier. In the context of a startup, there
are seldom separate departments and strictly specified roles, but the initial team takes
care of all aspects of the product development, including the steps that validate the idea
and bring it forward [13].

The current literature in the context of software startups demonstrates only limited
knowledge of the actual work done to validate the idea, for instance the lean startup [5]
describes building an MVP and measuring its value in fairly abstract terms. That leaves
a research gap, how the companies conduct the work and how they acquire the
knowledge needed in validating the idea.

3 Research Design

This study aims to address the research gap identified in the previous section: the
process run in software startups to validate the innovation’s technical and commercial
feasibility. We also study how the competencies of the founder affect that idea vali-
dation. To fulfill the research objective, we propose the following exploratory research
questions [19].

3.1 Research Questions

RQ1: What practices are utilized when validating an idea in software startups?
The objective of the first research question is to find what practices are used as elements
of the idea validation process.

How Are Product Ideas Validated? 5

RQ2: In what ways do the prior competencies of the innovator/founder affect
the idea validation practices? The aim of the second research question is to under-
stand how the prior competencies of the innovator/founder affect the idea validation
process.

To answer the research questions, we carried out a multiple case study on a sample
of software startups following the guidelines set out in [14].

3.2 Case and Subject Selection

We collected the research data by interviewing a sample of software startups in May
and June 2015. We opted to collect a sample of companies with different backgrounds,
products, business cases, and evolution phases. We used local startup incubators to
help finding candidates on random basis. The sample included nine startup companies
in four European locations: Bolzano, Italy; Trondheim, Norway; Oulu, Finland; and
Helsinki, Finland. Out of the sample, four case companies had embedded products
while five were developing pure software products. We included embedded cases
because validating the idea of an embedded product may be different from a pure
software product due to needed electronics and mechanics. The case companies, their
product types, business cases, and current statuses are summarized in Table 1.

Eight case companies were ordinary startups and one was an internal startup. We
opted to include an internal startup in our sample to find out possible differences to
ordinary startups. The size of the case companies ranged between four and twelve
employees, in most cases between five and seven. The operational age was between 12
and 60 months. In some cases, the original idea was refined and tested several years
before the company was founded.

3.3 Data Collection Procedure

We selected interviewees via the key informant technique in order to collect rich
qualitative data [20]. The interviews involved the founders, chief operating officers
(COOs), and chief technology officers (CTOs) of the case companies. We used direct

Table 1. Descriptions of the case startups.

Case Location Product type Customers Interviewee(s) Status

A Italy Pure software B2C Founder Dissolved
B Norway Pure software B2C, B2B Founder, expert Product on market
C Norway Pure software B2C, B2B Founder, expert Product on market
D Finland Embedded B2C Founder Dissolved
E Finland Embedded B2C COO Prototype series
F Finland Embedded B2B CTO Prototype series
G Finland Pure software B2B Founder Established business
H Finland Pure software B2B Founder Prototype series
I Finland Embedded B2B CTO Established business

6 P. Seppänen et al.

techniques in the form of semi-structured face-to-face interviews [21] and created a
thematic interview guide before we conducted the interviews. The interview guide
contained questions that broadly covered the early phases of the startups from the
original idea to the present situation.

In case companies B and C, we interviewed two persons from the same company,
and in one case, the same interviewee covered case companies D and E. Thus, the total
number of interviewees was ten. All the interviews were conducted in English. They
were recorded and later transcribed by a professional transcription company.

3.4 Data Analysis Procedure

We opted to analyze the empirical data by using thematic synthesis as defined in [15].
We followed the recommendations of [15] to utilize the integrated approach by
combining inductive and deductive coding, a method that determines an initial set of
codes and defines new ones during the coding process when new topics emerge from
the research data.

As the first step, the interview recordings were transcribed to MSWord documents.
The documents were read thoroughly by the first author, and a decision was made to
include all interview data for coding in order to utilize the benefits of the
inductive-deductive approach.

In the thematic synthesis, the interview data was analyzed sentence by sentence by
using NVivo11, and the data related to innovation validation were identified and coded.
The codes were then collected into ten themes summarizing the idea validation prac-
tices. The themes were further incorporated into three categories, engineering-related,
business-related, and combined, as shown in Table 2. The classification was based on
our research data, for example, on the context and purpose in which each practice was
used in our sample companies. Several practices were deployed in both
engineering-related and business-related domains.

Though creating prototypes may be a part of creating MVPs, we classified the
former as engineering-related practices and the latter as business-related ones. The
reason was that in our sample prototyping was done mostly for validating engineering
solutions, while an MPVs is meant for measuring the business value, as defined in [5].
Similarly, we do not classify changing the technical solution identified in some case
companies as pivoting, as defined in [5]. Changing the technology solution doesn’t
necessarily mean a change to the business case, as pivoting by definition does.

Three practices—expert support, host company support, and educational support—
deal in our sample only with broadening the knowledge and skills available in a
startup. They were handled separately from each other because the sources of the
support and the contexts when utilizing them were different.

To find answers to RQ2, we identified codes related to the founder’s product
creation competencies. The founder’s perspective was selected based on the findings of
[8, 13], which indicate that the founder is the key person in conducting
innovation-related work in startups and that the key person’s previous experiences
strongly affect the process development. The codes identified in the research data were
incorporated into three competency-related themes as shown in Table 3.

How Are Product Ideas Validated? 7

Because this study focused on software startups, the key areas arising from the
research data were competencies in software development and in the application
domain. The theme software development covered competencies in all software
development areas, such as analysis, design, implementation, testing, requirement
engineering, and related process development. Similarly, all competencies related to
the application area of the planned product were gathered under the theme application
area competencies.

Because four out of nine case companies were developing embedded products, we
included competencies in disciplines other than software. In that theme, we ranked
other technology areas needed for product development, such as hardware and
mechanics development.

We compared the competency themes and the idea validation themes for each
company in order to identify the relationships between the competency and the idea
validation themes and to find answers to the research questions.

4 Results

In this section, we discuss the startup cases and describe the identified idea validation
practices and the effect of the competencies on the idea validation practices.

Table 2. Identified practices for idea validation.

Identified practice Description Category

Copying existing
products

Utilizing the idea, functionality, business model,
customer segment, engineering solution, or other
relevant information of an existing product

Engineering,
business

Technology
feasibility study

Studying the engineering solution(s) to discover
engineering challenges and their solutions

Engineering

Market study Conducting a market study addressing a broad
customer segment and focusing on the business value

Business

Prototyping Creating prototype(s) to discover and test engineering
solutions

Engineering

Minimum viable
product (MVP)

Creating MVPs as defined in lean startup [5] to test
customer acceptance

Engineering,
business

Expert support Acquiring support from individuals with senior
expertise

Engineering

Host company
support

Experts of the home company provide the startup with
experience and knowledge for the idea validation

Engineering,
business

Educational
support

Teachers/instructors provide the startup with
experience and knowledge for the idea validation

Engineering,
business

Pivoting Pivoting as defined in lean startup [5] Business
Close customer
cooperation

Working closely with the first customer(s) on both
technology and business

Engineering,
business

8 P. Seppänen et al.

4.1 Case Description

Case company A developed a web-based service for multimedia sharing in a uni-
versity environment. The product was a pure software product developed by a team of
students. The founder was a professor with very strong competencies in software
development, software engineering, and innovation but no prior experience in the
application domain.

Case company B developed a web-based ticketing service. The product was a pure
software product. The founders had just graduated from the university with degrees in
non-software-related topics. The founders did not have prior competencies in any
competency areas of interest.

Case company C developed a smart emergency call service that provides the
emergency call center with access to the caller’s relevant health information in addition
to automatically providing the location of the caller. The idea emerged from an existing
similar system in the US and from the founder’s own experiences after an accident.

Case company D tried to develop an embedded device that measures online the
human body’s fat burning rate during physical exercise. The measurement was based
on analysis of certain marker substances in the user’s exhaled breath. The development
of the sensor technology failed, and the company was dissolved. The founder had prior
competencies in software, hardware, and mechanical development but no competencies
in the application domain.

Case company E was developing an embedded device that measures the work and
effort of a human muscle in physical exercise. The founders had a background in health
care and medicine and thus had prior competencies in the application domain. How-
ever, they did not have any competencies in the technology areas needed to create a
product. The product idea emerged from the founders’ daily work and the solution
principles were copied from existing electromyography (EMG) devices.

Case company F was an internal startup within a bigger company with a focus on
software services. The product was an embedded Internet of Things (IoT) device that
integrated a multitude of sensors and communication solutions. The host company had
almost a hundred very experienced developers and managers with strong prior com-
petencies in the application area and all technology areas needed to create the product.

Case company G was developing a software tool for improving aircraft mainte-
nance at a big aviation company. The product was a pure software product. The
founder had just graduated from the university but had strong prior competencies in
software development. He had also worked on a temporary contract in the maintenance
department of the customer company.

Table 3. Themes for competencies.

Founder’s experience

Software-related disciplines
Disciplines other than software
Application area

How Are Product Ideas Validated? 9

Case company H was creating a graphical user interface platform for smart
devices, especially focusing on smart watches. The idea was much older than the
company and had emerged from the founder’s earlier work. The founder had done two
prototyping rounds with two different implementation approaches before finding the
final one and founding the company. The founder had strong competencies in the
application area and in software development.

Case company I developed an embedded ultrasound device with complex soft-
ware, hardware, and mechanics. The idea emerged from a similar device the founder
had learned about. The founder was a seasoned entrepreneur who had strong compe-
tencies in software development, reasonable competencies in hardware development,
and some competencies in the application domain.

4.2 Idea Validation Practices

We summarized the results of the thematic analysis in a multidimensional chart
combining the idea validation practices and the founder’s prior competencies per
company, as shown in Fig. 1. In the chart, a small square at the intersection between a
company and an identified theme shows (a) on the left-hand side what idea validation
practices were used in the case company and (b) on the right-hand side what the
founder’s prior competencies were. The vertical light yellow bars highlight the most
frequently used idea validation practices, and the horizontal light blue bars indicate the
effect of the founder’s prior competencies on the utilized practices.

The chart in Fig. 1 shows that use of the idea validation practices varied consid-
erably between the case companies. Most of the companies utilized several practices to
validate the product idea. Copying existing products, prototyping, and utilizing expert
support, together with customer cooperation were the most frequently used practices.
The business-related practices for idea validation, utilizing a market study, utilizing an

Fig. 1. Idea validation practices vs. founder’s competencies

10 P. Seppänen et al.

MVP, and pivoting, were in the research data strongly tied to the practices being more
engineering-related. Practices from both categories were utilized in parallel, mutually
supporting each other.

4.3 Effect of Prior Competencies on Idea Validation Practices

The results indicate that the founder’s prior competencies in the application domain
were the key difference between the case companies. The better the application
knowledge competencies, the smoother the progress from idea to a product. Also, the
palette of idea validation practices was the most focused, while the broadest variation
of practices was in the cases when the founder did not have prior competencies in the
application domain. In four out of five cases without application domain competencies,
utilizing expert support belonged to the practices palette, broadened by copying
existing products, customer cooperation, and prototyping.

Utilizing expert support was common for the three cases without prior compe-
tencies in software development. In all those cases, the experts’ role was to compensate
for the founder’s missing competencies. Out of the six cases with existing software
development competencies, expert support was utilized in two cases, both developing
embedded products with highly specific technology.

Prior competencies in disciplines other than software were mainly relevant to
companies that developed embedded products. Expert support was a common idea
validation practice independent of existing competencies in the other discipline
category,

The internal startup F differed from all other case companies by being self-sustained
both in validating the idea and acquiring all necessary competencies from the host
company.

5 Discussion

In this section, we discuss the findings of our research. First, the answers to the research
questions are presented. Then, our findings are discussed in the context of development
processes and requirement gathering. Finally, the relevance of our findings to the
research and to practitioners is discussed.

5.1 Answering the Research Questions

Based on the results of the study, we conclude the following answers to our research
questions:

RQ1: What practices are utilized when validating an idea in software
startups?

From our case sample, we identified ten idea validation practices: close customer
cooperation, MVP, copying existing products, market study, prototyping, technology
feasibility study, pivoting, support from home company, support from educational
institute, and expert support. We further found that copying existing products,

How Are Product Ideas Validated? 11

prototyping, and utilizing expert support, together with customer cooperation, were the
most often used practices in the cases.

Early and close customer cooperation was commonly utilized in our sample,
especially in cases where the customer was easily identifiable and accessible.

In case companies A, D, and E, where the product was targeted to the mass market,
close customer cooperation was not identified. That may indicate that following the
recommendations proposed in [5–7, 10] may be difficult in a practical situation if good
representatives of a customer base cannot be found.

In case companies F and H, late customer cooperation was identified. In both cases,
the business-to-business (B2B) customer base was broad, and the companies had
excellent competencies for developing and testing the product.

Possibly the most surprising practice for idea validation in our sample was copying
existing products. Copying was identified in five out of nine companies. Copying was
tied to business cases aiming at developing a cheaper or better product to compete with
an existing product, developing a product for a specific customer base, broadening the
use of known solutions to a new application area, or developing a local copy of a
product already used in another country.

In our sample, the utilization of the methodology proposed by the lean startup
method [5] was surprisingly small, although the interviews revealed that the approach
was known. There may be several reasons for that. In cases where copying from
existing products was utilized, the basics of the product idea, its business case, and the
potential customers were probably already well enough known in early phases of the
startup’s evolution. Pivoting, as proposed in [5], was identified only in case companies
B and F.

We separated prototyping from MVP according to the purpose. While an MVP’s
goal was early measuring of the customer value of an idea [5], prototyping was utilized
for company internal validation and optimization of the technical solutions.

RQ2: In what ways do the prior competencies of the innovator/founder affect
the idea validation practices?

The founder’s missing competencies in the application domain and in software
development led to the utilization of many idea validation practices in parallel.

The chart in Fig. 1 shows that expert support was a frequently utilized practice to
compensate for the founder’s missing competencies. It was utilized especially when
embedded products were developed and when the founder did not have prior com-
petencies in the application area or in software development.

Support from an educational institution and from the host company were utilized in
companies A, C, and F when the founders studied or worked at the supporting
organization.

Copying from existing products was utilized both when prior competencies in the
application area existed and when they were missing. In the cases when copying was
utilized, the dependency on the targeted business case was clearer than the dependency
on the available competencies.

Close customer cooperation was an equally utilized practice independent of the
prior competencies of the founder. However, in the cases of very competent founders
and development teams, customer cooperation was first initiated at a later stage of the
development.

12 P. Seppänen et al.

In the sample, prototyping was a common practice for idea validation independent
of other practices and the founder’s prior competencies.

5.2 Idea Validation Process

The results of our study highlight the complexity of the idea validation process and thus
confirm empirically the related findings of [1, 3, 8, 18]. A smooth and linear process
from the idea to a product was identified in two cases, companies F and G. In company
F, the reasons may have been a fairly clear business case for the IoT device and the host
company’s strong experience in developing such a product. In company G, the founder
had direct work experience in the customer organization and hence excellent personal
contacts. He also succeeded in deploying a simple but convincing MVP at a very early
stage. The other companies faced different challenges and a nonlinear process during
the idea validation.

The idea validation processes identified in our study in different case companies can
be described as ad hoc, although the individual validation practices were well known
ones in product development. The ad-hoc nature comes from three main elements
derived from Sects. 4.2 and 4.3: (1) the combinations of different practices varied
between the companies, (2) utilizing different practices was strongly context dependent,
and (3) the founder’s prior competencies affected the set of practices deployed. Thus,
our empirical results are in line with the earlier findings of [1, 8, 18], and they don’t
allow us to determine any general process model for idea validation.

5.3 Idea Validation Practices and Requirements Gathering

As discussed above, the work done for refining and validating the original idea is a part
of the overall product development process of a startup. In this section, we explore how
the identified idea validation practices link to requirement gathering. As the framework
for the exploration, we utilize the four-level requirement model proposed in [12]. In the
model, the requirements are classified in four levels: goal, domain, product, and design.

Figure 2 shows the proposed research-data-based mapping of the identified idea
validation practices onto the model.

At the goal level, requirements related to the business objective of the product are
created and verified [12]. To gather the requirements of the goal level, copying and
customer cooperation were utilized. Pivoting as defined in [5] is a retrospective deci-
sion and a sign that the targeted business case was not strong enough for continued
development.

At the domain level, requirements usually focus on the key functionality of the
product. It is important that the correct functionality is carefully recognized and the
planned product’s ability to support it is ensured [12]. As Fig. 2 shows, most idea
validation practices, including copying, customer cooperation, expert support, technical
feasibility study, market study, and MVP, were utilized at the domain level.

At the product level, requirements defining the product’s physical and logical
boundaries, its interfaces, and its inputs and outputs are described without focusing on
the actual implementation [12]. For the requirements at this level, prototyping was
used, and customer cooperation continued.

How Are Product Ideas Validated? 13

At the design level, prototyping was continued. Company I, developing a
demanding product, continued conducting small-scale trials separate from the
main-stream prototype development. Thus, we include technical feasibility study in the
idea validation practices for the design level.

Because of missing detailed research data, we do not map educational support and
host company support onto the model shown in Fig. 2.

5.4 Validity Discussion

We discuss the validity of the study in terms of construct validity, internal validity,
external validity, and reliability as described in [14]. Construct validity deals with
taking full provisions in the data collection procedure so that the collected data line up
with the research questions. We designed an interview guide before we conducted the
interviews to ensure the interview questions covered the research topic and the research
questions in a broad manner. Experienced people from the case companies were
selected for the interviews based on the key informant technique.

Internal validity is mainly used for explanatory and causal studies in which causal
relationship between outcomes and intervention is examined in order to find the
explanation for a given condition or problem [14]. Our study explored phenomena in
software startups without addressing causal relationships. Thus, we don’t consider
internal validity. External validity refers to whether the findings from the study can be
generalized outside the studied cases. Our results are based on nine software startups in
Europe. To generalize the results further empirical research across other regions and a
bigger sample is needed.

Study reliability is concerned with how the data analysis depends on the particular
researchers. In the initial phase, the first author created a case study protocol in order to
have a systematic research procedure. The data analysis was performed by the first and
second authors with the qualitative data analysis tool NVivo11 in order to ensure that
various aspects of the idea validation process in the software startups were addressed.

Goal
•Copying, Customer Coopera on, Pivo ng

Domain
•Copying, Expert Support, Technical Feasibility Study,

Customer Coopera on, Market Study, MVP

Product
•Prototyping, Customer Coopera on

Design
•Technical Feasibility study, Prototyping

Fig. 2. Idea validation practices and requirement gathering level

14 P. Seppänen et al.

5.5 Relevance to Academia and Practitioners

The results of this study reveal interesting viewpoints for academia and industry.
Recently, startup research has focused on big innovations and methods for seeking
them [5, 6]. Our results may, however, indicate that among the famous but few big
innovation startups, there is a dense undergrowth of others creating business and
furthering development, though in smaller steps. For academia, broadening the focus of
research to that undergrowth may create valuable knowledge supporting the economic
growth that takes place outside the big but few innovation cases.

From the practitioner’s point of view, the study identified a set of idea validation
practices that were deployed in real-life startups. The results highlight the complexity
of the idea validation process, the importance for a startup to realistically recognize and
acknowledge the competency weaknesses, and the importance of seeking ways to
compensate for those weaknesses.

Though it is not reasonable to set any specific priority order onto the practices we
identified, some general guidelines can be given. Close customer cooperation is rec-
ommended in cases where the potential customers are easily accessible and willing to
cooperate. Close customer cooperation combined with active prototyping covers both
the business-related and engineering-related issues of product development.

The value of following the recommendations of lean startup [5] was identified in
our study, as well. A well-fitting MVP opened the business case of company G to a big
institutional customer that otherwise might have been difficult to reach. Timely piv-
oting might have helped company A get back on track from the dead-end of its original
product idea.

Our mapping of the identified idea validation practices onto the requirement
gathering [12] highlights for practitioners the importance of conducting validation
practices in an appropriate way, though no generic process covering the practices was
defined.

6 Conclusions and Future Research

In this paper, we explored empirically the practices deployed in idea validation in
software startups. We used a multiple case study method with nine software startups.
To collect the data, we used semi-structured face-to-face interviews. During the data
analyses, we found ten practices that affect the idea validation process. Of the ten
practices, the most frequently utilized ones were copying existing products, cooper-
ating closely with customers, utilizing expert support, and prototyping.

The results indicate that the case companies utilized the practices in varying,
context-dependent ways. No uniform and systematic process from idea to product was
identified. The results also indicate that the previous competencies and experiences of
the founder affect the utilization of different practices. From those perspectives, our
empirical study was in line with the prior literature, confirming our findings.

A finding of our study is that the founder’s prior knowledge, skills, and compe-
tencies in software development and application area tend to make the process of

How Are Product Ideas Validated? 15

moving from an idea to a product more linear and straightforward. In the opposite case,
a key learning is the need to use all possible ways to fill the knowledge and competency
gaps.

The research was based on several startup companies located in various regions
across Europe. The results from this study need to be further empirically verified across
other regions and a bigger sample of startups in order to validate the generalizability of
our results. Other interesting future work would be to examine in more detail how the
idea validation process continues to systematic requirement engineering.

Acknowledgements. This study was partly funded by TEKES as a part of the HILLA program.
We thank the members of Software Startups Global Research Network, which supported this
study, especially Anh Nguyen Duc and Pekka Abrahamsson, for their help in gathering the
empirical data.

References

1. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.:
Software development in startup companies: a systematic mapping study. Inf. Softw.
Technol. 56, 1200–1218 (2014)

2. Blank, S.A.: The four steps to the epiphany: Successful Strategies for Products that Win
CafePress. com, (2005)

3. Giardino, C., Unterkalmsteiner, M., Paternoster, N., Gorschek, T., Abrahamsson, P.: What
do we know about software development in startups? IEEE Softw. 31, 28–32 (2014)

4. Giardino, C., Wang, X., Abrahamsson, P.: Why early-stage software startups fail: a
behavioral framework. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014. LNBIP, vol.
182, pp. 27–41. Springer, Cham (2014). doi:10.1007/978-3-319-08738-2_3

5. Ries, E.: The lean startup: How today’s entrepreneurs use continuous innovation to create
radically successful businesses. Random House LLC (2011)

6. Steinert, M., Leifer, L.J.: “Finding One”s Way’: Re-Discovering a Hunter-Gatherer Model
based on Wayfaring. Int. J. Eng. Educ. 28, 251 (2012)

7. Bosch, J., Holmström Olsson, H., Björk, J., Ljungblad, J.: The early stage software startup
development model: a framework for operationalizing lean principles in software startups.
In: Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol, K.-J. (eds.) LESS
2013. LNBIP, vol. 167, pp. 1–15. Springer, Heidelberg (2013). doi:10.1007/978-3-642-
44930-7_1

8. Coleman, G., O’Connor, R.V.: An investigation into software development process
formation in software start-ups. J. Enterp. Inf. Manag. 21, 633–648 (2008)

9. Crowne, M.: Why software product startups fail and what to do about it. Evolution of
software product development in startup companies. In: IEEE International Engineering
Management Conference, vol. 1, pp. 338–343 (2002)

10. Björk, J., Ljungblad, J., Bosch, J.: Lean Product development in early stage startups. In:
IW-LCSP@ ICSOB. pp. 19–32 (2013)

11. Marmer, M., Herrmann, B.L., Dogrultan, E., Berman, R., Eesley, C., Blank, S.: The startup
ecosystem report 2012. Technical report, Startup Genome (2012)

12. Lauesen, S.: Software Requirements: Styles and Techniques. Pearson Education, Upper
Saddle River (2002)

16 P. Seppänen et al.

http://dx.doi.org/10.1007/978-3-319-08738-2_3
http://dx.doi.org/10.1007/978-3-642-44930-7_1
http://dx.doi.org/10.1007/978-3-642-44930-7_1

13. Seppänen, P., Oivo, M., Liukkunen, K.: The initial team of a software startup, Narrow-
shouldered innovation and broad-shouldered implementation. In: To be published in 22nd
ICE/IEEE International Technology Management Conference (2016)

14. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empir. Softw. Eng. 14, 131–164 (2009)

15. Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software engineering.
In: 2011 International Symposium on Empirical Software Engineering and Measurement
(ESEM), pp. 275–284. IEEE (2011)

16. Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.:
Software development in startup companies: the greenfield startup model. IEEE Trans.
Softw. Eng. 42, 585–604 (2016)

17. Wang, X., Edison, H., Bajwa, S.S., Giardino, C., Abrahamsson, P.: Key challenges in
software startups across life cycle stages. In: Sharp, H., Hall, T. (eds.) XP 2016. LNBIP, vol.
251, pp. 169–182. Springer, Cham (2016). doi:10.1007/978-3-319-33515-5_14

18. Klotins, E., Unterkalmsteiner, M., Gorschek, T.: Software engineering knowledge areas in
startup companies: a mapping study. In: Fernandes, João M., Machado, Ricardo J., Wnuk, K.
(eds.) ICSOB 2015. LNBIP, vol. 210, pp. 245–257. Springer, Cham (2015). doi:10.1007/
978-3-319-19593-3_22

19. Selecting empirical methods for software engineering research. In: Shull F., Singer J.,
Sjøberg D.I.K. (eds.) Guide to Advanced Empirical Software Engineering, pp. 285–311.
Springer, London (2008)

20. Marshall, M.N.: The key informant technique. Fam. Pract. 13, 92–97 (1996)
21. Lethbridge, T.C., Sim, S.E., Singer, J.: Studying software engineers: data collection

techniques for software field studies. Empir. Softw. Eng. 10, 311–341 (2005)

How Are Product Ideas Validated? 17

http://dx.doi.org/10.1007/978-3-319-33515-5_14
http://dx.doi.org/10.1007/978-3-319-19593-3_22
http://dx.doi.org/10.1007/978-3-319-19593-3_22

Acquisitions and Growth of Software Startups:
The Dual Role of Venture Capital

as a Success Factor

Marcus Wagner(&)

Augsburg University, Universitätsstr. 16, 86159 Augsburg, Germany
marcus.wagner@wiwi.uni-augsburg.de

Abstract. Innovation activities provide considerable challenges to small firms
due to resource constraints. Conversely, large, established firms are often forced
to buy technologies to remain innovative. This paper investigates the interplay
of these two aspects in a specific software-based startup context. Based on
structured interviews, the paper analyses what characteristics of startups and
small firms and resources accessed through networking determine acquisition
likelihoods and growth. This addresses a gap in the literature, namely under-
standing better the dual role of venture capital, specifically with regard to the
type of innovation pursued by small firms and in its interplay with other
determinants of growth and acquisition.

1 Introduction

Networking and other forms of co-operation have been suggested as key strategies of
small firms and startups to acquire and leverage resources in order to circumvent
liabilities of newness and smallness [1]. Specifically this concerns financial resource
access in technology-intensive industries through networking to support startup
growth. Importantly, resource endowments either generated within or sourced from
outside a startup or small firm, such as financial means or innovations realised,
potentially relate to both growth and acquisition chances. While studies have analysed
separately determinants of growth [2] and acquisition chances [3], a joint analysis is
more appropriate since becoming an attractive target may require different managerial
actions than for realising a startup’s growth potential, yet ex-ante growth and acqui-
sition are equal outcomes [4]. At the same time, technology acquisitions become ever
more important for large established firms in the semiconductor industry and other
high-technology sectors, and are also increasingly easy due to novel markets for
technology and technology brokers [5], which makes an integrated analysis of growth
and acquisition potential even more relevant. Related to this, in the semiconductor
industry levels of research and development (R&D) input are strongly affected by the
highly cyclical nature of the industry, whose most severe downturn was 2000–2001.
R&D expenditure has significantly dropped since then and not recovered up to the time
of this empirical study. Furthermore, semiconductor firms’ propensity to patent con-
siderably increased in the USA in the 1980s, especially after the formation of a cen-
tralized appellate court in 1982 as a means of strengthening patent rights [6].

© Springer International Publishing AG 2017
A. Ojala et al. (Eds.): ICSOB 2017, LNBIP 304, pp. 18–31, 2017.
https://doi.org/10.1007/978-3-319-69191-6_2

Both trends, together with rapid technological change and the cumulative nature of
innovation in the industry, make external technology sourcing through the acquisition
of startups and small firms a frequent event, especially as concerns radical innovation
[7]. Therefore, as will be detailed later, the electronic design automation (EDA) seg-
ment of the semiconductor industry (which focuses on chip design tools) offers an
empirical context particularly suited to analysis of the joint determinants of growth of
an acquisition, and to address the core research question: To what degree are the
determinants for realising an entrant’s growth potential the same as those that increase
acquisition likelihood? Such joint analysis is a gap in the extant literature, and this
paper contributes new empirical insights that extend the body of knowledge on this
issue and sub-questions derived from it. The remainder of the paper is structured as
follows: In the remainder of this section different theoretical perspectives on innovation
in the electronic design automation industry are introduced and more detailed research
questions are derived. Following this in the second section, the data and methodology
used for the empirical analysis are described, and findings with regard to the activities
that small firms or startups should pursue to increase their chances of becoming
acquisition targets (such as the type of innovation to pursue) and interaction between
this and growth determinants in the electronic design automation industry are reported.
The final section draws conclusions with regard to the research questions, and outlines
limitations of the empirical analysis and identifies future research needs. Overall, this
paper in pursuing this sequence also contributes to the understanding of founders,
investors and policy makers with regard to the financing of startups and its interaction
with startup growth. As part of this it clarifies the role of finance-related networks for
software startups based on a statistical analysis of a novel and detailed dataset of
software startups.

1.1 Review of Extant Literature

This section derives research questions building on various theoretical perspectives
such as the management, social networks, and economics literatures. The management
literature develops important concepts, such as the distinction between radical and
incremental innovation that have particular relevance in high-technology industries
such as EDA. It also suggests that large established firms in particular may not be able
or willing to carry out specific types of innovation, for example due to obstacles to an
innovation from it not being invented by the firm itself, or challenges from lacking
absorptive capacity [8, 9]. The social networks literature is relevant especially to how
small firms and startups gain access to important resources such as capital [10]. Fur-
thermore, it has been argued that partnering, intensive research collaboration and
innovation networks may be needed to bring about radical innovation in the EDA
industry [11].

Other relevant streams of scholarly work, especially as concerns acquisitions, are
institutional and transaction cost approaches. These economic theories have proposed a
number of reasons for acquisitions [12, 13]. Various studies have tested their empirical
validity [14], and have explored links to the management literature on obstacles to
innovation since, although acquisitions may be a very appropriate means for innova-
tion, they are revealed in studies to be obstacles to innovation, especially in larger

Acquisitions and Growth of Software Startups 19

firms. Finally, both the management and economics literatures have extensively
addressed the theme of firm growth [15]. The following paragraphs link theorising on
networks and alliancing with theories of acquisition and growth to derive more detailed
questions about the potentially joint determinants of the growth and acquisition.

A core aspect of note in the context of networks and alliancing is that they provide
innovative startups and small firms with relevant competencies that they are lacking in
[16, 17]. Specifically, small firms may sometimes not be capable of achieving growth
by themselves, perhaps due to the limitations of newness and smallness which they
often face [18], and therefore again would depend on networked activity. This par-
ticularly concerns the external sourcing of financial means to support expansion, which
has been identified as the most frequent and most important activity in new ventures
[19]. Venture capitalists use their own portfolio firms to help set up strategic alliances,
especially in the case of early stage firms in their portfolios, which is likely to mitigate
the weaknesses of newness and smallness significantly [20].

This result is regardless of the industries a venture capitalist specializes in and also
links to the role of venture capital (VC) as a resource to be invested in R&D and
patenting as a means to create intellectual property (IP) resources (since patent appli-
cations are enabled through financial resources). IP resources are in turn crucial to
create competitive advantages and complementary assets that enable startups and
smaller firms to establish themselves in product markets in the longer term [21].
Furthermore, the role of patents is highlighted as a means to create strong appropriation
regimes that make it more difficult for incumbents to acquire entrants and foster alli-
ances and more extensive innovation networks [22]. In relation to this, it is shown that
startups and small firms with strong alliancing and networking activities experience
higher growth rates [23]. On the other hand, other scholars find that acquired firms have
larger stocks of accumulated knowledge (measured through patents) which suggests
that a strong patent base can jointly influence growth and acquisition chances [3].

Finally, the commercialisation strategies of 118 startup projects were analysed with
a focus on the choice between product market growth and acquisition [4]. Focusing on
the high-technology sectors biotechnology, computer software, industrial machinery
and equipment, electronic equipment and scientific instruments and using binary and
multivariate probit models they find that patenting is insignificantly and VC engage-
ment positively related to acquisition. In summary, alliancing and networking poten-
tially determine both the growth and acquisition chances of startups and small firms and
therefore need to be considered as one important determinant. Many reasons are
suggested for technology acquisitions. From a transaction cost and institutional eco-
nomic perspective, one of the main reasons for technology acquisition is that an
innovation is organisationally radical because such innovation requires intensive
learning and intellectual deliberation within an established firm [9, 24].

Other reasons for the incapacity of a large, established firm to carry out specific
innovations are certain ideological views or conservative attitudes, a special case of
which is the so-called “not-invented-here syndrome” [25–28]. Related to such failures
of realising innovation are issues of communication channels and information filters
that can aggravate a lack of absorptive capacity or resistance to innovation, or can
hinder the development of internal and external networks that enable exploiting ben-
efits from external innovation [24]. While such factors, attitudes or views may be

20 M. Wagner

subjective from an external point of view, they can therefore objectively deter inno-
vation, especially within large established firms. In these instances, acquisition is a
means of sourcing innovation externally to make up for lost time, yet absorptive
capacity may be lacking either because new skills are required from larger firms (which
essentially represents a problem of lacking human capital or capabilities) or because
radically different organisational structures for R&D are required [29]. This is espe-
cially important since it may imply that large firms tend to favor incremental over
radical innovations.

It could be claimed that startups in the EDA industry have largely realised incre-
mental innovations [11], which refers back to an argument made before in this section,
namely that innovation networks are needed for radical innovation [30]. Larger firms,
in acquiring a surviving or even fast-growing small firm, gain information that has been
translated into appropriate strategies without having to address the various challenges
that come with other forms of external technology sourcing, such as long-term strategic
investments in alliances [31]. Linking this with other works on the emergence of
dominant designs and the subsequent focus on process innovation in an industry one
can also conclude that smaller firms are particularly likely to emerge in areas where the
dominant design has not yet been established [32].

Finally, other scholars model the behaviour of small firms as stochastically drawing
information on the market. Based on this information, they adjust their behaviour and
strategies [33]. Those firms capable of learning based on new information are able to
grow faster whilst those less capable have more difficulty surviving in the market and
are more likely to be acquired by larger firms. However, this learning process unfolding
over time can also explain why smaller firms that have managed to survive for some
time in the market are acquired, as opposed to very young ones. Also because of the
decreasing marginal effect of learning and information gains over time, the likelihood
of being acquired decreases after some point, so that very old firms are less likely to be
acquired (compared to exiting the market or concentrating on a niche with lower
growth levels). The interaction of growth and acquisition determinants could basically
be complementary or substitutive. For example, VC can provide additional resources to
accelerate and enhance growth, but it could equally create a situation where investors
push for a trade sale.

Similarly, the managerial and economic writings on industry life cycles suggest that
growth initially decreases when firms become older [34]. On the other hand, after a
shakeout has occurred in an industry, firm growth is likely to increase again due to the
resulting oligopolistic market structures [35]. This suggests an inversely U-shaped
relationship of firm age and growth. On the other hand, given the heterogeneity of
startups and small (and younger) firms, less successful firms tend to grow more slowly
and thus are more likely to become acquisition targets [36]. This suggests that firm age
as a determinant could have opposing or similar association with growth and acqui-
sition chances. Furthermore, it can be seen that firms make a strategic choice very early
between a growth strategy focusing on recruitment and organisational development and
a strategy aimed at building a patent portfolio [19].

One important aspect here is precisely how firm growth is measured. Whilst growth
measures have been argued to be superior to profitability and similar performance
measures [37], identifying which exact specification is the best growth measure is not

Acquisitions and Growth of Software Startups 21

intuitive, but the concurrent validity between relative and absolute measures, as well as
between a 1-year and a 3-year time span, is relatively high, especially for employee
growth. Despite the various linkages outlined here, a joint analysis of determinants for
firm growth and acquisition is rare in the extant literature [38] and if only considers
ex-ante acquisition chances in the context of university startups, but not ex-post actual
acquisition likelihoods and their interaction with growth [39]. Another study coming
close to this aim, analyses the innovation and growth effects of alliances in the
semiconductor industry, but does not consider acquisition [40]. This study extends its
analysis by considering acquisitions and actual acquisition likelihoods.

1.2 Development of Research Questions

The above considerations show that for incumbents acquisition can be another efficient
means for firms to carry out innovation through acquiring successful startups or smaller
firms in the industry, but that this may be at odds with small firms realising their growth
potential. This raises the question of whether startups with particular characteristics,
such as highly innovative ones, or those with VC support are more likely to be
acquired.

On the other hand, given the argument that small EDA startups frequently come to
a point where they do not realise their growth potential [11], for example due to lack of
complementary assets or resource access, it matters if the determinants of acquisition
chances are similar to or different from those determining firm growth. Based on
insights derived from the extant literature, the following further research questions
relating to whether there is an interaction between the determinants for firm growth and
acquisition, and to what degree this is conflicting or complementary, shall be answered
in the paper:

1. What association does firm age have with acquisition and firm growth?
2. Is organisational radicality of an entrant’s innovation positively associated with

acquisition and firm growth?
3. Is venture capitalist engagement positively associated with acquisition and growth?

2 Methodology

Next to the general technology and innovation-related reasons mentioned in the
introduction, the EDA industry has additional features that make it a particularly
suitable segment of the semiconductor sector for joint analysis of the determinants of
acquisition and growth. Firstly, this is a very clearly defined market structure, and a
number of small firms are active in the industry who are frequently acquired by larger
incumbents. Furthermore, it covers a number of complex processes from chip design
through to testing which enables a large variety of combinations of technological,
organisational and economic radicality in innovations. In summary, EDA is therefore a
very suitable industry for analysing the interaction of acquisition and growth. To gather
data in this industry in order to address the above research questions, a key informant
design was used, with the survey directed to either the founder or small firm owner or a

22 M. Wagner

general manager. This seemed appropriate given the success of this approach in similar
settings [39, 41].

Therefore, structured interviews with key informants were used to gather primary
data on innovation activities in the EDA. The aim of the interviews was to gather
high-quality data on acquisitions chances and growth, and the characteristics of firms
and their activities. Since personal interviews allow ongoing interaction, it is always
possible to correct misunderstandings immediately and to ensure consistent ordinal
ratings through immediate requests. A similar approach has more recently also been
used in the context of telephone interviews with large firms which suggests its
increasing relevance [42]. Of course a strong focus on data quality may reduce data
quantity and can potentially make the resulting data set less representative.

This research incorporates several steps to reduce that risk. Firstly, 70 smaller and
younger EDA firms were identified from the exhibitor list of the Design and Test
Equipment (DATE) 2006 conference which took place 6-10 March 2006 in Munich.
The selection formed the complete set of startups and small firms present at the con-
ference. Given that DATE is known as the world’s premier electronic design event
[43], this initial population of firms is likely to be representative of startups and small
firms in the EDA industry in general. The firms forming this population were
approached for a structured interview during the conference. Of these, 32 provided
information, resulting in a 42% response rate which is deemed acceptable to draw
conclusions that are representative of the population, given the necessity to use
face-to-face interviewing to survey the firms.

Finally, even though the number of observations is limited, given the high data
quality resulting from the intensive data collection process, it is considered sufficient to
enable quantitative analysis and generalizability across the software sector [44]. For
example, another paper uses six explanatory variables with 28 observations, which is
well below the ratio of observations to variables of this study [9].

Additionally, and in order to further ascertain the representativeness of the response
sample, variables in our response sample were compared as far as possible with data
from a sample of acquired firms in the EDA industry (n = 68) until end of 2005. Based
on t-tests, for patenting (p = 0.67), firm age (p = 0.81) and VC investment (p = 0.30)
no significant differences were found between these two samples. Given the two sets of
firms are mutually exclusive, the analysis sample is considered sufficiently represen-
tative for the true population of all start-ups and small firms in the EDA industry that
can potentially be acquired to safely continue with addressing the above research
questions and deriving answers that are generalisable (Lee, and Baskerville 2003).

As concerns the dependent variables of the analysis, first, acquisition was measured
as a binary variable taking the value of 1 if a firm in the sample was acquired until the
end of the first quarter of 2013 (i.e. within the full seven years after the original survey)
and 0 if not. Because measurement of actual acquisition was independent from the
initial survey common method bias and endogeneity issues are minimised. Second,
employee growth has been suggested as being superior to other measures of firm
performance such as accounting profits [37], which is why this analysis utilises this
measure.

In the following context, 3-year relative employee growth is used [45], since these
were the most frequent measures and had higher concurrent validity than 1-year and

Acquisitions and Growth of Software Startups 23

5-year periods [46]. Also growth as the second dependent variable is measured inde-
pendent of the survey to avoid common method and endogeneity problems. For the
multivariate analysis of the above research questions, a number of explanatory vari-
ables were derived from the literature to arrive at a parsimonious model by incorpo-
rating all those explanatory variables that have been proven significant for the
dependent variables in question [39, 41]. These include the logarithm of the number of
citation-weighted patents held by the respondents, whether a startup originated out of a
university research context and a binary variable of whether or not the
technology-oriented startups or small firms perceived their innovation to be organi-
sationally radical. A significant positive correlation between the number of patents and
a product innovation index can be shown, which suggests that information about
patenting is a relatively robust indicator with high content and discriminant validity for
technological radicality [47]. Whilst recent methodological research has shown that an
adequate sample size required for a factor analysis crucially depends on the quality of
the data (in turn rendering general rules of thumb for minimum sample sizes largely
invalid), we make use of an exploratory factor analysis on different items (identified in
the extant literature reviewed above) for the reasons why larger firms did not carry out
an innovation carried out by our respondents [48–51]. From it, the second factor
relating to ‘low risk-taking/day-to-day’ business is included as a control variable of
differences across firms and respondents as concerns perceptions.

Additional variables in the multivariate regression are the age of the firm and its
squared term, and whether or not a responding firm received VC investment prior to the
interview. In the comparison sample of acquired EDA firms we used above to evaluate
the representativeness of our analysis sample, the number of investors (r = 0.58,
p < 0.01) and the diversity of different investor types (r = 0.63, p < 0.01) are both
significantly associated with a binary variable of VC investments, which suggests that
the latter can proxy well in our analysis for the network and alliancing effects identified
in the literature review. To address the research questions (1) to (3), for the determi-
nants of acquisition likelihood a binary logit and for firm growth an ordinary least
squares (OLS) regression model is used. The former is the appropriate statistical model
in the case of a binary dependent variable (which implies a non-normal distribution and
thus non-applicability of the OLS model). Growth is a continuous dependent variable,
for which OLS is the appropriate statistical model. Using growth (i.e. a change) in the
context of the OLS estimation increases statistical power because it removes common
source variation and so, similar to fixed firm effects, controls for at least some of the
heterogeneity across firms can be addressed, which goes some way to mitigating the
weaknesses of survey data in this respect [52]. Logit coefficients are reported as
marginal effects. Concerning the demographics and descriptive statistics, the average
age of a firm in the sample is 8.27 years (standard deviation: 6.26). Of the firms, 47%
received VC investment and 27% were started out of academia. 53% of the small firms
and startups interviewed stated that their innovation was organizationally radical.
Finally, the logarithm of citation-weighted patents is on average 0.79 (standard devi-
ation: 1.53). Given the Low risk/day-to-day value is a factor-score based on a principal
component analysis, it is z-standardised with a zero mean and its standard deviation
assuming unity. Table 1 provides the correlations in the data, suggesting that
multi-collinearity is not a problem.

24 M. Wagner

3 Results

Table 2 provides the results for the acquisition likelihood. As can be seen, in all models
only VC engagement has a significant positive effect on this variable.

As concerns determinants of employee growth, give the focus of the analysis is if
drivers of acquisitions also affect growth, the same determinants are used in the OLS
regression models for employee growth as the dependent variable reported in Table 3.

As can be seen in Table 3, for employee growth again only VC investment has a
significant positive association in both model specifications. As a sensitivity test
confirming the robustness of the findings these did not change in terms of significance
and direction in variants of the model that only account for the long-term determinants
of acquisition likelihood identified in prior research [39, 41], that is when omitting the
low risk/day-to-day factor and the university startup dummy. All models also control
for heteroscedasticity, which is the case when the error terms in the regression model

Table 1. Correlation of independent and dependent variables

Variables 1 2 3 4 5 6 7

1 Acquired (yes/no)
2 Employee growth 0.23
3 Age of the firm 0.16 0.07
4 Log. of cit.-weight. patents −0.09 −0.23 0.19
5 Organisational radicality −0.23 0.05 −0.17 −0.36**
6 Venture capital (yes/no) 0.52** 0.43** 0.14 −0.04 −0.12
7 Low risk/day-to-day 0.04 −0.02 0.13 0.14 −0.001 −0.15
8 Academic startup (yes/no) 0.22 0.18 −0.03 −0.14 −0.11 0.11 0.34*

Notes: significance * p < 0.10; ** p < 0.05; *** p < 0.01; robust standard errors; n = 31

Table 2. Analysis of determinants for acquisition (yes/no)

Variables Model 1 Model 2

Age 0.003 (0.011) 0.091 (0.086)
Age squared – −0.002 (0.002)
Logarithm of citation-weight. patents −0.042 (0.052) −0.054 (0.052)
Organisational radicality (yes ! no) −0.203 (0.218) −0.168 (0.196)
Low risk/day-to-day 0.050 (0.096) 0.061 (0.098)
Venture capital (no ! yes) 0.473*** (0.172) 0.476*** (0.166)
Academic startup (no ! yes) 0.092 (0.199) 0.098 (0.178)
Pseudo-R2 0.32 0.36
Wald Chi2 11.38* 10.52*

Notes: significance * p < 0.10; ** p < 0.05; *** p < 0.01; robust standard
errors, n = 31

Acquisitions and Growth of Software Startups 25

are not uncorrelated and uniform. This ensures for example that the OLS estimation
yields efficient estimates even if error terms are correlated or do not have constant
variance.

4 Conclusions and Discussion

The research in this paper addresses whether the trend towards the networked firm
hinders startups and small firms from realising their growth potential. More specifically
it analyses the degree of overlap between the determinants for acquisition and growth.
Such a joint analysis has so far not been carried out in the literature and is possible here
because of a personal interview approach that enables the recording of detailed
acquisition and other information alongside growth data. The paper combines the
theoretical lenses of institutional and transaction cost economics, social network theory,
and competence- and resource-based perspectives in economics and management to
address the above issue in an integrated manner. As concerns more specifically the first
research question derived from the comprehensive and systematic review of different
literatures relating to growth, alliancing and acquisitions, the results of the empirical
analysis suggest that firm age has no significant association with acquisition likelihood
and with firm growth. This suggests a substitutive relationship of this determinant for
growth and acquisition. In response to the second research question on whether
organisational radicality of an entrant’s innovation is positively associated with
acquisition and firm growth we find that for both, acquisitions and growth, organisa-
tional radicality has no significant effect, which suggests independence for this deter-
minant with regard to growth and acquisition. The extent of patenting as indicator for
the technological radicality of an entrant’s innovation is also not associated with
acquisition likelihood, nor with employee growth. This suggests again an independence
of growth and acquisition with regard to this determinant. Finally, as concerns our third
research question how VC engagement associates with acquisition and growth we find
that VC engagement as an important direct and indirect measure of the extent of

Table 3. Analysis of determinants for employee growth

Variables Model 1 Model 2

Age 0.038 (0.143) −1.131 (0.953)
Age squared – 0.034 (0.026)
Logarithm of citation-weight. patents −0.708 (0.531) −0.437 (0.645)
Organisational radicality (yes ! no) 0.562 (2.104) 0.013 (2.013)
Low risk/day-to-day 0.136 (1.128) 0.032 (1.183)
Venture capital (no ! yes) 4.260* (2.182) 4.230* (2.270)
Academic startup (no ! yes) 1.226 (2.483) 1.075 (2.470)
Adjusted R2 0.25 0.30
F value 2.30* 5.20***

Notes: significance * p < 0.10; ** p < 0.05; *** p < 0.01; robust standard
errors, n = 31

26 M. Wagner

networking and alliancing (given its positive association with strategic alliances and its
strong association with investor diversity and numbers), is positively associated with
acquisition likelihood and employee growth in all specifications. This suggests strong
complementarity for acquisition and employee growth for this determinant. In sum-
mary, the results suggest that the significant determinants of firm growth are identical to
those that determine acquisitions. There are some that are potentially different, i.e.
those determinants that are most relevant for acquisitions are of lesser relevance for
growth. On the other hand VC engagement is positively associated with both growth
and acquisition likelihood, in turn suggesting that external financial resources accessed
through networking are generally important (directly and indirectly). The effect of VC
engagement on employee growth is consistent with the finding that VC engagement
early on leads entrants to a strategic choice that pushes recruitment growth [19]. If
entrants are not supported by VCs, then financial resources are more limited, enabling
only lower levels of recruitment. However, whilst venture capitalists initially support
startups to help them realising their full growth potential, they later may reverse their
preferences and push for an acquisition of by an incumbent in order to exit their
engagement, especially when market or IPO conditions are adverse [4]. These key
results seem generalisable to software-based industries at large, given that acquisitions
enable a division of innovative labour leading to an overall more efficient institutional
arrangement that also can be understood as a form of networked innovation. As con-
cerns further generalizability, our findings also might apply more broadly if the con-
ditions in another industry resemble those of software: a cumulative product that may
impede the growth of young and small firms on their own and involvement of venture
capital making trade sales and thus acquisition more necessary. Consistent with this,
Table 4 indicates, based on the structured interviews of start-ups, that entrants them-
selves only rarely consider it to be possible to develop a larger market share on their
own. This is consequently also important input for technology and industrial policies,
especially as concerns technology entrepreneurship.

Next to identifying important determinants of firm growth and acquisitions, the
analysis also finds some support for the concerns raised by other scholars [30], about
levels of radical innovation being too low, and therefore points to the need to consider
networking and co-operation as means for this latter type of innovation. Overall, the
analysis presented here contributes to the literature by focusing on an element of
networking which is crucial in the early stages of new ventures (namely the interaction
with VCs) analysed simultaneously with other relevant determinants identified in the

Table 4. Fate of small firms not acquired

Variable Frequency % of firms % responses % choices

Go out of business 17 54.8 53.1 50.0
Go into market niche 16 51.6 50.0 97.1
Merge with other small firm 1 3.2 3.1 100.0

Notes: ‘% of firms’ and ‘% responses’ sums are greater 100% since two or more
choices were possible; ‘% choices’ based on the cumulative sum of ‘Frequency’

Acquisitions and Growth of Software Startups 27

context of established theories such as the profiting-from-innovation framework [21]. It
jointly addresses acquisition likelihoods and growth by means of an innovative
research design and using several variables and model specifications to check the
robustness of results in sensitivity analyses, especially as concerns technological rad-
icality (going beyond binary patent thresholds), organisational factors, and firm size.
Most importantly, it finds that venture capital matters for both, growth and acquisition,
but with different motivations and hence differing support by venture capitalists for
each strategy over time.

As concerns more provides guidance for entrepreneurs on how becoming an
attractive target by suggesting this requires different managerial actions than realising a
start-up’s growth potential. This is due to the “fast second” strategy proposed in the
management literature for incumbents, in which start-up acquisitions help them to
mitigate innovation weaknesses. Managers of young and small firms should thus be
considering their specific conditions to make the right choices. For practitioners, the
paper thus contributes the important insight that as a resource accessed through net-
working venture capital determines both acquisition likelihood and growth. However,
the motivation of venture capitalists for these latter two is not stable and hence over
time their support for growth and their incentives for exiting through a trade sale shift,
which, as the paper explains, needs to be accounted for by managers.

As an extension, in a next step a more detailed target perspective could be inte-
grated in the frame of analysis [53], in order to better understand, when other net-
working factors are more relevant and when venture capitalist preferences change from
growth motivations to supporting trade sales and hence acquisition. Furthermore, the
analysis could address in more detail aspects of ecosystem evolution, as they have been
discussed in the context of secondary software businesses [54] and of vertical industry
structure, for example in the telecommunications sector [55].

Appendix: Interview Questions Used in the Analysis

Questions used in the structured interviews for calculation of the Low risk/day-to-day
factor variable:

Large firms are so involved with the day-to-day requirements of their customers
that they do not have resources for the innovation.

Large firms that lead the market are too risk-averse do carry out the innovation.
Question used in the structured interviews for calculation of the age of the firm:
When was your firm founded?
Question used in the structured interviews for identifying the fate of non-acquired

companies:
What happens to start-ups that are not acquired after some years? Do these mostly

go out of business and leave the market? Or do most of unacquired firms exist in small
but lucrative market niches or merge with another small firm?

Question used in the interviews for identifying organisationally radical
innovations:

28 M. Wagner

Would you agree that compared to the competences of the top 3 firms in the
industry) innovating your product requires new capabilities or skills of researchers (e.g.
only recently taught at universities) or a different structure of R&D in a firm?

References

1. Freeman, J., Carroll, G.R., Hannan, M.T.: The liability of newness: age dependence in
organizational death rates. Am. Sociol. Rev. 48, 692–710 (1983)

2. Davidsson, P., Kirchhoff, B., Hatemi, J.A., Gustavsson, H.: Empirical analysis of business
growth factors using Swedish data. J. Small Bus. Manage. 40(4), 332–350 (2002)

3. Desyllas, P., Hughes, A.: The revealed preferences of high technology acquirers: an analysis
of the characteristics of their targets. Cambridge J. Econom. 33(6), 1089–1111 (2009)

4. Gans, J.S., Hsu, D.H., Stern, S.: When does startup innovation spur the gale of creative
destruction? RAND J. Econom. 33(4), 571–586 (2000)

5. Gambardella, A., Torrisi, S.: Does technological convergence imply convergence in
markets? Evidence from the electronics industry. Res. Policy 27, 445–463 (1998)

6. Hall, B., Ziedonis, R.: The patent paradox revisited: an empirical study of patenting in the
U.S. Semiconductor Industry 1979–1995. RAND J. Econom. 32(1), 101–128 (2001)

7. Linden, G., Somaya, D.: System-on-a-chip integration in the Semiconductor Industry:
industry structure and firm strategies. Corp. Ind. Change 12(2), 545–576 (2003)

8. Chakrabarti, A.K., Rubenstein, A.H.: Interorganizational transfer of technology – a study of
adoption of NASA innovations. IEEE Trans. Eng. Manag. 23(1), 20–34 (1976)

9. Henderson, R.: Underinvestment and incompetence as responses to radical innovation:
Evidence from the photolithographic alignment equipment industry. RAND J. Econom.
24(2), 248–270 (1993)

10. Birkinshaw, J., Van Basten Batenburg, R., Murray, G.: Venturing to succeed. Bus. Strat.
Review 13(4), 1–17 (2002)

11. Sangiovanni-Vincentelli, A.: The tides of EDA. IEEE Des. Test Comput. 29(6), 5–74 (2003)
12. Grover, V., Purvis, R.L., Segars, A.H.: Exploring ambidextrous innovation tendencies in the

adoption of telecommunications technologies. IEEE Trans. Eng. Manag. 54(2), 268–285
(2007)

13. Morris, D.J., Hay, D.A.: Industrial Economics & Organisation – Theory & Evidence. Oxford
University Press, Oxford (1991)

14. Bruno, A.V., Cooper, A.C.: Patterns of development and acquisitions for Silicon Valley
Startups. Technovation 1(4), 275–290 (1982)

15. Penrose, E.: The Theory of the Growth of the Firm. Oxford University Press, Oxford (1959)
16. Mowery, D.C., Oxley, J.E., Silverman, B.S.: Technological overlap and interfirm

cooperation: Implications for the resource-based view of the firm. Res. Policy 27, 507–
523 (1998)

17. Gulati, R.: Managing network resources. Oxford University Press, Oxford (2007)
18. Stinchcombe, A.L.: Organizations and social structure. In: March, J.G. (ed.) Handbook of

organizations, pp. 142–193. Rand-McNally, Chicago (1965)
19. Kaulio, M.A.: Initial conditions or process of development? Critical incidents in the early

stages of new ventures. R&D Manag. 33(2), 165–175 (2003)
20. Lindsey, L.: Blurring firm boundaries: the role of venture capital in strategic alliances.

