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Abstract. New technologies introduced into medicine necessitate training of
medical personnel to operate new equipment and techniques. For this purpose,
training simulators and educational materials should be provided to the medical
staff involved. This work concerns creating 3D model of surgical field for simu‐
lators to promote minimally invasive surgery. The paper reports the modes of
constructing a photorealistic model of surgical field from endoscopic video
streams, SFM, SLAM methods, as well as the problem of surface reconstruction
from a point cloud and texture mapping on the constructed model.
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1 Introduction

In the modern world, it is evident that the new technologies appear practically every
day. Being popular and spreading widely the recent technology advances easily integrate
in our lives, with no exception to the medicine. New technologies available in medicine
necessitate the medical personnel to be properly trained to operate with the new equip‐
ment and to handle new techniques. Therefore, it is necessary to create training simu‐
lators and provide educational materials. This paper concerns with the creation of 3D
model of the surgical field for training simulators, training minimally invasive surgery.

The minimally invasive surgery is highly beneficial compared to traditional open
operations. The whole procedure assumes small instrumentally-made cuts. The main
advantages imply low blood loss, lower traumatism, and rapid and less painful post-
operational recovery period. But such low-invasive intervention requires special training
for surgeons.

Surgeons need to adapt handling a camera and operating instruments, to become
accustomed to their mutual arrangement while observing an operation on a special
monitor. These are the reasons to create modern surgical training simulators. A crucial
function of simulators is to provide detailed and plausible imaging of the surgical field.
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Thus, two major goals have to be reached: (1) to create qualitative and precise 3D model
of surgical field, and (2) to map photorealistic textures on this model.

Firstly, the model should be properly constructed. There are two major approaches
for constructing the operational field model: the construction may be done (1) by using
the MRT data, medical atlases and other credible sources, the result of which can be
exemplified by the ArthroS [1] simulator produced by EvenaMedical Company; or (2)
by using photo- and video- images of real surgical operations, exemplified by scientific
developments of A. Sourin [2–4].

In the second case, it is proposed to build a panoramic image of surgical field based
on operation video. The relief model is then superposed on this panorama that a surgeon
can interact with it and add three-dimensional models of target organs to the output. The
drawbacks of this approach imply inaccuracy and distortions in transferring a volumi‐
nous object on a flat panorama, as well as a lack of possibility to utilize such model in
simulator.

To avoid the above problems, it is suggested to begin with building of the 3D model
of the surgical field using a video sequence. This procedure has got some advantages
compared to constructing the model from the MRT data or biological atlases. It does
not require preliminary location positioning, additional labels or an expensive prelimi‐
nary examination (such as MRT or KT) as the implied method is based on information
recovered from endoscopic images. In this case, the cost of creating each model is
noticeably reduced. So, it is feasible to create the model of a particular object for its
further detailed examination or for training and teaching purposes. For instance, a
surgical field of appointed patient can be used as a source, the result of which might be
helpful in modeling the course of a future operation. A surgeon can rehearse all compli‐
cated instances of a forthcoming operation, come across possible difficulties. In addition,
it seems possible to create the models of particular clinical cases to be subsequently
included into a scenario of personnel training.

For successful implementation, it is decided to use algorithms based on the Structure
from Motion (SFM) and the Simultaneous Localization and Mapping (SLAM) methods.
Noticeably, these methods, particularly SLAM, have been significantly developed
recently.

The second part of this paper provides the basic steps of the SFM method. Then the
paper introduces algorithms of the SLAM family. Further on, the modes of constructing
3D surfaces of the object and texture mapping onto the surface are described. The paper
closes with the conclusion.

2 Principal Steps of SFM Method

The aim to construct 3D structures from a set of images (photographs or frames) taken
from different perspectives is referred to as the structure from motion (SFM). It can be
solved with the following procedure applied. At first, entry images should be analyzed
to determine feature points. After that, coordinates of these points in three-dimensional
space should be found using triangulation. In this respect the problem is to find the
camera coordinates in the video source. With a sufficient amount of detected feature
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points in the images, it is possible to compare the number of equations to define both
coordinates of cameras and of feature points.