J. Finan. 63(3), 1137–1168 (2008)
21. Teece, D.J.: Profiting from technological innovation: Implications for integration, collab-

oration, licensing and public policy. Res. Policy 15, 285–305 (1986)

Acquisitions and Growth of Software Startups 29

22. Pisano, G.: Profiting from innovation and the intellectual property revolution. Res. Policy 35,
1122–1130 (2006)

23. Powell, W., Koput, K., Smith-Doerr, L.: Interorganizational collaboration and the locus of
innovation: Networks of learning in biotechnology. Admin. Sci. Q. 41(1), 116–145 (1996)

24. Henderson, R., Clark, K.: Architectural Innovation: The reconfiguration of existing product
technologies and the failure of established firms. Admin. Sci. Q. 35, 9–30 (1990)

25. Jelinek, M., Markham, S.: Industry-university IP relations: Integrating perspectives and
policy solutions. IEEE Trans. Eng. Manag. 54(2), 257–267 (2007)

26. Santoro, M., Chakrabarti, A.: Corporate strategic objectives for establishing relationships
with university research centers. IEEE Trans. Eng. Manag. 48(2), 15–163 (2001)

27. Geisler, E., Furino, A., Kiersuk, T.J.: Toward a conceptual model of cooperative research:
Patterns of development and success in university-industry alliances. IEEE Trans. Eng.
Manag. 38(2), 136–145 (1991)

28. Katz, R., Allen, T.J.: Investigating the not invented here (NIH) syndrome: A look at the
performance, tenure, and communication patterns of 50 R&D Project groups. R&D Manag.
12(1), 7–19 (1982)

29. Cohen, W.M., Levinthal, D.A.: Absorptive capacity: a new perspective on learning and
innovation. Admin. Sci. Q. 35, 128–152 (1990)

30. Bingham, R.: In support of an EDATech: pooling resources for competitive advantage. IEEE
Des. Test Comput. 20(6), 74–75 (2003)

31. West, J., Gallagher, S.: Challenges of open innovation: the paradox of firm investment in
open-source software. R&D Manag. 36(3), 319–331 (2006)

32. Utterback, J.M.: Mastering the Dynamics of Innovation. Harvard Business School Press,
Boston (1994)

33. Jovanovic, B.: Selection and the evolution of industry. Econometrica 50, 649–670 (1982)
34. Klepper, S.: Entry, exit, growth and innovation over the product life cycle. Am. Econ. Rev.

86, 562–583 (1996)
35. Klepper, S.: Firm survival and the evolution of oligopoly. RAND J. Econom. 33(1), 3–61

(2002)
36. Jovanovic, B., MacDonald, G.M.: The life cycle of a competitive industry. J. Polit. Econ.

102(2), 322–347 (1994)
37. Helfat, C., Finkelstein, S., Mitchell, W., Peteraf, M., Singh, H., Teece, D., Winter, S.G.:

Dynamic Capabilities - Understanding Strategic Change in Organizations. Blackwell
Publishing, New York (2007)

38. Wiklund, J., Shepherd, D.: The effectiveness of alliances and acquisitions: the role of
resource combination activities. Entrepreneurship Theory Pract. 33(1), 193–212 (2009)

39. Wagner, M.: Growth of university-based startups and acquisition as an exit strategy in
academic entrepreneurship evidence from software-based ventures. Int. J. Entrepreneurship
Small Bus. 12(4), 39–412 (2011)

40. Stuart, T.: Interorganizational alliances and the performance of firms: a study of growth and
innovation rates in a high-technology industry. Strateg. Manag. J. 21, 791–811 (2000)

41. Wagner, M.: Acquisitions as a means of innovation sourcing by incumbents and growth of
technology-oriented ventures. Int. J. Tech. Manag. 52, 118–134 (2010)

42. Bloom, N., Kretschmer, T., Van Reenen, J.: Are family-friendly workplace practices a
valuable firm resource? Strateg. Manag. J. 32, 343–367 (2011)

43. Design Automation and Test Engineering (DATE) conference: DATE Press Preview. http://
www.date-conference.com/. Accessed 5 Mar 2006

44. Lee, A.S., Baskerville, R.L.: Generalizing generalizability in information systems research.
Inf. Syst. Res. 14(3), 221–243 (2003)

30 M. Wagner

http://www.date-conference.com/
http://www.date-conference.com/

45. Delmar, F., Davidsson, P., Gartner, W.: Arriving at the high growth firm. J. Bus. Ventur.
18(2), 189–216 (2003)

46. Shepherd, D., Wiklund, J.: Are we comparing Apples with Apples or Apples with Oranges?
Appropriateness of knowledge accumulation across growth studies. Entrepreneurship
Theory Pract. 33(1), 105–123 (2009)

47. Romijn, H., Albaladejo, M.: Determinants of innovation capability in small electronics and
software firms in southeast England. Res. Policy 31, 1053–1067 (2002)

48. MacCallum, R.C., Widaman, K.F., Zhang, S., Hong, S.: Sample size in factor analysis.
Psychol. Methods 4, 84–99 (1999)

49. MacCallum, R.C., Widaman, K.F., Preacher, K.J., Hong, S.: Sample size in factor analysis:
the role of model error. Multivar. Behav. Res. 36, 611–637 (2001)

50. Preacher, K., MacCallum, R.: Exploratory factor analysis in behavior genetics research:
Factor recovery with small sample sizes. Behav. Genet. 32, 153–161 (2002)

51. Costello, A.B., Osborne, J.W.: Best practices in exploratory factor analysis: four
recommendations for getting the most from your analysis. Pract. Assess. Res. Eval. 10(7)
(2005). http://pareonline.net/pdf/v10n7a.pdf

52. Allison, P.D.: Change scores as dependent variables in regression analysis. Sociol.
Methodol. 20, 93–114 (1990)

53. Henkel, J., Rønde, T., Wagner, M.: And the winner is – acquired entrepreneurship as a
contest yielding radical innovations. Res. Policy 44, 295–310 (2015)

54. Tyrväinen, P., Warsta, J., Seppänen, V.: Evolution of secondary software businesses:
understanding industry dynamics. In: León, G., Bernardos, A.M., Casar, J.R., Kautz, K., De
Gross, J.I. (eds.) TDIT 2008. ITIFIP, vol. 287, pp. 381–401. Springer, Boston (2008).
doi:10.1007/978-0-387-87503-3_22

55. Tyrväinen, P., Mazhelis, O. (eds.): Vertical Software Industry Evolution - Analysis of
Telecom Operator Software. Springer-Physica, Heidelberg (2009). doi:10.1007/978-3-7908-
2352-3

Acquisitions and Growth of Software Startups 31

http://pareonline.net/pdf/v10n7a.pdf
http://dx.doi.org/10.1007/978-0-387-87503-3_22
http://dx.doi.org/10.1007/978-3-7908-2352-3
http://dx.doi.org/10.1007/978-3-7908-2352-3

Governing Platforms in the Internet of Things

Maximilian Schreieck(&), Christoph Hakes, Manuel Wiesche,
and Helmut Krcmar

Chair for Information Systems, Technical University of Munich,
Garching, Germany

maximilian.schreieck@in.tum.de

Abstract. The ambivalent paradigm Internet of Things (IoT) is gaining
importance in today’s industries. To manage the various devices built on dif-
ferent technologies and to apply complex event-triggered business rules to the
data streams, platforms are necessary tools for almost all use cases. In the recent
years, hundreds of vendors entered the intransparent IoT platform market, from
small startups focusing on niches, to large enterprise vendors offering profes-
sional solutions. These platforms need tools to orchestrate the interactions
between the different sides involved, so-called platform governance mecha-
nisms. The purpose of this multiple case study analysis is to explore the platform
governance mechanisms applied in IoT platforms. To achieve this goal, we
explored the governance concepts of eight selected platforms in a multiple case
study analysis, resulting in a description of the important aspects and differences
regarding platform governance. Moreover, the four main trade-offs that platform
vendors must be aware of are subsequently discussed. In a last step, an evalu-
ation and discussion of the contribution to theory and practice is provided.

Keywords: Platform � Software ecosystems � Platform governance � Internet of
things � IoT platform � Openness � Control � Boundary resources

1 Introduction

In the uprising Internet of Things (IoT), the concept of platforms has received a
significant amount of attention in the recent years, leading to a large number of
solutions that emerged with the purpose: to interconnect smart objects. In 2015,
Amazon presented their “AWS IoT Platform” and IBM opened the new Watson IoT
headquarter in Munich. Analysts state that the market for IoT platforms will grow to
$1.6 billion by 2021 [1], underlining the economic importance of IoT. Beyond the
context of IoT, platforms have transformed the way products and services are being
consumed and managed to attract and lock-in large numbers of participants [2].
Today’s most influential businesses are those that bring together two or more groups of
entities in a platform ecosystem [3]. Governing the platform ecosystem, i.e. managing
the collaboration of the different actors, has emerged as a key challenge and has thus
been well discussed in recent literature on IT platforms [e.g. 4, 5].

Various studies compared platform governance mechanisms mainly in business-to-
consumer (B2C) markets, such as in the field of mobile applications [6, 7] or digital
payment [8, 9]. Nevertheless, there is no systematic research available regarding the

© Springer International Publishing AG 2017
A. Ojala et al. (Eds.): ICSOB 2017, LNBIP 304, pp. 32–46, 2017.
https://doi.org/10.1007/978-3-319-69191-6_3

governance structures of IoT platforms, even though their current high popularity and
potential impact on the future Internet. Although, the IoT is a suitable empirical context
to provide theoretical insights on some understudied issues in the literature on plat-
forms. In the context of the IoT in general, the research and development challenges to
create a smart world are enormous. Compared to other markets, the IoT is still in the
very beginning when it comes to industry standards and established business models.
Other unique characteristics of the IoT ecosystem are the particularly heterogeneous
actors (e.g. end-users, device manufacturers, complementors, etc.) an unusual large
number of ‘sides’ (see Chap. 4), and its proneness to platform-to-platform partnerships
(see Chap 5). Those characteristics underline the specialty of this ecosystem and are of
both theoretical and practical importance. Due to the fact that existing governance
models do not always fit for this strongly diverse market, further research on the
governance mechanisms in the IoT market is needed to determine the most important
factors that most likely guarantee success to its provider.

The goal of this paper is to focus on this research gap by describing the ongoing
development and to evaluate differences of the governance mechanisms in the
emerging market of IoT platforms. Moreover, the strategic trade-offs that must be
considered when those mechanisms are implemented will be analyzed. With the help of
a multiple case study we identify exemplary causes and effects of those design deci-
sions and help to underline the most important trade-offs of the governance imple-
mentations in the field of IoT platforms.

2 Background

This chapter provides the theoretical background for digital platforms, platform gov-
ernance and platforms in the IoT.

2.1 Digital Platforms and Platform Governance

Platforms often serve as a core element of a larger business ecosystem which is built
around it by the platform owner or vendor [10]. In this context, producers of com-
plementary products and services are termed “complementors” [11], and all stake-
holders interacting on the platform (the users or contributors) are commonly referred to
as sides [12]. Thus, multi-sided platforms (MSPs) generate value by connecting two or
more different parties who want to exchange products, services or information, in most
cases complementors and customers [5].

The platform owner and the various sides involved form the platform ecosystem,
which is typically characterized by indirect network effects: The attractiveness for its
end-users is strongly correlated with the participation or the availability of offerings
from the other side. Simply said, “the more users who adopt the platform, the more
valuable the platform becomes to the owner and to the users” [10 p. 418]. A mall with
no shops will not attract any customers, and a mall lacking customers will not attract
any shops to open a subsidiary in it.

Organizations where platforms play a very important role are information
technology-driven businesses. All major player from the IT industry like Microsoft,

Governing Platforms in the Internet of Things 33

Apple, Google, Amazon, IBM, Intel, Cisco, ARM and many other firms, build hard-
ware and software products around platforms. They provide services for computers,
smartphones or consumer electronic devices that serve as platforms in the regarding
industry, forming business landscapes led by the platform owner [3]. From this
technology-oriented perspective, platforms can further be defined as “a set of stable
components that supports variety and evolvability in a system by constraining the
linkages among the other components” [13 p. 3].

In contrary to the technical design, the functionalities for its users or the IT
architecture of platforms, the goal of the platform governance is to orchestrate the
communication between the different actors [14]. The interplay of the actors is
orchestrated by the platform owner by means of platform governance, the “partitioning
of decision-making authority between platform owners and […] developers, control
mechanisms, and pricing and pie-sharing structures” [5]. Governance has been iden-
tified as what holds ecosystems together at its core, beside the technical features it
offers [7]. The right governance strategy brings together the actors on a platform and
aligns their incentives making the ecosystem flourish [4]. However, as shown in recent
literature reviews as for example by Sun, Gregor and Keating [15], IS research does not
yet provide conclusive insights on how software platform ecosystems can be suc-
cessfully governed, leaving practitioners to trial and error when they set up and run
platforms. In an earlier studies [16, 17], we have identified and applied platform
governance concepts (Table 1) which we will use as starting point for the analysis of
the multiple case study in this paper. Applying these concepts often results in tradeoffs
that have to be solved for specific platforms. For example, by enabling openness, a
platform owner gives up control and thus needs to balance openness with suitable
control mechanisms [4]. The concepts are therefore a first try to structure platform
governance concepts and are reflected in the discussion.

Table 1. Concepts of design and governance of platform ecosystems [based on 16]

Concept Aspects Literature

Roles • Number and order of sides
• Ownership

• Distribution of power
• Relationship to
stakeholders

[3, 18]

Pricing and Revenue
Sharing

• Achieving network effects
• Barriers to market entry

• Subsidizing of one or
more sides

[19, 20]

Boundary Resources • Software tools (API, SDK)
• Documentation

• Data [6, 21]

Openness • Granting access to technology • Giving up control over
technology

[4, 9]

Control • Informal control mechanisms • Formal control
mechanisms

[22, 23]

Technical Design • Modularity
• Interfaces

• Compatibility [13, 24]

Competitive Strategy • Competition
• Co-opetition, collaboration

• Absorption &
Envelopment

• Public Relations

[25, 26]

Trust • Relationship complementor –
platform owner

• Relationship end-user –
platform

[27, 28]

34 M. Schreieck et al.

2.2 Platforms in the Internet of Things

In the IoT, communication takes place among devices of multiple types. Already
twenty years ago, machines have been connected via dedicated leased lines to allow
communication between the different apparatuses. Back then, every single project has
been an individual customer-specific end-to-end project, lasting six to twelve months,
resulting in enormous costs. Hence, there was a need for a common standard appli-
cation platform which hides the heterogeneity of the devices by providing a common
working environment to them [29]. The fast-growing IoT market has not yet brought
up a champion in the fight for the IoT software platform standard, even though Sch-
lautmann, Levy, Keeping and Pankert [30] stated that the service enabler (i.e. platform
provider) will likely occupy 30–40% share of the total value in the IoT value chain.

In the recent years, a lot of companies from different industries claimed to offer an
“IoT Platform”. But a closer comparison of those products and the concepts behind
them reveals vast differences. Newcomer in the field of IoT platforms are confused by
those complex offerings and dissimilarities, especially when confronted with so called
“platforms” that only include single elements of a mature IoT platform.

In this paper, we define IoT platforms based on their capabilities. So called IoT
Application Enablement Platforms (AEP) consist of seven building blocks [10]:

• Connectivity & Normalization: Device interface services that provide the needed
abstraction and normalization to ensure that all devices can be interacted with.

• Device Management: Ensuring that functions like activation, configuration, device
monitoring, and provisioning software updates are able to be fulfilled and main-
tained cost effectively.

• Database: Providing the foundation for applications and analytics, should be
scalable for big data.

• Event Processing & Action Management: Set of business rules and logics
defining what processes are triggered in response to specified events.

• Analytics: Both to extract the value from the data and to keep the user from
drowning in too much monotonous information.

• Visualization: Enabling the users to recognize patterns and observe trends from
dashboards.

• External Interfaces: Helping to connect to enterprise or consumer applications and
third party systems.

3 Methodology and Cases

To provide an overview of the existing governance structures in the IoT, we apply the
platform governance framework (Table 1) to eight different IoT platforms. To yield a
robust and generalizable understanding of the platform governance concepts in the IoT,
we aimed for a heterogeneous sampling [31] along the dimensions size (big players
such as IBM vs. startups such as Cumulocity), target group (industrial such as Carriots
vs. consumer oriented such as Arrayent) and breadth (industry specific such as
TankTaler vs. generic such as Cumulocity). It was conducted with data collected from

Governing Platforms in the Internet of Things 35

117 publically available sources: archival data from existing case studies and publi-
cations, press releases, online news and information available on the company web-
sites. In four cases where further information was needed, semi-structured interviews
with the regarding IoT companies were used as additional sources. The guidelines for
the interviews not only contained questions related to the research questions, but also
covered topics that were derived from the business model canvas in order to get a full
understanding of the platforms business strategy [32].

For analyzing the data from the interviews, the statements about different charac-
teristics of the IoT platforms were systematically structured according to the platform
governance framework. During the iterative coding procedure, the framework has been
updated several times to fit this unique market. Finally, the data for each of the selected
platforms has been compared in a qualitative data analysis in order to identify the
similarities and key differences between them [33].

The eight platforms in the multiple case study are as follows. Arrayent Connect
Platform was founded in 2005 and is the platform with the longest history in the
multiple case study. Its customers are consumer brands, mostly from the smart home
area, which are implementing IoT solutions in their products and systems. AWS IoT is
a further module for Amazon’s cloud services AWS (Amazon Web Services). Amazon
takes a broad, industry-independent approach towards its users and heavily relies on the
development expertise of its customers and their partners. Carriots is a proprietary
cloud-based application enablement platform specially designed for the IoT. Since
Carriots was one of the first movers in the IoT platform market, it holds expertise in
almost all industry verticals. CloudPlugs: Even though the vendor markets its product
as an industry-independent solution, almost half of their customers are settled in the
telecommunications industry, using CloudPlugs for energy management, security or
home automation solutions. Cumulocity is a platform that takes a horizontal approach
in the market and focuses on enterprise customers that are looking for solutions to link
and manage their connected machines or products. TankTaler is specialized in the
Connected Car segment. The platform is the largest connected car platform in Europe
and the only Hardware-specific IoT platform in the multiple case study. ThingWorx is
a platform that has been merged by PTC with other solutions like Axeda or KepWare
after their acquisition in the recent years. The IoT AEP is available either from cloud,
on premise, federated or embedded, to fit the needs of any scenario in various industry
segments. Watson IoT Platform is IBM’s comparably young solution in the IoT
market. The platform owner is offering extensions for the platform in the Bluemix
catalogue.

4 Results on Governance Mechanisms

The analysis of the governance mechanisms of IoT platforms will be presented
according to the dimensions from Table 1.

Roles. The number of sides varies between all analyzed platforms. One side that all
platforms have in common is the end-user or customer side, since this is the focus

36 M. Schreieck et al.

group of all vendors that generate revenues. To promote their product and bring it
closer to the potential customers, all platforms take advantage of their extensive partner
networks. Hence, all platforms must not only deal with the customers, but also with the
intermediary sales partners on the demand side. For example, Arrayent needs to con-
vince customers that the Arrayent IoT platform for smart homes creates value for them.
At the same time Arrayent needs to engage with sales channel partners to market the
platform.

On the supply side, the side that potentially offers further functionalities or services to
the customers, the strategies of the platforms vary dramatically. At present, most of the
analyzed platforms do not offer a marketplace that enables trade between those two sides.
Nevertheless, the platforms all use modules or services from partners and integrate them
in their own product. As a peculiarity for IoT platforms, we identified the devices and
device partners as an additional platform side. Many platform vendors work together
with device manufacturers in order to guarantee a smooth integration and connection of
the users’ devices, or even provide their own specialized devices. Accordingly, Arrayent
partners with device manufacturers such as Osram and Whirlpool.

It is difficult to say if the IoT platforms in the multiple case study are real MSPs.
According to Hagiu and Wright [34], the direct interaction between the multiple sides
sets MSPs apart from other business models like resellers or fully vertically integrated
firms. Figure 1 depicts this theoretic description of the MSP model and compares it
with the two platform models that we identified: A “standard” and an “advanced” IoT
platform model.

In this context, standard IoT platforms are those without marketplaces. Hence,
complementors do not have access to the platform, and cannot offer further services for
the platform user. The two sides of the standard IoT platforms are the users and the
devices, but it is arguable if devices represent a side, since they are not humans or
organizations and the interaction between the two sides needs to be evaluated com-
pletely different. Advanced IoT platforms involve marketplaces. Here, complementors
can directly interact with users, and offer additional services to the demand side. We
therefore categorized them as an MSP.

Fig. 1. The multi-sided platform model in theory and IoT practice [see also 34].

Governing Platforms in the Internet of Things 37

Regarding the order of sides, most platform vendors try to focus on the demand
side first, before they open the platform for further developers. According to the
mentioned lack of marketplaces on most IoT platforms, those platforms are still in the
phase where they try to foster the user base, before opening their platform to the supply
side.

Depending on the use case, the state of the ownership of the platform differs from
case to case. For example, one platform vendor offers a “Private Edition” of his
platform where customers deploy the platform in their own data center, and use the so
called “white-labeled” platform to offer their own solutions under their own brand. In
such cases, the ownership is passed over to the client in a special licensing model. In
other, more prevalent cases, the customers can sign up to use the platform with all its
services, but the ownership stays with the platform vendor the whole time.

Boundary Resources. All of the analyzed application enablement platforms offer
APIs and SDKs as technical boundary resources for the platform users to enable a fast
and smooth integration of their devices. Additionally, most of the platforms also have
starter kits available. Regarding the social boundary resources, we identified an online
documentation for all IoT platforms in the multiple case study. Most documentations
also include step-by-step tutorials, guides and code samples that help developers to
connect their devices, gateways or existing systems to the platform. Some platforms
also offer video tutorials or webcasts. All platforms also offer a support or help center
that serves as first point of contact in case a customer needs assistance. Besides two of
the analyzed platforms, all platforms offer forums to support the exchange of infor-
mation among their users and to make use of their technical knowledge by letting them
reply to other users’ questions.

Pricing and Revenue Sharing. Besides two of the analyzed platforms, all platforms
offer a free trial of their platforms as part of their pricing model to achieve network
effects and strengthen trust among their potential customers. For example, Cumulocity
has introduced a 30 day trial access in 2016. Besides the free platform trials for the
users, a subsidization of the sides could not be identified among the IoT platforms. The
price for the end-users of the platforms depends on various factors, like the hosting
option (cloud vs on-premises, if available), the number of devices or gateways that are
connected, the amount of data traffic and data storage used, the application area, as well
as subscriptions to further optional functionalities and applications. The individual and
industry specific solutions that Cumulocity offers, illustrate that pricing is also specific
to customers and their deals rather than standardized. The governance mechanism of
revenue sharing is only applicable for platforms that either offer a white-labeling or that
have a dedicated application marketplace. Here, third-party developers can sell their
own applications for the platform and share the respective earnings with the platform
owner that is responsible in setting up and maintaining the marketplace.

Openness. The openness of IoT platforms can be analyzed among two dimensions:
The openness of the platform towards its users and towards third-party developers. The
former highlights the platforms’ degree of openness by granting access to new users.
All platforms except one allow the self-registration of new users, upon which they can

38 M. Schreieck et al.

directly start using the platform. Only one platform is more restrictive concerning the
accessibility of the platform, since the vendor must be contacted first.

In terms of openness towards third-party developers, each platform takes a different
approach. TankTaler is not open for external developers to sell platform extensions to
the platform users. The Cumulocity platform enables the extension of the platforms’
functionalities through applications uploaded by the users, but does not offer a mar-
ketplace. Other vendors such as Carriot and CloudPlugs offer dedicated application
marketplaces for platform extensions or plan to do so.

Control. For an AEP without an application marketplace, the examination of the
applied control mechanisms as proposed by Tiwana, Konsynski and Bush [35] is rather
problematic: Since there is no input or output on the platform but the data streams from
and towards to the devices, the control aspects applied on the platforms are not related
to the traditional platform governance mechanisms. Among the IoT platforms that offer
a marketplace, we identified formal control mechanisms such as output control, input
and process control. For example Amazon’s AWS platform implements customer
ratings as output control.

Technical Design. All platforms that offer an application marketplace require a pos-
sibility to integrate additional applications. On the contrary, there are platforms available
that allow the extension of its functionalities by external applications, but do not offer a
dedicated marketplace for such. Besides the APIs, some platforms even offer more
dedicated interface solutions in order to integrate the platform to existing systems or
other ecosystems. For example, Cumulocity’s solution can be integrated with other SaaS
products via Zapier, a service that connects diverse SaaS web applications. On the
identified application marketplaces, a variety of applications is available that supports
the communication of the regarding IoT platform with external systems. All platforms in
the multiple case study analysis offer a wide range of device connectivity. Next to the
communication via Ethernet or Wi-Fi, other types like cellular, satellite or low
power/short range communication (e.g. Bluetooth, ZigBee, etc.) are regularly supported.
Common communication protocols among these platforms include HTTP and MQTT.

Competitive Strategy. To promote their IoT platforms and to publish news and
updates, all of the analyzed vendors use an array of media channels for advertisement.
Social media accounts, blogs, and e-mail newsletters are among the most common
ways to raise the attention of potential clients. Furthermore, all listed platforms use
specialized trade fairs to get in touch with their users and to sell their solutions to
potential customers. All identified application marketplace vendors situated themselves
in the conflict of absorption by offering their own extensions and applications on their
marketplaces. For example, IBM offers various own applications such as analytics
applications on the BlueMix platform. Those applications stand in competition to the
third-party developers’ offerings, and hence lead to direct competition between the
platform owner and the complementors. On the other hand, absorption might be an
important part of the monetization model of the platform vendors, as observed on other
platforms (e.g. Android, see [36]). All platform owners underline the high importance
of their strategic partnerships. Collaboration seems to be of much higher importance in
the IoT platform market than fighting against the competitors.

Governing Platforms in the Internet of Things 39

Trust. All IoT platforms in the multiple case study analysis provide information
regarding the security of their solutions (e.g. data security, security certifications or
redundancy) separately. For most IoT platforms, reference cases of well-known cus-
tomers are a good measure to strengthen trust among potential future users and to
show-off expertise in the industry. For example, Cumulocity offers rich descriptions of
existing use cases on their website. The free trial of the platform, as well as the
available starter kits are further instruments that aim on reducing the perceived risk and
strengthen the trust in the offered solutions. Enabling customer ratings and user reviews
of the platform extensions are two instruments to strengthen trust, and have been
identified on one platform marketplace.

The trust between the user and the complementor is also an important factor with a
high influence on the platform’s success. Anyhow, the platform owner can only support
the sides to help build this trust at the most, therefore this issue has not been further
examined in this study.

5 Discussion on Governance Trade-Offs

In the previous chapter, the platform governance mechanisms identified in the multiple
case study analysis have been explained in detail. In this chapter, the four main
strategic trade-offs of IoT platform providers will be examined to get a better under-
standing of what impact the strategic decisions in the governance models have on the
business model (Table 2). The relevant literature for each of the trade-offs is provided
in the following discussion.

Vertical vs. horizontal market approach. All IoT platforms in the multiple case
study can be categorized as either horizontal or vertical platform regarding their market
approach. A vertical market is one in which all customers are in one particular
industry [37]. Some IoT platforms specialized on particular IoT segments and market
their services towards the regarding focus group. In contrast, a horizontal market is one

Table 2. Governance trade-offs in IoT platforms (Source: own analysis based on [16]).

Trade-off Description

Vertical vs. horizontal
market approach

Focus on use cases across different industries with less
specialized functionality or on industry-specific use cases with
highly specialized functionality

Degree of openness Degree to which the platform is open to third-party
contributions in terms of technological openness as well as
mechanisms applied to control the third parties

Complexity of partner
networks

Balance between keeping power within a complex network of
partners and expanding the network through building trust in
reliable business partners

Compatibility to IoT
standards

Approach to either embraces as many standards as possible or
to focus on single or even a self-developed standard for IoT
data and processes

40 M. Schreieck et al.

in which all customers use a product with a common goal, regardless of what industry
they are operating in [37]. In the case of IoT platforms, the common goal of the
platform users is to connect their “things” with the IoT and to profit from the resulting
enhanced opportunities. The most platforms in the multiple case study follow a hori-
zontal market approach. They try to reach customers from different industry segments
with various problems and requirements.

“While a lot of the action is happening at the vertical application level, the ultimate
prize for many ambitious players in the space is to become the software platform upon
which all vertical applications in the Internet of Things will be built” [38]. Hereby
Turck [38] emphasizes the high aim for IoT platforms to not only address customers
from one vertical, but several or all verticals to become the platform leader in the IoT.
The eight platforms in the multiple case study directly compete against each other,
since they are all open to mostly all IoT segments. Thus, the potential market is bigger,
compared to the specialized, vertical IoT platforms. In the same time, competition for
horizontal platforms is tougher due to the high number of competitors.

Degree of openness. The degree of openness towards the platform complementors is
another strategic governance trade-off that IoT platforms must deal with. According to
the preceding findings, we derived four stages of openness towards platform
complementors:

1. Closed: In terms of openness towards third-party developers, closed platforms do
not allow any kind of participation of complementors in the platform ecosystem.

2. Participation possible: In the second stage of this model, a participation for
external developers is not precluded on the platforms, but an open marketplace is
not (yet) available. Hence, the degree of openness is higher compared to the closed
platforms, but not as high as on platforms that offer an application marketplace.

3. Marketplace with tight control: IoT platforms that include a marketplace on
which third-party developers can offer additional services. The restrictions for
platform complementors to offer and sell extensions can be categorized as tight
control mechanisms on all examined IoT platforms.

4. Marketplace with loose control: An even higher stage of openness is imaginable
in the model with more loose control mechanisms towards the platform
complementors.

In IoT platforms, reasons to opt for openness differ from standard MSPs. Positive
network effects that represent one main reason to open MSPs [4] are not as strong in the
IoT market due to the market’s high degree of fragmentation. Still, openness helps to
co-create value within the partner network and trigger innovation. Since this strategic
choice might change in the future, the degree of openness is not a fixed value, but rather
an evolution in the lifecycle of IoT platforms.

Complexity of partner network. The IoT platform owner must deal with various
stakeholders in his ecosystem. Platform providers form the core of the ecosystem and
supply the critical building blocks for their partners [10]. Understanding the roles of
business partners in the platform ecosystem is important for understanding the
ecosystem development [12]. Among the various IoT platforms in the multiple case
study analysis, we identified four distinct groups of partners in the platform ecosystem.

Governing Platforms in the Internet of Things 41

Platform partners can act as resellers. Resellers offer another company’s platform
to potential customers and get a share for the generated revenue. In some cases, the
customers do not even notice that the platform is from another company, as some
platform vendors offer so-called “white-labeling” solutions. In such cases, the platform
will be rebranded and gets a new look and feel per the reseller’s corporate identity. For
some companies, this is the only sales channel for the platform, since there is no way
for end-users to subscribe to the services of the platform directly.

The second group of potential partners in an IoT platform ecosystem are the device
integrators. Those can either be device manufacturers, building devices especially for
the platform or helping IoT platforms to connect their devices with the platform.
Device integrators can also be third-party developers that program device-unique
interfaces or platform extensions that make it easier for the platform users to connect
their devices to the platform. In some cases, the platform owner directly offers such
interfaces, in other cases such extensions are offered by external developers.

The third group of partners in the IoT platform partner ecosystem identified during
the multiple case study analysis are the platform complementors. Those partners help
the platform owner to build features as services for the platform users. Usually, those
applications are then offered (for free or paid) on the platform’s marketplace to the
demand-side of the platform.

Finally, the infrastructure providers form the fourth group of partners that are
relevant to an IoT platform vendor. In most cases, the data of IoT platforms is hosted
on external servers of the platform vendors’ business partners. Often other components
of the IT infrastructure are not part of the core business of the platform vendor and are
therefore sourced from partners.

Keeping this complicated partnering network stable comes with a difficult balance
between keeping power (by holding the number of partners on a low level) and trust in
reliable business partners and expanding the network. This is an important trade-off for
every analyzed IoT platform.

Compatibility to IoT standards. It is a complex task to decide which of the com-
peting technologies in the IoT fits best for a specific (business) goal and almost
impossible to predict which standard will evolve and will be future-proof. Researchers
even claimed that the lack of standardization and device heterogeneity is keeping the
IoT from further growth [12]. Especially for horizontal platforms, which promise to be
open for all possible IoT devices, keeping track of all available interfaces and con-
nection types is a very hard to manage task. Those platforms need to offer a wide range
of interfaces for their users and to apply to new standards in order to stay competitive
and to satisfy their customers’ needs. Possible strategies for platform owners to tackle
this problem are described in the following.

One way to address the mentioned problem of volatile standards in the IoT is to
integrate all technologies through interfaces and the support of all possible commu-
nication protocols. This would satisfy all platform users and lead to a superior com-
petitive position of the platform in the market. Unfortunately, this is an almost
impossible task, since new IoT-related standards and updates for existing technologies
are published almost daily. Keeping track and supporting all of those different

42 M. Schreieck et al.

interfaces would require a massive amount of manpower and hence result in very high
personal and maybe also licensing costs.

Another possible strategy for platform owners is to specialize on one or more IoT
industries or use cases. Especially in the industrial IoT, the amount of used protocols is
still very large, but the customer requirements are at least more similar.

Partnering with experts and specialized companies in the addressed IoT segment
(e.g. SIs in the regarding industry) might also be a solution to outsource the problem of
the volatile IoT standards. On the downside, this might lead to a high dependency on
the business partners and experts.

In order to create more power to enforce the global adoption of specific already
supported standards, IoT platforms already form or join alliances. The downside of this
strategy is that unwanted knowledge transfer to competitors could happen due to the
strong cooperation that is needed to reach the common goal.

The acquisition of specialized competitors is another strategy for platform owners
that helps companies to acquire not only experts but also knowledge about specific IoT
standards within a very short time. This strategy is intimately connected with high costs
and therefore high risks.

Last but not least, the introduction of marketplaces for interfaces is another
approach to outsource the problem of the changing IoT standards. Third-party con-
tributors could develop fitting interfaces for the platform and would get a revenue share
for each sold extension. Initial high setup costs for the marketplace and the support
around it are a disadvantage of this strategy.

Contributions to theory and practice. The trade-offs we derive contribute to litera-
ture on platform governance and help practitioners in the IoT market. In literature,
platform governance has been analyzed for various different platforms mainly in B2C
markets such as mobile applications [6] or digital payment [8, 9]. However, B2C
markets exhibit a simpler structure than the heterogeneous, multi-layered IoT market. It
is therefore worthwhile to analyze how established mechanisms of platform governance
can be applied and what trade-offs arise in their implementation.

We confirm trade-offs that are discussed in the B2C context and extend existing
findings. First, we show that the trade-off between vertical and horizontal integration
[34] is even more relevant in the IoT market than in standard MSPs as the IoT tech-
nology is highly complex extending to different layers from the devices to the appli-
cations. Second, we contribute to the ongoing discussion on the right degree of openness
that platform owners need to identify [4, 9]. We not only confirm the relevance of the
trade-off but also define specific degrees of openness for IoT platforms, referring to both
the technology and provider level [9]. Future research could compare different IoT
platforms that focus on a specific degree of openness and compare their success. Third,
we discuss the value of partner networks in IoT markets that has rarely been analyzed for
B2C markets [26]. The findings might prove useful for markets that are less complex but
also prone to value cocreation on platforms through partnerships such as in the area of
enterprise research systems [39]. Lastly, we open up the discussion on how to handle the
issue of complex and heterogeneous standards in the IoT markets. As standards will
dynamically evolve over the next years, future research could engage in longitudinal
case studies on successful strategies to cope with standards.

Governing Platforms in the Internet of Things 43

Other issues for future research projects are, first, the comparison of the analyzed
governance mechanisms in different markets and to focus on each of the four trade-offs
to deepen the understanding of the governance challenges. This could be done with
in-depth case studies that provide richer insights than a multiple case study does.
Second, it would be worthwhile to reconsider the initial structure of governance
mechanisms that we used as basis for our study. For example, Gulati, Puranam and
Tushman [40] provide a framework that differentiates governance along the dimensions
open vs. closed boundaries and high vs. low stratification. This would also be appli-
cable to the IoT context and could help to generalize our findings. Third, our study does
not specifically focus on governance of infrastructure providers and device manufac-
turers in IoT platforms as greater access to the cases would be necessary. This is a
follow-up question for exploratory case studies which grant deeper access to the
technological ecosystem of the IoT platform in focus. For practice we first show how
established governance mechanisms such as boundary resources or control are applied
in the IoT market. We thereby provide an overview on relevant decisions a platform
owner has to make when establishing an IoT platform. Second, we illustrate main
trade-offs that emerge when making these decisions. Our discussion on these trade-offs
provides starting points for practitioners how to resolve them for their platform.

Acknowledgement. We thank the German Federal Ministry for Economic Affairs and Energy
for funding this research as part of the project 01MD15001D (ExCELL).

References

1. Scully, P., Holbrook, K., Glynn, P.: The Rise of IoT Platforms. IoT Analytics (2016)
2. Smedlund, A., Faghankhani, H.: Platform orchestration for efficiency, development, and

innovation. In: Forty Eighth Hawaii International Conference on System Sciences, Hawaii,
pp. 1380–1388 (2015)

3. Eisenmann, T., Parker, G., van Alstyne, M.: Platform Strategies for two-sided markets.
Harvard Bus. Rev. 84(10) (2006)

4. Boudreau, K.: Open platform strategies and innovation: granting access vs. devolving
control. Manag. Sci. 56, 1849–1872 (2010)

5. Tiwana, A.: Platform Ecosystems: Aligning Architecture, Governance, and Strategy.
Morgan Kaufmann, Amsterdam (2014)

6. Eaton, B., Elaluf-Calderwood, S., Sorensen, C., Yoo, Y.: Distributed tuning of boundary
resources: the case of Apple’s iOS service system. MIS Q. 39, 217–243 (2015)

7. Manner, J., Nienaber, D., Schermann, M., Krcmar, H.: Six principles for governing mobile
platforms. In: 11th International Conference on Wirtschaftsinformatik Proceedings, Leipzig
(2013)

8. Kazan, E., Damsgaard, J.: An investigation of digital payment platform designs: a
comparative study of four european solutions. In: Twenty Second European Conference on
Information Systems, Tel Aviv (2014)

9. Ondrus, J., Gannamaneni, A., Lyytinen, K.: The impact of openness on the market potential
of multi-sided platforms: a case study of mobile payment platforms. J. Inf. Technol. 30, 260–
275 (2015)

10. Gawer, A., Cusumano, M.A.: Industry platforms and ecosystem innovation. J. Prod. Innov.
Manag. 31, 417–433 (2014)

44 M. Schreieck et al.

11. Teece, D.J.: Explicating dynamic capabilities: The nature and microfoundations of
(sustainable) enterprise performance. Strateg. Manag. J. 28, 1319–1350 (2007)

12. Toivanen, T., Mazhelis, O., Luoma, E.: Network analysis of platform ecosystems: the case of
internet of things ecosystem. In: Fernandes, João M., Machado, R.J., Wnuk, K. (eds.)
ICSOB 2015. LNBIP, vol. 210, pp. 30–44. Springer, Cham (2015). doi:10.1007/978-3-319-
19593-3_3

13. Baldwin, C.Y., Woodard, C.J.: The architecture of platforms: a unified view. In: Gawer, A.
(ed.) Platforms, Markets and Innovation. Cheltenham, UK (2009)

14. Hein, A., Schreieck, M., Wiesche, M., Krcmar, H.: Multiple-case analysis on governance
mechanism of multi-sided platforms. In: Nissen, V., Stelzer, D., Straßburger, S., Fischer, D.
(eds.) Multikonferenz Wirtschaftsinformatik, pp. 1613–1624. Universitätsverlag Ilmenau,
Ilmenau (2016)

15. Sun, R., Gregor, S., Keating, B.: Information technology platforms: conceptualisation and a
review of emerging research in the IS discipline. In: Twenty-Sixth Australasian Conference
on Information Systems, Adelaide (2015)

16. Schreieck, M., Wiesche, M., Krcmar, H.: Design and governance of platform ecosystems:
key concepts and issues for future research. In: Twenty-Fourth European Conference on
Information Systems, Istanbul (2016)

17. Schreieck, M., Wiesche, M., Hein, A., Krcmar, H.: Governance of nonprofit platforms –

Onboarding mechanisms for a refugee information platform. In: SIG GlobDev Ninth Annual
Workshop, Dublin (2016)

18. Bakos, Y., Katsamakas, E.: Design and ownership of two-sided networks: implications for
internet platforms. J. Manag. Inf. Syst. 25, 171–202 (2008)

19. Armstrong, M.: Competition in two-sided markets. Rand J. Econ. 37, 668–691 (2006)
20. Evans, D.S.: Economics of vertical restraints for multi-sided platforms. SSRN Electron.

J. (2013)
21. Bianco, V.D., Myllarniemi, V., Komssi, M., Raatikainen, M.: The role of platform boundary

resources in software ecosystems: a case study. In: IEEE/IFIP Conference on Software
Architecture, Sydney (2014)

22. Evans, D.S.: Governing bad behavior by users of multi-sided platforms. Berkeley Technol.
Law J. 27, 1202–1249 (2012)

23. Ghazawneh, A., Henfridsson, O.: Balancing platform control and external contribution in
third-party development: The boundary resources model. Inf. Syst. J. 23, 173–192 (2013)

24. Visnjic, I., Cennamo, C.: The gang of four: acquaintances, friends or foes? Towards an
integrated perspective on platform competition. SSRN Electron. J. (2013)

25. Brandenburger, A.M., Nalebuff, B.J.: Co-opetition: 1. A revolutionary mindset that
combines competition and co-operation; 2. The game theory strategy that’s changing the
game of business. Doubleday, New York, NY (1998)

26. Mantena, R., Saha, R.L.: Co-opetition between differentiated platforms in two-sided
markets. J. Manag. Inf. Syst. 29, 109–140 (2012)

27. Hurni, T., Huber, T.: The interplay of power and trust in platform ecosystems of the
enterprise application software industry. In: Twenty Second European Conference on
Information Systems, Tel Aviv (2014)

28. Nambisan, S.: Information technology and product/service innovation: a brief assessment
and some suggestions for future research. J. Assoc. Inf. Syst. (JAIS) 14, 215–226 (2013)

29. Nakhuva, B., Champaneria, T.: Study of various internet of things platforms. Int. J. Comput.
Sci. Eng. Surv. 6, 61–74 (2015)

30. Schlautmann, A., Levy, D., Keeping, S., Pankert, G.: Wanted: Smart market-makers for the
“Internet of Things”. Prism (2011)

Governing Platforms in the Internet of Things 45

http://dx.doi.org/10.1007/978-3-319-19593-3_3
http://dx.doi.org/10.1007/978-3-319-19593-3_3

31. Yin, R.K.: Case study research: Design and methods. Sage publications, Thousand Oaks,
California (2013)

32. Osterwalder, A., Pigneur, Y.: Business model generation: a handbook for visionaries, game
changers, and challengers. Flash Reproductions, Toronto (2010)

33. Huberman, A.M., Miles, M.B.: Data management and analysis methods. In: Handbook of
Qualitative Research. Sage Publications, Thousand Oaks (1994)

34. Hagiu, A., Wright, J.: Multi-sided platforms. Int. J. Ind. Organ. 43, 162–174 (2015)
35. Tiwana, A., Konsynski, B., Bush, A.A.: Platform evolution: coevolution of platform

architecture, governance, and environmental dynamics. Inf. Syst. Res. 21, 675–687 (2010)
36. The Information. https://www.theinformation.com/Google-s-Confidential-Android-

Contracts-Show-Rising-Requirements
37. Gust. http://blog.gust.com/what-is-the-difference-between-a-vertical-and-a-horizontal-

market/
38. TechCrunch. http://techcrunch.com/2013/05/25/making-sense-of-the-internet-of-things/
39. Ceccagnoli, M., Forman, C., Huang, P., Wu, D.J.: Cocreation of value in a platform

ecosystem: the case of enterprise software. MIS Q. 36, 263–290 (2012)
40. Gulati, R., Puranam, P., Tushman, M.: Meta-organization design: rethinking design in

interorganizational and community contexts. Strateg. Manag. J. 33, 571–586 (2012)

46 M. Schreieck et al.

https://www.theinformation.com/Google-s-Confidential-Android-Contracts-Show-Rising-Requirements
https://www.theinformation.com/Google-s-Confidential-Android-Contracts-Show-Rising-Requirements
http://blog.gust.com/what-is-the-difference-between-a-vertical-and-a-horizontal-market/
http://blog.gust.com/what-is-the-difference-between-a-vertical-and-a-horizontal-market/
http://techcrunch.com/2013/05/25/making-sense-of-the-internet-of-things/

Software Business Development

Pricing of Data Products in Data Marketplaces

Samuel A. Fricker1,2(&) and Yuliyan V. Maksimov1

1 i4Ds Centre for Requirements Engineering,
University of Applied Sciences Northwestern Switzerland (FHNW),

Windisch, Switzerland
{samuel.fricker,yuliyan.maksimov}@fhnw.ch

2 Software Engineering Research Laboratory (SERL-Sweden),
Blekinge Institute of Technology, Karlskrona, Sweden

samuel.fricker@bth.se

Abstract. Mobile computing and the Internet of Things promises massive
amounts of data for big data analytic and machine learning. A data sharing
economy is needed to make that data available for companies that wish to
develop smart systems and services. While digital markets for trading data are
emerging, there is no consolidated understanding of how to price data products
and thus offer data vendors incentives for sharing data. This paper uses a
combined keyword search and snowballing approach to systematically review
the literature on the pricing of data products that are to be offered on market-
places. The results give insights into the maturity and character of data pricing.
They enable practitioners to select a pricing approach suitable for their situation
and researchers to extend and mature data pricing as a topic.

Keywords: Data pricing � Data marketplace � Systematic literature review

1 Introduction

With the rise of Mobile Computing and the Internet of Things, massive amounts of data
are being produced [1]. Already today, a substantial portion of the population owns a
smartphone that is packed with sensors. In the near future, Internet nodes with sensing
capabilities are expected to reside in almost any everyday thing. The data, analyzed
with big data analytics and machine learning, offers an opportunity to bring about
breakthroughs in processing images, video, speech, and audio [2]. Data of importance
are generated by industrial vendors, private citizens, or the government [3]. Politics and
executive floors of global businesses underline the importance of such data [4].

Marketplaces are enablers for the exchange of data [5]. A data marketplace is a
platform on which dataset can be offered and accessed [3]. Marketplaces enable trade
by offering services for buying and selling data, finding datasets, and obtaining access
to vendors. Often cited examples are the Microsoft Azure Marketplace, Xignite, Gnip,
AggData, and Cvedia. Data that are being offered may be static archives or online
streams of new data. Different modes of access may be offered, e.g. whole repositories,
APIs for answering queries, or subscriptions. We call such variants data products.

According to an early survey of data vendors, estimating the value of data and
setting the right price for a data product offering is a key challenge [6]. For vendors, the

© Springer International Publishing AG 2017
A. Ojala et al. (Eds.): ICSOB 2017, LNBIP 304, pp. 49–66, 2017.
https://doi.org/10.1007/978-3-319-69191-6_4

pricing is part of the value-creation with data. For customers, wrong pricing makes data
unattractive. While overviews of the pricing of software products exist [7], there is no
consolidated overview of the state-of-the-art for pricing data products.

Given the drastic changes that the software industry is undergoing at this moment
with the move towards ‘smart everything everywhere,’ it is critical that a better
understanding of the business with data is obtained. It is urgent that the so far young and
small research area is being developed, especially because it has hardly been discussed
in the domain of software business. The lack of consolidation limits the uptake of good
practice by practitioners and hinders the planning of research in this area.

This paper offers an overview of the current research in the pricing of data for data
marketplaces. It utilizes a systematic approach to identifying, screening, analyzing, and
synthesizing the research literature. The paper describes the research on data pricing,
the contexts in which data pricing was investigated, and the maturity of the area. For
owners of data products, the results offer guidance of how to do pricing. For
researchers, the results offer insights into the knowledge frontier and knowledge gaps
for planning research in data pricing. We intend to utilize the results for building
support for data pricing into the Bonseyes marketplace (www.bonseyes.com).

The paper is structured as follows. Section 2 gives an overview of the research
methodology. Section 3 describes the results of reviewing the research literature.
Section 4 discusses the obtained results. Section 5 summarizes and concludes.

2 Research Methodology

The study aimed at consolidating the research on the pricing of data products offered on
marketplaces. To achieve this aim, we used a systematic approach to reviewing the
research literature. We used the following steps to conduct the review. (1) Identify and
screen the start set of primary studies with a database search. (2) Identify and screen the
final set of primary studies with snowballing. (3) Evaluate the quality of the research
based on full texts. (4) Extract and analyze the data for answering the research
questions.

We used the snowballing guidelines proposed by Wohlin [8] for paper identifica-
tion. The snowballing helped us to avoid many false positives that would have been
generated by a database search string that is too inclusive. For screening and research
quality evaluation, we used the guidelines provided by Kitchenham and Charters [9].
The data extraction and analysis step followed the systematic mapping recommenda-
tions of Petersen [10]. We chose to follow Petersen because the results presented by the
included papers did not allow any meta-analysis with quantitative statistic methods.

To guide our systematic review, we asked the research questions shown in Table 1.
RQ1 is intended to overview how far the state-of-the-art has advanced and where the
research gaps are. We followed the ideas of Ivarsson and Gorschek to assess the
maturity of the research with the strength of the empirical evaluation [11]. RQ2 is
intended to obtain an overview of pricing from the data vendor’s perspective. To
understand pricing, we were first interested in what the products were that were priced
and which contexts these products targeted. We then described the rules for deter-
mining prices, the pricing models, and the mechanisms used for applying these rules.

50 S.A. Fricker and Y.V. Maksimov

http://www.bonseyes.com

2.1 Research Process

Start set of primary studies. We built the start set of papers with a keyword search
for primary studies in Scopus. Scopus was selected because it offers the largest number
of abstracts and citations in science and technology. We searched title, abstract, and
keywords fields with the string “data marketplace” on January 20, 2017. The string
constrained the population while leaving the intervention, comparators, outcomes, and
contexts open [9]. These latter parts were used in the analysis for RQ2. We constrained
the search to marketplace, leaving terms like databases and repositories out, because
of our interest in business with data and not warehousing. The search yielded 181
papers.

Table 1. Research questions.

Research Question Description

RQ1: How mature are the
researched pricing models?

Maturity is a concern in technology transfer from
academia to industry [11]. Maturity is important for
practitioners to decide about the adoption of
technology, such as pricing models, and for
researchers to further mature the technology

RQ2: How do vendors price data? The pricing of data is the concern being addressed by
the presented research. The answer to this RQ should
inform practitioners adopting pricing for the data they
offer, trade, or buy and researchers that aim at
improving the state-of-the-art

RQ2.1: Which contexts did the
pricing models target?

A context offers the frame for offering and exploiting
technology. The contexts for the pricing of data
comprise the domains in which the data would be
used, the types and storage of data, and scenarios for
exploiting that data

RQ2.2: What kinds of data products
were being priced?

A data product is the packaging of data that get a price
tag attached. We expect the definition of the data
products to consist of the price metrics (i.e. a
definition of what is being priced), the quality
attributes that are being considered for product
definition, and the characteristics of the market for
which the product is defined

RQ2.3: What pricing models were
evaluated?

A pricing model is a set of the rules established for
defining prices. A pricing model describes how
product and context variables are considered to
achieve aims of interest, such as profit optimization

RQ2.4: What mechanisms were
proposed to determine a price?

To sell data to a customer the final price for the
instance of the data product must be determined by
applying a pricing model. With the answer to this RQ,
we give an overview of how the pricing model is used
to determine a final price

Pricing of Data Products in Data Marketplaces 51

We screened the papers based on title, abstract, and meta-information. Following
Kitchenham’s recommendations [9], we developed the selection criteria based on the
research questions and practical issues. We maintained a list of excluded studies
together with the reasons for exclusion. Table 2 shows the inclusion and exclusion
criteria that resulted from this process. The two authors assessed the exclusion of
primary articles by seeking consensus. After screening, the start set of papers contained
11 papers.

Final set of primary studies. We did backward and forward snowballing by looking
at the reference lists of the papers in the start set and by using Scopus to identify papers
that cited the papers in the start set. The backward snowballing yielded 66 additional
relevant papers. The forward snowballing yielded 6 additional papers that cited the start
set. The small number was due to the inclusion of many recent papers in the start set.

We again screened the papers by studying their title and abstract and applying the
same selection criteria. After screening, the final set of papers contained 18 papers.

Quality Assessment. We assessed the quality of the so far selected papers with the
aim of including only those with research quality sufficient to extract data and answer
our research questions reliably. Table 3 shows the quality assessment criteria that we
derived from Kitchenham [9] and applied to the full text. Papers with a score of less
than 0.6 got removed from further consideration, leaving us with 15 papers for the data
extraction and analysis step.

Data Extraction. To answer our research questions, we extracted data with the data
extraction form shown in Table 4. The table declares what we extracted, defines how
we abstracted the extracts, and offers details about the data extraction.

Data Analysis. We followed the suggestions from Petersen [10] to systematically map
the research literature and aggregate the results. Table 4, column “Values” describes
categorization schemes that we used for classifying the papers. Our analysis focused on
giving an overview of the categories and how common publications were for each
category. This analysis made it possible to see which categories have been emphasized

Table 2. Study selection criteria (based on the research questions* and practical reasons**).

Inclusion criteria Exclusion criteria

- Proposal, evaluation, and discussion of a
vendor’s pricing of data*

- Short papers of up to 4 pages**
- Study report superseded by an ensuing report
of the same study**

- Customer or market maker’s view of pricing
instead of vendor’s view*

- Costing, e.g. for cost minimization of data
management*

- Units of analysis other than the pricing of
data, e.g. market policies*

- Analyses of data value or other variables,
rather than data pricing*

52 S.A. Fricker and Y.V. Maksimov

and which categories represent gaps in the research. Instead of bubble plots, we used
tables and networks to give a visual representation of research focus and intensity.

Some values were not defined with a predefined categorization scheme. Here, we
developed the categories inductively by following a conventional content analysis
approach [16]. We let insights about categories emerge by studying the papers. We
then gave an overview of these categories and defined their meaning with a synthesis of
the relevant data extracted from the papers. The results represent a proposal of a
categorization scheme that is grounded in the research that we have reviewed.

Table 3. Quality assessment criteria.

Quality
Criterion

Assessment Question Evaluation approach Score

Fulfillment
of aims

How well does the research
address its original aims?

Identify the aims from the
abstract and introduction
and compare with the
research

1.0: perfect match
0.5: partial or vague
match
0.0: no match

Clarity of
background

How clear are the
underlying theory and
assumptions?

Evaluate the background
and related work sections if
it fits the performed
research

1.0: well-defined
and strong fit
0.5: partial fit
0.0: unclear or not
fitting

Quality of
the sample

How credible are the data
that are used for the
research?

Evaluate the data used for
validating theories or
models

1.0: representative
real-world data
0.5: data well
described
0.0: unclear what
data was used

Credibility
of the
research

How clear is the chain of
evidence?

Evaluate the match between
the method section, data,
analysis, and analysis
results

1.0: clear and
traceable
0.5: partial chain.
0.0: unclear chain of
evidence.

Clarity of
synthesis

How clear is the link of
analysis results and the
related work to the
discussed contribution and
implications?

Evaluate the traceability of
the discussion to the
presented results and
background literature

1.0: contribution and
both traces clear
0.5: contribution
vague or only one
trace clear
0.0: no discussion or
unclear connection
with results and
related work

Pricing of Data Products in Data Marketplaces 53

Table 4. Data extraction form (*: values determined inductively)

Property Values Description

RQ1: Pricing Model Maturity
Research
method

Formal analysis, simulation,
laboratory validation, real-world
validation

The type of research method
influences the readiness of the
researched entity. E.g., the
European Horizon2020 research
program connects research
methodsa to technology readiness
levels

Dataset No data, synthetic data, synthetic
data of justified industrial size,
industrial data

The dataset used for analysis or
validation influences the readiness
of the researched entity. E.g., a
synthetic dataset limits the
credibility of the research results in
comparison to the use of a full-scale
industrial dataset

RQ2.1: Contexts
Domain A vertical market like Smart City,

Business Administration, or
Linguistics.

Different verticals may have
different norms, standards, and
practices. Trading of data may need
to take such contextual factors into
consideration

Type of data* See column ‘Type of Data’ in
Table 7.

Different types of data may require
different types of pricing models to
make data sharing attractive

Data
exploitation
scenario*

See column ‘Data Exploitation
Scenario’ in Table 7.

Different data exploitation
scenarios may require distinct types
of pricing models to make data
sharing attractive

Storage
mechanism*

See column ‘Storage’ in Table 7. Different types of data storage
require different types of pricing
models to make data sharing
attractive

RQ2.2: Data Products
Market
structure

Perfect competition, oligopoly,
monopoly, monopsony

The number of sellers, intermediary
market-makers, and buyers
influences the market structure and
the way the sellers and buyers
behave [12]

Price metrics Free, charging of single requests,
volume packages, access to specific
data-types, time-based subscription

The price metrics define the unit by
which pricing is applied to data
product [13]. We use the two
taxonomies of metrics described by
Muschalle [6] and by Sarkar [14]

(continued)

54 S.A. Fricker and Y.V. Maksimov

2.2 Threats to Validity

Kitchenham and Charters suggest the following four criteria for assessing the quality of
a systematic literature review [9]: completeness of the literature search, clarity of paper
inclusion, transparency of the study quality assessment, and adequacy of the descrip-
tion of the basic studies. These quality criteria were also used by tertiary studies to
judge the quality a secondary study like this literature review, e.g. [17].

Our research process used a hybrid approach for literature search: keyword data-
base search followed by snowballing. The combination of the two techniques allowed
us to obtain a reasonable sample of the literature. The search efficiency of 6% is a figure
that can be found in other literature reviews [8]. For increasing the confidence, one
could further increase the start set of primary studies with a wider search string or
validate the obtained set of papers with experts in the data marketplace and pricing
domains. A consultation of experts could also give us insights about publication bias
[9], about which we cannot make any statement with our research process.

We made explicit the inclusion and exclusion criteria that we applied. The criteria
were discovered and documented during a pilot search as rationales for our inclusion

Table 4. (continued)

Property Values Description

Data quality
attributes

Accuracy, completeness, time
(currency, timeliness, volatility),
consistency, other

Data quality is critical in any
application using the data and in the
processes supported by the data.
Data quality may be characterized
by a range of attributes [15]

RQ2.3: Pricing Models
Aims of
pricing
model*

Internal consistency of pricing
model, fairness of prices, profit
maximization, social welfare
maximization

To understand the rationales behind
a pricing model, one must
understand its aims

Pricing
model*

Price function with desired
properties, game theoretical pricing
approach

The categories and description of
the pricing models

Pricing
variables*

Price of views, price of tuples,
customer profile, data quality,
customer bid, data usage, cost of
the data

The variables used in the pricing
model to determine a price

RQ2.4: Pricing Mechanisms
Price
determination
mechanism*

Algorithm, pricing function The mechanism used by a party to
determine the price for an offer of a
data product.

Evaluation
results*

Polynomial time (PTIME),
Pseudo-PTIME, NP-Complete,
N/A

The results of evaluating the pricing
mechanism in terms of
computational complexity.

ahttps://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-
wp1415-annex-g-trl_en.pdf.

Pricing of Data Products in Data Marketplaces 55

https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf

and exclusion decisions. Inclusion and exclusion were decided by seeking consensus
between the two authors. A limitation is that we applied the inclusion and exclusion
criteria on titles and abstract only. Thus, we assumed that the authors succeeded to
accurately reflect the contents of their papers in title and abstract.

For the study quality assessment, we used explicit rubrics with clear scoring
instructions. The scoring results were developed, reviewed, and discussed by both
authors and reflect the consensus of the two parties.

Due to the imposed space limitations, we could not offer a comprehensive
description of each study. Instead, we decided to list the included papers in the
appendix, enrich the analysis with syntheses of the data extracted from the papers, and
established traceability of the syntheses to the source papers. This approach allows the
reader to appreciate the overall meaning of the papers and obtain details by consulting
the cited papers.

3 Results: Pricing of Data Markets

3.1 Quality Assessment

Most papers scored well in the quality assessment, yet no paper in the final set reached
a score of 1.0. Of the well-scoring papers, all fulfilled the research aims and offered a
clear overview of the research background.

The quality of sample and clarity of synthesis indicators were difficult to meet. The
quality of sample indicator was difficult to meet because many papers used formal
proofs instead of data for the evaluation or experimented with synthetic data. Few
papers used real-world empirical data. Clarity of synthesis was hardly met because
most papers offered only a limited synthesis of the obtained results with the rest of the
literature. Table 5 gives an overview of the detailed scores.

Table 5. Quality assessment of the included studies (italics: papers scoring below 0.6).

Paper Assessment
score

Fulfillment of
aims

Clarity of
background

Quality of
sample

Credibility of
Research

Clarity of
synthesis

P04 Koutris 2015 0.9 1 1 0.5 1 1

P06 Kushal 2012 0.9 1 1 1 1 0.5

P09 Niyato 2016 0.9 1 1 1 1 0.5

P05 Koutris 2013 0.8 1 1 0.5 1 0.5

P08 Li 2014 0.8 1 1 0.5 1 0.5

P10 Stahl 2016 0.8 1 1 0.5 1 0.5

P11 Tang 2013 Get 0.8 1 1 0.5 1 0.5

P12 Tang 2013 Right 0.8 1 1 0.5 1 0.5

P13 Tang 2015 0.8 1 1 0.5 1 0.5

P01 Balasubramanian
2015

0.7 1 1 0 1 0.5

P02 Golrezaei 2014 0.7 1 1 0.5 0.5 0.5

P03 Jiang 2015 0.7 1 1 0 1 0.5

P07 Li 2012 0.7 1 1 0.5 0.5 0.5

P14 Tang 2016 0.7 1 1 0 1 0.5

P15 Wu 2010 0.7 1 1 0 1 0.5

P16 Balazinska 2013 0.5 1 1 0 0.5 0

P18 Shen 2016 0.5 0.5 1 0.5 0 0.5

P17 Shapiro 1998 0.3 0 1 0 0.5 0

56 S.A. Fricker and Y.V. Maksimov

Three papers scored below the threshold of 0.6 points: P16, P17, and P18. In
addition to the two quality indicators that were difficult to meet overall, the three papers
scored low in the credibility of the research and partially did not meet the stated
research aims.

3.2 RQ1: Maturity of the Pricing Models

Most research was of conceptual nature and employed formal analysis or simulation of
the proposed pricing models for validation. However, none of the pricing models has
been validated in the real world or by deploying it in a laboratory environment. P06
was the only study which used real-world industrial data. P05 did a simulation with
synthetic data of industrially relevant size. The other simulations used a random syn-
thetic dataset or did not define the used data. Table 6 gives an overview.

3.3 RQ2: Pricing of Data

RQ2.1: Contexts Targeted by the Pricing Models. Table 7 gives an overview of the
domains and types of data considered by the papers. While many domains were
covered, some evident ones were missing. When using the Horizon2020 program as a
reference1, the domains of health and wellbeing, food and agriculture, and energy
appear to be of relevance but were not considered.

Also, the data being traded and the scenarios of how these data would be exploited
are broad. Four papers, P02, P03, P09, and P13, consider the use of sensor data, which
could be generated in mobile sensing and Internet of Things contexts. One paper, P08,
considers pricing for personal data, a type of data that is sensitive and subject to strict
regulations. One paper, P09, considers the exploitation of data for machine learning, a
basis for building systems that enable smart decision-making and control.

Eight papers are unspecific in the application domain or data exploitation scenario.
For example, P12 just states that the data was intended for decision-making. The lack
of specificity also means that the papers do not report any evaluation of their
approaches or, in the case of P06, apply their pricing approach on a diversity of data as
broad as demographics, weather imagery, DNA sequences, sales and marketing ana-
lytics, and financial records.

In most of the papers, the authors assume that data is uploaded to the market
maker’s cloud for making that data available for trade. Such upload may be efficient for

Table 6. Maturity of the pricing models (top-left: low maturity, bottom-right: high maturity).

Dataset
research
method

No Data Synthetic
data

Synthetic and
industrial size

Industrial

Formal
analysis

P01, P02, P04, P07, P08, P09, P10,
P11, P13, P14, P15

Simulation P03 P12 P05 P06

1 https://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges.

Pricing of Data Products in Data Marketplaces 57

https://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges

the market maker but could reduce transparency and control of the transactions for the
data vendor. One paper assumed the opposite approach, edge computing, in which the
data is controlled by the data vendor. Six papers did not state any assumption about
where data would be stored.

RQ2.2: Data Products being Priced. The papers covered a broad variety of product
definitions. Table 8 gives an overview. Many papers assumed, explicitly or implicitly,
a monopoly market structure where the data provider does not care about competing
providers. We judged a paper to consider a monopoly implicitly if it assumed that the
offered product is so far differentiated that the pricing model does not need to consider
competing offerings. Four papers considered a duopoly situation where two data
providers compete. No paper generalized a duopoly to an oligopoly situation. Two
papers, P05 and P08, considered a monopsony situation, where a buyer requests data
from many data providers. We judged a paper to consider a monopsony if the pricing
did not consider interactions between multiple customers. Only one paper studied a
market situation with a perfect competition where anybody could trade with anybody.

Most papers studied data products with usage- or request-based price metrics,
where charging takes place on a fine-grained level. The variants were pay-per-use or
unit, pay-per-query or view, or customer-proposed prices. One volume-based pricing
model was investigated, step pricing where the customer pays for a given volume of
data. Three papers studied flat fee products that allow all data to be accessed without

Table 7. Contexts.

Domain Type of data Paper Storage Data exploitation scenario

Cities Sensor data P02 Cloud Traffic and waste
management

P03 Edge Environment management
P13 Cloud City management

Business
management

Demographic
data

P07 (not
stated)

Financial assessments

Personal data P08 Cloud Monetization
(unspecific) P14 Cloud Market research and

advertisement
P12 Cloud Decision-making

Engineering (unspecific) P01 Cloud (no scenario defined)
Consumer Newsfeed P15 (not

stated)
Social networking

Linguistics Linguistic data P05 Cloud Text analysis and translation
(unspecific) Sensor data P09 (not

stated)
Machine learning

P06 Cloud (no scenario defined)
P10, P11,
P14

(not
stated)

(no scenario defined)

58 S.A. Fricker and Y.V. Maksimov

restriction, either continuously or as part of a time-based subscription. The papers P02
and P03 did not state any price metrics used to define the data product.

Three papers compared the attractiveness of usage and flat fee products, P01 and
P06 in both monopoly and duopoly market structures, and P15 in a monopoly market
structure alone.

A subset of the papers utilized quality in the product definition and, consequently,
as an attribute for pricing. Table 9 gives an overview.

In these papers, quality played a role in price setting, delivering value, and
managing privacy. Quality differences may influence a customer’s perceived value of a
data product. Thus, reduced quality was a counterpart for price reductions: “you pay

Table 8. Data product definitions (*: papers comparing multiple products).

Price metrics
market

Single requests Volume
packages

Time-based
subscription

(not
stated)

Monopoly P01*, P15*: pay-per-use
P06*: per-unit
P04, P07, P12, P13: query-
or view-based
P10, P11, P14:
customer-proposed price

P06*: step
pricing

P01*:
unrestricted use
P09:
subscription fees
P15*: flat fee

P02

Duopoly P01*: pay-per-use
P06*: per-unit

P06*: step
pricing

P01*:
unrestricted use

P02

Oligopoly
Monopsony P05, P08: query-based
Perfect
Competition

P03

Table 9. Quality attributes used in the product definition and pricing model.

Quality
attribute

Paper Quality metrics

Time P02 Delay: Delay may influence the perceived value of a data product
P05 Aging: Data may need to be updated because it gets incorrect over

time
P10 Freshness: a price should be defined depending on how new the

data is
Accuracy P08 Perturbations: noise for deteriorating aggregated data quality for

privacy
P11 Accuracy: distance and likelihood of deviation from the true value

Completeness P10 Completeness: parts of the data may be missing
P14 Completeness: incompleteness may be traded for discounted

prices
Consistency – –

Pricing of Data Products in Data Marketplaces 59

what you get.” Also, quality was considered to deteriorate over time. Thus, data needed
to be updated to be of high value or prices be reduced. Quality, finally, was a trade-off
with privacy. Perturbations were introduced into the data to avoid unwanted disclosure
of information. Alternatively, price increases were used to compensate for disclosure.

RQ2.3: Pricing Models. We identified three approaches to researching pricing
models. Some papers designed a price function with desired properties. Most of these
papers addressed a single-vendor situation (monopoly). Other papers casted pricing
into game theory to identify an optimal pricing approach in a competitive situation.
Most of these papers addressed a multi-vendor situation (duopoly and monopsony).
A final set of papers compared constellations of price metrics and market to select
pricing approaches. Most of these papers addressed both, single-vendor and
multi-vendor situations.

Figure 1 gives an overview of the pricing models for the single-vendor situation.
We used the function symbol to depict papers designing a price function. The dice
symbol was used to denote a game-theoretic analysis.

The papers proposed and evaluated pricing models for achieving internal consis-
tency of the pricing function, profit maximization, and fairness between customers and
vendors. Internal consistency meant monotonicity of the pricing function (i.e. higher
prices mean more data), usage or volume-based prices are not higher than the price of
the whole database, non-disclosiveness (i.e. impossible to infer unpaid query answers),
and freedom from arbitrage (i.e. all ways to obtain an insight have the same price),
freedom from discounts (i.e. the prices are maximal), and freedom from regret (i.e. all
sequences to obtain an insight have the same price). Profit maximization meant pricing
models that maximized the data vendor’s profitability. Fairness meant a fair trade-off
between quality and price.

Within the single-vendor context, three groups of pricing models could be dis-
cerned: customer bid-based pricing, view-based pricing, and tuple-based pricing.
Customer bids were answered by compensating low bids with the delivery of
low-quality data. The compensation was motivated by the customers’ understanding
that with just a little money only low quality can be bought. For the vendors, the
compensation was an aspect of fairness. View-based pricing, a variant of usage-based
pricing, was based on the idea that the customers’ queries could be answered with
predefined data views that are stored in the vendor’s database. P07 called this approach

P04 P07

FairnessInternal consistency Profit maximiza on Social welfare maximiza on

QualityPrice of views Price of tuples Customer profile CostData usageCustomer bid

P10P09 P11P12P13 P14

Fig. 1. Papers researching pricing models for single-vendor situations.

60 S.A. Fricker and Y.V. Maksimov

deductive pricing. The price for a query is the price of the cheapest set of views needed
to answer the query. Tuple-based pricing is another variant of usage-based pricing. Its
idea is to charge access to rows in a database. P07 called this approach also inductive
pricing.

Figure 2 gives an overview of the pricing models for multi-vendor situations.
Again, the same symbols were used for price function designs and game-theoretic
analyses.

The papers proposed and evaluated pricing models for the additional goal of
maximizing social welfare as well as the already mentioned goals of profit maxi-
mization, internal consistency, and fairness goals. Social welfare maximization meant
to maximize the sum of all customers’ payoffs. Profit maximizations and internal
consistency had the same meaning as before. Fairness meant now a fair split of revenue
among sellers.

Two groups of pricing models could be discerned: pricing models that aimed at
internal consistency and fairness, and game-theoretic approaches for maximizing social
welfare or profit. The design of the pricing functions resembled the view- and
tuple-based pricing models studied in the monopolistic context, but now extended with
a mechanism to fairly compensate a multitude of sources for the data they provided.
The game-theoretic approaches allowed parties to decide about the role they wanted to
adopt in the marketplace, how pricing tactics would affect the equilibria in the market,
and how to compute the optimal price.

Figure 3 gives an overview of pricing model comparisons. We used the tick-box
symbol to denote these papers that aimed at offering decision support for selecting an
appropriate pricing model. The shaded dices and function indicate secondary contri-
butions of the papers. For example, P01 used game theory to study the duopoly
situation.

All three papers compared pricing approaches with the aim of profit maximization.
P01 and P06 made this comparison for both the monopoly and duopoly situations. P15
did it for the monopoly situation only. P06 studied arbitrage for the pricing function,
thus pursued the secondary goal of achieving internal consistency of the pricing.

According to the three papers, a monopoly requires a different approach for a good
product definition than a duopoly. For a monopoly, the papers conclude that usage-based
pricing of data is attractive. The pricing may be fine-grained or package-based; the

P02P03

FairnessInternal consistencyProfit maximiza onSocial welfare maximiza on

Quality Price of viewsPrice of tuplesCustomer profileCost Data usage Customer bid

P08P09 P05

Fig. 2. Papers researching pricing models for multi-vendor situations.

Pricing of Data Products in Data Marketplaces 61

granularity of the price steps does not matter. Thus, no clear preference can be established
between usage or volume-based pricing. In a duopoly, the two competing data vendors
should offer complementary product definitions, or the profits will rapidly erode to zero.

RQ2.4: Price Determination. Most papers proposed equations or algorithms to cal-
culate prices. Only in P01, P02, and P03, we could not identify any specific price
determination mechanisms that could be used by a data vendor. Table 10 gives an
overview.

P04, P05, P07, P12, P13, and P14 suggested that pricing is NP-complete in general.
Also, P8 suggests that consistency checking of arbitrary price point setting is
NP-complete. However, as Table 10 shows, algorithms for specific cases may be
designed that are less complex and offer tractable pricing. The algorithms that may be
executed in polynomial time (PTIME or Pseudo-PTIME) were considered tractable.

FairnessInternal consistencyProfit maximiza on Social welfare maximiza on

QualityPrice of viewsPrice of tuplesCustomer profileCost Data usage Customer bid

P15 P06P01

Fig. 3. Papers comparing pricing models.

Table 10. Price determination mechanisms for data vendors.

Price
determination

Paper Specific result Complexity

Algorithm P04 Pricing for chain queries PTIME
Pricing for cyclic queries PTIME

P06 Multi-step pricing PTIME
P07 Cell-based or regret-free inductive pricing PTIME

Deductive pricing for continuous price
functions

PTIME

P10 Knapsack pricing Pseudo-PTIME
P12 Approximate pricing PTIME
P13 Rewriting-based pricing NP-Complete
P11 Fair quality distortion N/A
P14 Uniform or binary tree sampling PTIME

Pricing functions P08 Basic and synthesized pricing NP-Complete
P09 Globally optimal pricing N/A
P15 Vendor’s generic optimization problem N/A
P05 ILP-formulation for some conjunctive

queries
PTIME

62 S.A. Fricker and Y.V. Maksimov

Some of the pricing functions may be formulated so that they can be solved as dif-
ferential equations or by a solver, e.g. an Integer Linear Programming (ILP)-Solver.

4 Discussion

This paper has contributed the first systematic review of research on pricing for data
products, thus helping to enable business with the massive amounts of data generated
by Mobile Computing and the Internet of Things. Fifteen papers were analyzed that
proposed or evaluated pricing models for data product vendors. While earlier work has
introduced pricing metrics [14] as well as the structure of a marketplace and its par-
ticipants [6], no systematic overview had been given of the models and mechanisms
used for pricing. The here presented research enables marketplace owners and data
vendors to plan how to generate revenue and profit from data. Such thinking is
important to make the potentially vast amount of data created by billions of humans
and devices available for the development of smart systems and services.

Section 3 gave an overview of the objectives for pricing data products and the
attributes that could be considered as inputs for a pricing model. The results suggest
that data vendors seek profit maximization and consistency of the pricing model.
Further concerns are social welfare and fairness. Some pricing attributes could be used
for value-oriented pricing [13] and cover the customer profile, the data usage, and
customer bids. Other attributes consider the cost side of data and include the cost of
data provision and the price of tuples or views. A special role plays quality of the data
that, according to the reviewed research, is a means acceptable for customers to relate
to prices.

The here presented research also identified concrete advice on how to act when
discovering a competitive situation (i.e. achieving complementarity of product defi-
nitions) and what the pricing models are that should be preferred when offering unique
data (i.e. usage-based pricing rather than a flat subscription fee).

While the pricing models are appealing from a conceptual point-of-view, the cal-
culation of prices remains challenging. Good pricing model should exhibit a variety of
characteristics, such as monotonicity, boundedness, non-disclosiveness, and freedom
from arbitrage, discount, and regret. Price determination is NP-complete in general.
Only for special cases, approaches of polynomial complexity were proposed.

We have constrained our review to papers that discuss pricing of data products for
use in data marketplaces from a vendor’s perspective. This strict scope excluded
studies that focused purely on value and cost of data without having used these attri-
butes for pricing the data. Also excluded were papers that studied the data consumer’s
or market maker’s perspective, e.g. of procuring data at a minimal cost. Future reviews
should expand towards value and cost aspects of data including the customers’ view.

Research on pricing for data products is still in its infancy. Most research we
identified features microeconomic modeling and formal analysis of the pricing models.
When using the 9-level European Horizoon2020 technology readiness (TRL) model as
a benchmark, such research is positioned at TRL2 only. Four papers went as far as
TRL3 by offering a simulation-based evaluation of the pricing models. With our search,
we could not identify any paper at a higher TRL that would have reported applications

Pricing of Data Products in Data Marketplaces 63

of pricing in relevant environments. This disconnect of research from practice is sur-
prising as several data marketplaces have been launched (c.f. Section 1) and are
confronted with pricing questions. Real-world research is urgently needed to under-
stand the applicability and impact of the pricing models. The work of Schomm could
represent a starting point and offer guidance for such practical applications [3].

Also, the surveyed pricing models were developed for simple market situations
only. Considered were the monopoly where competition could be ignored and the
duopoly where competition is a gameplay between two adversaries. Such simplification
is attractive because it makes formal analysis feasible. From a practical perspective, it
would be important to understand how to design and differentiate data products to
make the offering so unique that it could be considered a monopoly or at least com-
plementary to existing products. Software product management offers such product
strategy advice for software products [7]. It would be interesting to understand whether
and how such advice can be transferred and applied to data products.

5 Summary and Conclusions

This paper has offered a systematic review of the literature on pricing models for data
marketplaces. The papers were identified first with a keyword-based search in Scopus
and then complemented with forward and backward snowballing. From initially 181
papers 11 papers were selected for snowballing. The snowballing step yielded 18
papers that were assessed for research quality. 15 papers made it in the final set of
papers.

11 papers offered formal analysis of pricing models, while 4 additional papers went
as far as simulating the formal models. Cities, business management, engineering,
consumer, and linguistics were the contexts addressed by the pricing models.
Usage-based, volume-based, and flat fee pricing models were proposed or evaluated for
single-vendor and multi-vendor situations. The pricing models aimed at profit maxi-
mization, internal consistency, fairness, and social welfare maximization. Pricing
attributes included customer bids and profile, data usage, quality, the price of views or
tuples, and cost. Price calculation is NP-hard with PTIME approaches existing for
special cases.

Our results offer an overview of what in the domain of data pricing has been
researched and where the gaps are. It serves as a compact advice for anybody who
seeks incentives and rewards for data sharing. However, the presented results should be
used with caution. Research is needed to validate the models in the laboratory and
real-world settings.

Acknowledgments. The presented work was funded by the European Union’s Horizon 2020
research and innovation program under grant agreement No. 732204 (Bonseyes) and by the
Swiss State Secretariat for Education‚ Research and Innovation (SERI) under contract number
16.0159. The opinions expressed and arguments employed herein do not necessarily reflect the
official views of these funding bodies.

64 S.A. Fricker and Y.V. Maksimov

Appendix: Bibliography of Included Papers

P01 Balasubramanian, S., Bhattacharya, S., & Krishnan, V.: Pricing information
goods: A strategic analysis of the selling and pay-per-use mechanisms. Mar-
keting Science, 34(2), 218-234 (2015)

P02 Golrezaei, N., & Nazerzadeh, H.: Pricing Schemes for Metropolitan Traffic Data
Mar-kets. 3rd International Conference on Data Management Technologies and
Applications, Vienna, Austria (2014)

P03 Jiang, C., Gao, L., Duan, L., & Huang, J.: Economics of peer-to-peer mobile
crowdsensing. 2015 IEEE Global Communications Conference (GLOBECOM),
San Diego, CA, USA (2015)

P04 Koutris, P., Upadhyaya, P., Balazinska, M., Howe, B., & Suciu, D.:
Query-based data pricing. Journal of the ACM (JACM), 62(5), 1-44 (2015)

P05 Koutris, P., Upadhyaya, P., Balazinska, M., Howe, B., & Suciu, D.: Toward
practical query pricing with QueryMarket. 2013 ACM SIGMOD International
Conference on Management of Data, New York, NY, USA (2013)

P06 Kushal, A., Moorthy, S., & Kumar, V.: Pricing for data markets. Technical
Report (2012)

P07 Li, C., & Miklau, G.: Pricing Aggregate Queries in a Data Marketplace. 15th
International Workshop on the Web and Databases 2012 (WebDB), Scottsdale,
AZ, USA (2012)

P08 Li, C., Li, D. Y., Miklau, G., & Suciu, D.: A theory of pricing private data. ACM
Trans-actions on Database Systems (TODS), 39(4), 1-28 (2014)

P09 Niyato, D., Alsheikh, M. A., Wang, P., Kim, D. I., & Han, Z.: Market model and
optimal pricing scheme of big data and Internet of Things (IoT). 2016 IEEE
International Conference on Communications (ICC), Kuala Lumpur, Malaysia
(2016)

P10 Stahl, F., & Vossen, G.: Fair Knapsack Pricing for Data Marketplaces. 20th East
European Conference on Advances in Databases and Information Systems
(ADBIS), Prague, Czech Republic (2016)

P11 Tang, R., Shao, D., Bressan, S., & Valduriez, P.: What you pay for is what you
get. 24th International Conference on Database and Expert Systems Applications
(DEXA), Prague, Czech Republic (2013)

P12 Tang, R., Wu, H., Bao, Z., Bressan, S., & Valduriez, P.: The price is right. 24th
International Conference on Database and Expert Systems Applications
(DEXA), Prague, Czech Republic (2013)

P13 Tang, R., Wu, H., He, X., & Bressan, S.: Valuating Queries for Data Trading in
Modern Cities. 2015 IEEE International Conference on Data Mining Workshop
(ICDMW), Atlantic City, NJ, USA (2015)

P14 Tang, R., Amarilli, A., Senellart, P., & Bressan, S.: A Framework for
Sampling-Based XML Data Pricing. Transaction on Large-Scale Data-and
Knowledge-Centered Systems XXIV, 9510, 116-138 (2016)

P15 Wu, S. Y., & Banker, R. D.: Best pricing strategy for information services.
Journal of the Association for Information Systems, 11(6), 339-366 (2010)

Pricing of Data Products in Data Marketplaces 65

P16 Balazinska, M., Howe, B., Koutris, P., Suciu, D., & Upadhyaya, P.: A discus-
sion on pricing relational data. Search of Elegance in the Theory and Practice of
Computation. In: Search of Elegance in the Theory and Practice of Computation.
167-173, Springer (2013)

P17 Shapiro, C., & Varian, H. R.: Versioning: the smart way to sell information.
Harvard Business Review, 76(6), 106-114 (1998)

P18 Shen, Y., Guo, B., Shen, Y., Duan, X., Dong, X., & Zhang, H.: A pricing model
for Big Personal Data. Tsinghua Science and Technology, 21(5), 482-490 (2016)

References

1. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15),
2787–2805 (2010)

2. LeCun, Y., Bengio, Y., Hinto, G.: Deep learning. Nature 521(7553), 436–444 (2015)
3. Schomm, F., Stahl, F., Vossen, G.: Marketplaces for data: an initial survey. ACM SIGMOD

Record 42(1), 15–26 (2013)
4. Schwab, K., et al.: Personal data: the emergence of a new asset class. World Economic

Forum (2011)
5. Koutsopoulos, I., Gionis, A., and Halkidi, M.: Auctioning data for learning. In: IEEE 15th

International Conference on Data Mining Workshops, Sydney, Australia (2015)
6. Muschalle, A., Stahl, F., Löser, A., Vossen, G.: Pricing approaches for data markets. In:

International Workshop on Business Intelligence for the Real-Time Enterprise (2012)
7. Kittlaus, H.-B., Clough, P.: Software Product Management and Pricing. Springer,

Heidelberg (2009). doi:10.1007/978-3-540-76987-3
8. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a replication in

software engineering. In: 18th International Conference on Evaluation and Assessment in
Software Engineering (2013)

9. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering. In: EBSE Technical Report (2007)

10. Petersen, K., Feldt, R., Mujtaba, S., Mattson, M.: Systematic mapping studies in software
engineering. In: 12th International Conference on Evaluation and Assessment in Software
Engineering (2008)

11. Ivarsson, M., Gorschek, T.: Technology transfer decision support in requirements
engineering research: a systematic review of REj. Requirements Eng. 14(3), 155–175 (2009)

12. Frank, R., Cartwright, E.: Microeconomics and Behaviour. McGraw-Hill Education, London
(2013)

13. Nagle, T.T., Hogan, J.E.: The Strategy and Tactics of Pricing: A Guide to Growing More
Profitably. Pearson Prentice Hall, Upper Saddle River (2006)

14. Sarkar, P.: Data as a Service - Framework for Providing Re-Usable Enterprise Data Services.
Wiley, Hoboken (2015)

15. Battini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Techniques.
Springer, Heidelberg (2010). doi:10.1007/3-540-33173-5

16. Hsieh, H.F., Shannon, S.E.: Three approaches to qualitative content analysis. Qual. Health
Res. 15(9), 1277–1288 (2005)

17. Nurdiani, I., Börstler, J., Fricker, S.: The impact of agile and lean practices on project
constraints: a tertiary study. J. Syst. Softw. 119, 162–183 (2016)

66 S.A. Fricker and Y.V. Maksimov

http://dx.doi.org/10.1007/978-3-540-76987-3
http://dx.doi.org/10.1007/3-540-33173-5

Knitting Company Performance and Board
Interlocks

An Exploration with the Finnish Software Industry

Sami Hyrynsalmi1(B), Arho Suominen2, Jukka Ruohonen3, Marko Seppänen1,
and Antero Järvi3

1 TTY Pori, Tampere University of Technology, Tampere, Finland
{sami.hyrynsalmi,marko.seppanen}@tut.fi

2 VTT Technical Research Centre of Finland, Innovations, Economy, and Policy,
Espoo, Finland

arho.suominen@vtt.fi
3 Department of Future Technologies, University of Turku, Turku, Finland

{juanruo,antero.jarvi}@utu.fi

Abstract. A board of directors is a supreme organism of a modern
company. Often, a single board member has a place in several companies’
management teams. This is called a board interlock and its impact on
a single board member, companies and the economics on the whole has
been studied for decades. However, there is a lack of understanding how
software companies’ board of directors interlock as the field is driven by
knowledge and relations more heavily than the other fields. Therefore,
well-connected board members could be a vital competitive advantage
for companies. This study presents a quantitative analysis of 262 Finnish
software companies, their boards and performance. The results show that
neither high board interlocks nor foreign board members are remarkably
related on the performance of companies. The implications of the findings
are discussed and future research inquiries are proposed.

Keywords: Board interlock · Software industry · Finland

1 Introduction

A worn out idiom states that no organization can survive alone in the modern
hyper-connected business era [20]. Networks, ecosystems, communities, comple-
mentors et cetera have been argued to be a key for the survival of modern
companies regardless of their sector [14]. Therefore, it is not surprising that
connectivity of a company’s board of directors and its impact on the firm’s per-
formance have been studied exhaustively in prior literature [6,16,25].

In extant literature, there are both empirical evidence as well as arguments for
the advantages and disadvantages of board interlocks. Board interlocks have been
seen as elitist [26], legally suspicious [24], serving only personal benefits [7] as well
as also bringing new connections and best practices for the use of a company [19].
c© Springer International Publishing AG 2017
A. Ojala et al. (Eds.): ICSOB 2017, LNBIP 304, pp. 67–81, 2017.
https://doi.org/10.1007/978-3-319-69191-6_5

68 S. Hyrynsalmi et al.

Also empirical studies on the impact of board interlocking to the performance
of a company have yielded contradictory results. For example, Santos et al. [25]
showed that a high degree of board interlocking impacts negatively on firms’
performance in Brazil, whereas Horton et al. [11] found exactly the opposite in
the United Kingdom.

However, a majority of existing studies handle all industries similarly, often
failing to separate different fields. That is, the variety of the results might be
explained by the industrial structure—e.g. the relative importance of financial,
human and social capital in different industrial sector—of the studied country
rather than the phenomenon itself. For the knowledge-intensive software indus-
try, only a little attention has been given on boards of directories and their
connections. We hypothesize that connections and experiences of a board mem-
ber in the software industry is linked to good performance of a software firm due
to the intangibility of software and value of knowledge. Thus, in this research
paper, we focus first on the following question:

RQ1 Are board interlocks associated with the economic performance of Finnish
software companies?

In addition, business networks and ecosystems are nowadays often interna-
tional. For example, first time in 2012, half of the Finnish software companies
have international revenue and nearly one fifth have significant international
revenue [23]. Also, due to the internationalization of software businesses, we are
assuming that there are increasing number of foreigners serving in boards of
directors. A foreigner in the board is expected to be better networked and have
more experienced than a domestic board member. This should be also visible in
performance of a company. Therefore, we are secondly focusing on the question:

RQ2 Are Finnish software companies with board of directors including foreign
members performing better than companies managed by exclusively domestic
boards of directors?

Regarding the theoretical frameworks, this study leans towards theory of
social capital by [3]. The theory explains that there are value in informal and
formal relationships. That is, well-connected board members might be able to
open new venues and offer new connections that can be vital for a company.
In addition, well-connected board members can be more experienced and, thus,
be able to help the company better. In this study, we focus only on formal
connections and study how well-connected directors help software companies
perform better.

To answer the presented question, we perform a quantitative study of selected
software firms. As the dataset, we use 262 Finnish software companies, their
executives, board members and financial key figures. The financial information
is queried from Orbis database. This study contributes mainly on the on-going
discussion on the impacts of board interlocks in companies’ performance and
shed lights on software companies board of directories composition and board

Board Interlocks in Finnish Software Industry 69

interlocks in Finland. This study is among the first address this effect in a specific
industrial domain and in software industry.

Remaining of this work is structured as follows. Section 2 presents related
work and the central concepts. The following Sect. 3 clarifies the used research
approach and it is followed by results in Sect. 4. The final two sections discuss the
implications and limitations of the results, and conclude the study, respectively.

2 Background, Related Work and Motivation

Board interlocking, or interlocking directorate, refers to a practice where a mem-
ber of a company’s board of directors or top management serves in several boards
or top management teams [24,26]. As there are for example possibilities for mis-
uses in competition, board interlocking has received attention mainly from the
view-points of antitrust and business ethics (c.f. [24]).

From another point-of-view, board interlocking can be seen as a positive
social capital [3] resource for a company. Well-networked members of a board
can bring valuable connections for the company’s use. In addition, members
who serve in multiple boards are likely more experienced, being able to better
support company. Along these lines, Hao et al. [9], among others, have observed
that companies with connected boards of directors are more likely to use relative
performance evaluation for CEO compensation. In addition, Clarysse et al. [2]
show that high-tech startups are likely to bring complementary human capital
to the board of directors with outsider board members.

While the basic theoretical underpinnings are thus relatively clear, empirical
studies on the impact of board interlocking have yielded contradictory results.
On one hand, Santos et al. [25] find that board interlocking is a frequent phe-
nomenon in Brazilian companies, but with a negative impact upon a company’s
value, especially when the degree of interlocks is high. Similarly, Loderer and
Peyer [17] find that board interlocking impacts a firm’s value negatively (cf. also
[8]), and Fich and White [7] noted that it mainly serves board members, not
the shareholders. In addition, Fich and Shivdasani [6] showed that busy board
members—those with three or more directorships—have a negative impact on
companies’ performance.

On the other hand, for example Mol [19] points out that board interlocking
might benefit all networked companies by bringing competitive advantages on
giving access to resources, clients, new methods and innovations. In addition,
Heracleous and Murray [10] argue that interlocking directorate should provide
value for all companies in a network, but it depends on the type of the network
how directors should mediate. Horton et al. [11] were among the first to show that
better-connected executive or outside director is, his or her firm would achieve
greater benefits in future. Similarly, Larcker et al. [16] find that best-connected
boards outperform worst-connected boards in their large data set. Pombo and
Gutiérrez [22] reached similar results in their study in Columbia. Stuart and Yim
[27] showed that well-connected boards are more likely to be targets of private
equity -backed take-private transactions. Finally, Intintoli et al. [15] argue that

70 S. Hyrynsalmi et al.

overall well-connected board seems to be beneficial for protecting interests of the
company’s shareholders.

Despite of many general board interlock studies, only a handful has been done
in the scope of software industry. Narrowing even more down to Finnish software
industry, there are two recently published studies on board interlocks. Peltonen
and Rönkkö [21] studied Finnish software companies’ board interlocks with clus-
ter analysis. From their dataset of 2008–2009, they identified six interlock clus-
ters: (i) Rapidly expanding international ventures, (ii) Early-stage international
ventures, (iii-iv) Private and public sector venture capitalist dyads, and (v-vi)
International and non-international dyads. Their study is explorative and they
did not analyze the impact of board interlock to the companies’ performance.

In a more recent study, Suominen, Rilla, Oksanen, and Still [28] used social
network analysis methods to study board interlocks of Finnish digital game
companies. They start with the hypothesis that small, well-connected and swiftly
growing industry would have a dense board interlock graph. By using data sets
from the years 2013 and 2015, they find the opposite; the board interlock network
was sparse and the formal board relationship does not seen to have a role in
Finnish game industry. Suominen et al. [28] did not focus on performance of the
game companies.

To summarize, extant literature have showed both positive and negative
implications of board interlocking. Whereas the ‘positive side’ leans towards
social and human capital theories in order to explain that well-connected and
experienced directors are beneficial for a company, the ‘negative side’ argues
that multiple directorships mainly benefits a well-connected board member by a
higher compensation and better future career options. Existing literature have
showed statistical support for both that interlocking directorate harms and ben-
efits companies.

Interestingly, we find only a few studies specifically focusing on software
industry. As stated by Cusumano [5], “software is not like other businesses”.
Due to, e.g., the intangibility of software, zero reproduction costs, electronic
distribution and high dependence on knowledge [1,12,13], social and human
capital might be more valuable than financial or natural capital. For example,
it has been shown that formal and informal network relationships are crucial
for small software firms’ internationalization process [4]. Therefore, the impor-
tance of well-connected and experienced boards of directors could be especially
beneficial in the software industry.

The motivation for this study can be summarized with the following
observations:

– Founding a software company requires a little financial capital: successful soft-
ware companies have been founded in garages and building a modern software
product can be done with cheap laptops and rented servers. However, due to
this, competition is tight as anyonewith enough skills can found a firmand repli-
cate used business model. In this kind of market, good connections to the pay-
ing customers can be more valuable than excellent technical implementation.

Board Interlocks in Finnish Software Industry 71

Therefore, well-connected board can be a competitive advantage for a software
company.

– As an intangible product, software is easy to transfer from a country of ori-
gin to all over the world. However, as all software vendors can easily trans-
fer their products, differentiation from competitors can be hard. Thus, we
hypothesize that foreign members in boards of directors could perhaps foster
entry into foreign markets and this effect might be observable in performance
of software companies.

– Finally, existing studies have reported contradicting results on either that
board interlocking benfits [11,15,16,22] or harms [7,8,17,25] the company.

Thus, this study pays a special attention to board interlocking and its impacts on
software industry. We address whether software companies with well-connected
board of directors perform better or not and whether foreign board member
influence on the performance. In addition, as the full-scale studies, focusing on
all companies in a given country, have yielded contradictory results, this study
offers an alternative strategy by focusing on a single market domain.

3 Research Approach, Data and Method

This study uses Finnish software industry as a case study population. This deci-
sion is justified by existing research on the case study country (e.g. [21,28])
offering the possibility of qualitative reflections. In addition, the researchers
are familiar with the selected industry and country, enabling a more in-depth
analysis. Finally, the Finnish software industry is well studied: Finnish Software
Industry Survey has ran eighteen times1.

We collect, prepare and analyze data for this study in six phases. At the first
phase, the aim is to create a dataset of Finnish software companies. As there
is no easy way to identify all Finnish software companies through e.g., NACE
REV. 2 classification, we use a proxy measure for creating a representative sam-
ple. We acquire a list of Finnish software companies from the member page2

of Ohjelmistoyrittäjät ry (Finnish Software Industry and Entrepreneur Associ-
ation). In total, the parsed list contained 289 companies. Naturally, this data
source contains only members of the association and provides only a limited
view on the Finnish software companies. A clear limitation is that we can pre-
sume member companies are more established, both in revenue and age. The
data acquaintance was done in the middle of February 2016.

In the second phase, we enriched the data by querying financial and board
information from the Orbis database by Bureau van Dijk. The database contains
financial information of more than one hundred million companies globally. We
queried the companies from the database based on company name. The search

1 Software Industry Survey. https://www.softwareindustrysurvey.fi.
2 Finnish Softawre Industry & Entrepreneurs Association, Members. https://

ohjelmistoyrittajat.fi/en/members.

https://www.softwareindustrysurvey.fi
https://ohjelmistoyrittajat.fi/en/members
https://ohjelmistoyrittajat.fi/en/members

72 S. Hyrynsalmi et al.

resulted in retrieval of 287 companies. The search is a fuzzy matching imple-
mented by the data provider and the sample gathered was manually checked.

In the third phase, we created a dataset of all Finnish companies. This data is
later used to search if board members or executive officers have other affiliations
than the one in a software company. The data was searched from the Orbis data-
base, limiting the search to privately-held Finnish companies. For each company,
names of board members and executive officers where extracted. Orbis data does
not allow us to separate board members and executive officers. However, we use
the list provided from Orbis as board member data. In total, the data of 288,581
companies are included in the final dataset. The Statistics of Finland reports
that at the end of 2015, there were 360,051 registered companies in Finland3.
This leaves roughly 72,000 companies that are not accounted in Orbis. However,
the extent of this dataset is argued to be substantial enough for the analysis.

In the fourth phase, we create a matching dataset of Finnish individuals using
Avoindata.fi (literally, open data) service that list Finnish first names and sur-
names. If a board member’s surname was not found in theVäestötietojärjestelmän
suomalaisten nimiaineistot provided by Väestörekisterikeskus4, we assumed that
the member is foreigner. Due to privacy issues, the service publish only surnames
that have more than 20 living individuals in Finland. Thus, this data sets cer-
tain limitations into the research. For example, rare surnames can be classified as
foreigners.

In the fifth phase, two variables—international and network size—were cre-
ated using a Python script. The Python script was used to match the surnames
of software companies against the Finnish surnames to identify individuals that
would not be Finnish. In practice, the script created a dichotomous variable
‘international’ for each company. The variable is set as true if the surname of
even one of the members of the company board or its executives is not listed
in the Finnish surname database. The variable ‘network size’ counts the sum of
board members and executives directorship positions in the full set of Finnish
companies. It uses the full name of individuals in the matching. That is, we cal-
culate for all board members of software companies’ the number of directorship
positions they have in Finland. Finally the continuous variable is the mean of
the affiliation counts of each individual associated with a company.

In the sixth phase, the data for the software companies is complemented with
data on company performance. Research has pointed towards several financial
data variables as good performance indicators [18]. Partly due to the fact that
the majority of the companies in the sample are not publicly listed, this study
uses ‘Profit Margin’, ‘Return on Assets’ (ROA), ‘Current Ratio’ (CR) and ‘Oper-
ating Revenue’ (OR) as indicators of a company’s economic performance. The
dependent variables are controlled for yearly variation by using a three year

3 Tilastokeskus, Yritysten rakenne- ja tilinpäätöstilasto http://tilastokeskus.fi/tup/
suoluk/suoluk yritykset.html.

4 Väestötietojärjestelmän suomalaisten nimiaineistot. https://www.avoindata.fi/
data/en/dataset/none. Licensed with Creative Commons Attribution 4.0.

http://tilastokeskus.fi/tup/suoluk/suoluk_yritykset.html
http://tilastokeskus.fi/tup/suoluk/suoluk_yritykset.html
https://www.avoindata.fi/data/en/dataset/none
https://www.avoindata.fi/data/en/dataset/none

Board Interlocks in Finnish Software Industry 73

mean for each variable. Companies that did not have data for three years, were
excluded from the analysis. This reduced the sample to 262 companies.

Finally, the data was analyzed looking at the internationalization of the com-
pany executives and board as independent variables. The dependent variables
are the four company performance indicators, and network size is used as a con-
trol variable. In addition, to evaluate the goodness of our internationalization
identification strategy, we evaluated a dozen companies. Out of those, only a few
had clear a false positive match caused by either a rare or compounded surname.

4 Results

The dataset is sufficiently small for an analytical exploration both in terms of
size (262 firms) and dimensions (six variables). From the dataset, 97 firms were
classified as ‘internationals’ and 165 as ‘domestic’. Thus, the results are pre-
sented with four simple plots. In each plot, a y-axis represents a given economic
performance measure, while the average number of board intelocks is always
given on the x-axis. These simple scatter plots provide a tentative answer for
RQ1. For answering to the question about international board members (RQ2),
the scatter plots are further conditioned according to whether or not a board is
exclusively domestic, only comprised of members with Finnish surnames.

0 5 10 15 20

-5
0

0
50

Interlock size

R
O

A

PROBIS SOLUTIONS OY

0 5 10 15 20

-8
0

-4
0

0
40

Interlock size

P
ro

fit
 M

ar
gi

n

PROBIS SOLUTIONS OY

0 5 10 15 20

0
10

20
30

Interlock size

C
ur

re
nt

 R
at

io

PROBIS SOLUTIONS OY

CONTASTIC OY
KJK-TIETO OY

SPINET OY

CERVINO OY

0 5 10 15 20

0
50

00
0

15
00

00

Interlock size

O
pe

ra
tin

g
R

ev
en

ue

PROBIS SOLUTIONS OY

F-SECURE OYJ

OY SAMLINK AB

Fig. 1. ROAs, current ratios, profitmargins, and operating revenues for all companies
(three-years average)

Given these preliminary notes, the results for RQ1 are shown in Fig. 1 and
for RQ2, the results are summarized in Figs. 2, 3, 4, and 5 for the ROAs, current
ratios, profit margins, and operating revenues, respectively. The following points
can be used for disseminating the figures.

74 S. Hyrynsalmi et al.

0 5 10 15 20

-5
0

0
50

0 5 10 15 20

Interlock size

R
O

A

Domestic

International

Given a board that is:

Fig. 2. ROAs, Interlocks, and International Board Members

0 5 10 15 20

0
10

20
30

0 5 10 15 20

Interlock size

C
ur

re
nt

 R
at

io

Domestic

International

Given a board that is:

Fig. 3. Current Ratios, Interlocks, and International Board Members

Board Interlocks in Finnish Software Industry 75

0 5 10 15 20

-8
0

-2
0

40

0 5 10 15 20

Interlock size

P
ro

fit
 M

ar
gi

n

Domestic

International

Given a board that is:

Fig. 4. Profit Margins, Interlocks, and International Board Members

0 5 10 15 20

0
10

00
00

0 5 10 15 20

Interlock size

O
pe

ra
tin

g
R

ev
en

ue

Domestic

International

Given a board that is:

Fig. 5. Operating Revenues, Interlocks, and International Board Members

76 S. Hyrynsalmi et al.

– The foremost observation is clear: the interlock sizes are not statistically
associated with any of the four economic performance measures (Fig. 1).
Even when polynomial regression lines are used for accounting potential non-
linearities, the resulting lines are flat. Thus, it seems reasonable to conclude
that nationwide board interlocks are not generally associated with economic
performance of the sampled Finnish software companies.

– When focusing on the conditioning upon whether the boards are exclusively
domestic, it becomes evident that there are no notable differences in terms
of ROAs and profit margins, as can concluded by comparing the y-axes of
the two scatter plots in Figs. 2 and 4. In contrast, the current ratios of a
few companies with fully national boards are notably higher when compared
to boards staffed also with international members. An analogous but reverse
conclusion applies to the operating revenues shown in the y-axes of Fig. 5.
This observation also warrants a further point.

– All figures indicate the presence of outliers. These outlying companies also dis-
tort the results regarding international boards, although removing the outliers
does not strengthen the negligible statistical association between the four eco-
nomic performance measures and the interlock sizes. In particular, the oper-
ating revenues in Fig. 5 are substantially higher for two outlying companies
that both have also international board members. These outliers correspond
with F-Secure and Samlink. The former company operates in the domain
of cyber security, while the latter provides business-to-business service for
banking, insurance, and related sectors.

To summarize, on one hand, the amount of nationwide board interlocks pro-
vides no noteworthy statistical power for explaining the economic performance
of the sampled Finnish software companies. On the other hand, the economic
variables vary to some extent according to whether the boards contain also inter-
national members. The latter observation is particularly noteworthy with respect
to a few outlying companies.

5 Discussion

This study seek answers to the two questions: Whether well-connected boards
of software companies are performing better or worse than the rest (RQ1), and
whether or not foreigners in the board of directors is associated with better
performance of companies (RQ2)?

To answer RQ1, we did not find any evidence that the interlock sizes would
be statistically associated with any of the four economic performance measures
used. That is, we did not find that interlocking would have either positive or
negative impacts on the firms’ performance.

To answer RQ2, we showed that the performance measures vary to some
extent according to whether the boards contain international member or not.
This observation is mainly related to current ratios and operating revenues;
however, the effects are opposite – international boards have higher operating

Board Interlocks in Finnish Software Industry 77

revenues whereas national boards have higher current ratios. Nevertheless, the
outliers remain interesting cases for further studies.

The results have certain implications for on-going academic discussions. First,
this study contributes to a long-running debate on whether high board interlock-
ing impacts positively or negatively to the company’s performance. Prior studies
have showed support for both relations. In this study, we did not found any
robust statistical associations—that is, high board interlocking sizes seem not to
have major impacts on the performance of Finnish software companies. This can
be associated some aspect of the software industry, which was not uncovered in
the scope of this study, but warrants further analysis.

Looking to explain prior positive associations between board interlocks and
company performance, we might question the temporal aspects of the data gath-
ered. For example, it can be that well-connected directors are lured to well-
performing or promising companies, which then creates a virtuous cycle. Further
qualitative and quantitative work are needed to fully understand the impacts
and limitations of interlocking directorate. In addition, in our data gathering
process, Orbis data limits the study by providing no historical information on
board members, although financial data is provided up to the 10 last years.

We were expecting that either well-performing stable companies would have
foreigners in their board of directors or quickly growing companies would have
acquired foreigner investors and board members. However, when outliers are
excluded, we find only a little, if any, statistical association. A further research
could be targeted to investigate these outliers if they can suggest some indication
on the direction of relationship between foreign member and firm performance.
While companies with international board or executive members were perform-
ing a little better than companies with fully domestic directors in current ratios
whereas an opposite result was found in operating revenues. Nevertheless, the
differences remain small. When the few notable outliers are taken into account,
there is a substantial difference in operating revenue and these companies seem
to support our starting expectation.

For practitioners, this study gives some suggestions. Statistically it seems
that there are no differences whether the board members are highly or lowly
interlocked. This might seem to be counter-intuitive as one would easily assume
that highly interlocked board members would have higher social and human
capital, and thus be able to support company better than ones with lower social
capital. Board interlocks is expected to improve social capital by, e.g., offering
a connection to other board professionals who are well-connected, which might
open new opportunities for both the person and the company. Highly connected
board members’ social capital is increased by, e.g., increasing experiences faster
with more directorships. Therefore, well-connected board members should bring
some benefits for also company. However, we did not found strong and clear
statistical correlation to show that the number of board interlocking would be
associated with performance.

In addition, of course board members can be motivated by other reasons
than helping the company. There are existing studying suggesting that ‘busy’

78 S. Hyrynsalmi et al.

board members do not help companies as well as the others. A busy member is
defined as one who have three or more directorships at the same time. However,
at least our analysis did not show that having more interlocking directorships
would harm companies. Nevertheless, the basic underpinning is clear: having too
many positions mean that one cannot concentrate well on every task at hand
and, therefore, some of those tasks might not be handled with enough attention.
Another further research theme would thus be the quality of board work. There
may exist differences in the level and activity of board work and this might be
a stronger explaining factor to firm performance.

Naturally, there are some limitations to our research that should be taken into
account. First, our strategy to select software companies based on the member-
ship and existence of a profile page in a local advocacy group limits our attention
to active, well-performing companies.

Second, we used an open data service to identify foreigners in boards of
directors. The used approach has limitations as, e.g., rare surnames are not listed
which might have generated some ‘false positives’. We noted in the evaluation,
for example, that double-barrelled surnames (e.g., when two surnames are joined
with a hyphen after a marriage) cause false positives in our matching strategy.
However, our identification approach is usable for a large-scale quantitative study
and some small error margin, thus, can be accepted.

Third, Finland remains a small, isolated Nordic country with a language
spoken by only few and that resembles only little the other languages spoken in
the area. Thus, it can be that there are smaller numbers of foreigners available
to serve in boards of directors and therefore there could be a higher number of
highly interconnected board members. Further work is needed to replicate the
analysis in other countries and with other industries. Fourth, Orbis data limits
our capabilities to extract only board members and to get historical data for the
individuals associated with the company. This makes showing the impact of a
new board member challenging, as we can not attribute a specific performance
gain to a person. We should also note, that our study looks at top management
as a whole whereas prior research has focused on board interlocks either purely
in board of directors or executives.

Nevertheless, this study opens new avenues for future inquiries. For example,
a majority of existing work focus only on formal, observable, ties between board
members and companies. Social capital theory identifies also informal ties, which
can be even more stronger and meaningful for performance of a company than
formal ones. Further work should study the importance of informal connections
such as those created in clubs and software industry associations.

In addition, most of the interlocking directorate studies are based on a single
snapshot of a time. There are only a handful of studies (e.g. [8]) presenting
longitudinal analysis on the impacts of board interlocking. Further studies should
pay attention to model long time implications of having board interlocks. Finally,
our dataset have outliers that differ remarkably from the remaining set. Whereas
we did not focus on analysing those in this study, a qualitative analysis of outliers
could reveal interesting alternative approaches and working patterns.

Board Interlocks in Finnish Software Industry 79

Finally, this study tried to focus on a smaller segment of Finnish industry
in order to avoid the possible pitfalls of previous studies. However, it might
be that there are small clusters inside our set of data – thus, in further work,
we should cluster the companies and study the impact of board interlocking
inside these clusters. For example, companies, that are seeking to growth quickly,
could benefit more from well-connected board members than already established
companies. In addition, in further studies the meaningfulness of the performance
indicators should be analyzed with care.

6 Conclusions

This study addressed the impacts of board interlocks to the performance of
software companies. We used a set of 262 Finnish companies, their directors
and financial indicators in a quantitative analysis. First, the results show that
board interlocks do not seem have either positive or negative correlation on the
companies’ performance. Second, we showed that having a foreign board member
correlates with a better performance of a company only when the performance
is evaluated with operating revenues. An opposite effect was found with current
ratios. However, there are remarkable outliers in the dataset. Nevertheless, these
are contradicting results when compared to the extant literature. However, there
are certain limitations in restricting the study population to a single country and
therefore future work is needed to replicate the results with a larger dataset.
Nevertheless, this study might help scholars to better understand the impacts
of board interlocks in software industry and provide some suggestions for the
practitioners.

References

1. Almor, T., Hashai, N.: The competitive advantage and strategic configuration of
knowledge-intensive, small- and medium-sized multinationals: a modified resource-
based view. J. Int. Manag. 10(4), 479–500 (2004)

2. Clarysse, B., Knockaert, M., Lockett, A.: Outside board members in high tech
start-ups. Small Bus. Econ. 29(3), 243–259 (2007)

3. Coleman, J.S.: Social capital in the creation of human capital. Am. J. Sociol. 94,
S95–S120 (1988)

4. Coviello, N., Munro, H.: Network relationships and the internationalisation
process of small software firms. Int. Bus. Rev. 6(4), 361–386 (1997). http://www.
sciencedirect.com/science/article/pii/S0969593197000103

5. Cusumano, M.A.: The Business of Software: What Every Manager, Programmer,
and Entrepreneur Must Know to Thrive and Survive in Good Times and Bad. Free
Press, New York (2004)

6. Fich, E.M., Shivdasani, A.: Are busy boards effective monitors? J. Finance 61(2),
689–724 (2006)

7. Fich, E.M., White, L.J.: Why do CEOs reciprocally sit on each other’s boards? J.
Corp. Finance 11(1–2), 175–195 (2005)

http://www.sciencedirect.com/science/article/pii/S0969593197000103
http://www.sciencedirect.com/science/article/pii/S0969593197000103

80 S. Hyrynsalmi et al.

8. Friel, N., Rastelli, R., Wyse, J., Raftery, A.E.: Interlocking directorates in Irish
companies using a latent space model for bipartite networks. Proc. Natl. Acad.
Sci. U.S.A. 113(24), 6629–6634 (2016)

9. Hao, Q., Hu, N., Liu, L., Yao, L.J.: Board interlocking networks and the use relative
performance evaluation. Int. J. Acc. Inf. Manag. 22(3), 237–251 (2014)

10. Heracleous, L., Murray, J.: Networks, interlocking directors and strategy: toward
a theoretical framework. Asia Pac. J. Manag. 18(2), 137–160 (2001)

11. Horton, J., Millo, Y., Serafeim, G.: Resources or power? implications of social
networks on compensation and firm performance. J. Bus. Finance Account. 39(3–
4), 399–426 (2012)

12. Hyrynsalmi, S.: Letters from the War of Ecosystems – An Analysis of Indepen-
dent Software Vendors in Mobile Application Marketplaces. Doctoral dissertation,
University of Turku, Turku, Finland, http://urn.fi/URN:ISBN:978-952-12-3144-5,
TUCS Dissertations No 188

13. Hyrynsalmi, S., Suominen, A., Knuutila, T.: A discussion of software product con-
ceptualizations. In: Seppänen, M., Mäkinen, S., Ortt, R.J., Hosni, Y. (eds.) Pro-
ceedings of the 5th European Conference on Management of Technology EuroMOT
2011, pp. 226–240. Tampere University of Technology (2011)

14. Iansiti, M., Levien, R.: Strategy as ecology. Harvard Bus. Rev. 82(3), 68–78 (2004)
15. Intintoli, V., Kahle, K.M., Zhao, W.: Board connectedness and board effectiveness

(July 22, 2015). SSRN
16. Larcker, D.F., So, E.C., Wang, C.C.: Boardroom centrality and firm performance.