Thus, the steps for solving the SFM problem have been formulated [5]:

• Search for features on input images. In most cases it is advised to apply either SIFT
or SURF for solving the problem of searching and describing feature points. SIFT
commonly detects more features on the image, but SURF is more quick and seems
to be more robust.

• Search for matches between the points found. It is recommended to refer to
FLANN with the big high-dimensional data sets. It is also advised to use linear
methods establishing the best compliance for each point found with sparse data [6].

• The false compliances filtration. Preliminary selection may be done basing on the
assumption of positioning of corresponding points as well as on heuristic methods.
These points are further filtered by the RANSAC method [7].

• The equation system processing, the estimation of camera position and the
reconstruction of the 3D structure.

3 Algorithms of SLAM Family

The method of Simultaneous Localization and Mapping (SLAM) is currently widely
applied. The problem posed for the method is classic for robotics: in transferring the
sensor in the unknown space over the unknown trajectory it is advised to construct 3D
or flat map of the environment and locate a sensor. In the case, when this sensor presented
with a video camera, the SLAM problem and the SFM problem looks similar in nature.
In this case it is called visual-SLAM or VSLAM. One of the differences to distinguish
in the SLAM method is real-time working with a video, rather than with a final set of
photos. That is, not the entire set of images is handed over to the algorithm as an input.
Instead, the input data are portioned.

Keeping in mind the aforementioned, the working time is critical for SLAM-based
algorithms, and it is reasonable to use the video sequence in their application. The key
differences between the video stream and photos in respect to the paper issue are minor
camera shifts on the sequenced frames, as well as the possibility of tracing feature points.
Besides, the algorithm data is applied for the positioning autonomous devices and
systems, which it is difficult or impossible to supplement with big computing power.
Therefore, one of the main requirements for SLAM family algorithms is the demand of
low computing power.

Today, two major procedures for solving Visual SLAM problem are outlined:

• Feature-based methods – the methods based on searching for feature points on the
image;

• Direct methods – direct methods analyzing an entire image.

Each method is presented with its significant algorithm with the ORB-SLAM algo‐
rithm stands as a sample for feature-based methods and the LSD-SLAM algorithm – for
the direct ones.
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3.1 ORB-SLAM

The basics of the ORB-SLAM [8] algorithm are very similar to those of SFM. However,
such features of SLAM as real-time operating and constant data updating amend the
algorithm. Tasks of updating and specifying the model (or map) of the environment,
constructing and refinement of the camera route, searching for loops on the camera route
and some others appear consequently. In order to be equal to these tasks ORB-SLAM
is designed to use the ORB algorithm [9] for features search and description. The algo‐
rithm is proved to have extremely high working speed and gives out the results of
acceptable quality.

The authors of ORB-SLAM proposed their method for the environment map initi‐
alization. Firstly, two frames that have a sufficient amount of coinciding features
detected with the ORB detector are picked. Then, basing on the matches found it is
necessary to locate the camera shift in respect to selected frames. For cases when the
camera is moved slightly, or part of scene getting into a frame is flat, the camera shift
should be calculated via homography. Otherwise, the camera shift is better described
with a fundamental matrix. The main idea of the method is that the initial camera position
is computed with the two models involved. Then they are compared in order to look for
the best one. The initial map of environment is built with the selected model applied.

ORB-SLAM consists of three modules that operate in parallel streams:

• Tracking stands for the module responsible for locating the camera position on the
current frame, as well as for making the decision to distinguish a current frame as
the key frame;

• Local mapping stands for the module responsible for construction and refinement of
the model (or map) of the environment from distinguished key points;

• Loop closing stands for the module that searches for closing loop of a camera if a
new key frame appears; it also refines the camera tracking and environment map if
the loop closing is discovered.