J. Account. Econ. 55(2–3), 225–250 (2013)
17. Loderer, C., Peyer, U.: Board overlap, seat accumulation and share prices. Eur.

Financ. Manag. 8(2), 165–192 (2002)
18. Männiste, M., Hazak, A., Listra, E.: Typology of european listed companies reac-

tions to global credit crunch: cluster analysis of share price performance. In: 3rd
International Conference on Information and Financial Engineering, pp. 565–569
(2011)

19. Mol, M.J.: Creating wealth through working with others: interorganizational rela-
tionships. Acad. Manag. Executive 15(1), 150–152 (2001)

20. Moore, J.F.: Predators and prey: a new ecology of competition. Harvard Bus. Rev.
71(3), 75–86 (1993)

21. Peltonen, J., Rönkkö, M.: Board interlocks in high technology ventures: the rela-
tion to growth, financing, and internationalization. In: Tyrväinen, P., Jansen, S.,
Cusumano, M.A. (eds.) ICSOB 2010. LNBIP, vol. 51, pp. 163–168. Springer, Hei-
delberg (2010). doi:10.1007/978-3-642-13633-7 14

22. Pombo, C., Gutiérrez, L.H.: Outside directors, board interlocks and firm perfor-
mance: empirical evidence from colombian business groups. J. Econ. Bus. 63(4),
251–277 (2011)

23. Pussep, A., Schief, M., Weiblen, T., Leimbach, T., Rönkkö, M., Buxmann, P.:
Results of the German Software Industry Survey 2013. Technische Universität
Darmstadt, August 2013

24. Sallinger, L.M. (ed.): Encyclopedia of White-Collar & Corporate Crime. SAGE
Publishing, Thousands Oaks (2005)

25. Santos, R.L., di Miceli da Silveira, A., Barros, L.A.: Board interlocking in brazil:
directors’ participation in multiple companies and its effect on firm value and
profitability. Latin Am. Bus. Rev. 13(1), 1–28 (2012)

http://urn.fi/URN:ISBN:978-952-12-3144-5
http://dx.doi.org/10.1007/978-3-642-13633-7_14

Board Interlocks in Finnish Software Industry 81

26. Scott, J. (ed.): Corporate Business and Capitalist Classes, 3rd edn. Oxford Uni-
versity Press, New York (1997)

27. Stuart, T.E., Yim, S.: Board interlocks and the propensity to be targeted in private
equity transactions. J. Financ. Econ. 97(1), 174–189 (2010)

28. Suominen, A., Rilla, N., Oksanen, J., Still, K.: Insights from social network
analysis - case board interlocks in finnish game industry. In: Proceedings of
the 2016 49th Hawaii International Conference on System Sciences HICSS 2016,
pp. 4515–4524. IEEE Computer Society, Washington (2016)

Modeling Strategic Complementarity
and Synergistic Value Creation
in Coopetitive Relationships

Vik Pant1(&) and Eric Yu1,2

1 Faculty of Information, University of Toronto, Toronto, Canada
vik.pant@mail.utoronto.ca, eric.yu@utoronto.ca

2 Department of Computer Science, University of Toronto, Toronto, Canada

Abstract. This paper proposes an approach for modeling and analyzing
strategic complementarity in software businesses. The primary research objec-
tive is to develop an approach for representing and reasoning about synergistic
value creation in software enterprises and ecosystems. This agenda is based on
the increasing importance of complementarity as a concern within software
organizations and their networks. It recognizes the prevalence of coopetition, as
a common practice, in the software industry where businesses cooperate and
compete simultaneously in open source communities, standards-setting bodies,
and software ecosystems. It focuses on complementarity since it is a critical
motivator for coopetition among software businesses. This study offers an
approach for comparing alternate combinations of software products for
assessing their abilities for synergy creation with reference to the concept of
added value. It evaluates the sufficiency of this approach by applying it to an
industrial case study from management literature. It also identifies a direction for
future research for this line of inquiry.

Keywords: Complementarity � Coopetition � Software business � Strategy �
Synergy

1 Introduction

Software enterprises and ecosystems rely on simultaneously cooperative and compet-
itive relationships to achieve their collective as well as individual business objectives. It
is common for software businesses, from global conglomerates to nascent startups, to
engage in coopetitive behaviors towards each other. Such behaviors can be observed in
dealings between software businesses in open source communities, standards-setting
bodies, and software ecosystems [1]. Moreover, software businesses coopete with each
other individually as well as through their partnerships and alliances with other firms –
which are themselves coopetitive. Therefore, such software ecosystems [2], partner
networks and alliance constellations have multifaceted relationships with each other
where cooperation and competition exist concomitantly at the individual and collective
levels. Furthermore, coopetition between enterprises can only be expected to increase
as larger numbers of enterprises transform themselves from pipeline-driven business
models to platform-oriented business models. This is because a key contributor to the

© Springer International Publishing AG 2017
A. Ojala et al. (Eds.): ICSOB 2017, LNBIP 304, pp. 82–98, 2017.
https://doi.org/10.1007/978-3-319-69191-6_6

growth of coopetition in the software industry is the presence of complementarity
between many software businesses.

Software business (SB) research focuses on the corporate strategies of software
companies. It is concerned with the study of business models of software enterprises to
identify their sources of value creation for organizational stakeholders. SB frameworks
are intended to explain various facets of a software business such as its product
strategy, revenue logic, distribution model, and service implementation model [3].
Such frameworks can be applied to examine different types of software businesses
including “pure software product business, enterprise solution system business, and
software service business” [4]. These frameworks are designed for analyzing software
businesses and hence they are useful for understanding the “relation between a business
model, business logic and business strategy” of software companies [5]. Comple-
mentarity motivates coopetition, which is an increasingly common feature of
inter-organizational relationships between software enterprises and ecosystems. Thus,
by illuminating this important concept, this paper furthers understanding into business
models and strategies of software businesses.

The rest of the paper is organized as follows. The next section of this paper outlines
our research objectives and expected contributions to the study of complementarity. It
lists the core facets of strategic complementarity that must be accommodated by any
framework that is designed to support the analysis of synergy. The third section pre-
sents a model of strategic complementarity and synergistic value creation that is based
on an industrial case study from the software industry. The fourth section discusses the
key facets of strategic complementarity that are relevant for modeling and analyzing it.
The fifth section covers future work and conclusions. The references in this paper are
listed in the sixth section.

2 Analyzing Strategic Complementarity Between Actors

Complementarity is a key characteristic of coopetition [8]. Complementarity is also
referred to as synergy which is colloquially described as the whole being greater than
the sum of its parts [6]. Tee & Gawer [9] assert that “complementarity refers to the
combined returns from the combination of two or more assets, with some combinations
resulting in higher value creation than other combinations.” Similarly, Kyriakopoulos
& Moorman [10] claim that “complementarity refers to the degree to which the value of
an asset or activity is dependent on the level of other assets or activities.” Milgrom &
Roberts [11] credit Edgeworth for introducing this concept into economics, where it
has been studied extensively. They note that the notion of complementarity can be
applied to inputs, such as goods and services, as well as activities [12]. In their
influential work on coopetition theory, Brandenburger & Nalebuff explain that a
“complementor” is an actor that makes a focal actor more valuable/attractive to a
buyer/seller when that buyer/seller can buy/sell from/to both actors rather than when it
can only do so with one of them alone [13].

The effects of complementarity can be observed in a variety of enterprise functions
ranging from marketing and sales to production and distribution. Examples of the
former include goods/services that are regarded by consumers as being more valuable

Modeling Strategic Complementarity and Synergistic Value Creation 83

together than separately. For instance, Barquera et al. [14] and Ng et al. [15] claim that
coffee and milk are complements. Examples of the latter include economies of scope
wherein it is cheaper for a firm to manufacture/deliver goods/services jointly in com-
parison to manufacturing/delivering each good/service individually. For instance, Tsuji
[16] asserts that economies of scope can be found in “department stores which offer
consumer loans” and “electric appliances makers which produce PCs”. Complemen-
tarity is a key motivation for participation in software ecosystems by rival vendors.

Following [29], we distinguish between the concepts of value added by an actor,
and added value of an actor in a multi-party economic relationship. Reasoning about
strategic complementarity between actors requires the ability to analyze three main
factors which are resources/assets/objects, value added by each actor, and added value
of each actor. A resource/asset/object refers to an entity associated with some value,
benefit, or utility for a stakeholder. Value added by an actor refers to the incremental
addition of some value, benefit, or utility by that actor. Added value of an actor refers to
the worth of that actor in terms of value, benefit, or utility creation in a multi-party
economic relationship. In analyzing complementarity, the notions of value added and
added value are viewed from the perspective of the stakeholder that is the beneficiary of
synergy.

Modeling is widely used in IS engineering, and recently has been extended to deal
with strategic management (SM) concerns. IS researchers have incorporated theories
from SM into modeling frameworks to reason about strategic decisions [7, 31]. For
example, in our earlier work, we analyzed inter-organizational competition that resulted
from resource conflicts [6]. Similarly, Santos [34] proposes Power Models that are
useful for understanding the relationships between different actors in an ecosystem by
applying ideas about power from the SM literature. Driven by their proliferation in
industrial practice and prominence in SM literature – ideas from coopetition theory are
starting to appear in IS publications. However, complementarity, which is a prime
driver of coopetition, has not been integrated into modeling frameworks in a structured
and systematic manner. The absence of such integration “make it difficult for
requirements engineers to validate low-level requirements against the more abstract
high-level requirements representing the business strategy” [32]. In this paper we use
modeling to analyze strategic complementarity.

3 Example: Complementarity Between Windows
and Pentium

3.1 Analyzing Strategic Complementarity in the Wintel Alliance

A widely-studied example of complementarity and coopetition is the case of Wintel
(i.e., Microsoft Windows operating system on Intel x86 chipsets) [17]. Throughout the
1990s, Microsoft and Intel simultaneously competed and cooperated with each other
[18]. They cooperated to achieve their common goal of establishing Wintel as the de
facto standard in personal computing [19]. This joint objective comprised of enlarging
the market for Windows on x86 by competing with vendors of substitute products, such
as Apple and Motorola [20]. However, Microsoft and Intel also had their private goals

84 V. Pant and E. Yu

of maximizing their individual shares of the collective value created by the Wintel
alliance [21]. This created a, “kind of interfirm dynamics which allow the competing
firms involved to manage a partially convergent interest and goal structure” [22].

Brandenburger & Nalebuff [13] suggest that complementarity between Windows
and Pentium motivated the coopetitive relationship between Microsoft and Intel. The
basic reason for the presence of this complementarity was that a customer (i.e., PC
user), with a specific set of requirements, could do more by using these products
together rather than separately. For example, a PC user could get better performance in
Windows with Pentium because Intel had optimized that chipset for Windows and
Microsoft had implemented the MMX multimedia instruction set from Intel into
Windows [18]. If this user chose a different operating system (e.g., Linux) on Pentium
or Windows on a different chipset (e.g., K6) then that user would have foregone the
performance improvements that stemmed from the co-optimization of Windows and
Pentium.

However, while Wintel offered performance advantages to a PC user (compared to
substitutes of Windows and Pentium) it also locked that user into a relationship with
proprietary vendors. Microsoft and Intel charged premium prices and this translated
into higher costs for that user. Conversely, if this user chose a different operating
system or chipset then they would have saved money but would not have benefited
from the performance advantages of Wintel. This was just one of many tradeoffs that
vendors (such as Microsoft, Intel, Apple, and AMD) had to analyze to develop per-
suasive value propositions for their target customers.

As this example indicates, reasoning about complementarity requires the ability to
evaluate the objectives of an actor (e.g., PC user), the options that are available to meet
those objectives, and the impact of those options on those objectives. Each alternative
can impact the satisfaction or denial of an actor’s goals differently since there are
trade-offs between those options. The satisfaction of an objective leads to realization of
benefits for an actor while its denial impairs such benefit realization. Therefore, to
understand the presence and extent of complementarity between entities the individual
and collective effects, of those entities, on value creation must be compared. This can
be done using text, as was done in this sub-section, as well as by using models, as is
done in the following sub-section.

3.2 Reasoning About Strategic Complementarity in the Wintel Alliance

In this paper, we use two modeling languages, i* and e3value, in combination to
analyze strategic complementarity between Microsoft Windows and Intel Pentium. i* is
explained by Lucena et al. in [27] and e3value is explained by Souza et al. in [28].
These authors depict metamodels of i* and e3value in [27, 28] respectively. i* (dis-
tributed intentionality) is a socio-technical modeling language that can be used to
represent the intentional structure of an actor as well as its strategic relationships with
other actors. It is useful for analyzing complementarity because it supports comparing
the impact of alternatives on objectives via links between means and ends.

Figures 1a, 1b, and 1c show the impact of different combinations of operating
systems and chipsets on the satisfaction of various objectives of a home user of personal
computer (PC). Figure 1d presents a composite model of alternatives available to a

Modeling Strategic Complementarity and Synergistic Value Creation 85

home user for personal computing. i* is a goal modeling language and the main con-
ceptual entities in i* are goals, tasks, resources, and softgoals. Within the scope of each
actor, a goal is a state of affairs that an actor intends to achieve in the world. For
example, in Figs. 1a, 1b and 1c, the goal of a home user is to buy a PC. A task is a means
for achieving an end which refers to satisfying a goal. For example, in Figs. 1a, 1b
and 1c, a home user can buy Windows on Pentium, Windows on other chipset, or other
operating system on Pentium to satisfy its goal of buying a PC. A resource is a physical
or informational object that is required to achieve some goal or perform some task. For
example, in Fig. 1a, a home user procures Pentium from Intel and obtains Windows
from Microsoft.

A softgoal is a quality objective or nonfunctional requirement that does not have
well defined satisfaction criteria. The fulfilment of a softgoal is judged subjectively
from the perspective of an actor through elaboration and refinement. For example, in
Figs. 1a, 1b and 1c, the requirements of a home user are represented as softgoals. This
is because their satisfaction is judged subjectively from the perspective of that home
user. Figure 1a shows those requirements that are satisfied/denied if the home user
chooses Windows on Pentium. Figure 1b shows those requirements that are

Fig. 1a. i* SR diagram showing adequacy of Wintel.

86 V. Pant and E. Yu

Fig. 1b. i* SR diagram showing adequacy of other operating system on Pentium.

Fig. 1c. i* SR diagram showing adequacy of Windows on other chipset.

Modeling Strategic Complementarity and Synergistic Value Creation 87

satisfied/denied if the home user chooses an operating system other than Windows
(e.g., Linux) on Pentium. Figure 1c shows those requirements that are satisfied/denied
if the home user chooses Windows on a chipset other than Pentium (e.g., K6).

These entities are connected via means-ends links, decomposition links, depen-
dency links, and contribution links. Means-ends links relate a goal to one or more tasks
such that the completion of any of those tasks achieves that goal. For example, in
Figs. 1a, 1b and 1c, Windows on Pentium, other operating system on Pentium, and
Windows on other chipset are examples of alternate means that satisfy the same goal of
buying a PC. Decomposition links relate a task to other elements such that the fulfil-
ment of all those elements is required to perform that task. For example, in Figs. 1a, 1b
and 1c, a home user needs to buy a PC before it can use that PC. Contribution links
denote various types of impacts (such as help, hurt, etc.) that different entities have on
softgoals. For example, in Fig. 1a, buying a PC that runs Windows on Pentium helps a
home user benefit from optimized performance as well as access to a large user
community.

Dependency links are used to express the intentional relationships between actors
based on the goals, tasks, resources, and softgoals that an actor depends on from
another actor. An actor that depends on another actor is termed a depender, an actor on
which another actor depends is termed a dependee, and the object of the dependency
between actors is termed a dependum. For example, in Fig. 1a, a home user depends on

Fig. 1d. i* SR diagram showing all three alternatives.

88 V. Pant and E. Yu

Intel to procure Pentium and Microsoft to obtain Windows. In the diagrams in this
paper, we have omitted dependencies from the vendors to the home user (i.e., for
money) to simplify the visual presentation and interpretation of these diagrams.

A comparison of Figs. 1a, 1b and 1c shows that Windows on Pentium satisfies the
overall requirements of a home user better than Windows on other chipset or other
operating system on Pentium. Thus, Windows and Intel are more valuable together for
a home user than Windows and Pentium separately because neither Windows and a
different chipset nor another operating system and Pentium can meet a home user’s PC
requirements as optimally as Windows and Pentium can jointly. This demonstrates the
presence of complementarity between Windows and Pentium and points out the rea-
sons for the existence of that complementarity. It should be noted that while these i*
diagrams allow us to depict the presence of complementarity between Windows and
Pentium—they do not allow us to depict the magnitude of surplus from that synergy.

e3value is a value modeling language that can be used to represent networks that
are setup to facilitate economic exchanges between organizations. It is useful for
analyzing complementarity because it can be used to compare the individual and
collective value creation effects of entities. In e3value, the main conceptual entities are
actors, value objects, value ports, value interfaces, value transfers, value transactions,
and value activities.

An actor is an economically independent entity (e.g., Microsoft) that transfers value
objects (e.g., Windows) to other actors (e.g., home user) in return for objects (e.g.,
money) of benefit/utility from them. Value ports (e.g., catalog) are used by an actor
(e.g., Microsoft) to offer (e.g., Windows) or demand (e.g., money) value objects from
other actors (e.g., home user). Value interfaces are groupings of value ports (e.g., sale)
that represent economic reciprocity such that all the value ports in a value interface
exchange value objects or none of them do. Value transfers are used to connect two
value interfaces (e.g., buy, sell) and value transactions (e.g., procurement) group value
transfers such that all the value transfers in a value transaction occur or none of them
do. Actors perform value activities (e.g., sell software) to create economic profits.

In this paper, we use a slightly extended e3value notation, in Figs. 2a and 2b, to
analyze the magnitude of complementarity between Windows and Pentium. The
concepts of willingness-to-pay (WP) and opportunity cost (OC) are relevant for ana-
lyzing complementarity. WP refers to the maximum resources (e.g., money) that an
actor (e.g., home user) will voluntarily relinquish in exchange for another resource
(e.g., operating system, chipset). OC refers to the minimum resources (e.g., money) that
an actor (e.g., Microsoft, Intel) will voluntarily accept to relinquish another resource
(e.g., Windows, Pentium). The logics of WP and OC hold because a rational and
self-interested actor cannot be expected to give up a more valuable resource in
exchange for a less valuable resource but that it will gladly give up a less valuable
resource in exchange for a more valuable resource [29].

We have extended the standard e3value notation slightly by inscribing the identi-
fiers of actors, market segments, and value activities within their respective boundaries.
We have also specified the content of a value exchange above the arrow that represents
it. The value can specify a range (expressed as inequalities) rather than a fixed quantity.
Figure 2a shows the separate value constellations of Intel and Microsoft wherein each
of these vendors provide their products, Pentium and Windows, to a home user

Modeling Strategic Complementarity and Synergistic Value Creation 89

separately. The upper sub-diagram in Fig. 2a shows that Intel delivers a Pentium chip
to a home user who pays Intel an amount that is less than or equal to that home user’s
WP for Pentium and is greater than or equal to Intel’s OC for selling Pentium. The
lower sub-diagram in Fig. 2a shows that Microsoft delivers Windows operating system
to a home user who pays Microsoft an amount that is less than or equal to that home
user’s WP for Windows and is greater than or equal to Microsoft’s OC for selling
Windows.

Figure 2b shows the joint value constellation of Wintel wherein the home user gets
the Microsoft operating system and the Intel chipset together (i.e., Windows on Pen-
tium). In this case the WP of a home user for Windows and Pentium together is greater
than the sums of their WP for Windows and Pentium separately. This is the case,
because comparing Figs. 1a, 1b and 1c leads to the conclusion that Windows and
Pentium are complements such that a home user is willing to pay more for an offer that
combines their value propositions than one that keeps them apart. Both Windows and
Pentium are more beneficial to a home user and offer greater utility to that home user

Fig. 2a. e3value diagram of separate value constellations of Microsoft and Intel.

Fig. 2b. e3value diagram of Wintel’s value constellation.

90 V. Pant and E. Yu

when they are together than when they are separate. This difference between a home
user’s WP for Windows as well as Pentium jointly and the sum of a home user’s WP
for Windows as well as Pentium separately can be regarded as surplus from synergy.
This is additional value that is present within a joint value constellation of Microsoft
and Intel but is absent from the individual value constellations of these vendors.

In the scenario depicted in Fig. 2a, calculating the amount of value that is acquired
by Microsoft and Intel in their separate value constellations is relatively straightfor-
ward. This is because the upper bound of value that Microsoft and Intel can appropriate
individually is constrained by a home user’s WP for their respective products alone
(i.e., Windows, Pentium). In Fig. 2b, however, calculating the upper bound of value
that Microsoft and Intel can appropriate from their joint value constellation is relatively
complicated. This is because both Microsoft and Intel can stake their respective claims
on the surplus from synergy that is generated by their partnership. While neither
Microsoft nor Intel will, under most circumstances, voluntarily accept an amount that is
lower in value than their OC for Windows and Pentium respectively – the presence of
surplus creates the possibility for them to appropriate an amount that is greater in value
than a home user’s WP for Windows and Pentium respectively.

Added value is relevant for determining the upper bound on the amount of value
that Microsoft and Intel can appropriate from for themselves from the Wintel con-
stellation. The reason that this is the case is because if an actor appropriates an amount
of value greater than this limit then the amount of value remaining for the other actors
to appropriate becomes lower than their OCs. In such a case those other actors would
be worse off by participating in such an economic relationship and they would be better
off by abstaining from it [29]. This logic describes the paradox of joint value creation
and individual value appropriation within coopetition wherein firms are “cooperating to
create a bigger business ‘pie,’ while competing to divide it up” [13]. Hence, being able
to analyze complementarity is a crucial requirement for managing coopetitive
relationships.

Added value is calculated by subtracting the economic value of the relationship
without the focal actor from the economic value of the relationship with all the actors
[29]. The formulae for calculating added value is denoted in Fig. 2b above the arrows
representing the value transactions from the composite actor, Wintel, to its constituent
actors, Microsoft and Intel. These formulae above the inbound value transaction for
Microsoft/Intel indicate the upper bound on the value that Microsoft/Intel can appro-
priate for itself from Wintel. Thus, added value is a home user’s WP for Windows and
Pentium (i.e., value of the economic relationship with all the actors involved) less that
home user’s WP for Pentium/Windows (i.e., value of the economic relationship
without the focal actor). These formulae also specify the lower bound on the amount of
value that Microsoft/Intel will voluntarily accept as their OCs for Windows/Pentium
respectively.

As this modeling-supported reasoning shows, i* is useful for understanding the
causes of complementarity while e3value is useful for determining the extent of
complementarity. i* and e3value explain different aspects of strategic complementarity
between actors and together they can represent more facets of synergistic value creation
than either of them can depict alone. Specifically, “i* goal models complement the
e3value models by revealing the strategic reasoning (i*) behind the value exchanges

Modeling Strategic Complementarity and Synergistic Value Creation 91

(e3value)” [25]. Due to such compatibility, i* and e3value have been used jointly to
depict strategic relationships between actors in the scholarly literature [25, 26]. This is
also consistent with the recommendation from Bleistein et al. [32] that, “depending on
the needs, several languages can also be used together in a complementary way”.

The steps for reasoning about the Wintel case can also be applied to analyze the
complementarity between other software businesses and networks such as software
ecosystems. The first step involves the development of actor and goal models using i*
to explain the strategic rationales and strategic dependencies between software busi-
nesses and focal stakeholders. The second step involves comparing these models to
identify the relative impact of each alternative on the satisfaction of stakeholder
requirements. The third step involves the development of e3value models of separate
and joint value constellations of software businesses to measure the magnitude of
complementarity between them. The next section presents an abstraction of the con-
cepts in this section to aid in the reuse of these steps. It focuses on the modeling of the
concepts of value added by an actor in isolation and added value of an actor to a
multi-party economic relationship.

4 A Method for Modeling and Analyzing Strategic
Complementarity and Synergistic Value Creation

4.1 Value Added by an Actor in a Value Chain

Value added is an intuitive concept that is defined by [30] “as revenue minus the cost of
purchased inputs.” Consider Figs. 3a and 3b that show a market in which a consumer
(A1) buys a finished product (O2) from a vendor (A2) and that vendor (A2) procures raw
materials (O1) from a supplier (A3). A2 performs an activity (C1), by applying its
competences and combining its resources, to transform O1 (that it has procured from
A3) into O2. A1 decides to buy O2 from A2 by compensating it with X resources since
O2 is useful for A1. While the following exposition discusses the relationship between
A1 and A2 – such a relationship holds likewise between A2 and A3. This is because, just
as A2 is a vendor that sells O2 to A1 which is its customer – similarly A3 is a vendor
that sells O1 to A2 which is its customer.

Fig. 3a. e3value diagram of A2’s value constellation.

92 V. Pant and E. Yu

In this market, two economic factors impose an upper and lower bound on X/Y
respectively. The upper bound is dictated by the customer (A1/A2) while the lower
bound is determined by the vendor (A2/A3) such that X/Y is determined through a
process of bargaining and negotiation between A1/A2 and A2/A3. Figure 3a denotes the
upper/lower bounds in the formula above an arrow representing value exchanges,
which are X and Y, between A1 and A2 as well as A2 and A3 respectively. In this
example the value added by A2 is X – Y. We focus on the relationship between A1 and
A2 to discuss these upper/lower bounds on X but this logic is equally relevant in the
relationship between A2 and A3.

The maximum amount of resources that A1 is willing to pay A2 is less than or equal
to the maximum benefit, utility, or value that A1 can obtain from O2. This upper bound
refers to the concept of ‘willingness to pay’ that was discussed in Sect. 3. This WP is
noted in Fig. 3a as A1WP(O2). A1 is unwilling to pay an amount higher than A1WP
(O2) because doing so would mean that A1 would give away more resources for O2

than what A1 considers it to be worth. Conversely, however, A1 is willing to pay A2 an
amount less than A1WP(O2) for O2 because that would mean that A1 is underpaying A2

by giving away fewer resources for O2 than what A1 considers it to be worth. A rational
and self-interest seeking economic actor is willing to underpay for a resource because
doing so creates a perceived surplus. However, that actor is unwilling to overpay for a
resource because doing so creates a perceived deficit for that actor.

The minimum amount of resources that A2 is willing to accept from A1 is greater
than or equal to the maximum amount of resources that A2 can obtain from O2 through
an alternate use (e.g., selling it to someone else). This lower bound refers to the concept
of ‘opportunity cost’ that was discussed in Sect. 3. This OC is noted in Fig. 3a as
A2OC(O2). A2 is unwilling to accept an amount less than A2OC(O2) because doing so
would mean that A2 would get fewer resources by selling O2 to A1 than it can by
applying it to some other use. Conversely, however, A2 is willing to accept an amount
from A2 that is greater than A2OC(O2) for O2 because that would mean that A2 is
getting more resources for O2 from A1 than it would from the next best alternative use
of O2. Figure 3b shows the structure of such bargaining and negotiating between A1/A2

and A2/A3.

Fig. 3b. i* Strategic Rationale (SR) diagram showing willingness-to-pay and opportunity cost.

Modeling Strategic Complementarity and Synergistic Value Creation 93

4.2 Added Value of an Actor to a Multi-party Economic Relationship

Added value is different from value added because while the latter represents economic
margin (i.e., difference between revenues and purchased inputs), the former denotes the
worth of a party in a multi-party economic relationship. In the context of a specific
player, added value refers to the “value created by all the players in the vertical chain
minus the value created by all the players in the vertical chain except the one in
question” [29]. Consider Figs. 4a, 4b and 4c that show a market in which a consumer
(A1) buys two products from two vendors – O1 and O2 from A2 and A3 respectively. A1

can use O1 and O2 individually (i.e., without each other) or it can use them jointly (i.e.,
with each other).

Fig. 4a. i* SR diagram of A1 with complementarity between A2 and A3.

Fig. 4b. e3value diagram of A1’s value constellation with separate usage of O1 and O2.

94 V. Pant and E. Yu

Figure 4b shows a situation in which A1 consumes O1 and O2 separately while
Fig. 4c shows a situation in which A1 consumes O1 and O2 jointly. Figure 4a shows
both situations. Figure 4a shows the presence of complementarity between O1/A2 and
O2/A3, which is an incentive for A1 to use O1 and O2 jointly rather than separately. In
Fig. 4a, A1 is able to satisfy more objectives by using O1 and O2 together than by using
either O1 or O2 separately. In a situation of complementarity, as depicted in Fig. 4b, it
is not feasible to use the WP of A1 for O1 or O2 as the upper bound on the value that
their respective firms (i.e., A2 and A3) can appropriate from this joint value constel-
lation. Rather, the presence of a surplus from synergy necessitates the calculation of the
added values of A2 and A3 to determine the maximum amount of value that each firm
can appropriate from this joint value constellation.

Complementarity exists in the case of joint usage of O1 and O2 because by using
these products together the home user can satisfy more of its objectives than it can by
using either O1 or O2 separately. Therefore, this home user is willing to pay a greater
amount for the relatively higher utility or benefit that it can obtain this combined
offering than that from using either of these products without the other. This presence
of complementarity is indicated via the greater outbound value flow from the home user
for O1, O2 in Fig. 4c compared to the sum of the outbound value flows from that home
user for O1 and O2 in Fig. 4a. The difference between these value flows can be
regarded as the surplus from synergy because it refers to an amount that is only present
when O1 and O2 are together but is absent when O1 and O2 are separate.

The amounts of value, X and Y, that can be appropriated by actors, A2 and A3, is
specified as a range because X and Y are dependent on each other. Since the total value
that can be appropriated by all the actors is fixed, A1WP(O1, O2), then the more/less
amount of value that is appropriated by an actor, A2/A3, reduces/increases the amount
of value that is remaining for appropriation by another actor, A3/A2. As discussed in
Sect. 3, if an actor, A2/A3, appropriates a greater amount of value than their added
value then another actor, A3/A2, will only be able to appropriate an amount of value
less than their opportunity cost. The presence as well as the magnitude of comple-
mentarity can be expressed and explained by using i* and e3value together in this way.

Fig. 4c. e3value diagram of A1’s value constellation with complementarity between A2 and A3.

Modeling Strategic Complementarity and Synergistic Value Creation 95

5 Conclusions and Future Work

In this paper, we proposed a modeling technique and method for articulating and
analyzing strategic complementarity to aid in the understanding of business models and
strategies of software businesses. The modeling technique offered by this paper is
useful for understanding the presence of complementarity as well as the magnitude of
synergy effects. We used an industrial case study from the literature to test our mod-
eling method as well as to elicit decontextualized patterns to explain strategic com-
plementarity. To further test the technique, we are conducting case studies in enterprise
settings as well as in ecosystems and startup-ups.

References

1. Valença, G., Alves, C., Heimann, V., Jansen, S., Brinkkemper, S.: Competition and
collaboration in requirements engineering: a case study of an emerging software ecosystem.
In: 2014 IEEE 22nd International Requirements Engineering Conference (RE), pp. 384–393.
IEEE, August 2014

2. Teixeira, J., Robles, G., González-Barahona, J.M.: Lessons learned from applying social
network analysis on an industrial Free/Libre/Open Source Software ecosystem. J. Internet
Serv. Appl. 6(1), 14 (2015)

3. Rajala, R., Rossi, M., Tuunainen, V.K.: A framework for analyzing software business
models. In: European Conference on Information Systems, pp. 1614–1627, June 2003

4. Väyrynen, K.: Software business in industrial companies: identifying capabilities for three
types of software business. In: Proceedings of the 31st International Conference on
Information Systems (ICIS), Saint Louis, MO (2010)

5. Vanhala, E., Smolander, K.: What do we know about business models in software
companies?-systematic mapping study. Int. J. IADIS 11(3), 89–102 (2013)

6. Pant, V., Yu, E.: Coopetition with frenemies: towards modeling of simultaneous cooperation
and competition among enterprises. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM
2016. LNBIP, vol. 267, pp. 164–178. Springer, Cham (2016). doi:10.1007/978-3-319-
48393-1_12

7. Gordijn, J., Osterwalder, A., Pigneur, Y.: Comparing two business model ontologies for
designing e-business models and value constellations. In: Proceedings of BLED 2005, 15
(2005)

8. Brandenburger, A.M., Nalebuff, B.J.: The right game: use game theory to shape strategy.
Harvard Bus. Rev. 73(4), 57–71 (1995)

9. Tee, R., Gawer, A.: Industry architecture as a determinant of successful platform strategies: a
case study of the i-mode mobile Internet service. Europ. Manag. Rev. 6(4), 217–232 (2009)

10. Kyriakopoulos, K., Moorman, C.: Tradeoffs in marketing exploitation and exploration
strategies: the overlooked role of market orientation. Int. J. Res. Mark. 21(3), 219–240
(2004)

11. Milgrom, P., Roberts, J.: Complementarities and fit strategy, structure, and organizational
change in manufacturing. J. Account. Econ. 19(2), 179–208 (1995)

12. Milgrom, P., Roberts, J.: Complementarities and systems: Understanding Japanese economic
organization. Estud. Economicos 17, 3–42 (1994)

13. Brandenburger, A.M., Nalebuff, B.J.: Co-opetition. Doubleday, New York (1996)

96 V. Pant and E. Yu

http://dx.doi.org/10.1007/978-3-319-48393-1_12
http://dx.doi.org/10.1007/978-3-319-48393-1_12

14. Barquera, S., Hernandez-Barrera, L., Tolentino, M.L., Espinosa, J., Ng, S.W., Rivera, J.A.,
Popkin, B.M.: Energy intake from beverages is increasing among Mexican adolescents and
adults. J. Nutr. 138(12), 2454–2461 (2008)

15. Ng, S.W., Mhurchu, C.N., Jebb, S.A., Popkin, B.M.: Patterns and trends of beverage
consumption among children and adults in Great Britain, 1986–2009. Br. J. Nutr. 108(03),
536–551 (2012)

16. Tsuji, M.: Envisioning the Japanese economic system in the 21st century in relation to
economies of network. In: Schober, F., Kishida, T., Arayama, Y. (eds.) Restructuring the
Economy of the 21st Century in Japan and Germany, pp. 15–36. Duncker & Humblot,
Berlin (1999)

17. Gomes-Casseres, B.: How alliances shape competition. In: Shenkar, O., Reuer, J. (eds.)
Handbook of Strategic Alliances, pp. 39–54. Sage, Newbury Park (2005)

18. Yoffie, D.B., Kwak, M.: With friends like these: the art of managing complementors.
Harvard Bus. Rev. 84(9), 88–98 (2006)

19. Gomes-Casseres, B.: Competitive advantage in alliance constellations. Strateg. Organ. 1(3),
327–335 (2003)

20. Golnam, A., Sanchez, R., Ritala, P., Wegmann, A.: The why and the how of coopetition:
modeling the in-centives and design of coopetitive value networks. In: A Focused Issue on
Building New Competences in Dynamic Environments. Research in Competence-Based
Management, 7. Emerald Group Publishing Limited, pp. 29–60 (2014)

21. Casadesus-Masanell, R., Yoffie, D.B.: Wintel: cooperation and conflict. Manage. Sci. 53(4),
584–598 (2007)

22. Castaldo, S., Dagnino, G.B.: Trust and coopetition: the strategic role of trust in interfirm
coopetitive dynam-ics. In: Dagnino, G.B., Rocco, E. (eds.) Coopetition Strategy: Theory,
Experiments and Cases, pp. 74–100. Routledge, New York (2009)

23. Pijpers, V., Gordijn, J.: e3forces: understanding strategies of networked e3value constella-
tions by analyzing environmental forces. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.)
CAiSE 2007. LNCS, vol. 4495, pp. 188–202. Springer, Heidelberg (2007). doi:10.1007/978-
3-540-72988-4_14

24. Pijpers, V., Gordijn, J., Akkermans, H.: Business strategy-it alignment in a multi-actor
setting: a mobile e-service case. In: Proceedings of the 10th International Conference on
Electronic Commerce (2008)

25. Gordijn, J., Yu, E., van der Raadt, B.: E-service design using i* and e3value modeling. IEEE
Softw. 23(3), 26–33 (2006)

26. Ouyang, F., Zhao, H.: Business models optimization using e3value and i* modeling: taking
knowledge resource website as an example. Manage. Sci. Res. 3(2) (2014)

27. Lucena, M., Santos, E., Silva, C., Alencar, F., Silva, M.J., Castro, J.: Towards a unified
metamodel for i*. In: Second International Conference on Research Challenges in
Information Science, RCIS 2008, pp. 237–246. IEEE, June 2008

28. Souza, E., Abrahão, S., Moreira, A., Araújo, J., Insfran, E.: Comparing Value-Driven
Methods: an experiment design. In: Second International Workshop on Human Factors in
Modeling (HuFaMo 2016). CEUR-WS, pp. 19–26 (2016)

29. Brandenburger, A.M., Stuart, H.W.: Value-based business strategy. J. Econ. Manag.
Strategy 5(1), 5–24 (1996)

30. Lieberman, M.B., Garcia‐Castro, R., Balasubramanian, N.: Measuring value creation and
appropriation in firms: the VCA model. Strategic Manage. J. (2016)

31. López, L.C., Franch, X.G.: Applying business strategy models in organizations. In:
Proceedings of the 7th International i* Workshop 2014, Thessaloniki, Greece, 16–17 June
(2014)

Modeling Strategic Complementarity and Synergistic Value Creation 97

http://dx.doi.org/10.1007/978-3-540-72988-4_14
http://dx.doi.org/10.1007/978-3-540-72988-4_14

32. Bleistein, S.J., Cox, K., Verner, J.: Modeling business strategy in E-business systems
requirements engineering. In: Wang, S., Tanaka, K., Zhou, S., Ling, T.-W., Guan, J., Yang,
D.-Q., Grandi, F., Mangina, E.E., Song, I.-Y., Mayr, H.C. (eds.) ER 2004. LNCS, vol. 3289,
pp. 617–628. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30466-1_57

33. Giannoulis, C., Zikra, I., Bergholtz, M., Zdravkovic, J., Stirna, J., Johannesson, P.: A
comparative analysis of enterprise modeling approaches for modeling business strategy. In:
6th IFIP WG 8.1 Working Conference on the Practice of Enterprise Modeling (PoEM 2013),
Riga, Latvia, 6–7 November 2013, pp. 193–204, (2013)

34. Santos, G.A.V.: A theory of power in software ecosystems formed by small-to-medium
enterprises. Ph.D. Thesis (2016)

98 V. Pant and E. Yu

http://dx.doi.org/10.1007/978-3-540-30466-1_57

Business Model Exploration for Software
Defined Networks

Yudi Xu1(&), Slinger Jansen1, Xuesong Gao2, Sergio España1,
and Dong Zhang2

1 Department of Information and Computer Science, Utrecht University,
Princetonplein 5, 3508TB Utrecht, The Netherlands

xuyudi.nl@gmail.com, {Slinger.Jansen,S.Espana}@uu.nl
2 Huawei Building No. 156 Beiqing Rd Z-Park, ShiChuang Keji Shifanyuan,

Haidian, Beijing 100095, China
{Gxs54830,Zhangdong.zhang}@huawei.com

Abstract. Business modeling is becoming a foundational process in the
information technology industry. Many ICT companies are constructing their
business models to stay competitive on the cutting edge of the technology world.
However, when comes to new technologies or emerging markets, it remains
difficult for the decision maker to make an assertive choice. This paper aims to
fill this gap by providing organizations with an overall approach to better design
and develop business models in an innovative ICT market. The business model
canvas is used to analyze existing players in the market. Moreover, a case study
is made of Software Defined Networking (SDN): a business model template for
SDN is proposed as a representation tool to bridge the business concept and the
SDN functionalities. The models and methods are evaluated and enhanced by
interviewing experts from key players in the SDN market. In addition, the
method is applied to a case organization for further evaluation, which indicates
that an average satisfaction score of 0.77 out of 1 to the model. Therefore, the
approach of creating new business models in innovative ICT market in this
paper is found to be appropriate and effective in analyzing existing SDN pro-
viders and reusing their business components of activities into a new SDN
strategy.

Keywords: Software defined networking � Business model canvas � Software
engineering � Quality attributes � Business model innovation

1 Introduction

Contemporarily, the software defined networking (SDN) concept has been becoming a
buzz word in the networking industry. SDN subverts the traditional design of network
device by decoupling the controller plane and data forwarding plane so that it enables
an application - centric networking solution to replace the primitive all-in-one network
device architecture [12]. The impact of SDN cannot be neglected. Foreseeing that SDN
will play an essential role in the future networking industry, many networking provi-
ders have joined this emerging market. Without much experience in this new market,

© Springer International Publishing AG 2017
A. Ojala et al. (Eds.): ICSOB 2017, LNBIP 304, pp. 99–112, 2017.
https://doi.org/10.1007/978-3-319-69191-6_7

managers and decision makers are uncertain which part of SDN they should focus on
and which direction is the best-fit for the companies.

Accordingly, a business model template in the SDN domain is required to solve
these problems. However, there is no previous evidence that a certain business model
can match this new IT market.

1.1 Problem Statement

There exists a significant amount of literature on business models, all of which intend
to define explicitly how organizations fulfill their missions and commercial activities
[3, 15, 20]. According to [11], these studies vary in several aspects. For instance, some
of them provided a set of tools and visualization methods to design business models
[3], whereas some studies provided definitions and classifications of the business
models [15], such as Brokerage, Advertising, Infomediary, Merchant, Manufacturer
and Affiliate. Moreover, some studies [19] proposed the evaluation metrics to assess the
success of the business model. However, those definitions or approaches cannot be
directly utilized to analyze the booming SDN industry, because either some of the
models are too complicated for the non-technical manager to use, or some of the
definitions are just out of date.

Nonetheless, on one hand, as stated by [1], albeit business model unlocks latent
value from technology, the business logic restrains the subsequent investigations for
new, alternative models for other technologies. Since most business models are stati-
cally depicting the business strategy of an organization, it is difficult to catch up with
the pace of a growing technology (e.g., SDN). On the other hand, there is a desperate
need in the market, and companies are struggling to choose the best match SDN
provider to upgrade their latent networks. In turn, network vendors (new entrants) are
hesitating on what SDN strategy to follow and invest.

Additionally, little research has been done to solve those problems, which remains
a barrier for companies to better design and develop new business models in an
innovative ICT market. As stated by [13], the rapidly changing, competitive, and
uncertain economic environment makes business decisions difficult and challenging.
Surprisingly, the business model or software tools that can be utilized for strategic
decision making are still scarce, because such tools could help organizations to better
design and develop their business models. [5] also claimed that many companies found
business model innovation difficult, as managers do not understand their existing
business models, so they are unable to create an effective and efficient new business
model. Accordingly, we present the following problem statement:

“When entering a new innovative IT market, it is challenging for companies to design and
develop new business models, which leads to many failures and sub-optimal business models
for organizations.”

1.2 Research Purpose

As a follow up for the problems we propose in the previous section, the research
purpose, therefore, is set up to fill these gaps. The author believes that (1) by inves-
tigating the existing business models is an efficient way to establish new business

100 Y. Xu et al.

models in the ICT market. Additionally, [16] stated in their book that architecture is an
approach to design business process. It follows four stages, from business silos,
standardized technology, optimized core to business modularity. Thus, (2) A unified
business model and architecture is an appropriate way to create a model that can be
understood both by business and technical users. Therefore, to validate the above
hypothesis, one case study was conducted to apply our SDN business model in
practice, it validated the existing business model and further evaluated the unified
business model for the SDN market.

The research method, including the BMC (business model canvas), unified quality
model, and the SDN architecture are discussed in Sect. 2. A case study is introduced in
Sect. 3, where we applied our SDN business model to a real business case to evaluate
the theory. In Sect. 4, the contribution, as well as the limitation of this paper are
discussed and in Sect. 5, we provided an overall summary and some recommendations
for related future works.

2 Research Background

The business model canvas introduced in Sect. 2.1 provides a thorough business
viewpoint to assist the business analyst alike people to gather business requirements,
while the SDN architecture (Sect. 2.2) can lead the architecture people to map the
business requirements to certain developing areas. In addition, the quality mapping
(Sect. 2.3) in between helps to bridge this two viewpoints, and provides a quality
attributes break down to help people understand the products deeper.

2.1 Business Model Canvas

The business model canvas has shown to be one of the most widely cited representation
in the academic literature and was broadly applied in practice [21]. The concept has
been used and tested around the world and is already used in organizations such as
IBM, Ericsson, Deloitte, the Public Works and Government Services of Canada, etc.1 It
changes the way of the companies thinking from a product perspective to a business
model perspective [11]. The canvas enables a shared language that allows us to easily
describe and operate business models to build new strategies or improve the existing
business models [14].

The business model canvas contains nine blocks that show the logic of how an
organization makes profits (Fig. 1). These nine blocks cover four main areas of a
successful business, which are customers, offer, infrastructure, and financial viability. It
complies most of the components from the paper that Shafer, [18] have concluded.
Furthermore, the business model canvas has been successfully applied in an innovative
IT market. [11] summarize and share their findings regarding the business models
canvas deployed in big data applications. They analyzed the existing big data appli-
cation using business model canvas and taking into consideration of the fundamental

1 http://www.businessmodelgeneration.com/canvas/bmc.

Business Model Exploration for Software Defined Networks 101

http://www.businessmodelgeneration.com/canvas/bmc

elements of business and illustrate how these applications make the profits by applying
big data in their business. Moreover, [21] proposed a service business model canvas in
their paper, which is established based on the business model canvas. They success-
fully applied the service business model canvas into the mobile payment service in the
German retail industry.

However, we could not find as many research papers of applying BMC in the IT
fields as we found in other fields. Though some cases have shown its significant effects,
we decided to apply it specifically in the SDN field to evaluate its effectiveness.
Moreover, according to the study by [2], the ability of a firm to realize the benefits of
new, external knowledge, assimilate it, and apply it to commercial ends is essential to
its capabilities. Such capabilities are the absorptive capacity of the firm, which was
suggested by the authors that it was a function of the organization’s level of prior
pertinent knowledge. In other words, analyzing the current knowledge in a market is
considered as an effective way to stay innovative. Therefore, the author investigated the
existing SDN providers and model them with the business model canvas to create
reusable business components. Those reusable business components were utilized later
to cover the missing parts of the case organization’s business model canvas.

2.2 SDN Architecture

SDN is a business concept; its primary function is to decouple the data plane and the
controller plane, and provide a network operating system to support various applica-
tions. However, the technical knowledge behind it is complicated. In this section, SDN
is explained and simplified so that we can depict it from a business perspective.
The SDN architecture (Reference Layer Model) was utilized to illustrate the essential
SDN structures.

Researches have shown different designs of SDN architectures [7–9], but they all
follow the three-layer model, i.e. data plane layer, controller layer and application
layer. In the paper of [4], the SDN architecture is divided into three principal parts, the
Application Plane, the Controller & Management Plane, and the Network Device.

Fig. 1. Business model canvas

102 Y. Xu et al.

There are four layers (Network Services Abstraction Layer, Control Abstraction Layer,
Management Abstraction Layer and Device and Resource Abstraction Layer) that exist
between those three parts and connect them as a whole SDN architecture (Fig. 2).

In this paper, we will use this SDN architecture, together with other models to
demonstrate the whole SDN business model. Although the SDN architecture is seen as
a very technical model that is being used in representing the network, we are utilizing
this model only to illustrate the SDN product (both software and hardware) within our
SDN business model.

2.3 Unified Quality Model

Software engineering is a multi-discipline and complex field that connects a variety of
processes and activities. All different phases in software engineering have developed
their solutions to ensure the quality of the software products; however, those approa-
ches are not well connected or integrated. Hence, [10] have proposed a unifying quality
model to help software developers and managers to integrate all the processes and
activities into one common foundation to assure consistency and continuity.

Our SDN business model is largely based on the unified quality model [10].
A high-level quality mapping model was built to interpret the unified quality model and
modified it to fit our SDN case (Fig. 3).

The high-level SDN business model contains three parts. From left to right, there is
requirement management, which is seen as the front end, the business part of the
product.

As discussed in the previous section, the business model canvas can be utilized to
analyze and present the business requirement, product value proposition, and other key
blocks. However, in the SDN business model, we merely focus on the value propo-
sition and customer segment due to the reason that we scoped the model from a
software engineering perspective.

Fig. 2. SDN architecture [4]

Business Model Exploration for Software Defined Networks 103

In the middle part, stand the activity properties and the product properties segment.
The former one lists all the activities based on the business requirements, and the latter
one consists of two sub-segments: the product functionalities and the product quality
attributes (QA). Product functionalities illustrate the functionalities of the software,
e.g., network monitoring or security. The product properties play as an extension or an
add-on between the business model canvas and the product functionalities. Although
the business model canvas can be linked to the functionalities based on the require-
ments and propositions, however, it lacks the attributes of software behind the sense. In
other words, the product attributes (QA) can contribute to helping the business analysts
and software architect to better understand the requirements and software attributes.

On the right side, a product architecture is shown to connect the product attribute
part to lead the business viewpoint to the technical viewpoint. In this paper, the SDN
architecture is utilized as an “Appstore” to display the existing or “plan to develop”
software for the SDN solution. Moreover, this “Appstore” can be further developed as a
tool to exhibit the SDN eco-system to the customers. In Sect. 3.3, the “Appstore”
concept will be further elaborated in the case of service chain example.

3 Case Study

According to [17], the structure and description of the case study is formed in Table 1.

Fig. 3. High-level quality mapping model. This model represents from the business require-
ments to Activity Properties, Product Properties and finally reaches to the SDN architecture for
Apps and service development.

Table 1. Case study research process is divided into 5 parts according to [17].

Name Description

Case study design &
objective

To understand the effective of using SDN model in practical use
cases. The details of case study design are introduced in Sect. 3.2

Data collection
preparation

Procedure: (1) question design, (2) plan meetings, (3) collect data,
(4) Analyze data
Protocols: Face to face meeting, calls and emails

(continued)

104 Y. Xu et al.

3.1 Background of the Case Organization

The case organization is a multinational ICT service and equipment provider, which
has already proposed their own agile network solution and a high standard SDN
controller. However, they do not possess a complete and perfect ecosystem to sustain
and improve their SDN service on a long term. For example, they cannot make a
decision whether they should develop their Cloud orchestration platform or should go
completely for an existing popular open source platform (e.g., OpenStack). In the
meantime, their competitors, for instance, HP, have already built up their SDN products
and the first industry SDN AppStore ecosystem. Thus, our case organization remains
an immature status in developing the business in the SDN market. The main reason,
according to the people from the case organization, is the lack of a business model that
can capture the entire ecosystem of the SDN.

Scholars claimed that technological change can become market revolutions that
incumbent firms must master if they want to survive [6]. Besides, [6] indicated that the
experiences of an enterprise to respond to a new market are imperfectly understood,
i.e., the managers do not have a mature way to tackle with the new technological wave.
Similarly, the case organization was eager to build this capability to develop their
business model for SDN.

3.2 Case Study Design

The case study was divided primarily into two parts, (1) the expert interviews for the
business model canvas and (2) the expert interviews for the unified quality model on
the service chain example.

The business model canvas of our case organization is based on two experts’
reviews within the case organization. In addition, some existing SDN organizations’
data were utilized to improve and polish the business model canvas of our case
organization.

According to the book of “business model generation” [14], we interviewed the
interviewees by using the SWOT evaluation method. Four criteria were evaluated,

Table 1. (continued)

Name Description

Data collection 4 separate face to face meeting with 4 interviewees in their
company, 1 meeting with another employee via call and follow up
emails

Data analysis For SDN BMC model, we design and calculate the scores according
to [14]. For the SDN business model, each question is given a range
of score, and we calculate the weight of each question to reflect the
effectiveness of how our interviewees thought of the model.
Section 3.2 will provide a more explicit view

Reporting The results of SDN BMC are shown in a BMC model (Fig. 4) with
marked score in each block. The results of SDN business model are
shown in Table 2

Business Model Exploration for Software Defined Networks 105

(1) Strength, (2) Weakness, (3) Opportunity, (4) Threats. Based on the book “business
model generation” [14], in Strength/Weakness, 78 relevant questions were proposed2.
Half of the questions are to evaluate strength, and half are designed to assess the
weakness, e.g., the question to evaluate the strength: “Our value propositions are well
aligned with customer needs”, the question to evaluate the weakness: “Our value
propositions and customer needs are misaligned.” In the category of opportunity, 37
questions were created, and there were 21 questions in the category of threat. Each
question has a score range of ±1 to ±5, 4 and 5 represented the high impact, 1 and 2
stood for the low impact, and 3 was the normal impact. Exception for the combination
table of Strength/Weakness, because it merely showed the 39 questions, which had
been calculated (The score of Strength plus the score of Weakness). Thus, the positive
number was a strength, the negative number was a weakness, zero meant no strength or
weakness. Questions of strength and opportunity were set to positive and questions of
weakness and threat were set to negative. Furthermore, each category was divided into
four sub-categories, which were offer, finance, Infrastructure and customer. The nine
blocks in business model canvas were subsumed in each group.

Regarding the SDN business model (unified quality model), which is mentioned in
Sect. 2.3, we applied it to a real service provided by the case organization – the service
chain product. The service chain model is a concept that connects all the network
service (e.g., firewall, load balancing and routing) so that those services can collaborate
more efficiently. Figure 5 displays the service chain model via the SDN business model
we proposed in Sect. 3.3.

The interviews of the unified quality model were based on some specific SDN
examples. The blocks of value proposition and customer segments of the business
model canvas were focused and represented, because the authors only investigated the
unified model from a software engineering perspective. Thus, blocks such as cost
structure, key partners and customer segments are not suitable. Accordingly, the unified
quality model was modified based on the business requirements and case organization’s
circumstances.

3.3 Results

According to Sect. 3.2, the results of the case study are divided into two parts,
(1) business model canvas, and (2) the SDN business model. Both of the results will be
discussed below.

Figure 4 illustrates the results of the SWOT evaluation of the business model
canvas. It concluded three main results in each block, (1) the strength/weakness
assessment, (2) the opportunity assessment, (3) the threats assessment. For example, in
the customer relationship block, the final score of the strength/weakness is 15,
opportunity score is 22.5. Received a low treat score of −2.5, it accomplished total
score of 35, which indicate that the case organization has performed relatively well in
the value proposition filed. However, in the cost structure block, the treat score is as
high as −7, which is close to the strength/weakness and even higher than the

2 goo.gl/DTLS1h.

106 Y. Xu et al.

opportunity score. Hence, it should raise more attention for the case organization.
Moreover, a total score was given for the entire business model canvas. In our case
organization’s case, it achieved a total score of 197. This score does not indicate the
performance of the organization directly, but as a benchmark for the future evaluation.

To summarize, on one hand, the business model canvas was suggested as an
effective and efficient way to analyze the existing SDN providers in the market, and
then compare and reuse the business model components when creating a new business
model canvas. On the other hand, the SWOT analysis was backed by data and provided
a quick understanding of the status of each business model canvas block and indicated
several critical parts that the case organization should pay more attentions. Both results
provided strong evidence that our research approach and the business model canvas
was of great benefit to the case organization.

In the SDN business model below (Fig. 5), it contains three primary parts. On the
left side, the business model canvas illustrates the business requirements of the flexi-
bility of arranging different network services and the value proposition of service chain
model. In the activity properties, the author provided two examples, (1) Networking
Service, and (2) Service Orchestration. These two activities connect to the several
product functionalities of Traffic Acceleration, Security Service, Load Balance and
Central Management on a business requirement perspective and are also extended into
several quality attributes to reflect the product functionalities on the software engi-
neering view. Additionally, the activities are linked with the OpenFlow environment,
where the networking is based on. On the right side of the model, the author listed all
the correspond SDN software from the case organization, which are listed in the SDN
architecture to present the exact solutions from the organization. Those solutions are
mostly networking apps that are built on the SDN controller, and the SDN controller
itself. Thus, we consider and expect this part of the model becoming an Appstore - like
platform.

Fig. 4. SWOT evaluation results of the business model canvas from the case organization,
which calculated the critical scores for each business model canvas block and exert a total score
for future comparisons. The score does not necessarily indicate how well the case company has
done, but is more considered as a benchmark to reflect and compare with the future evaluations.

Business Model Exploration for Software Defined Networks 107

The above SDN business model was constructed and evaluated with five experts,
who were from networking or marketing field in the case organization. The interview
followed a time glass3 way of asking questions, i.e., the author started with general
questions (e.g., “What do you think of this model?”, “Do you have similar model to
handle these tasks in your daily work?”) to have a high level overview of the situation
of the case organization. After that, some detailed questions were asked and evaluated.
For instance, “Does the BMC well reflect the business requirements from the cus-
tomers?”, “Do you think it is important to combine the business side with the technical
side?”. Such questions were scored from 1 to 5, and was listed in the following table
(Table 1). On one side, the table indicates that except interviewee C, interviewee A, B,
D and E all provided a very positive view of the SDN business model. On the other
side, each scored question has shown a score from 64% to 80%, which is seen as a
positive view as well. Therefore, the SDN business model we proposed should be seen
as an appropriate solution for SDN.

3.3.1 Summary of the Results
The former one provided a benchmark score for SDN organization’s self-evaluation,
and the latter one illustrated an example to show how the unified quality model had
been used to help the SDN organization to bridge the business and architecture part. In
general, both the business model canvas and SDN business model have shown their
effectiveness in tackling with the difficulties to establish the business model in the SDN
field. Table 2, shows the interview results of the SDN business model.

Though the SDN business model was evaluated and proved to be beneficial to the
SDN business, it remains immature in many areas. This section concludes the con-
tributions in Sect. 4.1 as well as the limitations of the SDN business model in Sect. 4.2.

Fig. 5. Unified model of Service chain example - SDN business model as a whole
representation of our proposal for the use case. It explains how we model the SDN use case
from the business model canvas on the left for business requirements gathering to the middle part
of activity property, product property and environment property of the product, and finally a
software solution/proposition on the right side of the SDN architecture.

3 http://www.cse.chalmers.se/*feldt/advice/runeson_2009_emse_case_study_guidelines.pdf.

108 Y. Xu et al.

http://www.cse.chalmers.se/%7efeldt/advice/runeson_2009_emse_case_study_guidelines.pdf

4 Discussion

4.1 Contribution

In regard to the research results, the most noteworthy discovery is the use of the com-
bination of the business model canvas, unified quality model [10], and SDN architecture
onmodeling and designing a businessmodel for the SDNmarket. (1) The business model
canvas was applied in a new way, and we proved that this modular tool was effective and
efficient in modeling and designing business models in an innovative ICT market.
Although the new model does not cover the full set of SDN features and SDN quality
attributes due to research limitations, (2) it proposed an industry-first theoretical concept
to combine the business model with the technical architecture for SDN solution/product’s
design and development. As such, (3) this paper can also be seen as a validation for
application of the BMC in a certain domain. Last but not least, (4) the overall research
approach also delineated an appropriate way of conducting similar research for the future.

4.2 Limitation

Due to the fast growing nature of the SDN market, every organization is proposing new
products, new services in every single day. Thus, (1) the data we have retrieved we
used in this paper may not be suitable in the future due to its rapidly change nature.
(2) Another limitation of the SDN business model is its applicability in different

Table 2. Interview results of the SDN business model

Business Model Exploration for Software Defined Networks 109

enterprises. As the validation was conducted only in one case organization, the gen-
erosity of the model is limited. (3) The quality model did not use the full blocks of the
business model canvas, it only analyzes the model from a software engineering per-
spective, which may lead to the incompleteness of the model.

5 Conclusion

The following sections summarize the final conclusion and the indications for the
future research. Specifically, this chapter introduces a research summary that concludes
an overview of the entire research story, and lastly, puts forward some opportunities for
future researches and authors’ vision for SDN business model.

5.1 Research Summary

In this paper, we propose to utilize the business model canvas as a method to model
existing SDN providers in the market and summed up an SDN quality model to capture
essential SDN features. The business model canvases of the selected organizations
were compared and validated by interviewing experts, and their business components
were stored in a dictionary for reusing in creating a new business model for the case
organization. Moreover, based on the SDN quality model and business model canvas,
we proposed an industry-first SDN business model that combines the business model
with the technical architecture via a unified quality model.

Both the business model canvas and the quality model were evaluated through case
studies. As a consequence, the business model canvas was proved to be efficient on
analyzing an innovative IT market, which, in our case is SDN. Meanwhile, by con-
necting the business viewpoints and the technical viewpoints, the quality model pro-
vided a holistic view on the entire SDN business ecosystem, which was evaluated to
reach a 77% satisfaction rate in the case organization.

5.2 Future Work

Throughout the method design, data collection, modeling and interviewing phases, it
revealed many potential opportunities for future research. The recommendations listed
in this section are divided into two parts. One is the business model canvas, from a
business model perspective, and the other focuses on the SDN side. Both parts of
opportunities are based on the limitations we have confronted, and the suggestions
from the expert reviews.

5.2.1 Business Model Future Work
Regarding the business model, especially for the business model canvas methodology,
there are tons of opportunities for future studies. Literature revealed that there was
relatively a small number of researches have been done on the business model canvas
in an IT field. Thus, (1) more researches and case studies need to be conducted to
further validate the efficiency and effectiveness of business model canvas. Those results
can strengthen the theory of applying business model canvas into innovative ICT

110 Y. Xu et al.

studies. Moreover, (2) the evaluation methods could be enhanced by future research to
improve the accuracy of the evaluation process.

Furthermore, there is a sister model of business model canvas called value
proposition canvas. It expands the value proposition and customer segment blocks of
the original business model canvas. Thus, it can zoom in the critical needs of its
customers as well as the values and products that a company can serve its customers.
From a value proposition perspective, (3) further research can provide a holistic
analysis of the business requirements and map them to the quality attributes to enrich
the applicability of the model.

5.2.2 SDN Future Work
Focusing on a business model scope, this paper provided an in-depth view of how to
design and develop business models for SDN. However, a fast growing market like
SDN deserves wider attention. Suggested by the business model canvas experts, the
business model analysis should not only focus on the quality model or SDN archi-
tecture part but also needs to cover the whole SDN eco-system to make the deliverables
valuable to the commercial ends. (1) A full SDN eco-system may inspire research on
the topics of SDN revenue chain, SDN provider network analysis, Open SDN system
collaboration, innovation, etc. Moreover, the SDN architecture part of the SDN busi-
ness 3-layers model generates future opportunities to create a holistic Appstore solution
to help customers to choose the right networking apps and services.

In addition, from a technical point of view, (2) future research can dive to analyze
the SDN features to provide an explicit list of critical features or functions an SDN
product must have. For example, suggested by one of our interviewees, it is worth
doing a research on how to rank the capabilities of the SDN features, such as malicious
activities detection & mitigation, i.e., to what extent or level can an SDN product fulfill
that function. In other words, SDN network capability testing may become another
fruitful business in the future.

References

1. Chesbrough, H., Rosenbloom, R.S.: The role of the business model in capturing value from
innovation: evidence from xerox corporation’s technology spin-off companies. Industr.
Corp. Change 11(3), 529–555 (2002)

2. Cohen, W.M., Levinthal, D.A.: Absorptive capacity: a new perspective on learning and
innovation. Admin. Sci. Q. 35(1), 128–152 (1990)

3. Gordijn, J., Akkermans, H.: Designing and evaluating e-business models. IEEE Intell. Syst.
4, 11–17 (2001)

4. Haleplidis, E., Denazis, S., Pentikousis, K., Salim, J.H., Meyer, D., Koufopavlou, O.: SDN
layers and architecture terminology. Internet Engineering Task Force, Internet Draft (2014)

5. Johnson, M.W., Christensen, C.M., Kagermann, H.: Reinventing your business model. Harv.
Bus. Rev. 86(12), 57–68 (2008)

6. King, A.A., Tucci, C.L.: Incumbent entry into new market niches: the role of experience and
managerial choice in the creation of dynamic capabilities. Manage. Sci. 48(2), 171–186
(2002)

Business Model Exploration for Software Defined Networks 111

7. Kim, H., Feamster, N.: Improving network management with software defined networking.
IEEE Commun. Magaz. 51(2), 114–119 (2013)

8. Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.:
Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)

9. Kirkpatrick, K.: Software-defined networking. Commun. ACM 56(9), 16–19 (2013)
10. Lochmann, K., Goeb, A.: A unifying model for software quality. In: Proceedings of the 8th

International Workshop on Software Quality, pp. 3–10. ACM, September 2011
11. Muhtaroglu, F., Demir, S., Obali, M., Girgin, C.: Business model canvas perspective on big

data applications. In: 2013 IEEE International Conference on Big Data, pp. 32–37. IEEE,
October 2013

12. Nunes, B.A.A., Mendonca, M., Nguyen, X.N., Obraczka, K., Turletti, T.: A survey of
software-defined networking: past, present, and future of programmable networks. IEEE
Commun. Surv. Tutor. 16(3), 1617–1634 (2014)

13. Osterwalder, A.: The business model ontology: a proposition in a design science approach
(2004)

14. Osterwalder, A., Pigneur, Y.: Business Model Generation: A Handbook for Visionaries,
Game Changers, and Challengers. Wiley, Hoboken (2010)

15. Rappa, M.: Managing the digital enterprise-business models on the Web (2001)
16. Ross, J.W., Weill, P., Robertson, D.: Enterprise Architecture as Strategy: Creating a

Foundation for Business Execution. Harvard Business Press, Boston (2006)
17. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in

software engineering. Empir. Softw. Eng. 14(2), 131 (2009)
18. Shafer, S.M., Smith, H.J., Linder, J.C.: The power of business models. Bus. Horizons 48(3),

199–207 (2005)
19. Van Belle, J.P.: A framework for the evaluation of business models and its empirical

validation. Electron. J. Inf. Syst. Eval. 9(1), 31–44 (2006)
20. Weill, P., Vitale, M.: What IT infrastructure capabilities are needed to implement e-business

models. MIS Q. Exec. 1(1), 17–34 (2002)
21. Zolnowski, A., Weiß, C., Bohmann, T.: Representing service business models with the

service business model canvas–the case of a mobile payment service in the retail industry.
In: 2014 47th Hawaii International Conference on System Sciences (HICSS), pp. 718–727.
IEEE (2014)

112 Y. Xu et al.

Software Ecosystems and App Stores

How Do Software Ecosystems Co-Evolve?

A View from OpenStack and Beyond

Jose Teixeira1 and Sami Hyrynsalmi2(B)

1 Åbo Akademi University, Turku, Finland
jose.teixeira@abo.fi

2 TTY Pori, Tampere University of Technology, Pori, Finland
sami.hyrynsalmi@tut.fi

http://www.jteixeira.eu

Abstract. Much research that analyzes the evolution of a software
ecosystem is confined to its own boundaries. Evidence shows, however,
that software ecosystems co-evolve independently with other software
ecosystems. In other words, understanding the evolution of a software
ecosystem requires an especially astute awareness of its competitive land-
scape and much consideration for other software ecosystems in related
markets. A software ecosystem does not evolve in insulation but with
other software ecosystems. In this research, we analyzed the Open-
Stack software ecosystem with a focal perspective that attempted to
understand its evolution as a function of other software ecosystems. We
attempted to understand and explain the evolution of OpenStack in rela-
tion to other software ecosystems in the cloud computing market. Our
findings add to theoretical knowledge in software ecosystems by identify-
ing and discussing seven different mechanisms by which software ecosys-
tems mutually influence each other: sedimentation and embeddedness of
business relationships, strategic management of the portfolio of business
relationships, firms values and reputation as a partner, core technological
architecture, design of the APIs, competitive replication of functionality
and multi-homing. Research addressing the evolution of software ecosys-
tem should, therefore, acknowledge that software ecosystems entangle
with other software ecosystems in multiple ways, even with competing
ones. A rigorous analysis of the evolution of a software ecosystem should
not be solely confined to its inner boundaries.

Keywords: Business ecosystem · Software ecosystem · Evolution ·
Open-source · Openstack

1 Introduction

In the so-called ‘Information Age’ companies and organizations do not live in
isolation; instead, business activities of modern companies are highly interwoven
with other companies. Furthermore, the fate of a company nowadays depends on
its connections and environment where they are working — not anymore solely
c© Springer International Publishing AG 2017
A. Ojala et al. (Eds.): ICSOB 2017, LNBIP 304, pp. 115–130, 2017.
https://doi.org/10.1007/978-3-319-69191-6_8

116 J. Teixeira and S. Hyrynsalmi

on the company itself. From these observations, James F. Moore [19] built his
theory and concept of ‘business ecosystem’. According to Moore [20], a business
ecosystem consists of a set of companies working on a shared innovation. The
companies work together, cooperatively and competitively, for creating value for
customers; the ecosystem advances as companies and the innovation co-evolve
together.

Since Moore’s seminal article, a plethora of different kinds of artificial ecosys-
tems has been defined and used [24]. One of the most important is ‘software
ecosystem’ as software is pervasive and ubiquitous by its nature — there hardly
is any industrial domain where software would not be a part of. That is, soft-
ware is available nowadays everywhere and it is rarely built on isolation. Software
ecosystems have become also an important research field and there are hundreds
of studies addressing different kinds of software ecosystems (c.f. [17,18]).

As proposed by Jansen et al. [15], a software ecosystem consists of “the
set of businesses functioning as a unit and interacting with a shared market
for software and services, together with the relationships among them. These
relationships are frequently underpinned by a common technological platform or
market and operate through the exchange of information, resources and arte-
facts.” From the definition, it seems clear that there are a relationship between
software ecosystem and business ecosystem conceptualizations. However, there
is one major caveat: Whereas Moore’s view on business ecosystems focused on
co-evolution, the definition of software ecosystem does not cover this aspect.

Since the ecosystem concept has been accepted as a perspective for business
development, management and governance, it is also necessary to discuss the
interactions between ecosystems. Whether and how ecosystems influence each
other and to what degree, are intriguing questions. That is, it is essential for
both scholars and practitioners to analyze the competitive landscape, in order
to better understand software ecosystem evolution. This study focuses on the
relatively uncovered area in the field of software ecosystems: the co-evolution of
them. Specifically, we focus on how ecosystems influence each other evolution
(i.e. co-evolution of ecosystems). The starting research hypothesis is that an
ecosystem does not evolve in isolation; instead, the ecosystems are interwoven
with each other (e.g., characteristics of one can affect the other or change in one
can also affect the other). That is, this study seeks to answer a question

RQ How do software ecosystems co-evolve?

To answer the presented research question, we performed a case study by
taking the OpenStack software ecosystem as our focal unit of analysis. By ana-
lyzing OpenStack in relation to other software ecosystems in the industry (e.g.,
CloudStack) we identified and explored seven different ways in which software
ecosystems are interwoven with other software ecosystems: 1. Sedimentation and
embeddedness of business relationships, 2. Strategic management of the portfolio
of business relationships, 3. Firm’s values and reputation as a partner, 4. Core
technological architecture, 5. Design of external APIs, 6. Technological replication
of new functionalities, and 7. Complementors’ multi-homing.

How Do Software Ecosystems Co-Evolve? 117

The remaining of this paper is structured as follow. The next section will
briefly present the related work whereas Sect. 3 views on the empirical back-
ground of our study subject. Section 4 presents the research approach used,
Sect. 5 results and Sect. 6 their implications and limitations. The final section
concludes the study.

2 Related Literature

Moore [19], in his seminal essay on the new ecology of competition, defined that
business ecosystems evolve through distinct phases. He identified and named
four stages which are: 1. Birth where companies define value propositions of
a seed innovation. 2. Expansion where the ecosystem seeks to expand to new
territories. 3. Leadership where participating companies start to struggle for a
leadership. As an example, Moore used Microsoft’s and Intel campaign against
IBM during the “clone wars” of personal computers. 4. Self-Renewal or Death
where an ecosystem faces an external threat and it is forced to either renew itself
or cease to exist.

As software ecosystem share distinct similarity with the older ecosystem con-
cept, it is surprisingly how little have been written on the evolution of different
kinds of ecosystems. However, there are a few prior studies existing. Similarly,
as have entire software ecosystem literature diverged into communities [24], also
existing studies can be categorized into two groups with a remarkable different
basis.

In the first group, there are studies addressing software ecosystem as a busi-
ness network and previous studies have addressed how the relationships between
the firms have developed. For example, Basole [2] studied the convergence of
entire mobile ecosystem— including software and hardware vendors as well as
network operators— however, it focused on the interfirm relationships and visu-
alization of cooperative networks. Basole and Karla [3] studied the evolution of
mobile platform ecosystems. However, also their focus was on the visualization
and on the interfirm relationships inside an ecosystem. Hanssen [9] followed a
transformation of a product line organization to an emerging software ecosystem
and focused on why and how the transformation was done.

In the second group, there are studies addressing software ecosystems as a
collection of interdependent projects and these studies on the evolution of soft-
ware ecosystem’s codebase over time (e.g. [5,7]). Already 2007, Yu and Bush
[31] noted that software projects evolve and there are certain types of relation-
ships between the actors. Later, Yu et al. [32] adapted different symbiosis types,
that might affect the evolution of projects, from biology and applied them to
relationships between software projects. Furthermore, Scacchi and Alspaugh [23]
studied how different licenses affect on the ecosystem evolution.

To summarize, while there are few studies addressing the evolution of soft-
ware ecosystems, they represent different ends of the spectrum: On one corner,
there are studies on the relationships and evolution of software code base; and
on the other corner, studies have focused on visualizing interfirm relationships

118 J. Teixeira and S. Hyrynsalmi

of companies with Social Network Analysis. To the best of the authors’ knowl-
edge, this study is unprecedented as it combines both of the existing schools of
thought in the study of ecosystem evolution: We study software ecosystems as
a business network construction but acknowledge the importance of source code
and address the evolution of the ecosystem and interfirm relationships through
the developments in the shared codebase. In addition, we specifically focus on
the co-evolution of competing software ecosystems. Generally, co-evolution refers
to cases where two entities affects to each others’ evolution. Here, the entities
are ecosystems and their actors.

3 Empirical Background

The cloud computing business is dominated by a relatively small number of
players, including (1) Amazon, a pioneer in cloud computing services selling the
Amazon EC2; (2) Google, selling services around its Compute Engine (Google
Compute); and (3) Microsoft, heavily marketing cloud strategies based on its
Azure cloud computing infrastructure (Microsoft Azure). The entrance costs for
building and providing a public cloud computing infrastructure are very high as
they often require global-distributed data-centers, fast and large accesses to the
Internet backbone, much computing and storage power. Public cloud providers
must provide very low latency – after all, they are convincing its enterprise cus-
tomer to move from self-managed in-house computing infrastructures to vendor-
managed computing infrastructures out there.

The leader of the cloud computing industry (i.e., Amazon, Google, and
Microsoft) do not provide cloud infrastructure products, merely computing ser-
vices. In practice and if there were no alternatives, all cloud computation would
run in hardware and software infrastructures controlled by very few players. Such
control from the cloud computing service provider locks-in its customers [1]. Sur-
prisingly, the leading product alternatives to Amazon EC2, Google Compute and
Microsoft Azure are not commercial but rather four open-source projects. They
include: (1) OpenStack, our unit of analysis; (2) CloudStack, backed by Citrix
and the Apache Software Foundation; (3) Eucalyptus, a system that is compat-
ible with Amazon EC2 services and backed by many IT consulting firms; and
(4) OpenNebula, more present in the European markets and backed by C12G, a
Spanish company. During our research, we perceived that many cloud computing
vendors associated with the leading open-source cloud computing ecosystems to
ease the pain of “selling cloud computing services that are famous and infamous
for their single-vendor locking mechanisms”.

OpenStack is a software cloud computing infrastructure capable of handling
big data. It is often offered as an IaaS (Infrastructure-as-a-Service) solution.
The development of this open-source software involves private companies (such
as AT&T, Canonical, Ericsson, IBM, Intel etc.), public organizations (such as
NASA, CERN, Johns Hopkins University etc.) as well as independent, non-
affiliated individuals.

We selected OpenStack as our case study subject due to four main factors.
First, it is truly heterogeneous software ecosystem including start ups, high-tech

How Do Software Ecosystems Co-Evolve? 119

corporate giants, non-profit and public organizations as well as individual soft-
ware developers. Second, it is highly inter-networked. That is, there are several
companies and individual contributors working together. Thus, there is a rich
data available for co-evolution. Third, its size is large enough for a meaningful
study (more than 70.000 individual contributors and more than 600 supporting
companies from 185 countries that have contributed with more than 20 million
lines of source-code1). Finally, it is well-studied (see e.g. [26]) and, therefore,
there is a good amount of scholarly information published.

4 Method

In this section, we present our research design. Given the multidisciplinary
nature of our research approach which borrowed significantly across disciplines,
many interwoven methodological issues are disclosed. We employed a case study
research strategy [30] that relied on naturally occurring data which emerged per
se on the Internet. Such data (e.g., web pages, wikis, blogs, public announce-
ments, market-research reports, technical documentation, the software, source
code repositories, videos broadcasted from the OpenStack summits, among many
others data sources) are not a consequence of researchers’ own actions, but rather
are developed by the OpenStack community in their own pursuits of developing
an open-source infrastructure for handling and storing big amount of data.

Given the open-source nature of our focal unit of analysis, many but het-
erogeneous data regarding OpenStack is available. Therefore we have selected
a novel approach by combining three well-known technique: mining software
repositories (MSR) of OpenStack repository, Social Network Analysis (SNA) of
the contributing developers, and qualitative analysis of archival data (QA). All
within a mixed methods design, that reconstruct as well as visualize the evolu-
tion of the software ecosystem as a sequence of networks connectiong firms and
individuals that jointly develop the OpenStack ecosystem.

We started our efforts qualitatively by searching publicly available data
sources such as news articles, public announcements by companies, financial
figures as well as press reports. Those helped us to create a picture of the cloud
computing industry where OpenStack is a part of. In addition, we went through
OpenStack documentation regarding how the software ecosystem is developed
(i.e. the technical information) and governed (e.g., structures, policies, and pro-
cedures). While keeping in mind the limitations on the use of archival data [30],
we gained valuable insights from OpenStack community and its surrounding
industrial environment. After gaining an understanding of the surrounding indus-
trial dynamics and understanding of how OpenStack software is developed, we
extracted the developer and affiliation information from the publicly-available
OpenStack Nova repository. Then, we created and analyzed the social network
of the project by using the SNA guidelines given in [28].

As in [26], we took advantage of naturally occurring digital trace data (i.e.,
the OpenStack Nova project repository and its changelog) and built cooperative
1 See https://www.openstack.org/community/.

https://www.openstack.org/community/

120 J. Teixeira and S. Hyrynsalmi

social networks that were analyzed using a variety of tools: Gephi, Visone, and
the sna and statnet statistical modules for R. To better explore cooperation
at the ecosystems level, we also modeled cooperative relationships in the tri-
dimensional (3D) space using Blender. We mined evidence of cooperation from
the source code and by visualized the social structures with SNA. This revealed
the cooperation in the OpenStack ecosystem and we later enrichment this data
with qualitative information from the public sources used in QA. The use of all
these methods were helpful in terms that they both showed the social structures
as well as helped to explain them.

We highlight the visualization of the collaboration network. The changes in
this network, over time, show the dynamics among the OpenStack ecosystem.
We aim to understand the visualized networks with the information gathered
from the industry in previous steps. In this, we follow prior work (e.g. [2,26])
done in multi-disciplinary settings.

5 Results

We present our results in a chronological narrative format. The textual narrative
is complemented with visualizations that capture the evolution of the OpenStack
ecosystem. Besides richly describing the evolution of the OpenStack ecosystem,
we also attempt to interpret such evolution and explain it by employing multiple
theoretical lenses. Our analysis aggregates both empirical and theoretical issues
that are later addressed in the discussion section.

We start with the words of, at that time Senior Vice President and General
Manager of Rackspace, Jim Curry. In this, the first public disclosure of the
OpenStack project, Curry emphasizes the roles of NASA’s and Rackspace’s roles
as initial contributors to the project – that is, it is built with experienced partners
and the project did not start from scratch.

“Our mission statement says this: To produce the ubiquitous Open Source
Cloud Computing platform that will meet the needs of public and pri-
vate clouds regardless of size, by being simple to implement and massively
scalable.
That is a big ambition. The good news is that OpenStack is starting with
code contributions from two organizations that know how to build and run
massively scalable clouds – Rackspace and NASA.” — Jim Curry, founder
of OpenStack on behalf of Rackspace, 19 July 20102

The footsteps of Rackspace in NASA started as a supplier of Anso Labs. A
startup company which was later acquired by Rackspace on February 9, 20113.
Before OpenStack, Anso Labs and Rackspace have been working in Nebula –
a Federal cloud computing platform. Nebula emerged at NASA Ames Research
Center at Moffett Field, California in 2008. It allowed NASA researchers to

2 See https://www.openstack.org/blog/2010/07/introducing-openstack/.
3 See https://gigaom.com/2012/05/24/nasa-backs-off-openstack-development/.

https://www.openstack.org/blog/2010/07/introducing-openstack/
https://gigaom.com/2012/05/24/nasa-backs-off-openstack-development/

How Do Software Ecosystems Co-Evolve? 121

manage the computation of data-intensive research projects in a cloud computing
way. The design of Nebula reflected the growing popularity of the Amazon Web
Services (AWS) cloud computing environments.

“Nebula’s architecture is designed from the ground up for interoperability
with commercial cloud service providers such as Amazon Web Services,
offering NASA researchers the ability to easily port data sets and code
to run on commercial clouds.” — NASA under the Open Government
Initiative, 7 April 20104

The NASA Nebula team started by adopting the Eucalyptus open-source
cloud computing infrastructure (now a competitor of OpenStack), as it resem-
bled the EC2 compute cloud and S3 storage cloud technologies from Amazon.
However, NASA faced scalability issues. After all, NASA demands computing
and storage were very high. Nebula could accommodate files as large as eight
terabytes. Furthermore, Nebula could support only an individual file system of
100 TB. As an example, the maximum for Amazon EC2 file size was just one
terabyte and and for file system size was also one terabyte5.

In addition of scaling requirements to handle big data, NASA engineers were
not happy with the ‘open-core’ business model strategy of Eucalyptus Systems
Inc to monetize its cloud computing software ecosystem. According to NASA,
Eucalyptus-based clouds were not entirely open-source.

“NASA engineers attempted to contribute additional Eucalyptus code to
improve its ability to scale, they were unable to do so because some of
the platform’s code is open and some isn’t. Their attempted contributions
conflicted with code that was only available in a partially closed version
of platform maintained by Eucalyptus Systems Inc., the commercial outfit
run by the project’s founders.” — Chris Kemp, NASA chief technology
officer, 20 July 20106.

As argued in prior related research (see [25,26]), the visualizations in Figs. 1,
2 and 37 helps us to understand how the cloud industry’s actors cooperate in
OpenStack. Such visualizations, obtained with combining MSR and SNA, helps
us to visualize the evolution of the software ecosystem as an evolving complex
network of companies and individuals interacting with each other to develop
complex8 software. The diameter of a node reflects its degree-centrality – in other

4 See https://www.nasa.gov/pdf/440932main Nebula.pdf.
5 See https://www.nasa.gov/open/nebula.html.
6 See https://www.theregister.co.uk/2010/07/20/why nasa is dropping Eucalyptus

from its nebula cloud/.
7 Please note that all figures are encoded as Scalable Vector Graphics, therefore readers

can freely zoom in and zoom out for a better visualization of the networks.
8 Complex as it involves different programming languages, different operating systems,

dozens of different hardware configurations, hundreds of firms, thousands of software
developers, and over one million of lines of code.

https://www.nasa.gov/pdf/440932main_Nebula.pdf
https://www.nasa.gov/open/nebula.html
https://www.theregister.co.uk/2010/07/20/why_nasa_is_dropping_Eucalyptus_from_its_nebula_cloud/
https://www.theregister.co.uk/2010/07/20/why_nasa_is_dropping_Eucalyptus_from_its_nebula_cloud/

122 J. Teixeira and S. Hyrynsalmi

Fig. 1. Austin → Bexar [26]. Fig. 2. Bexar → Cactus [26].

words, a large node depicts a well-connected developer. The value of degree-
centrality is a sum of the number of adjacent nodes with which a focus node is
connected to. Thus, a high degree-centrality value, the more likely the developer
is to be cooperating with other developers.

To start with, Fig. 1 captures the cooperation in the OpenStack Nova project
from the Austin (October 21st 2010) to the Bexar (February 3rd 2011) release.
The figure illustrates the cooperation between individual software engineers and
their affiliated companies. For example, as shown by the figure, Citrix had three
developers working on the project together with Rackspace.

Citrix’s, who had worked before with Rackspace in Desktop visualization
technologies9, aim was to ensure that their XenServer platform would be included
in OpenStack’s future plans.

“As a longtime technology partner with Rackspace, Citrix will cooperate
closely with the community to provide full support for the XenServer plat-
form and our other cloud-enabling products.” — Peter Levine, SVP and
GM, Citrix, 19 July 201010.

Our second visualization, in Fig. 2, captures the cooperation from the Bexar
(February 3rd 2011) to the Cactus (April 15th 2011) release. The figure illustrates
the entrance of a new actor, a developer from the company Cloudscaling.

The company started in 2006 with personnel previously working for Amazon
and VMWare. It started by selling customized cloud infrastructures for large
service providers. For example, Cloudscaling had Korea Telecom as an early
customer. In 2010, the company shipped an OpenStack-based storage cloud to

9 See https://ir.rackspace.com/phoenix.zhtml?c=221673\&p=irol-newsArticle\&ID=
1608440.

10 See https://www.rackspace.com/blog/newsarticles/rackspace-open-sources-cloud-
platform.

https://ir.rackspace.com/phoenix.zhtml?c=221673&p=irol-newsArticle&ID=1608440
https://ir.rackspace.com/phoenix.zhtml?c=221673&p=irol-newsArticle&ID=1608440
https://www.rackspace.com/blog/newsarticles/rackspace-open-sources-cloud-platform
https://www.rackspace.com/blog/newsarticles/rackspace-open-sources-cloud-platform

How Do Software Ecosystems Co-Evolve? 123

Fig. 3. Cactus → Diablo [26]. Fig. 4. Diablo → Essex [26].

Korea Telecom. It was first OpenStack delivery without Rackspace. Together
with Mirantis, they were among the first pure-play OpenStack firms deploying
OpenStack-based in-premise private clouds (e.g. Korea Telecom and PayPal).
While CloudScaling kept a strategy of compatibility with Amazon EC2 APIs,
Mirantis was more on the position that OpenStack should not follow the designs
of its competitor but challenge it11.

“We are introducing a cloud infrastructure suite of products that essen-
tially delivers an Amazon Web Services-like cloud, but on a customer’s
premise.” — Michael Grant, Cloudscaling’s CEO, 9 February 201212.

Our visualizations in Figs. 3 and 4 capture cooperation from the Cactus
(April 15th 2011) to the Diablo (September 22nd 2011) release and cooper-
ation from the Diablo (September 22nd 2011) to the Essex (April 5th 2012)
release. HP and IBM (large IT companies), Mirantis (an OpenStack pure-play
startup), Red Hat (a Linux operating system distribution’s vendor), Canonical
(company behind the Ubuntu Linux distribution), VMware (an expert on the
virtualization software and services) and Intel (selling CPUs that powered cloud
infrastructures) got involved in the coopetitive13 software project.

Mirantis, founded in 2011, marketed itself as a “pure-play” OpenStack com-
pany. The startup started collaboration early with Red Hat. Besides cooperating
in the development of OpenStack, both firms partnered in implementation and
integration services at common customers14. Mirantis was involved in the early
11 See presentation entitled “OpenStack Co-Opetition: A View from Within” from

Boris Renski (co-founder and chief marketing officer of Mirantis) presented on 04
Nov 2013 at the OpenStack summit, Hong Kong. Available on youtube at https://
www.youtube.com/watch?v=i7HXu2abNj0.

12 See Nancy Gohring news article at http://www.infoworld.com/article/2619192/.
13 Coopetitive as firms within OpenStack cooperate and compete simultaneously. See

[26, p. 6] for a relational map of competition among OpenStack firms.
14 See https://www.redhat.com/en/about/press-releases/red-hat-and-mirantis-part

ner-across-products-and-services.

https://www.youtube.com/watch?v=i7HXu2abNj0
https://www.youtube.com/watch?v=i7HXu2abNj0
http://www.infoworld.com/article/2619192/
https://www.redhat.com/en/about/press-releases/red-hat-and-mirantis-partner-across-products-and-services
https://www.redhat.com/en/about/press-releases/red-hat-and-mirantis-partner-across-products-and-services

124 J. Teixeira and S. Hyrynsalmi

deployments of OpenStack at large enterprises such as Paypal, AT&T, Comcast,
and Wells Fargo among others.

In the meantime, HP launched an OpenStack-based cloud computing ser-
vices. The company started marketing itself as the leading organization behind
the project. In addition, they marketed OpenStack as free of single-vendor lock-
ing as there were a full ecosystem behind the project15. At that time, it was the
only cloud computing solution with a such promise. After all, cloud computing
services are known by locking-in its customers [1].

With a very good track of contributions to open-source projects IBM (top
contributor to the Eclipse IDE project), RedHat (top contributor to the Linux
kernel) and Canonical (top contributor to the GNOME Linux Desktop project)
also joined OpenStack. In common, all those companies had much expertise on
Linux, the host operating system of OpenStack. RedHat and Canonical aimed
at being the defacto host operating system for OpenStack-based clouds16.

IBM entered with force in OpenStack and showed much commitment to the
platform. Besides contributing with much source-code to the project, it helped
many of its customers to deploy openStack. Moreover, it entered into the public
cloud business with OpenStack as well. In the case of IBM, as well with HP and
Intel, money could be made by selling complementary hardware optimized for
OpenStack. On the space of virtualization technologies, VMware did not want to
lose ground to Citrix, and its contributions to OpenStack ensured compatibility
with its vSphere, NSX, vSOM and vCloud offering17.

6 Discussion

In this section we discuss our most significant results. The structure of the dis-
cussion reflects our mixed-methods analytical approach where we attempted to
maker sense of the retrieved social network visualizations capturing cooperative
relationships within a complex software ecosystem. After all, “the fundamental
quest of SNA is to understand the structure of the network” [6, p. 36].

6.1 A Theoretical and Empirical Evolutionary Approach
to Software Ecosystems

In order to understand and explain why the retrieved social network visualiza-
tions took such topology and not other, much theoretical and empirical back-
ground knowledge was required. The use of certain theory to understand and
explain our results was complemented with our understanding of the competi-
tive cloud computing industry in which OpenStack is embedded, as well as with
our understanding of how OpenStack is developed and governed. Besides lit-
erature directly adressing software ecosystems (c.f. [15], among many others),
15 See https://www.openstack.org/foundation/companies/profile/hewlett-packard-

enterprise.
16 See https://www.openstack.org/blog/2013/11/openstack-user-survey-october-

2013/.
17 See http://www.vmware.com/products/openstack.html.

https://www.openstack.org/foundation/companies/profile/hewlett-packard-enterprise
https://www.openstack.org/foundation/companies/profile/hewlett-packard-enterprise
https://www.openstack.org/blog/2013/11/openstack-user-survey-october-2013/
https://www.openstack.org/blog/2013/11/openstack-user-survey-october-2013/
http://www.vmware.com/products/openstack.html

How Do Software Ecosystems Co-Evolve? 125

our explanation integrated as well with theory on the embeddedness of business
relationships [27], management of the portfolio of business relationships [10],
cooperation among competitors [21], materiality of technology [33], innovation
and intelectual property [8] and multi-homing strategy [16]. Empirical and the-
oretical knowledge was complementary – we could not explain the complex evo-
lution of the OpenStack ecosystem without much knowledge on the surrounding
industrial background of OpenStack or knowledge on the internal socio-technical
practices by key actors within the development of OpenStack. Furthermore, a
theory was fundamental to derive why the cooperative relationships (captured
with SNA from the source-code) within OpenStack evolved in one way and not
other.

By tentatively explaining the retrieved networks, and by focusing on Open-
Stack in relation to other software ecosystems in the industry, we identified seven
mechanisms that shaped the evolution of OpenStack. Such mechanisms are not
internal to OpenStack, but are rather enacted by other software ecosystems in
the industry. In other words, we identified different ways on how do software
ecosystems mutually co-evolve. We found seven mechanisms by which software
ecosystems mutually influence each other — but we do not reject the existence
of others. The mechanisms reported here can be seen as that drive the evolution
of a software ecosystem in relation to others. Interesting enough, some of those
identified causal mechanisms are enacted by competing software ecosystems.

6.2 Mechanisms of Co-Evolution Among Software Ecosystems

In the following, we will present the identified co-evolution mechanisms. The list
is not complete and further work is needed to validate the mechanism. In addi-
tion, some of the mechanisms may overlap partially; however, we have decided
to present them separately in order to validate or reject them in further studies.
(α) Sedimentation and embeddedness of business relationships: When
analyzing the complex history of OpenStack, we quickly notice that prior busi-
ness relationships had much impact on the evolution of OpenStack. For example,
Rackspace entered in the NASA Nebula project (the precursor of OpenStack) as
a supplier of Anso Labs (a company that it was later acquired by Rackspace).
Another early contributor to OpenStack, Citrix, worked before with Rackspace in
the development of Desktop visualization technologies before embracing Open-
Stack. As pointed out by strategic management theory, business partnerships
often accumulate in a process of sedimentation (c.f. [29]). Moreover, actors tend
to cooperate with actors that they had previously worked with and tend to buy
from existing suppliers (over new suppliers) — all in the so-called paradox of the
embeddedness of business relationships (c.f. [27]).
(β) Strategic management of the portfolio of business relationships:
Many of the firms contributing to OpenStack (e.g., IBM, HP, and RedHat)
manage a vast portfolio of business partnerships. However, the value from a
stand-alone partnership may not necessarily be value-creating from the overall
portfolio perspective. Potential synergies between multiple alliances must be

126 J. Teixeira and S. Hyrynsalmi

balanced to mitigate conflicts with other alliances (c.f [10]). Companies such as
IBM and HP needed to show commitment to OpenStack as contributions to other
cloud computing ecosystems could potentially damage cooperation. Firms that
strategically engage with a software ecosystem might not be able to participate
in competing others to not damage existing relationships. After all, the “friends
of my enemies are my enemies” and the “enemies of my enemies are my friends”.
(γ) Firms values and reputation as a partner: Another found mechanism
with significant impact on the co-evolution of software ecosystems is each firm
values and reputation as a good partner. Something especially important in
cooperation among competitors (c.f. [21,25]). In the case of OpenStack, RedHat
had a good reputation as a top contributor to Linux; IBM had a good reputation
as a top contributor to Eclipse; Mirantis had a good reputation in deploying
OpenStack to its customers while contributing back upstream to the community.
On the other hand, Eucalyptus had lost some of its reputation of working in
a truly open-source way by closing parts of the Eucalyptus cloud computing
ecosystem. The evolution of software ecosystems is then a function of the values
and reputation of existing and possible participants. With the loss of reputation,
a player might disappear from an ecosystem while becoming unwelcome in others
as well.
(δ) Core technological architecture: OpenStack is only functional with a
“host OS”. At the early days of OpenStack, Citrix and Rackspace welcomed
much the expertise on Linux from RedHat and Canonical. In the cooperative
side, they could optimize the “host OS” to better run OpenStack. On the other
hand, on the competitive side, this two companies competed with others for
customers with the sales argument that “we know Linux, we know OpenStack
and we are the only ones that can support both”. This reminded us that the
stacking of architectural layers influences the software ecosystem evolution. The
materiality of a software ecosystem (c.f. [33]) influences the materiality of other
software ecosystems. In the case of OpenStack, the architecture of the OpenStack
core was very much influenced by the architecture of Linux, the architecture of
Eucalyptus (now a competitor) and consequently the architecture of Amazon
EC2.
(ε) Design of external APIs: We also noted that not only the technologi-
cal architecture of a software ecosystem influences its co-evolution with others,
but also the design of its external APIs. At the early days of OpenStack, the
design of the APIs from OpenStack, Eucalyptus, and Amazon EC2 converged.
As the open-source cloud computing alternatives matured, Eucalyptus pursued
compatibility with the established Amazon AWS APIs while OpenStack opted
to diverge and provided interfaces to its computing and storage services in a dis-
tinct way. At that time, many decided to get away from OpenStack and move to
Eucalyptus and CloudStack because its API was very different from the estab-
lished Amazon AWS APIs. Many customers wanted to easily move applications
from Amazon EC2 to their own private clouds and the other way around –
Amazon AWS still remains the leader in public cloud services.

How Do Software Ecosystems Co-Evolve? 127

(ζ) Competitive replication of new functionality: Competition forces play-
ers to copy functionality from each other to keep the pace. Besides the existence
of many intellectual property protection mechanisms, this happens quite often
in the software industry (c.f. [8]). OpenStack started by implementing (and
improving) many of the functionalities provided by Eucalyptus and Amazon
E2C. Moreover, whenever firms tried to embed OpenStack within a proprietary
product (e.g., a new proprietary cloud orchestrator that embedded OpenStack in
it), OpenStack implemented a “new, official and open-source version” of it (i.e.,
OpenStack launched a new sub-project implementing the official orchestrator for
OpenStack). In other words, OpenStack expanded its core by replicating com-
plements. After all, copying an idea and making it open-source is often a more
powerful tactic than copying open-source software and making it proprietary.
(η) Complementors’ multi-homing: Due to the nature of software, the com-
plements of ecosystems are often intangible. This means that these products and
services (that add much value to the overall ecosystem) can be transferred or
moved to a different ecosystem and setting with a relatively little effort. The
phenomenon where a single complementing actor is offering his or her products
or services to two or more ecosystems at the same time is called multi-homing
(c.f. [12–14,22]); the opposite strategy is known as single-homing. For example,
due to the success of the ‘Flappy Bird’ mobile game, it was quickly copied into all
major mobile application ecosystems, and beyond [11]. Within OpenStack, Xen
from Citrix and ESXi from VMWare are Hypervisors18 that work both in the
OpenStack and Eucalyptus software ecosystems. The contributions that shape
the ecosystem evolution, are often due to the complementors interest in making
their offering available across different ecosystems. Citrix and VMWare wanted
to be sure that their hypervisors run on different cloud computing platforms. In
the realm of CPUs, Intel and AMD, also contributors to the OpenStack, are also
interested in making sure that their CPUs work across different cloud comput-
ing platforms — therefore they contribute to most open-source cloud computing
software ecosystems. The same happens with Cisco, Juniper Networks, IBM and
HP among other vendors of networking technology.

6.3 Implications and Limitations of the Study

Besides richly narrating the evolution of a software ecosystem, our focal per-
spective of attempting to understand the evolution of a software ecosystem as a
function of other software ecosystem extends the literate on software ecosystems
evolution [2,9,32].

Future research towards a deeper understanding of ecosystems’ evolution
should acknowledge that ecosystems do not evolve in insulation. Careful analy-
sis of a software ecosystem evolution should take in consideration other software
ecosystems as well, including competing ones. We argue then that, in order
to understand the evolution of an ecosystem, we need to look way beyond it.

18 A hypervisor is either a software or a hardware solution that creates, follows and
runs virtual machine instances.

128 J. Teixeira and S. Hyrynsalmi

New methodologies, capable of capturing inter-ecosystem dependencies, are
needed to addresses such findings (c.f. [4,25], for recent advancements in this
direction).

Naturally, there are certain limitations for this study. First, this study uses a
single case study research design to identify mechanisms of co-evolution. There-
fore, it is likely our list of mechanisms is not full and further work is needed
in order to validate the identified mechanism as well as to find new ones. In
addition, we used one ecosystem as a focal point and studied co-evolution from
its point-of-view. While we selected the case study ecosystem carefully, there are
threats involved in the single case study research design. In future work, multiple
ecosystem point-of-view should be used to validate our results.

Second, we selected an open-source software ecosystem as the case subject
and generalizing the results to the other kinds of ecosystems should be done with
care. There are some previous discussion on the limits on generalizing results
from different kinds of software ecosystems to another kinds (c.f. [11,24]); how-
ever, the results of this study does not heavily rely on a certain ecosystem type.
Therefore, they should be generalizable to, at least, open-source software ecosys-
tem and, with some limitations, to general type of software ecosystems.

Third, we used developers’ point-of-view in studying co-evolution of software
ecosystems. Another option could be study the business connections between
the participating companies (c.f. [3,4]). However, as software ecosystem are built
from the developers’ point-of-view [17], our decision seem to justifiable. Never-
theless, the further studies should pay attention also on other perspectives of
ecosystems’ co-evolution.

7 Conclusion

Our findings contribute to a deeper understating of the evolution of software
ecosystem. We found that a software ecosystem co-evolve with other software
ecosystems in at least seven different ways. Understanding the evolution of a
software ecosystem requires an especially astute awareness of its competitive
landscape as well as knowledge on its internal socio-technical practices. Research
addressing the evolution of software ecosystem should, therefore, acknowledge
that software ecosystems entangle with other software ecosystems in multiple
ways, even with competing ones.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun.
ACM 53(4), 50–58 (2010)

2. Basole, R.C.: Visualization of interfirm relations in a converging mobile ecosystem.
J. Inf. Technol. 24(2), 144–159 (2009)

3. Basole, R.C., Karla, J.: On the evolution of mobile platform ecosystem structure
and strategy. Bus. Inf. Syst. Eng. 3, 313–322 (2011)

How Do Software Ecosystems Co-Evolve? 129

4. Basole, R.C., Russell, M.G., Huhtamäki, J., Rubens, N., Still, K., Park, H.:
Understanding business ecosystem dynamics: a data-driven approach. ACM Trans.
Manag. Inf. Syst. (TMIS) 6(2), 6 (2015)

5. Bavota, G., Canfora, G., Penta, M.D., Oliveto, R., Panichella, S.: The evolution
of project inter-dependencies in a software ecosystem: the case of apache. In: 2013
IEEE International Conference on Software Maintenance, pp. 280–289 (2013)

6. Carrington, P.J.: Social network research. In: Mixed Methods Social Networks
Research: Design and Applications, vol. 36. Cambridge University Press (2014).
Chap. 2

7. German, D., Adams, B., Hassan, A.: The evolution of the R software ecosystem.
In: 17th European Conference on Software Maintenance and Reengineering, pp.
243–252 (2013)

8. Guildea, B.: App stores: a digital no man’s land or innovation’s bane? J. Intellect.
Property Law Pract. 11(6), 445–449 (2016)

9. Hanssen, G.K.: A longitudinal case study of an emerging software ecosystem: impli-
cations for practice and theory. J. Syst. Softw. 85(7), 1455–1466 (2012)

10. Hoffmann, W.H.: How to manage a portfolio of alliances. Long Range Plan. 38(2),
121–143 (2005)

11. Hyrynsalmi, S.: Letters from the War of Ecosystems – An Analysis of Indepen-
dent Software Vendors in Mobile Application Marketplaces. Doctoral dissertation,
University of Turku, Turku, Finland , TUCS Dissertations No 188 (2014)

12. Hyrynsalmi, S., Mäkilä, T., Järvi, A., Suominen, A., Seppänen, M., Knuutila,
T.: App store, marketplace, play! an analysis of multi-homing in mobile software
ecosystems. In: Proceedings of the Fourth International Workshop on Software
Ecosystems. CEUR Workshop Proceedings, vol. 879, pp. 55–68. MIT Sloan School
of Management, Cambridge. CEUR-WS (2012)

13. Hyrynsalmi, S., Suominen, A., Mäntymäki, M.: The influence of developer multi-
homing on competition between software ecosystems. J. Syst. Softw. 111, 119–127
(2016)

14. Hyrynsalmi, S., Suominen, A., Jansen, S., Yrjönkoski, K.: Multi-homing in ecosys-
tems and firm performance: does it improve software companies’ ROA?. In: Pro-
ceedings of the International Workshop on Software Ecosystems Co-located with
10th International Conference on Information Systems (ICIS 2016). CEUR Work-
shop Proceedings, vol. 1808, pp. 56–69, Dublin. CEUR-WS (2016)

15. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: a research
agenda for software ecosystems. In: 31st International Conference on Software
Engineering – Companion Volume, ICSE-Companion 2009, pp. 187–190. IEEE
(2009)

16. Landsman, V., Stremersch, S.: Multi-homing in two-sided markets: an empirical
inquiry in the video game console industry. J. Mark. 75(6), 39–54 (2011)

17. Manikas, K.: Revisiting software ecosystems research: a longitudinal literature
study. J. Syst. Softw. 117, 84–103 (2016)

18. Manikas, K., Hansen, K.M.: Software ecosystems – a systematic literature review.
J. Syst. Softw. 86(5), 1294–1306 (2013)

19. Moore, J.F.: Predators and prey: a new ecology of competition. Harvard Bus. Rev.
71(3), 75–86 (1993)

20. Moore, J.F.: The Death of Competition: Leadership and Strategy in the Age of
Business Ecosystems. Harper Business, New York (1996)

21. Rochet, J.C., Tirole, J.: Cooperation among competitors: Some economics of pay-
ment card associations. Rand Journal of economics pp. 549–570 (2002)

130 J. Teixeira and S. Hyrynsalmi

22. Rochet, J.C., Tirole, J.: Platform competition in two-sided markets. J. Eur. Econ.
Assoc. 1(4), 990–1029 (2003)

23. Scacchi, W., Alspaugh, T.A.: Understanding the role of licenses and evolution in
open architecture software ecosystems. J. Syst. Softw. 85(7), 1479–1494 (2012)

24. Suominen, A., Hyrynsalmi, S., Seppänen, M.: Ecosystems here, there, and every-
where. In: Maglyas, A., Lamprecht, A.-L. (eds.) Software Business. LNBIP, vol.
240, pp. 32–46. Springer, Cham (2016). doi:10.1007/978-3-319-40515-5 3

25. Teixeira, J., Mian, S., Hytti, U.: Cooperation among competitors in the open-source
arena: the case of openstack. In: Proceedings of the International Conference on
Information Systems (ICIS 2016). Association for Information Systems (2016)

26. Teixeira, J., Robles, G., González-Barahona, J.M.: Lessons learned from applying
social network analysis on an industrial free/libre/open source software ecosystem.
J. Internet Serv. Appl. 6(1), 14 (2015)

27. Uzzi, B.: Social structure and competition in interfirm networks: the paradox of
embeddedness. Adm. Sci. Q. 42(1), 35–67 (1997)

28. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications,
vol. 8. Cambridge University Press, Cambridge (1994)

29. Wassmer, U., Dussauge, P., Planellas, M.: How to manage alliances better than
one at a time. MIT Sloan Manag. Rev. 51(3), 77 (2010)

30. Yin, R.K.: Applications of Case Study Research. Sage, UK (2011)
31. Yu, L., Ramaswamy, S., Bush, J.: Software evolvability: an ecosystem point of

view. In: Third International IEEE Workshop on Software Evolvability, pp. 75–80.
IEEE (2007)

32. Yu, L., Ramaswamy, S., Bush, J.: Symbiosis and software evolvability. IT Profes-
sional 10(4), 56–62 (2008)

33. Zammuto, R.F., Griffith, T.L., Majchrzak, A., Dougherty, D.J., Faraj, S.: Informa-
tion technology and the changing fabric of organization. Organ. Sci. 18(5), 749–762
(2007)

http://dx.doi.org/10.1007/978-3-319-40515-5_3

Health Measurement of Data-Scarce Software
Ecosystems: A Case Study of Apple’s

ResearchKit

Paul van Vulpen(B), Abel Menkveld, and Slinger Jansen

Utrecht University, Utrecht, The Netherlands
{p.n.vanvulpen,a.a.menkveld}@students.uu.nl,

slinger.jansen@uu.nl

Abstract. Current methods for measuring open source software ecosys-
tem health are unable to measure the health of young software ecosys-
tems, due to a lack of data. This paper proposes a new method for
measuring software ecosystem health. By using a mixed method design
with interviews as the primary data source, a health measurement can
be performed on data scarce ecosystems. This is applied to ResearchKit,
Apple’s SDK to create applications for medical research. The case study
shows that the ResearchKit ecosystem is threatened by the outbound
links of the third-party software developers. These developers intend to
create web-based applications as ResearchKit suffers from a selection
bias that makes it unsuitable for most medical research. The interviews
exposed an inherent problem that is unrelated to ecosystem size and may
not have been found in a traditional health measurement.

Keywords: Software ecosystems · Ecosystem health · Open source

1 Introduction

The rising collaboration of software companies with third-party developers allows
software ecosystems to form. A software ecosystem is defined as “a set of actors
functioning as a unit and interacting with a shared market for software and ser-
vices, together with the relationships among them. These relationships are fre-
quently underpinned by a common technological platform or market and operate
through the exchange of information, resources and artifacts” [1].

Software vendors that have created a software ecosystem around their prod-
uct have to rely on the software ecosystem to be successful. In order to ensure
the success of a product, the ecosystem needs to be healthy, as ineffective use of
a software ecosystem will lead to the demise of software vendors, as stated by
Jansen et al. [2]. Therefore, to evaluate future success of an ecosystem orches-
trator, a health measurement of the software ecosystem is essential.

The Open Source Ecosystem Health Operationalization (OSEHO) is a frame-
work that provides a health measurement based on a list of metrics that differ for
each software ecosystem [1]. However, to perform a health measurement based
c© Springer International Publishing AG 2017
A. Ojala et al. (Eds.): ICSOB 2017, LNBIP 304, pp. 131–145, 2017.
https://doi.org/10.1007/978-3-319-69191-6_9

132 P. van Vulpen et al.

on OSEHO, there currently is a focus on quantitative research methods. The
quality of this analysis is highly dependent on the data and several challenges
concerning unavailable, missing or incorrect data are reported [1].

Therefore, this paper proposes a new method of ecosystem health measure-
ment. By interviewing developers, more in-depth information is to be found,
which may predict the rise of an ecosystem. This way, not only well-established
ecosystems can be assessed, but young and small ecosystems that are still data-
scarce can be analyzed. In other domains, a mixed methods design has proven to
provide both a “richer, contextual basis for interpreting and validating results”
and “an increase of the robustness of results because findings can be strength-
ened through triangulation” as stated by Kaplan and Duchon [3]. This leads to
the following research question:

Research question: H ow can qualitative research methods be used to
measure the health of open source software ecosystems?

This paper is written in the following structure. Section 2 reviews previous
work and describes the framework for measuring ecosystem health. Section 3
describes the case study, research methodology and metrics. Section 4 covers the
results of this research. In Sect. 5, the results are analyzed. Finally, Sect. 6 pro-
vides the discussion of the research, and in Sect. 7 the conclusion about software
ecosystem health is made.

2 Previous Work

Software ecosystem health is a new research domain within software ecosystems.
Few researchers discuss the specific topic within their work. A compact definition
of software ecosystem health is given by Lucassen et al. [4] as “longevity and a
propensity for growth.” Some theories link software ecosystem health to biolog-
ical ecosystem health, such as Dhungana et al. [5] and Wynn [6]. Newer research
mainly focuses on extending the models of den Hartig [7] and Iansiti and Levien [8].
Den Hartig and Iansiti & Levien cover business ecosystems and recognize three
determinants of ecosystem health. These are productivity, robustness and niche
creation. The determinants are defined by den Hartig [7] as:

– robustness, the capability of an ecosystem to face and survive disruptions
– productivity, the efficiency with which an ecosystem converts inputs into

outputs
– niche creation, the capacity to create meaningful diversity and thereby novel

capabilities

Jansen [1] extends the model of Den Hartig by providing indicators for each
of the determinants of open source software ecosystem health. Furthermore,
the model is extended by adding two scopes, network level and project level.
At network level, the determinants of ecosystem health are operationalized for
the ecosystem domain. The project level covers determinants that investigate
ecosystem health by analyzing projects within the software ecosystem. OSEHO

Health Measurement of Data-Scarce Software Ecosystems 133

has been used to measure the health of other software ecosystems such as e-
commerce ecosystems by Alami et al. [9] and content management systems by
van Lingen et al. [10]. The indicators are diverse as the availability of data for
open source ecosystems is limited and different for each ecosystem [1]. Therefore,
a refit of OSEHO to the analyzed framework is required.

3 Research Method

3.1 Case Study

The method for measuring ecosystem health of young software ecosystems is
exemplified in a case study of the ResearchKit software ecosystem. ResearchKit1

is an open source framework introduced and developed by Apple2 that allows
medical researchers and app developers to create applications for medical
research. The goal of ResearchKit is to revolutionize the medical sector by hav-
ing a software ecosystem that entails applications that give new medical insights
on a faster scale than traditional medical research. The cooperation of Apple,
third-party developers and medical researchers leads to a product that serves
the market. Therefore, the environment of ResearchKit is defined as a software
ecosystem. The open source code of ResearchKit has been released on GitHub
in March 2015. However, the amount of data in this ecosystem is not suffi-
cient to perform a traditional ecosystem health measurement. Therefore, the
ResearchKit software ecosystem health should be measured by combining inter-
views and quantitative methods.