As a result of applying this algorithm, the camera route is described with the decent
precision and the point’s cloud of the geometry of the environment is generated.
However, the algorithm may interrupt its work or provide wrong results in case when a
part of the environment contains small amount of features.

3.2 LSD-SLAM

The main feature of the LSD-SLAM algorithm [10] is that it uses the entire image as
information pool, in contrast to other algorithms, which are feature point-oriented.
Below the main stages of this algorithm are considered.

LSD-SLAM includes three main modules namely the tracking module, module of
depth map estimation and the module of environment map optimization:

• The tracking module is responsible for locating the camera on each new frame. The
camera position is calculated relative to the current key frame position. The position
of previous frame is used as the initial approximation.
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• The depth map estimation attracts the processed frame for refinement or replacement
of the current key frame. If the shift between the new frame and the current key frame
is small enough, then the depth map of the current key frame is specified. Otherwise,
the new frame becomes a key frame. The depth map of the previous key frame is
taken as the initial approximation of the depth map for the new key frame.

• When a new key frame appears, the previous key frame, which is not to be changed
further, is used for updating the environment map.

The original depth map of the first frame is initialized at random. In the meantime
the environment map construction is suspended for some time, until the algorithm output
is reliable enough.

The noticeable advantage of the second method is the independence of feature points
that may be extremely useful while processing poorly textured objects often found on
the videos of minimally invasive surgeries.

4 Reconstruction of Surface and Superposition of Textures

The result map of the SFM approach and some SLAM algorithms, e.g. ORB-SLAM, is
presented as a points cloud. But in a general case the result cloud is insufficiently rare
for constructing a photorealistic model of a good quality.

4.1 Construction of a Dense Points Cloud

The most popular solution of the problem of constructing a dense points cloud is the
method proposed in the referenced article [11]. This method is available in the PMVS
library [12]. Each point from the rare cloud is superposed by a patch that is a small
oriented rectangular. The same is done with neighbor areas of the model. Then incor‐
rectly superposed patches are filtered. The last two steps have several iterations before
the patches cover the surface of the reconstructed model densely.

Each image the algorithm receives as an input is conventionally divided into similar
sectors Ci(x, y) in order approximate to the result in which every sector of each image
contains the projection of at least one patch. The model of the patch p is described by
the position of its center c(p) and a unit normal vector n(p).

A collection of images is picked for each patch showing the shared feature point.
Some frames can be dismissed by the function of photometric error between the frames.
Then parameters of a patch are specified via the minimization of photometric error
between remaining frames. After that, when a corresponding patch is built for each point
of the original points cloud, the algorithm comes over to the step of enlargement.

For each point of the image neighboring the cell that contains the patch p projection,
the algorithm tries to build a new patch with the exception for the cells that already
contains the projection of any patch. If the area of the model onto which a new patch p′

is superposed has a significant height differences relatively to the area of the reference
model containing the patch p, the attempt to impose this patch onto the image reveals
an easily noticeable error. In such cases the patch p′ is set as an overshoot and is discarded
from the model. If the patch undergoes the described test, its parameters are specified
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via minimization of photometric error between the frames that contains the projection
of this patch. After that, new patches are additionally filtered, and the process of
constructing new patches is launched anew. The authors of the algorithm suggest
repeating this procedure for at least three times.

Thus, in the algorithm output we get a new dense points cloud, after that it is possible
to superpose meshes onto a scene and obtain the required surface.

4.2 Reconstruction of Model Surface from a Dense Points Cloud

After obtaining a dense points cloud, the surface model construction becomes accessible.
This matter evolves a number of approaches, yet the authors of this paper consider the
popular method of Poisson Surface Reconstruction [13] that available in the PMVS
library most suitable.