3.2 Ecosystem Health Metrics

The metrics used to measure the ecosystem health determinants in the inter-
views and GHTorrent search are discussed in this section. Because ecosystems
and possible metrics differ, the metrics that should be used to measure the
ResearchKit have to fit the ecosystem. The selected metrics are based on the
41 metrics of ecosystem health distinguished in the OSEHO framework [1]. For
each metric included, the reason why it was added and a definition are shown
below. Other metrics of OSEHO are not included due to a lack of data (such
as new downloads), or because they are not practicable in this context (such as
market share). The overview of the metric selection is shown in Table 1.

Some of the metrics are selected because of a pilot interview at C tracker. C
tracker is an application within the ResearchKit ecosystem that is being used to
gather medical data from Hepatitis C patients through the use of their smart-
phone. The pilot interview aimed to shed light on metrics of ecosystem health
that are related to the third-party developers. Therefore, the metric knowledge
creation (1) was added. Third-party developers should experience additional

1 http://researchkit.org/.
2 http://www.apple.com/researchkit/.

http://researchkit.org/
http://www.apple.com/researchkit/

134 P. van Vulpen et al.

benefits of participating in the ResearchKit ecosystem in the form of easier sub-
ject collection, faster research paper development etc. This is an indication of
the productivity of the ResearchKit ecosystem.

Usage (2) is defined as the number of end users of the released applications.
Usage is added as a metric because the ecosystem can only exist when sufficient
research subjects are available. The data about number of end users is an indi-
cator of productivity and is only accessible through interviews, as Apple does
not provide numbers of app downloads in its App Store.

The growth of the software framework (3) is measured by Van Lingen,
Palomba and Lucassen [10] as the growth of the framework in modules. In the
ResearchKit software ecosystem, this is measured as the number of commits to
the software framework. The software framework is available on GitHub where
Apple or other companies can edit and extend ResearchKit.

The total number of active projects (4) is measured based on the activity
in the App Store. The total number of applications in the App Store is available,
and it gives an indicator of the robustness of the ecosystem [1]. The number of
active projects is a metric of ecosystem health, as it is a direct indicator of the
size of the ecosystem. Lucassen et al., van Lingen et al., and Goeminne & Mens
use this metric for ecosystem health measurement [4,10,11].

Contributor satisfaction (5) is the satisfaction of the developers of appli-
cations in the ecosystem. Developer satisfaction is supposed to be one of the
most important metrics in project health as concluded by Lakhani and Wolf [12].
A high developer satisfaction binds developers to the ecosystem. Therefore, con-
tributor satisfaction is an indicator of robustness.

The end user rating (6) is collected by scraping the App Store for ratings
of end users. A high rating from end users is essential because they have to use
the developed applications and participate in research to allow this ecosystem
to function. Therefore, the end user rating is an indicator of the robustness of
the ecosystem. Stoyanov et al. concluded that ratings can be used to measure
the quality of mobile health applications [13], which is important for ecosystem
health in this domain.

Outbound links to other SECOs (7) is defined as the other ecosystems
where the contributors are active in. The pilot interview showed that the devel-
opment team of C Tracker was also active with ResearchStack, the Android
counterpart of ResearchKit. The multi-homing activities of developers may or
may not be beneficial for the robustness of the ecosystem.

Interest (8) is measured both on developer and end user level. Search statis-
tics using Google Trends are analyzed to measure the worldwide public interest
in ResearchKit. This is done similarly to van Lingen et al. [10], who define the
findability of Google Trends as an indicator of software ecosystem health when
comparing several ecosystems. In this paper, the findability will be analyzed over
time to measure the robustness in terms of public interest. Furthermore, devel-
oper interest is measured using the growth of the number of forks on GitHub.
A fork is a separate repository where a third-party developer has full writing

Health Measurement of Data-Scarce Software Ecosystems 135

permissions. Forks may act as a first step to new projects [1]. Lucassen et al. [4]
show that the number of forks is an indication of software ecosystem health.

Variety in projects (9) & variety in developer type (10) measure
the niche creation of the ResearchKit ecosystem. Variety in projects measures
what the goals and features are of the applications in this ecosystem. Variety in
developer type discusses who the contributors to this ecosystem are. Their size
and location may also influence ecosystem health. Iansiti & Levien state that
a healthy ecosystem possesses the capabilities to increase meaningful diversity
over time through the creation of new valuable functions [8]. In this article, it
is argued that both variety in projects and developer type lead to an increased
capability to create meaningful diversity in the software ecosystem.

Table 1. Overview of the selected software ecosystem health metrics

Determinant Metric (number) Source

Productivity Knowledge creation (1) Interviews

Usage (2) Interviews

Growth of the software framework (3) GitHub

Robustness Active projects (4) App Store

Contributor satisfaction (5) Interviews

End user rating (6) App Store

Outbound links to other SECOs (7) Interviews

Interest (8) Google Trends, Github

Niche creation Variety in projects (9) Interviews, Online search, App Store

Variety in developer type (10) Interviews, Online search, App Store

3.3 Data Collection

GHTorrent is used to obtain the historical evolution of the ResearchKit open
source project. The GHTorrent project [14] provides queryable data offered
through the GitHub REST API, created by the Software Engineering Research
Group of TU Delft. The MySQL database is queried using the DBLite web-based
client. For every GitHub commit to the ResearchKit project, the commit date,
committer username and committer employer are retrieved. Next, all projects
that were forked from the ResearchKit projects have been retrieved, together
with their creation date, username and the user’s employer. The data used in
this work is dated 28 September 2016.

The interviews were conducted with key developers of ResearchKit appli-
cations. To find the developers of ResearchKit applications, the App Store was
searched for these applications. In the App Store, 15 applications that used
ResearchKit were found. The developers of these applications were sent an email
request for an interview. A reply was received from eight developers (response
rate 8/15 = 53%). Two of these developers did not have a final interview, as
one of the developer teams replied that their application was used so rarely that

136 P. van Vulpen et al.

they did not have enough information to give an interview and the other team
did not reply to email response after the initial contact. Out of the remaining
six developers, three developers were interviewed using Skype or Join.me. The
other three developers answered the questions by email. The interviews had a
semi-structured design and the interview questions were based on the metrics.

4 Results

In performing a qualitative ecosystem health measurement, the selection of
ecosystem health metrics is the first step. An indicator should be selected when
literature about the research topic states that the indicator is relevant for ecosys-
tem health measurement. Then, data availability for each indicator has to be
reviewed. Indicators that are not sufficiently covered by quantitative data sources
are then selected to be measured in interviews. The interviews should be held at
third party developers to measure the selected ecosystem health metrics. This
can overcome the aforementioned problem of data scarcity when performing a
software ecosystem health measurement. An operationalization of the measure-
ment is shown below for ResearchKit.

4.1 Productivity

The interviews made clear that knowledge creation by developing an appli-
cation with ResearchKit is significantly better than previous methods, such as
paper questionnaires. The first advantage mentioned is that an application can
provide validation steps and therefore reduce the occurrence of invalid data.
The ResearchKit framework also allows for easy collection of sensory data. This
is possible by manual coding but is easier when using ResearchKit. The lead
software developer of C Tracker states:

You need to show surveys nicely on the screen and alternative solutions
have not been nicely done; but ResearchKit is great. (...) So ResearchKit
gives access to sensory data, you can do this yourself, but since ResearchKit
provides it, you can more easily build an app around it. - Lead Software
Developer of C Tracker

Medical research using an application developed with ResearchKit is more
effective than conventional methods, but also more effective than developing
an application without ResearchKit. Furthermore, the research team that has
developed the Mole Mapper application stated that “the first publication in
a major journal was accepted,” with data acquired through the Mole Mapper
application.

Knowledge is not only created by the implementation of the ResearchKit
framework itself, contributors are also adding knowledge to the ecosystem frame-
work. This can be done by adding code extensions to the open source GitHub
project, or sharing developer experiences, as explained by two interviewees:

Health Measurement of Data-Scarce Software Ecosystems 137

We have sent pull requests that they accepted. It seems to work. (...)
ResearchKit has a lot of contributors who have added back the active tasks
modules. - Lead Software Developer of C Tracker

We did contribute some of the forms to the community and did relate to
Apple what we were doing and how we approach challenges that we faced.
Other community members who were facing similar experiences now have
a guide on how we solved that problem. - Chief Information Officer of
StopCOPD

The usage of the medical research applications varies. C Tracker mentioned
700 end users and Mole Mapper mentioned 3000 subjects in their first study. Big-
ger studies in terms of participants are mPower and PRIDE Study. mPower has
reported more than 10,000 participants and PRIDE Study over 16,000. Another
developer reveals that their application has not been used very much, as the
developer was unable to get the application out to patients to try. The develop-
ment team of StopCOPD already had a web-based platform and the release of
an application developed with ResearchKit did not significantly impact usage.

Figure 1 shows the growth of the software framework in the green
area that is expanding over time. Figure 2 shows the contribution of Apple to
ResearchKit in comparison with other software companies.

Fig. 1. Number of commits per month
and cumulative number of commits to
ResearchKit (Color figure online)

Fig. 2. Commit comparison of Apple
and other firms over time

4.2 Robustness

Out of the 15 active projects listed in the U.S. App Store’s ResearchKit page,
four apps have been updated in the last six months. Out of the other applications,
nine have been updated in the last year and two apps have not been updated for
more than a year. In addition to this, two applications that have been launched
in the first wave of ResearchKit apps have been retracted from the App Store.

The contributor satisfaction of interviewed developers with the use of
ResearchKit was overall high. Using this framework speeds up the development
process and ensures consistency throughout the ecosystem.

138 P. van Vulpen et al.

So you have a nice app and a really nice package that looks good and works
well. But it’s not something that you are unable to do without ResearchKit.
It’s just nicer and more quickly done. - Lead Software Developer of C
Tracker

Another aspect of ResearchKit that positively impacted contributor satisfac-
tion is the fast collection of research subjects. The development and publication
of a mobile application proves to be a fast way of collecting subjects and consent-
ing them to participate in research. The principal investigator of PRIDE Study
was satisfied with the faster development of a medical research application and
the digital consent.

It allowed us to recruit people quickly by having an app. People have to
consent to participate in research. That is done through the app which is
relatively new in this whole process. - Co-Director and Principal Investiga-
tor of PRIDE Study

ResearchKit does have aspects that negatively impact contributor satisfac-
tion. Bugs were found by developers that would not occur when an application
is developed without ResearchKit.

We ran into this issue with ResearchKit which is a bug in the branch-
ing logic of surveys. The developers had to do coding of the correct order
both forwards and backwards through the survey, which I think was just
really annoying. As ResearchKit develops more, it will be hopefully less of
a problem. - Co-Director and Principal Investigator of PRIDE Study

The end user rating is measured by App Store ratings. These are shown in
Table 2. The score is measured on a scale from one to five. In order to measure
an average rating of the developed applications, only applications with five or
more ratings have been taken into account, to reduce the influence of individ-
ual ratings on infrequently rated applications. These applications received 60.67
(SD = 71.02) ratings on average. The users scored the applications with an
average score of 3.21 (SD = 0.59).

The outbound links to other SECOs are present on a large scale in
this ecosystem as all interviewees reported that their research team did some
kind of multi-homing. The goal of the medical studies is to reach as many sub-
jects as possible, and developing applications for multiple platforms is a way to
reach more subjects. The Android counterpart of ResearchKit is ResearchStack3,
an upcoming development that also provides a framework for developing med-
ical research applications. ResearchStack is used by several of the interviewed
developers.

Our developers are also working with ResearchStack. We have worked with
this system to port one study over to ResearchStack and are in the process
of doing so for additional studies. - Principal Investigator (anonymized)

3 http://researchstack.org/.

http://researchstack.org/

Health Measurement of Data-Scarce Software Ecosystems 139

Table 2. Applications using the ResearchKit framework, listed on the ResearchKit
overview page in the U.S. App Store

App name Developed by Launch Last updated Number of

ratings

Score

MyHeart

Counts

Stanford Medicine Mar 2015 Dec 14 2016 225 2.91

PRIDE Study University of California Jun 2015 Jul 25 2016 99 2.86

GlucoSuccess Massachusetts General

Hospital

Mar 2015 May 13 2015 93 2.78

SleepHealth American Sleep Apnea

Association

Mar 2016 Jun 24 2016 46 2.78

Parkinson

mPower Study

Sage Bionetworks Mar 2015 Mar 21 2016 43 3.60

Mole Mapper

Melanoma

Study

Sage Bionetworks &

Oregon Health & Science

University Dermatology

Oct 2015 June 4 2016 13 3.62

EpiWatch Johns Hopkins University Oct 2015 Feb 19 2016 12 2.42

PPD ACT Psychiatry and Genetics

at the University of

North Carolina

Mar 2016 Jun 27 2016 9 4.22

Autism &

Beyond

Duke University Health

System

Oct 2015 Nov 11 2015 6 3.67

VascTrac Stanford Cardiovascular

Institute

Sep 2016 Sep 22 2016 2 5.00

TeamStudy Harvard & Sage

Bionetworks

Mar 2016 Jan 4 2017 2 5.00

Concussion

Tracker

NYU Langone Medical

Center

Nov 2015 Feb 1 2016 1 5.00

C Tracker Boston Children’s

Hospital

Oct 2015 Feb 15 2016 0 –

EPV Yale University Oct 2015 Jan 29 2016 0 –

StopCOPD COPD Foundation Nov 2015 Jun 29 2016 0 –

We find it critical to allow each ResearchKit study to be ported to Android
phones using tools such as ResearchStack. The heterogeneity of Android
devices makes Android much more challenging. We are outlining how to
approach ResearchStack, and it is definitely in the works. - Principal Inves-
tigator of VascTrac

Another way to target more subjects is by eliminating the use of a smartphone
by developing a web-based service. This service is accessible through multiple
devices ranging from computers to phones. This also eliminates a selection bias.
When using an application developed with ResearchKit for medical research, the
subjects are automatically users of iPhones, and this will bias the sample. Using
a web-service with multi-device access eliminates this bias.

In the United States iPhones are owned, by effectively well-to-do people and
we don’t have as much racial and ethnic diversity as we would like. (...) So
we’re moving to a web-based platform that will allow people on any device
to participate. Co-Director and Principal Investigator of PRIDE Study

Figure 3 shows the number of forks created by developers on GitHub. The
release of ResearchKit sparked the interest of developers and 484 forks were

140 P. van Vulpen et al.

made in the first three months. After the initial three months, the number of
created forks per month declined to an average of 10 forks per month.

The (end user) interest in ResearchKit, based on data from Google Trends4,
is visualized in Fig. 4. The numbers show that the search terms ‘ResearchKit’
and ‘Research Kit’ have a 2 till 3% popularity in the last quarter of 2016, in
comparison with its peak popularity during the launch in March 2015.

Fig. 3. Number of forks per month on
the ResearchKit GitHub project

Fig. 4. Google search interest in
ResearchKit

4.3 Niche Creation

The variety in projects developed with ResearchKit is high. Out of the apps
mentioned in Fig. 2, 12 are developed for medical research dedicated to a dis-
ease. The other applications conduct research on related medical subjects, not
specifically dedicated to a single disease. The interviews show different kinds of
research conducted with ResearchKit. The first type of research aims to find a
relation between people’s perceptions or way of living and a disease. For exam-
ple, C Tracker, GlucoSuccess and MyHeart Counts are applications that try
to analyze a subject’s behavior and link this to their disease. The second type
of research tries to build up a community of like-minded and learn from their
needs, of which PRIDE study is an example. These different types of research
demand for as many subjects as possible, but also require an obtained sample
to be representative of the population intended to be analyzed. A third study
design is more exploratory in the sense that it tries to determine whether the
iPhone’s sensory data could be helpful as a research instrument. One example
is the EpiWatch app, which gathers data to facilitate the creation of a seizure
detection app. The Parkinson mPower Study is also using this study design.
When developing an application with an exploratory goal, a large data set is
still vital, but a non-random sample is not a requirement for this research.

Table 2 also shows the developers of the applications in the App Store, in
order to analyze the variety in developer type. The developers are not new
start-ups that wish to enter the medical research sector. Instead, the developers

4 https://www.google.com/trends/.

https://www.google.com/trends/

Health Measurement of Data-Scarce Software Ecosystems 141

consist of universities, hospitals, foundations and nonprofit organizations. The
organizations only take part in the ecosystem with a single application, except
for Sage Bionetworks, a nonprofit organization that has developed three appli-
cations.

5 Analysis

The metrics that measure productivity address a variable change over time [1].
In the software ecosystem of ResearchKit the growth of the software framework is
such a variable. The core framework was provided and enhanced in its first year
primarily by Apple, but additions afterwards are mostly added by third-party
developers. Commit access to the ResearchKit project repository is strictly con-
trolled by the use of pull requests, consistent with findings from Padhye et al. [15].
Contributors have to sign a license agreement first and do not have direct writing
access to the source code. The initial framework appears to be finished, as Apple
is no longer committing intensively and the number of commits per month over
the last year is significantly lower than in earlier stages of development.

The great variation in the number of end users between the applications
emphasizes the notion that ResearchKit as a technical framework alone provides
little advantage over an application created without the framework, in terms
of recruitment. Still, some applications profited from the media attention dur-
ing the launch of ResearchKit and mention over 16,000 downloads and another
development team thinks it is easier to recruit people by having an application.
ResearchKit may have been an incentive for them to create such an application.

Knowledge creation can substantially be increased by developing an applica-
tion with ResearchKit, due to the predesigned surveys, sensory data and digital
informed consent. This is true when comparing to traditional medical research
methods and when comparing to development of a research application without
ResearchKit.

The robustness level covers absolute entities in static metrics [1]. A robust
ecosystem is able to “survive disruptions and must persist in the face of environ-
mental changes” [8]. Currently, the number of active ResearchKit projects is lim-
ited to 15 applications highlighted by Apple in their U.S. App Store. The exact
number of ResearchKit applications worldwide is higher and not all applications
are officially recognized in the App Store ResearchKit category. Nevertheless,
both end user and developer interest declined significantly after the first three
months following the launch of the framework. Over half of the created related
projects in ResearchKit’s 1.5 years appearance on GitHub are forked within the
first month after release.

Paschou et al. [16] emphasize an increasing demand for “continuous software
updates of mHealth apps on users’ smartphones.” Developers mostly meet this
requirement, as a new version has been released in the last year for 13 out of the
15 applications. End users rate the applications with an average 3.21 score on a
scale from one to five, but the number of ratings applications have received varies
substantially. More important for the robustness of the ecosystem is the devel-
oper satisfaction and their connection to the ecosystem. Iansiti & Levien [8] even

142 P. van Vulpen et al.

state that niche players (the developers) can wield surprising power in the face of
keystones (Apple). In the ResearchKit ecosystem, developers are overall satisfied
with the technical functioning of the framework. Minor bugs in the framework or
irritations of developers have been attributed to the ecosystem still being nascent.

However, serious threats to the health of the ecosystem concerning its robust-
ness have been identified. These threats come from niche players’ outbound links
to other ecosystems. Almost all of the interviewees raised concerns about the
arising sample selection bias due to the fact that ResearchKit applications can
be used by iPhone users only. Moreover, medical researchers tend to look for
alternative solutions to overcome this problem, clearly harming the ResearchKit
ecosystem. ResearchStack, the Android counterpart of the framework, is pro-
posed and used by some researchers as a method to reach more possible subjects.
This open source framework is especially designed to easily adapt existing iOS
apps for Android.

Another strategy involves the development of a web application, resulting
in the iPhone app becoming only little more than a ‘wrapper’ for the mobile
website. These changes can “loosen the bonds that typically tie a niche player
to its keystone partner and make it easier for developers to end a relationship
with a keystone whose platform doesn’t offer sufficient value” [8].

Next to the productivity and robustness, niche creation, an ecosystem’s
capability to “increase meaningful diversity through the creation of valuable new
functions or niches” is an important health measurement [8]. In the ResearchKit
ecosystem the projects have widely varied goals. There is no overlap among
the projects and currently no competition. This is why new players can easily
become active in a new domain or niche. The app initiators come from sev-
eral sources, including universities, hospitals and non-profit organizations. New
entrants already have a relation to medical research, indicating that this market
can be characterized as one with high entry barriers. Despite these entry barri-
ers, there is much opportunity to start as a new niche player in the ecosystem
because of the large variety in projects on the network level.

On the project level, Jansen [1] makes clear that “a project that can be
applied in a wide variety of contexts will be more supporting for niche creation.”
This comprises that the project should be able to support different languages,
markets and technologies. In ResearchKit, these possibilities are currently lim-
ited. The technology and market are limited to the use of the iOS developer plat-
form and additional countries are only slowly being adopted due to the strict
regulations on medical research that vary for each country. From the results
of this paper, three different ResearchKit practices became clear. Traditional
medical research, aiming to find a relation between people’s perceptions or way
of living and a disease, is supplemented with community building applications
and exploratory research to the usefulness of iPhone’s sensory data for future
implementations.

Based on the productivity, robustness and niche creation metrics, this analy-
sis shows that the ecosystem is unhealthy. Although the low scores, mainly on
robustness, seems to be attributable to the small size of the ecosystem, the

Health Measurement of Data-Scarce Software Ecosystems 143

interviews show clear indications of an underlying problem that is unrelated to
ecosystem size.

The main finding of this analysis is that all of the third-party developers
in the ResearchKit ecosystem have outbound links to other SECOs. Especially
developers that have created or are intending to create a web-based application
are threatening ecosystem health. These developers are leaving the ecosystem
because of the sample bias that persists when developing medical research appli-
cations for the iPhone. ResearchKit is unsuitable for medical research in which
normal sampling is required. A small number of research applications in the
ecosystem is related to exploratory research to test the usefulness of the iPhone’s
sensory data for medical purposes, which is not stymied by sampling bias. How-
ever, this exploratory research does not appear to be large enough to create an
ecosystem around these applications. The main advantage that ResearchKit has
over a web-based application, the access to sensory data, has not been widely
adopted by the actors in the ecosystem.

Iansiti and Levien [8], who define value creation as the first part of an effective
keystone strategy, emphasize that “value creation of keystones is crucial to the
community’s survival.” The need for standardized technologies (like HTML5),
follows logically after the initial industry-specific technology and tailored soft-
ware solutions [17]. This is underlined through the need for random sampling
in medical research. Since the added value of sensory data is not high enough
when compared to the need to retrieve a non-biased sample, the ResearchKit
framework in its current shape will be unable to establish a healthy software
ecosystem around itself.

6 Discussion

This article aimed to create a health measurement that is not dependent on large
quantitative data sources by introducing interviews as a new data source. This
new technique has been applied to the ResearchKit software ecosystem. In this
chapter, the limitations and implications of this research are discussed.

Using both qualitative and quantitative data sources for ecosystem health
measurement provides the best of both worlds. Interviews give in-depth data
and insights that may not be easily retrievable from quantitative sources. In the
ResearchKit case study, the outbound links of third-party developers may not be
retrieved from quantitative data sources. Quantitative methods provide objec-
tive data that is easier to collect and larger in volume. Furthermore, quantitative
data sources can provide information of the ecosystem over time. Qualitative and
quantitative sources complement each other in the analysis of software ecosys-
tems. Trends in interviews may be linked to findings in quantitative methods
and vice versa, which strengthens the validity of the analysis.

The method of this paper is especially useful for ecosystems where no plethora
of data is available. This can be the case for newly started ecosystems, such as
ResearchKit. The method may also find use in closed software ecosystems that
have just been opened up. The list of metrics is created with the definition of

144 P. van Vulpen et al.

the health criteria as defined by Jansen [1] in mind. The interviews can theoret-
ically provide information on limitless metrics. To ensure the quality, only few
predefined metrics should be researched based on the specific case.

7 Conclusion

Open source software ecosystems are a new research domain within information
systems. This paper attempts to contribute to the fresh domain by proposing
a new method of measuring ecosystem health of data-scarce ecosystems. The
research question of this paper is: How can qualitative research methods be used
to measure the health of open source software ecosystems?

To answer the research question, a method that combines qualitative and
quantitative data collections for an ecosystem health measurement has been
proposed. Based on the OSEHO framework and relevant literature, ecosystem
health metrics should be selected that measure the three determinants of ecosys-
tem health: productivity, robustness and niche creation.

The method is operationalized in a case study on ResearchKit. The ecosys-
tem health is measured by combining data retrieved from GHTorrent and inter-
views at developers of applications in the ecosystem of ResearchKit. The case
study shows how interviews provide another perspective of ecosystem health than
quantitative methods. The robustness of the ResearchKit ecosystem was found
to be severely limiting its health, regardless of the size of the ecosystem. This
is caused by the outbound links of third-party developers. Using ResearchKit
in development for medical research applications implies that the subjects are
iPhone users. This is restraining medical research that relies on unbiased ran-
dom selection. Therefore, third-party developers have created, or are intending
to create, a web-based application or adapt their applications for Android to
reach a bigger audience with a smaller sampling bias. The interviews shed light
on aspects that may not have been found in a traditional health measurement.

Further research could investigate the impact of ecosystem health on commer-
cial success, because a link between these terms will lead to better understanding
of ecosystem health. Another research area is to compare ecosystem health to
external factors, as current ecosystems that appear healthy may still be quickly
overtaken by superior ecosystems.

Acknowledgements. We would like to thank Prof. Dr. João Fernandes and
Dr. Andrey Saltan for providing valuable comments that have improved our paper.

References

1. Jansen, S.: Measuring the Health of Open Source Software Ecosystems: Moving
Beyond the Scope of Project Health (2013)

2. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: a research
agenda for software ecosystems. In: 31st International Conference on Software
Engineering, New and Emerging Research Track, pp. 187–190 (2009)

Health Measurement of Data-Scarce Software Ecosystems 145

3. Kaplan, B., Duchon, D.: Combining qualitative and quantitative methods in infor-
mation systems research: a case study. MIS Q. 12, 571–586 (1988)

4. Lucassen, G., van Rooij, K., Jansen, S.: Ecosystem health of cloud PaaS providers.
In: Herzwurm, G., Margaria, T. (eds.) ICSOB 2013. LNBIP, vol. 150, pp. 183–194.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39336-5 18

5. Dhungana, D., Groher, I., Schludermann, E., Biffl, S.: Software ecosystems vs.
natural ecosystems: learning from the ingenious mind of nature. In Proceedings of
the Fourth European Conference on Software Architecture: Companion Volume,
pp. 96–102. ACM (2010)

6. Wynn, D.: Assessing the health of an open source ecosystem. In: Emerging Free
and Open Source Software Practices. Idea Group Publishing (2007)

7. den Hartigh, E., Tol, M., Visscher, W.: The health measurement of a business
ecosystem. In: Proceedings of the European Network on Chaos and Complexity
Research and Management Practice Meeting, pp. 1–39 (2006)

8. Iansiti, M., Levien, R.: Strategy as ecology. Harv. Bus. Rev. 82(3), 68–78 (2004)
9. Alami, D., Rodŕıguez, M., Jansen, S.: Relating health to platform success: exploring

three e-commerce ecosystems. In: Proceedings of the 2015 European Conference
on Software Architecture Workshops, pp. 43–49. ACM (2015)

10. van Lingen, S., Palomba, A., Lucassen, G.: On the software ecosystem health of
open source content management systems. In: 5th International Workshop on Soft-
ware Ecosystems (IWSECO 2013), pp. 38–51 (2013)

11. Goeminne, M., Mens, T.: A comparison of identity merge algorithms for software
repositories. Sci. Comput. Program. 78(8), 971–986 (2013)

12. Lakhani, K., Wolf, R.: Why Hackers Do What They Do: Understanding Motivation
and Effort in Free/Open Source Software Projects. MIT Press, Cambridge (2005)

13. Stoyanov, S.R., Hides, L., Kavanagh, D.J., Zelenko, O., Tjondronegoro, D., Mani,
M.: Mobile app rating scale: a new tool for assessing the quality of health mobile
apps. JMIR mHealth uHealth 3(1), e27 (2015)

14. Gousios, G.: The GHTorrent dataset and tool suite. In: MSR 2013, pp. 233–236
(2013)

15. Padhye, R., Mani, S., Sinha, V.S.: A study of external community contribution to
open-source projects on GitHub. In: Proceedings of the 11th Working Conference
on Mining Software Repositories, pp. 332–335. ACM (2014)

16. Paschou, M., Sakkopoulos, E., Tsakalidis, A.: easyHealthApps: e-Health apps
dynamic generation for smartphones & tablets. J. Med. Syst. 37(3), 9951 (2013)

17. Tyrväinen, P., Warsta, J., Seppänen, V.: Evolution of secondary software busi-
nesses: understanding industry dynamics. In: León, G., Bernardos, A.M., Casar,
J.R., Kautz, K., De Gross, J.I. (eds.) TDIT 2008. ITIFIP, vol. 287, pp. 381–401.
Springer, Boston (2008). doi:10.1007/978-0-387-87503-3 22

http://dx.doi.org/10.1007/978-3-642-39336-5_18
http://dx.doi.org/10.1007/978-0-387-87503-3_22

Coopetition of Software Firms in Open Source
Software Ecosystems

Anh Nguyen Duc1(&), Daniela S. Cruzes2, Geir K. Hanssen2,
Terje Snarby3, and Pekka Abrahamsson1

1 Norwegian University of Science and Technology, Trondheim, Norway
{anhn,pekkaa}@ntnu.no

2 SINTEF Digital, Trondheim, Norway
{daniela.s.cruzes,geir.k.hanssen}@sintef.no

3 Genus AS, Lysaker, Norway
terjesnarby@gmail.com

Abstract. Software firms participate in an ecosystem as a part of their inno-
vation strategy to extend value creation beyond the firm’s boundary. Partici-
pation in an open and independent environment also implies the competition
among firms with similar business models and targeted markets. Hence, firms
need to consider potential opportunities and challenges upfront. This study
explores how software firms interact with others in OSS ecosystems from a
coopetition perspective. We performed a quantitative and qualitative analysis of
three OSS projects. Finding shows that software firms emphasize the co-creation
of common value and partly react to the potential competitiveness on OSS
ecosystems. Six themes about coopetition were identified, including spanning
gatekeepers, securing communication, open-core sourcing and filtering shared
code. Our work contributes to software engineering research with a rich
description of coopetition in OSS ecosystems. Moreover, we also come up with
several implications for software firms in pursing a harmony participation in
OSS ecosystems.

Keywords: Coopetition � Collaboration � Competition � SECO � Software
ecosystem � Case study

1 Introduction

Increasingly, software products are no longer developed solely in-house, but in a
software ecosystem (SECO), where developers collaborate with “distributed collabo-
rators” beyond their firm boundary [1, 12]. This differs from traditional outsourcing
techniques in that the initiating actor does not necessarily own the software produced
by contributing actors and does not hire the contributing actors. All actors, however,
coexist in an interdependent way. Game developers in App Stores, for instance, might
share a similar game engine, but independently produce different applications to mobile
users. By integrating with SECOs, firms can benefit from developing projects of a size
that exceeds their own capabilities, exploring opportunities to enter new markets [14],
performing a inside-out process [2], and employment of a recruitment strategy [15].

© Springer International Publishing AG 2017
A. Ojala et al. (Eds.): ICSOB 2017, LNBIP 304, pp. 146–160, 2017.
https://doi.org/10.1007/978-3-319-69191-6_10

Before the full potential advantages of SECOs are leveraged, commercial firms need
to consider several concerns. At the organizational level, the firm’s benefit and the
ecosystem’s goal are not always the same [3]. Participation of commercial firms in
SECOs with their diverse motivations and business strategies might introduce dynamics,
and sometimes conflicts in navigating the project evolution [14]. The body of knowl-
edge in open source software (OSS) projects provide sufficient amount of knowledge on
firms’ motivation, collaboration patterns, and business models when participating in
such an open collaborative firm network [4–7]. However, one often-neglected aspect is
the consideration of both competition and collaboration among firms, as two sides of the
same coin.

Coopetition, as a concept, relates to the coexistence of competition and collabo-
ration, and conceptualizes the interaction among firms with a partial congruence of
interests [8, 9]. In a coopetitive environment, firms cooperate with each other to reach a
higher value creation as compared to the value created without interaction and struggle
to achieve competitive advantage. A good example of coopetition in a restaurant
business is when a large number of restaurants are concentrated in a relatively small
area (“the restaurant district” or “the restaurant quarter”). Coopetition takes place
when companies’ being in the same market work together in the exploration of
knowledge and research of new products. Since coopetition applies to inter-firm
relationships, open source SECO offers an ideal context for understanding coopetition
among firms that develop and utilize a common software codebase [11].

Our research objective is to explore the state-of-practice on coopetition among
commercial firms in open SECOs. To our knowledge, there exist only a few studies that
examine the coopetition phenomenon between commercial firms in SECOs [10, 11,
14], making it an interesting research topic. A research question (RQ) was derived from
this research objective:

RQ: How do commercial firms maintain both collaboration and competition in an open source
software ecosystem?

The study is organized as follows: Sect. 2 presents a background about coopetition
and firm participation in open source SECOs. Section 3 describes our research
methodology, Sect. 4 presents our findings, and Sect. 5 discusses the findings. Finally,
Sect. 6 concludes the paper.

2 Background and Related Work

2.1 Coopetition Among Software Firms

Coopetition, as a business management concept, conceptualizes the interaction among
firms in relation to their strategic development [8, 9]. Dagnino et al. is among the first
authors that proposed a definition of coopetion as a new way to capture inter-firm
dynamic interdependence, which includes both cooperative and competitive perspec-
tives [26]. The authors proposed two forms of coopetition, dyadic coopetition (con-
cerns among two-firm relationships) and network coopetion (involving more than two
firms, i.e. value chain) [26]. Our case represents a simple network coopetition, which is
described by coopetition among multiple firms at the same level of a value chain.

Coopetition of Software Firms in Open Source Software Ecosystems 147

In general, coopetion is a complex yet important phenomenon that is worth further
research [28]. Coopetition is also considered as an important element for linking
between R&D and production within the firms. By selecting an OSS project with high
innovation that provides technical advantages to a software firm, we investigate a
suitable case for building an understanding of coopetition in the software industry.

There exist few empirical studies about coopetion among software firms [10, 11, 14].
Valenca et al. explored the concepts of competition and collaboration in requirement
engineering processes [14]. The authors investigated two firms that participated in a
collaborative network evolving towards a SECO. The firms faced challenges in
requirement negotiation and lack of sufficient coordination with the common project. The
authors conclude that even though competition is inevitable among companies, estab-
lishing long-term partnership are crucial drivers for innovation and performance. Our
study, however, investigates the coopetition at the implementation stage instead of the
requirement stage.

The more relevant work to our study is from Bengtsson et al. [9], Teixeira et al.
[11, 29] and Linaker et al. [10], by exploring how rival firms collaborate in an OSS
project using data mining and social network analysis techniques. Teixeira et al.
observed a different result compared with traditional management literature, stating that
competition for the same business model does not necessary affect collaboration within
the SECO. Bengtsson et al. argued that developers within a firm need to be divided to
take charge of either collaboration or competition [9]. Linaker et al. investigated the
changing stakeholder influence and collaboration patterns in the Hadoop project [10].
The authors highlighted that independent of business model, all firms work together
towards the common goal of advancing the shared platform [10]. Our study comple-
ments to these findings, but also bring new understanding about coopetition via a
comprehensive research approach.

2.2 Firm Participation in Software Ecosystem

Multiple definitions of a SECO exist [15], whilewe refer to the one by Jansen et al. [12], as
“a set of actors functioning as a unit and interacting with a shared market for software
and services, together with relationships among them. These relationships are frequently
underpinned by a common technological platform or market and operates through the
exchange of information, resources and artifacts.”Manikas performed a literature review
on recent SECO research [15], describing social characteristics of SECO, i.e. geo-
graphical distribution and management of engineering practices [11, 17–19]. There are
also empirical studies about actors-to-actors dependencies and relationship, such as
software supply networks [20, 21], collaboration patterns among SECOactors [22, 23].

The influence of firm participation in OSS communities has been studied from
different angles, leading to different observations. Mehra et al. showed that the
heterogeneity, which existed between firm-paid developers and voluntary developers
shaped the evolution of OSS community and product [24]. Dahlander et al. studied the
network of relationships within the GNOME project, discovering that the presence of
hired developers often generates an initial diffidence among unpaid programmers [25].
Lamastra et al. found that firm’s involvement improved the ranking of OSS projects, but,

148 A. Nguyen Duc et al.

on the other hand, lowers software quality, probably because of corporate constraints put
on the OSS developing practices [13]. These studies provide a basis for understanding
firm participation in OSS, as well as possible methodological approaches to explore the
topic.

3 Research Approach

3.1 Study Design

We conducted this work by using a multiple-case study design [27]. Exploratory case
studies are suitable to explain the presumed causal links in real-life interventions. There
are abundant OSS projects available, many of them are abandoned or individual efforts.
We are interested in OSS projects which are large enough and impactful. A brainstorm
session was conducted among the paper’s authors and an external collaborator to
decide the case selection criteria:

• Commercial participation: the selected case should have multiple commercial firms
participating in the development. In addition, there must be an adequate way to
identify them.

• Successful and on-going: the OSS project must be successful and on-going. This
implies that the project attracts developers and the development of the software is
progressing.

• Active projects with many activities: There must be a high level of communication
and code commits in the project.

As a result, we came up with a list of possible projects that satisfy all criteria. Two
projects, that we found most relevant to our research were selected, namely Wireshark
and Samba. Wireshark1 is an OSS toolkit developed by a community of networking
experts around the world under the GNU General Public License. The project is
officially operated under the Wireshark name since May 2006. Out of the 802 devel-
opers listed in Wireshark contributor list, 342 were classified as firm-paid developers
(43%). The remaining 460 developers (57%) were classified as volunteering devel-
opers. The firm contributions come from 228 firms. Samba2 is an OSS suite that
provides file, print and authentication services to all clients using the SMB/CIFS
protocol. Samba is licensed under the GNU General Public License, and the Samba
project is a member of the Software Freedom Conservancy. In Samba, 316 developers
were evaluated, where 182 (57%) of them were classified as firm-paid developers. The
contributions come from 45 firms. Communication and collaboration between devel-
opers in the Wireshark and Samba community mainly occur in two places; the
developer mailing list and the bug tracking system.

Later, a third OSS project was selected following the same criteria, in order to
(1) update the project sample, which might be aging and (2) provide complementary

1 https://www.wireshark.org.
2 https://www.samba.org.

Coopetition of Software Firms in Open Source Software Ecosystems 149

https://www.wireshark.org
https://www.samba.org

qualitative data. Bootstrap3 is a frontend Javascript-based framework for developing
responsive, mobile first projects on the web. The project was released as an OSS
project since 2011. At the time the research is conducted, Bootstrap is the most-starred
project on GitHub, with over 90 thousands stars and more than 38 thousands forks.
Source code and issue management is done via Github. The communication in
Bootstrap was done via many channels, i.e. StackOverflow, Slack, and Github tracker.
Besides studying available document and project infrastructure, we were able to
interview three developers in the Bootstrap project.

3.2 Data Collection and Analysis

The main data collection process occurred between Sep 2012 andMay 2013. During this
phase, both quantitative and qualitative data was collected. Complementary data was
collected between April 2015 and August 2015. The main source of quantitative data is
from mailing lists, code and issue repositories, as they are common data sources when
studying OSS [4, 10, 19, 22]. The main qualitative data comes from semi-structured
interviews with firm-paid developers in Wireshark and Samba.

We decided to extract data from all available project public infrastructures, such as
project wiki pages, developer mailing lists (referred to as mailing lists), bug tracking
systems and code repositories. We collected developer profiles from public sources of
information, such as project wiki and confluence pages. Basic information, like
developer email addresses and the time stamp when changes to a specific file had been
made can be extracted from JIRA and GIT. The communication data was collected
from two main sources, which are bug tracking systems and mailing lists. We used a
name and an email address to identify whether a participant is from a firm. The
approach has been successfully used to do similar classifications [4, 24]. The top ten
firms participating in the OSS projects with regard to number of developers is presented

Table 1. The most crowded firms participating to Wireshark and Samba

Wireshark Samba
Firm # of devs. % of devs. Firm # of devs. % of devs.

Cisco 16 2% IBM 17 5,4%
Ericsson 11 1,4% RedHat 14 4,4%
Siemens 8 1% SerNet 8 2,5%
Netapp 6 0,7% SUSE 8 2,5%
Citrix 5 0,6% EMC 4 1,3%
Lucent 5 0,6% SGI 4 1,3%
MXTelecom 5 0,6% Exanet 3 0,9%
Nokia 5 0,6% HP 3 0,9%
Axis 4 0,5% Cisco 3 0,9%
Harman 4 0,5% Canonical 2 0,6%

3 http://getbootstrap.com.

150 A. Nguyen Duc et al.

http://getbootstrap.com

in Table 1. The percentage represents the portion of developers for the referring firm in
the total number of project contributors. In Wireshark, only 8% of the firms have 3 or
more developers participating in the community. Whereas, 78% of the firms have only
one developer participating.

Regarding to qualitative data, interviews were selected from a convenient sample
consisting of the firm-paid developers from Wireshark, Samba and Bootstrap. As we
did not know much about the population, we aimed for a non-probabilistic sampling
technique using a conjunction of purposive and snowball sampling. In Wireshark, we
used an existing connection to one of the core contributors as a starting point, and
asked for suggestion of developers that could be interesting to interview next. The core
contributor pointed out relevant developers for the research topic, and assisted in
contacting them by posting our interview invitation on the core contributor mailing list.
In Samba, we selected relevant developers in the OSS project based on the quantitative
data and sent interview invitations to these by email. In Bootstrap, we had a developer
actively contributing to the project in our personal network. From him, we got two
more interviews with firm-paid participants in Bootstrap (Table 2).

The interview guide consisted of four to five main topics, with both closed and open
questions. The closed questions were mainly used in the introduction phase of the
interview to solicit background information about the respondent, firm and OSS project
context. In addition, closed questions were used to confirm or attribute statements given
by other developers. The open questions were used to collect information about:
(1) work process/bridge engineer role, (2) firm awareness/organizational boundary and
(3) position in the community/contributions. The interviews were conducted in English,
except for one. The duration of the interviews ranged from 45 min to 72 min. All the
live interviews were recorded to facilitate subsequent analysis and minimize potential
data loss due to note-taking. These recordings were thereafter transcribed verbatim.
Transcribing audio records resulted in 55 pages of rich text.

The analysis of the qualitative data was undertaken following guidelines and rec-
ommended steps for thematic synthesis in SE [16]. This thematic analysis approach
allows the main themes in the text to be systematically summarized and is also familiar

Table 2. Summary of interview profiles

Alias Domain Firm type Firm size SECOs

D1 Telecommunication Corp. 10 000+ Wireshark
D2 Wireless networking services SME 11-50 Wireshark
D3 Messaging system SME 11–50 Wireshark
D4 Telecommunication Corp. 10 000+ Wireshark
D5 IT security services 51-200 Samba
D6 Server and OS development Corp. 10 000+ Samba
D7 Telecommunication Corp. 10 000+ Samba
D8 Social media Startup 1-10 Bootstrap
D9 Hosting and file sharing SME 51-200 Bootstrap
D10 Social media Startup 1-10 Bootstrap

Coopetition of Software Firms in Open Source Software Ecosystems 151

by the first two authors of the paper. A basic outline of the process is illustrated in
Fig. 1. Segments of text about firms’ interaction, i.e. activities, attitudes about com-
munication, collaboration and competition were identified and labeled. After two
rounds of reviews of the data, we ended up with 84 codes.

The following step of the thematic analysis was to translate the codes and the
corresponding text segments into themes. A theme in this context is essentially a code
in itself, however, a theme is an increased distanciation from the text, and thus an
increased level of abstraction. The codes were evaluated and combined to form an
overreaching theme, which describes how software firms interact with each other in
OSS projects.

4 Results

We found six main themes related to coopetition among firms, which are: Organizational
boundary spanning via gatekeepers (Sect. 4.1), Securing communication among actors
on firm competitive advantages (Sect. 4.2), Open-core sourcing policy (Sect. 4.3),
Business driven filtering of code sharing (Sect. 4.4), Value of social position in OSS
community (Sect. 4.5), and Friendly competitiveness (Sect. 4.6).

4.1 Organizational Boundary Spanning via Gatekeepers

The perceptions of a gatekeeper, who navigates code and information flow between
his/her firm and external actors, were acknowledged by all the interviewees (as shown
in Fig. 2). D1 stated that when his coworkers found issues with the third party com-
ponents, they informed D1, but not project managers. D7 expressed a similar per-
ception: “Yes, I act as a bridge between [Firm Name] and Samba and forward
bugs/errors to the community.” The gatekeeper is the hub of information and issues that
can be reached by different developers across the organizations, as stated by D4: “Yes,
everybody definitely knows that I am the Wireshark guy. All the developers, testers and
customer support people know that they can come to me if they have Wireshark
issues…”. The gatekeeper is often an active actor in contributing to the ecosystem, as

Fig. 1. Thematic analysis [16]

152 A. Nguyen Duc et al.

mentioned by D2: “Many of our core developers are working for smaller companies,
and have a responsibility for the internal protocols that their company needs. (…) I
think most developers work individually, and have the role of providing Wireshark
functionality to the other developers in the firm.” In firms with multiple developers
active in upstream development, i.e. committing to OSS projects, there is often a
recognized gate keeper role among them. D5 mentioned: “In general when it comes to
contributing patches upstream each developer in [Company Name] is independent and
can directly approach the upstream project… The [Company Name] Samba package
maintainer usually has a task of being the gatekeeper for those bugs that have been
reported against [Company Name] products by the customers or the support teams...”
In this case, while code is contributed independently by individuals in the firm, the
bugs is managed by a gatekeeper who submits bug reports on behalf of the firm into the
OSS project’s bug tracking system.

4.2 Securing Communication Among Actors on Firm Competitive
Advantages

Among various communication channels in the OSS projects, firms secure commu-
nication related to firms’ competitive advantages. Communication channels are mainly
e-mail and instant messaging, and in some cases Skype and telephone. D3 said: “I have
done it [contacted developers directly] different times in the past. Not just as a general
‘I am stuck, can you help’, but because it would be an area I knew the other guy was
working on.” D6 mentioned: “Usually I tend to do R&D tasks myself. I often seek for
reviews of my work. When I need assistance, I will go directly to a developer in the
community.” D8 considered private communication as a way to establish high-quality
contact point and potential collaboration for further projects. D9 mentioned: “We
try to address as much as we can of the issues that come to us… Normally if we get a
private message about an issue, we will give it higher priority …”. D5 mentioned that
when discussing legal or security sensitive issues he used a private communication
channel. The nature of such issues invokes the use of private channels as posting it in
the public channels may result in security breaches or similarly bad situations.
Although none of other developers said anything about the use of direct channels for
such issues, we believe that it is a common procedure in most OSS projects.

Fig. 2. The role of gatekeeper in a commercial firm

Coopetition of Software Firms in Open Source Software Ecosystems 153

4.3 Open-Core Sourcing Policy

Despite of risks and issues with competitors, commercial firms are quite open in
sharing and collaborating in their source code. In an open-core approach, firms par-
ticipating in an upstream approach contributing all the code they develop to the OSS
project’s public sources, and collaborate exclusively within the OSS project to develop
the software. D5 described the upstream development approach by his firm: “In gen-
eral, our philosophy is to develop upstream first and then back-port changes that have
been approved by the upstream community into our products. We stay very involved in
the communities and try to keep the differences between our packaged software and
upstream software to the minimum necessary.” One of the expected benefits was to
avoid maintenance and merging issues when combining public parts of private parts
of source codes. D10 illustrated for this idea: “… if you are to make a change in the
core, and you want to keep it private, you will have to fork the project and maintain it
yourself. (…) I believe, in the general case, that you gain more from contributing to the
development, that retaining your code from the community”.

4.4 Business Driven Filtering of Code Sharing

Firms contribute code that is (1) related to the core of the OSS projects and (2) code
that is regarded as open and/or standardized, and collaborate within the community to
develop the code they contribute. Such firms typically have private repositories where
they have code related to the OSS which is proprietary and thus retained from the
public sources. Not all the code that is written in the firm is contributed back to the
OSS project. D4 mentioned: “The majority of the stuff I have written for Wireshark has
been pushed up… But you sort of draw a line in the stuff that is obscure enough to not
push. The only people who should be looking at our proprietary protocol should be
us…”. Some of the code is regarded as proprietary and is retained in the firm’s private
code repository, due to technical specific, or legal and authorization issues. D2
mentioned: “Mainly protocol dissectors for protocols used in our equipment, if the
protocol is based on open protocol descriptions from 3GPP, ITU or IETF (RFC) it is
considered OK to make an individual contribution to OSS…”.

4.5 Value of Social Position in OSS Community

For a firm, the social position in the ecosystem is perceivably useful and important. It is
apparent that a central position in the community is closely related to being a core
developer in most cases. Two concrete benefits mentioned by the interviewees are:
(1) easier for code inclusion and thereby avoid the need of having a private code
repository, and (2) receiving more help from other community members. D1 elabo-
rated the value of his position within the community: “Researcher: do you think that it
is an important position for firms to have in OSS communities? D1: Yes, because when
we are doing changes, we can incorporate them into Wireshark pretty quickly. We
don’t have to maintain our own code base and synchronize it. We just commit code to
the source and have it there.”

154 A. Nguyen Duc et al.

D4 highlights the importance of social position in OSS community: “I think it
[having a position] helps a lot. I think there is a difference if, lets say, D2 asks for help,
then I’ll help him if I can. But if Joe from I have never really heard of, is asking for help
then my level of effort is usually lower. And part of that is because I know D2
personally, and part of that is because I know that he does a tremendous amount of
work.”

Firms seem not to utilize their social positions to dominate the OSS development.
D6 mentioned: “Before working on Samba I used to think that big companies may have
big influence in OSS projects simply by “buying” core developers. Now, that I know
most of the people working on Samba, I know that this is not feasible.” Hence, having a
position, or “buying” one, is neither the way firms relate to nor the tactic firms influence
the OSS development.

4.6 Friendly Competitiveness

Firms working within the same business domain are often competitors in the market,
and thus it is interesting to see how influential the firm awareness is when firms come
together in community based OSS projects to develop software collectively. Surpris-
ingly, the firm-paid developers say that they perceive other developers as partners
and/or friends rather than competitors. D5 pointed out that he had met many of the
developers at the developer conferences, and considered many of them as friends. D1
explained that he did not make any distinction between a firm-paid developer and a
volunteering developer, and said: “I think of them as developers, and not about which
firms they represent.” D7 say that he perceives others as partners. D6 mentioned: “I’ve
always thought of others as partners. Even more - I think about them as colleagues.”
D4, D8 and D9 shared similar thoughts, and dismissed the perception of other firm-paid
developers as competitors: “I guess as things have evolved we do actually compete in
some respects with some of these people at this point. But that hasn’t really occurred to
me much… I have noticed more people who tend to be customers of ours, rather than
true competitors. We might be competitors within some areas, but I have never really
thought about it I guess”, stated by D9.

The issues of competition from a firm from the other side of the world might not be
relevant for a startup and a SME who are pushing efforts on having their product
released. Without a clear vision on how their market or technical advantages are
influenced by sharing and using OSS source code, the concern of competition is not
much relevant. D8 also mentioned: “…you think about other firms as your competitors,
but I don’t think that really comes in to my interactions really. They have their own
users somewhere around the world…. I have sometimes seen contributions from their
developers, but I think that is good…”

The firm awareness in the community is perceived as valuable. However, devel-
opers remark that it is not the knowledge of what other firms work for that is valuable,
rather it is the knowledge of what business domain they are working within. D2
replied when was asked about other firm awareness: “Yes, but I don’t know that much
about the firms of the other developers. They typically say that they work for Firm X,
and that’s it. What firm they are working for is not that important to me.” D3
emphasized the potential value of having the firm awareness: “… I know that D2 may

Coopetition of Software Firms in Open Source Software Ecosystems 155

have some role as a contact for Firm X… I know that D2 may be someone who is good
at getting log files for specific things. In the past when I was working with voice over
IP, I thought sometimes he was able to give me some log files from within his company,
but I didn’t really think of him as the company representative. I think of him as a
company person who may be able to get logs for me, like he does.”

Additionally, the interviewees were asked if they considered that their contributions
could be used by others firms to gain or recapture competitive advantage. The majority
dismissed this perception, for example: “As Firm X does not directly control Wire-
shark, I guess we have to be a bit careful when we are in contact with other developers.
(…) I believe, in the general case, that you gain more from contributing to the
development, that retaining your code from the community”, stated by D2. A final
remark by D5 about the competitiveness: “Although there may be some competition
between companies, as engineers we seek collaboration for mutual benefit. We already
know any advancement will be used by everybody, that’s not a problem, we get back as
much as we give out.”

5 Discussion

Table 3 summarizes the identified themes that describe how firms interact with each
other in three popular OSS projects. For each theme, we classified whether they belong
to a collaborative relationship or a competitive relationship. While some of the con-
cepts are not surprising compared to what is known in OSS research, i.e. social position
in OSS community [10, 11, 19], open-core sourcing [2], they are interesting contri-
butions in exploring how software firms manage both collaboration and competition in
OSS ecosystems. We also found novel concepts about coopetition, such as securing
communication and friendly competitiveness. Interestingly, some phenomenon that we
initially thought as competitive activities, turned out to be collaborative, such as gate
keepers and friendly competitiveness.

Table 3. Summary of key findings

Themes Description Category

Organizational boundary spanning
via gatekeepers

One/few persons who navigates
code commits, Q&A

Collaborative

Securing communication among
actors on firm competitive
advantages

Limited sensitive information to
certain partners

Competitive

Open-core sourcing policy Publish all of their code, complete
in sync with upstream development

Collaborative

Business driven filtering of code
sharing

Filtering technical specific, legal,
strategic modules

Competitive

Value of social position in OSS
community

Appreciate the better position in
OSS community

Competitive

Friendly competitiveness Attitude of cooperating rather than
competing

Collaborative

156 A. Nguyen Duc et al.

Dagnino et al. highlight that coopetition does not simply emerge from joining com-
petition and collaboration, but rather it implies that collaboration and competition merge
together to form a new kind of strategic interdependence between firms [26]. Alterna-
tively, our cases show that firms focus on activities that create a common value with an
awareness of not sharing their technical and legal sensitive information. Our study reveals
the competition mode partly appears at software code level, which is represented by the
filtering of code sharing and the open-core sourcing policy. Even when firms are aware of
their competitors, the attitude of collaboration is still overwhelming. Valenca et al. raise a
question whether firms are collaborators or competitors in SECO context? At the
requirement engineering level, the authors found several significant challenges among
firms within the same collaborative network [14]. OSS projects and firms might have
divergent interests but firms can manage to discover areas of convergent interest and be
able to adapt their organizing practices to collaborate [3]. In our case, this is clearly shown
at the source code level. The finding also matches with observations by Linåker [10].

Bengtsson et al. argued that individuals within a firm can only act in accordance
with one of the two logics of interaction at a time, i.e., either to compete or to
collaborate [9]. Our observation on the gatekeeper role gives a possible alternative
theory on how firms manage such coopetition scenario. By influencing the gatekeeper,
who manages code flows and information flows between the firm and the SECO, the
firm can implement competing or collaborating strategies. The firm strategy can be
flexible, for example fully open core sourcing at one time, and filtering of shared code
at another time. The implementation of such strategies is done via the firm gatekeeper,
who does actual technical contribution to the SECO. Therefore, in contrast with
Bengtsson’s findings, we argued that it is possible to implement a firm-level dynamic
interaction via individuals in software projects, as shown in Fig. 3.

We propose a framework of coopetition in open source SECOs, as described in
Fig. 3. Derived from the firm’s strategy when participating in an open source SECO,
the firm involves in both collaborative and competitive relationships with other firms
participating in the SECO. Balancing and managing both logics of interaction were
done by a gatekeeper role, which can be one or a group of key developers that are
active in the SECO. The gatekeepers implement coopetition by carrying out different
mechanisms (i.e. described in Sect. 4.1 to Sect. 4.4), which eventually realizes as
technical contributions to the SECO.

Gatekeeper

Collaboration

Competition

Organization
strategy

Technical
contribution

Fig. 3. A model of firm coopetition in open source SECO

Coopetition of Software Firms in Open Source Software Ecosystems 157

6 Conclusions

Coopetition is an important foundation for economics and management research [26],
but often overlooked or oversimplified in other domains. In SECOs, where inter-firm
interactions are crucial for both firms and SECO development, coopetition is a relevant
and also a new way of looking at SECOs. Our contributions are two folds (1) we
portrayed the situations where both competition and collaboration occurs in OSS
projects and (2) we proposed a framework to explain how a gatekeeper could help to
manage such coopetition relationship.

For coopetition research, we offer an alternative explanation of how coopetition is
performed by software firms in an open source SECO. We observed that software firms
emphasized the co-creation of common value and partly react to the potential com-
petitiveness on OSS ecosystems. For Software Engineering research, the work illus-
trates the adoption of a management theory in understanding and exploring both
technical and business aspects of SECOs. Through the lens of coopetition, novel
aspects of inter-firm interaction in OSS projects were highlighted. The research con-
tributes to the current body of knowledge on SECO by adding the competition
perspective.

For software firms who participate in an open source ecosystem, our findings offer a
descriptive insight about different coopetition strategies observed in a community-driven
OSS project. Firms can refer to different ways of co-creating via collaboration and
awareness of competition when they participate in such an ecosystem. For proprietary
SECO steering members, the harmony interaction observing in our open source SECOs
can help direct implication on how to design and to influence the SECO policy to support
a healthy coopetition.

For future work, the next step would be to refine and to validate the coopetition
model (described in Fig. 3) with a larger set of cases. Our research here only uses three
community-driven OSS projects, which limits the generalization of findings to other
types of SECOs, such as proprietary platforms, firm-driven OSS projects, etc. Future
work is needed to explore the concept of coopetition in such contexts. Besides, a
longitudinal observation on how coopetition evolve among firms can provide knowl-
edge that goes beyond cross-sectional observations. Furthermore, we also plan to
triangulate the observations from manager and developer’s viewpoint. Last but not
least, further investigation about employing the role of gatekeepers for coopetition is
needed to validate our observation.

References

1. Messerschmitt, D.G., Szyperski, C.: Software Ecosystem: Understanding an Indispensible
Technology and Industry. MIT Press, Cambridge (2003)

2. Morgann, L., Feller, J., Finnegan, P.: Exploring inner source as a form of intra-organisational
open innovation. In: 19th European Conference on Information Systems, Helsinki, Finland
(2011)

3. O’Mahony, S., Bechky, B.: Boundary organizations: enabling collaboration between
unexpected allies. Adm. Sci. Q. 53(3), 422–459 (2008)

158 A. Nguyen Duc et al.

4. Bonaccorsi, A., Rossi, C.: Comparing motivations of individual programmers and firms to
take part in the open source movement: From community to business. Knowl. Technol.
Policy 18(4), 40–64 (2006)

5. Ghapanchi, A.H., Wohlin, C., Aurum, A.: Resources contributing to gaining competitive
advantage for open source software projects: an application of resource based theory. Int.
J. Proj. Manage. 32(1), 139–152 (2014)

6. Ghapanchi, A.H.: Rallying competencies in virtual communities: a study of core processes
and user interest in open source software projects. Inform. Organ. 23(2), 129–148 (2013)

7. Riehle, D.: The single vendor commercial open source business model. Inform. Syst.
e-Business Manage. 10(1), 5–17 (2012)

8. Nalebuff, B.J., Brandenburger, A.: Co-opetition. Harper Collins Business, NYC (1996)
9. Bengtsson, M., Kock, S.: Coopetition in Business Networks: To Cooperate and Compete

Simultaneously. Ind. Mark. Manage. 29, 411–426 (2000)
10. Linåker, J., Rempel, P., Regnell, B., Mäder, P.: How firms adapt and interact in open source

ecosystems: analyzing stakeholder influence and collaboration patterns. In: Daneva, M.,
Pastor, O. (eds.) REFSQ 2016. LNCS, vol. 9619, pp. 63–81. Springer, Cham (2016). doi:10.
1007/978-3-319-30282-9_5

11. Teixeira, J., Lin, T.: Collaboration in the open-source arena: the webkit case. In: 52nd ACM
Conference on Computers and People Research, pp. 121–129 (2014)

12. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: a research agenda for
software ecosystems. In: 31st ICSE, pp. 187–190 (2009)

13. Lamastra, C.R.: Software innovativeness: a comparison between proprietary and Free/Open
Source solutions offered by Italian SMEs. R&D Manage. 39(2), 153–169 (2009)

14. Valença, G., Alves, C., Heimann, V., Jansen, S., Brinkkemper, S.: Competition and
collaboration in requirements engineering: a case study of an emerging software ecosystem.
In: IEEE 22nd International Requirements Engineering Conference (RE), pp. 384–393
(2014)

15. Konstantinos, M.: Revisiting software ecosystems Research. J. Syst. Softw. 117, 84–103
(2016)

16. Cruzes, D.S., Dybå, T.: Recommended steps for thematic synthesis in software engineering.
In: 2011 International on Empirical Software Engineering and Measurement (ESEM),
pp. 275–284 (2011)

17. Santos, R., Werner, C.: Reuseecos: an approach to support global software development
through software ecosystems. In: 7th International Conference on Global Software
Engineering Workshops (ICGSEW), pp. 60–65 (2012)

18. Goeminne, M.: Understanding the evolution of socio-technical aspects in open source
ecosystems. In: Conference on Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), pp. 473–476 (2014)

19. Scacchi, W.: Free/open source software development: recent research results and emerging
opportunities. In: 6th ESEC-FSE, pp. 459–468 (2007)

20. Angeren, J.V., Blijleven, V., Jansen, S.: Relationship intimacy in software ecosystems: a
survey of the dutch software industry. In: International Conference on Management of
Emergent Digital EcoSystems, pp. 68–75 (2011)

21. Handoyo, E.: Software ecosystem modeling. In: Herzwurm, G., Margaria, T. (eds.) ICSOB
2013. LNBIP, vol. 150, pp. 227–228. Springer, Heidelberg (2013). doi:10.1007/978-3-642-
39336-5_25

22. Cataldo, M., Herbsleb, J.D.: Architecting in software ecosystems: interface translucence as
an enabler for scalable collaboration. In: 4th European Conference on Software Architecture,
pp. 65–72 (2010)

Coopetition of Software Firms in Open Source Software Ecosystems 159

http://dx.doi.org/10.1007/978-3-319-30282-9_5
http://dx.doi.org/10.1007/978-3-319-30282-9_5
http://dx.doi.org/10.1007/978-3-642-39336-5_25
http://dx.doi.org/10.1007/978-3-642-39336-5_25

23. Knauss, E., Damian, D., Knauss, A., Borici, A.: Openness and requirements: opportunities
and tradeoffs in software ecosystems. In: 22nd International Requirements Engineering
Conference, pp. 213– 222 (2014)

24. Mehra, A., Dewan, R., Freimer, M.: Firms as incubators of Open Source software. Inform.
Syst. Res. 22(1), 22–38 (2011)

25. Dahlander, L., Wallin, M.W.: A man on the inside: unlocking communities as complemen-
tary assets. Res. Policy 35(8), 1243–1259 (2006)

26. Dagnino, G.B., Padula, G.: Coopetition strategy, a new kind of inter firm dynamics for value
creation. In: The European Academy of Management Second Annual Conference (2002)

27. Yin, R.K.: Case Study Research: Design and Methods. Applied Social Research Methods,
5th ed. SAGE Publications, Inc., Thousand Oaks (2014)

28. Annika, T.: Causes of conflict in intercompetitior cooperation. J. Bus. Ind. Mark. 24(7), 508–
516 (2009)

29. Teixeira, J., Mian, S.Q., Hytti, U.: Cooperation among competitors in the open-source arena:
the case of OpenStack. In: ICIS (2016)

160 A. Nguyen Duc et al.

Mobile Software Security Threats
in the Software Ecosystem, a Call to Arms

Andrey Krupskiy(B), Remmelt Blessinga, Jelmer Scholte, and Slinger Jansen

Utrecht University, Utrecht, The Netherlands
{a.krupskiy,r.d.blessinga,j.scholte2}@students.uu.nl,

slinger@slingerjansen.nl

Abstract. This paper studies security policies of the Android and iOS
software ecosystems. These platforms have experienced security issues
since their public release in 2007. This research creates an overview of
the results that security issues cause and the actions available to limit
security infractions based on scientific literature. Following the overview,
this paper attempts to explain premises of those issues by analyzing
the security recommendations of both platforms and comparing them
to OWASP security guidelines. This is done by comparing development
guidelines set up by both platforms and assessing the importance of
each of these guidelines in the ecosystem perspective. The conclusion
highlights vulnerabilities in the developer guidelines of mobile platforms
and recommends appropriate action to improve the situation.

Keywords: Software ecosystems · Software security · OWASP ·
Development policies

1 Introduction

As smartphones increased in popularity, so did the research in the field of smart-
phone security. Smartphones rely on the security architecture of the mobile plat-
form that supports them. These platforms have different architectures, aside
from sharing several issues each one is also subjected to security issues specif-
ically harmful for the platform. This paper takes a look at the security issues
of the mobile platforms Android and iOS which both have a marketplace called
app stores. App stores are typical occurrences of a software ecosystem which
is defined by Jansen et al. (2009) [1] as: a set of actors functioning as a unit
and interacting with a shared market for software and services, together with
the relationships among them [1]. The marketplace opened up smartphones for
third-party developers as is also recognizable in personal computer platforms [2].
As personal computer platforms have struggled with security, open marketplaces
for mobile platforms resulted in a challenge for smartphone security.

Software created by third-party developers for mobile platforms are called
smartphone applications or apps which, as a result of interacting with the plat-
form, cause security issues. The OWASP foundation is a non-profit organization
c© Springer International Publishing AG 2017
A. Ojala et al. (Eds.): ICSOB 2017, LNBIP 304, pp. 161–175, 2017.
https://doi.org/10.1007/978-3-319-69191-6_11

162 A. Krupskiy et al.

which tries to bring visibility and evolution in the safety and security of the
worlds software. Most relevant for this paper is the OWASP top ten list of secu-
rity flaws that applications contain. These flaws adversely affect the actors in the
software ecosystem and therefore mobile platforms should support developers in
creating secure applications. This paper attempts to gain insight into the main
security concerns of open mobile platforms and standard prevention methods.
This paper will refer to OWASP as the golden standard of security which means
that conclusions are based on how well results fit with the OWASP recommenda-
tions. Therefore the main research question is: To what extent do the developer
guidelines for mobile platform application development follow OWASP security
recommendations? Literature is consulted to create a general overview of the
security concerns and some methods of prevention in the Android and iOS plat-
forms. Next, how security issues affect the actors in the mobile platforms. Lastly,
the Android and iOS guidelines are analysed in context of the OWASP top ten
in order to see if they are an effective prevention method.

The structure of this paper is as follows: Sect. 2 is the research approach
which describes what is done in order to research this topic. Section 3 contains
literature overviews of the Android and iOS security. OWASP and the Android
and iOS developer guidelines are researched in Sect. 4. Sections 5 and 6 contain
the discussion and conclusion respectively.

2 Research Approach

To answer the main question, two research questions (RQ) are defined: RQ1: To
what extent are ecosystem actors vulnerable to security threats? RQ2: Are there
any significant security vulnerabilities in the developer documentation?

A literature overview creates the context for the RQ1 since it delves into the
security issues regarding the mobile platforms. It approaches several issues of a
mobile platform in an attempt to highlight the most prevalent. The method to
collect literature regarding these topics consists of researching common security
threats. Papers are consulted afterwards in order to create an detailed explana-
tion and understanding of the threats and their possible solutions. References
found in papers that are useful for this research are also researched. This creates
a snowball effect resulting in detailed information about a topic.

To adjust from prevalent issues and to place the OWASP recommendations
in a refined ecosystem perspective, actors are defined and an assessment is made
to estimate to what measure ecosystem actors are vulnerable to security threats.
The top ten list created by OWASP is explored and used to see if it addresses
the security threats for the ecosystem. This allows to find specifically which
issue in OWASP has an impact on which ecosystem actor and together with
the literature overview answers RQ1. The issues addressed in the overview and
derived from the ecosystem perspective can be compared to the findings of RQ2.

Lastly this research is focused on reviewing development guidelines of
Android and iOS platforms in terms of security. Using the top ten list of OWASP
mobile security recommendations the security policies of the Android and iOS

Mobile Software Security Threats in the Software Ecosystem, a Call to Arms 163

platforms are analysed. This results in a comparison of the two platforms and
an overview of their security guidelines. The comparison results in a table with
the complete overview offering an answer to RQ2. It is important to note that
some guidelines have different terminology than used by OWASP, this is taken
into account by searching for similar keywords and by looking at the underlying
security concern instead of just the name of the guideline.

3 Literature Overview

This section contains the overviews derived from the literature studied on
Android and iOS security in order to picture the circumstances in said field.
The split between users and developers is based on Jansen et al. definition of
an app store which has two distinct groups; users and developers [3]. In this
section the Android and iOS developers are assumed as not wanting to benefit
from deliberately releasing malicious applications or misusing user information.
They are instead assumed as wanting to provide secure applications for the users,
themselves and the software ecosystem as a whole.

3.1 Literature on Android Ecosystem Security

A literature survey by Rashidi and Fung [4] summarizes security threats caused
by applications to a users’ privacy and device. This survey consists of Android
security threats and solutions collected from literature dating from 2010 till 2015.
The three relevant threats are; 1: Information leakage, 2: Privilege escalation,
and 3: Repackaging applications. Information leakage occurs since Android uses
a permission-based system which applications use to gain access to, possibly
sensitive, data on a phone [5]. A newly downloaded application adheres to this
system since it has to explicitly request permissions up-front to access personal
information and phone features [6]. In 2012 the permissions requested by 44%
of the applications exceeded the minimum number of permissions needed to
function. This violates the principle of least privilege, a longstanding principle
in the world of computer security [7], it defines the importance of software only
accessing the minimum information to function. Davi et al. [8] conclude from
their research that the permission based system damages security for the user as
it allows for privilege escalation attacks. Furthermore, Meng et al. [9] state that
some OEM weaken the existing security of the device by customizing Android
image that may lead to privilege escalation attacks or information leakage.

Android developers can opt to make earnings from their application by inte-
grating an in-app billing service. Muliner et al. explain this service as follows:
The in-app billing service allows users to pay for options, services, subscriptions,
and virtual goods from within mobile apps themselves [10]. In their paper they
developed an attack against the in-app billing service allowing them to bypass
paying for in-app services in 60% of the 85 most popular applications. Another
issue, one which can lose developers revenue streams and credibility is repack-
aging of their application Applications that normally cost money to use or have

164 A. Krupskiy et al.

an in-app billing service can be repackaged and then released for free on the
Internet. Repackaged applications, like banking applications, can be distributed
on the Android store.

Reverse-engineering of Android applications is impossible to prevent with-
out violating the open policy of Android. There is however a tool provided by
Android that defends applications from being simple reverse-engineering tar-
gets without violating the open policy. The Android provided tool Proguard
changes features, like class and variable names, of a code to random strings.
This technique is called code obfuscation, a way to prevent analysis of the code
of an application. For the security issues that concern application users, devel-
opers have a bigger array of options to the threats mentioned earlier. Following
Rashidi and Fung [4] developers can choose for one or two different types of
strategies in regards to securing their applications. The first is making use of
existing techniques and mechanisms which consists of using options provided
in the Android OS. The second is to use software created by others which can
detect security threats.

3.2 Literature on iOS Ecosystem Security

Academic literature regarding iOS security issues shows that user privacy can
be at risk. Large scale mobile application analysis of iOS apps conducted by
Orikogbo et al. shows that a large fraction of apps contain references and make
connections to domains using the HTTP scheme [11]. Around 26% of apps stud-
ied just use HTTP connection schemes while 72% of apps use both HTTP and
HTTPS and 2% use only HTTPS. Since personal information can be sent to a
remote service, usage of HTTP is a privacy threat, since this kind of connection
is not encrypted in any way and can be read by a third party if intercepted.

When examining the literature regarding security and the iOS system it is
shown that there have been cases of security breaches in the iOS built-in security
systems. A paper by Heider and El Khayari [12] shows that up to the iOS version
6.0.1 there was a security flaw that allowed to perform an attack on the iOS
keychain service, which allowed to get an access to all data stored on the device
and perform jailbreaking of the device. Jailbreaking is defined as a process of
getting a root access to the device. Root access provides elevated privileges and
allows user to avoid most restrictions of iOS enforced by Apple.

Additionally, Renard [13] describes a number of attacks that can be per-
formed on iOS. First, Renard points out attacks that can be performed without
jailbreaking a device. Those include getting access to the data of applications
and the users credentials, retrieving data from a devices backups, monitoring
communications, attacking secure communications to the server. In case of a
jailbroken device it is possible to gain access to all data stored on the device,
making reverse engineering an issue. For several versions of iOS it was possible
to jailbreak a device without having an access to device’s keychain and then hide
the fact of a jailbreak.

The iOS platform makes apps work in a strictly restrictive environment [14]
and it has two important security features: the app vetting process and the app

Mobile Software Security Threats in the Software Ecosystem, a Call to Arms 165

sandbox. Although these two features have proven to be effective for the iOS
ecosystem, as shown in the survey conducted by Felt et al. [15] there was no harm-
ful malware present in the iOS appstore, both methods still have some security
issues, code signing can be evaded for example as discovered by Miller [16].

Another security issue that iOS developers encountered was an XcodeGhost
attack [17]. This attack was designed so that app developers would download an
infected copy of Xcode, a development environment for iOS apps, which would
infect any apps created within it with malicious code. This is an example of the
developers not following security protocols and using software downloaded from
the not verified source. The paper by Renard [13] gives several suggestions on
how developers can avoid these security threats. These suggestions include code
obfuscation, creating kill-switches to delete user credentials in case of a reverse
engineering attempt, secure usage of memory and some recommendations on
how to prevent hooking. Hooking is as “a mechanism that allows users to alter
or augment the behavior of applications”.

A study by Teuf et al. [18] confirms, that jailbreaking a device allows to
effectively disable the iOS file system encryption, allowing attacker to gain access
to all data without knowing the passcode of the use.

4 Results

4.1 OWASP Guidelines and the Ecosystem Perspective

In this section each of the ten points is placed in an ecosystem perspective,
enabling to take a closer look at each threat and estimating what actors in
the mobile ecosystem are impacted by each vulnerability should they be left
unprotected.

In their 2013 literature review Hansen and Manikas [19] identified five of
the most common types of actors in software ecosystem literature. Each of
these roles (Orchestrator, Component Developer, External Developer, Vendor
and Customer) is directly affected by the security vulnerabilities mentioned in
the OWASP top 10. In the context of this research we can identify these roles
as the following ecosystem elements:

1. Customer. Also called end user this is the person. This actor is responsible
for bringing monetary value into the ecosystem. If customers feel insecure,
for example when their privacy is at risk, they might abandon an ecosystem
or it might affect their purchasing behavior, affecting every involved actor.

2. Orchestrator. These are the ecosystem platform owners. Affected primarily
in loss of reputation or competitive advantage when ecosystem security is
threatened.

3. Component Developer. Also called the niche player, the app developers
contribute directly to the ecosystem by providing its content applications.

4. External Developer. These are often passive participants in the ecosys-
tem. They play a non-developing role in the ecosystem. These actors can

166 A. Krupskiy et al.

for example offer certain supportive services such as ad networks to compo-
nent developers. They are mostly impacted by loss of clientele or reputation
damage if the ecosystem performs badly.

5. Vendor. Also called the reseller or added value reseller. This could be for
example a game publisher that buys game apps from component developers
and sells them under the umbrella of cross-app marketing efforts. They are
vulnerable to security threats due to being the face of the product, thus being
held responsible for the product.

4.2 The OWASP Mobile Security Top 10

OWASP Mobile Security Top 10 in Context of SSN Roles. Looking at
the top 10 mobile security threats defined by OWASP it becomes clear what each
security threat entails and how to defend against such threats. Yet what actors
are affected by such threats is not immediately clear, and neither is how the
ecosystem as a whole is affected. The technical and business threats highlighted
by OWASP do give us sufficient information to extrapolate what each threat
means for the ecosystem entire. This section looks at how the security threats of
the mobile top 10 can affect the software ecosystem, this is followed by a threat
analysis for each ecosystem actor in Sect. 4.3.

1. Weak Server Side Controls. In the ecosystem perspective this means
customer data can be lost or affected during an attack. It can also mean
that an app becomes unusable.

2. Insecure Data Storage. In the ecosystem perspective this means that cus-
tomer privacy and security is at risk from attacks. In extreme cases sensitive
data of developers or vendors could also be at risk.

3. Insufficient Transport Layer Protection. In the ecosystem perspective
this means that customer data is at risk from interception, this might not
only affect customer privacy but also external developers that rely on the
exclusivity of specific data.

4. Unintended Data Leakage. In the ecosystem perspective this means that
customer privacy is at risk from attack, damaging the reputation of and trust
in some ecosystem actors.

5. Poor Authorization and Authentication. In the ecosystem perspective
this is primarily a risk for customers, but hacked accounts can be of concern
to component developers or vendors who rely on the proper usage of their
apps, the spread of spam through such accounts could for example dam-
age its profitability. Malicious users might be able to obtain privileges they
should not have.

6. Broken Cryptography. In the ecosystem perspective this affects customer
privacy violations. It can also lead to information theft, code theft, intellec-
tual property theft and reputation damage, affecting vendors.

7. Client Side Injection. Not only is this a risk to the customer due to
privacy violations but the component developer as well as their security
precautions could be directly affected by injected code. In extreme cases the
orchestrator reputation might be affected.

Mobile Software Security Threats in the Software Ecosystem, a Call to Arms 167

8. Security Decisions Via Untrusted Inputs. In the ecosystem perspective
this is a threat primarily for the actors that can be at risk from users with
malicious intentions, customer data might be vulnerable to attack.

9. Improper Session Handling. Customer privacy and security could be at
risk from attack. Component developers might be directly affected by secu-
rity breaches, vendors might experience an interruption in common business
procedures.

10. Lack of Binary Protections. In the ecosystem perspective a lack of binary
protections is of great concern to all involved actors. A reversed engineered
app is a great way for malicious parties to spread malicious content, relying
on the trust customers place in certain ecosystem actors. Duplicate apps are
a security risk. A hacked app can lead to privacy or confidential data theft.
For the orchestrator it will lead to brand damage and revenue loss through
pirating.

Table 1 shows an overview of the relations between ecosystem actors and how
each actor is affected by the OWASP security top 10 threats.

4.3 Comparing the Effect of Security Threats to Ecosystem
Actors

Given the five types of roles and how they are affected by security vulnerabilities,
we can compare them to the OWASP mobile top 10. Table 2 shows the security
threat identified by OWASP in the first column, followed by a threat assessment
for each role of either low (no or little direct impact), moderate (some threats but
either case specific or limited impact) or severe (certain to suffer some damage).
The following table is primarily intended to give an overview and visualization
of security threats to the ecosystem as a coherent set of actors.

The further away from using or directly developing the application with the
possible security vulnerability, the less security risks affect the actor. Customers
are shown to be most at risk from vulnerabilities in the ecosystem, followed by
component developers while the orchestrator is shown to be least vulnerable.

4.4 Android and iOS Developer Guidelines

Both ecosystem orchestrators offer comprehensive guidelines for their developing
partners. The Android guidelines are set up in a training and reference format,
taking on the role of teaching the developer using any means deemed effective.
Apple structures the documentation as a reference guide instead of guiding the
developer through a series of trainings, as such this documentation is primarily
text based and most effective when searching for specific advice.

In terms of security the iOS guidelines include a section named the Secure
Coding Guide while Android offers a section under the header Best Practices for
Security & Privacy. The Secure Coding Guide by Apple is the central reference
point for their security recommendations, and they always link back to this
document. Android is less inclined to discuss security concerns in other parts of
the documentation, concentrating most advice in the best practices section.

168 A. Krupskiy et al.

Table 1. Security threats for the SSN stakeholders

4.5 Guidelines Comparison Table

Comprehensively studying the developer guidelines allows for the creation of a
comparison table to see if and how Android and iOS make security recommenda-
tions suggested by OWASP in the mobile top 10. There are three levels designed
to indicate if each guideline is present:

Insufficient: There is no advice or reference present in the developer guidelines
on how to develop for the security vulnerability, developers are not made aware of
the security risks. If a developer depends on sole advice offered by the guidelines
this will result in an insecure application.

Mobile Software Security Threats in the Software Ecosystem, a Call to Arms 169

Table 2. Vulnerability effect on ecosystem roles. L is low threat, M is moderate threat,
S is severe threat.

OWASP guideline Customer Orchestrator Comp. Dev. Ext. Dev.Vendor

Weak server side controls M L S L L

Insecure data storage S M S M S

Insufficient transport layer protection S L M M L

Unintended data leakage S M S L M

Poor authorization and authentication S M S L M

Broken cryptography S M S L S

Client side injection S M S M M

Security decisions via untrusted inputs M L M L M

Improper sessions handling S L M M M

Lack of binary protections S M S M S

Partial: Some advice is given or the guideline is mentioned but not com-
prehensively enough to adequately assist developers to secure an application.
Alternatively the security recommendation in the documentation is outdated.

Sufficient: Either coding guidelines, explanation of the security vulnerability
with recommended precautions or specific advice on how to prevent the vulner-
ability is given. If a developer relies solely on the developer guidelines it will not
pose a danger to application security.

When the results of the comparison table are transformed to scores (where
insufficient is 0%, partial is 5%, and sufficient is 10%) the results show a 55% com-
pleteness score for iOS and 60% completeness score for Android. The Android
documentation has six points out of ten that could do with improving, the iOS
documentation has five points of out ten that could do with improving.

IOS Explained. The following overview explains where and how each OWASP
guideline is present in the developer documentation (Table 3).

1. The Apple developer documentation focuses on how to handle authenti-
cation when exchanging information with a server. No mention of server
configurations, backend services or best practices when setting up a server
could be found.

2. Apple refers to storing information in the appropriate directory and setting
the right file system permissions. Apples File Protection mechanism is con-
sidered to be safe for use for consumer-grade data. The documentation states
that the various APIs should be sufficient. This is contrarian to the OWASP
recommendation that developers should consider adding an additional layer
of encryption.

3. Apple recommends choosing the appropriate transport protocol and high-
lights some concerns for each option. A set of secure networking pages is
available, offering comprehensive guidelines and coding recommendations
to create sufficient transport layer protection.

170 A. Krupskiy et al.

Table 3. Comparison of OWASP, iOS and Android developer guidelines.

OWASP guideline iOS guidelines Android guidelines

Weak server side controls Insufficient Insufficient

Insecure data storage Partial Sufficient

Insufficient transport layer protection Sufficient Sufficient

Unintended data leakage Insufficient Partial

Poor authorization and authentication Sufficient Sufficient

Broken cryptography Sufficient Sufficient

Client side injection Sufficient Partial

Security decisions via untrusted inputs Sufficient Partial

Improper sessions handling Insufficient Insufficient

Lack of binary protections Insufficient Partial

4. Apple does not refer directly to data leakage, nor to the ways mentioned
by OWASP on how data leakage could occur on iOS. They consider the
platform to be inherently secure due to apps being restricted in the files and
system resources it can access.

5. Apple has a number of pages dedicated to authentication and authorization,
they offer various coding recommendations as well as best practices and
explanations on why or how something should be build to be considered
secure.

6. iOS applications are, in theory, protected from reverse engineering via code
encryption. Apple offers comprehensive explanations on cryptography top-
ics, an API to use for cryptographic tasks and coding guidelines on how to
securely implement cryptography.

7. Apple has dedicated an entire page to this security vulnerability, offering
coding advice, examples of risks and information on injection attacks.

8. Comprehensive advice on how to validate input is present. Coding guidelines
are offered, as is information on what kind of vulnerabilities might lead to
security breaches and how.

9. The Apple developer guidelines offer no recommendations, coding advice or
information on secure sessions handling.

10. Apple does not refer to the risks of not including binary protection and
relies solely on its app review and submission process, binary encryption is
central to iOS. However, this process is vulnerable to attacks when jailbreak-
ing a device [13]. Apple does not recommend to developers that they take
additional action such as jailbreak detection or certificate pinning controls.

Android Explained. In this section two main Android guidelines were used
as a source: a training guide for developers and a guide for android source code.

1. The Android documentation does not provide any guidelines for setting up a
server.

Mobile Software Security Threats in the Software Ecosystem, a Call to Arms 171

2. The Android guidelines describe all possible ways of storing app data on the
device and secure ways of sharing data between apps. These guidelines also
provide information on how to implement app data encryption and handle
sensitive data.

3. The Android security guidelines dedicate a section to securely implementing
HTTPS and SSL.

4. The Android guidelines mention the problem of data leakage and provide
advice for some cases on how to avoid such a risk. There are some recommen-
dations on how to work with log files, regarding them as being potentially
vulnerable. The guidelines do not cover URL caching, keyboard press caching,
Copy/Paste buffer caching, application backgrounding, HTML5 data storage,
browser cookie objects or analytics sent to 3rd parties, which are mentioned
in the OWASP guidelines.

5. The Android documentation has a number of sections describing authentica-
tion procedures. The documentation has a section dedicated to implementa-
tion of OAuth2 Services, which is an open standard for authorization.

6. Android provides a number of recommendations on how to implement cryp-
tography. The guidelines encourage developers to use standard protocols
instead of creating their own, this approach is also recommended by the
OWASP guidelines.

7. Android guidelines acknowledge the danger and offer security advice of how
to prevent XSS and SQL and JavaScript code injection on Android devices.
Nevertheless, the list of security issues in Android guidelines does not include
some problems mentioned in the OWASP security recommendations.

8. Android guidelines provide basic information on input validation methods,
input validation security threats, and also state that Android has a number
of countermeasures build in to prevent input related security problems. The
guidelines do not provide concrete examples of tools used to reduce this secu-
rity threat. Furthermore, no coding examples or best practices are described
in this section.

9. Android security guidelines provide no information on secure session handling.
10 Android provides some guidelines on binary protection in context of Google

Play in app billing. These guidelines suggest signature verification, code obfus-
cation and modifying sample code for in app billing system to decrease the
ease of its detectability. OWASP also mentions a root detection problem.
Rooting an Android phone is similar to jailbreaking iPhone, but Android
guidelines provide no information about security in context of rooting.

5 Discussion

Security is one of the big issues for developers who have the optimal security for
themselves and their users in mind. In this paper the belief is that developers
want the most secure software ecosystem as to benefit the actors that partici-
pate. Therefore something not touched on is that there are also developers and
organizations who intentionally force privacy risks on users.

172 A. Krupskiy et al.

This research does not include the orchestrator actors perspective on the
importance of ecosystem security aspects, interviews with Apple or Google would
have been an excellent source of data but setting this up did not fit in the scope
of this research. Additional research could be done to investigate why both the
studied platforms did not include specific OWASP guidelines and the role of
the developer guidelines in the development process. One way to execute such
research is to create app security conceptualization similar to mobile application
usability conceptualisation performed by Hoehle and Venkatesh [20]. For exam-
ple, the most recent research on iOS apps, which included an inspection of almost
42.000 apps, showed that almost 26% of apps reference external resources strictly
via HTTP, which is considered to be an insecure way of transferring informa-
tion by OWASP, iOS and Android guidelines. Both iOS and Android guidelines
actively encourage developers to use the HTTPS protocol, which is considered
to be far more secure, and provide detailed guidelines on how to implement it.

Although attacking a jailbroken iOS system was proven to be a much simpler
task for attackers, no literature or reports were found regarding a working mech-
anism for jailbreaking a device running iOS 10 protected with passcode without
knowing a passcode for the device. This leads to conclusion that at this time,
passcode of sufficient length and base (number of characters used to create a
passcode) serves as a sufficient way of protecting a device against jailbreaking,
this does not take into account for the risk of social engineering being used to
recover the passcode or user negligence when setting a passcode.

It should be mentioned that the mobile top 10 list dated 2012 was used. It was
considered to use mobile top 10 dated 2016, but this list is still in development
and incomplete.

This paper was written from the perspective of security in the software
ecosystem domain. As such it did not look at the quality of advice and infor-
mation offered in the developer documentation. This is considered a task more
suited for security experts.

6 Conclusions

The literature used for the overview shows that there are several issues apparent
for the two groups that participate in app store based mobile platforms. For user
issues both ecosystems are lacking in offering full protection. Both ecosystems
have different foundational functionalities that cause insecurities for the users.
Developers seem to encounter more problems on the Android platform, mainly
revenue based, in comparison to iOS developers since the iOS environment is
more restricted. Both platforms however also provide integrated and external
options for developers to create secure applications for both themselves and the
users. These options do not always offer a working solution in regards to one of
the issues.

Justified by the results from the actor/OWASP guideline impact evaluation
on a software ecosystem level, it is concluded that the biggest impact of security
breaches is felt by customers and component developers. This aligns with the

Mobile Software Security Threats in the Software Ecosystem, a Call to Arms 173

literature overview which reveals that there are numeral issues affecting these
groups. Vendors are moderately at risk, depending on how close they are to
the direct development, management or publishing of the application. Exter-
nal developers and the ecosystem orchestrators have the least risk as they are
furthest removed from the security vulnerabilities. This answers RQ1: To what
extend are ecosystem actors vulnerable to security threats?

From the developer guideline evaluation results, it is concluded that the eval-
uated guidelines form a solid basis for the development of a secure application
but can still be improved. The documentation for iOS offers a comprehensive
security guide that helps with many issues not included in the OWASP mobile
top 10. However, four out of ten points in the OWASP mobile top 10 are not
sufficiently presented in these guidelines and one point offers incomplete advice,
leading to the conclusion that the iOS guidelines need improving before they can
be considered fully secure. The results of this study confirm that inherent protec-
tions can sometimes be circumvented, leading to the conclusion that additional
advice should be offered to developers in case this occurs.

It can be concluded that the Android guidelines leave the impression of being
a good starting point for the developer. However, the results show that some sec-
tions only acknowledge a security issue and let a developer either find a solution
himself, or suggestively use a solution built into the Android framework, which
has its downsides according to OWASP. The results from the comparison of
the OWASP guidelines with Android guidelines allow for the conclusion that
the Android guidelines should be further developed, particularly in a sense of
improving existing sections with concrete solutions and best practices on how to
deal with security threats.

It is difficult to decisively conclude if one of the platforms does a better job
offering secure guidelines following the OWASP framework, as both have their
individual strengths and weaknesses.

The results show significant security risks are posed by the incompleteness
of advice on server side controls, secure data storage, unintended data leakage,
client side injection, security decisions via untrusted inputs, improper session
handling and lack of binary protections. This answers RQ2: Are there any sig-
nificant security vulnerabilities in the developer documentation? with a yes. The
significant risks as a result from incomplete advice correspond with the findings
of RQ1 in regards to the issues users, developers and other software ecosystem
actors encounter. This correspondence can be derived from the descriptions of
the lacking guidelines and their interaction with the issues.

The comparison tables and subsequent evaluation of the results lead to the
conclusion that neither platform adequately adheres to the security guidelines
set by the OWASP mobile security project. This provides an answer to the main
research question posed in this paper.

Final Conclusions and Recommendations. The literature regarding the
security issues in both analysed ecosystems show that they are not completely
secure for their users and developers. Customers do not always understand how

174 A. Krupskiy et al.

the applications can seriously affect their security. Developers are not always
capable of securing their applications as a result of problems like repackaging.
Problems like these add to the importance of secure ecosystems especially in the
form of well-defined security guidelines that follow security recommendations.

The impact on the entire ecosystem was assesed when the OWASP frame-
work was placed in the context of software ecosystems, it is considered of high
importance to the security and health of the mobile software platforms that
security guidelines are fully included in the developer documentation. Based on
the conclusions presented in this paper, the recommendation can be made that
platforms should consider including more comprehensive information on secure
development using a framework such as OWASP. Regardless if the operating
system has been designed with protections in mind, orchestrators should still
include information on secure development in their documentation, as it has
been shown that these measures can be circumvented in some cases and the
additional measures taken by developers can only benefit the ecosystem. Some
platforms already show the value of the OWASP guidelines by referring to them
on the introductory page of the security guide, while others do no such thing. It
is recommended that the value of these guidelines is more clearly referred to in
the developer documentation.

References

1. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: a research
agenda for software ecosystems. In: 31st International Conference on Software
Engineering-Companion Volume. ICSE-Companion 2009, pp. 187–190 (2009)

2. Asokan, N., Davi, L., Dmitrienko, A., Heuser, S., Kostiainen, K., Reshetova, E.,
Sadeghi, A.R.: Mobile Platform Security Synthesis Lectures on Information Secu-
rity, Privacy, and Trust. Morgan & Claypool Publishers (2013)

3. Jansen, S., Bloemendal, E.: Defining app stores: the role of curated market-
places in software ecosystems. In: Herzwurm, G., Margaria, T. (eds.) ICSOB
2013. LNBIP, vol. 150, pp. 195–206. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39336-5 19

4. Rashidi, B., Fung, C.: A survey of android security threats and defenses. J. Wirel.
Mob. Netw. Ubiquitous Comput. Dependable Appl. (JoWUA) 6(3), 3–35 (2015)

5. Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: Permission evolution in the android
ecosystem. In: Proceedings of the 28th Annual Computer Security Applications
Conference, pp. 31–40. ACM (2012)

6. Grace, M.C., Zhou, Y., Wang, Z., Jiang, X.: Systematic detection of capability
leaks in stock android smartphones. In: NDSS, vol. 14, p. 19 (2012)

7. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems.
Proc. IEEE 63(9), 1278–1308 (1975)

8. Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation attacks
on android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC
2010. LNCS, vol. 6531, pp. 346–360. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-18178-8 30

9. Meng, X., Song, C., Ji, Y., Shih, M.-W., Kangjie, L., Zheng, C., Duan, R., Jang,
Y., Lee, B., Qian, C., et al.: Toward engineering a secure android ecosystem: a
survey of existing techniques. ACM Comput. Surv. (CSUR) 49(2), 38 (2016)

http://dx.doi.org/10.1007/978-3-642-39336-5_19
http://dx.doi.org/10.1007/978-3-642-39336-5_19
http://dx.doi.org/10.1007/978-3-642-18178-8_30
http://dx.doi.org/10.1007/978-3-642-18178-8_30

Mobile Software Security Threats in the Software Ecosystem, a Call to Arms 175

10. Mulliner, C., Robertson, W., Kirda, E.: VirtualSwindle: an automated attack
against in-app billing on android. In: Proceedings of the 9th ACM Symposium on
Information, Computer and Communications Security, pp. 459–470. ACM (2014)

11. Orikogbo, D., Büchler, M., Egele, M.: CRiOS: toward large-scale iOS application
analysis. In: Proceedings of the 6th Workshop on Security and Privacy in Smart-
phones and Mobile Devices, pp. 33–42. ACM (2016)

12. Heider, J., El Khayari, E.: iOS keychain weakness FAQ. Frauenhofer Institute for
Secure Information Technology (SIT) (2012)

13. Renard, M.: Practical iOS apps hacking. GreHack 2012. 14 (2012). https://papers.
put.as/papers/ios/2012/GreHack-2012-paper-Mathieu Renard - Practical iOS
Apps hacking.pdf

14. Han, J., Yan, Q., Gao, D., Zhou, J., Deng, R.H.: Comparing mobile privacy pro-
tection through cross-platform applications (2013)

15. Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A survey of mobile
malware in the wild. In: Proceedings of the 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, pp. 3–14. ACM (2011)

16. Miller, C.: Inside iOS code signing. In: Symposium on Security for Asia Network
(SyScan) (2011)

17. Meng, W., Luo, X., Furnell, S., Zhou, J.: Protecting mobile networks and devices:
challenges and solutions (2016)

18. Teufl, P., Zefferer, T., Stromberger, C., Hechenblaikner, C.: iOS encryption sys-
tems: Deploying iOS devices in security-critical environments. In: 2013 Interna-
tional Conference on Security and Cryptography (SECRYPT), pp. 1–13. IEEE
(2013)

19. Manikas, K., Hansen, K.M.: Software ecosystems-a systematic literature review. J.
Syst. Softw. 86(5), 1294–1306 (2013)

20. Hoehle, H., Venkatesh, V.: Mobile application usability: conceptualization and
instrument development. MIS Q. 39(2), 435–472 (2015)

https://papers.put.as/papers/ios/2012/GreHack-2012-paper-Mathieu_Renard_-_Practical_iOS_Apps_hacking.pdf
https://papers.put.as/papers/ios/2012/GreHack-2012-paper-Mathieu_Renard_-_Practical_iOS_Apps_hacking.pdf
https://papers.put.as/papers/ios/2012/GreHack-2012-paper-Mathieu_Renard_-_Practical_iOS_Apps_hacking.pdf

Short Papers

Experimentation that Matters: A Multi-case
Study on the Challenges with A/B Testing

Helena Holmström Olsson1(&), Jan Bosch2, and Aleksander Fabijan1

1 Faculty of Technology and Society, Malmö University,
Nordenskiöldsgatan 1, 211 19 Malmö, Sweden

{helena.holmstrom.olsson,aleksander.fabijan}@mah.se
2 Department of Computer Science and Engineering, Chalmers University

of Technology, Hörselgången 11, 412 96 Göteborg, Sweden
jan.bosch@chalmers.se

Abstract. From having been exclusive for companies in the online domain,
feature experiments are becoming increasingly important for software-intensive
companies also in other domains. Today, companies run experiments, such as
e.g. A/B tests, to optimize product performance and to learn about user
behaviors, as well as to guide product development and innovation. However,
although experimentation with customers has become an effective mechanism to
improve products and increase revenue, companies struggle with how to
leverage the results of the experiments they run. In this paper, we study the
reasons for this and we identify three key challenges that make feature exper-
imentation a difficult task. Our research reveals the following challenges: (1) the
impact of experiments doesn’t scale, (2) business KPIs and team level metrics
are not aligned and (3) it is unclear if the available solutions are applicable
across domains.

Keywords: Data-driven development � Feature experimentation � A/B testing

1 Introduction

Over the past years, software-intensive companies in a variety of domains have started
adopting feature experimentation practices to evaluate ideas with customers and to
accelerate innovation cycles [1–4]. As one common technique, A/B testing refers to the
capability to test different variants of functionality with customers in order to learn what
variant is the optimal one. While this technique has become mainstream in online
companies, it is increasingly gaining momentum also in the embedded systems domain
[1, 4]. In prior research, feature experimentation has proven useful for optimization of
product performance, for evaluating new product concepts and for improving
data-driven development practices [5–8]. As a result, companies that are adept at
acquiring, processing and leveraging customer data become more profitable as early
validation with customers can have a profound impact on annual revenue [8]. However,
although experimentation with customers has become an effective mechanism to
improve products and increase revenue, companies fail in leveraging the results of
experiments [9].

© Springer International Publishing AG 2017
A. Ojala et al. (Eds.): ICSOB 2017, LNBIP 304, pp. 179–185, 2017.
https://doi.org/10.1007/978-3-319-69191-6_12

In this paper, and based on multi-case research in three online and three embedded
systems companies, we explore the reasons for why experimentation is a difficult task
and we identify three key challenges with A/B testing. These challenges are: (1) the
impact of experiments doesn’t scale. Although companies have access to large amounts
of valuable data, the impact of the data is poor, (2) business key performance indicators
(KPIs) and team level metrics are not aligned. Team level metrics used for experi-
mentation focus on short-term goals, smaller improvements and factors that change fast.
On the contrary, business level KPIs focus on long-term goals, bigger innovations and
factors that change slowly, and (3) it is unclear if the available solutions are applicable
across domains. Although previous research provides guidance for how to optimally run
experiments in the online domain, there is little research that translates these learnings
and explore to what extent they are applicable also outside of this domain.

The paper is organized as follows. In Sect. 2, we detail the background of our
research. In Sect. 3, we describe the research method and the case companies involved
in our work. In Sect. 4, we present the empirical findings and we identify the key
challenges associated with feature experimentation. In Sect. 5, we discuss our findings
and conclude the paper.

2 Background

Data collection and analysis practices are becoming increasingly important as the new
mechanisms to learn how a product performs in the field, how it is used by its customers
and what usage patterns and behaviors that evolve [3, 7, 10, 11, 12]. With automated
practices for data collection and analysis, queries can be processed frequently to provide
software developers and managers with rapid feedback. As a result, continuous
improvements can be made based on data from the users of the systems. This reflects an
interesting shift from a situation where traditional requirements engineering practices
inform development of new features [13], towards a situation in which customer and
product data is continuously collected and where companies use this data to inform
development [2, 5, 14]. Feature experimentation is critical as it allows continuous
validation with customers [15]. As the most common technique, controlled experiments
(e.g. A/B testing) constitutes a practice of comparing two versions of functionality to
determine which one performs better in relation to predefined criteria such as e.g.
conversion rate, click rate or time to perform a certain task [6, 8]. In online companies,
A/B experiments are the norm with companies such as e.g. Amazon, eBay, Facebook,
Google and Microsoft running thousands of parallel experiments to evaluate and
improve their sites at any point in time. A growing number of A/B testing tools and
solutions are available on the market [6, 10]. During recent years, similar practices are
emerging also in the embedded systems domain. As one example, companies in the
automotive industry run A/B experiments in their infotainment systems [4]. Recent
studies on feature experimentation [2, 6, 8, 15, 16], focuses predominantly on the roles
involved (e.g. data analysts, data scientists, product managers, software developers etc.),
the task at hand (e.g. development of roadmaps, design and analysis of experiments,
development of products, deployment of products etc.) and the technical infrastructure
that is the platform for the experiments (e.g. the application programming interfaces,

180 H.H. Olsson et al.

experiment databases, analytic tools, instrumentation, integration and deployment sys-
tems etc.). Also, there is prominent research providing detailed examples of how A/B
tests are conducted in relation to advanced services such as e.g. the Google and Bing
search engines [10].

3 Research Method

This research builds on multi-case study research [17] conducted in close collaboration
with companies in the online domain and with companies in the embedded systems
domain. Below, we provide a short description of each company.

Online companies:

• Company A provides payment services.
• Company B is a media streaming company.
• Company C is a developer of IT solutions for businesses and individuals.

Embedded systems companies:

• Company D is a developer of navigational information systems.
• Company E is a developer of connected monitoring and alarm solutions.
• Company F is a developer of mobile phones, tablets and smart wear devices.

For the purpose of this research topic, we organized workshops as well as con-
ducted interviews with project managers, product managers, product owners, software
developers, software and system architects, data scientists, data analysts and a number
of agile team coaches and scrum masters in the case companies. While the collabo-
ration with the embedded systems companies has been an on-going engagement since
2012, and in relation to a number of different topics, the specific work on how to
improve feature experimentation practices was initiated in 2015 and is on-going. The
collaboration with the online companies was initiated in 2015 and is on-going. In all
companies, meetings are typically scheduled for one hour, workshop sessions for two –

three hours and interviews for one hour. In both workshops and interviews, the focus is
to learn about the data collection and analysis practices in the companies, their use of
feature experiments, what metrics they use for A/B testing and what challenges they
experience in relation to this. Our empirical data consists of interview transcripts,
meeting and workshop notes, notes from informal meetings, e-mails and telephone
conversations. During analysis, the transcribed interviews were read with the intention
to identify recurring elements and concepts.

4 Case Study Findings

In this section, we present our case study findings by summarizing the experimentation
practices in the case companies we studied. We structure our findings according to the
two domains in which the case companies operate and we provide examples of (1) the
current practices and (2) the current challenges the companies experience. In Table 1,
we summarize the key challenges we identify.

Experimentation that Matters 181

4.1 Feature Experimentation: The Online Domain

Current practices: The online companies run frequent, and often parallel, feature
experiments with their customers. In these companies, A/B testing is considered the
most important technique to learn about customer behaviors and preferences. In
company A, A/B tests are run when developing new features and with the main
purpose to confirm their value to customers as early as possible. Company B runs
dozens of experiments per month in their product in order to optimize existing func-
tionality, to learn about customer behaviors and to evaluate new product functionality.
Company C is the most advanced company and uses a large number of metrics for
every experiment to track product performance and user behaviors.

Current challenges: The online companies have instrumented their products in order
to collect relevant data, they have experimentation platforms available to run frequent
and parallel A/B tests and they have software tools that help them analyze the data.
Still, to fully leverage the results of the experiments they run is challenging. This is due
to a number of problems. First, the companies find it difficult to have impact of
individual experiments scale. Experiments tend to support only smaller improvements
of features rather than having an impact on high level business decisions such as e.g.
larger re-designs, new product development or innovation initiatives. Second, the
companies experience difficulties in having business KPIs and team level metrics align.
Team level metrics that are used for experimentation focus on short-term goals, smaller
improvements and factors that change fast. On the contrary, business level KPIs focus
on long-term goals, bigger innovations and factors that change slowly. As a result,
there is the risk that teams optimize for certain outcomes using metrics they can
influence but without verifying the relationship between the metrics they use and
high-level business KPIs.

Table 1. Key challenges associated with feature experimentation.

Key challenges Description

Scaling impact of
experiments

Experiments support only smaller improvements of features
rather than having an impact on high-level business
decisions such as larger re-designs, new product
development or innovation initiatives

Aligning business KPIs and
team level metrics

Team level metrics that are used for experimentation focus
on short-term goals, smaller improvements and factors that
change fast. On the contrary, business level KPIs focus on
long-term goals, bigger innovations and factors that change
slowly

Applicability of solutions
across domains

While there is guidance for how to optimally run
experiments in the online domain, it remains unclear to what
extent this is applicable for companies outside of this
domain

182 H.H. Olsson et al.

4.2 Feature Experimentation: The Embedded Systems Domain

Current practices: In similar with the online companies, the embedded systems
companies run frequent feature experiments with their customers. However, the
embedded systems companies run sequential experiments with selected customers. In
company D, A/B testing is gaining momentum as a technique to learn more rapidly
from customers. In company E, A/B testing is a well-established technique to explore
customer preferences and product performance. Company F runs A/B tests focusing on
optimization of product performance and puts a lot of effort on improving user
experience.

Current challenges: The embedded systems companies have instrumented their
products in order to collect relevant data and they have software tools that help them
analyze and access the data. However, and as a common problem in the companies,
they fail in fully leveraging the results of the experiments they run. This is due to a
number of problems. First, the embedded systems companies find it difficult to have
impact of individual experiments scale. Typically, the A/B tests focus on smaller
improvements and optimizations of certain features and although the companies have
initiated work on defining high-level metrics they are uncertain to what extent these
will affect current practices. Second, also the embedded systems companies experience
difficulties in having business KPIs and team level metrics align. Often, teams use a
number of different metrics to monitor and improve the features they develop and
metrics can indicate either positive or negative results depending on what perspective
you take and what you strive to optimize. Finally, and as a third challenge experienced
in the embedded systems companies, it is unclear to what extent A/B testing solutions
for the online domain are applicable also in their domain. This problem is recognized in
all three case companies as people feel they are uncertain how to translate insights from
the online to their own domain. In the embedded systems domain, the hardware
dependence makes things more complex, the requirements engineering process is rigid
and often companies are distant from the users.

5 Discussion and Conclusion

In this paper, we explore the challenges that companies in the online and in the
embedded systems domain experience with regards to feature experimentation. From
having been exclusive for companies in the online domain, feature experiments are
becoming increasingly important for software-intensive companies also in other
domains and today companies run A/B tests to improve and optimize existing products,
to explore new concepts and to learn about customer preferences and behaviors. The
increasing importance of feature experimentation is acknowledged in a number of
recent studies [3, 6, 8, 9, 10]. However, what most previous studies don’t recognize, is
that the impact of experiments is poor and that even the most advanced companies
struggle with how to leverage the results of the experiments they run. Our research
captures three key challenges that cause this situation. First, impact of experiments

Experimentation that Matters 183

doesn’t scale. Instead, they tend to support only smaller improvements of specific
features. Second, business KPIs and team level metrics are not aligned. Team level
metrics used for experimentation focus on short-term goals, smaller improvements and
factors that change fast. On the contrary, business level KPIs focus on long-term goals,
bigger innovations and factors that change slow. Third, it is unclear if the available
solutions are applicable across domains.

References

1. Olsson, H.H., Bosch, J.: Towards data-driven product development: a multiple case study on
post-deployment data usage in software-intensive embedded systems. In: Fitzgerald, B.,
Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol, K.-J. (eds.) LESS 2013. LNBIP, vol.
167, pp. 152–164. Springer, Heidelberg (2013). doi:10.1007/978-3-642-44930-7_10

2. Olsson, H.H., Bosch, J.: From opinions to data-driven software R&D: a multi-case study on
how to close the ‘Open Loop’ problem. In: Proceedings of EUROMICRO, Software
Engineering and Advanced Applications (SEAA), 27–29 August, Verona, Italy (2014)

3. Olsson, H.H., Bosch, J.: Towards evidence-based development: learnings from embedded
systems, online games and internet of things. To appear in IEEE Software (forthcoming)

4. Bosch, J., Eklund, U.: Eternal embedded software: towards innovation experiment systems.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 19–31. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34026-0_3

5. Bosch, J.: Building products as innovation experiment systems. In: Cusumano, M.A., Iyer, B.,
Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 27–39. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-30746-1_3

6. Kohavi, R., Longbotham, R.: Online controlled experiments and A/B tests. In: Encyclopedia
of Machine Learning and Data Mining, no. Ries 2011, pp. 1–11 (2015)

7. Fagerholm, F., Guinea, A.F., Mäenpää, H., Münch, J.: Building blocks for continuous
experimentation. In: Proceedings of the 1st International Workshop on Rapid Continuous
Software Engineering (RCoSE), pp. 26–35 (2014)

8. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch J.: The evolution of continuous experimen-
tation in software product development: from data to a data-driven organization at scale. In:
Proceedings of the 39th International Conference on Software Engineering (ICSE), 20–28th
May, Buenos Aires, Argentina (2017)

9. Olsson, H.H., Bosch, J.: So Much Data; So Little Value A multi-case study on improving the
impact of data-driven development practices. In Proceedings of the Ibero American
Conference on Software Engineering (ClbSE), 22nd–23rd May, Buenos Aires, Argentina
(2017)

10. Dmitriev, P., Frasca, B., Gupta, S., Kohavi, R., Vaz, G. (forthcoming). Pitfalls of Long-Term
Online Controlled Experiments. (To appear in IEEE Big Data)

11. Fagerholm, F., et al.: The RIGHT model for continuous experimentation. J. Syst. Softw. 123,
292–305 (2016)

12. Bosch, J.: Future trends in software engineering. IEEE Softw. 33(1), 82–88 (2016)
13. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques. Springer

Publishing Company, Incorporated (2010)
14. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to

Create Radically Successful Businesses. Crown Business, New York (2011)

184 H.H. Olsson et al.

http://dx.doi.org/10.1007/978-3-642-44930-7_10
http://dx.doi.org/10.1007/978-3-642-34026-0_3
http://dx.doi.org/10.1007/978-3-642-30746-1_3

15. Fabijan, A., Olsson, H.H., Bosch, J.: Time to say ‘Good Bye’: feature lifecycle. In: 42nd
Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
Limassol, Cyprus. 31 August–2 September, pp. 9–16 (2016)

16. Kim, M., Zimmermann, T., DeLine, R., Begel, A.: The Emerging Role of Data Scientists on
Software Development Teams, no. MSR-TR-2015–30, p. 10 2015

17. Runesson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Softw. Eng. 14, 131 (2009)

Experimentation that Matters 185

Why Do Users Install and Delete Apps?
A Survey Study

Selim Ickin(B), Kai Petersen, and Javier Gonzalez-Huerta

Blekinge Institute of Technology, Karlskrona, Sweden
selimickin@gmail.com, {kai.petersen,javier.gonzalez.huerta}@bth.se

Abstract. Practitioners on the area of mobile application development
usually rely on set of app-related success factors, the majority of which
are directly related to their economical/business profit (e.g., number of
downloads, or the in-app purchases revenue). However, gathering also the
user-related success factors, that explain the reasons why users choose,
download, and install apps as well as the user-related failure factors
that explain the reasons why users delete apps, might help practitioners
understand how to improve the market impact of their apps. The objec-
tives were to: identify (i) the reasons why users choose and installing
mobile apps from app stores; (ii) the reasons why users uninstall the
apps. A questionnaire-based survey involving 121 users from 26 different
countries was conducted.

Keywords: Mobile application development · Success factors · Failure
factors · Users survey

1 Introduction

The number of mobile applications available has grown dramatically in the last
few years, and the app stores are indeed the main channel for dissemination
of such applications [2]. The number of mobile apps available in leading app
stores reached the 5.7 billion by the end of 20161. By 2017, the number of app
downloads is estimated to increase up to 268 billion2. The penetration factor
that allows reaching customers with apps is extremely high as there is a large
customer base owning smart-phones whereas, at the same time, there is a huge
competition in this market.

Mobile application developers and companies usually rely on app-related3

success factors, the majority of which are directly related to their economi-
cal/business profit (e.g., number of downloads, or in-app purchases revenue).
However these success factors are limited by how well the application fits user’s
needs or how well satisfies the user’s expectations (among many others). Based
on empirical evidence [4]: some studies suggest relations between API quality
1 https://www.statista.com/statistics/276623/.
2 https://www.statista.com/statistics/266488/.
3 According to the terminology used in [4].

c© Springer International Publishing AG 2017
A. Ojala et al. (Eds.): ICSOB 2017, LNBIP 304, pp. 186–191, 2017.
https://doi.org/10.1007/978-3-319-69191-6_13

https://www.statista.com/statistics/276623/
https://www.statista.com/statistics/266488/

Why Do Users Install and Delete Apps? A Survey Study 187

and app success [3,9], whereas the study by Guerrouj and Baysal [4] showed that
even more significant factors were app-size and category. Similarly, Corral and
Fronza [1] found that source code quality only had marginal impact on app suc-
cess (measured as penetration and satisfaction), while the most important qual-
ity attributes were “responsiveness, easiness, functionality and performance”.
Several studies used data mining to understand the information in app-stores
[8,10], e.g. to find issues in applications and thus ways to improve them [8].