The essence of this approach based on the observation that the vector field of internal
normal of the solid body boundary may be interpreted as the membership function
gradient of this body. The vector array may be taken as the vector field of the boundary.
These vectors are inversed to patch normal obtained from the constructing of a dense
cloud. Thus, the vector field V⃗ : R3

→ R3 is obtained. It is necessary to find the scalar
function 𝜒 : R3

→ R∧3 minimizing the error function:

𝜒 = ∫
‖
‖
‖
∇𝜒(p) − V⃗(p)

‖
‖
‖

2
dp (1)

This problem is solving with the Poisson equation:

Δ𝜒 = ∇ ⋅ V⃗ (2)

Then the isosurface with a zero value of the function χ is found. The positive values
of the function correspond to the original field of the model, while the negative ones -
to external. All approaches and modifications improving the model are reported in the
original paper.

4.3 Photorealistic Texture Mapping onto the Constructed Surface

Further on, it is necessary to map the textures onto the constructed 3D model. For this
purpose the image of the due part of the model is projected on the surface of the
constructed model from the positioned camera. The target part of the model is often
found on more than one frame. So, it is critical to pick up the most appropriate frame
for texture mapping. The following procedure is proposed for this particular instance.
The points are estimated using several factors for each small part of 3D model. The list
of these factors contains: (a) the distance from the model surface to the frame plane, (b)
the angle between the frame and the surface normal, (c) the distance from the frame
boundary (it is reasonable to map textures from the central part of a frame as optic
distortions may occur on the periphery), (d) image definition, and (e) brightness (areas
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that over lit or too dark are fined). Finally each part of the model is filled in with a texture
from the frame with the highest score.

In this case, however, one more issue might be the case. Due to the difference in
lighting, minor inaccuracies in the model construction and some misinterpretation of
the camera location, the boundaries of the image textures stitching could be quite distin‐
guishable. Thus, it is essential to level out the brightness of different frames and smooth
out the transitions using the Multi-band Blending [14].

In this research, the texture mapping is an important issue to consider. The above-
proposed algorithm combined with the correct choice of the 3D model reconstruction
techniques, result in building the top-quality realistic model of surgery field that is the
principal goal of this work.

5 Conclusion

The paper reports various approaches to constructing 3D model of environment from
the video sequence or the collection of separate pictures. Application of such algorithms
facilitates the creation of the surgical field model applied in surgical training simulators,
and requires no specialist involvement. It stimulates building diverse models for medical
personnel training, operative intervention planning or diagnostics.

Using the SFM procedure it is feasible to get a photorealistic 3D model of the envi‐
ronment, but in terms of the goal posed this approach has some disadvantages. For
instance, this algorithm operates with a final set of static photos, rather than with a video
stream. This means that before launching the algorithm it is necessary to distinguish an
appropriate set of frames from a video sequence, and only after that one can proceeds
with the 3D model construction. The set of random frames of a video sequence as well
as the choice of frames with set intervals may be far from meeting the requirements.
Besides, such procedure cannot operate in real time and build the model concurrently
with the shooting. On the other hand, the presence of the entire set of entry data allows
a coherent model to be built at once.

The paper reports the other approach, involving the SLAM application. It mitigates
the issues of the SFM method described above, as they operate with a video stream in
real time. With such procedure, the necessary key frames are selected automatically by
the program, providing more optimal data set to build the 3D model with. An important
advantage of this family of algorithms is their ability to work in real time with relatively
low computing power. Thus, it can be concluded that SLAM is more suitable for solving
the assigned problem.

The article reports two major approaches to copying with SLAM issues: (1) the
method based on searching for feature points and (2) the direct method of analyzing the
entire image. Comparing these approaches, the benefits of the feature points-based
methods are: high-speed operation overshoots handling, essential stability and initiali‐
zation easiness. The basic benefits of direct methods are: the ability of the algorithms to
operate with poorly textured objects as well as with a few feature points on the images;
the building of a more dense stage model, in contrast to the sparse points cloud of the
aforesaid methods; applying the big piece of information obtained from the image.
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Working with different objects under varying conditions, either approach should be
preferred.
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