App stores include certain user-visible information (e.g., such as description of
the app, screenshots, application size, last update, rating, and permission require-
ments). Some of these information items are under control of the app develop-
ers (e.g., the app description, the screenshoots, or the permission requirements),
whereas some others are the direct expression of the users opinions (e.g., reviews
and rating). These reviews and ratings have become an important factor for app
success [6] and its impact has been analyzed in several studies (e.g., [5,7]). How-
ever user ratings might also be helpful for developers and application vendors to
identify and prioritize missing features [11]. Developers can also improve the infor-
mation on the app stores aiming at increasing the number of downloads of their
apps. In this scenario, it is important to gain understanding on the criteria that
make users to choose, download and install mobile apps, but at the same time, it
is also important to analyze the rationale behind users removing mobile apps once
it has been already installed in their mobile phone.

In this paper, we study the mobile application quality from the user perspec-
tive through an online survey. We analyze the set of reasons (i.e., user-related
factors (see Footnote 3) that might influence the users while choosing to install
mobile applications via app stores and the reasons that cause them to uninstall
an app from their smartphones.

2 Survey Definition

Research questions: The two main research questions addressed in this work
are:

– RQ1: What are the user-visible information items from the app stores that
are taken into account by users when choosing, downloading and installing
applications?

– RQ2: What are the main reasons for deleting an application?

Target population: The survey was executed at the end of 2015 and it
includes results obtained from 121 users, some of which were contacted through
mobile apps forums such as IPhone Forum, EverythingiCafe, Android forum,
and AndroidPit. Hence, a convenience sampling approach was used.

Questionnaire design: The survey questionnaire comprised the follow-
ing aspects: (i) Demographics (categories of questions: gender, age, occupation,
years of experience using smartphones, nationality, and country of residence);
(ii) application and network usage (e.g. cellular data plan); (iii) reasons for
installing and deleting applications; (iv) important characteristics of mobile

188 S. Ickin et al.

applications,; and (v) qualitative feedback on mobile application and smart-
phone experience.

Data analysis: Descriptive statistics and histograms are used to illustrate
the distribution of the data. In addition, we applied pair-wise Fisher’s exact test
to analyze the differences between the reasons to download or uninstall apps,
although the main goal of the study was not to generalize the results for the
population based on the results of these tests.

Validity threats: The main threats to validity are: (i) use of convenience
sampling, sample size and inclusion of personal contacts, which might limit the
ability to generalize the results to a large population; (ii) objectivity in the
coding of the open questions, which may introduce bias; (iii) the inclusion of
participants from mobile applications forums, which might have also influenced
the results.

3 Results

Demographics: The demographics of the subjects that participated in the
online survey is given in Fig. 1, including age, gender, smartphone experience,
phone type, as well as user nationality and occupation.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Age

C
C

D
F

male female
0

20

40

60

80

100

N
um

be
r

of

su
bj

ec
ts

Gender

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Smartphone experience (years)

C
C

D
F

android iPhone windows other
0

20

40

60

80

N
um

be
r

of

su
bj

ec
ts

Phone type

Fig. 1. User demographics and Mobile platforms.

The subjects were from 26 different nationalities, although the majority of
them are Turkish (25%) and Swedish (21%) citizens. The participants’ occupa-
tions spanned through 23 different occupations, with a vast majority of students
(57%), engineers (17%), or researchers (11%).

Reasons for installing new apps from the App Store: The participants
were asked to prioritize the relative importance of a set of reasons they have into
account when deciding to download certain mobile applications via app stores.
Figure 2 shows a summary of the participants responses. We have found statisti-
cally significant differences (p < 0.005) when participants’ responses in relation

Why Do Users Install and Delete Apps? A Survey Study 189

description of tool and user reviews are both compared to the remaining seven
reasons. Key observations are: (i) user reviews are significantly more important
than application size, content rating, editor’s choice, last update, number of
downloads, permission requirements, and screenshots; (ii) no significant differ-
ences were found between number of reviews and review content, and (iii) no
statistically significant differences were found between rating values, frequency
of ratings and number of ratings, which indeed goes in the same direction than
previous studies (e.g., [7]).

User reviews
Screenshots

Permission requirements
Number of downloads

Last update
Editors' choice

Description of the tool
Content rating

Application size (MB)

10050050

Review content

Number of reviews

100500

Number of ratings

Frequency of ratings

Average rating value

Very importantImportantModerately importantOf little importanceUnimportant

Count

100500

Fig. 2. Reasons from users to install apps.

In addition, the users have provided additional items that they think
are important, resulting in the following list: open source, graphics, e.g.
videos/screenshots, source company programmer reputation, bad naming of apps
for advertising such as “Free version”, social popularity (e.g. if a friend is using
and recommending it), compatibility with other apps, needs, position in the list,
or existence of an external app website.

Reasons for deleting apps: We coded the different reasons for deleting
apps, and categorized them in 16 categories. The main reasons for users to
uninstall applications from their smartphones is given in Fig. 3.

– Unstable/Inconsistent: Involuntary behavior, uncontrolled actions, Inconsis-
tency between description and functionality, unreliable, change in privacy
terms, side effects (i.e. together with the main purpose, it does extra unwanted
things), permissions, high amount of notifications, expectations not met.

190 S. Ickin et al.

– Intrusive Advertisements
– Lack of Improvement: outdated, lack of Improvement/others outperform,

finding a better one
– Useless/Not needed: Usefulness, not using anymore, not needed
– Frequent application updates: Frequent application updates, fee for upgrade,

too many updates
– Getting bored: e.g. Finished game
– High memory allocation: Size of the app, too much memory usage (RAM),

uninstallations by relying on the backup to use it later
– Poor User Interface: Slick animations, complex to use, GUI, user unfriendly
– High battery usage
– Crashes: Performance, Sluggish behavior, freeze, slow, laggy, force quit
– Time consuming: Addiction, abuse
– No offiline use: No offline use, no caching
– Poor Popularity: friends not using, overall reputation
– Abusing privacy: login required, required integration via login (i.e. with Face-

book, Google)
– Compatibility with device version
– OS/ROM change

The most important reason was due to the fact that they find that the app has
become useless or is not needed any more.

0

10

20

30

40

50

60

70

U
se

le
ss

 /
N

o
ne

ed

C
ra

sh
es

H
ig

h
m

em
or

y
al

lo
ca

tio
n

U
ns

ta
bl

e
/ I

nc
on

si
st

en
t

P
oo

r
us

er
 in

te
rf

ac
e

In
tr

us
iv

e
ad

ve
rt

is
em

en
ts

La
ck

 o
f i

m
pr

ov
em

en
t

G
et

tin
g

bo
re

d

H
ig

h
ba

tte
ry

 u
sa

ge

F
re

qu
en

t

ap
pl

ic
at

io
n

up
da

te
s

P
oo

r
po

pu
la

rit
y

A
bu

si
ng

 p
riv

ac
y

C
om

pa
tib

ili
ty

T
im

e
co

ns
um

in
g

N
o

of
fli

ne
 u

se
 /

no
 c

ac
hi

ng

O
S

 /
R

O
M

 c
ha

ng
e

Reasons to uninstall apps

N
um

be
r

of
 o

cc
ur

ra
nc

es

Fig. 3. Reasons from users to uninstall apps.

4 Conclusion

In this paper we have presented the results obtained via user surveys focusing
on the user-related success that might lead users to choose and install certain
apps, as well as user-related failure factors, that might lead users to uninstall the

Why Do Users Install and Delete Apps? A Survey Study 191

apps. The description of the tool and user reviews are the most important factors
influencing users while choosing and installing application from app stores. The
most important reason for a user to uninstall an application from smartphone
is users finding some apps as “useless”. The other important factors found as
relevant are crashes, high memory allocation, instability and inconsistency, poor
UI, intrusive advertisements, lack of improvement, boring apps. We are aware
that this study only provide preliminary results on the user-related success and
failure factors, and that further surveys and user studies need to be conducted,
in particular expanding the target groups and covering different locations.

References

1. Corral, L., Fronza, I.: Better code for better apps: a study on source code quality
and market success of android applications. In: Proceedings of the Second ACM
International Conference on Mobile Software Engineering and Systems, pp. 22–32.
IEEE Press (2015)

2. Cortimiglia, M.N., Ghezzi, A., Renga, F.: Mobile applications and their delivery
platforms. IT Prof. 13(5), 51–56 (2011)

3. Guerrouj, L., Azad, S., Rigby, P.C.: The influence of app churn on app success and
stackoverflow discussions. In: Proceedings of the 22nd 2015 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 321–
330. IEEE (2015)

4. Guerrouj, L., Baysal, O.: Investigating the android apps’ success: an empirical
study. In: Proceedings of the 24th 2016 IEEE International Conference on Program
Comprehension (ICPC), pp. 1–4. IEEE (2016)

5. Hao, L., Li, X., Tan, Y., Xu, J.: The economic role of rating behavior in third-party
application market. In: Second International Conference on Information Systems,
Shanghai, China, pp. 1–15 (2011)

6. Li, H., Zhang, L., Zhang, L., Shen, J.: A user satisfaction analysis approach for
software evolution. In: Proceedings of the 2010 IEEE International Conference on
Progress in Informatics and Computing, pp. 1093–1097 (2010)

7. Hyrynsalmi, S., Seppänen, M., Aarikka-Stenroos, L., Suominen, A., Järveläinen, J.,
Harkke, V.: Busting myths of electronic word of mouth: the relationship between
customer ratings and the sales of mobile applications. J. Theor. Appl. Electron.
Commer. Res. 10(2), 1–18 (2015)

8. Khalid, H., Shihab, E., Nagappan, M., Hassan, A.E.: What do mobile app users
complain about? IEEE Softw. 32(3), 70–77 (2015)

9. Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Di Penta, M., Oliveto, R.,
Poshyvanyk, D.: Api change and fault proneness: a threat to the success of android
apps. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pages 477–487. ACM (2013)

10. McIlroy, S., Ali, N., Khalid, H., Hassan, A.E.: Analyzing and automatically
labelling the types of user issues that are raised in mobile app reviews. Empir-
ical Softw. Eng. 21(3), 1067–1106 (2016)

11. Pagano, D., Bruegge, B.: User involvement in software evolution practice: a case
study. In: Proceedings of the 35th 2013 International Conference on Software Engi-
neering (ICSE), pp. 953–962. IEEE (2013)

Evolving Software Products, the Design
of a Water-Related Modeling Software

Ecosystem

Konstantinos Manikas1,2(B)

1 DHI Group, Hørsholm, Denmark
kman@dhigroup.com

2 Computer Science Department, IT University of Copenhagen,

Copenhagen, Denmark

Abstract. Software product evolution by means of improving their
architecture, tools, or development methodologies are rather common
in the lifetime of a software product. Especially if the product is in the
domain of engineering where some of the basic calculation principles
were established in some cases more than 50 years ago. However, a radi-
cal change of software products to evolve both in the software engineering
as much as the organizational and business aspects in a disruptive man-
ner are rather rare.

In this paper, we report on the transformation of one of the market
leader product series in water-related calculation and modeling from a
traditional business-as-usual series of products to an evolutionary soft-
ware ecosystem. We do so by relying on existing concepts on software
ecosystem analysis to analyze the future ecosystem. We report and elab-
orate on the main focus points necessary for this transition. We argue for
the generalization of our focus points to the transition from traditional
business-as-usual software products to software ecosystems.

Keywords: Software ecosystems · Ecosystem design · Product
modernization

1 Introduction

Software ecosystems have been gaining in popularity in the past decade. We have
noticed an increasing number of software systems and products being either con-
verted from an existing system to an ecosystem or designed from the beginning
to support the ecosystem approach [1]. The field of software ecosystems arguably
appeared around the previous decade. Since then, the field has been shaped by
a number of publications such as several literature studies [2–5] as much as a
number of influential studies proposing, among other, means of analysis or cate-
gorizing software ecosystems [6–9]. Software ecosystems arguably come with sev-
eral advantages such as increased level of innovation, better quality of software
products, accelerated development, or reduced time to market. However not all
c© Springer International Publishing AG 2017
A. Ojala et al. (Eds.): ICSOB 2017, LNBIP 304, pp. 192–198, 2017.
https://doi.org/10.1007/978-3-319-69191-6_14

Designing a Water Resource Software Ecosystem 193

ecosystems have been equally successful or effective in achieving the advantages
that are promised with this approach. This the ecosystem design with respect
to success has been a focus of both research and academia.

In related work, [10] follow the transition of a software product line to a soft-
ware ecosystem with the parallel transition from waterfall development processes
to agile. [11] follow a similar transition of a proprietary platform but to an open
source software ecosystem. In a somewhat different approach [12,13] describe
the steps of analyzing and designing a software ecosystem around the telemed-
ical services of the Danish healthcare. As noted form these studies, software
ecosystems can mainly emerge from a successful software product (or system,
company). However, the telemedicine ecosystem is an example the design of an
ecosystem by identifying a need for an ecosystem rather than evolving from an
existing platform. The steps towards the design of an ecosystem are elaborated
more in [14]. One of the methods for analyzing and designing software ecosystems
from a wide perspectives is the concept of “software ecosystem architecture” that
we are using in this study [12]. The concept proposes that a software ecosystem
can be analyzed by three different perspectives using three structures:

Software structure. That contains the different software elements of an ecosys-
tem as much as their relationships (including software interaction). In some cases
it helpful to separate between the common software infrastructure, i.e. the plat-
form of the ecosystem, and the software extensions, i.e. contributions on top of
the infrastructure.

Organizational structure. The different organizational elements of the ecosys-
tem, such as the different actors that are involved in the ecosystem, their roles,
and relationships.

Business structure. The different business elements of the ecosystem such as
the incentives that motivate the actor activity in the ecosystem.

In this paper we focus on the design of a software ecosystem and report on the
analysis of one of the market-leader suites of products in water-related modeling
and prediction. Our case focuses in designing the evolution of the development
and distribution from traditional means to a software ecosystem with utter aim
to “solve the worlds toughest challenges in water environments” [15].

2 Approach

The studied systems are a set of software systems that, among other, perform
complex calculation and modeling scenarios in a wide variety of water resource
problems. These systems have been evolved and improved over the years with
the first calculation algorithms dating back to the 1960’s. The architecture of the
different products includes high level or reuse and conceptual separation. The
organization developing the systems is part of a wider non-profit organization
of more than 1000 employees world-wide with main business water resources
engineering expertise. The organization’s products include project development
and consultancy, software products, and knowledge distribution.

194 K. Manikas

In the following section we discuss the result of analysis of the ecosystem
to-be. We do so, in a generic manner so to be applicable in wider domains. We
use the three structures of the software ecosystem architecture.

2.1 Software Structure

The transition to a software ecosystem poses a number of requirements to the
software structure. This structure includes both the ecosystem platform, i.e. the
software infrastructure that forms the core of the ecosystem where extensions
are build upon, and the software extensions, i.e. plug-inns or apps that provide
additional functionality or services to the ecosystem by extending the platform.
Bellow we elaborate on the main aspects that the software structure of the
ecosystem should cover.

Modularity and Independence. The clear separation of the (software and
logical) components of an ecosystem is essential to the well-functioning and
prosperity of the ecosystem. The better each logical (and thus software) entity
is defined and separated from the rest, the more probable it is for the system
to be to keep faithful to the architectural design. This is especially relevant to
existing systems transitioning to an ecosystem as the effort of re-designing and
refactoring is arguably greater than design from scratch. In such cases apart
from re-designing, analysis of architectural evolution and specifically architec-
tural drift and decay is very relevant as much as information on the initial archi-
tectural decisions and trade-offs. The proposed architectural smells [16] can be
an relevant starting point. Today there is a number of architectural patterns
and tactics that can facilitate this transitions, e.g. the use of service oriented
architecture and microservices, as much as different tools.

Independent and Continuous Release. One positive effect of an optimal
modularity in a system is that this logical structuring allows for releasing mod-
ules independently from each other. Independent release of modules is essential
for the (rapid) evolution of large and complex systems as (a) it enforces com-
plete control of dependencies - otherwise the system fails at runtime, (b) better
supports the actor extension development as it allows the actors to focus only
on the module(s) that are relevant, (c) allows for organizational independence,
i.e. different organizations (or teams) can limit their scope easier. Apart from
the platform, independent release and release roadmapping should also be a
requirement for extensions that are reused by other components.

Standardization of Platform and Extension. In order to facilitate the
rapid and proper extension development, the aspects of this development should
be standardized to the extent possible. In that respect, the ecosystem should
provide and enforce standardized means of development, deployment, and test-
ing/quality assurance. Standardization could be included in following ways:

Designing a Water Resource Software Ecosystem 195

Documentation and Support. The ecosystem orchestrators should facilitate
the ecosystem extension by “flattening” the learning curve of ecosystem contrib-
utors and establishing and communicating official “ways of doing”. Examples
here include good guides and documentation on how to create extension or stan-
dard functions e.g. user interface, logging, or error-handling. This should already
by considered by design time by including relevant system architectural qualities,
e.g. buildability.

Enforcement and Control. Some of the standardized procedures, might be
imperative to be followed e.g. procedures dealing with authentication, autho-
rization, or privacy. In those cases, apart from communication and support,
there should also exist means of enforcement and control of the proper design
and implementation. Depending on the governance the ecosystem is following,
different ways of enforcement can be applied. Practices can vary from auto-
mated controls (e.g. during commit/deployment or binary controls), to manual
and resource-demanding controls e.g. it is common approach to establish com-
pliance and certification organizations or auditing procedures for systems with
high requirements in quality assurance.

Coordination, Plan Communication, and Roadmapping. Development
both internally in the platform and externally in the extensions can be rather
distributed and independent. This can cause several issues related to the dis-
tributed work, e.g. extensions being build on a platform component/service that
changed, or platform releasing similar functionality to what an external actor was
building in an extension. This kind of issues can be arguably prevented by set-
ting requirement for communicating changes and roadmaps of system evolution
that other actors can align with. In some cases, a special organizational entity or
automated system can be responsible for the communication and co-ordination
of the software interaction.

2.2 Business Structure

The transition to a software ecosystem arguably has a great impact to the busi-
ness structure. Below we elaborate on some of the aspects that should be covered:

2.3 Disruption and Business Development

Transitioning to an ecosystem potentially includes a disruption to the “business-
as-usual” model that an organization might have established. Identifying the
new business models and incentives both for the (orchestrating) organization
itself but also for potential external organizations is essential for this transition.
Aspects in this work include challenging the existing and identifying new: (i)
value propositions, (ii) customer segments, (iii) revenue streams, (iv) strategic
alliances.

196 K. Manikas

Business and Software Structure Alignment. Similar to a single organi-
zation, the alignment of the business and the software is essential. Naturally,
in the ecosystem perspective the complexity is of higher magnitude. The plat-
form should reflect the business and the business should support the operation
and evolution of the software structures. A proper set of value propositions and
incentives both for the orchestrator - organization opening the platform and the
software extension organizations is equally important (if not more) with a proper
software structure. Means of designing the business structure moves towards tra-
ditional business development. Moreover the alignment of software and business
structures can arguably be facilitated by theories and frameworks in the enter-
prise architecture. Naturally, these frameworks should also be extended to the
ecosystem views.

2.4 Organizational Structure

Internal Organization. The transition to an ecosystem implies challenges to
the internal organization that would take the role of the ecosystem orchestrator.
A radical restructuring of the software and business in an organization should be
followed by restructuring in the organization itself. A relevant example is, assum-
ing that “Conway’s law” [17] is valid, the platform would reflect the structure
of the organization and the pattern of communication. Thus, the structure of
the organization should be evaluated in this light. Moreover, the software and
business structure aliment should also be reflected here.

External Organization. The structuring of the external to the orchestrator
organizations could potentially include implications that need to be addressed.

Actor Involvement Model. How external actors are to be included is an
important aspect on an ecosystem. If the ecosystem is very open to external
actors/organizations, there might appear issues with high extension competition
that might have a negative effect to the ecosystem. Moreover, the more the
ecosystem contributions scale, the more challenging it might be to control and
maintain quality. On the other hand, if an ecosystem is to limiting to external
actor inclusion, the ecosystem might not be able to obtain and maintain a critical
mass for the ecosystem to evolve and eventually survive.

Defining Internal and External. Transition to an ecosystem also implies
that external organizations might be occupied with aspects of a systems that
was previously internal. It might be necessary to define and make explicit the
borders of each system and the responsibilities of each actor in a more formal way
to avoid organizational and legal frictions. Moreover, in cases of privacy and risk
of leak of important information, employees should have guidance on the right
level of communication and the privacy level of information. This is something
that is implemented in many organizations today. The challenge increases with
the increase in complexity, e.g. more actors in different privacy levels.

Designing a Water Resource Software Ecosystem 197

3 Conclusion and Future Work

In this paper we report on the transition of a software product suite to a soft-
ware ecosystem. We rely on the concept of software ecosystem architecture and
analyze the current systems. Our work results in a set of focus points that are
necessary for the transformation to an arguably healthy ecosystem.

Plans for future work include the evaluation of the focus points and the
detailed design of the aspects that the focus points identify. We argue that the
identified points can be developed further to a generalized method for evolving
from traditional software systems to software ecosystems.

References

1. Manikas, K.: Supporting the evolution of research in software ecosystems: review-
ing the empirical literature. In: Maglyas, A., Lamprecht, A.-L. (eds.) Soft-
ware Business. LNBIP, vol. 240, pp. 63–78. Springer, Cham (2016). doi:10.1007/
978-3-319-40515-5 5

2. Hanssen, G.K., Dyb̊a, T.: Theoretical foundations of software ecosystems. In:
Jansen, S., Bosch, J., Alves, C. (eds.) Proceedings of the Forth International
Workshop on Software Ecosystems, Cambridge, vol. 879, pp. 6–17, 18 June 2012.
http://CEUR-WS.org

3. Barbosa, O., Santos, R.P., Alves, C., Werner, C., Jansen, S.: In: Software Ecosys-
tems - Analyzing and Managing Business Networks in the Software Industry.
Edward Elgar, Cheltenham (2013)

4. Manikas, K., Hansen, K.M.: Software ecosystems - a systematic literature review.
J. Syst. Softw. 86(5), 1294–1306 (2013)

5. Manikas, K.: Revisiting software ecosystems research: a longitudinal literature
study. Syst. Softw. 117, 84–103 (2016)

6. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of
the 13th International Software Product Line Conference SPLC 2009. Carnegie
Mellon University, Pittsburgh, pp. 111–119 (2009)

7. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: a research
agenda for software ecosystems. In: 31st International Conference on Software
Engineering - Companion, vol. 2009, pp. 187–190. ICSE-Companion, May 2009

8. Knodel, J., Manikas, K.: Towards a typification of software ecosystems. In: Fer-
nandes, J.M., Machado, R.J., Wnuk, K. (eds.) ICSOB 2015. LNBIP, vol. 210, pp.
60–65. Springer, Cham (2015). doi:10.1007/978-3-319-19593-3 5

9. Manikas, K., Hansen, K.M.: Reviewing the health of software ecosystems - a
conceptual framework proposal. In: Proceedings of the 5th International Work-
shop on Software Ecosystems, Potsdam, vol. 987, pp. 33–44, 11 June 2013.
http://CEUR-WS.org

10. Hanssen, G.K.: A longitudinal case study of an emerging software ecosystem: impli-
cations for practice and theory. J. Syst. Softw. 85(7), 1455–1466 (2011)

11. Kilamo, T., Hammouda, I., Mikkonen, T., Aaltonen, T.: From proprietary to open
source-growing an open source ecosystem. J. Syst. Softw. 85(7), 1467–1478 (2012)

12. Christensen, H.B., Hansen, K.M., Kyng, M., Manikas, K.: Analysis and design
of software ecosystem architectures - towards the 4s telemedicine ecosystem. Inf.
Softw. Technol. 56(11), 1476–1492 (2014)

http://dx.doi.org/10.1007/978-3-319-40515-5_5
http://dx.doi.org/10.1007/978-3-319-40515-5_5
http://CEUR-WS.org
http://dx.doi.org/10.1007/978-3-319-19593-3_5
http://CEUR-WS.org

198 K. Manikas

13. Manikas, K.: Analyzing, Modelling, and Designing Software Ecosystems - Towards
the Danish Telemedicine Software Ecosystem. PhD thesis, Department of Com-
puter Science, University of Copenhagen, Denmark (2015)

14. Manikas, K., Hämäläinen, M., Tyrväinen, P.: Designing, developing, and imple-
menting software ecosystems: towards a step-wise guide. In: The 8th International
Workshop on Software Ecosystems (2016)

15. DHI Group: Our foundamentals. Accessed 23 Feb 2017. https://www.dhigroup.
com/about-us/corporate-social-responsibility/our-fundamentals

16. Garcia, J., Popescu, D., Edwards, G., Medvidovic, N.: Identifying architectural bad
smells. In: 2009 13th European Conference on Software Maintenance and Reengi-
neering, pp. 255–258, March 2009

17. Conway, M.E.: How do committees invent. Datamation 14(4), 28–31 (1968)

https://www.dhigroup.com/about-us/corporate-social-responsibility/our-fundamentals
https://www.dhigroup.com/about-us/corporate-social-responsibility/our-fundamentals

Towards Understanding Startup
Product Development as Effectual

Entrepreneurial Behaviors

Anh Nguven Duc1(&), Yngve Dahle2, Martin Steinert2,
and Pekka Abrahamsson2,3

1 University College of Southeast Norway,
Notodden, Norway
angu@usn.no

http://softwarestartups.org
2 Norwegian University of Science and Technology,

7491 Trondheim, Norway
3 Software Startups Research Network, Trondheim, Norway

Abstract. Software startups face with multiple technical and business chal-
lenges, which could make the startup journey longer, or even become a failure.
Little is known about entrepreneurial decision making as a direct force to startup
development outcome. In this study, we attempted to apply a behavior theory of
entrepreneurial firms to understand the root-cause of some software startup’s
challenges. Six common challenges related to prototyping and product devel-
opment in twenty software startups were identified. We found the behavior
theory as a useful theoretical lens to explain the technical challenges. Software
startups search for local optimal solutions, emphasize on short-run feedback
rather than long-run strategies, which results in vague prototype planning,
paradox of demonstration and evolving throw-away prototypes. The finding
implies that effectual entrepreneurial processes might require a more suitable
product development approach than the current state-of-practice.

Keywords: Effectuation � Entrepreneurial behavior theory � Software
development � Software startups � Prototyping � Empirical study

1 Introduction

The software industry has witnessed a growing trend, where software products are
developed by startup companies with limited resources and little operating history.
With the advancement of technology development, it seems that everyone with a
business idea, a website and a pitch can launch a new company. However, not so many
business ideas are realized as concrete prototypes. Furthermore, even a smaller portion
of prototypes is transformed into commercialized products. It is difficult to repeat
successes, as startups operate in chaotic situations, where the links between startups’
behaviors and their effects are often not detectable [1].

Decisions made by entrepreneurs is the direct force leading to the success or failure
of the startup [3]. Startup’s unique characteristics, i.e. dynamic, bootstrapping and

© Springer International Publishing AG 2017
A. Ojala et al. (Eds.): ICSOB 2017, LNBIP 304, pp. 199–204, 2017.
https://doi.org/10.1007/978-3-319-69191-6_15

multiple-influenced environments, make the decision-making tasks for entrepreneurs
are different for project managers in more established companies [1]. Entrepreneurs
often have to make decisions with little information about market, customer and pro-
duct, and whether they will be accepted [2]. Entrepreneurial literature offers several
ways to understand the startup’s decisions and behaviors [3, 4, 8]. One approach is the
behavior theory of entrepreneurial firms, which assumes the effectuation approach
when developing startups’ business [4]. Recent ideologists [5–7] encourage the
co-development of business and product in startups. The combination of the two line of
thoughts inspires us to explore the effectual behavior of startups from product devel-
opment aspect. We are interested in understanding how the theory of entrepreneurial
behaviors could help to explain the challenges faced during startups’ prototyping and
product development. Our research question is “How are theories of entrepreneurial
behaviors applicable to explain for startup product development process?”

The paper is organized as follows; firstly, we present related work about a behavior
theory of entrepreneur firm (Sect. 2). Then, we describe our research methodology
(Sect. 3). After that, findings are presented (Sect. 4). Finally, we will discuss and
conclude the paper (Sects. 5 and 6).

2 Behavioral Theory of the Entrepreneurial Firm

Entrepreneurship literature is intensive on understanding the formation, development
and influencing factors to startups. There has been an increased attention on the
effectuation theory in explaining entrepreneurial behaviors [8]. Effectuation processes
take a set of means as given and focus on selecting between possible outcomes that can
be realized [8]. Alternatively, entrepreneurial firms are seen as heterogeneous, bounded
rational entities [4]. In the face of environmental uncertainty, therefore, these bounded
rational firms form expectations based on available means and information. Dew et al.
proposed a behavioral theory of the entrepreneurial firm (BTEF) [4]. Assuming
entrepreneurs as an effectual unit, Dew et al. [4] propose four constructs related to
entrepreneurial decision-making:

• Means-driven transformation: startup companies tend to be effectual, and available
resources drive their action. Effectual action involves transforming extant means
into new possibilities, including new problems of interest. Transformation processes
are actor-centric, as who comes on board determines goals, not vice versa. The
transformation is appeared as a search activity, aiming at solving pressing problems
rather than developing long-run strategies.

• Docility: conflict and difference among stakeholders is avoided through stakeholder
docility, and goals are residual of the process. Simon et al. defined docility as “the
tendency to depend on suggestions, recommendation, persuasion and information
obtained through social channels, as a major basic of choice” [9]. The decisions
made by startups, for instance, can be done by in cooperating other’s ideas and not
necessary by going through conflict resolution.

• Leveraging contingency: avoiding uncertainty by short run feedbacks, but also
encouraging surprise. For startups, even ‘bad’ surprises can be leveraged to provide

200 A.N. Duc et al.

new means and new opportunities. Actions emphasize commitment and contin-
gency, not choice and determinacy.

• Technology of foolishness: insulation from learning sought through allowing
experimental actions with regard to affordable lost. The technology of foolishness
allows startups to relax the primacy of functional rationality, to temporarily suspend
intentionality, and promote the openness to new actions, objectives and
understandings.

3 Research Approach

We conducted this study by using a multiple-case study design with software startup as
a unit of analysis [10]. Contacts for startups were searched via four channels,
(1) startups within professional networks of papers’ authors, (2) startups in the same
town with the authors, (3) startups listed in the Startup Norway website and (4) the
Crunchbase database. Twenty startups were eventually selected for investigation. The
startup cases represent different startup phases, from prototyping to commercialization
and scaling. Application domains range from marketplace, education, ecommerce,
transportation, and Internet-of-Thing. Regards to software development approaches,
startups with five or more people mostly adopt Agile and iterative software develop-
ment. The sample is dominated by Norwegian software startups, with small teams and
bootstrap financing models. We do not consider other types of startups, for example,
internal cooperate startups, venture capital invested startups, and USA-based startups.

The major data collection instrument is semi-structured interviews. The interviews
were focused on exploring startup’s decision making and their behaviors related to their
business and product development. The interview guideline is published online1. We
used a thematic analysis to analyze the data, a common technique for identifying,
analyzing, and reporting conceptual themes found from qualitative data [17]. To
support the data analysis, we used a tool namely NVivo 112, to code, and to categorize
such codes in higher order levels, representing different technical challenges when
going from ideas to commercialized product. Several theoretical frameworks were
considered, such as Cynefin model [11], boundary spanning object theory [12] and
BTEF [4]. With the focus on exploring the decision making process behind startup’s
behaviors, we attempted to apply the four principles of BTEF to explain for how do
startups face with such technical challenges.

1 www.goo.gl/r9okCu.
2 www.qsrinternational.com/product.

Towards Understanding Startup Product Development 201

http://www.goo.gl/r9okCu
http://www.qsrinternational.com/product

Table 1. Explanation for startup’s technical challenges

Challenges Description Interpretation via BTEF

Vague prototype
planning

Prototypes were created in an
adhoc manner, mostly
throw-away, lack of upfront
design for learning, sometimes
little lesson learnt, lack of
early-stage product roadmap

Startups emphasizing short-run
reaction rather than anticipation
of long-run uncertain events
focusing on the search for a
suboptimal set of features or
functionalities [4]

Feature creeps Startups implement requirements
from many customers with
different needs, divergent product
roadmap. “We are adding
features all the time. This is not a
product that will ever stop
evolving. … We are talking about
this being the core of the
company’s competence”

Startups tend to perform different
experiments with technology, i.e.
features, user experience etc.
Many startup features are a good
representation of technology of
foolishness

Paradox of
demonstration

Early demonstration needs to be
impressive to attract funding.
However there is often a limited
budget for developing a minimum
viable product

Startups operate based on
mean-driven transformation [4].
Demonstrated prototypes were
limited by the current human and
financial resources

Evolving
throw-away
prototypes

Many throw-away prototypes
accidentally become evolutionary
ones. Technical debt caused by
the lack of proper refactoring
threatens the quality of product in
later phases of software startups

Startups leverage contingencies
[4]. Tolerating surprises during a
series of prototypes might lead to
utilize the business-fit prototype
for long-term development

Sharing visions
between Business
and Technology

Communication of business or
technical details can be difficult
between entrepreneurs and
developers. “it always takes a
long discussion to explain her
[the CEO] about the importance
of having flexible product
design…”

Conflicts do not necessarily
happen in a startup context, as
startup team members are both
persuadable and persuasive to
different degrees about different
matters [4]

Lack of sufficient
and relevant user
involvement

Balancing learning fast and
learning the right things is a
challenging task. Startups might
have problems with finding
feedbacks from relevant users.
“Most of them don’t understand
the idea … It probably came ten
years before the app developers
can recognize its benefit …”

Challenges of early user
involvement can be tracked to
two problems, (1) to find
appropriate early innovators and
(2) whether there actually is a
market for the product

202 A.N. Duc et al.

4 How Are Theories of Entrepreneurial Behaviors
Applicable to Explain for Startup Product Development
Process?

Six identified themes were directly related to startup’s decision making. We found that
BTEF can be useful to explain for such themes, as shown in Table 1. The challenge
name and description were given along with the theoretical explanation in the table.

5 Discussions

The technical challenges were interpreted in a context of a prototype-centric devel-
opment paradigm [13–15]. Literature reveals that startups adopt rapid releases to build
a prototype in an evolutionary fashion and quickly learn from the users’ feedback to
address the uncertainty of the market. The rapid development approaches were found to
improve the effectiveness of the requirement elicitation of any software development
[15]. However, in many cases software startups do not throw away quick-and-dirty
prototypes and evolve them (or part of them) into the final products.

By using an effectuation theory [4], we can explain different technical challenges
that startups face with during their journeys from idea to commercialization. Technical
challenges related to prototyping and product development are linked with startup’s
current capacity, experimental nature of technology development, risk tolerance and
favor of short-run feedbacks. Driven by the existing means and resource, startups
search for local optimal solutions, emphasize on short-run feedback rather than
long-run strategies. This results in technical challenges, such as vague prototype
planning, and paradox of demonstration. All in all, the theory suggests the observed
product development approaches do not likely support the entrepreneurial processes or
vice versa. Alternatively, the effectual decision making might need a better software
development paradigm that can fit to the uncertain and dynamic situations of startups.

6 Conclusions

This paper portrayed six technical challenges in early phases of software startups.
Entrepreneurs make decisions to search for local optimal solutions, emphasize on
short-run feedback rather than long-run strategies, which might require a more
proactive, flexible and agile approach than the state-of-practice software startup product
development. Our contributions are two folds. Firstly, we illustrate for the application
of firm’s behavior theory in the relation to technical decisions, which are essential for
achieving core values of software-based startups. Secondly, this is among the first
attempt to bring a theoretical framework from entrepreneurship literature in Software
Engineering. This is encouraging due to the current limited theoretical contribution to
software startups research [13, 14].

There are several possibilities for future work on software startups. Our next step is
to extend the map of startups challenge to include non-technical challenges that we

Towards Understanding Startup Product Development 203

identify from the cases, such as lock-in to external resources, changing team compo-
sition and market uncertainty. Furthermore, we found that entrepreneurial theories are
helpful in understanding and explaining the context of technical challenges and
decision-making. Future work would investigate more on how other theories can be
adopted in software startup research.

References

1. Nguyen-Duc, A., Seppänen, P., Abrahamsson, P.: Hunter-gatherer cycle: a conceptual model
of the evolution of startup innovation and engineering. In: 1st Workshop on Open Innovation
on Software Engineering, ICSSP (2015)

2. Ucbasaran, D., Westhead, P., Wright, M.: The focus of entrepreneurial research: contextual
and process issues. Entrepreneurship Theory Pract. 25(4), 57–80 (2001)

3. Cyert, R.M., March, J.G.: A Behavioral Theory of the Firm. Prentice-Hall, Englewood Cliffs
(1963)

4. Dew, N., Read, S., Sarasvathy, S.D., Wiltbank, R.: Outlines of a behavioral theory of the
entrepreneurial firm. J. Econ. Behav. Organ. 66, 37–59 (2008)

5. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses, p. 103. Crown Publishing, USA (2013)

6. Maurya, A.: Running Lean: Iterate from Plan a to a Plan That Works. O’Reilly, Sebastopol
(2012)

7. Blank, S.: Why the lean start-up changes everything. Harvard Bus. Rev. 91(5), 63–72 (2013)
8. Sarasvathy, S.D.: Causation and effectuation: toward a theoretical shift from economic

inevitability o entrepreneurial contingency. Acad. Manage. Rev. 26(2), 243–263 (2001)
9. Simon, H.A.: Strategy and organizational evolution. Strateg. Manage. J. 14, 131–142 (1993)
10. Yin, R.K.: Case Study Research: Design and Methods. Applied Social Research Methods,

5th edn. SAGE Publications, Inc., Thousand Oaks (2014)
11. Snowden, D.J., Boone, M.E.: A leader’s framework for decision making. Harvard Bus. Rev.

85, 69–76 (2007)
12. Tushman, M.L., Scanlan, T.J.: Boundary spanning individuals: their role in information

transfer and their antecedents. Acad. Manag. J. 24(2), 289–305 (1981)
13. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: Building blocks for continuous

experimentation. In: 1st International Workshop on Rapid Continuous Software Engineering
(RCoSE 2014), Hyderabad, India (2014)

14. Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.:
Software development in startup companies: the greenfield startup model. IEEE Trans.
Softw. Eng. 42(6), 585–604 (2016)

15. Teixeira, L., Saavedra, V., Ferreira, C., Simões, J., Sousa Santos, B.: Requirements
engineering using mockups and prototyping tools: developing a healthcare web-application.
In: Yamamoto, S. (ed.) HCI 2014. LNCS, vol. 8521, pp. 652–663. Springer, Cham (2014).
doi:10.1007/978-3-319-07731-4_64

204 A.N. Duc et al.

http://dx.doi.org/10.1007/978-3-319-07731-4_64

Should We Be Thanking Microsoft, Apple
and Google for Their Contributions to Open

Source Software?

The Case of Multinational Platform Leaders

Dominique Doorhof, Elizabeth A. Schermerhorn(B), Slinger Jansen,
and Sjaak Brinkkemper

Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands
{d.j.doorhof,e.a.schermerhorn,slinger.jansen,s.brinkkemper}@uu.nl

Abstract. Software producing organizations are contributing increas-
ingly to open source software, by making their software open source or
contributing to existing projects. Platform leaders contribute to open
source software in different manners, but for whose interests are these
companies contributing to open source software? Are contributions made
by software developers as part of a software vendor or do these software
producing organizations want to do what is right without benefits? So
how do platform leaders contribute to open source software? By analyz-
ing the data from GitHub repositories, the contributions to open source
software by three platform leaders is researched in two dimensions, how
are the developers connected and to which projects do these developers
contribute. By analyzing their connectedness and analyzing the devel-
oped projects, the conclusion is drawn that contributions are made for
the strategic advantage of the software producing organizations. The
majority of the contributions made to open source software is to their
own projects and by developers who contribute to these projects full-
time.

1 Introduction

There are ever more open source projects created, maintained and used by soft-
ware developers as well as by software producing organizations (SPOs) [1–3].
Different reasons for SPOs to contribute to open source software (OSS) are
to learn about best practices, to motivate software developers and as business
model [4]. Thanks to these motivators, commercial vendors are participating
increasingly in OSS and seeing more potential in investing in certain projects or
launching their own open source projects [5,6]. Since OSS is becoming increas-
ingly interesting to SPOs, this research focuses on how three SPOs contribute to
open source software on GitHub. The focus lies on Apple, Microsoft and Google
since each organization has a large software ecosystem [7], with similar products
and competing for the largest market share. There is little research on the contri-
butions to OSS by SPOs such as which projects do they contribute to? Why do
c© Springer International Publishing AG 2017
A. Ojala et al. (Eds.): ICSOB 2017, LNBIP 304, pp. 205–210, 2017.
https://doi.org/10.1007/978-3-319-69191-6_16

206 D. Doorhof et al.

they contribute to these OSS projects and how do SPOs handle the development
of OSS projects? Since multiple motivators for contributing to OSS have been
researched previously, this research focuses on the main motivators for platform
leaders with a large software ecosystem. With this research initial steps are made
at understanding the involvement of platform leaders in OSS and their contri-
butions. This research presents a better understanding on how contributions are
made to OSS and how this reflects to the different motivators.

2 Research Method

To answer the research question data from GitHub is acquired through the
GHTorrent mirror1 and processing is done with Python.

Table 1. Characteristics of the company policies on OSS and how this is handled.

Aspect of policy Company Description

How to contribute Microsoft There are defined guidelines and best practices
on how to contribute to OSS

Apple There are guidelines on how to contribute

Google Google feels you need to be able to contribute
everything in your own way

Types of contributions Microsoft There are seven types of contritbutions
identified such as bug reports, feature requests,
and bug fixes

Apple Bugs can be reported and almost all Apple
product can be further developed

Google Anything can be contributed to Google
projects

Licencing agreement Microsoft Before you can be a developer of OSS a
licencing agreement needs to be signed so that
Microsoft and others can use your code.

Apple There is an agreement which needs to be
signed between developers and Apple

Google There is an agreement which needs to be
signed between developers and Apple

Developers Microsoft You can apply to Microsoft to become a
full-time, paid developer

Apple Developers need to pay a fee of 99 dollars per
year to develop OSS and remain in the program

Google N/A

1 http://ghtorrent.org/.

http://ghtorrent.org/

Should We Be Thanking Microsoft, Apple and Google 207

With the help of NetworkX an initial network is created, where the developers
are connected to the projects they are a member of or have committed to. This
way the nodes of the network are both the users and the projects. To create a
network where the developers that worked on the same projects are connected,
this network is transformed to a bipartite graph. These graphs are visualized
with the help of PyGraphviz, which offers more styling features in comparison
to NetworkX. The latter is used to calculate the network characteristics.

3 Company Policies, Developer Networks
and Contributions

To understand their attitude towards OSS the policies of Microsoft, Google and
Apple are evaluated. These policies describe how to contribute to OSS, what
types of contributions can be done, what the licensing agreement is between
the company and the developers and who can participate as a developer. An
overview of the policies is presented in Table 1.

The collected data from GitHub is analyzed in different ways. Figure 1 shows
the resulting network analysis of contributions to OSS by Microsoft, Google
and Apple. In Fig. 2 the Venn diagrams show the projects represented in the
developer networks of Fig. 1. All the collected commits over the past five years
are analyzed and shown in Fig. 3. Table 2 shows the network characteristics of
the developed graphs that are shown in Fig. 1.

Table 2. Developer network characteristics

Characteristics Total based on
number of
project
members

Total based on
number of
commits

Unique developers 3.615 6.060

Unique projects 15.533 69.890

Unique links 26.505 77.444

Total links 242.778 119.361

Developers without links 2.059 2.760

Developers that contributed to one project 1.096 356

4 Discussion

From the developer networks shown in Fig. 1 a couple of observations are made.
First of all, there is barely any overlap between the contributions by the three
SPOs. This is supported by the Venn diagrams in Fig. 2. Second, Google and
Microsoft developers contribute more to opens source software on GitHub than

208 D. Doorhof et al.

Fig. 1. Networks of overlap in projects. In both networks the nodes represent the
developers and the colors represent the different companies: blue for Microsoft, purple
for Google and yellow for Apple. The links in the networks are defined differently: in
(a) there is a link between two developers if they are member of the same project and
in (b) developers are linked if they made a commits to the same project. All nodes
with no connections have been omitted from the graphs. (Color figure online)

Fig. 2. Venn diagrams of contributions by the three organizations. The size of the
circles corresponds with the number of projects and the overlap represents the projects
to which multiple organizations have contributed. There are no projects where all
three SPOs overlap. Although the absolute number of developers has increased, the
percentage of overlap is similar in both cases.

Should We Be Thanking Microsoft, Apple and Google 209

Fig. 3. Evolution of the number of commits per month over the past 5 years (January
2012 to September 2016) for all three organizations. The peak for Google and Microsoft
are labeled in the chart. The sources for the peaks are in fact projects owned by the
SPO and developed by the SPO.

developers employed by Apple. Google and Microsoft have a similar number of
projects they contribute to.

Figure 3 shows that the number of commits by the three SPOs has increased
over the last five years. This is in line with research which has already been con-
ducted on the increased contribution to OSS. The following projects correspond
to the peaks in the lines of Google and Microsoft:

– Google: Gitfeeti (No description provided)
– Google: Dailypush (Bot that simulates activity on GitHub)
– Microsoft: OpenLocalizationTestOrg (Part of the Azure platform)

These three published projects are all owned by an SPO and developed by the
owning SPO. These projects are either private repositories on GitHub (which are
only usable by paid accounts) used for backup or personal hidden projects, or
in the case of dailypush, a bot that simulates activity on GitHub which makes it
look like the account is active when in fact it is not. Both kinds of projects do not
contribute to open source. This means that the increase in number of commits
that is seen in Fig. 3 does not necessarily show the increased participation of
the organizations to OSS. Future research could focus on the distribution of the
commits made to the own projects of SPOs and to projects which are not owned
by the SPOs. Although the research shows that Apple is not as involved in open
source as Microsoft and Google, there are a few constraints to this conclusion.

210 D. Doorhof et al.

Apple has its own repository for open source project, which was not considered
in this research. IBM is not considered in this research since there is less overlap
with Microsoft, Apple and Google regarding the software ecosystems.

5 Conclusion

Software producing organizations have increasingly contributed to open source
software since 2005. By conducting a developer network analysis on GitHub
repositories, the conclusion is drawn that there is minimal overlap between SPOs
regarding the projects they contribute to. An analysis on the projects shows that
the largest OSS projects contributed to are owned and developed by mainly one
SPO. This illustrates that there are few projects on which SPOs collaborate,
thus only collaborating on OSS for their own benefit. The contributions to OSS
have increased over the past five years, to the extent that it was possible to
identify different projects in the streams of commits. This shows that various
projects of SPOs have been made open source on GitHub over the past years.
So should we be thanking Microsoft, Apple and Google? The results show that
SPOs present themselves as contributors to OSS, however when looking closely
into their contributions, they contribute to their own projects, within their own
teams and on projects which are hidden from the public. This supports the
conclusion that SPOs present themselves as OSS collaborators but are in fact
developing commercial software which is renamed as OSS.

References

1. Andersen-Gott, G., Ghinea, G., Bygstad, B.: Why do commercial companies con-
tribute to open source software? Elsevier 32(2), 106–117 (2012)

2. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D., Damian, D.:
The promises and perils of mining github. Mining Softw. Repositories Conf. 11(5),
92–101 (2014)

3. Hecker, F.: Setting up shop: the business of open source softwar. IEEE 16(1), 45–51
(1999)

4. Brown, A.W., Booch, G.: Reusing open-source software and practices: the impact
of open-source on commercial vendors. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol.
2319, pp. 123–136. Springer, Heidelberg (2002). doi:10.1007/3-540-46020-9 9

5. Lerner, J., Tirole, J.: The simple economics of open source. J. Ind. Econ. 50(2),
197–234 (2002)

6. Lerner, J., Tirole, J.: The economics of technology sharing: open source and beyond.
J. Econ. Perspect. 19(2), 99–120 (2005)

7. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: a research
agenda for software ecosystems. Softw. Eng. 31 (2014)

http://dx.doi.org/10.1007/3-540-46020-9_9

Author Index

Abrahamsson, Pekka 146, 199

Blessinga, Remmelt 161
Bosch, Jan 179
Brinkkemper, Sjaak 205

Cruzes, Daniela S. 146

Dahle, Yngve 199
Doorhof, Dominique 205
Duc, Anh Nguven 199

España, Sergio 99

Fabijan, Aleksander 179
Fricker, Samuel A. 49

Gao, Xuesong 99
Gonzalez-Huerta, Javier 186

Hakes, Christoph 32
Hanssen, Geir K. 146
Hyrynsalmi, Sami 67, 115

Ickin, Selim 186

Jansen, Slinger 99, 131, 161, 205
Järvi, Antero 67

Krcmar, Helmut 32
Krupskiy, Andrey 161

Liukkunen, Kari 3

Maksimov, Yuliyan V. 49
Manikas, Konstantinos 192
Menkveld, Abel 131

Nguyen Duc, Anh 146

Oivo, Markku 3
Olsson, Helena Holmström 179

Pant, Vik 82
Petersen, Kai 186

Ruohonen, Jukka 67

Schermerhorn, Elizabeth A. 205
Scholte, Jelmer 161
Schreieck, Maximilian 32
Seppänen, Marko 67
Seppänen, Pertti 3
Snarby, Terje 146
Steinert, Martin 199
Suominen, Arho 67

Teixeira, Jose 115
Tripathi, Nirnaya 3

van Vulpen, Paul 131

Wagner, Marcus 18
Wiesche, Manuel 32

Xu, Yudi 99

Yu, Eric 82

Zhang, Dong 99

	Preface
	Organization
	Contents
	Software Startups and Platform Governance
	How Are Product Ideas Validated?
	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Startup Models and Processes

	3 Research Design
	3.1 Research Questions
	3.2 Case and Subject Selection
	3.3 Data Collection Procedure
	3.4 Data Analysis Procedure

	4 Results
	4.1 Case Description
	4.2 Idea Validation Practices
	4.3 Effect of Prior Competencies on Idea Validation Practices

	5 Discussion
	5.1 Answering the Research Questions
	5.2 Idea Validation Process
	5.3 Idea Validation Practices and Requirements Gathering
	5.4 Validity Discussion
	5.5 Relevance to Academia and Practitioners

	6 Conclusions and Future Research
	Acknowledgements
	References

	Acquisitions and Growth of Software Startups: The Dual Role of Venture Capital as a Success Factor
	Abstract
	1 Introduction
	1.1 Review of Extant Literature
	1.2 Development of Research Questions

	2 Methodology
	3 Results
	4 Conclusions and Discussion
	Appendix: Interview Questions Used in the Analysis
	References

	Governing Platforms in the Internet of Things
	Abstract
	1 Introduction
	2 Background
	2.1 Digital Platforms and Platform Governance
	2.2 Platforms in the Internet of Things

	3 Methodology and Cases
	4 Results on Governance Mechanisms
	5 Discussion on Governance Trade-Offs
	Acknowledgement
	References

	Software Business Development
	Pricing of Data Products in Data Marketplaces
	Abstract
	1 Introduction
	2 Research Methodology
	2.1 Research Process
	2.2 Threats to Validity

	3 Results: Pricing of Data Markets
	3.1 Quality Assessment
	3.2 RQ1: Maturity of the Pricing Models
	3.3 RQ2: Pricing of Data

	4 Discussion
	5 Summary and Conclusions
	Acknowledgments
	Appendix: Bibliography of Included Papers
	References

	Knitting Company Performance and Board Interlocks
	1 Introduction
	2 Background, Related Work and Motivation
	3 Research Approach, Data and Method
	4 Results
	5 Discussion
	6 Conclusions
	References

	Modeling Strategic Complementarity and Synergistic Value Creation in Coopetitive Relationships
	Abstract
	1 Introduction
	2 Analyzing Strategic Complementarity Between Actors
	3 Example: Complementarity Between Windows and Pentium
	3.1 Analyzing Strategic Complementarity in the Wintel Alliance
	3.2 Reasoning About Strategic Complementarity in the Wintel Alliance

	4 A Method for Modeling and Analyzing Strategic Complementarity and Synergistic Value Creation
	4.1 Value Added by an Actor in a Value Chain
	4.2 Added Value of an Actor to a Multi-party Economic Relationship

	5 Conclusions and Future Work
	References

	Business Model Exploration for Software Defined Networks
	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Research Purpose

	2 Research Background
	2.1 Business Model Canvas
	2.2 SDN Architecture
	2.3 Unified Quality Model

	3 Case Study
	3.1 Background of the Case Organization
	3.2 Case Study Design
	3.3 Results
	3.3.1 Summary of the Results

	4 Discussion
	4.1 Contribution
	4.2 Limitation

	5 Conclusion
	5.1 Research Summary
	5.2 Future Work
	5.2.1 Business Model Future Work
	5.2.2 SDN Future Work

	References

	Software Ecosystems and App Stores
	How Do Software Ecosystems Co-Evolve?
	1 Introduction
	2 Related Literature
	3 Empirical Background
	4 Method
	5 Results
	6 Discussion
	6.1 A Theoretical and Empirical Evolutionary Approach to Software Ecosystems
	6.2 Mechanisms of Co-Evolution Among Software Ecosystems
	6.3 Implications and Limitations of the Study

	7 Conclusion
	References

	Health Measurement of Data-Scarce Software Ecosystems: A Case Study of Apple's ResearchKit
	1 Introduction
	2 Previous Work
	3 Research Method
	3.1 Case Study
	3.2 Ecosystem Health Metrics
	3.3 Data Collection

	4 Results
	4.1 Productivity
	4.2 Robustness
	4.3 Niche Creation

	5 Analysis
	6 Discussion
	7 Conclusion
	References

	Coopetition of Software Firms in Open Source Software Ecosystems
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Coopetition Among Software Firms
	2.2 Firm Participation in Software Ecosystem

	3 Research Approach
	3.1 Study Design
	3.2 Data Collection and Analysis

	4 Results
	4.1 Organizational Boundary Spanning via Gatekeepers
	4.2 Securing Communication Among Actors on Firm Competitive Advantages
	4.3 Open-Core Sourcing Policy
	4.4 Business Driven Filtering of Code Sharing
	4.5 Value of Social Position in OSS Community
	4.6 Friendly Competitiveness

	5 Discussion
	6 Conclusions
	References

	Mobile Software Security Threats in the Software Ecosystem, a Call to Arms
	1 Introduction
	2 Research Approach
	3 Literature Overview
	3.1 Literature on Android Ecosystem Security
	3.2 Literature on iOS Ecosystem Security

	4 Results
	4.1 OWASP Guidelines and the Ecosystem Perspective
	4.2 The OWASP Mobile Security Top 10
	4.3 Comparing the Effect of Security Threats to Ecosystem Actors
	4.4 Android and iOS Developer Guidelines
	4.5 Guidelines Comparison Table

	5 Discussion
	6 Conclusions
	References

	Short Papers
	Experimentation that Matters: A Multi-case Study on the Challenges with A/B Testing
	Abstract
	1 Introduction
	2 Background
	3 Research Method
	4 Case Study Findings
	4.1 Feature Experimentation: The Online Domain
	4.2 Feature Experimentation: The Embedded Systems Domain

	5 Discussion and Conclusion
	References

	Why Do Users Install and Delete Apps? A Survey Study
	1 Introduction
	2 Survey Definition
	3 Results
	4 Conclusion
	References

	Evolving Software Products, the Design of a Water-Related Modeling Software Ecosystem
	1 Introduction
	2 Approach
	2.1 Software Structure
	2.2 Business Structure
	2.3 Disruption and Business Development
	2.4 Organizational Structure

	3 Conclusion and Future Work
	References

	Towards Understanding Startup Product Development as Effectual Entrepreneurial Behaviors
	Abstract
	1 Introduction
	2 Behavioral Theory of the Entrepreneurial Firm
	3 Research Approach
	4 How Are Theories of Entrepreneurial Behaviors Applicable to Explain for Startup Product Development Process?
	5 Discussions
	6 Conclusions
	References

	Should We Be Thanking Microsoft, Apple and Google for Their Contributions to Open Source Software?
	1 Introduction
	2 Research Method
	3 Company Policies, Developer Networks and Contributions
	4 Discussion
	5 Conclusion
	References

	Author Index

